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Abstract

In this chapter, we introduce a generalized contractions and prove some fixed point
theorems in generalized metric spaces by using the generalized contractions. Moreover,
we will apply the fixed point theorems to show the existence and uniqueness of solution
to the ordinary difference equation (ODE), Partial difference equation (PDEs) and frac-
tional boundary value problem.
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1. Introduction

The study of differential equations is a wide field in pure and applied mathematics, chemistry,

physics, engineering and biological science. All of these disciplines are concerned with the

properties of differential equations of various types. Pure mathematics investigated the exis-

tence and uniqueness of solutions, but applied mathematics focuses on the rigorous justifica-

tion of the methods for approximating solutions. Differential equations play an important role

in modeling virtually every physical, technical, or biological process, from celestial motion, to

bridge design, to interactions between neurons. Differential equations such as those used to

solve real-life problems may not necessarily be directly solvable, i.e. do not have closed form

solutions. Instead, solutions can be approximated using numerical methods.
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Following the ordinary differential equations with boundary value condition

dnx

dtn
¼ f t; x;

dx

dt
;…;

dn�1x

dtn�1

� �

where y x0ð Þ ¼ 0, y0 x1ð Þ ¼ c1,…, y n�1ð Þ xn�1ð Þ ¼ cn�1 the positive integer n (the order of the

highest derivative). This will be discussed. Existence and uniqueness of solution for initial

value problem (IVP).

u0 tð Þ ¼ f t; u tð Þð Þ

u t0ð Þ ¼ u0:

Differential equations contains derivatives with respect to two or more variables is called a

partial differential equation (PDEs). For example,

A
∂
2u

∂x2
þ B

∂
2u

∂x∂y
þ C

∂
2u

∂y2
þD

∂u

∂x
þ E

∂u

∂y
þ Fu ¼ G

where u is dependent variable and A, B, C,D, E, F and G are function of x, y above equation is

classified according to discriminant B2 � 4AC
� �

as follows,

1. Elliptic equation if B2 � 4AC
� �

< 0,

2. Hyperbolic equation if B2 � 4AC
� �

> 0,

3. Parabolic equation if B2 � 4AC
� �

¼ 0.

This will be discussed. Existence of solution for semilinear elliptic equation. Consider a func-

tion u : Ω⊂R
n ! R

n that solves,

�Δu ¼ f uð Þ in Ω

u ¼ u0 on ∂Ω

where f : R
m ! R

m is a typically nonlinear function. And fractional differential equations. This

will be discussed. Fractional differential equations are of two kinds, they are Riemann-

Liouville fractional differential equations and Caputo fractional differential equations with

boundary value.

cDα

t u tð Þ ¼ Bu tð Þ; t > 0

u 0ð Þ ¼ u0 ∈X

where cDα

t is the Caputo fractional derivative of order α∈ 0; 1ð Þ, and t∈ 0; τ½ �, for all τ > 0.

The following fractional differential equation will boundary value condition.

Dα

0þu tð Þ þ f t; u tð Þð Þ ¼ 0, 0 < t < 1, 1 < α ≤ 2

u 0ð Þ ¼ 0, u 1ð Þ ¼

ð1

0

u sð Þds,
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where f : 0; 1½ � � 0;∞½ Þ ! 0;∞½ Þ is a continuous function and Dα

0þ is the standard Riemann-

Liouville fractional derivative.

One method for existence and uniqueness of solution of difference equation due to fixed point

theory. The primary result in fixed point theory which is known as Banach’s contraction principle

was introduced by Banach [1] in 1922.

Theorem 1.1. Let X; dð Þ be a complete metric spaces and T : X ! X be a contraction mapping (that is,

there exists 0 ≤α < 1) such that

d Tx;Tyð Þ ≤αd x; yð Þ

for all x, y∈X, then T has a unique fixed point.

Since Banach contraction is a very popular and important tool for solving many kinds of

mathematics problems, many authors have improved, extended and generalized it (see in [2–4])

and references therein.

In this chapter, we discuss on the existence and uniqueness of the differential equations by

using fixed point theory to approach the solution.

2. Basic results

Throughout the rest of the chapter unless otherwise stated X; dð Þ stands for a complete metric

space.

2.1. Fixed point

Definition 2.1. Let X be a nonempty set and T : X ! X be a mapping. A point x∗ ∈X is said to

be a fixed point of T if T x∗ð Þ ¼ x∗:

Definition 2.2. Let X; dð Þ be a metric space. The mapping T : X ! X is said to be Lipschitzian if

there exists a constant α > 0 (called Lipschitz constant) such that

d Tx;Tyð Þ ≤αd x; yð Þ for all x, y∈X:

A mapping T with a Lipschitz constant α < 1 is called contraction.

Definition 2.3. Let F and X be normed spaces over the field K, T : F ! X an operator and c∈F.

We say that T is continuous at c if for every ε > 0 there exists δ > 0 such that ∥T xð Þ � T cð Þ∥ < e

whenever ∥x� c∥ < δ and x∈ F. If T is continuous at each x∈F, then T is said to be continuous

on T.

Definition 2.4. Let X and Y be normed spaces. The mapping T : X ! Y is said to be completely

continuous if T Cð Þ is a compact subset of Y for every bounded subset C of X.
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Definition 2.5. Compact operator is a linear operator L form a Banach space X to another

Banach space Y, such that the image under L of any bounded subset of X is a relatively

compact subset (has compact closure) of Y such an operator is necessarily a bounded operator,

and so continuous.

Definition 2.6. A subset C of a normed linear space X is said to be convex subset in X if

λxþ 1� λð Þy∈C for each x, y∈C and for each scalar λ∈ 0; 1½ �.

Definition 2.7. v is called the αth weak derivative of u

Dαu ¼ v

if
ð

Ω

uDαψdx ¼ �1ð Þ∣α∣
ð

Ω

vψdx

for all test function ψ∈C∞

c Ωð Þ.

Theorem 2.8. (Schauder’s Fixed Point Theorem) Let X be a Banach space, M⊂X be nonempty,

convex, bounded, closed and T : M⊂X ! M be a compact operator. Then T has a fixed point.

Lemma 2.9. ref. [5] Given f ∈C Rð Þ such that ∣f tð Þ∣ ≤ a ¼ b tj jr where a > 0, b > 0 and r > 0 are

positive constants. Then the map u↦ f uð Þ is continuous for Lp Ωð Þ to L
p
r Ωð Þ for p ≥ max 1; rð Þ and

maps bounded subset of Lp Ωð Þ to bounded subset of L
p
r Ωð Þ.

Proof. Form to Jensen’s inequality

aþ b tj jrð Þ
p
rð Þ ≤ 2

p
r�1a

p
r þ 2

p
r�1b

p
r tj jp ≤C 1þ tj jpð Þ

where C is a positive constant depending on a, b, p and r only, since u∈Lp Ωð Þ, we have

ð

Ω

f uð Þj j
p
rdx ≤C a; b; p; rð Þ jΩj þ

ð

Ω

updx

� �

< ∞

therefore f uð Þ∈ L
p
r Ωð Þ. Let un be a sequence converging to u in Lp Ωð Þ. There exists a subse-

quence un, and a function g∈Lp Ωð Þ such that set, un0 ! u xð Þ, and ∣un0 xð Þ∣ ≤ g xð Þ, almost every-

where. This is sometimes called the generalized DCT, or the partial converse of the DCT, or the

Riesz-Fisher Theorem. From the continuity of f , ∣f u xð Þð Þ � f un0ð Þ∣ ! 0 on Ω\ℕ, and

f u xð Þð Þ � f un0ð Þj j
p
r ≤C 1þ g xð Þp þ f uð Þj jpð Þ

where C is another positive constant depending on a, b, p and r only, the left-hand-side is

independent of n
0
and is in L1 Ωð Þ. We can apply the Dominated Convergence Theorem to

conclude the

ð

Ω

f u xð Þð Þ � f un0ð Þj j
p
rdx ! 0
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or in other words, ∥f u xð Þð Þ � f un0ð Þ∥
L
p
r Ωð Þ

! 0: Since the limit does not depend on the subse-

quence this convergence u holds for un. □

Corollary 2.10. ref. [5] Let μ ≥ 0. Then the map g↦ �Δþ μId
� ��1

g is

i. continuous as map from L2 Ωð Þ to H1
0 Ωð Þ in other words

∥v∥H1
0 Ωð Þ ≤C Ωð Þ∥g∥L2 Ωð Þ:

ii. compact as map form L2 Ωð Þ to L2 Ωð Þ.

Proof. The first part is due to the fact that L2 Ωð Þ is continuously in H�1
Ωð Þ. The second part

follows as �Δþ μId
� ��1

: L2 Ωð Þ ! L2 Ωð Þ can be viewed as composition of the continuous map

�Δþ μId
� ��1

: L2 Ωð Þ ! H1
0 Ωð Þ and the compact embedding H1

0 Ωð Þ↣L2 Ωð Þ and as the compo-

sition of a compact linear operator a continuous linear operator is again compact.

Theorem 2.11. (Poincare) For p∈ 1;∞½ Þ, there exists a constant C ¼ C Ω; pð Þ such that ∀∈W
1,p
0 Ωð Þ;

∥u∥Lp Ωð Þ ≤C∥∇u∥Lp Ω:R
nð Þ. A key tool to obtain the compactness of the fixed point maps.

2.2. Fuzzy

A fuzzy set in X is a function with domain X and values in 0; 1½ �. If A is a fuzzy set on X and

x∈X, then the functional value Ax is called the grade of membership of x in A. The α� level

set of A, denoted by Aα is defined by

Aα ¼ x : Ax ≥αf g if α∈ 0; 1ð �, A0 ¼ x : Ax > 0f g,

where denotes by A the closure of the set A. For any A and B are subset of X we denote by

H A;Bð Þ the Huasdorff distance.

Definition 2.12. A fuzzy set A in a metric linear space is called an approximate quantity if and

only if Aα is convex and compact in X for each α∈ 0; 1½ � and supx∈XAx ¼ 1:

Let I ¼ 0; 1½ � and W Xð Þ⊂ IX be the collection of all approximate in X. For α∈ 0; 1½ �, the family

Wα Xð Þ is given by A∈ IX : Aα

�

is nonempty and compact}.

For a metric space X; dð Þwe denoted by V Xð Þ the collection of fuzzy sets A in X for which Aα is

compact and supAx ¼ 1 for all α∈ 0; 1½ �. Clearly, when X is a metric linear space W Xð Þ⊂V Xð Þ:

Definition 2.13. Let A, B∈V Xð Þ, α∈ 0; 1½ �: Then

p
α
A;Bð Þ ¼ inf

x∈Aα, y∈Bα

d x; yð Þ, Dα A;Bð Þ ¼ H Aα;Bαð Þ

where H is the Hausdorff distance.
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Definition 2.14. Let A, B∈V Xð Þ: Then A is said to be more accurate than B (or B includes A),

denoted by A⊂B, if and only if Ax ≤Bx for each x∈X:

Denote with Φ, the family of nondecreasing function ϕ : 0;þ∞½ Þ ! 0;þ∞½ Þ such that
P

∞

n¼1 ϕ
n tð Þ < ∞ for all t > 0:

Theorem 2.15. ref. [6] Let X; d;≼ð Þ be a complete ordered metric space and T1, T2 : X ! Wα Xð Þ be

two fuzzy mapping satisfying

Dα T1x;T2yð Þ ≤ϕ M x; yð Þð Þ þ Lmin pα x;T1xð Þ; pα y;T2yð Þ; pα x;T2yð Þ; pα y;T1xð Þ
� �

for all comparable element x, y∈X, where L ≥ 0 and

M x; yð Þ ¼ max d x; yð Þ; pα x;T1xð Þ; pα y;T2yð Þ;
1

2
pα x;T2yð Þ þ pα y;T1xð Þ
� 	


 �

:

Also suppose that

i. if y∈ T1x0ð Þα, then y, x0 ∈X are comparable,

ii. if x, y∈X are comparable, then every u∈ T1xð Þα and every v∈ T2yð Þα are comparable,

iii. if a sequence xnf g in X converges to x∈X and its consecutive terms are comparable, then

xn and x are comparable for all n.

Then there exists a point x∈X such that xα ⊂T1x and xα ⊂T2x:

Proof. See in [6].

Corollary 2.16. ref. [6] Let X; d;≼ð Þ be a complete ordered metric space and T1, T2 : X ! Wα Xð Þ be

two fuzzy mappings satisfying

Dα T1x;T2yð Þ ≤ qmax d x; yð Þ; pα x;T1xð Þ; pα y;T2yð Þ;
1

2
pα x;T2yð Þ þ pα y;T1xð Þ
� 	


 �

for all comparable elements x, y∈X. Also suppose that

i. if y∈ T1x0ð Þα, then y, x0 ∈X are comparable,

ii. if x, y∈X are comparable, then every u∈ T1xð Þα and every v∈ T2yð Þα are comparable,

iii. if a sequence xnf g in X converges to x∈X and its consecutive terms are comparable, then

xn and x are comparable for all n.

Then there exists a point x∈X such that xα ⊂T1x and xα ⊂T2x:

2.3. Metric-like space

Definition 2.17. [7] Let X be nonempty set and function p : X� X ! R
þ be a function satisfy-

ing the following condition: for all x, y, z∈X,
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p
1

� �

p x; xð Þ ¼ p x; yð Þ ¼ p y; yð Þ if and only if x ¼ y,

p
2

� �

p x; xð Þ ≤ p x; yð Þ,

p3
� �

p x; xð Þ ¼ p y; xð Þ,

p4
� �

p x; yð Þ ¼ p x; zð Þ þ p z; yð Þ � p z; zð Þ:

Then p is called a partial metric on X, so a pair X; pð Þ is said to be a partial metric space.

Definition 2.18. [8] A metric-like on nonempty set X is a function σ : X� X ! R
þ. If for all

x, y, z∈X, the following conditions hold:

σ1ð Þ σ x; yð Þ ¼ 0 ) x ¼ y;

σ2ð Þ σ x; yð Þ ¼ σ y; xð Þ;

σ3ð Þ σ x; yð Þ ¼ σ x; zð Þ þ σ z; yð Þ:

Then a pair X; σð Þ is called a metric-like space.

It is easy to see that a metric space is a partial metric space and each partial metric space is a

metric-like space, but the converse is not true but the converse is not true as in the following

examples:

Example 2.19. [8] Let X ¼ 0; 1f g and σ : X� X ! R
þ be defined by

σ x; yð Þ ¼
2, if x ¼ y ¼ 0,

1, otherwise:




Then X; σð Þ is a metric-like space, but it is not a partial metric space, cause σ 0; 0ð Þ≰σ 0; 1ð Þ:

Lemma 2.20. ref. [9] Let X; pð Þ be a partial metric space. Then

i. xnf g is a Cauchy sequence in X; pð Þ if and only if it is a Cauchy sequence in the metric

space X; dp
� �

,

ii. X is complete if and only if the metric space X; dp
� �

is complete.

Definition 2.21. [8, 10] Let X; σð Þ be a metric-like space. Then:

i. A sequence xnf g in X converges to a point x∈X if limn!∞σ xn; xð Þ ¼ σ x; xð Þ: The sequence

xnf g is said to be σ� Cauchy if limn,m!∞σ xn; xmð Þ exists and is finite. The space X; σð Þ is

called complete if for every σ� Cauchy sequence in xnf g, there exists x∈X such that

lim
n!∞

σ xn; xð Þ ¼ σ x; xð Þ ¼ lim
n,m!∞

σ xn; xmð Þ:

ii. A sequence xnf g in X; σð Þ is said to be a 0� σ� Cauchy sequence if limn,m!∞σ xn; xmð Þ ¼ 0:

The space X; σð Þ is said to be 0� σ� complete if every 0� σ� Cauchy sequence in X

converges (in τσ) to a point x∈X such that σ x; xð Þ ¼ 0:
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iii. A mapping T : X ! X is continuous, if the following limits exist (finite) and

lim
n!∞

σ xn; xð Þ ¼ σ Tx; xð Þ:

Following Wardowski [11], we denote by F the family of all function, F : R
þ ! R satisfying

the following conditions:

(F1) F is strictly increasing on Rþ,

(F2) for every sequence snf g in Rþ, we have lim
n!∞

sn ¼ 0 if and only if lim
n!∞

F snð Þ ¼ �∞,

(F3) there exists a number k∈ 0; 1ð Þ such that lim
s!0þ

skF sð Þ ¼ 0:

Example 2.22. The following function F : R
þ ! R belongs to F :

i. F sð Þ ¼ ln s, with s > 0,

ii. F sð Þ ¼ ln sþ s, with s > 0:

Definition 2.23. [11] Let X; dð Þ be a metric space. A self-mapping T on X is called an F-

contraction mapping if there exist F∈F and τ∈Rþ such that

∀x, y∈X, d Tx;Tyð Þ > 0 ) τþ F d Tx;Tyð Þð Þ ≤ F d x; yð Þð Þ½ �: (2.1)

Definition 2.24. [12] Let X; σð Þ be a metric-like space. A mapping T : X ! X is called a

generalized Roger Hardy type F� contraction mapping, if there exist F∈F and τ∈Rþ such

that

σ Tx;Tyð Þ > 0 ) τþ F σ Tx;Tyð Þð Þ ≤ Fðασ x; yð Þ þ βσ x;Txð Þ þ γσ y;Tyð Þ

þησ x;Tyð Þ þ δσ y;Txð ÞÞ
(2.2)

for all x, y∈X and α, β,γ, η, δ ≥ 0 with αþ βþ γþ 2ηþ 2δ < 1.

Theorem 2.25. ref. [12] Let X; σð Þ be 0� σ� complete metric-like spaces and T : X ! X be a

generalized Roger Hardy type F� contraction. Then T has a unique fixed point in X, either T or

F is continuous.

Proof. See in [12]. □

2.4. Modular metric space

Let X be a nonempty set. Throughout this paper, for a function ω : 0;∞ð Þ � X� X ! 0;∞½ �, we

write

ωλ x; yð Þ ¼ ω λ; x; yð Þ

for all λ > 0 and x, y∈X:

Definition 2.26 [13, 14] Let X be a nonempty set. A function ω : 0;∞ð Þ � X� X ! 0;∞½ � is

called a metric modular on X if satisfying, for all x, y, z∈X the following conditions hold:

Differential Equations - Theory and Current Research10



i. ωλ x; yð Þ ¼ 0 for all λ > 0 if and only if x ¼ y,

ii. ωλ x; yð Þ ¼ ωλ y; xð Þ for all λ > 0,

iii. ωλþμ x; yð Þ ≤ωλ x; zð Þ þ ωμ z; yð Þ for all λ,μ > 0.

If instead of (i) we have only the condition (i’)

ωλ x; xð Þ ¼ 0 for all λ > 0, x∈X,

then ω is said to be a pseudomodular (metric) on X: A modular metric ω on X is said to be

regular if the following weaker version of (i) is satisfied:

x ¼ y if and only if ωλ x; yð Þ ¼ 0 for some λ > 0:

Note that for a metric (pseudo)modular ω on a set X, and any x, y∈X, the function

λ↦ωλ x; yð Þ is nonincreasing on 0;∞ð Þ: Indeed, if 0 < μ < λ, then

ωλ x; yð Þ ≤ωλ�μ x; xð Þ þ ωμ x; yð Þ ¼ ωμ x; yð Þ:

Note that every modular metric is regular but converse may not necessarily be true.

Example 2.27. Let X ¼ R and ω is defined by ωλ x; yð Þ ¼ ∞ if λ < 1, and ωλ x; yð Þ ¼ ∣x� y∣ if

λ ≥ 1, it is easy to verify that ω is regular modular metric but not modular metric.

Definition 2.28. [13, 14] Let Xω be a (pseudo)modular on X: Fix x0 ∈X: The two sets

Xω ¼ Xω x0ð Þ ¼ x∈X : ωλ x; x0ð Þ ! 0 as λ ! ∞f g

and

X∗
ω ¼ X∗

ω x0ð Þ ¼ x∈X : ∃λ ¼ λ xð Þ > 0 such that ωλ x; x0ð Þ < ∞f g

are said to be modular spaces (around x0).

Throughout this section we assume that X;ωð Þ is a modular metric space, D be a nonempty

subset of Xω and G≔ Gωf is a directed graph with V Gωð Þ ¼ D and Δ⊆E Gωð Þg:

Definition 2.29. [15, 16] The pair D;Gωð Þ has Property (A) if for any sequence xnf gn∈ℕ
in D,

with xn ! x as n ! ∞ and xn; xnþ1ð Þ∈E Gωð Þ, then xn; xð Þ∈E Gωð Þ, for all n:

Definition 2.30. ref. [17] Let F∈F and Gω ∈G: A mapping T : D ! D is said to be F-Gω-

contraction with respect to R : D ! D if

i. Rx;Ryð Þ∈E Gωð Þ ) Tx;Tyð Þ∈E Gωð Þ for all x, y∈D, i.e. T preserves edges w.r.t. R,

ii. there exists a number τ > 0 such that

ω1 Tx;Tyð Þ > 0 ) τþ F ω1 Tx;Tyð Þð Þ ≤F ω1 Rx;Ryð Þð Þ

for all x, y∈D with Rx;Ryð Þ∈E Gωð Þ:

Example 2.31. ref. [17] Let F∈F be arbitrary. Then every F-contractive mapping w.r.t. R is an

F-Gω-contraction w.r.t. R for the graph Gω given by V Gωð Þ ¼ D and E Gωð Þ ¼ D�D.
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We denote C T;Rð Þ≔ x∈D : Tx ¼ Rxf g the set of all coincidence points of two self-mappings T

and R, defined on D.

Theorem 2.32. ref. [17] Let X;ωð Þ be a regular modular metric space with a graph Gω: Assume

that D ¼ V Gωð Þ is a nonempty ω-bounded subset of Xω and the pair D;Gωð Þ has property (A)

and also satisfy ΔM-condition. Let R, T : D ! D be two self mappings satisfying the following

conditions:

i. there exists x0 ∈D such that Rx0;Tx0ð Þ∈E Gωð Þ,

ii. T is an F-Gω-contraction w.r.t R,

iii. T Dð Þ⊆R Dð Þ,

iv. R Dð Þ is ω complete.

Then C R;Tð Þ 6¼ Ø.

Proof. See in [17]. □

3. Fixed point approach to the solution of differential equations

Next, we will show a differential equation which solving by fixed point theorem in suitable

spaces.

3.1. Ordinary differential equation

Lemma 3.1. ref. [18] u is a solution of u0 tð Þ ¼ f t; u tð Þð Þ satisfying the initial condition u t0ð Þ ¼ u0

if and only if u tð Þ ¼ u0 þ
Ð t
t0
f s; u sð Þð Þds.

Proof. Suppose that u is a solution of u0 tð Þ ¼ f t; u tð Þð Þ defined on an interval I and satisfying

u t0ð Þ ¼ u0. We integrate both sides of the equation u0 tð Þ ¼ f t; u tð Þð Þ from t0 to t, where t is in I

ðt
t0

u0 sð Þds ¼

ðt
t0

f s; u sð Þð Þds

u tð Þ � u t0ð Þ ¼

ðt
t0

f s; u sð Þð Þds:

Since u t0ð Þ ¼ u0, we have

u tð Þ ¼ u0 þ

ðt
t0

f s; u sð Þð Þds, t∈ I: (3.1)

We will show that, conversely, any function which satisfies this integral equation satisfies both

the differential equation and the initial condition. Suppose that u is a function defined on an

interval I and satisfies (3.1). Setting t ¼ t0 yields u t0ð Þ ¼ u0, so that u satisfies the initial
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condition. Next, we note that an integral is always a continuous function, so that a solution of

(3.1) is automatically continuous. Since both u and f are continuous, it follows that the inte-

grand f s; u sð Þð Þ is continuous. We may therefore apply the fundamental theorem of calculus to

(3.1) and conclude that u is differentiable, and that is u0 tð Þ ¼ f t; u tð Þð Þ. □

The contraction mapping theorem may by used to prove the existence and uniqueness of the

initial problem for ordinary differential equations. We consider a first-order of ODEs for a

function u tð Þ that take value in Rn

u0 tð Þ ¼ f t; u tð Þð Þ (3.2)

u t0ð Þ ¼ u0: (3.3)

The function f t; u tð Þð Þ also take value in Rn and is assumed to be a continuous function of t and

a Lipschitz continuous function of u on suitable domain.

Definition 3.2. Suppose that f : I � Rn ! R
n where I is on interval in R. We say that f t; u tð Þð Þ is

a globally Lipschitz continuous function of u uniformly in t if there is a constant C > 0 such that

∥f t; uð Þ � f t; vð Þ∥ ≤C∥u� v∥ (3.4)

for all x, y∈Rn and all t∈ I.

The initial value problem can be reformulated as an integral equation.

u tð Þ ¼ u0 þ

ðt
t0

f s; u sð Þð Þds: (3.5)

By the fundamental theorem of calculus, a continuous solution of (3.5) is a continuously

differentiable solution of (3.2). Eq. (3.5) may by written as fixed point equation.

u ¼ Tu

for the map T defined by

Tu tð Þ ¼ u0 þ

ðt
t0

f s; u sð Þð Þds:

Theorem 3.3. ref. [19] Suppose that f : I � Rn ! R
n where I is on interval in R and t0 is a point

in the interior of I. If f t; uð Þ, is a continuous function of t; uð Þ and a globally Lipschitz continu-

ous function of u uniformly in t on I � Rn, then there is a unique continuously differentiable

function u : I ! R
n that satisfies (3.2).

Proof. We will show that T is a contraction on the space of continuous function defined on a

time interval t0 ⩽ t⩽ t0 þ δ, for sufficiently small δ.

Suppose that u, v : t0; t0 þ δ½ � ! R
n are two continuous function. Then, form (3.4), (3.5) we

estimate,
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jTu� Tvj
∞
¼ sup

t0 ⩽ t⩽ t0þδ

jTu tð Þ � Tv tð Þj

¼ sup
t0 ⩽ t⩽ t0þδ

j

ðt

t0

f s; u sð Þð Þ � f s; v sð Þð Þdsj

≤ sup
t0 ⩽ t⩽ t0þδ

ðt

t0

jf s; u sð Þð Þ � f s; v sð Þð Þjds

≤ sup
t0 ⩽ t⩽ t0þδ

Cju sð Þ � v sð Þj

ðt

t0

ds

≤ Cδju� vj
∞
:

If follow that if δ ≤ 1
c then T is contraction on C t0; t0 þ δ½ �ð Þ. Therefore, there is a unique solution

u : t0; t0 þ δ½ � ! R
n.

Let f x; yð Þ be a continuous real-valued function on a; b½ � � c; d½ �. The Cauchy initial value

problem is to find a continuous differentiable function y on a; b½ � satisfying the differential

equation

dy

dx
¼ f x; yð Þ, y x0ð Þ ¼ y0: (3.6)

Consider the Banach space C a; b½ � of continuous real-valued functions with supremum norm

defined by ∥y∥ ¼ sup y xð Þj : x∈ a; b½ �f g:

Integrating (3.6), that yield an integral equation

y xð Þ ¼ y0 þ

ðx

x0

f t; y tð Þð Þdt: (3.7)

The problem (3.6) is equivalent the problem solving the integral Eq. (3.7).

We define an integral operator T : C a; b½ � ! C a; b½ � by

Ty xð Þ ¼ y0 þ

ðx

x0

f t; y tð Þð Þdt:

Therefore, a solution of Cauchy initial value problem (3.6) corresponds with a fixed point of T.

One may easily check that if T is contraction, then the problem (3.6) has a unique solution.

Theorem 3.4. ref. [20] Let f x; yð Þ be a continuous function of Dom fð Þ ¼ a; b½ � � c; d½ � such that f

is Lipschitzian with respect to y, i.e., there exists k > 0 such that

∣f x; uð Þ � f x; vð Þ∣ ≤ k∣u� v∣ for all u, v∈ c; d½ � and for x∈ a; b½ �:

Suppose x0; y0
� �

∈ int Dom fð Þð Þ: Then for sufficiently small h > 0, there exists a unique solution

of the problem (3.6).

Proof. Let M ¼ sup jf x; yð Þj : x; y∈Dom fð Þf g and choose h > 0 such that
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C≔ y∈C x0 � h; x0 þ h½ � : jy xð Þ � y0j ≤Mh
� �

:

Then C is a closed subset of the complete metric space C x0 � h; x0 þ h½ � and hence C is com-

plete. Note T : C ! C is a contraction mapping. Indeed, for x∈ x0 � h; x0 þ h½ � and two contin-

uous functions y1, y2 ∈C, we have

∥Ty1 � Ty2∥ ¼ ∥
Ð x
x0
f x; y1
� �

� f x; y2
� �

dt∥

≤ ∣x� x0∣ sup
s∈ x0�h;x0þh½ �

k∣y1 sð Þ � y2 sð Þ∣

≤ kh∥y1 � y2∥:

Therefore, T has a unique fixed point implying that the problem (3.6) has a unique fixed point.

3.2. Ordinary fuzzy differential equation

Now, we consider the existence of solution for the second order nonlinear boundary value

problem:

x00 tð Þ ¼ k t; x tð Þ; x0 tð Þð Þ, t∈ 0;Λ½ �, Λ > 0,

x t1ð Þ ¼ x1,

x t2ð Þ ¼ x2, t1, t2 ∈ 0;Λ;½ �

8

>

<

>

:

(3.8)

where k : 0;Λ½ � �W Xð Þ �W Xð Þ ! W Xð Þ is a continuous function. This problem is equivalent

to the integral equation

x tð Þ ¼

ðt2

t1

G t; sð Þk s; x sð Þ; x0 sð Þð Þdsþ β tð Þ, t∈ 0;Λ½ �, (3.9)

where the Green’s function G is given by

G t; sð Þ ¼

t2 � tð Þ s� t1ð Þ

t2 � t1
if t1 ≤ s ≤ t ≤ t2,

t2 � sð Þ t� t1ð Þ

t2 � t1
if t1 ≤ t ≤ s ≤ t2,

8

>

>

<

>

>

:

and β tð Þ satisfies β00 ¼ 0, β t1ð Þ ¼ x1, β t2ð Þ ¼ x2: Let us recall some properties of G t; sð Þ, precisely

we have

ðt2

t1

∣G t; sð Þ∣ds ≤
t2 � t1ð Þ2

8

and

ðt2

t1

∣Gt t; sð Þ∣ds ≤
t2 � t1ð Þ

2
:
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If necessary, for a more detailed explanation of the background of the problem, the reader can

refer to the reference [21, 22]. Here, we will prove our results, by establishing the existence of a

common fixed point for pair of integral operators defined as

Ti xð Þ tð Þ ¼

ðt2

t1

G t; sð Þki s; x sð Þ; x0 sð Þð Þdsþ β tð Þ, t∈ 0;Λ½ �, i∈ 1; 2f g (3.10)

where k1, k2 ∈C 0;Λ½ � �W Xð Þ �W Xð Þ;W Xð Þð Þ, x∈C1 0;Λ½ �;W Xð Þð Þ, and β∈C 0;Λ½ �;W Xð Þð Þ:

Theorem 3.5 ref. [6] Assume that the following conditions are satisfied:

i. k1, k2 : 0;Λ½ � �W Xð Þ �W Xð Þ ! W Xð Þ are increasing in its second and third variables,

ii. there exists x0 ∈C1 0;Λ½ �;W Xð Þð Þ such that, for all t∈ 0;Λ½ �, we have

x0 tð Þ ≤

ðt2

t1

G t; sð Þk1 t; x0 sð Þ; x00 sð Þ
� �

dsþ β tð Þ,

where t1, t2 ∈ 0;Λ½ �,

iii. there exist constants γ, δ > 0 such that, for all t∈ 0;Λ½ �, we have

∣k1 t; x tð Þ; x0 tð Þð Þ � k2 t; y tð Þ; y0 tð Þð Þ∣ ≤γ∣x tð Þ � y tð Þ∣þ δ∣x0 tð Þ � y0 tð Þ∣

for all comparable x, y∈C1 0;Λ½ �;W Xð Þð Þ,

iv. for γ, δ > 0 and t1, t2 ∈ 0;Λ½ � we have

γ
t2 � t1ð Þ2

8
þ δ

t2 � t1ð Þ

2
< 1,

v. if x, y∈C1 0;Λ½ �;W Xð Þð Þ are comparable, then every u∈ T1xð Þ1 and every v∈ T2yð Þ1 are compa-

rable.

Then the pair of nonlinear integral equations

x tð Þ ¼

ðt2

t1

G t; sð Þki s; x sð Þ; x0 sð Þð Þdsþ β tð Þ t∈ 0;Λ½ �, i∈ 1; 2f g (3.11)

has a common solution in C1 t1; t2½ �;W Xð Þð Þ:

Proof. Consider C ¼ C1 t1; t2½ �;W Xð Þð Þ with the metric

D x; yð Þ ¼ max
t1 ≤ t ≤ t2

γjx tð Þ � y tð Þj þ δjx0 tð Þ � y0 tð Þjð Þ:

The C;Dð Þ is a complete metric space, which can also be equipped with the partial ordering

given by

x, y∈ C, ⇔ x tð Þ ≤ y tð Þ for all t∈ 0;Λ½ �:
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In [23], it is proved that C;≼ð Þ satisfies the following condition:

(r) for every nondecreasing sequence xnf g in C convergent to some x∈ C, we have xn≼x for all

n∈ℕ ∪ 0f g.

Let T1, T2 : C ! C be two integral operators defined by (3.10); clearly, T1, T � 2 are well defined

since k1, k2, and β are continuous functions. Now, x∗ is a solution of (3.9) if and only if x∗ is a

common fixed point of T1 and T2.

By hypothesis (a), T1, T2 are increasing and, by hypothesis (b), x0≼T1 x0ð Þ: Consequently, in

view of condition (r), hypothesis (i)-(iii) of Corollary 2.16 hold true.

Next, for all comparable x, y∈ C, From hypothesis (c) we obtain successively

∣T1 xð Þ tð Þ � T2 yð Þ tð Þ∣ ≤

ð

t1

t2∣G t; sð Þkk1 s; x sð Þ; x0 sð Þð Þ � k1 s; y sð Þ; y0 sð Þð Þ∣ds

≤D x; yð Þ

ðt2

t1

∣G t; sð Þ∣ds

≤
t2 � t1ð Þ2

8
D x; yð Þ

(3.12)

and

∣ T1 xð Þð Þ
0

tð Þ � T2 yð Þð Þ
0

tð Þ∣ ≤

ð

t1

t2∣Gt t; sð Þkk1 s; x sð Þ; x
0

sð Þ
� 

� k1 s; y sð Þ; y
0

sð Þ
� 

∣ds

≤D x; yð Þ

ðt2

t1

∣Gt t; sð Þ∣ds

≤
t2 � t1ð Þ

2
D x; yð Þ:

(3.13)

From (3.12) and (3.13), we obtain easily

D T1x;T2yð Þ ≤ γ
t2 � t1ð Þ2

8
þ δ

t2 � t1ð Þ

2

 !

D x; yð Þ:

Consequently, in view of hypothesis (d), the contractive condition (5) is satisfied with

q ¼ γ
t2 � t1ð Þ2

8
þ δ

t2 � t1ð Þ

2
< 1:

Therefore, Corollary 2.16 applied to T1 and T2, which have common fixed point x∗ ∈ C, that is,

x∗ is a common solution of (3.9). □

3.3. Second-order differential equation

Now, we consider the boundary value problem for second order differential equation
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x00 tð Þ ¼ �f t; x tð Þð Þ, t∈ I,

x 0ð Þ ¼ x 1ð Þ ¼ 0,




(3.14)

where I ¼ 0; 1½ � and f : I � R! R: is a continuous function.

It is known, and easy to check, that the problem (3.14) is equivalent to the integral equation

x tð Þ ¼

ð1

0

G t; sð Þf s; x sð Þð Þds, for t∈ I, (3.15)

where G is the Green’s function define by

G t; sð Þ ¼
t 1� sð Þ if 0 ≤ t ≤ s ≤ 1

s 1� tð Þ if 0 ≤ s ≤ t ≤ 1:




That is, if x∈C2 I;Rð Þ, then x is a solution of problem (3.14) iff x is a solution of the integral

Eq. (3.15).

Let X ¼ C Ið Þ be the space of all continuous functions defined on I. Consider the metric-like σ

on X define by

σ x; yð Þ ¼ ∥x� y∥
∞
þ ∥x∥

∞
þ ∥y∥

∞
for all x, y∈X,

where ∥u∥
∞
¼ maxt∈ 0;1½ �∣u tð Þ∣ for all u∈X.

Note that σ is also a partial metric on X and since

dσ x; yð Þ≔2σ x; yð Þ � σ x; xð Þ � σ y; yð Þ ¼ 2∥x� y∥
∞
:

By Lemma 2.20, hence X; σð Þ is complete since the metric space X; ∥ � ∥ð Þ is complete.

Theorem 3.6. ref. [12] Suppose the following conditions:

i. there exist continuous functions p : I ! R
þ such that

∣f s; að Þ � f s; bð Þ∣ ≤ 8p sð Þ∣a� b∣

for all s∈ I and a, b∈R;

ii. there exist continuous functions q : I ! R
þ such that

∣f s; að Þ∣ ≤ 8q sð Þ∣a∣

for all s∈ I and a∈R;

iii. maxs∈ Ip sð Þ ¼ αλ1 <
1
49 , which is 0 ≤α < 1

7;

iv. maxs∈ Iq sð Þ ¼ αλ2 <
1
49 which is 0 ≤α < 1

7 :

Then problem (3.14) has a unique solution u∈X ¼ C I;Rð Þ.
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Proof. Define the mapping T : X ! X by

Tx tð Þ ¼

ð1
0

G t; sð Þf s; x sð Þð Þds,

for all x∈X and t∈T: Then the problem (3.14) is equivalent to finding a fixed point u of T in X.

Let x, y∈X, we obtain

∣Tx tð Þ � Ty tð Þ∣ ¼ ∣

ð1
0

G t; sð Þf s; x sð Þð Þds�

ð1
0

G t; sð Þf s; y sð Þð Þds∣

≤

ð1
0

G t; sð Þ∣f s; x sð Þð Þ � f ðs, y sð Þ∣ds

≤ 8

ð1
0

G t; sð Þp sð Þ∣x sð Þ � y sð Þ∣ds

≤ 8αλ1∥x� y∥
∞

Ð 1
0 G t; sð Þds

¼ αλ1∥x� y∥
∞
:

In the above equality, we used that for each t∈ I, we have
Ð 1
0 G t; sð Þds ¼ t

2 1� tð Þ and so

supt∈ I

Ð 1
0 G t; sð Þds ¼ 1

8 : Therefore,

∥Tx� Ty∥
∞
≤αλ1∥x� y∥

∞
: (3.16)

Moreover, we have

Tx tð Þ ¼ ∣

ð1
0

G t; sð Þf s; x sð Þð Þds∣

≤ 8

ð1
0

G t; sð Þq sð Þ∣x sð Þ∣ds

≤ 8αλ2∥x∥∞:

Hence,

∥Tx∥
∞
≤αλ2∥x∥∞: (3.17)

Similar method, we obtain

∥Ty∥
∞
≤αλ2∥y∥∞: (3.18)

Let e�τ ¼ λ1 þ 2λ2 < 1 where τ > 0: Form (3.16), (3.17) and (3.18), we obtain

σ Tx;Tyð Þ ¼ jTx� Tyj
∞
þ jTxj

∞
þ jTyj

∞

≤ αλ1jx� yj
∞
þ αλ2jxj∞ þ αλ2jyj∞

≤ λ1 þ 2λ2ð Þ αð Þ jTx� Tyj
∞
þ jTxj

∞
þ jTyj

∞
ð Þ½ �

¼ e�τð Þασ x; yð Þ:

(3.19)
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Let β,γ, η, δ > 0 where β < 1
7 ,γ < 1

7 , η < 1
7 , δ < 1

7 : It following (3.19), we get

σ Tx;Tyð Þ ≤ e�τð Þ ασ x; yð Þ þ βσ x;Txð Þ þ γσ y;Tyð Þ þ ησ x;Tyð Þ þ δσ y;Txð Þ
� 	

, (3.20)

where αþ βþ γþ 2ηþ 2δ < 1. Taking the function F : R
þ ! R in (3.20), where F tð Þ ¼ ln tð Þ,

which is F∈F , we get

τþ F σ Tx;Tyð Þð Þ ≤ F ασ x; yð Þ þ βσ x;Txð Þ þ γσ y;Tyð Þ þ ησ x;Tyð Þ þ δσ y;Txð Þ
� �

:

Therefore all hypothesis of Theorem (2.25) are satisfied, and so T has a unique fixed point

u∈X, that is, the problem (3.14) has a unique solution u∈C2 Ið Þ: □

3.4. Partial differential equation

Consider the Laplace operator is a second order differential operator in the n-dimensional

Euclidean space, defined as the divergence ∇�ð Þ of the gradient ∇fð Þ. Thus if f is a twice-

differentiable real-valued function, then the Laplacian of f is defined by

Δf ¼ ∇2f ¼ ∇ � ∇f (3.21)

where the latter notations derive from formally writing ∇ ¼ ∂

∂x1
; ∂

∂x2
;⋯; ∂

∂xn

� 

. Equivalently, the

Laplacian of f the sum of all the unmixed

Δf ¼
X

n

i¼0

∂
2f

∂x2i
: (3.22)

As a second-order differential operator, the Laplace operator maps Ck functions to Ck�2 func-

tions for k ≥ 2. the expression (3.21)(or equivalently(3.22)) defines an operator Δ : C kð Þ
R

nð Þ !

C k�2ð Þ
R

nð Þ or more generator Δ : C kð Þ
Ωð Þ ! C k�2ð Þ

Ωð Þ for any open set Ω Consider semilinear

elliptic equation. Look for a function u : Ω⊂Rn ! R
m that solves

�Δu ¼ f uð Þ in Ω (3.23)

u ¼ u0 on ∂Ω (3.24)

where f : R
n ! R

m is a typically nonlinear function. Equivalently look for a fixed point of

Tu≔ �Δu0ð Þ�1 f uð Þð Þ.

Theorem 3.7. ref. [5] Let f ∈C Rð Þ and supx∈R∣f xð Þ∣ ¼ a < ∞. then (3.23) has a weak solution

u∈H1
0 Ωð Þ, i.e.

ð

Ω

∇u � ∇Φdx ¼

ð

Ω

f uð ÞΦdx, ∀Φ∈C∞

0 Ωð Þ:
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Proof. Our strategy is to apply Schauder’s Fixed Point Theorem to the map

T : L2 Ωð Þ ! L2 Ωð Þ

u↦ �Δð Þ�1 f uð Þð Þ,

where T is continuous. Lemma (2.9) show that u ! f uð Þ is continuous form L2 Ωð Þ into itself.

Corollary (2.10) shows that �Δð Þ�1 is continuous form L2 Ωð Þ into H1
0 Ωð Þ, which is continu-

ously embedded in L2 Ωð Þ. Find a closed, non-empty bounded convex set such that T : M ! M.

Given u∈L2 Ωð Þ, Tu satisfies

ð

Ω

∇Tu � ∇Tudx ¼

ð

Ω

f uð ÞTudx ≤ a∣Ω∣∥Tu∥L2 Ωð Þ (3.25)

Cauchy-Schwarz. T here fore, using Ponincare’s inequality

∥Tu∥2
L2 Ωð Þ

≤C Ωð Þ∥Tu∥2
L2 Ωð Þ

≤ a∣Ω∣∥Tu∥2
L2 Ωð Þ

:

Thus if we set R ¼ a∣Ω∣C Ωð Þ and choose M ¼ u : ∥u∥2
L2 Ωð Þ

≤R
n o

. We have established that

T : M ! M, T is compact. Using Poincare’s inequality on the right-hand-side in (3.25), we

obtain. ∥∇Tu∥2
L2 Ωð Þ

≤R∥∇Tu∥L2 Ωð Þ. Thus T Mð Þ⊂ u : ∥u∥H1
Ωð Þ ≤R

n o

, and since the embedding

of H1
Ωð Þ into L2 Ωð Þ is compact, T is compact. □

3.5. A non-homogeneous linear parabolic partial differential equation

We consider the following initial value problem

ut x; tð Þ ¼ uxx x; tð Þ þH x; t; u x; tð Þ; ux x; tð Þð Þ, �∞ < x < ∞, 0 < t ≤T,

u x; 0ð Þ ¼ φ xð Þ ≥ 0, �∞ < x < ∞,




(3.26)

where H is continuous and φ assume to be continuously differentiable such that φ and φ0 are

bounded.

By a solution of the problem (3.26), we mean a function u � u x; tð Þ defined on R� I, where

I≔ 0;T½ �, satisfying the following conditions:

i. u, ut, ux, uxx ∈C R� Ið Þ: {C R� Ið Þ denote the space of all continuous real valued func-

tions},

ii. u and ux are bounded in R� I,

iii. ut x; tð Þ ¼ uxx x; tð Þ þH x; t; u x; tð Þ; ux x; tð Þð Þ for all x; tð Þ∈R� I,

iv. u x; 0ð Þ ¼ φ xð Þ for all x∈R.

It is important to note that the differential equation problem (3.26) is equivalent to the follow-

ing integral equation problem
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u x; tð Þ ¼
ð

∞

�∞

k x� ξ; tð Þφ ξð Þdξþ
ðt

0

ð

∞

�∞

k x� ξ; t� τð ÞH ξ; τ; u ξ; τð Þ; ux ξ; τð Þð Þdξdτ (3.27)

for all x∈R and 0 < t ≤T, where

k x; tð Þ≔ 1
ffiffiffiffiffiffiffiffi

4πt
p e�

x2

4t :

The problem (3.26) admits a solution if and only if the corresponding problem (3.27) has a

solution.

Let

Ω≔ u x; tð Þ; u; ux ∈C R� Ið Þ and ∥u∥ < ∞f g,

where

∥u∥ ≔ sup
x∈R, t∈ I

∣u x; tð Þ∣þ sup
x∈R, t∈ I

∣ux x; tð Þ∣:

Obviously, the function ω : R
þ �Ω�Ω ! Rþ given by

ωλ u; vð Þ≔ 1

λ
∥u� v∥ ¼ 1

λ
d u; vð Þ

is a metric modular on Ω. Clearly, the set Ωω is a complete modular metric space independent

of generators.

Theorem 3.8. ref. [17] Consider the problem (3.26) and assume the following:

i. for c > 0 with ∣s∣ < c and ∣p∣ < c, the function F x; t; s; pð Þ is uniformly Hölder continuous

in x and t for each compact subset of R� I,

ii. there exists a constant cH ≤ T þ 2π�1
2T

1
2

� �1
≤ q, where q∈ 0; 1ð Þ such that

0 ≤
1

λ
H x; t; s2; p2
� �

�H x; t; s1; p1
� �� 	

≤ cH
s2 � s1 þ p2 � p1

λ

� �

for all s1; p1
� �

, s2; p2
� �

∈R� R with s1 ≤ s2 and p1 ≤ p2,

iii. H is bounded for bounded s and p:

Then the problem (3.26) admits a solution.

Proof. It is well known that u∈Ωω is a solution (3.26) iff u∈Ωω is a solution integral Eq. (3.27).
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Consider the graph G with V Gð Þ ¼ D ¼ Ωω and E Gð Þ ¼ u; vð Þ∈D�D : u x; tð Þ ≤ v x; tð Þf

and ux x; tð Þ ≤ vx x; tð Þ at each x; tð Þ∈R� Ig. Clearly E Gð Þ is partial ordered and D;E Gð Þð Þ satisfy

property (A).

Also, define a mapping Λ : Ωω ! Ωω by

Λuð Þ x; tð Þ≔

ð

∞

�∞

k x� ξ; tð Þφ ξð Þdξþ

ðt

0

ð

∞

�∞

k x� ξ; t� τð ÞH ξ; τ; u ξ; τð Þ; ux ξ; τð Þð Þdξdτ

for all x; tð Þ∈R� I. Then, finding solution of problem (3.27) is equivalent to the ensuring the

existence of fixed point of Λ.

Since u; vð Þ∈E Gð Þ, ux; vxð Þ∈E Gð Þ and hence Λu;Λvð Þ∈E Gð Þ, Λux;Λvxð Þ∈E Gð Þ:

Thus, from the definition of Λ and by (ii) we have

1

λ
∣ Λvð Þ x; tð Þ � Λuð Þ x; tð Þ∣

≤
1

λ

ðt

0

ð

∞

�∞

k x� ξ; t� τð Þ∣H ξ; τ; v ξ; τð Þ; vx ξ; τð Þð Þ �H ξ; τ; u ξ; τð Þ; ux ξ; τð Þð Þ∣dξdτ

≤

ðt

0

ð

∞

�∞

k x� ξ; t� τð ÞcH
1

λ
jðv ξ; τð Þ � uðξ; τÞ þ vxðξ; τÞ � uxðξ; τÞÞj

� �

dξdτ

≤ cHωλ u; vð ÞT:

(3.28)

Similarly, we have

1

λ
∣ Λvð Þx x; tð Þ � Λuð Þx x; tð Þ∣ ≤ cHωλ u; vð Þ

ðt

0

ð

∞

�∞

∣kx x� ξ; t� τð Þ∣dξdτ

≤ 2π�1
2T

1
2cHωλ u; vð Þ:

(3.29)

Therefore, from (3.28) and (3.29) we have

ωλ Λu;Λvð Þ ≤ T þ 2π�1
2T

1
2

� 

cHωλ u; vð Þ

i.e.

ωλ Λu;Λvð Þ ≤ qωλ u; vð Þ, q∈ 0; 1ð Þ

i.e.

d Λu;Λvð Þ ≤ e�τd u; vð Þ, τ > 0:

Now, by passing to logarithms, we can write this as

ln d Λu;Λvð Þð Þ ≤ ln e�τd u; vð Þð Þ

τþ ln d Λu;Λvð Þð Þ ≤ ln d u; vð Þð Þ:
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Now, from example 2.22 (i) and taking T ¼ Λ and R ¼ I (Identity map), we deduce that the

operator T satisfies all the hypothesis of theorem 2.32.

Therefore, as an application of theorem 2.32 we conclude the existence of u∗ ∈Ωω such that

u∗ ¼ Λu∗ and so u∗ is a solution of the problem 3.26.

3.6. Fractional differential equation

Before we will discuss the source of fractional differential equation.

Cauchy’s formula for repeated integration. Let f be a continuous function on the real line. Then the

nth repeated integral of f based at a,

f �nð Þ xð Þ ¼

ðx

a

ð

σ1

a

ð

σ2

a

…

ð

σn�1

a

f σnð Þdσn…dσ3dσ2dσ1

is given by single integration

f �nð Þ xð Þ ¼
1

n� 1ð Þ!

ðx

a

x� tð Þn�1f tð Þdt:

A proof is given by mathematical induction. Since f is continuous, the base case follows from

the fundamental theorem of calculus.

d

dx
f�1 xð Þ ¼

d

dx

ðx

a

f tð Þdt ¼ f xð Þ

where

f�1 að Þ ¼

ða

a

f tð Þdt ¼ 0:

Now, suppose this is true for n, and let us prove it for nþ 1.

Firstly, using the Leibniz integral rule. Then applying the induction hypothesis

f �nþ1ð Þ xð Þ ¼

ðx

a

ð

σ1

a

ð

σ2

a

…

ð

σn

a

f σnþ1ð Þdσn…dσ3dσ2dσ1

¼

ðx

a

1

n� 1ð Þ!

ð

σ1

a

σ1 � tð Þn�1f tð Þdtdσ1

¼

ðx

a

d

dσ1

1

n!

ð

σ1

a

σ1 � tð Þnf tð Þdt

� �

dσ1

¼
1

n!

ðx

a

x� tð Þnf tð Þdt:

This completes the proof. In fractional calculus, this formula can be used to construct a notion

of differintegral, allowing one to differentiate or integrate a fractional number of time.
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Integrating a fractional number of time with this formula is straightforward, one can use

fractional n by interpreting n� 1ð Þ! as Γ nð Þ, that is the Riemann-Liouville integral which is

defined by

Iαf xð Þ ¼
1

Γ αð Þ

ðx

a

f tð Þ x� tð Þα�1dt:

This also makes sense if a ¼ �∞, with suitable restriction on f . The fundamental relation hold

d

dx
Iαþ1f xð Þ ¼ Iαf xð Þ

Iα Iβf
� �

¼ Iαþβf xð Þ

the latter of which is semigroup properties. These properties make possible not only the

definition of fractional differentiation by taking enough derivative of Iαf . One can define

fractional-order derivative of as well by

dα

dxα
f ¼

d α½ �

dx α½ �
I α½ ��αf

where �½ � denote the ceilling function. One also obtains a differintegral interpolation between

differential and integration by defining

Dα
x f xð Þ ¼

d α½ �

dx α½ �
I α½ ��αf xð Þ if α > 0

f xð Þ if α ¼ 0

I�αf xð Þ if α < 0:

8

>

>

>

>

<

>

>

>

>

:

An alternative fractional derivative was introduced by Caputo in 1967, and produce a deriva-

tive that has different properties it produces zero from constant function and more importantly

the initial value terms of the Laplace Transform are expressed by means of the value of that

function and of its derivative of integer order rather than the derivative of fractional order as in

the Riemann-Liouville derivative. The Caputo fractional derivative with base point x is then

cDα
x f xð Þ ¼ I α½ ��α d α½ �

dx α½ �
f xð Þ:

Lemma 3.9. ref. [24] Let u : 0;∞½ � ! X be continuous function such that u∈C 0; τ½ �;Xð Þ for all

τ > 0. Then u is a global solution of

cDα
t u tð Þ ¼ Bu tð Þ; t > 0 (3.30)

u 0ð Þ ¼ u0 ∈X (3.31)

if and only if u the integral equation
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u tð Þ ¼ u0 þ
1

Γ αð Þ

ðt
0

t� sð Þα�1Bu sð Þds, t ≥ 0:

Proof. )ð Þ Let τ > 0. Since u is a global solution of (3.30), then u∈C 0; τ½ �;Xð Þ, cDα

t u∈C 0; τ½ �;Xð Þ

andt

cDα

t u tð Þ ¼ Bu tð Þ, t∈ 0; τð �:

Thus, by applying Iαt in both sides of the equality (since cDα

t u∈L1 0; τ;Xð Þ) we obtain

u tð Þ ¼ u 0ð Þ þ Iαt Bu tð Þ ¼ u0 þ
1

Γ αð Þ

ðt
0

t� sð Þα�1Bu sð Þds, t ≥ 0:

Since τ > 0 was an arbitrary choice, u satisfies the integral equation for all t ≥ 0, as we wish.

(ð Þ On the other hand, choose τ > 0 (but arbitrary). By hypothesis, u∈C 0; τ½ �;Xð Þ, and

satisfies the integral equation,

u tð Þ ¼ u0 þ
1

Γ αð Þ

ðt
0

t� sð Þα�1Bu sð Þds, t∈ 0; τ½ �:

Observing also u 0ð Þ ¼ u0 and rewriting the equality above, we obtain

u tð Þ ¼ u 0ð Þ þ Iαt Bu sð Þ, t∈ 0; τ½ �:

Since Bu sð Þ∈C 0; τ½ �;Xð Þ, we conclude, by cDα

t I
α

t f tð Þ ¼ f tð Þ of the fractional integral and deriv-

ative property that we can apply cDα

t in both sides of the integral equation, obtaining

cDα

t u tð Þ ¼ Bu tð Þ, t∈ 0; τ½ �

what lead us to verify that cDα

t u∈C 0; τ½ �;Xð Þ. Since τ > 0 was an arbitrary choice, we conclude

that the function u is a global solution of (3.30). □

Theorem 3.10. ref. [24] Let α∈ 0; 1ð Þ, B∈L Xð Þ and u0 ∈X then the problem (3.30).

have a unique global solution.

Proof. Choose τ > 0. then consider Kτ ¼ u∈C 0; τ½ �;Xð Þ; u 0ð Þ ¼ u0 and operator.

T : Kτ ! Kτ given by

T u tð Þð Þ ¼ u0 þ
1

Γ αð Þ

ðt
0

Bu tð Þdt:

We will show that a power (with respect to be composition) of this operator is a contraction

and therefore by Banach’s Fixed Point Theorem, T have a unique fixed point in Kτ to this end,

observe that for any u, v∈Kτ
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kT u tð Þð Þ � T v tð Þð Þk ¼ k
1

Γ αð Þ

ð
t

0

t� sð Þ α�1ð Þ
B u sð Þ � v sð Þð Þdsk

≤ k
1

Γ αð Þ

ð
t

0

t� sð Þ α�1ð Þ
Bk k

L Xð Þku sð Þ � v sð ÞÞkds

≤

Bk k
L Xð Þ

Γ αð Þ
ku sð Þ � v sð ÞÞk

ð
t

0

t� sð Þα�1
ds

≤

tα Bk k
L Xð Þ

αΓ αð Þ
ku sð Þ � v sð ÞÞk

≤
tα

Γ αþ 1ð Þ
Bk k

L Xð Þku sð Þ � v sð ÞÞk

≤
tα

Γ αþ 1ð Þ
Bk k

L Xð Þ sup
0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk:

By iterating this relation, we find that

kT2
u tð Þð Þ � T

2
v tð Þð Þk ≤

tα

Γ αþ 1ð Þ
Bk k

L Xð Þ sup
0⩽ s⩽ τ

kTu sð Þ � Tv sð ÞÞk

≤
t2α

Γ
2
αþ 1ð Þ

Bk k2
L Xð Þ sup

0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk

kT3
u tð Þð Þ � T

3
v tð Þð Þk ≤

tα

Γ αþ 1ð Þ
Bk k

L Xð Þ sup
0⩽ s⩽ τ

kT2
u sð Þ � T

2
v sð ÞÞk

≤
t3α

Γ
3
αþ 1ð Þ

Bk k3
L Xð Þ sup

0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk

≤ ⋯

kTn
u tð Þð Þ � T

n
v tð Þð Þk ≤

tnα

Γ
n
αþ 1ð Þ

Bk kn
L Xð Þ sup

0⩽ s⩽ τ

ku sð Þ � v sð ÞÞk

and for an sufficiently large n,the constant in question is less than 1, i.e., there exists a fixed

point u∈Kτ. Observe now that τ > 0 was an arbitrary choice, so we conclude that the fixed

point u∈C 0; τ½ �;Xð Þ for all τ > 0 and Lemma (3.9), we obtain the existence and uniqueness of a

global solution to the problem (3.30). □

Corollary 3.11. ref. [24] Consider the same hypothesis of theorem (3.10).

i. Let Un tð Þf gj∞
n¼0 be a sequence of continuous functions Un : 0;∞½ Þ ! X given by

U0 tð Þ ¼ u0, Un ¼ u0 þ
1

Γ αð Þ

Ð
t

0 t� sð Þα�1
BUn�1 sð Þds, n∈ 1; 2;…f g.

Then there exists a continuous function U : 0;∞½ Þ ! X, such that for any τ > 0, we con-

clude that Un ! U in C 0; τ½ �;Xð Þ. Moreover, U tð Þ is the unique global solution of (3.30).

ii. It holds that

U tð Þ ¼
X∞
k¼0

tαBð Þku0
Γ αkþ 1ð Þ

:
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Proof. (i) It follows directly from proof of Theorem (3.10).

(ii) It is trivial that U0 tð Þ ¼ u0. So we compute, using the gamma function properties, that

U1 tð Þ ¼ u0 þ
1

Γ αð Þ

ðt
0

t� sð Þα�1Bu0 sð Þds ¼ u0 þ
tαBu0
αΓ αð Þ

¼ u0 þ
tαBu0

Γ αþ 1ð Þ
:

By a simple induction process, we conclude that

Un tð Þ ¼
Xn
k¼0

tαBð Þku0
Γ αkþ 1ð Þ

and therefore

U tð Þ ¼ lim
n!∞

Xn
k¼0

tαBð Þku0
Γ αkþ 1ð Þ

¼
X∞
k¼0

tαBð Þku0
Γ αkþ 1ð Þ

≔Eα tαBð Þu0:

□

From the above works, we can see a fact, although the fractional boundary value problems

have been studied, to the best of our knowledge, there have been a few works using the lower

and upper solution method. However, only positive solution are useful for many application,

motivated by the above works, we study the existence and uniqueness of positive solution of

the following integral boundary value problem.

Dα

0þu tð Þ þ f t; u tð Þð Þ ¼ 0, 0 < t < 1, 1 < α ≤ 2 (3.32)

u 0ð Þ ¼ 0, u 1ð Þ ¼

ð1
0

u sð Þds, (3.33)

where f : 0; 1½ � � 0;∞½ Þ ! 0;∞½ Þ is a continuous function and Dα

0þ is the standard Riemann-

Liouville fractional derivative.

We need the following lemmas that will be used to prove our main results.

Lemma 3.12. ref. [25] Let α > 0 and u∈C 0; 1ð Þ ∩L 0; 1ð Þ. Then fractional differential equation

Dα

0þu tð Þ ¼ 0

has

u tð Þ ¼ C1t
α�1 þ C2t

α�2 þ⋯þ CNt
α�N, (3.34)

Ci ∈R, i ¼ 1, 2,⋯, N, N ¼ α½ � þ 1 as unique solution.

Lemma 3.13. ref. [25] Assume that u∈C 0; 1ð Þ ∩ L 0; 1ð Þ with a fractional derivative of order

α > 0 that belongs to C 0; 1ð Þ ∩ L 0; 1ð Þ. Then
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Iα0þD
α

0þu tð Þ ¼ u tð Þ � C1t
α�1 � C2t

α�2 �⋯� CNt
α�N (3.35)

for some Ci ∈R, i ¼ 1, 2,⋯, N, N ¼ α½ � þ 1.

In the following, we present the Green function of fractional differential equation with integral

boundary value condition.

Theorem 3.14. ref. [26] Let 1 < α < 2, Assume y tð Þ∈C 0; 1½ �, then the following equation

Dα

0þu tð Þ þ y tð Þ ¼ 0, 0 < t < 1 (3.36)

u 0ð Þ ¼ 0, u 1ð Þ ¼

ð1

0

u sð Þds, (3.37)

has a unique solution

u tð Þ ¼

ð1

0

G t; sð Þy sð Þds (3.38)

where

G t; sð Þ ¼

t 1� sð Þ½ �α�1
α� 1þ sð Þ � t� s½ �α�1

α� 1ð Þ

α� 1ð ÞΓ αð Þ
if 0 ≤ s ≤ t ≤ 1

t 1� sð Þ½ �α�1
α� 1þ sð Þ

α� 1ð ÞΓ αð Þ
if 0 ≤ t ≤ s ≤ 1:

8

>

>

>

<

>

>

>

:

Proof. We may apply Lemma (3.13) to reduce Eq. (3.36) to an equivalent integral equation

u tð Þ ¼ �Iα0þy tð Þ þ C1t
α�1 þ C2t

α�2

for some C1, C2 ∈R. Therefore, the general solution of (3.36) is

u tð Þ ¼ �

ð1

0

t� sð Þα�1

Γ αð Þ
y sð Þdsþ C1t

α�1 þ C2t
α�2

: (3.39)

By u 0ð Þ ¼ 0, we can get C2 ¼ 0. In addition, u 1ð Þ ¼ �

ðt

0

t� sð Þα�1

Γ αð Þ
y sð Þdsþ C1, it follows

C1 ¼

ð1

0

t� sð Þα�1

Γ αð Þ
y sð Þdsþ

ð1

0

u sð Þds: (3.40)

Take (3.40) into (3.39), we have

u tð Þ ¼ �

ð1

0

t� sð Þα�1

Γ αð Þ
y sð Þdsþ tα�1

ð1

0

1� sð Þα�1

Γ αð Þ
y sð Þdsþ tα�1

ð1

0

u sð Þds: (3.41)
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Let
Ð 1
0 u sð Þds ¼ A,by (3.41), we can get

ð1

0

u tð Þdt ¼ �

ð1

0

ðt

0

t� sð Þα�1

Γ αð Þ
y sð Þdsdtþ

ð1

0

tα�1

ðt

0

1� sð Þα�1

Γ αð Þ
y sð Þdsdtþ A

ð1

0

tα�1dt

¼ �

ð1

0

1� sð Þα

αΓ αð Þ
y sð Þdsþ

ð1

0

1� sð Þα�1

αΓ αð Þ
y sð Þdsþ

A

α

¼

ð1

0

s 1� sð Þα�1

αΓ αð Þ
y sð Þdsþ

A

α

:

So,

A ¼
α

α� 1

ð1

0

s 1� sð Þα�1

αΓ αð Þ
y sð Þds ¼

ð1

0

s 1� sð Þα�1

α� 1ð ÞΓ αð Þ
y sð Þds:

Combine with (3.41), we have

u tð Þ ¼ �

ðt

0

t� sð Þα�1

Γ αð Þ
y sð Þdsþ tα�1

ð1

0

1� sð Þα�1

Γ αð Þ
y sð Þdsþ tα�1

ð1

0

s 1� sð Þα�1

α� 1ð ÞΓðÞα
y sð Þds

¼ �

ðt

0

t� sð Þα�1

Γ αð Þ
y sð Þdsþ

ð1

0

t 1� sð Þα�1
α� 1þ sð Þ

h i

α� 1ð ÞΓ αð Þ
y sð Þds

¼

ð1

0

t 1� sð Þα�1
α� 1þ sð Þ � t� sð Þα�1

α� 1ð Þ
h i

α� 1ð ÞΓ αð Þ
y sð Þdsþ

ð1

t

½t 1� sð Þα�1
α� 1þ sð Þ

α� 1ð ÞΓ αð Þ
y sð Þds

¼

ð1

0

G t; sð Þy sð Þds:

This complete the proof.

Remark 3.15. Obviously, the Green function G t; sð Þ satisfies the following properties:

i. G t; sð Þ > 0, t, s∈ 0; 1ð Þ;

ii. G t; sð Þ ≤ 2
α�1ð ÞΓ αð Þ ; 0 ≤ t, s ≤ 1.

Theorem 3.16. ref. [26] Assume that function f satisfies

∣f t; uð Þ � f t; vð Þ∣ ≤ a tð Þ∣u� v∣ (3.42)

where t∈ 0; 1½ �, u, v∈ 0;∞½ Þ, a : 0; 1½ � ! 0;∞½ Þ is a continuous function. If

ð1

0

sα�1
α� 1þ sð Þa sð Þds < α� 1ð ÞΓ αð Þ (3.43)

then the Eq. (3.32) has a unique positive solution.

Proof. If Tn is a contraction operator for n sufficiently large, then the Eq. (3.32) has a unique

positive solution.
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In fact, by the definition of Green function G t; sð Þ, for u, v∈P, we have the estimate

∣Tu tð Þ � Tv tð Þ∣ ¼

ð1

0

G t; sð Þ∣f s; u sð Þð Þ � f s; v sð Þð Þ∣ds

≤

ð1

0

G t; sð Þa sð Þ∣u sð Þ � v sð Þ∣ds

≤

ð1

0

½t 1� sð Þα�1
α� 1þ sð Þ

α� 1ð ÞΓ αð Þ
a sð Þku� vkds

≤
ku� vktα�1

α� 1ð ÞΓ αð Þ

ð1

0

1� sð Þα�1
α� 1þ sð Þa sð Þds:

Denote K ¼

ð1

0

1� sð Þα�1
α� 1þ sð Þa sð Þds, then

∣Tu tð Þ � Tv tð Þ∣ ≤
Ktα�1

α� 1ð ÞΓ αð Þ
ku� vk:

Similarly,

∣T2u tð Þ � T2v tð Þ∣ ¼

ð1

0

G t; sð Þ∣f s;Tu sð Þð Þ � f s;Tv sð Þð Þ∣ds

≤

ð1

0

G t; sð Þa sð Þ∣Tu sð Þ � Tv sð Þ∣ds

≤

ð1

0

G t; sð Þa sð Þ
Ksα�1

α� 1ð ÞΓ αð Þ
ku� vkds

≤

ð1

0

K t 1� sð Þ½ �α�1
α� 1þ sð Þ

α� 1ð Þ2Γ2
αð Þ

a sð Þsα�1ku� vkds

≤
Kku� vktα�1

α� 1ð Þ2Γ2
αð Þ

ð1

0

sα�1 1� sð Þα�1
α� 1þ sð Þa sð Þds

¼
KHtα�1

α� 1ð Þ2Γ2
αð Þ

ku� vk

where H ¼

ð1

0

sα�1 1� sð Þα�1
α� 1þ sð Þa sð Þds. By mathematical induction, it follows

∣Tnu tð Þ � Tnv tð Þ∣ ≤
KHn�1tα�1

α� 1ð ÞnΓn
αð Þ

ku� vk

by (3.43), for n large enough, we have

KHn�1tα�1

α� 1ð ÞnΓn
αð Þ

¼
K

α� 1ð ÞΓ αð Þ

H

α� 1ð ÞΓ αð Þ

� �n�1

< 1:

Hence, it holds
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kTn
u� T

n
vk < ku� vk,

which implies T
n is a contraction operator for n sufficiently large, then the Eq. (3.32) has a

unique positive solution. □
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