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Abstract

Electromagnetic phenomena in plasma are easier to describe in terms of fields,
expressing the electric current through the rotor of the magnetic field. But the approach
that ignores the corpuscular aspect of the electric current, as noted by H. Alfven, does
not allow describing many processes in space plasma. Indeed, relying on the concept of
continuity, it is impossible in the mechanics of continuous media to take into account
the fluctuations of hydrodynamic functions formed due to the molecular structure of
the medium. At the hydrodynamic level of description, taking into account the struc-
ture leads to the Langevin equation. Therefore, to describe processes in a magnetized
plasma, it is of certain interest to obtain MHD equations in the drift approximation not
from the Vlasov equations, but based on the principles of Onsager and Prigogine,
combined by Gyarmati into one variational principle and obtaining a one-liquid plasma
model in the drift approximation. Fluctuations are taken into account by introducing an
additional term in the expression for pressure, written in the drift approximation,
which is similar to the postulation of the Langevin source for describing Brownian
motion. The obtained fluctuating-dissipative system differs from the reversible
one-liquid approximation of the two adiabatic invariants of Chu, Goldberger, Low.

Keywords: nonequilibrium thermodynamics, variational principles of Onsager and
Prigogine, the combined Gyarmati principle, collisionless plasma, drift approximation

1. Introduction

Alfven in his work [1] noted that the approach which does not take into account
the corpuscular aspect of the electric current does not allow to fully describe many
processes in the cosmic plasma. Relying on the concept of continuity, it is impossible
in continuum mechanics to take into account fluctuations of hydrodynamic functions
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formed due to the molecular structure of the medium. It is known that at the hydro-
dynamic level of description, taking into account the corpuscular structure leads to
the Langevin equation, in which the parameters of the medium are described by
random sources [2]. These sources are responsible for fluctuations of density, velocity,
temperature and, being the unavoidable properties of the medium, cannot be
excluded. In turn, the model of “collisionless” plasma based on the Vlasov equations,
in principle, does not contain fluctuations, since it is collisions that lead to fluctuations
and, as a consequence, to dissipation. Naturally, magnetohydrodynamic equations
(MHD equations) obtained in the drift approximation from the Vlasov equation
through the moments of the distribution function also do not take into account
dissipative processes (see, for example, [3]). In a magnetized plasma, the distribution
of electrons and ions can have axial symmetry with respect to the magnetic field. In
the absence of heat flux along the magnetic field lines (or it can be neglected), slow
plasma motions obey MHD equations with anisotropic pressure. In a number of
interesting cases, the description of the plasma behavior without collisions in the
hydrodynamic approximation can be used as a heuristic tool for obtaining qualita-
tively correct results [3]. It should be noted that a significant part of the work on the
macroscopic description of plasma behavior is devoted to clarifying the question of
how much a real plasma can differ from its ideal twin under the assumption, for
example, of an ideally conducting liquid [4].

Therefore the problem arises to try to obtain the MHD equations not from the
Vlasov equations, but on the basis of another approach, in which the drift equations
themselves, in the conclusion of which the perturbation theory lies [1], are the initial
ones. Such a possibility opens in the case of application of the principles of the least
dissipation of energy of Onsager [5] and the least production of entropy of Prigozhin
[6], combined by Gyarmati into one variational principle [7]. In this case, the fluxes
corresponding to the observed transport processes in a magnetized plasma are
represented in the drift approximation. In turn, the drift approximation, being one-
particle, simultaneously admits fluctuations within the accuracy of this approximation
TL=H∣dH∣< < 1, where TL is the period of the Larmorian rotation.

The application of variational principles allows one to obtain a hydrodynamic
system of equations, which in the linear approximation describes in the drift approx-
imation the dynamics of a collisionless plasma located near the equilibrium state.
Unlike the Vlasov equation and the equations of hydrodynamics that follow from it
(or postulated on the basis of known conservation laws), the resulting system of
equations is completely self-consistent and takes into account the fluctuation interac-
tion of local currents with electric and magnetic fields within the accuracy of the used
drift approximation. Fluctuations are taken into account by introducing an additional
term in the expression for the pressure, which is responsible for its nonequilibrium
part, which is analogous to the postulation of a Langevin source in describing
Brownian particles in hydrodynamics.

2. Statement of the problem

Difficulties that arose from the very beginning after obtaining kinetic equations
and introducing the terms collisional and collisionless plasma [8, 9] are associated in
the physics of open systems with the concept of continuous medium. In this case, it
becomes important to determine the physically infinitesimal scale corresponding to
the point of the “continuous medium”.
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Indeed, the concept of continuous medium, depending on the chosen model for
describing the behavior of an ionized gas (kinetic, diffusion, or hydrodynamic),
implies the choice of a scale characterizing a physically infinitesimal point of a con-
tinuous medium ℓ f for which differential equations are written. However, in this

case, information is lost inside these points, since the large number of particles filling

their volume (g�1 ¼ nλ3D > > 1, g is the plasma parameter, λD is Debye radius) is not
taken into account, which ultimately determines the internal openness of the chosen
level of description [2]. Therefore, taking into account the structure due to the
“artificial” introduction of an additional collision integral into the dissipative Vlasov
equation when calculating the Landau collisionless damping coefficient leads to the
appearance of dissipation and, as a consequence, to nonequilibrium. The need to take
into account the structure of a physical “point” is one of the main provisions that
determine the substantive part of fundamental works [2, 10, 11]. This position sets the
direction of the search for the possibility of describing nonequilibrium processes on
the kinetic and hydrodynamic scales from a single point of view, and will be used in
this work.

It is known that the description of the dynamics of an ionized gas is also possible at
the hydrodynamic level. Indeed, the kinetic method for some practical problems may
turn out to be too detailed and mathematically complex. At the same time, without
being interested in the motion and interaction of a large number of particles, one can
significantly simplify the problem associated with the study of collective processes
occurring in a plasma. Considering such macroscopic quantities as the average veloc-

ity of motion of a medium V
 
, pressure P, density of particles n and currents j

 
, and so

on, postulating then the basic equations of hydrodynamics of continuous media, based
on the laws of conservation of mass, momentum, energy and charge, together with
Maxwell’s equations, we can reduce the problem to the problems of magnetohydro-
dynamics (MHD). The system of MHD equations has the simplest form in the case of
a one-fluid approximation for scalar (see, for example, [12, 13]) or tensor pressure
(quasi-hydrodynamic approximation of Chu, Goldberger, and Lowe (ChGL) [14]).

At the same time, the Lorentz force acting on charged particles in a magnetic field
twists them around the lines of force, preventing movement across the lines of force,
and in this regard, the action of the field is similar to the effect of collisions, limiting
the movement of the particle by the value of the Larmor radius. Consequently, the
drift approximation shows how, in the absence of collisions, the order inherent in
“collisional” continuous media and practically sufficient for describing the dynamics
of a “collisionless” plasma at the hydrodynamic level is provided by a magnetic field.
(“Practical sufficiency”, from the point of view of the kinetic description, is achieved
by neglecting the third moments in the equations, which corresponds to the not
entirely justified neglect of the heat flux along the lines of force. Experimentally, this
is realized in closed axial plasma systems or under real conditions, for example, in the
region capture of the Earth’s magnetosphere). Consequently, in a magnetized plasma,

the role of the mean free path is played by the Larmor radius of ions ρLi
ρLi

> > ρLe

� �

,
and the condition for the applicability of the continuous medium approximation takes
the form L> > ρLi

, where L is the characteristic size in the plasma. As for the
frequency dependence, which makes it possible to consider a collisionless plasma as a
continuous medium during the propagation of a wave process in it, it has the form:
ω< <ωLi

< <ω0i
for a not too discharged ionized gas and a weak magnetic field (hot

plasma) and ω< <ω0i < <ωLi for a magnetized plasma satisfying the drift approxi-
mation (cold plasma). Moreover, the possibility of describing the behavior of a
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collisionless plasma using a pressure gradient is associated with the mechanism of
pressure transfer not through collisions, but through the interaction of currents
flowing in the plasma drift currents and magnetizing currents. In addition, a large role
in the processes occurring in a collisionless plasma is played by self-consistent fields
that bind particles and prevent them from scattering.

For physically small linear and time scales ℓ f and τ f , as well as the number of

particles N f in the volume ℓ3
f , the inequalities are valid τ f � λD=VTð Þ< <T, ℓ f � λD

[8]. The first inequality makes it possible to use the “continuous medium” approxi-
mation, the second - to use the concept of “collisionless plasma”, and the third notes
the fact that the interaction of charged particles in an ionized medium has a collective
character (VT is the thermal velocity of particles, T is the characteristic time).

However, magnetohydrodynamic equations (MHD equations) obtained in the
drift approximation from the Vlasov equation through the moments of the distribu-
tion function do not take into account dissipative processes [3]. In other words, in this
case, the structure of the physically small volume of the continuous medium is not
taken into account, with respect to which the macroscopic equations are written. At
the same time, the possibility of taking into account the drift approximation in the
hydrodynamic consideration of the theory of magnetized plasma without any addi-
tional assumptions appears in the case of applying the variational principles of
nonequilibrium thermodynamics of Prigogine and Onsager [5, 6], combined by
Gyarmati [7]. Thus, in the mechanics of continuous media, it becomes possible to
construct non-equilibrium models that describe the dynamics of continuous systems
located near equilibrium (linear approximation). In turn, the construction of new
models is an important section of continuum mechanics, and they are based on the
search for additional relationships between the parameters that describe the state of
the considered continuous medium.

With this in mind, the following provisions were the starting points for
constructing a hydrodynamic model based on variational principles and drift
equations [3, 7, 15]:

1. Incomplete description of plasma in the language of fields, considered as a
continuous medium, which arises when currents are replaced according to
Maxwell’s equations by a magnetic field [1]. This leads to neglect of the
corpuscular aspect of currents and, as a consequence, neglect of the
fluctuation interaction, which is formed precisely due to the molecular
structure of the medium. In turn, taking into account the molecular
structure of a continuous medium inevitably leads to the appearance of
dissipation in it.

2.The variational principle of Gyarmati [7], which combines the principles of
Onsager and Prigogine [5, 6], makes it possible, within the framework of the
Lagrangian formalism, to obtain the equation of motion with allowance for
dissipation for a magnetized plasma (the pressure is anisotropic) in the
approximation in which thermodynamic forces Xi and fluxes Ji. In this chapter,
we use the drift approximation [3, 7, 15] and the approximation of two adiabatic
invariants [14]. Since the ChGL approximation is holonomic, i.e. all quantities
can be expressed using the displacement vector and described by the Lagrange
formalism, then the dissipative approximation of the ChGl will be obtained
within the framework of this formalism.
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3. Equation of collisionless plasma motion considering dissipation.
Anisotropic case

To describe nonequilibrium thermodynamic processes in continuous media in a linear
approximation, the Hungarian physicist Gyarmati formulated a variational principle that
combines the principle of the least dissipation of Onsager’s energy and the principle of
the least production of Prigogine’s entropy. To obtain the equation of motion that takes

into account dissipation, we introduce the entropy production function σ ¼
Pn

i¼1
JiXi, as

well as the scattering potentials Ψ ¼ 1
2

Pn

i, k

Li,kXiXk and Φ ¼ 1
2

Pn

i, k

Ri,kJiJk, expressed in

terms of thermodynamic forces Xi (gradients of temperature, pressure, potential, field
strength, and so on), and fluxes Ji corresponding to the observed transfer processes. If we
now construct a function, L ¼ ΨþΦ� σ, then, as shown in [7], thermodynamic
nonequilibrium processes near a steady state develop in such a way that the integral of
over the volume occupied by the medium under study is minimal

ð

℧

Ld℧ ¼

ð

℧

ΨþΦ� σ½ �d℧ ¼ min

In this formulation, the Gyarmati principle is similar to Hamilton’s principle in
mechanics and the variation of this integral is equal to zero. Following the general
provisions of [7, 11], we represent the tensor pressure of positively charged particles

of an ionized gas as a sum of two parts. One part P
$
depends on the state and

corresponds to the equilibrium part, the other part P
$

d depends on the rate of change
of this state and corresponds to the nonequilibrium part, that is

P
$i

Σ
¼ P
$i

þ P
$i

d (1)

the subscript }i} denotes the ionic component of the equilibrium and
nonequilibrium parts of the plasma pressure tensor. From the general provisions on

the form of the explicit dependence of pressure P
$i

d, it follows that it should depend on

the macroscopic velocity of the medium V
 

i and on the physical reasons causing the
appearance of the nonequilibrium part of the pressure (for example, for viscous media
with Brownian particles, this is taken into account by introducing the corresponding
coefficients of viscosity and a random Langevin source). In our case, viscosity in the
usual sense is absent, and the nonequilibrium part of the equation should be propor-
tional to the flows of charged particles, which also corresponds to the general concept
of pressure transfer through electromagnetic interaction, and also takes into account
the discreteness of the ionized medium (its atomic-molecular structure [2]). With this

approach, the ionic component of the pressure tensor P
$i

d is similar to a Langevin
source. According to what has been said, we represent the nonequilibrium part of the
pressure in the form

P
$i

d ¼ �mi V
 i

k � J
 i

n

� �

I
$

(2)
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where I
$
is the unit tensor, and for the equilibrium part we write out the standard

representation of this part of the pressure [12]

P
$i
� �

kn

¼ piII e
 
k e
 
n þ pi⊥ δkn � e

 
k e
 
n

� �

, e
 
1 ¼

H
$

H
: (3)

Spatial heterogeneity and concentration n are taken into account in the explicit

form of the flow J
 

i.
We represent the Gyarmati principle in the form [13],

δ

ð

℧

σd �Ψdð Þd℧ ¼ 0 (4)

where σd ¼
P f

j¼1J jX j and Ψd ¼
1
2

P f
j,k¼1LjkX jXk. The integral in (4) is taken over

the entire volume ℧ occupied by the plasma. Since in a collisionless plasma there are
no chemical reactions and sources of death and production of particles, and the
interaction of currents leads to dissipative phenomena, then according to the general
principles of construction σd and Ψd [7] we have for the positive plasma component

σid ¼ �P
$i

d : ∇
 
� V
 i

� �

,Ψi
d ¼

1

2
mi V

 i

� J
 i

� �

∇
 
� V
 

i

� �

¼ �
1

2
P
$i

d : ∇
 
� V
 i

� �

:

Considering σd and Ψd values and on the basis of (4), we obtain

δ

ð

℧

�P
$i

d : ∇
 
� V
 i

þ
1

2
P
$i

d : ∇
 
� V
 i

� �

d℧ ¼ �
1

2
δ

ð

℧

P
$i

d : ∇
 
� V
 i

� �

d℧: (5)

To calculate the integrand, we use the equation of balance of translational kinetic
energy [7]

ρi
d

dt

V
 i

V
 i

� �

2
þ ∇
 
� P
$i

Σ
� V
 i

� �

¼ ρi V
 i

� F
 i

ext

� �

þ P
$i

Σ
: ∇
 
� V
 i

� �

(6)

where P
$i

Σ
is total pressure, determined by (1), F

 i

ext is external and internal forces

per mass unit, ρi is ion component density. If we now express P
$i

d : ∇
 
� V
 i

� �

in (5) on

the basis of (6), we obtain

�
1

2
δ

ð

℧

V
 i

ρi
dV
 i

dt
þDiνP

$i

�miV
 i

∇
 i
� J
 i

� ρiF
 i

ext

0

@

1

Ad℧ ¼ �δ

ð

℧

Lid℧ ¼ 0,

where Li ¼
1
2V
 i

ρi
dV
 i

dt þDiνP
$i

�miV
 i

∇
 i
� J
 i

� ρiF
 i

ext

� �

is Lagrange density, which

satisfy the general equation
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∂L

∂Vβ

�
X3

α¼1

∂

∂Xα

∂L

∂ ∂Vβ=∂Xα

� � ¼ 0, (7)

which is also valid for electronic component. Substituting the value Li into Eq. (7)
and performing differentiation, we obtain the equation of motion for the ionic
component “i”

ρi
dV
 i

dt
¼ �DiνP

$i

þ ρiF
 i

ext þ 2mi V
 i

� ∇
 i

J
 i

� �

(8)

where Diν the operator denotes tensor divergence. Repeating the same procedure
for the plasma negative component, which is near the thermodynamic equilibrium
(Te ≈Ti ), a similar equation may be obtained for electronic e component. Adding the

obtained equation for electrons to (8) and considering V
 e

≈V
 i

¼ V
 
, F
 i

ext ≈ F
 e

ext ¼ F
 

ext,
and me þmi ¼ mi 1þme=mið Þ≈mi ¼ m, ρi ¼ mini ≈ ρ we obtain the following equa-
tion of motion:

ρ
dV
 

dt
¼ �DiνP

$i

þ ρF
 i

ext þ 2mV
 

∇
 
� J
 i

þ
me

mi

∂

∂t
ne � nið Þ

� 	

(9)

where P
$
¼ P
$e

þ P
$i

¼ P
$e,i

⊥ þ P
$e,i

II . In (9) ∇
 
� J
 i

value is expressed through ∂

∂t ne � nið Þ,

considering the violation of quasi-neutrality and condition 1> >me=mi.
Taking into account the structure of a physically infinitesimal element of the

medium, it must be remembered that it has linear dimensions of the order of the
Debye radius, within which the condition of quasineutrality, due to fluctuations, can
be violated. This is of fundamental importance, since it is the fluctuations that deter-
mine the character of the development of possible instabilities in the plasma. There-
fore, in the last expression, the partial derivative of the difference between the
concentrations of the electronic and ionic components is multiplied by a small value
me=mið Þ≈ me=mð Þ.

Since in (9) the total flux is determined through the sum of fluxes of positively

charged particles J
 
≈ J
 i

¼
P

k J
 i

k, then after simple ones associated with calculating
the corresponding divergences in the drift approximation for fluxes [1, 16] (see
appendix), we have

J
 

1 ¼
cn

eH
rot

p⊥
n

H
 

H

" #

, diν J
 

1 ¼ 0, (10)

J
 

2 ¼ nc
E
 
,H
 h i

H2 , diν J
 

2 ¼
2

mν2⊥
E
 
j
 

m

� �

�
2

mν2⊥
E
 
j
 

gr

� �

, (11)

J
 

3 ¼ n
mcν2⊥
2eH3 H

 
,∇
 
H

h i

, diν J
 

3 ¼
2

meν2⊥
F
 

m j
 

m

� �

, (12)

J
 

4 ¼
nc

eH2 H
 
,∇
 p⊥

n

h i

, diν J
 

4 ¼
2

meν2⊥
F
 

m j
 

m

� �

�
2

meν2⊥
F
 

m j
 

gr

� �

, (13)
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J
 

5 ¼ n
mcν2II
eH2R2 R

 
,H
 h i

, diν J
 

5 ¼
2

meν2⊥
F
 

c j
 

m

� �

þ e
ν2⊥

ν2II
E
 
j
 

c

� �

þ
ν2⊥

ν2II
F
 

m j
 

c

� �
� 	

, (14)

J
 

6 ¼
nc

eH2 H
 
,∇
 pII

n

� �h i

, diν J
 

6 ¼ �
2

meν2⊥
2e E

 
j
 

m

� �

þ 2 F
 

m j
 

m

� �

� 2 E
 
j
 

gr

� �

� 2 F
 

m j
 

c

� �h i

,

(15)

J
 

7 ¼ nνII e
 
1, diν J

 

7 ¼
1

meν2II
F
 

M j
 

II

� �

þ
1

meν2II
E
 
j
 

II

� �

: (16)

Flows J
 

2,3 arise due to electric and gradient drifts. Accounting for fluxes J
 

4,6 is
associated with the interdependence of magnetic pressure and plasma pressure
observed in the quasi-hydrodynamic approximation, since the pressure of charged
particles in the absence of collisions is transferred by currents. In addition, the fluxes

J
 

4,6 also take into account thermal diffusion, which is associated with the temperature

gradient (p⊥ � T⊥ and p⊥ � T⊥ ). The flow J
 

5 is associated with centrifugal forces

due to the curvature of the lines of force, J
 

7 - the flow of charged particles along the
line of force. Opposite the corresponding values of the fluxes, their divergences are
presented, in the derivation of which the invariance n=H and μ (first adiabatic
invariant) with the accuracy of the drift approximation were taken into account and
the following designations were adopted [16]:

j
 

gr ¼
nc
H2 μ H

 
,∇
 
H

h i

is gradient drift current; j
 

m ¼ �
nc
H μrot H

 
is magnetizing current $;

j
 

c ¼
mν2II
R2 R

 
,H
 h i

is centrifugal drift; F
 

m ¼ �μ∇
 
H is magnetic force;

F
 

c ¼
mν2II
R2 R
 
¼ 2 εII

H ∇
 

⊥H is a force, affecting a charged particle in inhomogeneous

magnetic field (centrifugal). It is clear that in this case the divergence of the flow of

particles J
 

1 is equal to the divergence of the flow of leading centers, since in an
ionized medium the motion of non-interacting particles differs from the motion of

leading centers only by vortex terms, therefore diν J
 

1 ¼ 0. In addition, in deriving
(10), the change in the average kinetic energy along the magnetic field line was
neglected. Let us consider the second term in square brackets of (9), associated with
the violation of the quasi-stationarity condition. Fluctuational charge separation in
plasma leads to the appearance of an alternating electric field, which is responsible for
the onset of polarization drift, which, in turn, leads to the formation of a drift

polarization current j
 

p. The magnitude of the drift current arising from the separa-

tion of charges is proportional to the rate of change in the electric field strength. This
allows us to consider it as a displacement current that occurs during the polarization of
dielectrics. Having carried out the appropriate calculations, and without limiting the
generality of the proposed approach, we consider a special case when an alternating
electric field is perpendicular to the magnetic field, we obtain (see Appendix)

∂

∂t
ne � nið Þ ¼ �

4H2

H2 þ 4πnmc2
� �

F
 

m j
 

p

emν2⊥
: (17)

Substituting divergence values (9), calculated from the corresponding fluxes
(10-16), and expression (17) into the equation of motion (9), we obtain
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dV
 

dt
¼ �

1

ρ
DiνP

$
þ F
 

ext þ
2V
 

nμH

"

E
 

j
 

gr � j
 

m þ
ν2⊥

ν2II
j
 

c þ
ν2⊥

ν2II
j
 

II

� �

þ

þ
ν2⊥

eν2II
F
 

m j
 

c þþ j
 

IIÞ þ
1

e
F
 

c j
 

m

� �
#

þ ~ε
2V

nμH

2H2

H2 þ 4πnmc2
F
 

m j
 

p

� �

,~ε ¼ me=mið Þ< < 1:

 

(18)

Since the derived equation uses macroscopic quantities n, P
$
, E
 
,H
 
,V
 
as the main

parameters, there is no need for additional assumptions about the form of the distri-
bution function associated with the termination of the chain of moments and the
transition to hydrodynamic equations from the Vlasov kinetic equation. However, the
most important thing in Eq. (18) is that it takes into account small dissipative and
fluctuation processes arising due to the interaction of drift currents with inhomoge-
neous electric and magnetic fields. The reason for the smallness of the fluctuations
taken into account in (18) is the condition of applicability of the leading center
approximation and is a consequence of the perturbation theory, which is valid up to
the constancy of the first adiabatic invariant μ ¼ constð Þand therefore allows the
parameters to vary within this accuracy. At the same time, it is known that fluctua-
tions in plasma are responsible for the appearance of local currents, which are deter-
mined by space-time inhomogeneities in the distribution of the field and plasma. In
turn, the interaction of these currents with forces, also associated with inhomogenei-
ties in the spatial distribution of magnetic and electric fields, determines the further
development of the resulting fluctuations, as well as the nature of the possible
instability.

Eq. (18) under the assumption of quasineutrality (ne ¼ ni) and infinite conductiv-

ity along the field line is greatly simplified (E
 

II ¼ 0). In addition, if we consider a
closed axially symmetric system, then the inhomogeneity in the plasma distribution
along the drift trajectory may be absent and the current intensity jII proportional to
this inhomogeneity tends to zero. Finally, instead of (18), we obtain a simplified, but
not changing the physical essence, equation

dV
 

dt
¼ �

1

ρ
DiνP

$
þ F
 

ext þ
2V
 

nμH

ν2⊥
eν2II

F
 

m � j
 

c

� �

þ
1

e
F
 

c � j
 

m

� �
#

¼
1

ρ
diνP
$
þ F
 

ext þ f
 

dis F
 
, j
 � �

"

(19)

Eqs. (18) and (19) differ from generally used equations of motion by the third term
in the right part, which describes dissipative interaction of drift currents with

eE
 
, F
 

m, F
 

c, forces. This additional part evidently take into account magnetization of
physically infinitesimal element of a continuum, since besides the dependence on drift

current j
 

gr, j
 

c, j
 

II and j
 

m, it is proportional to 1=μ. We should note, that in the case

with axial-symmetrical plasma system, currents j
 

m and j
 

c constantly flow in it.

Nevertheless, they do not break freezing-in, as j
 

m and j
 

c are directed along the

azimuth and F
 

m⊥ j
 

c, F
 

c⊥ j
 

m. At the same time the appearance of fluctuations may

cause azimuthal inhomogeneity and, consequently, coincidence of F
 

m and j
 

c, F
 

c and

j
 

m components. Moreover, F
 

ext � j
 
,H
 h i

force in the Eqs. (18) and (19) is expressed
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through drift current explicit values, not through rotH
 
, which is within the framework

of general conception of this chapter: consideration of current corpuscular structure.

4. Dissipative system of equations in the approximation of two adiabatic
invariants of Chu, Goldberger, Low in the drift approximation.

In order to obtain a complete system of hydrodynamic equations in the drift
approximation, it is necessary to add Maxwell’s equations to the equation of motion
(19), and to close the system, add two equations of state for the parallel ρII and
perpendicular ρ⊥ components of the pressure tensor, as is done in the approximation
of two adiabatic invariants of the ChGL [14]. If one equation for is a consequence of
the applicability of the drift approximation and corresponds to the constancy of the
first adiabatic invariant dμ=dtð Þ ¼ 0, then the second equation can be obtained on the
basis of the energy conservation law in the drift approximation [17]

dε

dt
¼ e E

 
� U
 

dr

� �

þ μ
∂H

∂t
, (20)

where ε ¼ εII þ ε⊥ ¼ mν2II=2
� �

þ mν2⊥=2
� �

is particle mean energy, Udr is drift

velocity. From (20) we obtain

dεII
dt
¼ e E

 
� U
 

dr

� �

þ μ
∂H

∂t
�
dε⊥
dt
¼ e E

 
� U
 

dr

� �

� μ U
 

dr � ∇
 � �

H: (21)

Since

d nεIIð Þ

dt
¼ εII

dn

dt
þ n

dεII
dt

and pII ¼ 2nεII, p⊥ ¼ nε⊥ and _n ¼ �ndiνU
 

dr are valid, than from (20,21) and the
latest expression we obtain

dpII
dt
¼ 2ne E

 
� U
 

dr

� �

�
2p⊥
H

U
 

dr � ∇
 � �

H � pIIdiνU
 

dr

or

dpII
dt
þ pIIdiνU

 

dr ¼ 2ne E
 
� U
 

dr

� �

�
2p⊥
H

U
 

dr � ∇
 � �

H: (22)

Relation (22) is a substantial balance equation in the drift approximation for the
pressure tensor component ρII with a nonzero right-hand side (the presence of a

source). We multiply the left-hand side of (22) by H2=ρ3 and, taking into account that

ρdiνU
 

dr ¼ � dρ=dtð Þ, we obtain after transformations

H2

ρ3
dpII
dt
�
pII
ρ

dρ

dt

� �

¼
H2

ρ3
dpII
dt
þ
pIIH

2

ρ2
d

dt

1

ρ

� �

¼
H2

ρ3
dpII
dt
þ pII

d

dt

H2

ρ3

� �

¼
d

dt

pIIH
2

ρ3

� �

:
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Now, after multiplying the right part (22) by H2=ρ3
� �

, we equate this product to

the latest equation. Finally, we obtain

d

dt

pIIH
2

ρ3

� �

¼
H2

ρ3
2ne E

 
� U
 

dr

� �

�
2p⊥
H

U
 

dr � ∇
 � �

H

� 	

: (23)

The condition

d

dt

p⊥
ρH

� �

¼ 0, (24)

equivalent to the condition of the first adiabatic invariant conservation, (since

v2⊥ ≈ p⊥=ρ, where v⊥ is a perpendicular component of particle mean velocity), together
with (23) are two condition equations for the parallel pII and p⊥ perpendicular
components of pressure tensor, which close the dissipative system of equations in
drift approximation.

Now, the first part of (23) is under analysis. Sincewe consider plasma systems in axial-
symmetrical magnetic fields with potential electric field equal to zero, than in the station-

ary case E ¼ 0, U
 

dr � ∇
 � �

H � Uφ ∂H=∂φð Þ ¼ 0 and the right part (23) identically vanish.

In variable fields, in our case E
 
U
 

dr

� �

¼ EφUφ, since for electric field E
 

φ ¼ �
1
c

∂A
 

φ

∂t and

U
 

dr � ∇
 � �

H≈U
 

R
∂H

∂R
¼

URH

Rcr
¼

URH

R
k,

where k is a coefficient of proportionality between field line curvature radius Rcr

and guiding center radius-vector R [18, 19], UR ¼ c E=Hð Þ is electric drift velocity. In
the result, for the right part of (23) we obtain

2
H3

ρ3
n � Uφ � UR

e

c
n�

μ � k

R � Uφ

� �

:

According to the results of the papers [18, 19], we have

RUφ

k
¼

c

e
μþ

ν2II
cωL
¼

c

enH
p⊥ þ pII
� �

and, finally, for (23)) we may write

d

dt

pIIH
2

ρ3

� �

¼
pIIH

2

ρ3

� �

�
2nUφ

p⊥ þ pII
� eEφ, (25)

The total equation system of two adiabatic invariant approximations, considering

f
 

dis in the approximation of ideal conductivity Eφ � V
 
,H
 h i

, is written as follows:

dV
 

dt
¼ �

1

nm
DiνP

$
þ F
 

ext þ f
 

dis F
 
, j
 � �

,
∂n

∂t
¼ �∇

 
nV
 � �

,
d

dt

p⊥
ρH

� �

¼ 0,

d

dt

pIIH
2

ρ3

� �

¼
pIIH

2

ρ3

� �

�
2nUφ

p⊥ þ pII
� eEφ,

∂H
 

∂t
¼ rot V

 
,H
 h i

, E
 

φ ¼
1

c
V
 
,H
 h i

,

(26)
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where - Pð Þkn ¼ pII e
 
k e
 
n þ p⊥ δkn � e

 
k e
 
n

� �

, F
 

ext ¼
1
H �p⊥∇

 

IIH þ pII � p⊥
� �

∇
 

⊥H
h i

,

f
 

dis ¼
2cV
 

enH3 2
p⊥
R2 ∇

 
H R
 
H
 h i� �

� pII rotH
 
� ∇
 

⊥H
� �h i

:

Let us multiply the first equation in the system (26) scalarly by V

V
 
�
dV
 

dt

 !

¼ �
1

nm
V
 
�DivP

$
þ V

 
� Fext
 
� �

þ V
 
� f
 

dis F
 
, j
 � �� ��

Since we are interested in the influence of the dissipative term on the character of

motion of a plasma element with macroscopic velocity V
 
, let us assume for simplicity

that the scalar product of the first two terms is early to zero, then, given the explicit

form f
 

dis, we obtain

1

2

dV2

dt
¼

2cV2

enH3 2
P⊥

R2 ∇
 
H R
 
,H
 h i� �

� pII rotH
 
� ∇
 

⊥H
� �

� 	

:

The last expression shows that in the case of fluctuations, azimuthal inhomogene-
ity may appear and, as a consequence, to the coincidence of the direction of the

components F
 

m and j
 

c, and j
 

m (see (19) and explanations to it), then, depending on
the sign of the term in square brackets, the energy of the plasma element will increase
or change.

5. Conclusions

The right parts of the functions F
 

ext and f
 

dis are expressed through drift current
explicit values separating the components of pressure tensor p⊥ and pII. In the system

(26) the unknown values are p⊥, pII, H
 
, E
 

φ, n and V
 
.

Obtaining theoretical models describing the motion of continuous systems is an
important branch of continuum mechanics. The construction of these models is based
both on the use of experimental data and on the application of the well-known
principles of mechanics, thermodynamics, physics, and they are based on the search
for additional relationships between the parameters describing the state of the con-
sidered continuous medium. It is known that the basic equations of mechanics, elec-
trodynamics, hydrodynamics, and so on are derived on the basis of the variational
Lagrange equation. The corresponding analysis shows that with the help of variational
principles it is possible to construct any physical models describing both reversible
and non-reversible processes. Therefore, the application of the principles of Prigogine
and Onsager, combined by Gyarmati, to obtain the equation of motion of a magne-
tized plasma at the hydrodynamic level of description seems to be quite promising.
And here the following should be noted.

In the hydrodynamic approximation, fluctuations are not taken into account, since
in continuum mechanics it is assumed to be continuous. The Navier-Stokes equation,
in contrast to the Euler equation, already takes into account dissipative phenomena,
but does not contain fluctuation interactions (without additional assumptions about
the form of the stress tensor that takes into account the molecular structure), which
describe Brownian motion. Relying on the concept of continuity, as already noted, it is
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impossible in the mechanics of continuous media to take into account the fluctuations
of the hydrodynamic functions formed due to the molecular structure of the medium.
At this level of description, taking into account the atomic-molecular structure leads
to the Langevin equation, in which the parameters of the medium are described by

random sources. These sources are responsible for fluctuations ρ,V
 
,T and being

unavoidable properties of the medium, cannot be excluded. Therefore, postulating
Langevin sources in hydrodynamics brings the corresponding equations as close as
possible to describing the behavior of a real medium.

In turn, the possibility of taking into account the structure of a physically infini-
tesimal plasma element in this work was achieved, on the one hand, by using the
variational methods of Prigogine and Onsager, combined by Gyarmati, and making it
possible to obtain a completely self-consistent equation with the accuracy of the
chosen drift approximation. On the other hand, this approximation, being single-
particle, initially takes into account the discreteness of the considered ionized medium
(“atomic-molecular” structure). In addition, it admits small perturbations within the
limits of its accuracy, that is, within the limits of the constancy of the first adiabatic
invariant μ.

1.The application of the methods of nonequilibrium thermodynamics based on the
combined principles of Prigogine and Onsager for the description in the linear
approximation of transport processes in a collisionless plasma and taking into
account the structure of a physically infinitesimal element of the medium
(ℓ f � λD ) makes it possible to obtain the equation of motion of an electron-ion

plasma in the drift approximation. This equation takes into account fluctuation-
dissipative processes, which are determined by the interaction of local drift
currents and forces. The expediency of an approach in which the influence of
local currents is taken into account in describing the behavior of a
nonequilibrium plasma was noted in [20]. The resulting fluctuations lead to the
formation of spatial inhomogeneities in the distribution of the field and plasma
and to the coincidence of the components of the current and forces and “turn on”
the dissipative source, which determines the further development of possible
instabilities.

2.The transition from an arbitrary to an axially symmetric magnetic system greatly
simplifies the equation of motion, but retains the basis associated with taking
into account the structure of a physically infinitesimal element. This is
fundamental in comparison with the usual nondissipative Euler equation, which
is used in a one-fluid hydrodynamic system of equations and in the system of
equations of two adiabatic invariants of Chu, Goldberger, and Low.

3.The possibility of kinetic foundation of the postulated in the paper random
source in pressure nonequilibrium part appears, when small scale initial
correlations, which are superimposed for derivation of Landau and Vlasov
equations, partially decreasing.

4.The obtained equation of motion can be used when taking into account the
scattering of charged particles by electromagnetic fluctuations. This determines an
additional mechanism for the regularization of particle motion in a magnetized
plasma, which automatically implies a revision of the scale associated with the path
length determined by the Coulomb collision, since it may turn out to be much
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larger than the distance between collisions on fluctuations. For example, in the
problem of plasma flow around the solar wind of the Earth’s magnetosphere, the
characteristic size of the latter is much less than the mean free path corresponding
to Coulomb collisions. This, proceeding from rigorous considerations, indicates the
inadmissibility of using the hydrodynamic approximation to describe the
processes in this problem. However, the experimental data are in good agreement
with the results that follow for this problem from the solution of hydrodynamic
equations, which indicates the presence of an effective particle scattering
mechanism, which leads to a significant decrease in the mean free path in
comparison with Coulomb collisions [12].

Abbreviations

TL the period of Larmor’s rotation
ℓ f scale, characterizing a physically small “point” of a solid medium

g plasma parameter
n particle concentration
λD Debye radius
H magnetic field strength

V
 macroscopic average plasma velocity

P pressure tensor

j
 current density

ρLi
Larmor’s ion radius

ρLe
Larmor’s electron radius

L lagrangian
ω frequency
ωLi

Larmor frequency of the ion
ω0i

plasma ion frequency
τ f characteristic time

N f number of particles in volumel3f
VT thermal velocity of the particle
σ entropy production function
Ji fluxes corresponding to the observed transfer processes
Xi thermodynamic forces
Ψ scattering potentials
Φ scattering potentials
Li,k Onsager’s reciprocity coefficient
Ri,k inverse Onsager reciprocity coefficient
U volume

P
$

d
nonequilibrium part of the pressure tensor

P
$

i,e equilibrium part of the pressure tensor of the ionic and electron com-
ponents

P
$i,e

d

nonequilibrium part of the pressure tensor of the ion and electron
components

P
$i,e

Σ

total pressure for the electron and ion component
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mi,e mass of an ion or electron

I
$ unit tensor

V
 

i,e
macroscopic velocity of the ion and electron components

piII,⊥ parallel and perpendicular pressure components

e
 
k

unit vectors

e
 
n

unit vectors

e
 
1 ¼ H

 
=H a unit vector pointing along the field

ρi,e density of the ion and electron components of the plasma

F
 i,e

ext

external force acting on electrons and ions

Ti,e temperature of the ion and electron plasma components

V
 

i,e
average velocity of the ionic and electronic components

νII,⊥ perpendicular and parallel components of the particle velocity

j
 

m
magnetizing current

j
 

gr
gradient drift current

R
 radius-vector of the particle

F
 

m
magnetic force

F
 

c
centripetal force

j
 

c
centripetal current

j
 

II
parallel current

μ magnetic moment magnetic moment

j
 

p
polarizing current

ε particle energy
Udr drift velocity
Eφ azimuthal component of the electric field
Uφ azimuthal drift velocity
k coefficient of proportionality between the radius of curvature of the

force line and the radius vector
Rcr radius of curvature of the force line
UR radial drift velocity

f
 

dis
dissipative force

~ε order of smallness

A
 

φ
azimuthal component of the vector potential

Appendix

Let us calculate the divergences from each of the fluxes J2 � J7, whose explicit form
is represented by expressions (10a)–(10g) (divJ1 ¼ 0). In the preconversion process
we will take into account the invariance of n=H and the first adiabatic invariant

=mu ¼ mν2⊥=2H
� �

, as well as the corresponding preconversion of the divergence from
the vector product div A,B½ � ¼ B � rotAð Þ A � rotBð Þ.
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For the flow divergence J2 we obtain

div J
 

2 ¼ div nc
E
 
,H
 h i

H2

0

@

1

A ¼
nc

H2 div E
 
,H
 h i

þ E
 
,H
 h i

div
nc

H2

� �

¼ �
nc

H2 E
 
rotH
 � �

�

�
nc

H
E
 
,H
 h i

∇
 1

H

� �

¼
2

mν2⊥
E
 
j
 

m

� �

�
nc

H3 E
 

H
 
,∇
 
H

h i

¼
2

mν2⊥
E
 
j
 

m

� �

�
2

mν2⊥
E
 
j
 

gr

� �

,

(27)

where

j
 

m ¼ �
nc

H
μrotH

 
, jgr ¼

nc

H2 μ H
 
,∇
 
H

h i

:

Let’s calculate the divergence from the J3 flow:

divJ3
 
¼ div n

mcν2⊥
2eH3 H

 
,∇
 
H

h i
� �

¼ n
mcν2⊥
2eH3 div H

 
,∇
 
H

h i

þ H
 
,∇
 
H

h i

∇
 
n
mcν2⊥
2eH3 ¼

¼ �
p⊥
eH3 ∇

 
HrotH

 
� H

 
,∇
 
H

h i

n
mcν2⊥
2eH2 ∇

 1

H
¼

¼
j
 

m∇
 � �

H

eH
þ n

mcν2⊥
2eH4 H

 
,∇
 
H

h i

¼
2

meν2
F
 

m j
 

m

� �

,

(28)

The final result in formulas (27) and (28) correspond to formulas (11) and (13).

where F
 

m ¼ �μ∇
 
H:

Similarly, transform the divergences from the fluxes J4 � J7, we obtain

div J
 

4 ¼ �
2

meν2⊥
j
 

m∇
 p⊥

n

� �

þ
2

meν2⊥
j
 

gr∇
 p⊥

n

� �

: (29)

div J
 

5 ¼ �
2

meν2⊥
F
 

c j
 

m

� �

þ
2

meν2II
j
 

c∇
 pII

n

� �

, (30)

div J
 

6 ¼ �
2

meν2⊥
j
 

m∇
 pII

n

� �

þ
2

meν2⊥
j
 

gr∇
 pII

n

� �

, (31)

div J
 

7 ¼ �
n

H
H
 
∇
 
νII

� �

¼ e1
 ∇
 
νII

� �

(32)

In (29)-(32) it is necessary to transform the gradient terms from and. To do this,

we use the invariance of p⊥=n
� �

, pII=n
� �

and νII. Since

∇
 p⊥

n
¼ ∇
 m
 
ν2⊥
2
¼ ∇
 m
 
ν2⊥

2H
H ¼ μ∇

 
H ¼ �F

 

m,

Then

j
 

m∇
 p⊥

n

� �

¼ � j
 

mF
 

m

� �

(33)
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and

j
 

gr∇
 p⊥

n

� �

¼ � j
 

grF
 

m

� �

: (34)

In a stationarymagnetic field it is truewith the accuracy of the drift approximation [21]

dνII
dt
¼

e

m
E
 
e
 
1

� �

þ
ν2⊥
2
div e
 
1: (35)

Assume that the first term in (35) is zero (the electric field is perpendicular to the
magnetic field). Convert the second term in (35)

ν2⊥
2
div e
 
1 ¼

ν2⊥
2
div

H
 

H
¼

ν2⊥
2
divH
 
�

ν2⊥

2H2 H
 
∇
 
H

� �

¼ �
μ

m
e
 
1∇
 
H

� �

¼ �
1

m
e
 
1F
 

m

� �

:

Given this transformation (35) will take the form

dνII
dt
¼

1

m
e
 
1F
 

m

� �

: (36)

In addition, for the constant magnetic field in the drift approximation it is true

dνII
dt
¼

∂νII

∂t
þ U

 
∇
 � �

∇
 
νII ¼

�

νII e
 
1 þ U

 

dr:

�

∇
 
νII ≈ νII e

 
1∇
 
νII

� �

: (37)

By equating (36) and (37), we obtain

e
 
1νII∇
 
νII ¼

1

m
e
 
1F
 

m

� �

: (38)

Let’s write the gradient from

∇
 pII

n

� �

¼ ∇
 
mν2II ¼ 2mνII∇

 
νII,

whence, taking into account, we have

j
 

gr:∇
 pII

n
¼ 2e E

 
j
 

gr:

� �

þ 2 F
 

m j
 

gr:

� �

, (39)

j
 

m:∇
 pII

n
¼ 2e E

 
j
 

m:

� �

þ 2 F
 

m j
 

m:

� �

, (40)

j
 

c:∇
 pII

n
¼ 2e E

 
j
 

c:

� �

þ 2 F
 

m j
 

c:

� �

, (41)

e
 
1∇
 
νII

� �

¼
e

mνII
E
 
e
 

1

� �

þ
e
 
1F
 

m

� �

mνII
, (42)
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By substituting the values of (33), (34), (39)-(42), into (29)-(32), we obtain the
expressions (13), (14), (15) and (16) presented in Section 3, respectively.

If a time-varying electric field acts in the plasma, the crossed E
 
,H
 

fields produce
an acceleration of electric drift

dV
 

E

dt
¼ c

E
 
,H
 h i

H2 (43)

creating an inertial force F
 

iner: ¼ �m ν
 
:

E :

In the drift approximation, the electric field E
 
and its rate of change are limited by

cE=Hð Þ< <V and ∂E=∂t< <E=TLð Þ (TL is the period of Larmor’s rotation).
The force (43) causes drift with speed

ν
 
P ¼

mc2

H2 E
 
:

(44)

and leads to the occurrence of electric polarization current

j
 

P ¼ neν
 
P ¼

nmc2

H2 E
 
:

(45)

In (44) and (45) we took into account the equality to zero of the scalar product

E
 
� e
 
1

� �

. According to (45) we have

∂E
 

∂t
¼

H2

nmc2
j
 

p: (46)

Since

ne � nið Þ ¼
1

4πe
div E

 
:

,

then

∂

∂t
ne � nið Þ ¼

1

4πe
div

∂E
 

∂t
: (47)

Substituting the values of from (46) into (47), we obtain

∂ ne � nið Þ

∂t
¼

1

4πe
div

H2

nmc2
j
 

P

� 	

:

Calculating the divergence from the expression in square brackets of the last
expression gives

∂

∂
ne � nið Þ ¼

H2

4πemc2
div j
 

P �
H2

πnemc2
1

mν2⊥
j
 

PF
 

m

� �

: (48)

In the derivation of (48) the spatial derivatives of E
 
were neglected with the

accuracy of the drift approximation. Let us now calculate the value of div j
 

P. To do
this, we substitute in Maxwell’s equation
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rotH
 
¼

1

c

∂E
 

∂t
þ
4π

c
j
 

P

value of the current j
 

P from (45) and after simple transformations we obtain

rotH
 
¼

æ

c
E
 
,

where æ ¼ 1þ 4πnmc2

H2 [16]. From which we get

∂E
 

∂t
¼

c

æ
rotH: (49)

Substituting the value of the derivative according to (49) and (45), we obtain

j
 

P ¼
nmc3

H2 þ 4πnmc2
� � rotH

 
: (50)

Let’s calculate the divergence from the right and left parts of (50), we get

div j
 

P ¼
4

mν2⊥
j
 

P � F
 

m

� �

: (51)

After substituting in (48) the value of, according to (51), we finally obtain expres-
sion (17) for the derivative of the concentration difference ne � nið Þ given in Section 3,

∂

∂t
ne � nið Þ ¼ �

4H2

H2 þ 4πnmc2
� �

j
 

PF
 

m

� �

emν2
:
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