
Chapter 5

Path Planning on Quadric Surfaces and Its Application

Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and
Kai-Chieh Yang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72573

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and
Kai-Chieh Yang

Additional information is available at the end of the chapter

Abstract

In this chapter, recent near-shortest path-planning algorithms with O(nlog n) in the
quadric plane based on the Delaunay triangulation, Ahuja-Dijkstra algorithm, and ridge
points are reviewed. The shortest path planning in the general three-dimensional situa-
tion is an NP-hard problem. The optimal solution can be approached under the assump-
tion that the number of Steiner points is infinite. The state-the-art method has at most
2.81% difference on the shortest path length, but the computation time is 4216 times
faster. Compared to the other O(nlog n) time near-shortest path approach (Kanai and
Suzuki, KS’s algorithm), the path length of the Delaunay triangulation method is 0.28%
longer than the KS’s algorithm with three Steiner points, but the computation is about
31.71 times faster. This, however, has only a few path length differences, which promises
a good result, but the best computing time. Notably, these methods based on Delaunay
triangulation concept are ideal for being extended to solve the path-planning problem on
the Quadric surface or even the cruise missile mission planning and Mars rover.

Keywords: Delaunay triangulation, Dijkstra algorithm, ridge point, near-shortest path,
mission planning, NP-hard

1. Introduction

In the Euclidean plane with obstacles, the shortest path problem is to find an optimal path
between source and destination. Shortest path algorithms have already been applied to motion

planning of robots and path planning of navigation. Furthermore, it can be applied to electronic

design automation (EDA), biological cell transportation and operation research (OR) [1–3].

In [4–6], Jan et al. proposed two O(nlog n) time path-planning algorithms to obtain the

near-shortest path in the Euclidian and quadric planes, respectively. Compared to the other

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

approaches of reduced visibility graph, this fast method outperforms the rest of O(nlog n)

algorithms in the general two-dimensional situation, except the path length compared to the

shortest O(n2) time shortest algorithm of visibility graph.

In the quadratic plane, a survey of the shortest path problem concerning a two or higher dimen-

sional geometric object (e.g. a surface, a polyhedron, space, network) can be found in [7]. The short-

est path problem in the general three-dimensional situation is non-deterministic polynomial-time

hard (NP-hard) problem [8], and only exponential time algorithms are known. In [9], the shortest

path on a polyhedron is its local, which has an important property called unfolding, where the

path must enter and leave at the same angle to the intersecting edge.

It follows that any locally optimal shortest path joining two consecutive obstacle vertices can

be unfolded at each edge along its edge sequence, thus obtaining a straight segment. Sharir

and Schorr [10] proposed an O(n3log n) algorithm, which first applied this property to find the
exact shortest path on a convex surface, where n is the number of edges. Later, Mitchell et al.

[11] proposed an O(n2log n) algorithm for propagating the shortest path map over a surface

by a continuous Dijkstra method for general polyhedron. Chen and Han [12] improved it to

an O(n2) algorithm. Faster algorithms than these cannot be found by far.

Kimmel and Sethian [13] presented a fast searching method for solving the Eikonal equation

on a rectangular orthogonal mesh in O(Mlog M) steps, where M is the total number of grid

points. They extended the fast marching method to triangulated domains with the same com-

putational complexity. As an application, they provide an optimal time algorithm for comput-

ing the geodesic distances and thereby extracting shortest paths on triangulated manifolds.

Helgason et al. [14] presented a heuristic algorithm based on geometric concepts for the prob-

lem of finding a path composed of line segments from a given destination in the presence of
polygonal obstacles. The basic idea involves constructing circumscribing triangles around the

obstacles to be avoided. Their heuristic algorithm considers paths composed primarily of line

segments corresponding to partial edges of these circumscribing triangles and uses a simple

branch-and-bound procedure to find a relatively short path of this type.

Kanai and Suzuki proposed a near-shortest path approach (Kanai and Suzuki, KS’s algorithm

[9]) based on the Delaunay triangulation, the Dijkstra algorithm, and Steiner points, with compu-

tational complexity of O(k2nlog k2n), where k is the number of Steiner points and n is the number

of the triangles. Although KS’s algorithm is an approximation, it has the significant advantages
of easy implementation, high approximation accuracy, and numerical robustness. However, to

obtain a shorter path, the computation time required by the path planning will increase rapidly

when the Steiner points increases. A detailed comparison can be found in Table 1.

In this chapter, an O(n log n) time near-shortest path planning is introduced. It combined with

the Delaunay triangulation, Ahuja-Dijkstra algorithm, and ridge points for path planning on

a quadratic surface. Experimental results show that the average path length of the Delaunay

triangulation-based algorithm is 0.28% longer than the KS’s algorithm; however, the speed

is 31.71 times faster. Furthermore, when performing KS’s algorithm with 29 Steiner points,

the NP-hard shortest path will be found (extremely close approximation of the shortest path

planning). Although the length is 2.81% longer than the shortest, the computation time is

Advanced Path Planning for Mobile Entities92

4216 times faster. Therefore, it can not only obtain a good near-shortest path length on the
quadratic surface, but also improve the computation time. Furthermore, it is worth noting

that Delaunay triangulation-based fast algorithms are ideal for being extended to solve the

path planning in the polyhedron plane or be applied to cruise missile mission planning in the

quadratic plane.

This chapter is organised as follows. Section II briefly introduces the concept of shortest path
algorithms. In Section III, we will describe the idea of the triangulation-based near-shortest

path algorithm, the performance of which is analysed in Section IV. The experimental results

are shown in Section V. Section VI explains a possible application for cruise missile mission

planning, and Section VII concludes the chapter.

2. Algorithm backgrounds

In this section, basic concepts of the Delaunay triangulation algorithm on the quadratic sur-

face will be introduced, such as Euclidean plane, Delaunay triangulation, ridge points, and

Dijkstra’s single-source shortest path algorithm. Euclidean space is the Euclidean plane and

three-dimensional space of Euclidean geometry [15], as well as the generalisations of these

notions to higher dimensions. It can be used to distinguish these spaces from the curved

spaces of non-Euclidean geometry and Einstein’s general theory of relativity [16].

For the quadratic surface, there is essentially only one Euclidean space with three real number

coordinates from the modern viewpoint.

A Quadric surface is the locus of the points (x, y, z), which satisfy a second-degree equation

in three variables, Ax2 + By2 + Cz2 + 2Dxy + 2Exy + 2Fyz + Gx + Hy + Iz + J = 0, and the different
types of Quadric surfaces, a total of 15, are obtained by varying the coefficients of it [17].

The classification of the different types of Quadric surfaces is made, first, on the basis of the
matrix of the quadratic from determining by the symmetric matrix:

 A
Q
  =  (

A

D

E
 D B F

E

F

C
) (1)

Euclidean Algorithms

Polyhedron Polyhedron or quadric

Sharir [10] Mitchell [11] Chen [12] KS’s [9] Delaunay method

Connection No No No 6k2n 9n

Time complexity O(n3log n) O(n2log n) O(n2) O(knlog k2n) O(nlog n)

Is the path shortest? N/A N/A N/A Near-shortest Near-shortest

Table 1. Comparison of different shortest path algorithms in the three-dimensional space, n denotes the number of

triangle mesh.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

93

A triangle mesh is a type of polygon mesh in computer graphics. It comprises a set of triangles

(typically in three dimensions) that are connected by their common edges or corners [18].

With individual triangles, the system has to operate on three vertices for every triangle. In

mathematics and computational geometry, the triangle mesh can be expressed in a Delaunay

triangulation for a set V of vertices in the plane is a triangulation DT(V) such that no vertex in

V is inside the circle of any triangle in DT(V) [19].

A path that interconnects the two vertices v and v’ of a graph G with minimal length for all

paths is called the shortest path. Finding a shortest path in a graph G can be done in O(nlog n)

with Ahuja-Dijkstra’s single-source shortest path algorithm by using Fibonacci heaps (F-heaps)

and radix heaps [20].

A ridge is a curve consisting of ridge point: A point lies on a ridge if its neighbourhood can be

subdivided by a line passing through it, and such that the surface in each half-neighbourhood

is monotonically decreasing when moving away from the line [21].

3. Algorithm and illustration

In this section, a Delaunay triangulation-based method will combine the concepts of Ahuja-

Dijkstra algorithm and ridge points to construct a directed graph and to obtain the shortest

possible path length on the quadratic surfaces. Compared to another Delaunay triangulation

method [4], Fermat points are replaced by the ridge points; this is mainly due to the fact that

Fermat points cannot connect the shortest line between two neighbour triangles on the quadratic

surface. The initial step of the algorithm is to build a triangle mesh G to simulate the earth’s sur-

face (the GIS map). Next, a source point and a destination point are spotted, then three ridge

points in the same triangle will be connected together to generate an extra small triangle and

three extra path segments between the vertices and neighbour triangles diagonal vertices.

These extra connections as shown in Figure 1(b) will be used to search for the near-shortest path

by using the Ahuja-Dijkstras algorithm (expressed by E
f
). As we have constructed the directed

connected graph G′ = G ∪ E
f
, we can obtain the near-shortest path P in graph G′ if it exists.

Function 1: FindingExtraConections():

Step 1. Create a ridge point between two neighbouring triangles as shown in Figure 1(a).

Step 2. Obtain the shortest path by connecting these two vertices E, F with the ridge point.

END {Function of FindingExtraConections}.

Function 2: PathShortening(P):

Step 1. Generate the shortcuts of any two consecutive segments by performing the Function 1.

Step 2. Sort the shortcuts by their corresponding length improvements in a descending order.

Step 3. Shorten the original path in a descending order.

END {Function of PathShortening}.

Advanced Path Planning for Mobile Entities94

Algorithm: The triangle mesh-based shortest path on the quadric surfaces.

Init Load the data from a GIS map.

Step 1. Construct a triangle mesh G by the Delaunay triangulation on the data, locate a

source point and a destination point.

Step 2. Compute the shortest path between the neighbouring vertices based on the ridge

points on the quadric surface by performing Function 1.

Step 3. Construct the directed connected graph G′ with the extra connections.

Step 4. Obtain the shortest path in graph G′ if it exists by Ahuja-Dijkstras algorithm.

Step 5. Call the Function 2 PathShortening(P).

END {Algorithm of the triangle mesh-based shortest path}.

Figure 2 illustrates the detailed process. Figure 2(a) shows the initiation of a triangle mesh

G, then a source point S and a destination point D are depicted in Figure 2(b). Next, ridge

points will be inserted into the triangle mesh in order to generate extra path connections

Figure 1. Illustration of the ridge points. (a) A ridge point of ∆ABC and ∆ACD. (b) The connections between the ∆ABC
and neighbour triangles vertices and ridge points.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

95

as shown in Figure 2(c). Figure 2(d) shows that each ridge point will connect with the oth-

ers in the same triangle and three extra path segments between the vertices and neighbour

triangles diagonal vertices. Thereafter, the shortest path can be obtained in the graph G′ by

Ahuja-Dijkstras algorithm presented as a red line shown in Figure 2(e). Finally, Figure 2(f)

shows the final result after the PathShortening.

4. Performance analysis

A near-shortest path algorithm on the Quadratic surface is the fastest in the literature.

Theorem 1. The time complexity of the algorithm in the triangle mesh G is O(nlog n), where

n denotes the number of triangles.

Figure 2. Illustration of the Delaunay triangulation algorithm. (a) Initialise (aerial view). (b) Spot source point and

destination point (top view). (c) Insert ridge points (top view). (d) Extra connections (aerial view). (e) Obtain the shortest

path (aerial view). (f) PathShortening (top view).

Advanced Path Planning for Mobile Entities96

Proof: We can generate Delaunay triangulation as a triangle mesh with time of O(nlog n) [22],

as a result, time complexity in Step 1 is O(nlog n) [23].

The number of the ridge points is bounded by O(n); thus, the number of connections in Step 3

is also bounded by 9 × O(n). We therefore know that all the time complexity for Steps 2 and 3

are O(n). In Step 4, the time complexity of the Ahuja-Dijkatras algorithm using Fibonacci heaps
and radix heaps is O(n + nlog n) = O(nlog n) [20]. In Step 5, as the number of points are n − 3, the
time complexity will be dominated by O[(n − 3)log(n − 3)] = O(n log n). Therefore, the overall

time complexity for PathShortening is O(nlog n).

In conclusion, the time complexity is 9 × O(n) + O(n log n) = O(n log n) from Steps 1–5.

Theorem 2. The space complexity of constructing the triangle mesh in the quadratic surface is

O(n), where n is the number of triangles.

Proof: According to Euler characteristic, the number of triangles is less than T = 2 × (k
C
 × n) − h – 2

once the triangle mesh is generated, where h is the number of corners of the triangles. Therefore,

the space complexity is bounded by O(n). Furthermore, the number of edges including the origi-

nal edges of triangles, edges connecting ridge points to the vertices of triangles, and connection

between ridge points is also bounded by (6 + 3/2) × T = 7.5 T. Hence, the space complexity is O(n).

5. Experimental result

The performance of Delaunay triangulation-based path algorithm has been analysed for

evaluating the near-shortest path with several real GIS maps in the Matlab Language. The

analysis was performed on an Intel Core2 Quad CPU Q9550@2.83 GHz processor with 8 GB
memory. Figure 3 shows one of the experimental results with a GIS map, where the solid line

is the near-shortest path and dashed lines are the shortcuts.

Next, we have compared this algorithm to the KS’s algorithm with 1, 3, 5, 7, 9, 19 and 29

Steiner points and summarised the comparison results on the average path length and the

average runtime in Table 2. In KS’s algorithm, each edge of the triangle has been divided into

multiple segments to generate more connections for path searching. Figure 4(a) and (b) illus-

trates the average running time and path length between two algorithms.

When compared to one Steiner point, the average path length difference of the Delaunay
triangulation-based algorithm is 6.14% better than the KS’s algorithm, and computation time
between the Delaunay triangulation-based algorithm and the KS’s algorithm is same. When

it increased three Steiner points, the length difference is only 0.28%, but the computation
time is 31.71 times faster. When 29 Steiner points for the KS’s algorithm are applied, the KS’s

results can be assumed as the shortest path; however, the length difference is 2.81% longer
and computation time is 4216 times faster. This proves that the Delaunay triangulation-based
algorithm can solve the NP-hard problem and also obtain fast computing features. From the

statistical view, Figure 5 shows the prediction of the average computation time and length

difference if the number of KS’s Steiner points is infinity.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

97

Figure 3. Near-shortest path searching with a GIS map. (a) Initialise (aerial view) and (b) result (aerial view).

Advanced Path Planning for Mobile Entities98

SPs Length difference (%) Runtime difference (X) (%)

1 −6.14 0.97

3 0.28 31.71

5 1.66 86.40

7 2.26 162.94

9 2.68 414.55

19 2.79 1968.62

29 2.81 4215.75

999 ≅ ∞ 5.3 3.0E + 10

Table 2. Comparisons between our algorithm and KS’s algorithm on average running time and length difference when
the Steiner points are 1, 3, 5, 7, 9, 19, 29, …, ∞

Figure 4. Comparison between Delaunay triangulation-based algorithm and KS’s algorithm on average running time

and path length. (a) Average computation time and (b) average length difference.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

99

6. The shortest path application on the quadric surface

This section explains an application that benefits from the Delaunay triangulation-based
algorithm. Actually, it can be applied to shortest path planning for Mars rover and mission

planning for cruise missiles in the quadric surface. For cruise missile mission planning, we

steady up with the angle θ
1
 at source point and down with the angle θ

2
 at destination point,

respectively. Furthermore, the z-coordinate is limited by the l altitude units to avoid the

radar’s scan as well as crash prevention, where l is a constant, as shown in Figure 6(a). To

verify the correctness and performance, we assume a cruise missile needs to move from the

source position S to the destination position D, as shown in Figure 6(b). In order to keep

the safety margin between the cruise missile and quadric surface, virtual l altitude units are

added up to the graph G′ (e.g. 20 meters above the G). Once the virtual altitude and thresh-

olds are applied, a shortest path is obtained. Apparently, Figure 6 shows that this shortest

path algorithm can be also applied to intelligently guide the cruise missile to pass a narrow

passage and avoid radar’s scan.

Figure 5. The prediction of the average computation time and length difference if the number of KS’s Steiner points is
infinity. (a) Average computation time and (b) average length difference.

Advanced Path Planning for Mobile Entities100

Figure 6. An illustration of the shortest path for planning a cruise missile on the landscape. (a) Cruise missile planning;

(b) land scope (top view); (c) result (aerial view 1) and (d) result (aerial view 2).

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

101

7. Conclusion

In this chapter, an O(nlog n) time near-shortest path planning based on the Delaunay triangu-

lation, the Ahuja-Dijkstra algorithm, and ridge points on the quadric surface are introduced.

Although the length of path obtained by Delaunay triangulation-based algorithm is 0.28%

longer than another O(nlog n) time KS’s algorithm, the average computation time is 31.71

times faster. Furthermore, when the KS’s Steiner point is 29, which means that the shortest

path in the NP-hard problem will be obtained, the Delaunay triangulation-based algorithm

has at most a 2.81% difference on the path searching, but the computation time is 4216 times
faster approximately. Therefore, the Delaunay triangulation-based algorithm presents a good

near-shortest path searching solution in the quadric surface with a very short amount of

computation time.

Author details

Chi-Chia Sun1, Gene Eu Jan2*, Chaomin Lu3 and Kai-Chieh Yang4

*Address all correspondence to: geneeujan@gmail.com

1 Department of Electrical Engineering, National Formosa University, Taiwan, ROC

2 Tainan National University of the Arts, Taiwan, ROC

3 Department of Electrical and Computer Engineering, University of Detroit Mercy, USA

4 Department of Electrical Engineering, National Taiwan Ocean University, Taiwan, ROC

References

[1] Wu Y, Sun D, Huang W, Xi N. Dynamics analysis and motion planning for automated

cell transportation with optical tweezers. IEEE/ASME Transactions on Mechatronics.

2012;18(2):706-713. DOI: http://dx.doi.org/10.1109/TMECH.2011. 2181856

[2] Harada K, Hattori S, Hirukawa H, Morisawa M, Kajita S, Yoshida E. Two-stage time-param-

etrized gait planning for humanoid robots. IEEE/ASME Transactions on Mechatronics.

Oct 2010;15(5):694-703. DOI: http://dx.doi.org/10.1109/TMECH.2009.2032180

[3] Jan GE, Chang KY, Parberry I. Optimal path planning for mobile robot navigation.

IEEE/ASME Transactions on Mechatronics. Aug 2008;13(4):451-460. DOI: http://dx.doi.
org/10.1109/TMECH.2008.2000822

[4] Jan GE, Sun CC, Tsai WC, Lin TH. An O(nlog n) shortest path algorithm based on Delaunay

triangulation. IEEE/ASME Transactions on Mechatronics. Apr 2014;19(2):660-666. DOI:
http://dx.doi.org/10.1109/TMECH.2013.2252076

Advanced Path Planning for Mobile Entities102

[5] Sun CC, Jan GE, Leu SW, Yang KC, Chen YC. Near-shortest path planning on a quadratic

surface with O(nlog n) time. IEEE Sensors Journal. Nov 2015;15(11):6079-6080. DOI:
http://dx.doi.org/10.1109/JSEN.2015.2464271

[6] Jan GE, Fung K, Wu PY, Leu SW. Shortest path-planning on polygonal surfaces with

O(nlog n) time. In: IEEE International Conference on Control and Robotics Engineering.

IEEEXplore. Apr 2016. pp. 1-5. DOI: http://dx.doi.org/10.1109/ICCRE.2016. 7476149

[7] Mitchell JSB. The Geometric Shortest Paths and Network Optimization in the Handbook
of Computational Geometry. North Holland: Elsevier Science; 1998

[8] Canny J, Reif J. New lower bound techniques for robot motion planning problems. In:

Annual Symposium on Foundations of Computer Science. IEEEXplore. 1987. pp. 49-60.
DOI: http://dx.doi.org/10.1109/SFCS.1987.42

[9] Kanaia T, Suzuki H. Approximate shortest path on a polyhedral surface and its appli-

cations. Computer-Aided Design. Sep 2001;33(11):801-811. DOI: https://doi.org/10.1016/
S0010-4485(01)00097-5

[10] Sharir M, Schorr A. On shortest paths in polyhedral spaces. SIAM Journal of Computing.

1986;15:193-215. DOI: http://dx.doi.org/10.1137/0215014

[11] Mitchell JSB, Mount DM, Papadimitriou CH. The discrete geodesic problem. SIAM
Journal on Computing. 1987;16(4):647-668. DOI: https://doi.org/10.1137/0216045

[12] Chen J, Han Y. Shortest paths on a polyhedron. In: ACM Symposium on Computational

Geometry. ACM Digital Library. 1990. pp. 360-369. DOI: http://dx.doi.org/10.1145/
98524.98601

[13] Kimmel R, Sethian JA. Computing geodesic paths on manifolds. In: Proceedings of the

National Academy of Sciences on Applied Mathematics. PNAS Online. July 1998;95:

8431-8435

[14] Helgason R, Kennington J, Lewis K. Cruise missile mission planning: A heuristic algo-

rithm for automatic path generation. Journal of Heuristics. Sep 2001;7(5):473-494. DOI:
http://dx.doi.org/10.1023/A:1011325912346

[15] Byer O, Lazebnik F, Smeltzer DL. Methods for Euclidean Geometry. Washington D.C.

USA: Mathematical Asso-ciation of America; 2010

[16] Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen
Akademie der Wissenschaften zu Berlin. 1915;48:844-847. DOI: http://dx.doi.org/10.
1002/3527608958.ch5

[17] Galarza R, Irene A, Seade J. Introduction to Classical Geometries. Berlin, Germany:

Springer; 2007. DOI: http://dx.doi.org/10.1007/ 978-3-7643-7518-8

[18] Jin J. Three Novel Algorithms for Triangle Mesh Processing: Progressive Delaunay

Refinement Mesh Generation, MLS-based Scattered Data Interpolation and Constrained
Centroid Voronoi-based Quadrangulation. IL, USA: UMI Dissertation Publishing; 2011

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

103

[19] Cheng S-W, Dey TK, Shewchuk J. Delaunay Mesh Generation. UK: Chapman and Hall/

CRC; 2012

[20] Ahuja R, Mehlhorn K, Orlin J, Tarjan R. Faster algorithms for the shortest path problem.

Journal of the ACM. Apr 1990;37:213-223. DOI: http://dx.doi.org/10.1145/77600.77615

[21] Sack J, Urrutia J. Handbook of Computational Geometry. North Holland: Elsevier; 1999

[22] Fortune S. A sweepline algorithm for voronoi diagrams. In: Proceedings of the Second

Annual ACM Symposium on Computational Geometry. Berlin, Germany: Springer-Verlag;

1986. pp. 313-322. DOI: https://doi.org/10.1007/BF01840357

[23] Rohnert H. Shortest paths in the plane with convex polygonal obstacles. Information

Processing Letters. 1986:23(2):71-76. DOI: http://dx.doi.org/10.1016/0020-0190(86)90045-1

Advanced Path Planning for Mobile Entities104

	Chapter 5
Path Planning on Quadric Surfaces and Its Application

