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Abstract

The detection and analysis of SF
6
 decomposition components are of great significance in 

online condition assessment and fault diagnosis of GIS. Considering the shortcomings of 
general detection methods, carbon nanotubes (CNTs) gas sensor was studied to detect 
the SF

6
 decomposition components because of its advantages in large surface activity 

and abundant pore structure, et al. The large surface area has a strong adsorption and 
desorption capacity. In this chapter, SF

6
 decomposed gases, namely SO

2
F

2
, SOF

2
, SO

2
, H

2
S 

and CF
4
 are chosen as probe gases because they are the main by-products in the decom-

position of SF
6
 under partial density (PD). First, the properties and preparation methods 

of CNTs are introduced to verify the advantages of CNTs for SF
6
 decomposition compo-

nents detection. Then, both theoretical calculation and sensing experiment were adopted 
to study the microadsorption mechanism and macrogas-sensing properties. Based on the 
intrinsic CNTs, study for SF

6
 decomposition components adsorption, Pd, Ni, Al, Pt and 

Au metal doping CNTs and plasma-modified CNTs are discussed in order to enhance the 
gas sensing and selectivity of CNTs.

Keywords: SF
6
 decomposition components, carbon nanotubes, preparation method, 

density functional theory, metal doping

1. Introduction of carbon nanotubes

1.1. The properties of carbon nanotubes

1.1.1. Structure of carbon nanotubes

Carbon nanotubes (CNTs), which are also called the bucky tube, are a one-dimensional  

material with special structure. It is one allotrope of carbon, like the diamond, graphite and 
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fullerene. In January 1991, a Japanese physicist Iijima first found CNTs produced  during 
fabricating Carbon fiber using high-resolution transmission electron microscope [1]. 

CNTs possess large aspect ratio because of its one-dimensional property. The electron 

wave  function of CNTs exhibits periodic and translational invariance in radial and axial 

 direction. A new strong atomic hybrid orbital is built by sp2 hybridization of carbon atoms, 

and CNTs skeleton of a hexagonal honeycomb is combined by σ bonds of carbon atoms. The 
isolated p electrons of Carbon atoms that did not participate in a hybrid together form 

conjugated π electron cloud across the entire CNTs. As shown in Figure 1, CNTs can be 

divided into single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes 

(MWCNTs). Due to the unique molecular structure, CNTs have some specific properties in 
mechanics, electricity and heat.

1.1.2. Mechanical properties of carbon nanotubes

Carbon atoms in CNTs show sp2 hybridization, which have more s orbital compared with sp3 

hybridization, and hence, the formed CNTs possess high modulus and strength. Its  hardness 

is similar to that of diamond, while it also can be stretched due to its good flexibility. Like 
the reinforced fiber used in industry, the crucial factor that determines the strength of fiber 
is length to diameter ratio (at least 20:1). And the length to diameter ratio of CNTs has even 

Figure 1. CNTs structural models. (a) SWCNTs (lateral view); (b) SWCNTs (sectional view); (c) MWCNTs (lateral view); 

(d) MWCNTs (sectional view).
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reached 1000:1, making it an ideal fiber material with high strength, while the weight of 
CNTs is only 1/6–1/7 that of steel [2]. Therefore, CNTs are also called “super fiber”. Besides, 
Krishnan et al. found that the Young’s modulus of SWCNTs along radial direction is up to 1 

TPa measured by atomic force microscope [3].

1.1.3. The thermal properties of carbon nanotubes

CNTs show heat conduction anisotropy, showing high and low heat exchange in vertical 

and axial direction, respectively. Therefore, the high anisotropy of heat conduction material 

can be synthesized by controlling the orientation of the CNTs. The thermal conductivity of 

 composites can be effectively improved by doping trace of CNTs.

1.1.4. The electrical properties of CNTs

The isolated p electrons of C atoms do not participate in a hybridization form a wide range 

of delocalized π bond due to the significant conjugative effect, making it possesses special 
electrical properties. As shown in Figure 2, C

h
 represents the arrangement direction of CNTs 

atom, while a
1
 and a

2
 represent two basis vectors, respectively, where C

h
 = n*a

1
 + m*a

2
 (noted as 

(n, m)). (n, m) is closely related to the electrical conductivity of CNTs. For a given (n, m) CNTs, 

the electrical conductivity of CNTs in this direction is the metallic if 2n + m = 3q (q is integer), 

and otherwise the performance is the semiconductor. For the condition of n = m, the electrical 

conductivity of CNTs is usually 10,000 times as much as that of copper.

Figure 2. The Chiral vector selection of graphite flake.
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1.1.5. The electron emission property of carbon nanotubes

CNTs have a nanometer scale point, which is benefit for to the electrons emission. Hence, 
scientists predicted and verified that CNTs have an excellent field emission effect.

1.1.6. The adsorption characteristics

CNTs have large surface activity and abundant pore structure. And the large surface area of 

the gas phase chemical composition has a strong adsorption and desorption capacity.

1.2. Carbon nanotubes preparation methods

1.2.1. Arc discharge method

It is the first and most used method to prepare CNTs. The main process is: (a) keep a certain 
pressure of inert gas or hydrogen in vacuum vessel, (b) choose graphite (with catalyst: nickel, 

cobalt and iron) as electrode. The graphite is consumed by evaporation at anode during 

the arc discharge process, and CNTs are received by depositing at cathode. Ebbesn et al [4]. 

successfully prepared gram order weight of CNTs under nitrogen gas condition, and then, 

this method is widely adopted. In 1994, Bethune introduced catalyst for arc reaction, reducing 

the reaction temperature and enhancing the productivity of CNTs. In 1997, Jounet et al. used 

catalysts for synthesizing single CNTs under helium condition. Sun Mingliang et al. studied 

the influence factors to CNTs prepared by DC arc discharge method: (a) inert gas pressure 
will affect the diameter and length of CNTs; (b) how much the adhesion of particles?; (c) 
oxygen and water vapor will lead to defects in CNTs, and it is unable to separate and purify 

after sintering together and (d) current and voltage will affect the yield and production rate of 
CNTs, but length to diameter ratio of graphite does not affect the generation of CNTs.

1.2.2. Catalytic cracking method

Catalytic cracking method, also known as chemical vapor deposition, prepares CNTs through 

cracking hydrocarbons or carbon oxides with the help of catalyst. The basic preparation pro-

cess: (a) mixes the organic gases (such as acetylene and ethylene) with certain proportion of 

nitrogen gas in quartz tube. (b) CNTs grow on the surface of catalyst under certain tempera-

ture when the carbon source flow past and pyrolyze onto the surface of catalyst, and pushing 
forward the small catalyst particles [4]. (c) The growth of CNTs ends till all of the catalyst 

particles were coated with graphite layer. The advantages of the method are: easy to control 

the reaction process, simple equipment, low raw material cost, easy to produce the product 

in large scale, and the high productivity. The disadvantages are: too much CNTs layers, poor 

graphitization and exist crystalline defects. These disadvantages have great adverse influence 
on the physical and chemical properties of CNTs.

1.2.3. Laser evaporation method

Laser evaporation method prepares CNTs by illuminating the graphite target that contains 
metal catalyst. Then, the vapor mixes with carbon source and deposits on the surface of 
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 substrate and the wall of reaction chamber. Smalley et al. received SWCNTs after adding a 

certain amount of catalyst to the electrode during preparing C
60

. After improving the method, 

Thess et al. successfully fabricated amount of SWCNTs. Under the condition of 1473 K, the 

graphite target with Ni/Co catalyst particles was irradiated by double pulse laser with 50 ns, 

receiving the high-quality SWCNTs bundles.

1.2.4. Low-temperature solid-state pyrolysis method

Low-temperature solid-state pyrolysis prepares CNTs through intermediate. First, the nano-

meter level silicon nitride (Si
2
C

2
N) ceramic intermediate was prepared. The nanoceramic 

intermediate is then placed in a boron nitride crucible, which is heated in a graphite resistance 

furnace to decompose it with nitrogen gas as the protective gas. After 1 h, the nanointermedi-

ate powder begins to pyrolyze, and the carbon atoms migrate to the surface. A high propor-

tion of CNTs are obtained with amount of silicon nitride powder in the surface pyrolysis 

products. The advantage of the low-temperature solid-state pyrolysis method is the repeatable 

production, which is beneficial for large-scale CNTs production.

1.2.5. Polymer pyrolysis method

The method prepares CNTs by decomposition of hydrocarbons precursor (such as acetylene 

and benzene) at high temperature. Cho et al. prepared CNTs by heating the polymer obtained 

from citric acid and glycol after polyesterification under 400°C for 8 h. The CNTs were syn-

thesized by using metal Ni as catalyst in the temperature ranged from 420 to 450°C and under 
H

2
 atmosphere. Under 900°C and Ar-H

2
 atmospheric conditions, Sen et al. obtained CNTs by 

pyrolyzing ferrocene, nickelocene and cobaltocene. These metal compounds not only provide 

carbon source after pyrolysis, but also provide the catalyst particles. The growth mechanism 

of the method is similar to the catalytic cracking method.

1.2.6. Ion (electron beam) radiation method

In a vacuum furnace, carbon is evaporated by ion or electron discharge and deposit on the 

condenser. Chernazatonskii et al. synthesized CNTs with diameter range from 10 to 20 nm 

and high alignment by evaporating the graphite coated on the surface of substrates. Lin X et 
al. got CNTs with diameter range from 10 to 15 nm by irradiating amorphous carbon with 

argon ion beam under high vacuum environment [5].

1.2.7. Flame synthesis method

Flame synthesis method utilizes the heat, produced by burning methane and a small 

amount of oxygen, and imports hydrocarbons and catalysts at temperature of 600–1300°C to 
 synthesize CNTs. The CNTs prepared by this method have the disadvantages of low crystal-

linity and large amount of amorphous carbon. There is still no definite explanation for the 
growth mechanism of CNTs nanostructure by flame method. Richter et al. found SWCNTs 
that attached with a large amount of amorphous carbon from carbon black after burning the 
mixture of acetylene, oxygen and argon gases. Daschowdhury et al. found nanometer tubular 
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CNTs by detecting carbon black after burning the mixture of benzene, acetylene, ethylene and 

oxygen gases.

1.2.8. Solar energy synthesis method

The CNTs are received from the condensation of high temperature (3000 K) mixture vapor 

of graphite and metal catalyst that heated by focusing the sunlight. This method is initially 

used for buckyballs production, then adopted for CNTs synthesis since 1996. Laplaze et al. 
 synthesized the MWCNTs and SWCNTs use this method.

1.2.9. Electrolysis method

The preparation of CNTs by electrochemical method is a novel technique. This method 

adopts graphite electrode (electrolytic cell as anode), obtained carbon nanomaterials by 

 electrolyzing molten alkali halide salts (such as LiCl) under a certain voltage and current 
with the protection of air or argon gases at about 600°C. The products include packaged or 
not packaged CNTs and carbon nanoparticles, and the form of carbon nanomaterials can be 

controlled by changing the process conditions of electrolysis. Andrei et al. found that CNTs 

can directly grow on the surface of n-type of (1 0 0) silicon electrode in solution of acetylene/

ammonia. Hus et al. synthesized nanotubular and onion like CNTs under argon environment 

by using molten alkali metal halide as electrolyte and graphite as electrode. Huang Hui et al. 

successfully synthesized CNTs and carbon nanowires using LiCl and LiCl + SnCl
2
 as molten 

salt electrolyte.

1.2.10. Other methods

Stevens et al. got CNTs by using an exothermic reaction between caesium and nanoporous 

amorphous carbon in the low temperature of 50°C. Chemozatonskii et al. found the fullerene 
and CNTs at the microholes of Fe

2
Ni

2
C, Ni

2
Fe

2
C and Fe

2
Ni

2
Co

2
C alloy prepared by powder 

metallurgy method [6]. Kyotani et al. first pyrolyze and deposit carbon on the wall of anodic 
alumina model (with nanometer trench) under 800°C. Then, hollow CNTs with open-end 

on both sides after removing the anodic alumina membrane by hydrofluoric acid can be 
obtained. Matveev et al synthesized CNTs using liquid nitrogen solution of acetylene at 233 

K by electrochemical method. It is the lowest temperature ever reported to synthesize CNTs.

2. Modification CNTs

2.1. Simulation model build and computation method

This work chooses SWCNTs as a research object to present theoretical simulation for its 

adsorption of gas decomposition products of SF
6
 and then explores its adsorption charac-

teristics and predicts the detectable gas products. Materials Studio (MS) software developed 

by Accelrys Company is employed in this research, the Dmol3 module of which is used for 

 quantum mechanics stimulation. Generalized gradient approximation (GGA) approach, which 
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can accurately describe the geometric and electronic structures of CNTs as well as the pro-

cesses of molecular interaction, is adopted to deal with the interchange and correlation 

between electrons, and its specific form is Perdew-Burke-Ernzerhof (PBE) [7]. The double-

figure basis set (DNP) of polarization function is used in DFT (Density Functional Theory) 
calculation. In order to avoid the interactions between CNTs, a super grid 20 × 20 × 8.5 Å3 has 

been designed, working under periodic boundary conditions. The initial distance between 

SWCNT and gas decomposition products of SF
6
 is set as 0.16 nm. All atoms are calculated 

using full atomic potential, and the convergence value of self-consistent field is set as 10 × 10−5 

eV/at [8]. Ref. [9] has shown that accurate results can be achieved by taking two K points in 

the (8, 0) SWCNTs Brillouin zone. All calculations above are accomplished on Dmol3 module.

SWCNT, SF
6
 as well as its gas decomposition products including SF

6
, SO

2
F

2
, SOF

2
, SO

2
, 

H
2
S, CF

4
 and HF in the superlattices are optimized, respectively, to obtain the most stable 

 structures before each calculation. Figure 3 presents the stabilized configuration of SWCNT 
gas molecules (SF

6
, SO

2
F

2
, SOF

2
, SO

2
, H

2
S, CF

4
 and HF) after geometrical optimization.

SF
6
 and decomposition gas molecules are made to approach the C atom marked on the 

SWCNT in any possible posture, which is optimized to form a stable molecule-SWCNT system, 

respectively. Then, stable configurations will be found after a non-restrictive optimization to 
the molecule-SWCNT systems, and their electron properties will be calculated [8].

To assess the ability to interact between SWCNT and gas molecules, the adsorption energy 

E
b
 is calculated. E

b
 is defined as Eq. (1). E molecule-SWCNT-OH stands for the total energy of 

the molecule-SWCNT system after geometrical optimization, E
SWCNT-OH

 and E
molecule

, respectively, 

stand for the energy of SWCNT and that of an isolated molecule. If E
b
 < 0, it means the adsorp-

tion process is exothermic and can occur spontaneously.

Figure 3. The most stable optimized configurations of SWCNT and gas molecules. The structural parameters are shown 
in Å. (a) SWCNT; (b) modified SWCNT; (c) SF

6
; (d) SO

2
F

2
; (e) SOF

2
; (f) SO

2
; (g) H

2
S; (h) CF

4
; (i) HF.
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   E  
b
   =  E  

molecule−SWCNT
   −  E  

SWCNT
   −  E  

molecule
    (1)

The charge transfer Q
T
 between SWCNT and gas molecules is also computed to indicate the 

change of electrical conductivity of SWCNT, which can provide important information about 

electronic responses in the system [8]. The Q
T
 is calculated through the charge differences 

between the molecule adsorbed on the SWCNT and an isolated molecule itself as shown in 

Eq. (2) [8]:

   Q  
T
   =  Q  

adsorped molecule
   −  Q  

isolate molecule
    (2)

Besides, the highest occupied molecular orbital (HOMO) energy level and lowest unoccu-

pied molecular orbital (LUMO) energy level were studied to evaluate the energy needed for 
electrons to cross the energy barrier based on the frontier molecular orbital analysis [10, 11]. 

After the adsorption, the energy gap of the adsorption structure can be calculated through the 

energy levels of E
HOMO

 and ELUMO defined as Eq. (3) [11].

   E  
g
   =  |   E  LOMO   -  E  

HOMO
   |     (3)

2.2. Gas-sensing properties of intrinsic SWCNTs to SOF2, SO2F2, SO2, H2S, HF, CF4 and SF6

2.2.1. Theoretical study: gas-sensing properties of intrinsic SWCNTs

2.2.1.1. The analysis of gas adsorption structure

We first studied the structure properties of pristine SWCNTs, Ni-SWCNTs, SO
2
, SOF

2
 and 

SO
2
F

2
. As an intrinsic structural beauty, SWCNTs consist of shells of sp2-hybridized (trivalent) 

carbon atoms [12] forming a hexagonal network that is itself arranged helically within a tubu-

lar motif shown in Figure 4a. The bond lengths of zigzag bond C─C2 (C1─C3) and axial bond 

C1─C4 were 1.44 and 1.41 Å, respectively. Figure 4 shows the most stable structures after gas 

molecules adsorb on the surface of intrinsic SWCNT. And the corresponding adsorption data 

are shown in Table 1.

It can be seen from Figure 4a, b and e and Table 1, the adsorption energy during the interac-

tion of SF
6
, HF and CF

4
 with SWCNT is rather little, the adsorption energy of HF-SWCNT 

(−0.16 eV) is an order of magnitude lower than that of SF
6
-SWCNT (−2.17 eV), and then, the 

adsorption energy of CF
4
-SWCNT (−0.02 eV) is two orders of magnitude lower than that 

of SF
6
-SWCNT; however, in terms of charge transfer, the number of charge transfer (0.038 

au) between SWCNT and HF is an order of magnitude higher than that (0.005 au) between 

SWCNT and SF
6
, while the number (0.003 au) between SWCNT and CF

4
 is still lower than that, 

but in fact, the interacting distance is similar in the interaction of HF and CF
4
 with SWCNT. As 

is shown above that SWCNT is insensitive to HF and CF
4
 [8].

From Figure 4c, d and f and Table 1 [8], it is clear that the adsorption energy during the inter-

action of H
2
S, SO

2
 and SOF

2
 with SWCNT is almost in the same level; the number of charge 

transfer between SWCNT and H
2
S (0.008 au) is a bit higher than that between SWCNT and 

SF
6
 (0.005 au); however, they are in the same order of magnitude, while the number of charge 
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Figure 4. The most stable optimized configurations of gas molecules interacting with SWCNT, respectively. The 
structural parameters are shown in Å. (a) SF

6
-SWCNTs; (b) HF-SWCNTs; (c) H

2
S-SWCNTs; (d) SO

2
-SWCNTs; (e) CF

4
-

SWCNTs; (f) SOF
2
-SWCNTs.

System Figure Eb (eV) QT (au) D (nm)

SF
6
-SWCNT 3a −2.17 0.005 0.3278

HF-SWCNT 3b −0.16 0.038 0.3262

H
2
S-SWCNT 3c −2.17 0.008 0.2822

SO
2
-SWCNT 3d −2.23 0.054 0.3071

CF
4
-SWCNT 3e −0.02 0.003 0.3299

SOF
2
-SWCNT 3f −2.21 0.017 0.3320

SO
2
F

2
-SWCNT 4a, b −1.19 0.403 0.1943

Table 1. Calculated adsorption energy, charge transfer and interacting distance.
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transfer between SWCNT and SO
2
, SOF

2
 is an order of magnitude higher than that between 

SWCNT and SF
6
. But the interacting distance is similar in the interaction of SO

2
, SOF

2
, SF

6
 with 

SWCNT. It means the sensitivity of SWCNT to H
2
S, SO

2
 and SOF

2
 is the same as that to SF

6
, 

so there is cross-sensitivity between them. Under the background of the high concentration of 

SF
6
, SWCNT as a gas sensor is unable to accurately detect H

2
S, SO

2
 and SOF

2
.

Figure 5 presents the most stable configurations of SO
2
F

2
-SWCNT. Figure 5a presents the 

chart whose chemical bond is not displayed; Figure 5b gives the chart whose chemical bond 

is displayed by MS. From Figure 5b, it is seen that the S atom in SO
2
F

2
 has formed the bond 

with the C atom marked in SWCNT, and the F atom has formed the bond with adjacent C 

atom yet, which means that the chemisorption between SWCNT and SO
2
F

2
 occurs. It can be 

inferred based on the data above that the adsorption energy of SO
2
F

2
-SWCNT is lower 0.98 eV 

than that of SF
6
-SWCNT, but they are in the same order of magnitude, which shows that there 

exist differences between them. However, the number of charge transfer (0.403 au) between 
SWCNT and SO

2
F

2
 is 80 times higher than that (0.005 au) between SWCNT and SF

6
, which 

shows that the conductivity of SWCNT has changed a lot after adsorbing SO
2
F

2
. The interact-

ing distance during the interaction of SO
2
F

2
 with SWCNT is obviously less than that of other 

molecules. Therefore, it can be concluded that SWCNT is the most sensitive to SO
2
F

2
 in all the 

gas decomposition products of SF
6
.

2.2.1.2. The analysis of the density of states

From Figure 6, it is clear that the density of states curves of SWCNT almost coincides after 

adsorbing HF, H
2
S and CF

4
 [8], which reveals that the electronic structures and conductive 

properties of SWCNT are basically unchanged, so SWCNT is not sensitive to HF, H
2
S, and 

CF
4
. However, the density of states curves shifts to the right of Fermi level after SOF

2
 and 

SO
2
 are absorbed, which indicates that the electronic structures are changed. There is a short 

overlap of DOSs between SWCNT and SO
2
-SWCNT near Femi level, so the conductive prop-

erties change a little. But the DOSs peak of SOF
2
-SWCNT is lower than that of SWCNT in the 

Figure 5. Optimized the most stable configurations of SO
2
F

2
-SWCNT. (a) Bonds not displayed by MS; (b) bonds 

displayed by MS.
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Fermi energy level, which means that the number of quantum states occupied by electrons 

in the Fermi energy level has reduced when SOF
2
 molecules adsorbed on SWCNT, causing 

SWCNT’s conductivity decreased. Finally, it can be concluded that the sensitivity of SWCNT 

to SO
2
 is similar to SOF

2
 [8].

From the Figure 7, it can be derived that DOSs has changed a lot after absorbing SF
6
, SO

2
F

2
 

in and near the Fermi level. DOSs curve of SO
2
F

2
-SWCNT is higher than SWCNT’s, while 

Figure 6. The DOSs of molecules-SWCNT. Dotted line indicates the Fermi level.

Figure 7. The DOSs of SWCNT, SF
6
-SWCNT and SO

2
F

2
-SWCNT. Dotted line indicates the Fermi level.
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DOSs curve of SF
6
-SWCNT is lower than SWCNT’s. The number of quantum states occupied 

by electrons near the Fermi energy level has increased after SO
2
F

2
 adsorbed by SWCNT, the 

properties of SWCNT becoming more active and conductivity being enhanced, on the con-

trary, the properties of SWCNT become less active after absorbing SF
6
. Based on the analysis 

above, SWCNT is the most sensitive to SO
2
F

2
.

Band structures of SWCNT, SF
6
-SWCNT and SO

2
F

2
-SWCNT are given in Figure 8a–c, 

from which we can see that the energy gap (Eg1 of SWCNT is about 0.022 ha (0.60 eV), 

Figure 8. The band structure diagrams of (a) SWCNT, (b) SF
6
-SWCNT and (c) SO

2
F

2
-SWCNT. Dotted line indicates the 

Fermi level.
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SF
6
-SWCNT (Eg2 is about 0.022 ha (0.60 eV) and SO

2
F

2
-SWCNT (Eg3) is about 0.015 ha 

(0.40 eV), which reveals that the conductivity is unchanged after absorbing SF
6
, but the 

conductivity is increased after absorbing SO
2
F

2
. Thus, it can be predicted that SWCNT 

can serve as gas sensors to detect SO
2
F

2
, one of the decomposing gas products of SF

6
, in 

partial density (PD).

2.2.2. Experimental study: gas-sensing properties of intrinsic SWCNTs

2.2.2.1. Preparation of plasma-modified intrinsic SWCNTs

MWCNTs (tube diameter, 20 to 30 nm; length, 10 to 30 μm; purity, >95%) were grown 

by chemical vapor deposition (CVD) in black powder and purchased from the Chengdu 

Institute of Organic Chemistry Chengdu, China. CNTs are one-dimensional (1D) nano-

materials. Hence, appropriate surface processing parameters should be selected. Under 

strong plasma treatments, high power and long treatment time can destroy the tubu-

lar structure and carbonization of CNTs [13, 14]. In this study, a DBD plasma generator 

was used to modify MWCNTs. Figure 9 shows the schematic for the test device. Low-
temperature plasma experimental power (CTP-2000K) used in this experiment was pro-

duced from Nanjing Rongman Electronics Co., Ltd., China. The input voltage of the 
experimental power is controlled by a voltage regulator. Adjust the voltage to 30 V, which 

can be reading from the Voltmeter (Power input) in the power device. Adjust output fre-

quency knob in the experimental power until frequency is around 10 kHz. Then, we can 

get an optimum DBD discharge. Read the input current of 1.96 A from Ammeter in the 
power device. Using oscilloscope to obtain the output voltage and current waves, and 

displayed in Figure 9. We should point out that there is an attenuator in this experimen-

tal power, and the attenuation coefficient is 1000. So the output peak-to-peak voltage is 
39.3 kV. The discharge power in DBD plasma reactor can be calculated by Lissajou curve. 
However, due to the poor laboratory conditions, we do not have enough oscilloscope 

attenuation probes to protect oscilloscope from breakdown. So other method should be 
explored, and we try to get in touch with the equipments manufacturers. According to the 

experience of the manufacturer’s data, the plasma treatment power is approximately 0.8 
times of the input power at the same experimental conditions. Therefore, we can calculate 

the discharge power which is 47 W.

Figure 9. Discharge waveforms (a) output voltage waveform and (b) output current waveform.
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Figure 10 reveals that the shape of the reactor is similar to a Petri dish. The reactor elec-

trodes formed a parallel-plate structure and were made of 2-mm thick quartz glass. The upper 
and bottom electrodes were 8 mm apart. The bottom quartz glass electrode adhered to the 
reaction kettle, whereas the upper electrode is removable. In the modified experiment, an 
adequate amount of MWCNTs was placed in a reaction kettle and sealed with silicone to 
ensure gas tightness. Air was released from the reactor to induce a vacuum state. CF

4
 flow rate 

was controlled at 150 sccm. The parameters of the experimental power were adjusted, and 

MWCNTs were, respectively, treated for 0.5, 1, 2, 5, 8, 10 and 12 min. The upper quartz glass 
was removed, and modified MWCNTs were obtained after the treatment.

2.2.2.2. Preparation of plasma-modified MWCNTs-based sensors

MWNT sensors were made of printed circuit board, and the substrate material is epoxy resin. 

Cu interdigital electrodes were etched in the substrate. The width and spacing of the elec-

trodes are both 0.2 mm. First, MWCNTs were placed into a beaker containing the appropri-

ate ethanol solution. The beaker was placed in an ultrasonic bath for 1 h. Then, the sensor 

substrate was repeatedly cleaned with deionized water to remove impurities on the electrode 

surface. Next, the mixed solution was dropped on the substrate surface. Finally, the MWNT-

coated substrates were baked in an oven at 80°C for a specific time. This process was repeated 
several times until uniform MWCNTs films were deposited on the surface. Seven pristine and 
treated MWCNTs with different modification times were used to fabricate the gas sensors.

2.2.2.3. Characterization of plasma-modified MWCNTs

FTIR spectra are highly useful tools to analyze the characteristics of CNTs. Figure 11 shows 

the FTIR spectra of pristine MWCNTs and those generated by CF
4
 plasma etching for 1, 5 and 

10 min with a Nicolet 5DXCFT-IR spectrometer.

Diverse functional groups and types of bonding were observed in the FTIR spectra of MWCNTs 
(Figure 11). The absorption peaks at 3445 cm−1 corresponded to the ─OH groups in pristine and 

treated nanotubes. The absorption peaks at 1036 and 1151 cm−1 were ascribed to the respective 

C─F and symmetric ─CF
2
 stretching vibrations because of the CF

4
 plasma treatment.

Figure 10. Schematic of the DBD experiment setup.
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The surface morphologies of the pristine and plasma-treated MWCNTs were analyzed using 

Zeiss Auriga focused ion beam and double-beam emission scanning electron microscopy 

(SEM). The SEM images of pristine MWCNTs (Figure 12a) indicated the presence of several 

small particles, which included amorphous carbons and residual catalysts during prepara-

tion. Figure 12b and c shows the SEM images of CF
4
 plasma treated for 10 min. The impurities 

and dopant on the nanotubes surfaces were removed, and MWCNTs became shorter. Plasma 

treatment retained the nanotubes structures.

2.2.2.4. The analysis of the gas-sensing properties

We used eight kinds of MWCNTs-based gas sensors (pristine MWCNTs and MWCNTs 

modified by plasma for different time) to detect H
2
S and SO

2
 whose concentration is both 

Figure 11. Infrared spectra of pristine and modified MWCNTs. (a) Pristine; (b) 1 min; (c) 5 min; (d) 10 min.

Application of CNTs Gas Sensor in Online Monitoring of SF6 Insulated Equipment
http://dx.doi.org/10.5772/intechopen.68325

27



Figure 12. SEM images (a) pristine and (b and c) modified MWCNTs for 10 min.

50 ppm. The gas response curves are shown in Figure 13. It can be seen from Figure 13a 

and b that the sensitivity of pristine MWCNTs and those modified by CF
4
 plasma for 0.5, 1 

and 2 min to H
2
S are 3, 3.2, 3.4 and 3.5%, respectively, and to SO

2 
are 2.3, 2.4, 2.6 and 2.7%. 

Obviously, after modification, the gas sensitivities of MWCNTs are not markedly enhanced. 
Under small discharge power, these phenomena may have been caused by the insufficient 
treatment time and poorly surface modification. Therefore, if the discharge power remains 
unchanged, in order to achieve a better surface modification, plasma treatment time should 
be extended.

In consequence, Figure 13c and d shows the response curves of pristine MWCNTs and these 

treated for 5, 8, 10 and 12 min to H
2
S and SO

2
. We can see that when the treatment time is 

less than 10 min, the sensitivities of MWCNTs sensors increased with increasing of treatment 

time. Meanwhile, the MWCNTs modified by CF
4
 plasma for 10 min exhibited the best sen-

sitivity both to H
2
S and SO

2
. However, the sensitivities decreased when the treatment time 

is over 10 min. Possible reasons may be that after longer treatment time, the structure of the 

nanotubes was destroyed, and nanotubes were partly carbonized [13] under the bombard-

ment of energetic particles in prolonged plasma treatments, which result in a reduce of active 

adsorption sites on MWCNTs surface for gas molecules. Hence, the gas-sensing properties of 

the MWCNTs were affected.

Figure 13 reveals that the response time of CF
4
 plasma-modified MWCNTs sensors to H

2
S and 

SO
2
 was shorter. For treatment times ranging from 0 to 10 min, the response time decreased 

with increasing treatment time. Besides, the shortest response times to H
2
S and SO

2
 are 70 and 

150 s, respectively.

Responses of MWCNTs-based sensors to H
2
S and SO

2 
at different concentrations are studied 

in this work. MWNT sensors modified by CF
4
 plasma for 10 min (Section 3.3) were selected to 
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detect H
2
S and SO

2
 at 10, 25, 50 and 100 ppm because these sensors yielded the best sensitivities. 

Figure 14a and b indicates that the sensitivity of the sensors increases with the gas concentration.

Figure 15 shows that the gas concentration and sensor sensitivity were linearly correlated for 

H
2
S and SO

2
 concentrations of 10–100 ppm with correlation coefficients (R2) of 0.97183 and 

0.9739, respectively.

Figure 13. Responses of MWCNTs-based gas sensors (a, c) 50 ppm H
2
S and (b, d) 50 ppm SO

2
.

Figure 14. Response curves of MWCNTs-based sensors to different concentrations of (a) H
2
S and (b) SO

2
.
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2.2.2.5. Desorption and repeatability of MWCNTs-based sensors

To analyze the desorption properties of modified MWCNTs gas sensors, these modified by 
CF

4
 plasma for 10 min were chosen to test the recovery curve, as shown in Figure 16. The 

experiment steps are as follows. Firstly, the chamber was pumped into vacuum and standing 

for a period of time. After resistance of the sensor remains unchanged, in the second minute 

50 ppm, H
2
S was introduced into the chamber, and the resistance showed a quick decrease. 

Few minutes later, the resistance of sensor remains stable. Currently, H
2
S gas molecules reach 

adsorption equilibrium at the surface of MWCNTs. In the fifth minute, pure N
2
 was injected 

into the gas chamber, and the sensor resistance can generally recover near the initial value. 

There still have a small amount of residual gas accumulates on the surface of the sensor which 

affect the sensitivity. In order to obtain a completely desorption, placed the sensor under UV 
irradiation. By irradiating with UV light, the residual gas absorbs energy, which enables it to 

Figure 15. Linear relationship sensitivity of MWNT-based sensors for different concentrations of SO
2
 and H

2
S.

Figure 16. Recovery curve of plasma-modified MWCNTs to H
2
S.
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“escape” from the “trapped” state where almost no residual gas remains on the surface of the 
tested sensor. After N

2
 and UV treatments, the sensor resistance was gradually restored to 

its initial value. The recovery time was about 25 min, which was less than that of the pristine 

MWCNTs sensor to H
2
S (40 min; data not shown).

The MWCNTs sensor modified by plasma for 10 min that was most sensitive to SO
2
 was 

selected to illustrate the repeatability process (Figure 17). The resistance-change trends 

remained similar, and the maximum resistance-change rate remained the same and stable. 

Hence, the gas sensor could be repeatedly used with good response and stability. However, 

the recovery time was approximately 35 min and was not greatly enhanced in contrast to that 

of pristine MWNT-based sensors.

2.2.2.6. Gas-sensing mechanism

The CF
4
 plasma-modified MWCNTs sensors exhibited high sensitivities to H

2
S and SO

2
 

because of the following reasons: (1) The accelerated electrons, ions and free radicals cleaned 

the MWNT surface by etching some amorphous carbon and catalyst particles during plasma 

treatment; (2) the bombardment of energetic particles destroyed some of the nanotubes and 

increased the defects on their surfaces, which generated effective adsorption sites for gas mol-
ecules; and (3) CF

4
, a fluorinated gas [14], was ionized to generate fluoride ions in DBD and 

react with carbon atoms on the MWCNTs surface to yield C─F bonds [15] without destroy-

ing the tubular structure. Given the strong polarity and reactivity of F atoms, fluorinated 
MWCNTs exhibited strong adsorption capacities and high gas-sensing properties.

The response and recovery time of plasma-modified MWNT sensors to H
2
S were remark-

ably reduced, but only the response time to SO
2
 decreased, and recovery time was not 

reduced (Section 3.5). Theoretically, H
2
S molecules were physically adsorbed on the surface 

of MWCNTs through van der Waals interaction. However, some hydroxyls existed on the sur-

faces of the nanotubes during growth by CVD. F atoms were introduced onto the MWCNTs 

Figure 17. Reversibility curve of modified MWCNTs to 50 ppm SO
2
.
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surface after fluorination. C─F bonds possessed high polarity because of the strong electro 

negativity of the F atom, during which ─F was essential. Stable hydrogen bonds (C─F…

H─S) were formed between H atoms in H
2
S molecules and F atoms when H

2
S molecules were 

adsorbed on the surface of modified MWCNTs. Subsequently, the van der Waals forces were 
replaced, and the adsorption of H

2
S molecules was accelerated to reduce the response time 

(Figure 18a). In addition, O atoms in the hydroxyl groups in MWCNTs surfaces exhibited 

small atomic radii and high electro negativities. Hydrogen bonds (C─O…H─S) were formed 

between O atoms in hydroxyl and H atoms in H
2
S molecules (Figure 18a). The recovery time 

of plasma-based MWCNTs sensors to H
2
S decreased possibly because of the effect of UV irra-

diation that the H─F bond is easier to disintegrate. For SO
2
, only O atoms in the SO

2
 molecules 

and H atoms of hydroxyl were combined to form hydrogen bonds [O─H…O─S; Figure 18b]. 

F atoms on the surfaces of modified MWNT increased the number of effective adsorption sites 
for gas molecules, accelerated the adsorption and reduced the response time. However, the 

recovery time remained invariant.

2.2.3. Summary: gas adsorption on intrinsic SWCNT

In the theoretical study aspect, the adsorption between SWCNT and SO
2
F2 was chemisorption 

because new covalent bonds were formed. The number of charge transfer between SWCNT 

and SO
2
F

2
 was 80 times higher than that of between SWCNT and SF

6
, and also higher than that 

of other gas decomposition products, which show that the adsorption is the strongest. The 

calculated DOSs indicated that the SO
2
F

2
 gas molecules adsorbed on SWCNT had changed 

the electronic structures of SWCNT, chemical properties of SWCNT becoming more active. In 

fact, the conductivity of SWCNT was also enhanced because the energy gap of SWCNT had 

decreased from 0.022 ha (0.60 eV) to 0.015 ha (0.40 eV) when the SO
2
F

2
 gas molecules were 

adsorbed. However, HF, H
2
S and CF

4
 molecules adsorbed on SWCNT had little effect on the 

electronic structures of SWCNT, so SWCNT’s properties kept unchanged. Due to the cross-

sensitivity of SWCNT to SF
6
, SO

2
 and SOF

2
 molecules, SWCNT cannot detect the SO

2
 and 

SOF
2
, respectively. Thus, based on the analysis above, SWCNT can be prepared a gas sensor 

to detect SO
2
F

2
 gas among the gas decomposition products of SF

6
 in PD.

In the experimental study aspect, MWCNTs grown by the CVD method are initially modi-

fied by atmospheric pressure DBD air plasma and are used as gas-sensitive materials. Then, 

Figure 18. Schematic of the absorption of (a) H
2
S and (b) SO

2
 in modified MWCNTs.
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the gas sensitivity of the unmodified and modified MWCNTs to 50 ppm H
2
S and 50 ppm SO

2
 

is tested, respectively. The results show that the sensitivity of modified MWCNTs to H
2
S is 

enhanced 2.75 times, and the response time to H
2
S greatly reduced [16]. However, the sen-

sitivity of modified MWCNTs to SO
2
 exhibits the opposite effect. The MWCNTs are almost 

no longer sensitive to SO
2
. Thus, the MWCNTs modified by atmospheric pressure DBD air 

plasma presented good selectivity to H
2
S and have great potential value in the detection of 

this gas [16].

2.3. Gas-sensing properties of Pd-SWCNTs to SOF2, SO2F2, SO2, H2S, HF, CF4 and SF6

2.3.1. Structural parameters of intrinsic Pd-SWCNTs

The geometric structure of the SWCNTs is dramatically distorted after substitution as shown 

in Figure 19. The impurity of the Pd atom induces the deformation of the six-membered ring 

near the doping site to relieve stress, which results in the carbon site substituted by the Pd 

heteroatom that evidently protrudes out of the tube wall because the radii of the Pd atom are 

larger than other carbon atoms [17, 18].

2.3.2. The analysis of gas adsorption structure

The SO
2
, H

2
S, SOF

2
, SO

2
F

2
 and CF

4
 gas molecules were made to approach the Pd atom 

marked on the SWCNTs at any possible posture to find the most stable adsorption system 
(see Figure 20). The adsorption energy E

ads
, Q

T
 and interactive distance d are computed to ana-

lyze gas response property. All the parameters and configurations are shown in Table 2 and 

Figure 20, respectively. From Table 2, we found that the adsorption energy of all the molecules 

is negative, so the adsorption reaction is an exothermic process that occurs spontaneously.

Figure 19. Geometric structures of Pd-doped SWCNTs after optimization. The structural parameters are shown as Å.
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Pd acts as the adsorption site in the process of SO
2
 adsorption. When one SO

2
 molecule 

approaches the Pd atom and the adsorption structure is optimized to find the steady state 
(Figure 20a1), the two oxygen atoms labeled O1 and O2 are seen close to the Pd atom, whereas 

the S atom is seen away from the Pd atom, indicating that the Pd and O atoms form a coordinate

bond, and the interaction between the Pd and S atoms is weak. The interatomic distance S─O1 

changes from 1.480 to 1.565 Å, and the Pd-O1 distance is 2.281 Å in the reaction process, indi-
cating that SO

2
 adsorbed on the surface results in the elongation of the S─O bond. The result is 

agreement with our previous study [19], where the interaction distance between the Pd atom 

and the SO
2
 in our present Pd-doped (8, 0) SWCNTs is generally slightly smaller than that of 

Pd-doped (5, 5) SWCNTs [20]. The long molecule surface distance 2.281 Å and low banding 
energy −0.798 eV suggest some kind of physisorption. Upon the adsorption of the second SO

2
 

molecule on Pd-SWCNTs (Figure 20a2), the two molecules become simultaneously close to the 

Pd atom through the oxygen atom O1ʹ and O2ʹ. The adsorption distance of Pd-O1ʹ and Pd-O2ʹ is 

2.231 and 2.236 Å, respectively, which shows no distinct difference to that of single SO
2
 adsorp-

tion, whereas the interatomic distance of SO
2
 becomes slightly elongated compared with the 

individual molecule causing increased bonding strength between the Pd atom, O1ʹ, and O2ʹ.

The optimized structures of H
2
S adsorbed on Pd-SWCNTs are shown in Figure 20b1 andb2. 

The interaction between H atoms of H
2
S and Pd is too weak, and thus, adsorption of H

2
S 

through S atom is an appropriate adsorption conformation course for the multiple valence 

states of the S atom. Upon single molecule adsorption, a quasi-tetrahedron geometry around 

the Pd center with H
2
S forms in one of the apical positions upon adsorption of H

2
S. The Pd-S 

long distance 2.570 Å and the low banding energy −0.802 eV are received in the process of 
adsorption, which suggests that H

2
S undergoes moderate physisorption. After the second H

2
S 

approached the Pd-SWCNTs, both H
2
S molecules were situated around the Pd atom in a simi-

lar geometrical morphology. The results showed that Pd-SWCNTs had similar adsorption 

ability with both of the H
2
S molecules. The total adsorption energy of the two H

2
S molecules 

has reached −1.361 eV with Pd-S1ʹ and Pd-S2ʹ distance of 2.689 and 2.588 Å, respectively. The 
adsorption energy has been much enhanced than our previous studied gold doped (8, 0) 
SWCNT [21]. The H

2
S molecules act as electron donor, and the charge transfer QT is 0.481 e. 

The large adsorption energy and considerable charge transfer made the Pd-SWCNTs a pos-

sible sensor material to detect H
2
S. Star et al. reported that Pd-Decorated CNTs show good 

response to 50 ppm H
2
S using the experimental method [22].

The adsorption of SOF
2
 on the surface of Pd-doped (8, 0) SWCNTs is more stable from the 

F atom toward the Pd site, as shown in Figure 20c1 and c2. The calculated binding energy 

for the SOF
2
 interacted across the Pd atom of (8, 0) SWCNTs is −0.846 eV, and the adsorp-

tion distance between the F1 atom of molecule and the Pd atom of tubes is 2.003 Å, whereas 
the distance between F1-S bond increased to 2.778 Å. The large binding energy and struc-

ture change shown by the SOF
2
 molecule presents a strong chemical interaction with the 

Pd-doped SWCNTs [23]. The Mulliken population analysis showed that the SOF
2
 adsorption 

on Pd-doped (8, 0) SWCNTs leads to 0.572 electron transfer from the tubes to the SOF
2
 mol-

ecule. Therefore, SOF
2
 functions as an electron acceptor, whereas the nanotube functions as an 

electron donor. From Figure 20c2, we found that the adsorption distance between the second 

SOF
2
 and the Pd-SWCNTs was 4.649 Å. Therefore, the adsorption is obviously weaker than 
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the first adsorbed Pd-SWCNTs. The increased adsorption energy induced by the second SOF
2
 

is only −0.178 eV, which has also confirmed the weak interaction between the second SOF
2
 

molecule and Pd-SWCNTs. To some extent, the result can be attributed to the strong repulsive 
force between the SOF

2
 molecules. Meanwhile, the charge transfer Q

T
 is only −0.604 e, which 

is only 0.032 higher than that of single SOF
2
 adsorption.

Figure 20. The most stable optimized geometries of gas molecules interacting with Pd-doped SWCNTs. The structural 

parameters are shown in Å.

System Structure Eads (eV) QT (e) d1 (Å) d2 (Å)

SO
2

(a1) −0.798 −0.304 2.281 /

2SO
2

(a2) −1.120 −0.368 2.231 2.236

H
2
S (b1) −0.802 0.278 2.570 /

2H
2
S (b2) −1.361 0.481 2.689 2.588

SOF
2

(c1) −0.846 −0.572 2.003 /

2SOF
2

(c2) −1.024 −0.604 2.018 4.649

SO
2
F

2
(d1) −1.627 −0.991 2.004 /

2SO
2
F

2
(d2) −1.735 −0.973 2.025 4.183

CF
4

(e1) −0.046 −0.001 3.507 /

2CF
4

(e2) −0.097 0.009 3.243 3.287

Table 2. Calculated adsorption energy, charge transfer and the binding distance from Pd atom to the adsorbates.
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In the adsorption of SO
2
F

2
 (Figure 20d1 and d2), although the adsorption energy value of 

single SO
2
F

2
 molecule is in the same order of magnitude as SO

2
 and SOF

2
, the adsorption 

energy of SO
2
F

2
 (−1.627 eV) is still almost twice over SO

2
 (−0.798 eV), SOF

2
 (−0.846 eV), and 

even reached 20 times more that the value of CF
4
 (−0.086 eV). The interatomic distance S-F1 

increased from 1.611 to 3.124 Å with an S-Pd distance of 2.004 Å. Therefore, we concluded 
that Pd doping makes the SWCNTs preferable for SO

2
F

2
 chemisorption. The adsorption of 

two SO
2
F

2
 is similar to SOF

2
, which is the first SO

2
F

2
 near the Pd atom with a binding distance 

of −2.025 Å. The second molecule from the Pd atom with a distance of 4.183 Å creates the 
repulsive force between the SO

2
F

2
 molecules. The total adsorption energy is Pd atom 1.735 eV, 

and the charge transfer is −0.973 electron, which are almost the same with the values of single 
SO

2
F

2
 adsorption.

The adsorption of CF
4
 (Figure 20e1 and e2) is only −0.046 eV because of weak van der Waals 

interaction between two species, and nearly no charge transfer was present [24]. The energy 

is the least one among all gas molecules adsorption. The interacting distance from Pd atom 

to the atom F1 is 3.507 Å. Upon the two molecules’ adsorption, the Pd-F1ʹ and Pd-F2ʹ are 
3.243 and 3.287 Å. The conductivity of Pd-SWCNTs before and after adsorption may change 
little because of the large interaction distance.

2.3.3. The analysis of the density of states and Frontier molecular orbital

Large charge transfer affects the density of states (DOS) near the Fermi level and brings about 
significant differences in frontier molecular orbitals [20]. To further elucidate the electronic 

properties of the Pd-SWCNTs and molecule-Pd-SWCNTs, total electronic density of states 

(TDOS) and local DOS of a group (Pd or molecule) (LDOS) are depicted to investigate the 
influence of gas adsorption [25] in Figure 21. To further study the electronic structure of the 

Pd-SWCNTs and molecule-Pd-SWCNTs near the Fermi level, the highest occupied molecu-

lar orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the molecule 
adsorption on the Pd-doped SWCNTs are listed in Table 3. The diagrams of HOMO and 

LUMO are depicted in Figure 22.

From Figure 21, we found that the LDOS of Pd atom has little contribution to each TDOS and 
that the changes of TDOS are mainly from the adsorbed molecules. As plotted in Figure 21a1, 

the DOS of Pd-doped SWCNTs is continuous at Fermi level, which suggests that Pd-doped 

SWCNTs is a conductor. Upon adsorption of SO
2
 molecule in Figure 21b1 and b2, the TDOS 

near Fermi level evidently increased, and the DOS at Fermi level was enhanced when the 

adsorbed SO
2
 molecule increased. In Figure 22b1, the HOMO of the SO

2
-Pd-SWCNTs was 

mainly constituted by the Pd and SO
2
, and the p orbital of S and O atoms interacted with 

the d orbitals of the Pt atom. The LUMO is localized on the SWCNTs, as seen in Figure 22b2. 

After the other SO
2
 molecule approached the Pd atom in Figure 22b3 and b4, the LUMO sig-

nificantly transferred to the SO
2
 molecules. The HOMO-LUMO energy gap of the SO

2
-Pd-

SWCNTs is only 0.066 eV, which is 0.279 eV smaller than that of bare Pd-SWCNTs. Although 

the HOMO-LUMO energy gap of the 2SO
2
-Pd-SWCNTs is slightly bigger than single molecule 

adsorption, it was still 0.229 eV smaller than individual Pd-SWCNTs. The decrease of HOMO-

LUMO energy gap associated with the significantly enhanced in the TDOS near the Fermi level 
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Figure 21. Total electronic density of states and local density of states for the Pd-SWCNTs and molecule-Pd-SWCNTs. 

Dash and solid lines indicate the Fermi level and HOMO-LUMO, respectively.
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suggests that the adsorption of SO
2
 largely increases conductance. According to the results 

reported by Camilli G et al. [26], using armchair Pd SWCNTs resulted in the reduction in the 

HOMO-LUMO energy gap of single and dual H
2
S molecule adsorption by 0.17 and 0.16 eV, 

respectively. Meanwhile, the TDOS change introduced by the second SO
2
 molecule showed no 

significant difference. Pd-doped zigzag SWCNTs show preferable sensitivity to SO
2
.

According to the H
2
S molecules adsorbed on Pd-SWCNTs, the TDOS at Fermi level showed 

no change whether single or dual H
2
S adsorption in Figure 21c1 and c2 occurred. In 

Figure 22c1–c4, almost the entire HOMO and LUMO were on Pd-SWCNTs. The HOMO-
LUMO energy gap of H

2
S-Pd-SWCNTs and 2H

2
S-Pd-SWCNTs is 0.322 and 0.267 eV, respec-

tively, which is slightly decreased compared with the bare Pd-SWCNTs. The results are 

consistent with the adsorption configurations. Given that the H atoms have formed a covalent 
bond with the S atom, the H

2
S molecules can only interact with Pd-SWCNTs by S atoms. 

Although S atom forms the interaction with Pd atom, the primary S-H bond makes it hard to 

build strong interaction with the Pd-SWCNTs. The same result is seen in Pt-doped SWCNTs 

[27]. The small change at Fermi level in the H
2
S adsorption process indicates little change 

in conductivity, which limits the performance of Pd-SWCNTs to detect the H
2
S gas in SF

6
 

decomposition components.

Upon SOF
2
 adsorption, as seen in Figure 22d1 and d2, the p orbital of S atom and d orbital of 

Pt atom form a δ bonding orbital in the HOMO. In the LUMO, the p orbital of S atom in SOF
2
 

overlaps with the d orbital of Pt atom. The HOMO and LUMO energies of SOF
2
-Pd-SWCNTs 

are slightly reduced with respect to those of bare Pd-SWCNTs. The HOMO-LUMO energy 
gap diminished to 0.179 eV. The decrease of the HOMO-LUMO energy gap would result 
in increased electron transfer to gas molecule. As we have already mentioned, the second 

SOF
2
 molecule is far from the Pd atom. Therefore, the LDOS of the second SOF

2
 brings little 

System EHOMO (eV) ELUMO (eV) EL-H (eV)

Pd-SWCNTs −4.822 −4.477 0.345

SO
2
-Pd-SWCNTs −4.972 −4.906 0.066

2SO
2
-Pd-SWCNTs −4.909 −4.793 0.116

H
2
S-Pd-SWCNTs −4.619 −4.297 0.322

2H
2
S-Pd-SWCNTs −4.480 −4.213 0.267

SOF
2
-Pd-SWCNTs −5.431 −5.252 0.179

2SOF
2
-Pd-SWCNTs −5.480 −5.252 0.228

SO2F
2
-Pd-SWCNTs −5.826 −5.411 0.415

2SO2F
2
-Pd-SWCNTs −5.772 −5.358 0.414

CF
4
-Pd-SWCNTs −4.803 −4.459 0.344

2CF
4
-Pd-SWCNTs −4.769 −4.427 0.342

Table 3. The HOMO, LUMO energy and HOMO-LUMO energy gap.
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Figure 22. The HOMO and LUMO orbitals on Pd-SWCNTs and molecule-Pd-SWCNTs.
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contribution to TDOS of adsorption system (Figure 21d1 and d2). The HOMO and LUMO of 
2SOF

2
-Pd-SWCNTs in Figure 22d3 and d4 have also confirmed the analysis results, neither 

the HOMO nor the LUMO is located on the second SOF
2
 molecule. Therefore, conductivity 

does not increase with the rise of SOF
2
 molecule number adsorbed on Pd-SWCNTs.

From the orbital of single SO
2
F

2
 adsorbed on Pd-SWCNTs in Figure 22e1, we can see a weak 

bond between the molecule and the Pd-SWCNTs. The HOMO-LUMO energy gap is 0.415 eV, 
which increased with the energy gap in other molecule adsorption. It greatly reduces the elec-

tron transition probability between HOMO and LUMO. Similar to the second SOF
2
 adsorp-

tion, the adsorption system keeps its original characteristics after the second SO
2
F

2
 adsorbed 

on Pd-SWCNTs in Figure 22e2. In addition, the TDOS of SO
2
F

2
 adsorbed Pd-SWCNTs at the 

Fermi level is weaker than individual Pd-SWCNTs. Considering the molecule frontier orbital 

and TDOS, we assumed that SO
2
F

2
 adsorption will result in the decrease of conductance.

Upon the adsorption of CF
4
, the LDOS introduced by CF

4
 mainly under the Fermi level was 

not significant (Figure 21f1 and f2). Furthermore, the HOMO and LOMO were almost identi-
cal to that of Pd-SWCNTs, as shown in Figure 22f1–f4. Considering the frontier orbital and 

TDOS, we predicted that the Pd-SWCNTs are insensitive to CF
4
 detection.

2.3.4. Summary: gas adsorption on Pd-SWCNTs

Adsorption of SF
6
 decomposed gas molecules (SO

2
, H

2
S, SOF

2
, SO

2
F

2
 and CF

4
) on Pd-doped 

(8, 0) SWCNTs was explored through density functional theory-based method. The geometri-
cal and electronic structures, density of state and frontier molecular orbital were analyzed to 

predict the adsorption properties and mechanism of complexes.

In the adsorption of SO
2
, strong binding energy between SO

2
 and Pd-SWCNTs indicates the 

nature of chemical adsorption. The adsorption energy increases with the rise of SO
2
 molecule 

number adsorbed on Pd-SWCNTs. The large contribution of SO
2
 and the total DOS near the 

Fermi level is responsible for the conductance increase of SO
2
-Pd-SWCNTs. The high adsorp-

tion sensitivity of Pd-SWCNTs makes it suitable for SO
2
 detection.

For the adsorption SOF
2
, F-end adsorption conformation is energetically favorable. The large 

formation energy and structure change show that the SOF
2
 molecule is chemically bonded 

to Pd-doped SWCNTs. The large enhancement toward the Fermi level induced by the LDOS 
of SOF

2
 implies the increase of conductance for the SO

2
-Pd-SWCNTs. However, the strong 

repulsive force between the SOF
2
 molecules limits it is further adsorption, and therefore, the 

increased conductivity introduced by SOF
2
 is smaller than SO

2
.

Upon the adsorption of one SO
2
F

2
 to the Pd-SWCNTs, the HOMO-LUMO energy gap of 

the SO
2
F

2
-Pd-SWCNTs increased to 0.415 eV, which is larger than that of the Pd-SWCNTs, 

whereas the TDOS at Fermi level slightly decreased. The command action of the HOMO-

LUMO energy gap and TDOS finally led to the conductivity decrease of the SO
2
F

2
 adsorbed 

Pd-SWCNTs.

When CF
4
 is adsorbed on Pd-SWCNTs, the HOMO-LUMO energy and TDOS remained 

unchanged based on our computation. The Pd-CNT showed low sensitivity for CF
4
 gas.
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Results of the theoretical calculation showed that Pd-SWCNTs had different sensitivity to 
the SF

6
 decomposition gases. After SO

2
, H

2
S and SOF

2
 were adsorbed on Pd-SWCNTs, the 

conductivity increases in the following order: SO
2
 > SOF

2
 > H

2
S. The conductivity of SO

2
F

2
 

decreased when it was adsorbed by Pd-SWCNTs. Conversely, Pd-SWCNTs are not sensitive 

to the other gas molecule CF
4
. Through changes in conductivity, the Pd-SWCNTs achieved 

selective detection of five SF
6
 decomposition gases: SO

2
, H

2
S, SOF

2
, SO

2
F

2
 and CF

4
.

2.4. Gas-sensing properties of Ni-SWCNTs to SOF2, SO2F2, SO2, H2S, HF, CF4 and SF6

2.4.1. Structural parameters of intrinsic Ni-SWCNTs

After an individual Ni atom was decorated onto the SWCNTs and relaxed to stable struc-

ture, the Ni atom distinctly protruded out of the SWCNTs sidewall due to the large Ni atom 

radius compared with that of SWCNTs as shown in Figure 23 [28]. The bond length C3-Ni 

was stretched to 1.84 Å, and the bond length C4-Ni length along the axial of Ni-SWCNTs 
increased to 1.76 Å.

2.4.2. The analysis of gas adsorption structure

After the optimization of individual Ni-SWCNT and gas molecules, the gas molecules were 

relaxed to various sites on the surface of Ni-SWCNTs to get the lowest energy structure [11]. 

Moreover, in order to fully analyze the influence brought by decomposed products, adsorption 
of both single and double gas molecules was studied in this work [11]. As seen in Figure 24, 

it was found that all of the gas molecules intended to be adsorbed at the Ni-doped site, which 

acted as an active site for adsorption [11]. To analyze the adsorption properties, the banding 

distance D, binding energy E
ads

 and charge transfer Q
t
 were obtained as shown in Table 4 

[11]. D presented the nearest distance between the adsorbed gas molecules and the surface 

of Ni-SWCNTs, where D
1
 and D

2
, respectively, represented the distances for two different 

Figure 23. Geometric structures of Ni-doped SWCNTs after optimization. The structural parameters are shown as Å.
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molecules. Similarly, the charge transferred from gas molecules to Ni-SWCNTs was labeled as 

Q
t
, Q

t1
 and Q

t2
 referred to the charge transfer for these two different molecules. All the nega-

tive value of E
ads

 implied that the adsorption was exothermic and occurred spontaneously.

Figure 24. Most stable geometries of gas molecules interacting with Ni-doped SWCNTs (distances in Å).

System D1 (Å) D2 (Å) Qt1 (e) Qt2 (e) Eads (eV)

SWCNTs/SO
2

2.00 \ −0.35 \ −1.13

SWCNTs/SOF
2

2.06 \ −0.06 \ −0.49

SWCNTs/SO
2
F

2
2.07 \ −0.94 \ −1.93

SWCNTs/2SO
2

1.97 2.07 −0.24 −0.08 −1.50

SWCNTs/2SOF
2

3.89 6.60 −0.51 −0.50 −1.79

SWCNTs/2SO
2
F

2
2.29 4.02 0.06 −0.83 −2.16

SWCNTs/

SO
2
&SOF

2

1.94 2.04 −0.31 −0.09 −0.71

SWCNTs/

SO
2
&SO

2
F

2

2.01 3.60 −0.35 0 −1.14

SWCNTs/

SOF
2
&SO

2
F

2

3.61 3.79 0 −0.71 −0.45

Table 4. Adsorption energy E
ads

, charge transfer Q
t
 from adsorbed gas molecules to Ni-SWCNTs.
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As shown in Table 4 and Figure 24a–c, single SO
2
, SOF

2
 and SO

2
F

2
 molecules were adsorbed 

onto SWCNTs. The oxygen atoms of both SO
2
 and SOF

2
 were close to the Ni atom with the 

nearest bond length of 2.00 and 2.06 Å because of the strong electronegativity of oxygen atom 
[11]. And the sulfur atom was further away from the Ni-SWCNTs sidewall because it built a 

stable covalent bond with oxygen atoms and fluorine atoms, making it hard to interact with 
the Ni atom [11]. The structures of SO

2
 and SOF

2
 were almost kept unchanged in the adsorp-

tion process. The low E
ads

 values of SO
2
 and SOF

2
 indicate that the adsorption of SO

2
 and SOF

2
 

is physisorption, which can also be verified by the long reaction length. However, when one 
SO

2
F

2
 molecule was close to Ni-SWCNTs, the S─F bond was broken, resulting in building a 

new Ni─F bond [11]. The binding distance from the newly formed SO
2
 to the surface of the 

Ni-SWCNTs was 2.07 Å [11]. The E
ads

 reached −1.93 eV, which nearly tripled the E
ads

 value of 

SOF
2
, and doubled that of SO

2
. Based on the obvious structure deformation and large E

ads
, we 

conclude that the interaction between SO
2
F

2
 and Ni-SWCNTs is chemisorption.

As to the adsorption of two identical gas molecules, as seen in Table 4 and Figure 24d–f, the 

double SO
2
 adsorption was similar to that of single SO

2
 molecule with a nearest bond length 

of 1.97 Å [11]. Interestingly, the structures of both SOF
2
 molecules were deformed with two 

new SOF molecules produced in the adsorption process, indicating that the Ni-doped metal 

showed great adsorption ability [11]. According to the SO
2
F

2
 adsorption, one of the SO

2
F

2
 

molecules deformed to one SO
2
 and two fluorine atoms that were adsorbed on Ni atom [11]. 

And the other SO
2
F

2
 molecule was close to the Ni atom with a binding distance of 2.29 Å [11]. 

The E
ads

 of double SO
2
, SOF

2
 and SO

2
F

2
 was −1.50, −1.79 and −2.16 eV, respectively, which were 

increased compared with that of corresponding single molecule adsorption. In general, two 

SO
2
 molecules are physically adsorbed onto Ni-SWCNTs, and the interactions for SOF

2
 and 

SO
2
F

2
 are chemisorption deducing form the obviously structure changes.

As for the adsorption of two foreign gas molecules on Ni-SWCNTs shown in Table 4 and 

Figure 24g–i, there was no significant difference in the adsorption length for SO
2
 compared 

with that of single and double SO
2
 adsorption in Figure 24a and d. It should be noticed that 

the molecule structures of SOF
2
 (Figure 24g) and SO

2
F

2
 (Figure 24h) kept unbroken, while in 

the SOF
2
 and SO

2
F

2
 case in Figure 24i, one fluorine broke up from SO

2
F

2
 and was adsorbed 

on the Ni atom, and the SOF
2
 molecule was away from the sidewall of Ni-SWCNTs with an 

adsorption length of 3.61 Å.

2.4.3. The analysis of the density of states and frontier molecular orbital

2.4.3.1. Adsorption of single decomposed gas molecule on the surface of Ni-SWCNT

According to the detection mechanism of chemiresistor sensor, the conductivity of gas-

sensing materials changes in response to the different gas molecules [11]. Using the density 

of states (DOS) and frontier molecular orbital theory, the factors influencing the change of 
conductivity can be found directly [11]. We first analyze the single gas molecule adsorption 
cases, including SO

2
, SOF

2
 and SO

2
F

2
 (Figure 24a–c). Along with the charge transfer between 

the gas molecules and Ni-SWCNTs, the total density of states (TDOS), the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were dis-

tinctly changed [11]. If the energy gap between HOMO and LUMO narrows down, the charge 
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carrier transfer becomes easier from HOMO to LUMO. Then, the conductivity of adsorption 
system increases correspondingly [11].

The continuous TDOS of Ni-SWCNTs shown in Figure 25a is consistent with the verified results 
that intrinsic Ni-SWCNTs possess good conductivity after Ni atom doping. Bak et al. reported 

that mesoporous nickel/CNTse hybrid material showed high conductivity [29]. Comparing 

TDOS before (Figure 25a) and after (Figure 25b) the SO
2
 molecule adsorption on the surface of 

Ni-SWCNTs, there is no significant change of TDOS at the energy levels that are far below or far 
above the Fermi level, and the main change is located at the energy level that is slightly above 

the Fermi level, which is attributed to the SO
2
 adsorption that increases the number of effective 

charge. For the case with SOF
2
 molecule adsorption, the TDOS almost does not change below 

the Fermi level as shown in Figure 25c. Although the TDOS far above the Fermi level slightly 

increases, it has no contribution to the change of conductivity, which agrees with the low 

interaction energy discussed above. For the adsorption of single SO
2
F

2
 (Figure 25d), the TDOS 

increases below the Fermi level and decreases above the Fermi level due to the chemisorption.

Figure 25. Comparison of the TDOS for (a) intrinsic Ni-SWCNTs, (b) SO
2
 adsorbed Ni-SWCNTs, (c) SOF

2
 adsorbed 

Ni-SWCNTs and (d) SOF
2
 adsorbed Ni-SWCNTs. The left solid line is HOMO while the right solid line is LUMO, and 

the dash line is Fermi level.
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The HOMO, LUMO, E
g
 for intrinsic Ni-SWCNTs and the materials with single gas molecule 

adsorption are reported in Table 5 [11]. It is found that E
g
 was reduced at different extent for 

all gas adsorption process, making the charge easier to transfer for the adsorption system. 

Before each gas molecule approached to the surface of Ni-SWCNTs, the HOMO and LUMO 
were mainly distributed on the Ni-doped side and its opposite side (Figure 26a1 and a2) with 

0.38 eV E
g
. For the physisorption of SO

2
, the HOMO and LUMO were slightly transferred 

to the SO
2
 adsorption site as shown in Figure 26b1 and b2 and became more uniformly dis-

tributed on the surface of Ni-SWCNTs. In addition, the E
g
 was narrowed down to 0.26 eV. 

Agreeing with the increase of TDOS, we conclude that the conductivity would increase with 

the single SO
2
 adsorption. The increase result is agree with the conclusion reported by Yu 

et al. that SO
2
 molecules adsorption on the surface of SWCNTs increases the conductivity 

[30]. When single SOF
2
 molecule adsorbed on Ni-SWCNTs, the E

g
 was reduced to 0.25 eV, 

which was comparable to the SO
2
 adsorption case. Comparing HOMO and LUMO of SOF

2
 

adsorption system (presented in Figure 26c1 and c2) with that of intrinsic NI-SWCNTs, the 

HOMO and LUMO were nearly not changed except the slight change of LUMO due to SOF
2
 

molecule. Considering the weak adsorption energy, unchanged TDOS and frontier molecu-

lar orbital comprehensively, single SOF
2
 adsorption has no influence on the conductivity of 

Ni-SWCNTs system. For SO
2
F

2
 adsorption, the E

g
 value (0.37 eV) was almost the same as that 

System LUMO HOMO Eg (eV)

SWCNTs −4.58 −4.96 0.38

SWCNTs/SO
2

−4.85 −5.11 0.26

SWCNTs/SOF
2

−4.67 −4.92 0.25

SWCNTs/SO
2
F

2
−5.36 −5.73 0.37

Table 5. HOMO, LUMO, E
g
 of intrinsic Ni-SWCNTs and single gas molecule adsorption.

Figure 26. The HOMO and LUMO: (a1) and (a2) intrinsic Ni-SWCNTs; (b1) and (b2) SO
2
 adsorbed Ni-SWCNTs; (c1) and 

(c2) SOF
2
 adsorbed Ni-SWCNTs; (d1) and (d2) SO

2
F

2
 adsorbed Ni-SWCNTs.
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of pure Ni-SWCNTs, and the HOMO and LUMO were distinctly reduced as listed in Table 5. 

The configurations of HOMO and LUMO of SO
2
F

2
 adsorbed Ni-SWCNTs with chemisorption 

are summarized in Figure 26d1 and d2, and there are few orbital surrounding the adsorbed 

SO
2
F

2
. The strong chemical bond between Ni atom and SO

2
F

2
 impedes the free transportation 

of charge and reduces the free charge of Ni atom at the same time. In other words, the che-

misorption of SO
2
F

2
 reduces the conductivity, which is consistent with the results of TDOS 

analysis. The decrease result is also confirmed by our previous research that SO
2
 adsorption 

reduces the conductivity of Pd-doped SWCNTs [31].

2.4.3.2. Adsorption of double identical decomposed gas molecule on the surface of Ni-SWCNT

In practical situation, the insulated SF
6
 gas may simultaneously decompose to SO

2
, SOF

2
 and 

SO
2
F

2
, indicating that it is mixed gas in SF

6
 insulated equipment. Therefore, the multiple gas 

molecule adsorption was considered in our study. With the limited adsorption ability of single 

Ni-doped SWCNTs, double gas molecule adsorption is sufficient to analyze the situation of 
multiple gas molecule adsorption. The influence on conductivity brought by absorption of dou-

ble identical decomposed gas molecules is discussed first. Comparison of the TDOS before and 
after gas molecule adsorption is shown in Figure 27. The presence of Ni active site leads to dou-

ble identical SO
2
 simultaneously adsorbed on Ni-SWCNTs, resulting in an enhancement of the 

communization movement between the Ni-SWCNTs and adsorbed gas molecules. As can be 

seen form Figure 27a and b, the TDOS was improved in all energy distribution zone, although 

the TDOS just above the Fermi level changed little, but that below the Fermi level increased, 
which means that the major carrier transfer from the valence band and the conduction band is 

enhanced. When the double identical SOF
2
 and SO

2
F

2
 molecules interacted with Ni-SWCNTs by 

chemisorption, the TDOS near the Fermi level reduced. It can be seen in Figure 27c, the decrease 

area of TDOS for SOF
2
 adsorption is slightly below the Fermi level, while a sharp TDOS reduc-

tion occurs above the Fermi level for SO
2
F

2
 adsorption as shown in Figure 27d.

Figure 27. Comparison of the TDOS for double identical molecules: (a) intrinsic Ni-SWCNTs, (b) double SO
2
 adsorbed 

Ni-SWCNTs, (c) double SOF
2
 adsorbed Ni-SWCNTs and (d) double SOF

2
 adsorbed Ni-SWCNTs. The left solid line is 

HOMO while the right solid line is LUMO, and the dash line is Fermi level.
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Table 6 presents the results of the LUMO and HOMO energies of the double identical SF
6
 

decomposed products (SO
2
, SOF

2
 and SO

2
F

2
) adsorption on the surface of Ni-SWCNTs based 

on DFT calculation. All of the energy of HOMO and LUMO declined during the adsorption 
process. Considering the distribution of frontier molecular orbital for double SO

2
 physisorp-

tion in Figure 28b1 and 6b2, the HOMO evenly distributed on the structure of Ni-SWCNTs. 

In addition, the E
g
 was declined from 0.38 eV (intrinsic SWCNTs) to 0.26 eV (SWCNTs/2SO

2
). 

The computed TDOS and frontier molecular orbital reveal that the physisorption between 

double SO
2
 and Ni-SWCNTs enhances the conductivity, which is consistent with the result 

of single SO
2
 adsorption. The distribution of HOMO and LUMO for double SOF

2
 adsorption 

signally changed as displayed in Figure 28c1 and 6c2. The HOMO has completely transferred 

to two newly produced SOF molecules. Conversely, the LUMO entirely locates on the surface 
of Ni-SWCNTs. As we have discussed above, two SOF molecules were far away from the sur-

face of Ni-SWCNTs. So it was hard for charge carrier to transfer between HOMO and LUMO, 
though the E

g
 was greatly reduced to 0.08 eV. Comparing with the unchanged conductivity 

of the single SOF
2
 adsorption case, the adsorption of double SOF

2
 molecules slightly reduced 

the conductivity. From Figure 28d1 and 6d2, we found neither the HOMO nor the LUMO 
located around gas adsorption site, because the strong chemical bond interaction prevents 

the charge carrier from transferring freely. The HOMO evenly distributed on carbon atoms, 

System LUMO HOMO Eg (eV)

SWCNTs −4.58 −4.96 0.38

SWCNTs/2SO
2

−5.03 −5.29 0.26

SWCNTs/2SOF
2

−5.52 −5.60 0.08

SWCNTs/2SO
2
F

2
−5.02 −5.48 0.46

Table 6. HOMO, LUMO, E
g
 of intrinsic Ni-SWCNTs and double identical gas molecules adsorption.

Figure 28. The HOMO and LUMO: (a1) and (a2) intrinsic Ni-SWCNTs; (b1) and (b2) double SO
2
 adsorption; (c1) and (c2) 

double SOF
2
 adsorption; (d1) and (d2) double SO

2
F

2
 adsorption.
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and it increased compared with that of intrinsic Ni-SWCNTs. While the distribution of LUMO 
on carbon atoms kept unaltered. Along with the change of the HOMO and LUMO, the E

g
 was 

increased to 0.46 eV. We conclude that the double identical SO
2
F

2
 adsorption reduces the con-

ductivity of Ni-SWCNTs.

2.4.3.3. Adsorption of double foreign decomposed gas molecule on the surface of Ni-SWCNT

In case of mixed gas decomposed in SF
6
 insulated equipment, the mixed gas molecules could 

also be adsorbed on the surface of Ni-SWCNTs with double foreign gas molecules except the 

double identical adsorption case discussed above. According to the TDOS shown in Figure 29, 

the change of TDOS presents significant difference comparing with that of single and dou-

ble identical gas molecules adsorption. All of the TDOS near the Fermi level has increased. 

As discussed in the geometry analysis for SO
2
&SOF

2
 adsorption, both gas molecules move 

close to the surface of Ni-SWCNTs by physisorption. The sharply increased TDOS above the 

Fermi level (see Figure 29b), which is even bigger than that of single SO
2
 adsorption implies 

the prominent improvement of conductivity. And the change of conductivity is agreed with 

the literature that reported the increase of conductivity during SO
2
 gas detection [30]. When 

SO
2
&SOF

2
 interacted with Ni-SWCNTs, the SOF

2
 molecule was away from the surface of 

Ni-SWCNTs according to the structure discussed before. Comparing the TDOS of SO
2
&SO

2
F

2
 

adsorption (Figure 29c) with that of single SO
2
, we found that the change of TDOS presents 

identical increase trend, deriving from the crucial role of SO
2
 adsorption. For the adsorption 

of SOF
2
&SO

2
F

2
, only the broken fluorine atom and one SOF

2
 made contribution to the change 

of conductivity. As the TDOS of SOF
2
&SO

2
F

2
 adsorption depicted in Figure 29d, the TDOS 

near the Fermi level and site of the HOMO and LUMO increased.

All of the increased TDOS for mixed gas molecule adsorption is consistent with the frontier 

molecular orbital analysis in Figure 30. It can be seen obviously that the HOMO and LUMO 
distribution (see Figure 30b and Table 7) has extended to the surface of adsorbed SO

2
 and SOF

2
 

Figure 29. Comparison of the TDOS for double foreign molecules: (a) intrinsic Ni-SWCNTs; (b) SO
2
, SOF

2
 adsorbed 

Ni-SWCNTs; (c) SO
2
, SO

2
F

2
 adsorbed Ni-SWCNTs and (d) SOF

2
, SO

2
F

2
 adsorbed Ni-SWCNTs. The left solid line is 

HOMO while the right solid line is LUMO, and the dash line is Fermi level.
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molecules, and the E
g
 has narrowed to 0.20 eV. So the charge carrier transportation increases 

correspondingly, which also confirms the enhanced TDOS. Thus, we conclude that the effect 
of SO

2
 and SOF

2
 adsorption significantly improves the conductivity of Ni-SWCNTs. Although 

the SO
2
F

2
 molecule was too far to affect the frontier molecular orbital (see Figure 30c), the 

adsorbed SO
2
 was efficient to enhance the conductivity by reducing the energy barrier 

E
g
 (0.26 eV) and increasing the HOMO and LUMO distribution. For the HOMO and LUMO 

distribution of SOF
2
&SO

2
F

2
 adsorption shown in Figure 19d, part of HOMO distributed on 

the surface of bonded fluorine and one SOF
2
 molecule. And the LUMO distribution became 

uniform on carbon atoms comparing with that of intrinsic Ni-SWCNTs. Besides, the TDOS 

at site of HOMO and HOMO increased as seen in Figure 29d with E
g
 dropped to 0.21 eV. 

Taking account of the changed distribution of TDOS and frontier molecular orbital that ben-

efits charge carrier transportation, the adsorption of SOF
2
&SO

2
F

2
 increases the conductivity.

2.4.4. Summary: gas adsorption on Ni-SWCNTs

In summary, the adsorption effects of typical decomposition products: SO
2
, SOF

2
 and SO

2
F

2
 

in SF
6
 insulated equipment toward Ni-doped (8, 0) zigzag SWCNTs have been theoretically 

investigated using first-principle calculation based on PBE function of DFT. It is found that 

System LUMO HOMO Eg (eV)

SWCNTs −4.58 −4.96 0.38

SWCNTs/SO
2
&SOF

2
−4.82 −5.02 0.20

SWCNTs/SO
2
&SO

2
F

2
−4.85 −5.11 0.26

SWCNTs/SOF
2
&SO

2
F

2
−5.28 −5.49 0.21

Table 7. HOMO, LUMO, E
g
 of intrinsic Ni-SWCNTs and double foreign gas molecules adsorption.

Figure 30. The HOMO and LUMO: (a1) and (a2) intrinsic Ni-SWCNTs; (b1) and (b2) SO
2
, SOF

2
 adsorption; (c1) and (c2) 

SO
2
, SO

2
F

2
 adsorption; (d1) and (d2) SOF

2
, SO

2
F

2
 adsorption.
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the gas molecules tend to approach the surface of Ni-SWCNTs at the Ni-doped active site with 

the improved adsorption ability to gas molecules. The density of state and frontier molecular 

orbital were adopted to study the physical properties of Ni-SWCNTs before and after gas mol-

ecules adsorption. Comparing the change of conductivity in different adsorption situations, 
the conductivity of Ni-SWCNTs increases in the following order: SO

2
 > SOF

2
 after SO

2
 and 

SOF
2
 adsorbed onto Ni-SWCNTs. Conversely, SO

2
F

2
 adsorption onto Ni-SWCNTs slightly 

decreases conductivity. The following specific conclusion can be drawn.

For single decomposed gas molecule adsorption, SO
2
 and SOF

2
 interact with Ni-SWCNTs via 

physisorption, while SO
2
F

2
 strongly chemisorbed on Ni-SWCNTs. For SO2 adsorption, the 

TDOS near the Fermi level and the HOMO and LUMO increases with a declined E
g
, resulting 

in the increase of conductivity. Conversely, the conductivity reduces after the SO
2
F

2
 absorp-

tion. And single SOF
2
 made little contribution to the change of conductivity.

For the adsorption of double identical gas molecules, the double SO
2
 is still physically 

adsorbed on Ni-SWCNTs, and the chemisorption acts on both SOF
2
 and SO

2
F

2
. Considering 

the conductivity features, we conclude that the double SO
2
 molecules increase the conductiv-

ity, while double SOF
2
 and double SO

2
F

2
 adsorption show a decrease effect to conductivity.

The results of gas-sensing properties to mixed gas molecule adsorption have showed that the 

conductivity increases at different extent, reflecting the sensing specific to different gas mol-
ecules. In case of SO

2
 and SOF

2
 and SO

2
 and SO

2
F

2
 adsorption, the improvement of conductiv-

ity is mainly derived from the contribution of SO
2
 adsorption, which has also been founded in 

single and double SO
2
 adsorption. For SOF

2
 and SO

2
F

2
 adsorption, the Ni active site bonded 

with a fluorine broke form SO
2
F

2
 and the other two SOF

2
 molecules away from the surface of 

Ni-SWCNTs, resulting in the increase of conductivity due to the evenly distributed LUMO.

Taking advantage of the sensing mechanism of Ni-SWCNTs to SF
6
 decomposed products: 

SO
2
, SOF

2
 and SO

2
F

2
, the Ni-SWCNTs gas chemiresistor sensor can be prepared to realize the 

online detection and diagnosis of insulated faults in SF
6
 insulated equipment.

2.5. Gas-sensing properties of Al-SWCNTs to SOF2, SO2F2, SO2, H2S, HF, CF4 and SF6

2.5.1. Structural parameters of intrinsic Al-SWCNTs

When a carbon atom C1 was substituted by an Al atom, significant geometric changes 
occurred in Al-SWCNTs, as shown in Figure 31. Considering that the radius of the Al atom is 

larger than that of the carbon atom, the Al heteroatom protruded from the Al-SWCNT surface 

after structural optimization [32]. The bond length between Al─C3 and Al─C4 atoms reached 

1.908 and 1.841 Å, respectively. The calculation results were similar to that of other research 
[17, 32, 33].

2.5.2. The analysis of gas adsorption structure

Following the optimization of each initial structure, all gas molecules were allowed to relax on 

the surface of Al-doped SWCNTs [32]. Cause the orientational effects play important role on 
the adsorption results. In addition, in order to receive the global minimum-energy structures 
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from the all these minimum-energy structures, which may contain some local minimum-

energy structures. Various adsorption sites and approaching ways of decomposition products 

were calculated to get the most minimum-energy structures, which are used as the most stable 

structure for each gas molecule adsorption in our study (Figure 32) [32]. The results showed 

that all of the gas molecules tended to adsorb at the site of Al atom, which revealed the stron-

ger adsorption of Al atom than other undoped sites. Given that the electrical properties of 

SWCNTs could be significantly influenced by gas adsorption [32, 34], the strong adsorption 

provided an opportunity for the detection of SF
6
 decomposition products based on the change 

of conductivity [32].

The adsorption energy E
ads

, charge transfer Q
T
 and interactive distance d were computed to 

analyze the gas adsorption properties, which are shown in Table 8. We determined that all of 

the molecules have negative adsorption energy, indicating that the adsorption reaction was 

an exothermic process that occurred spontaneously [35]. In the adsorption process of the SOF
2
 

and SO
2
F

2
 gas molecules, the strong interaction decomposed SOF

2
 and SO

2
F

2
 into other gas 

molecules. Thus, the binding distance from the SOF
2
 and SO

2
F

2
 gas molecules to Al-SWCNTs 

is not shown in Table 8.

As shown in Figure 32a1 and a2 and Table 8 [32], when one SO
2
 molecule approached the 

surface of Al-SWCNTs in a different direction, two oxygen atoms were close to the Al atom. 
Meanwhile, the sulfur atom is far from the Al atom because the sulfur atom has already built 

a strong double bond with adjacent oxygen atoms. This steady interaction does not allow the 

sulfur atom to form another coordinate bond with the Al atom. The bond distance and angle 

of the SO
2
 molecule slightly changed during the adsorption process, which corresponded with 

the result of a previous study [32, 36]. In the present study, the interaction distance between 

SO
2
 molecule and Al atom was 1.988 Å, which is slightly smaller than that of Pd-doped (8, 0) 

SWCNTs [37] because the radius of the Al atom is smaller than that of the Pd atom [32]. Long gas 

Figure 31. Geometric structures of Al-doped SWCNTs after optimization. The structural parameters are shown as Å.
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interaction distance (1.988 Å) and low banding energy (−1.606 eV) indicated that the adsorp-

tion was some type of physisorption [32, 38]. When the second SO
2
 molecule was adsorbed on 

Al-SWCNTs, the SO
2
 molecules approached the Al atom with only one oxygen atom because 

of the repulsive interaction between the two gas molecules. The adsorption energy increased 

to 2.206 eV, with adsorption distances of 1.787 and 1.868 Å to the Al atom [32].

The adsorption structures and parameters of single and double H
2
S molecules on Al-SWCNTs 

are shown in Figure 32b1 and b2 and Table 8 [32]. After the relaxation process, a quasi-tetra-

hedron geometry around the Al center was observed. The hydrogen atoms and sulfur atom 

in the H
2
S molecule generated strong bond energy [39]. Thus, the interaction between hydro-

gen atoms and Al was weak. Meanwhile, the sulfur atom could still react with the Al atom 

because of its multivalent feature. As such, the H
2
S molecule approached the Al atom through 

the sulfur atom. The interaction distance between the S and Al atoms was approximately 

2.47 Å, with the H─Al distance of 2.85 Å [32]. Considering the long interaction distance and 

low binding energy of −1.051 eV, the interaction indicated a moderate physisorption. When 
double H

2
S molecules adsorbed on the surface of Al-SWCNTs, we observed that one mol-

ecule was distinctly far from the surface with a distance of 3.495 Å because of the repul-
sive force between molecules [32]. However, the adsorption site of the other H

2
S molecule 

changed slightly compared with the former single molecule adsorption. The distance from 

the new added H
2
S molecule to the doped Al atom was approximately 2.425 Å. The binding 

energy between single H
2
S and Al-SWCNTs was approximately −1.051 eV, whereas the bind-

ing energy between double H
2
S and Al-SWCNTs increased to −1.498 eV [32]. The Mulliken 

population analysis indicated that 0.234 and 0.273 electrons transferred from single and dou-

ble H
2
S molecules to Al-SWCNTs, respectively. In addition, our results were similar to the 

results of previously studied Au-doped SWCNTs [32, 40], in which the structural parameters, 

binding energy and charge transfer were also reported. Small difference between our results 
and than in previous report was found probably because different models were used in the 

System Structure Eads (eV) QT (e) d1 (Å) d2 (Å)

SO
2

(a1) −1.606 −0.493 1.988 –

2SO
2

(a2) −2.206 −0.706 1.787 1.868

H
2
S (b1) −1.051 0.234 2.47 –

2H
2
S (b2) −1.498 0.273 2.425 3.495

SOF
2

(c1) −2.103 −0.573 – –

2SOF
2

(c2) −2.974 −1.102 – –

SO
2
F

2
(d1) −3.408 −1.041 – –

2SO
2
F

2
(d2) −4.952 −3.018 – –

CF
4

(e1) −0.033 −0.003 3.27 –

2CF
4

(e2) −0.087 0.019 2.710 3.537

Table 8. Calculated adsorption energy, charge transfer and binding distance from an Al atom to adsorbates.
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Figure 32. Most stable geometries of gas molecules interacting with Al-doped SWCNTs (distances in Å).
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calculations. Al-SWCNTs can be considered a possible sensor material for the detection of H
2
S 

owing to the adsorption energy and considerable charge transfer [32].

Based on the optimized adsorption structures of SOF
2
 shown in Figure 32c1 and c2 and 

Table 8 [32], two types of adsorption, namely single and double SOF
2
 molecule adsorption, 

were outlined to analyze the adsorption capacity. From the relaxed structure of single SOF
2
 

molecule adsorption, the strong interaction between SOF
2
 molecule and Al-SWCNTs decom-

posed the SOF
2
 molecule to one SOF molecule and another fluorine atom [32]. The electro-

negative fluorine atom bonded to the Al atom through a strong chemical reaction, with the 
interaction distance of 1.699 Å. Meanwhile, the bond length from the produced SOF mol-
ecule to the fluorine atom was 2.777 Å, which indicated the decomposition of SOF

2
 [32]. Upon 

double SOF
2
 molecule adsorption, one of the SOF

2
 molecules was adsorbed on the surface of 

Al-SWCNTs by chemisorption [38], whereas the other SOF
2
 molecule was found far from the 

nanotube [32]. Two of the original Al─C bonds broke in the adsorption process. Then, two 

fluorine atoms of SOF
2
 bonded to the Al atom [32].

As shown Figure 32d1 and d2 and Table 8 [32], single and double SO
2
F

2
 molecules are 

adsorbed on the surface of Al-SWCNTs. After the structures have relaxed to reach the most 

steady state, only one original Al─C bond exists after the adsorption process. The other two 

bonds were broken because of the strong interaction between the F and Al atoms [32, 41]. 

Upon single SO
2
F

2
 molecule adsorption, two fluorine atoms separated from SO

2
F

2
 molecule 

and bonded to the Al atom, with bond lengths of 1.679 and 1.695 Å, respectively. Meanwhile, 
the produced SO

2
 molecule was far from the surface of Al-SWCNTs. When another SO

2
F

2
 

molecule was added, all of the fluorine atoms separated from the SO
2
F

2
 molecules. Three of 

the fluorine atoms bonded to the Al atom. The other fluorine atom bonded to the carbon atom 
of Al-SWCNTs. Both of the produced SO

2
 molecules were far from the surface of Al-SWCNTs, 

with interactive distances of 2.589 and 3.410 Å, respectively. The weak interaction to the pro-

duced SO
2
 might be because the Al-SWCNTs have reached saturated adsorption [32].

As shown in Figure 32e1 and e2 and Table 8 [32], the CF
4
 molecule was far from the surface of 

Al-SWCNTs, which was also ineffectively detected by other reported methods [42]. The near-

est interaction distances reached 3.27 Å for single CF
4
 molecule adsorption and 2.710 and 2.537 

Å for double CF
4
 molecule adsorption. The long interactions corresponded well with the low 

adsorption energies of −0.033 and −0.087 eV for single and double CF
4
 molecule adsorption, 

respectively. Furthermore, weak physisorption was consistent with slight charge transfer [32].

2.5.3. The analysis of the density of states and frontier molecular orbital

In the previous section, we discussed the adsorption of single and double SF
6
 decomposed gas 

molecules on Al-SWCNTs. We observed that the Al doping method showed good adsorption 

capacity for all of the SF
6
 decomposed gas molecules, except for the CF

4
 molecules, which 

indicated the possibility of detecting these decomposition components [32]. However, the 

detecting mechanism of Al-SWCNTs depends on its conductivity change after gas adsorption. 

The density of states (DOS) and frontier molecular orbitals were investigated to analyze the 

change of conductivity. The total electron DOS (TDOS) and local DOS (LDOS) were deter-

mined to investigate the influence of gas adsorption and to elucidate the electronic  properties 
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of Al-SWCNTs and molecule-Al-SWCNTs [32, 43], as shown in Figure 33. The highest occu-

pied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) upon mol-
ecule adsorption on the Al-doped SWCNTs are listed in Table 9. The corresponding diagrams 

of HOMO and LUMO are shown in Figure 34 [32].

Figure 33. TDOS and LDOS of the Al-SWCNTs and molecule-Al-SWCNTs. Dashed and solid lines indicate the Fermi 
level and HOMO-LUMO, respectively.
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Based on the DOS of SF
6
 decomposition products before and after adsorption (Figure 33) [32], 

we observed that the LDOS of the Al atom had only a slight contribution to each TDOS. The 
changes of TDOS were mainly from the adsorbed molecules. Meanwhile, the various changes 

induced by different adsorbed molecules only provided the chance to detect the SF
6
 decom-

position products selectively [32].

Based on Figure 33a1 [32], the TDOS of Al-SWCNTs was apparently distributed to all energy 

band areas, which reached 4.43 eV at the Fermi level. This finding indicated that Al-SWCNTs 
are still a good conductor after Al atom doping. The results are in accordance with other 

experiments on metal-doped materials [44]. Figure 33a1 and a2 shows the frontier molecular 

orbitals of Al-SWCNTs. In addition, the HOMO and LUMO were uniformly located on the 
Al-SWCNT surface. The HOMO and LUMO of the Al atom were mainly contributed by its s 

orbital. Table 9 shows that E
HOMO

 and ELUMO of Al-SWCNTs were −5.077 and −4.874 eV, respec-

tively, and E
g
 was 0.203 eV [32].

The TDOS for SO
2
 molecules adsorbed on Al-SWCNTs is shown in Figure 33b1 and b2 [32]. 

When one SO
2
 molecule was adsorbed on the surface of Al-SWCNTs, the TDOS slightly 

increased at and under the Fermi level compared with that of pristine Al-SWCNTs. As shown 

in Figures 22b2 and 33b1, the HOMO and LUMO were entirely located on the carbon atoms 
upon single SO

2
 adsorption. The HOMO energy shifted from −5.077 to −5.292 eV, and the 

LUMO energy shifted to −5.030 eV in the pristine Al-SWCNTs. E
g
 was slightly increased to 

0.262 eV compared with that of Al-SWCNTs. Upon the second SO
2
 molecule adsorption, the 

TDOS further increased with respect to that of the single molecule adsorption [32]. In addi-

tion, E
g
 decreased to 0.112 eV when the HOMO and LUMO are mainly located on SO

2
 mol-

ecules and carbon atoms. Considering the increased TDOS and decreased E
g
, the conductivity 

of Al-SWCNTs tended to increase with SO
2
 adsorption [20].

System EHOMO (eV) ELUMO (eV) Eg (eV)

Al-SWCNTs −5.077 −4.874 0.203

SO
2
-Al-SWCNTs −5.292 −5.030 0.262

2SO
2
-Al-SWCNTs −5.416 −5.304 0.112

H
2
S-Al-SWCNTs −4.684 −4.492 0.192

2H
2
S-Al-SWCNTs −4.659 −4.465 0.194

SOF
2
-Al-SWCNTs −5.478 −5.218 0.260

2SOF
2
-Al-SWCNTs −5.580 −5.303 0.277

SO
2
F

2
-Al-SWCNTs −5.466 −5.285 0.181

2SO
2
F

2
-Al-SWCNTs −5.963 −5.839 0.124

CF
4
-Al-SWCNTs −5.014 −4.826 0.188

2CF
4
-Al-SWCNTs −4.924 −4.742 0.182

Table 9. HOMO and LUMO energies (E
HOMO

, ELUMO) and HOMO-LUMO energy gap (E
g
).
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As shown in Figure 33c1 and c2, the LDOS induced by the H
2
S molecules was partly located 

above the Fermi level, which contributed to the TDOS above the Fermi level. The change 

of the HOMO and LUMO energies slightly shifted to the right side. E
g
 for the single and 

double H
2
S molecule adsorption was 0.192and 0.194 eV, respectively, and was smaller than 

that of pristine Al-SWCNTs. As shown in Figure 33c1–c4, the HOMO and LUMO were still 

Figure 34. HOMO and LUMO orbitals on Al-SWCNTs and molecule-Al-SWCNTs. From top to bottom: (a1)–(f1) and 
(b3)–(f3) represent the HOMO orbitals, and (a2)–(f2) and (b4)–(f4) represent the LUMO orbitals.
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distributed on pristine Al-SWCNTs. In general, the interaction between the H
2
S molecules 

and Al-SWCNTs was favorable and enhanced the conductivity of Al-SWCNTs.

Based on the SOF
2
 molecules adsorbed on Al-SWCNTs shown in Figure 33d1 and d2, the 

LDOS of SOF
2
 molecules was mainly below the Fermi level. Herein, the TDOS at the Fermi 

level was slightly changed compared with that of pristine Al-SWCNTs. However, E
g
 evidently 

increased to 0.260 eV for single SOF
2
 adsorption and further increased to 0.277 eV when 

another SOF
2
 molecule was adsorbed (Table 9). As shown in Figure 33d1–d4, the HOMO and 

LUMO orbitals were distributed on the carbon atoms for single SOF
2
 molecule adsorption 

[32]. Meanwhile, the distribution of the molecular orbital for double SOF
2
 molecule adsorp-

tion was different, where the HOMO orbital was located on the carbon atoms and the LUMO 
orbital was located on all of the Al-SWCNTs [32]. Based on the previously presented analysis, 

conductivity might decrease to a certain extent [32].

When one SO
2
F

2
 molecule was adsorbed on Al-SWCNTs, the TDOS decreased around the 

Fermi level (Figure 33e1). The LDOS of SO
2
F

2
 was primarily below the HOMO energy and 

above the LUMO energy, with the decrease in E
g
 to 0.181 eV. When the other SO

2
F

2
 molecule 

was adsorbed, the TDOS continued to decrease above the Fermi level. With LDOS induced 
by double SO

2
F

2
 molecules, we observed that the TDOS distinctly increased above the LUMO 

energy (see Figure 33e2). The value of E
g
 decreased to 0.124 eV, which facilitated electron 

conduction between molecular orbitals. As shown in Figure 33e1–e4, the HOMO and LUMO 
orbitals were totally shifted to the carbon atoms after SO

2
F

2
 adsorption. The strong bond 

energy between the Al and F atoms seemed to weaken the electron conduction ability among 

atoms other than carbon [32].

As mentioned previously, the interaction between CF
4
 molecules and Al-SWCNTs was weak, 

resulting in a limited influence of the CF
4
 molecules [45]. The LDOS of CF

4
 was below the 

HOMO energy shown in Figure 33f1 and f2 [32]. Meanwhile, the TDOS around the Fermi 

level remains unchanged. E
g
 (0.188 and 0.182 eV) was slightly smaller than that of pris-

tine Al-SWCNTs. Similarly, the HOMO and LUMO orbitals were almost the same as that 
of Al-SWCNTs before CF

4
 adsorption. Therefore, we conclude that the conductivity of 

Al-SWCNTs would not change upon CF
4
 adsorption.

2.5.4. Summary: gas adsorption on Al-SWCNT

In this study, we analyzed the adsorption of the gases produced by SF
6
 decomposition (i.e., 

SO
2
, H

2
S, SOF

2
, SO

2
F

2
 and CF

4
) on the Al-SWCNT surface using GGA and DFT calculations 

and considering different sites to determine the most stable structures. In addition, multiple-
molecule adsorption was calculated for SF

6
 decomposition products to analyze the various 

changes of conductivity induced by adsorption [32].

The results indicated that the SO
2
 molecules were physically adsorbed on Al-SWCNTs. This 

interaction increased the TDOS and decreased the E
g
, which increased the conductivity of the 

adsorption system [32]. Upon H
2
S adsorption, considerable E

ads
 resulted in well-adsorbed H

2
S 

molecules on the surface of Al-SWCNTs. However, the change of conductivity was not evident 

based on the analyses of DOS and frontier molecular orbital. The SOF
2
 and SO

2
F

2
 molecules were 
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chemisorbed on the surface of Al-SWCNTs because of the strong interaction between the Al and 

F atoms. The conductivity of SOF
2
 adsorbed on Al-SWCNTs decreased to a certain extent as a 

result of the increase in E
g
 and decrease in TDOS around the Fermi level [32]. For SO

2
F

2
 adsorp-

tion, although the TDOS around the Fermi level showed a slight decrease, the evident decrease 

in E
g
 indicated that conductivity might be enhanced upon SO

2
F

2
 adsorption. The calculation 

results showed that conductivity is unchanged during CF
4
 adsorption mainly because the inter-

action between Al-SWCNTs and CF
4
 molecules was weak to induce electron redistribution [32].

In summary, Al atom doping method is potentially an effective technique to adsorb the gases 
produced by SF

6
 decomposition. Through the different changes in conductivity induced by 

molecule adsorption, the selective detection of each type of SF
6
 decomposed gas was achieved. 

We hope that this innovative study would further accelerate research on the mechanism of 

metal doping methods in detection of gases from SF
6
 decomposition [32].

2.6. Gas-sensing properties of Pt-SWCNTs to SO2, H2S

2.6.1. Structural parameters of intrinsic Pt-SWCNT

The radius of Pt atom is 0.183 nm, which is greater than that of C atom (0.070 nm). Thus, Pt 
is highlighted on the CNT surface as shown in Figure 35. The bond lengths between Pt atom 

and three adjacent C atoms changed from 0.142 nm to 0.199, 0.199 and 0.189 nm for Pt-C1, 
Pt-C2 and Pt-C3, respectively [16]. These results are consistent with Refs. [16, 46].

Figure 35. Geometric structures of Pt-doped SWCNTs after optimization. The structural parameters are shown as Å.
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2.6.2. The analysis of gas adsorption structure

Pt is not only a sensing element of Pt-SWCNTs, but also an active site. Strong interaction with 

gas molecules adsorbed on the surface results in deformation of Pt-SWCNTs and elongation 

of Pt-C bond. The full geometric optimization of the Pt-SWCNTs and SO
2
 adsorption model is 

shown in Figure 36. An oxygen atom O1 points to Pt, in which the distances of Pt-O1 and Pt-S 

are 0.212 and 0.245 nm, respectively.

The reaction adsorption energy for SO
2
 adsorption is −1.225 eV, which denotes an exother-

mic and spontaneous reaction. According to Mulliken charge population analysis shown 

in Table 10, SWCNTs of Pt-SWCNTs have 0.147 positive charge, and Pt has 0.147 negative 

charge before adsorption. After the adsorption process, SWCNTs have 0.509 positive charge, 

whereas Pt has 0.116 negative charge. SO
2
 obtains 0.301 electrons during the adsorption reac-

tion [16]. Charge variation (ΔQ
SWCNTs

, ΔQ
Pt

) of SWCNTs and Pt is 0.362 and 0.031, respec-

tively. Therefore, SO
2 
obtains electrons mainly from SWCNTs, whereas Pt exhibits a small 

charge change.

As shown in Table 10 [16], Mulliken charge analysis shows that H
2
S donates 0.285 elec-

trons. Pt and SWCNTs, respectively, have 0.019 and 0.266 electrons after H
2
S is adsorbed on 

Pt-SWCNTs. A large number of electron transformations convert Pt-SWCNTs from p-type 

to n-type.

Figure 36. Structural model of the SO
2
-Pt-SWCNT adsorptive system. (a) Front view; (b) side view.

System QSWCNTs/e QPt/e Qgas/e ΔQSWCNTs/e ΔQPt/e

Pt-SWCNTs 0.147 −0.147

SO
2
-Pt-SWCNTs 0.509 −0.116 -0.393 0.362 0.031

H
2
S-Pt-SWCNTs −0.019 −0.266 0.285 −0.166 −0.119

Table 10. Electrical structure parameters of the adsorption structures.

Nanomaterials Based Gas Sensors for SF6 Decomposition Components Detection60



2.6.3. The analysis of the density of states and frontier molecular orbital

The transfer of a large number of electrons during adsorption causes the redistribution of sys-

tem charges. The density of states (DOS) near Fermi level appears impure state, and the DOS 

between HOMO and LUMO changes. Figure 37 shows that these impure states are caused by 

SO
2
 adsorption. The p orbitals of S and O atoms have significant influence on the frontier orbital 

of the adsorption system, which changes the HOMO and LUMO orbital formation, thereby 
causing the change in DOS. Figure 38a shows that the p orbitals of C1 and C3 form σ bond 
with S, and in Figure 38b, the d orbitals of Pt and the p orbitals of S are hybridized [16]. The 

frontier orbital energy gap E
g
 of the system is 0.283 eV after adsorbing SO

2
, which is reduced 

by 0.049 eV compared with the non-adsorbed SO
2
 [16]. This observation is beneficial for the 

transfer of electrons between the HOMO and LUMO, thereby enhancing conductivity [16].

SO
2
 adsorption on the surface of Pt-SWCNTs has large adsorption energy and can form a 

stable structure. The p-type Pt-SWCNTs [16, 47] donate electrons and increase hole carriers, 

thereby reducing the frontier orbital energy, diminishing energy gap E
g
 and enhancing con-

ductivity. Pt-SWCNTs are highly responsive to SO
2
 [16].

The adsorption reaction of Pt-SWCNTs and H
2
S is also exothermic, with E

b
 of −0.977 eV. The 

frontier orbital energy difference EH-L = 4.438 eV and EL-H = 1.519 eV, so H
2
S provides electrons to 

Pt-SWCNTs in this reaction. H
2
S-Pt-SWCNT frontier orbitals concentrate on Pt-SWCNTs, and H

2
S 

is not involved in the composition of HOMO and LUMO orbitals shown in Figure 39. Figure 40 

shows that DOS of H
2
S is not distributed between HOMO and LUMO. DOS near the Fermi level 

is basically the same with Pt-SWCNTs, which is consistent with the results of frontier orbitals.

Figure 37. Density of states of Pt-SWCNTs before and after SO
2
 adsorption (Fermi level is 0 eV).
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2.6.4. Summary: gas adsorption on Pt-SWCNTs

In this study, adsorptions of three gases on the surface of Pt-SWCNTs were calculated based 

on DFT [16]. The gas-sensing properties of Pt-SWCNTs were assessed according to the 

changes in adsorption energy, geometric structure and electronic structure during adsorp-

tion. The main conclusions are as follows [16]:

Figure 39. Frontier orbital energy level of H
2
S-Pt-SWCNTs. (a) HOMO (−4.425 eV); (b) LUMO (−4.142 eV).

Figure 38. Frontier orbital energy level of SO
2
-Pt-SWCNTs. (a) HOMO (−5.208 eV); (b) LUMO (−4.923 eV).
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The three adsorption reactions are exothermic and spontaneous.

The adsorption energy of the reaction between Pt-SWCNTs and SO
2
 is large, and numer-

ous electrons are transferred from CNTs to the target gases [16]. The frontier orbital energies 

(E
HOMO

 and ELUMO) and E
g
 decrease, and the electrical conductivity of Pt-SWCNTs is enhanced. 

Pt-SWCNTs have high sensitivity to SO
2
 [16].

H
2
S is reduced when reacted with Pt-SWCNTs and provide a large number of electrons, 

thereby converting CNTs from p-type to n-type. The frontier orbital energies increase, whereas 

E
g
 decreases, thereby enhancing conductivity [16].

Results of the theoretical calculation show that Pt-SWCNTs can respond to the three gases [16]. 

The electrical characteristics of Pt-SWCNTs show different degrees of changes after adsorp-

tion of the test gases. As SO
2
 is adsorbed on Pt-SWCNTs, CNT loses electrons, hole carriers 

are increased and conductivity is enhanced [16]. As H
2
S is adsorbed on the surface of CNTs, 

Pt-SWCNTs receive a large number of electrons and transforms from p-type into n-type. The 

conductivity of Pt-SWCNT is also enhanced [16]. Comparing their adsorption energies and 

charge transformations, the sensitivity of SO
2
 is higher than that of H

2
S for Pt-SWCNTs [16]. 

Therefore, Pt-SWCNTs can be used for fabricating gas sensors in detecting SO
2
 and H

2
S.

2.7. Gas-sensing properties of Au-SWCNTs to SO2, H2S

2.7.1. Structural parameters of intrinsic Au-SWCNTs

The radius of the Au atom is significantly greater than that of the C atom; thus, the Au atom of 
Au-SWCNT is highlighted on the nanotube surface shown in Figure 41 [48]. The bond lengths 

between the Au atom and the three adjacent C atoms are 0.207 (Au─C1), 0.208 (Au─C2) and 

0.196 nm (Au─C3). Compared with the C─C bond length of the intrinsic structure, the Au─C 

bond lengths are elongated by 38, 38 and 46%, respectively [48].

2.7.2. The analysis of gas adsorption structure

The adsorption structures of the gas molecules adsorbed by Au-SWCNT in different initial 
positions were calculated. We chose two initial positions that are parallel to the nanotube 

Figure 40. Partial DOS of H
2
S-Pt-SWCNTs.
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axis and three initial positions that are perpendicular to the nanotube axis. The initial posi-

tions were optimized in the geometrical structure [48]. During observation of the optimized 

structures, the stable adsorption structure of H
2
S is the S atom located above the center of the 

ring that contains Au─C1─C2 [48]. Two main stable adsorption structures of SO
2
 exist. One 

is the S atom located above the Au─C bond and an O atom above the center of the ring that 

contains Au─C1─C2; another is the S atom located above the center of the ring [48]. SO
2
 that is 

parallel to the axis, and two O atoms above the Au and C atom, respectively. Comparing the 

two structures, the former is more stable. The most stable adsorption structure is shown in 

Figure 42. Table 11 lists the adsorption energy and the structural parameter [48].

The adsorption energy of SO
2
 is −1.258 eV, which indicates that the adsorption is exother-

mic and spontaneous. After SO
2
 is adsorbed to Au-SWCNT, the structures of Au-SWCNT 

(Table 11) and SO
2
 (Figure 42) changed [48]. Au─C1 and Au─C2 are elongated by 3.38 and 

4.33%, respectively. Moreover, S─O is also elongated. The modified element of CNT is the 
sensing element and the active site of the modified CNT [48]. The adsorption partially depends 

Figure 41. Structural model of Au-SWCNT.

Figure 42. Front and side views of the stable structural model of (a) SO
2
-Au-SWCNT and (b) H

2
S-Au-SWCNT.
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on the interaction between the gas molecule and the sensing element. The strong attraction in 
the adsorption of SO

2
 and Au-SWCNT caused the structural change of Au-SWCNT [48]. The 

Au─C bond length increased, the bond energy decreased, and the bond activity strengthened. 

Simultaneously, the electrons are transferred to SO
2
, and the excess electrons fill the anti-

bonding orbits of SO
2
. The increase in repulsion results in a change in the S─O bond length 

from 0.148 nm to 0.150 and 0.160 nm [48].

The adsorption between H
2
S and Au-SWCNT is also exothermic, and the adsorption energy 

is −1.317 eV. Compared with SO
2
, the interaction is slightly stronger. Au─C1 and Au─C2 are 

elongated by 4.83 and 4.81%, respectively [48].

From the above analysis, Au-SWCNT has a strong adsorption with SO
2
 and H

2
S, and their 

adsorption energies are greater than 1 eV. The adsorption reaction can occur at room tempera-

ture and the strong interaction changes the geometric structure of the adsorption system [48].

2.7.3. The analysis of the density of states and frontier molecular orbital

In Table 12 [48], the LUMO of SO
2 
was approximated to the HOMO of Au-SWCNT, and the 

difference of the two orbital energies is only 0.065 eV. The electron of Au-SWCNT only needs 
to cross a very low energy barrier to transfer to SO

2
. In turn, the electron needs to cross a 

3.603 eV energy barrier for the electron of SO
2
 to transfer to Au-SWCNT, but this process is 

Type SO2 H2S

d
Au

─
C1

/nm 0.214 0.217

d
Au

─
C2

/nm 0.217 0.218

d
Au

─
C3

/nm 0.195 0.195

E
b
/eV −1.258 −1.317

Table 11. Adsorption energy and the structural parameter.

System EHOMO/eV ELUMO/eV EL-H/eV EH-L/eV

Au-SWCNT −4.795 −4.585

SO
2

−8.188 −4.860 3.603 0.065

H
2
S −5.889 −0.264 1.304 4.531

System Eg/eV QSWCNT/e QAu/e Qgas/e ΔEg/eV ΔQSWCNT/e ΔQAu/e

Au-SWCNT 0.210 0.070 −0.070

SO
2
-Au-

SWCNT

0.183 0.339 −0.038 −0.301 −0.027 0.269 0.032

H
2
S-Au-

SWCNT

0.245 −0.106 −0.180 0.286 0.035 −0.176 −0.110

Table 12. Electrical structure parameters of the adsorption structures.
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more difficult [48]. Thus, the electrons transfer from Au-SWCNT to SO
2
 during adsorption. 

According to Mulliken charge population, SO
2
 obtains 0.301 electrons during the adsorption 

reaction. SWCNT and Au lose 0.269 and 0.032 electrons, respectively. Au has a key role in the 

adsorption reaction. Figure 43 shows the three-dimensional plot of the deformation electron 

density of SO
2
-Au-SWCNT [48]. The range is from −0.976 to 0.345 e/nm. The negative value 

denotes loss of electrons and a decrease in the electron density. The positive value denotes 

gain of electrons and an increase in the electron density. As seen from the plot, the charge 

of Au-SWCNT was redistributed after it adsorbed SO
2
. SO

2
 obtained electrons, whereas 

Au-SWCNT lost electrons. Correspondingly, the HOMO and LUMO move toward the nuclear 
and the orbital energy decreases. Au-SWCNT is a p-type semiconductor. The transferred elec-

trons increased the electron holes and simultaneously increased the carriers, enhanced the 

conductivity, and decreased the frontier orbital energy gap (Table 12) [48].

To clarify further the adsorption processes of SO
2
, the partial density of states (PDOSs) of 

the S, O and Au atoms are shown in Figure 44 [48]. Their PDOSs overlap in the energy region 

of −10 to −2.5 eV. In this area, the d orbitals of Au, the p orbitals of the S and O atoms are 
hybridized as the molecular orbitals of the system. In addition, the d orbitals of Au and the 

p orbitals of S effectively overlap at the Fermi energy (−2.5 eV to 2.5 eV), which strengthens 
the interaction between the two atoms. The hybridized orbitals at the Fermi level introduce 

an impurity level and are conducive for the electrons to transfer to SO
2 
from Au-SWCNT [48].

Based on the changes in the electronic structure of adsorption system, a significant amount of 
electrons is transferred in the adsorption process between SO

2
 and Au-SWCNT. Au-SWCNT 

loses electrons, the frontier orbital energy gap decreases, and the conductivity is enhanced. 

In conclusion, the Au-SWCNT has a good sensitivity to SO
2
 and can be used to detect SO

2
 gas 

based on the changes in its conductivity [48].

The S of H
2
S is at the lowest valence state. It has a strong reducibility and can provide electrons 

during the reaction process. In contrast to SO
2
, the HOMO of H

2
S was approximated to the 

Figure 43. Deformation electron density of SO
2
-Au-SWCNT. (a) Front view; (b) side view.

Nanomaterials Based Gas Sensors for SF6 Decomposition Components Detection66



LUMO of Au-SWCNT, and the difference of the energy is only 1.304 eV. Therefore, the electrons 
of H

2
S are easily transferred to Au-SWCNT. Transferring the electrons of Au-SWCNT to H

2
S is 

difficult. Thus, when H
2
S was adsorbed to Au-SWCNT, the electrons were transferred from H

2
S 

to Au-SWCNT [48]. According to the Mulliken charge population, the H
2
S molecule loses 0.286 

electrons. The SWCNT and the Au atom obtain 0.176 and 0.110 electrons, respectively. The three-

dimensional plot of the deformation electron density of H
2
S-Au-SWCNT is shown on Figure 45 

[48]. The range is −1.172 to 0.320 e/nm. The charges of Au-SWCNT and the adsorbed H
2
S are 

redistributed, H
2
S loses electrons and Au-SWCNT gains electrons. Correspondingly, the HOMO 

and LUMO of Au-SWCNT move away from the nucleus and the orbital energy increases. The 
transferred electrons decreased the number of electron holes, along with the number of carriers 

and the conductivity. The frontier orbital energy gap also increased (Table 12) [48].

When observing the PDOSs of the adsorption system shown in Figure 46 [48], which is similar 

to that of SO
2
, the PDOSs of Au in Au-SWCNT and S in H

2
S are overlapping. The d orbitals 

Figure 44. PDOS of SO
2
-Au-SWCNT. (a) O; (b) S; (c) Au.
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Figure 45. Deformation electron density of H
2
S-Au-SWCNT. (a) Front view; (b) side view.

Figure 46. PDOS of H
2
S-Au-SWCNT. (a) S; (b) Au.
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of Au and the p orbitals of the S atom are hybridized, which is advantageous to the electron 

transfer and strengthens the interaction between the adsorbed H
2
S and Au-SWCNT.

Therefore, Au-SWCNT has a good sensitivity to H
2
S, and H

2
S can be effectively adsorbed on 

the surface of Au-SWCNT [48]. When the Au-SWCNT acquired electrons, the frontier orbital 

energy gap increased, and the conductivity decreased. Hence, Au-SWCNT can be used to 

detect H
2
S [48].

2.7.4. Summary: gas adsorption on Al-SWCNTs

In this study, the adsorption reactions of the two gases on the surface of Au-SWCNT were 

calculated by DFT, and the sensitivity of Au-SWCNT to the two gases was analyzed [48].

The main conclusions of this study are as follows:

The reactions between the two gases and Au-SWCNT are both exothermic, and the adsorption 

energies are huge. The interaction between the gas molecule and the nanotubes caused the 

structure to change, for example, Au─C elongate [48].

During the adsorption process of SO
2
, SO

2
 acquires electrons and Au-SWCNT loses elec-

trons. The frontier orbital energy gap decreases, and the electrical conductivity of p-type 

Au-SWCNT is enhanced.

During the adsorption process of H
2
S, H

2
S loses electrons and Au-SWCNT acquires elec-

trons. The frontier orbital energy gap increases, and the electrical conductivity of p-type 

Au-SWCNTs decreases.

The theoretical calculation results show that Au-SWCNT has a good sensitivity to both SO
2
 

and H
2
S [48]. The conductivity changes caused by the two gases are inversely proportional. 

Thus, Au-SWCNT can be used to detect SO
2
 and H

2
S [48]. This conclusion is helpful to the 

development of CNT-based gas sensors and provides a theoretical basis for developing 

Au-SWCNT-based gas sensor [48].
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