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Abstract

Intermediate state in type-I superconductors is one of the oldest challenges of supercon-
ductivity put forward by Gorter and Casimir, Pearls, F. London, and Landau back in the
1930s. In this chapter, we review the main properties of this state and principal theoretical
approaches to interpret them. Recent experimental and theoretical achievements in this
field are discussed in more details.
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1. Introduction

Intermediate state (IS) is defined as a thermodynamically equilibrium state in which a type-I

superconductor is split for domains of superconducting (S) and normal (N) phases [1–3]. For

completeness of description, we begin with a brief overview of properties of the Meissner state,

which will be necessary for discussion of the IS properties.

1.1. Meissner state in cylindrical specimens

Consider a specimen of a type-I superconductor at temperature T < Tc in a free space (vac-

uum) subjected to a uniform magnetic field H < Hcr Tð Þ, where Tc is critical temperature at

zero field and Hcr Tð Þ is critical field of the S/N transition at given T. (We use notation Hcr

instead of commonly used Hc because the latter is reserved for thermodynamic critical field,

which can be different from Hcr). Assume that the specimen is a long cylinder with a circular

base of radius R≫λ (λ is the penetration depth) and H is parallel to the cylinder as shown in

Figure 1a. A demagnetizing factor η [2, 4] of such a specimen is zero, which means that outside

it B ¼ Hi ¼ H (we use CGS units) all the way down to the sample surface.
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Here B is magnetic induction or magnetic flux density [5] or merely B-field [6]. B is an average

microscopic magnetic field available for measurements [2]. Hi is magnetic field strength, also

referred as magnetic and magnetizing force [4], Maxwell field [7], thermodynamic field [8],

magnetic field [5],H-field [6], and others. And H is applied field set by a magnet power supply

(for simplicity we will ignore a small contribution of Earth magnetism); it is the field away

from the specimen or the field which would be in a space occupied by the specimen if the latter

is absent. Away from the specimen, Hi is identical to H, but it can be not so near and inside the

specimen. Everywhere outside the specimen, B ¼ Hi because magnetic permeability of the free

space, as well as permeability of the N phase in superconductors, μ � B=Hi is unity by

definition.

Our cylindrical specimen is in the Meissner state, implying that inside it B ¼ 0 and Hi ¼ H due

to continuity of the tangential component of this field [9]. A jump of induction at the specimen

surface ΔB ¼ H means that there is a surface current I, in which linear density g � I=l ¼

ΔBc=4π ¼ cH=4π, where l is length of the specimen and c is speed of light. This surface current

is regarded as a screening current protecting the specimen interior from the external field.

Taking into account direction of g (¼ n�Hc=4π, where n is the unit vector normal to the

surface and directed outward), we arrive at a well-familiar formula for the specimen magnetic

moment M:

M ¼ �gl
A

c
¼

cH

4π
l

� �

A

c
¼ �

H

4π
V, (1)

where A and V are the base area and volume of the specimen, respectively.

The same result follows from definition of the field strength:

Figure 1. Cross-sectional view of specimens (shown in gray) with demagnetizing factor η ¼ 0 (a), η ¼ 1=2 (b), and η ¼ 1

(c) in a weak magnetic field H. In (a) and (b) the specimen (a cylinder) is in the Meissner state; in (c) the specimen (an

infinite slab) is in the intermediate state starting from any H exceeding zero.

Superfluids and Superconductors90



Hi � B� 4πm, (2)

where m is magnetization, which in superconductors is a macroscopic average of the magnetic

moment per unit volume m ¼ M=V and, as it was mentioned above, Hi ¼ H due to geometry

of our specimen.

Thermodynamics of our and any other singly connected superconductor can be described

using total free energy ~FM T;V;Hð Þ, which differential d~FM T;V;Hð Þ is [2].

d~FM ¼ �SVdT �M � dH, (3)

where S is entropy per unit volume and a small variation of V due to changing magnetic field

is neglected.

Integrating Eq. (3) at constant temperature, we arrive at another well-known and very impor-

tant formula for the total free energy of the singly connected superconductors in magnetic field

[1, 2]:

~FM

� �

sH
¼ ~FM

� �

s0
�

ðH

0

M � dH ¼ ~FM

� �

n
�
H2

c

8π
V �

ðH

0

M � dH, (4)

where ~FM

� �

s0
is the total free energy of the S state in zero field, ~FM

� �

n
is the total free energy of

the N state, and H2
c=8π

� �

V is the condensation energy, where Hc is thermodynamic critical

field. Note that, since M in the N state is zero (because μ of the N phase is unity), the total free

energy for this state does not depend on the field. This means that ~FM

� �

n
¼ Fn0 and

~FM

� �

s0
¼ Fs0, where Fn0 and Fs0 are Helmholtz free energies F T;V;Bð Þ in the normal and

superconducting states at zero field, respectively.

Importance of Eq. (4) is associated, firstly, with the fact that neither ~FM

� �

n
nor the condensation

energy H2
c=8π

� �

V depends on the specimen shape, and therefore Eq. (4) is valid for singly

connected specimens of any shape. Secondly, Eq. (4) explicitly shows that the extra total free

energy (above the free energy of the ground state ~FM

� �

s0
) is the specimen magnetic energy

EM ¼ �
ÐH
0 M � dH, representing energy of interaction of the external field H with the specimen

magnetic moment M induced by this field. More specifically, EM is kinetic energy of electrons

(Cooper pares) carrying the induced currents [1]. And thirdly, Eq. (4) shows that the source of

EM is condensation energy. Finiteness of the later makes transition to the N state a mandatory

property of any superconductor [2]. At the S/N transition, the magnetic energy of any speci-

men equals to its condensation energy, or area under M Hð Þ curve plotted as 4πM=VHc vs.

H=Hc, when M is aligned to H, is 1/2.

This as-called rule of 1/2 (or in general case Eq. (4)), represents the energy balance or the first

law of thermodynamics for singly connected superconductors at constant temperature; com-

pliance with this rule/equation is a necessary condition for discussion of equilibrium proper-

ties of superconductors [1].
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Using Eq. (1) for M of our cylindrical sample, we rewrite Eq. (4) as

~FM Hð Þ ¼ Fn �
H

2
c

8π
V þ

H
2

8π
V: (5)

Now a question arises; up to what fields Eq. (1) is valid? Vast majority of superconductors are

of type II, for which Eq. (1) holds up to a low critical field Hc1 < Hcr and Hcr ¼ Hc2, which is an

upper critical field. However there is a relatively small group of mostly pure elementary

materials, for which Eq. (1) (or the Meissner condition B ¼ 0) holds in the entire field range of

the superconducting state, i.e., up to Hcr. Those are type-I superconductors. An example of

M Hð Þ dependences for a typical type-I superconductor with η ¼ 0 is shown in Figure 2.

S/N transition takes place when free energies of the S and N states are equal, i.e., ~FM Hcrð Þ ¼
~FM

� �

n
. For our type-I cylindrical sample, as seen from Eq. (5), this implies that Hcr ¼ Hc and

therefore the S/N transition in specimens with η ¼ 0 must be discontinuous, i.e., thermody-

namic phase transition of the first order, in full agreement with experimental results, e.g., with

those shown in Figure 2.

1.2. Intermediate state

Now, we turn our cylinder perpendicular to the applied field. In a weak field, the specimen is

in the Meissner state (inside it B ¼ 0), but the pattern of field lines looks now as shown in

Figure 1b. The external field near the specimen is tangential to its surface, which follows from

always valid conditions of continuity of the normal component of B and of tangential component

Figure 2. Experimental data for magnetic moment of a pure indium film 2.79 μm thick measured in parallel applied field

H at indicated temperatures. Errors up and down indicate that the measurements were conducted at increasing and

decreasing field, respectively.
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of Hi [2, 4]. Indeed, our cylindrical specimen in perpendicular field in the Meissner state

represents a uniformly magnetized (B ¼ const ¼ 0) prolate ellipsoid with η = 1/2 [2, 4]. Inside

of any uniform ellipsoid, Hi is also uniform, and when H is parallel to an axis of ellipsoid with

respect to which the demagnetizing factor is η, the fields Hi, B, and H are connected with each

other as.1

1� ηð ÞHi þ ηB ¼ H: (6)

Hence, the field Hi inside our specimen in the Meissner state is H= 1� ηð Þ, and therefore Hi on

the external side of the specimen surface (the external field) is

Hi ¼ Hsinθ= 1� ηð Þ, (7)

where θ is the angle between the normal and the applied field H.

Therefore near the “poles” of our specimen the field is zero, whereas near “equator” it is twice

as big as the applied field. This implies that the external field near “equator” reaches the

critical value Hc at H ¼ Hc 1� ηð Þ ¼ Hc=2. When H is increased beyond this value, the field

must enter the specimen destroying superconductivity. However, contrarily to the previous

(parallel) case, superconductivity cannot be destroyed completely because there is still plenty

of condensation energy left in the specimen.

Indeed, the specimen magnetic moment M � B�Hið ÞV=4π ¼ �HV=4π 1� ηð Þ ¼ �HV=2π;

therefore magnetic energy EM at H ¼ Hc=2 is

EM ¼ �

ð0:5Hc

0

M � dH ¼
VH2

c

16π
<

VH2
c

8π
: (8)

Hence, as seen from Eq. (4), ~FM < ~FM

� �

n
, and therefore the specimen must remain

superconducting.

At the first sight, one might expect that at H > Hc 1� ηð Þ, the field will gradually enter the

specimen, thus destroying superconductivity over the field range from Hc 1� ηð Þ to Hc. The

superconducting cylinder in such case would stay resistanceless with gradually changing

volume of the S core as shown in Figure 3. However, this scenario is problematic because as

soon as the field enters the specimen, the density of the field lines near the “equator” decreases

and hence the field inside the convex blue region in Figure 3 becomes smaller than Hc. Then

this region should go back to the S state.2 This means that when H > Hc 1� ηð Þ, the ellipsoidal

specimen splits into S and N regions, as it was suggested for the first time by Gorter and

Casimir [10].

1

Derivation of Eq. (6) can be found in [2]; Maxwell using it in [4] refers to Poisson.
2

Historically impossibility of configuration like that shown in Figure 3 was explained basing on a paradigm of instability

of the N phase against transforming to the S phase at Hi < Hc (see, e.g. [8]). However, this (the N phase at Hi < H) does

take place in specimens in the IS, but only at Hi in the upper part of the IS field range. At the lower edge of this range (at

H ¼ 1� ηð ÞHc) B in the first N domain and therefore Hi throughout the specimen is always Hc.
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After Peierls [11] this inhomogeneous state in type-I superconductors is named the intermediate

state. Properties of the IS were (and in some extent still are) one of the longest-standing chal-

lenges of physics of superconductivity. Below we will expose the main theoretical ideas and key

experimental achievements addressing these properties. Comprehensive reviews of the experi-

mental and theoretical works on the IS published before 1970 are available in [1, 12, 13]; for

references to more recent publications, we recommend papers by Brandt and Das [14] and Clem

et al. [15].

2. Model of Peierls and London

The first successful theoretical model of the IS magnetic properties was developed in 1936

independently by Peierls [11] and London [16]. In this model properties of ellipsoidal samples

are considered in an averaged limit, in which the nonuniform induction B is replaced by

average B. This allowed to use Eq. (6) with demagnetizing factor η calculated for uniform

ellipsoid. However Eq. (6) has two unknowns, B and Hi, both of which are needed to calculate

the specimen magnetic moment. Basing on a paradigm that the N phase is unstable atHi < Hc,

Peierls and London postulated that inside the specimen in the IS (i.e., at 1� ηð ÞHc < H < Hc),

Hi ¼ Hc: (9)

Eqs. (2), (6), and (9) constitute a complete system of equations. Solving it one finds B, Hi, andM:

H ≤Hc 1� ηð Þ

B ¼ 0

Hi ¼ H= 1� ηð Þ

M ¼ HV=4π 1� ηð Þ

8

>

<

>

:

(10)

Hc 1� ηð Þ ≤H ≤Hc

B ¼ H �Hc 1� ηð Þð Þ=η

Hi ¼ Hc

M ¼ V H �Hcð Þ=4πη

:

8

>

<

>

:

(11)

Figure 3. Cross section of the cylindrical sample in case if superconducting phase (S, colored in gray) is gradually

replaced by the normal (N, colored in blue) phase filled by the field.
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Graphs of these functions for B and M are shown in Figure 4 in reduced coordinates. It is

important that area under the graphs for 4πM Hð Þ=VHc vs. H=Hc is the same 1/2. Therefore this

model meets the necessary thermodynamic condition of Eq. (4). The PL model fits well exper-

imental data obtained for thick specimens, i.e., when the field inhomogeneities near the

surfaces through which the flux enters and leaves the specimen are negligible. Overall, the PL

model represents a global description of the IS in zero-order approximation [8]. Similar model

for the mixed state in type-II superconductors is available in [17]. For type-I superconductors

this new model converts to the model of Peierls and London.

3. Landau laminar models

Magnetic flux structure of the IS was for the first time considered by Landau [18] for an infinite

parallel-plane plate (slab) in perpendicular field, i.e., for the sample-field configuration shown

in Figure 1c. In such a specimen the surface current (and hence the Meissner state) is absent

because B ¼ H, and therefore g ¼ H � B
� �

c=4π ¼ 0 at any H from zero to Hcr. Due to that the

IS starts at H right above zero, no matter how small is this field. Magnetic moment of this

specimen (Landau considered thick plate) is M Hð Þ ¼ �Hc þHð ÞV=4π; graphs for B and M are

shown by the green lines in Figure 4a and b.

Assuming that (i) the plate is split for regularly structured S and N laminae and (ii) the

boundary of a cross section of the S laminae is the line of induction B with magnitude Hc at

the S/N interface, Landau calculated shape of rounded corners of the S laminae near the

sample surface. Landau’s scenario for cross section of the S-lamina near the surface is shown

in Figure 5a. To meet the second assumption, Landau splits a central field line for two branches

(oba and ocd in Figure 5a) making a sharp (90�) turn at the splitting point (o). Hence, in this

scenario the field fills all space outside the specimen, as it is supposed to be the case in

magnetostatics. On the other hand, splitting the field line challenges the magnetostatics rules

[4], and the sharp turn of the line may cost the system too much energy [2, 19].

Figure 4. Peierls and London model. Average magnetic induction (a) and magnetic moment (b) for specimens with

demagnetizing factor η ¼ 1 (infinite slab in perpendicular field, green line), η ¼ 1=2 (long cylinder in perpendicular field,

blue line) and η ¼ 0 (long cylinder in parallel field, red line). NS designates the normal state (black line).
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The rounded corners and the field inhomogeneity near the surface yield an excess energy of

the system favoring to a fine laminar structure (directly proportional to a period D of the one-

dimensional laminar lattice). On the other hand, there is an excess energy associated with the

surface tension at the S/N interface in the bulk, which favors to a coarse structure (reversely

proportional to D). Optimizing sum of these two energy contributions in the specimen free

energy, Landau calculated the period:

D2 ¼
δd

f L hð Þ
, (12)

where δ is a wall-energy parameter characterizing the S/N surface tension and associated with

the coherence length [2, 3] and f L hð Þ is the Landau spacing function determined by the shape of

the corners and the near-surface field inhomogeneity and h ¼ H=Hc. f L hð Þ was calculated

numerically in [21], and an analytical form of this function was obtained in [22] (see also [2]).

Soon thereafter Landau abandoned this model, admitting that the proposed flux structure

does not correspond to a minimum of the free energy [23]. So, he suggested another so-called

Figure 5. Cross-sectional views of the S and N laminae and of the field distribution (in A, C, and D) near the surface(s) of

a type-I plane-parallel slab in perpendicular magnetic field. (A) Landau [18], (B) Landau [19], (C) Tinkham [3], (D)

Abrikosov [7], and (E) Marchenko [20]. Letters s and n designate superconducting and normal phases, respectively; v

designates the free space. In (C) v also designates a void in the static field outside the sample. See text for other notations.
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branching model [19, 23] (see also [1, 8]), in which N laminae near the surface split for many

thin branches as shown in Figure 5B, so that the flux emerges from the sample uniformly over

the whole surface. However, this branching model was disproved by Meshkovskii and

Shalnikov when they for the first time directly measured flux structure of the IS [24].

4. Other versions of near-surface properties

One of the important consequences of the Landau models is demonstration of significance of

the near-surface field distribution and domain shape (FDDS) for forming and stabilizing the

flux structure of the IS. On that reason it is worth to briefly overview other available scenarios

for FDDS.

There are two simplified modifications of the original (non-branching) Landau’s version of

FDDS.

Tinkham [3] proposed that the dominant contribution in the surface-related properties comes

from field inhomogeneities outside the sample extending over a “healing length” Lh as shown

in Figure 5C. Lh ¼ D�1
n þD�1

s

� ��1
, where Dn and Ds are the widths of the normal and

superconducting laminae, respectively. Correspondingly, Tinkham neglects the roundness of

the laminae corners (b and c in Figure 5A). This version meets the limiting cases—D ! 0 when

either Ds ! 0 or Dn ! 0—and is consistent with images of the IS flux structure (see, e.g., [13,

24, 25]). Tinkham’s FDDS works surprisingly well for the IS [25, 26]; it was also successfully

validated for the mixed state in type-II superconductors [27]. Note that all of these are in spite

of apparent contradiction of the Tinkham’s scenario with basics of magnetostatics, since it

allows for existence of voids in the static magnetic field near the sample (e.g., in a region

designated by v in Figure 5C).

Abrikosov [7] proposed another simplified version of Landau’s FDDS. He assumed that major

role is played by the round corners and therefore neglected the field inhomogeneity outside the

specimen. However, the latter means that the field near the surface is uniform, and therefore this

scenario is inconsistent with images of the IS flux structure. Abrikosov’s version of FDDS is

shown in Figure 5D, where size of the corners c is the same as Lh in the Tinkham’s scenario.

An interesting result for a possible domain shapes was obtained by Marchenko [20]. Like

Landau [18], Marchenko used conformal mapping to calculate the domain shape in infinite slab

but in a tilted field. He found that in a strongly tilted field width of the S-domains can increase as

shown in Figure 5E. We note that in such case, the field lines should leave the N domains

converging instead of diverging as in Figure 5A–D, because bending of the lines over sharp

corners (marked a in Figure 5E) would take enormous energy [2]. Therefore this scenario also

allows for existence of the voids in the field outside the specimen; and moreover, it may lead to

appearance of a maximum in the field magnitude in the free space above the N laminae.

To conclude this section on theoretically predicted scenarios for the near-surface properties of

the IS, we note that neither of them is consistent simultaneously with the classical magneto-

statics and with experimental images of the flux structure. So far no experimental results on
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FDDS in the IS have been reported. Hence measurements of these properties are open and

important (see, e.g., Landau’s papers [18, 19, 23]) problem of fundamental superconductivity3.

5. Key experiments

Although we began this chapter from theoretical models, a real story of the IS has started from

experiment. Measuring electrical resistance R of tin wires, De Haas with collaborators revealed

a strong dependence of R Hð Þ on direction of the applied field H: instead of a sharp S/N

transition at a threshold field (Hc) in the parallel field, R returns to its full value gradually at

the field range from about Hc=2 to Hc when the field is perpendicular [29, 30]. Later it was

shown that reproducible R Hð Þ in the perpendicular field is liner [28]; one of the graphs for

R Hð Þ from [28] is reproduced in Figure 6. The linear R Hð Þ is consistent with the Peierls-London

model; however, it was revealed that transition from the Meissner state to the IS takes place at

HI , which is somewhat greater than 1� ηð ÞHc ¼0.5Hc.

The first observation of the IS magnetic structure was achieved by Meshkovsky and Shalnikov,

who mapped the field in a gap between two tin hemispheres with radius 2 cm using a resistive

probe made of a tiny bismuth wire [24]. Originally this experiment was designed to verify the

Figure 6. Relative resistance of a high-purity tin cylindrical wire of 0.4 mm in diameter and 5 cm in length at temperature

1.666 K (a) in increasing and in decreasing transverse field and (b) in increasing longitudinal field. After Andrew [28].

3

First results of direct measurements of FDDS were recently presented in V. Kozhevnikov, A. Suter, T. Prokscha, C. Van

Haesendonck arXiv:1802.08299v1 [cond-mat.supr-con] (2018).
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Landau branching model, according to which the field near the surface is uniform and the flux

structure can be observed only in a narrow gap inside the specimen provided the gap width is

less than some critical value estimated by Landau [19]. It turned out that there is no critical gap

and the field is inhomogeneous both inside (in the gap) and outside the specimen. These

results unambiguously turned down the branching model. Typical images and diagrams for

the field distribution obtained by Meshkovsky and Shalnikov are available in [1].

Further progress in imaging the IS structure was reached using Bitter or powder technique and

magneto-optics [13]. It was established that the flux pattern in flat plates in perpendicular field

consists of irregular corrugated laminae transforming into N (S) fractional laminae and tubes

near the low (high) end of the IS field range. A numerous variety of different flux patterns were

reported when samples are in nonequilibrium state [12].

A detailed study of the IS flux pattern was conducted by Faber with tin and high-purity

aluminum parallel-plane plate specimens [31]. It was found that at high reduced temperature

( ≈ 0:9Tc) in a broad field range, the structure is pass-independent (i.e., reproducible at increas-

ing at decreasing fields) and consists of corrugated laminae. Therefore Faber concluded that

the laminar flux structure is equilibrium structure of the IS. Typical images of the pass-

independent flux pattern in perpendicular field from the Faber’s work are shown in Figure 7.

A breakthrough in forming regular and controllable IS flux structure was achieved by Sharvin [32].

Applying the field tilted with respect to a single-crystal Sn specimen, Sharvin obtained a regular

linear laminar structure as shown in Figure 8. Measuring period of the structure and using

Landau’s formula, Eq. (12), corrected to account the field inclination, Sharvin calculated the

wall-energy parameter δ. Similar experiments and calculations Sharvin performed for In [32].

The aforementioned difference between the critical field HI observed in resistive measure-

ments and theoretically expected value for this field 1� ηð ÞHc was investigated by Desirant

and Shoenberg in a detailed study of magnetization of long cylindrical specimens of different

radii in transverse field [33]. Apart from confirmation of the resistive results, Desirant and

Figure 7. Typical images of pass-independent flux structures of the IS obtained with aluminum parallel-plane plate

specimen in perpendicular field at temperature 0.92Tc and the field 0.38Hc (a) and 0.53Hc (b). Dark areas are

superconducting. After Faber [31].
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Shoenberg revealed that the critical field of the IS/NS transition Hcr is appreciably smaller than

the thermodynamic critical field Hc measured in parallel field. It was also found that the

differences ΔHI ¼ HI � 1� ηð ÞHc and ΔHcr ¼ Hc �Hcr depend on the specimen radius: the

smaller the radius, the greater the differences. One of magnetization curves reported in [34] is

reproduced in Figure 9.

Figure 8. Photograph of the IS flux structures taken with a single-crystal tin disc-shaped specimen (∅ 50 � 2 mm2) in the

field tilted for 15� with respect to the specimen at temperature 0.58Tc and field 0.95Hc. Light areas are normal. After

Sharvin [32].

Figure 9. Magnetization curve (m ¼ M=V) of cylindrical mercury specimen with radius 23 μm in transverse field at

temperature 2.12 K measured at increasing (⊙) and decreasing (þ) fields. Hc is thermodynamic critical field measured in

parallel field. Solid line based on landau branching model [19] with wall-energy parameter adjusted for best fit. After

Desirant and Shoenberg [34].
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The differences of ΔHI and ΔHcr are usually interpreted as a price paid by the specimen for the

extra energy needed to create the S/N interfaces in assumption that ΔHI and ΔHcr are small [3, 8].

We note that this explanation is not full because significant part of the extra free energy is

associated with the field inhomogeneity near the specimen surface. On the other hand, the

observed extension of the Meissner state (up to HI > 1� ηð ÞHc) means that 4πM=V at HI is

greater than Hc, the value following from the PL model. This “excess magnetic moment” is

consistent with the rule of 1/2, and it is indeed seen in Figure 9 and in other data reported by

Desirant and Shoenberg. However this feature can hardly be attributed to the S/N surface tension.

Egorov et al. [35] measured induction B in the bulk of N domains of a high-purity single-

crystal tin slab (18 � 12 � 0.56 mm3) in perpendicular field using μSR spectroscopy. Reported

results are shown in Figure 10. Ht in this graph corresponds to Hcr in our notations. The

tubular phase mentioned in the caption most probably corresponds to the filament state

discussed in [36].

Results of Egorov et al. show that B in N domains is Hc at low applied field and decreases with

increasing field down to Hcr at the IS/N transition. But induction B in N domains equals to the

field strength Hi. Therefore the original postulate used in the PL and Landau models (Hi ¼ Hc)

is correct for the low reduced fields, but it can be not so at higher fields.

Recently the IS problem was revisited by Kozhevnikov et al. [25, 26] via magneto-optics and

measurements of electrical resistivity and magnetization in high-purity indium films of different

thickness in the fields of different orientations. An immediate motivation for this research was

discrepancy in values of the coherence length for Sn and In following from Sharvin’s results for

the IS structure [32, 33] and those obtained from the measured magnetic field profile in the

Figure 10. Induction in N domains of the Sn single-crystal plate at temperature 0.08 K measured at increasing (circles,

solid line) and decreasing (triangles, dashed line) applied field. For decreasing field the N state is field supercooled down

to Hscl. At increasing field the laminar structure transforms to one with tubular S regions at Ht. After Egorov et al. [35].
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Meissner state [37]. In Figure 11 we reproduce typical magneto-optical images obtained for a

2.5-μm-thick film. The most unexpected result revealed with this specimen is that in perpendic-

ular field the critical field Hcr ≈ 0:4Hc at T ! 0. A typical magnetization curve obtained with

another (3.86-μm-thick) film is shown in Figure 12. Hcr for this specimen at 2.5 K is 0.65Hc and

Figure 11. Magneto-optical images taken with 2.5-μm-thick in film at 2.5 K. [H∥ , H⊥ in Oe]: (a) [0, 1], (b) [60, 8], (c) [100, 6],

(d) [110, 3], and (e) [115, 1.3]. Superconducting regions are black. After Kozhevnikov et al. [25].

Figure 12. Magnetization curve of 3.86-μm-thick indium film measured in perpendicular field at 2.5 K. Green (orange)

circles represent the data measured at increasing (decreasing) field. Shadowed area represents the specimen condensation

energy (1/2 in the reduced coordinates of this graph). Hc was determined from magnetization curve in parallel field, and

the specimen volume was determined from the slope of that curve. After Kozhevnikov et al. [25].
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4πM(0)/V = 1.6Hc. All data were well reproducible, and the area under magnetization curves

plotted in reduced coordinate is close to 1/2, meaning that the obtained experimental results

reflect the equilibrium properties of the IS. However these results conflict with available theo-

retical models. A new model, consistently addressing outcomes of this work and explaining

earlier revealed “anomalies,” is presented in [25, 26]. We discuss it in the following section.

6. Laminar model for flat slab in tilted field

The simplest of experientially observed equilibrium domain structures of the IS is one-

dimensional laminar lattice in slab-like specimens placed in a tilted field. Therefore such a

specimen/field configuration is the most convenient for modeling. A laminar model for tilted field

(LMTF) was developed in [25, 26]. Schematics of the specimen in the LMFT is shown in Figure 13.

Setting of the model is:

(I) Specimen is in the free space (vacuum).

(II) Specimen thickness d≫λ. This means that negative surface tension of S/V (V stands for

vacuum) interfaces due to nonzero H∥ is neglected.

(III) Longitudinal sizes of the specimen (along x and y axes) are much greater than thickness

d, i.e., the slab is considered infinite. This means that flux of the perpendicular compo-

nent of the applied field H⊥ is conserved, and therefore H⊥ ¼ B⊥ ¼ B⊥rn, where B⊥ is

average perpendicular component of the induction over the specimen, B⊥ is perpendic-

ular component of the induction in N domains (considered uniform), and rn is volume

fraction of the N phase: rn ¼ Dn=D ¼ Vn=V withDn and Vn designating the width of the

N laminae and a total volume of the N phase, respectively.

(IV) B∥ ¼ Hið Þ∥ ¼ H∥ due to the absence of the demagnetizing field along y-axis or along the

parallel component of the applied field H∥.

(V) Tinkham’s version of the FDDS (see Figure 5C) is adopted due to its simplicity and

consistency with the experimental images.

We start from construction of a thermodynamic potential ~F T;V;Hið Þ, which is the Legendre

transform of the Helmholtz free energy F T;V;Bð Þ to the variables T;V;Hið Þ. It is often referred

to as the Gibbs free energy4:

~F ¼ F�
B �Hi

4π
V ¼ F�

B∥Hi∥

4π
V �

B⊥Hi⊥

4π
V ¼ F�

B∥Hi∥

4π
V ¼ F�

H2
∥

4π
V, (13)

where F T;V;Bð Þ is Helmoltz free energy. The term B �Hi=4πð ÞV reflects work done by the

magnet power supply to keep the set field H when the flux in the system changes [2]. In our

case the flux of the perpendicular component is fixed, and therefore the term B⊥Hi⊥=4πð ÞV

4

It should be remembered that canonical Gibbs free energy is function of pressure, but not volume, as in this case.
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drops out. On that reason in pure perpendicular field, ~F ¼ F [2, 3, 8]. On the other hand,

Hi∥ ¼ H∥, due to the specimen geometry (see setting (iv) above).

To transform ~F T;V;Hið Þ to the total free energy ~F T;V;Hð ÞM, we need to add terms associated

with energy of interaction of the applied field H with the specimen. In pure parallel case, this

term is þ H2=8π
� �

V [2]. In pure perpendicular case, it is � H2=8π
� �

V (see appendix in [26] and/

or [2]). Therefore in our case the total free energy of the specimen is

~FM ¼ ~F þ
H2

∥

8π
�
H2

⊥

8π

" #

V: (14)

Now, summing:

a. Free energy at zero field V f n0 �H2
c 1� rnð Þ=8π

� �

�, where f n0 ¼ Fn0=V is free energy density

of the N state in zero field.

b. Energy of the field B in the N domains Vrn B2
⊥ þ B2

∥

� �

=8π.

c. Energy of the S/N interfaces 2VH2
cδ=8πD.

d. Excess energy of the field over the healing length 2VLh rnB
2
⊥ �H2

⊥

� �

=8πd, and plugging all

in Eq. (14), one obtains for ~f M ¼ ~FM=V:

Figure 13. Cross-sectional view of the specimen/field configuration in the laminar model for tilted field. H∥ and H⊥ are

parallel and perpendicular components of the applied field, respectively. Domains are rectangular parallelepipeds

extended along H∥ (y-axis). The healing length Lh is the characteristic distance over which the disturbed field relaxes to

the uniformly distributed state. In N domains the parallel component of the induction B∥ ¼ H∥, while the perpendicular

component B⊥ ¼ H⊥=rn , where rn ¼ Dn=D ¼ Vn=V is volume fraction of the N phase and Vn is the total volume of the N

phase. After Kozhevnikov et al. [26].
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~f M ¼ f n0 � 1� rnð Þ
H2

c

8π
þ

H2
⊥

8πrn
� rn

H2
∥

8π
þ 2

H2
c

8π

δ

D
þ 2

H2
⊥

8π

D

d
1� rnð Þ2 þ

H2
∥

8π
�
H2

⊥

8π
: (15)

Then, minimizing ~f M with respect to D, one finds equilibrium period of the structure

D2 ¼
dδ

r2n 1� rnð Þ2
H2

c

B2
⊥

¼
dδ

1� rnð Þ2
H2

c

H2
⊥

: (16)

After plugging this optimal D into Eq. (15), the latter takes form:

~f M ¼ f n0 �
H2

c

8π
1� rnð Þ 1� h2∥ �

h2⊥
rn

� 4h⊥

ffiffiffi

δ

d

r

" #

, (17)

where h⊥ and h∥ are reduced components of the applied field H⊥=Hc and H∥=Hc, respectively.

Important to note that with the optimal D the terms related to the S/N interfaces and to the

field inhomogeneity near the surface are equal. This means that “responsibility” for deviation

of the properties of real specimens from those in the PL model is equally shared between these

two contributions in the specimen free energy.

Minimizing ~f M with respect to rn, one finds equilibrium volume fraction of the N component:

r
2
n ¼ h2⊥= 1� 4h⊥

ffiffiffiffiffiffiffiffi

δ=d
p

� h2∥

� �

: (18)

At the IS/N transition rn=1, hence

hcr⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 δ=dð Þ þ 1� h2∥

q

� 2
ffiffiffiffiffiffiffiffi

δ=d
p

: (19)

And magnitude of the reduced induction b ¼ B=Hc in the N domains is

b2 ¼ b2⊥ þ b2∥ ¼ h2⊥=r
2
n þ h2∥ ¼ 1� 4h⊥

ffiffiffiffiffiffiffiffi

δ=d
p

: (20)

Before calculating the magnetic moment, we transform Eq. (17) substituting rn from Eq. (18) and

using b⊥ from Eq. (20): b2⊥ ¼ 1� 4h⊥
ffiffiffiffiffiffiffiffi

δ=d
p

� h2∥. Then Eq. (17) becomes very compact:

~f M ¼ f n0 �
H2

c

8π
b⊥ � h⊥ð Þ2 ¼ f n0 �

B2
⊥

8π
1� rnð Þ2: (21)

Now one can calculate the specimen magnetic moment from the definitive relationship

Eq. (3):

M � �∇H
~FM

� �

¼ �
∂~FM

∂H∥

yþ
∂~FM

∂H⊥

z

 !

, (22)

where y and z are unit vectors along the y and z axes, respectively.
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The first term in Eq. (22) is

∂~FM

∂H∥

¼
V

Hc
�
∂~f M
∂h∥

¼
V

Hc
�
H2

c

8π
2 b⊥ � h⊥ð Þ

∂b⊥
∂h∥

: (23)

Since ∂b⊥=∂h∥ ¼ h∥=b⊥ (see Eq. (20)), the final form of the parallel component of the specimen

magnetic moment is

�M∥ ¼
∂~FM

∂H∥

¼
V

Hc

H2
c

8π
2 b⊥ � h⊥ð Þ

h∥
b⊥

¼
VHc

4π
1�

h⊥
b⊥

� �

h∥ ¼
V

4π
1� rnð ÞH∥: (24)

And the perpendicular component of the moment is

�M⊥ ¼
∂~FM

∂H⊥

¼
V

Hc

∂~f M
∂h⊥

¼ �
V

Hc

2H2
c

8π
b⊥ � h⊥ð Þ

∂b⊥
∂h⊥

� 1

� �

¼
V

4π
1� rnð Þ 1�

∂B⊥

∂H⊥

� �

B⊥: (25)

All obtained formulas are analyzed in detail in [25, 26], where it is shown that the model

correctly describes experimental data. In particular, the coherence length calculated from

measured D using Eq. (16) agrees well with that obtained from the magnetic field profile

measured in [36]. Here we confine our discussion by limiting cases.

In parallel field (H⊥ ¼ 0) the model (Eq. (18)) yields rn = 0, meaning that the specimen is in the

Meissner state where the N phase is absent. Then ~f M (Eq. (17)) converts to Eq. (5):

~f M ¼ f n �
H2

c

8π
1� h2
� �

¼ f n �
H2

c

8π
þ
H2

8π
, (26)

and M ¼ M∥ (Eq. (24)) converts to Eq. (1):

M∥ ¼ M ¼ �
V

4π
H: (27)

In perpendicular field (H∥ ¼ 0) one can see that hcr ¼ hcr⊥ð Þ decreases with decreasing thickness d

(Eq. (19)) in accord with the experimental data [25, 26, 33], and the induction B ¼ b �Hcð Þ in N

domains equals toHc atH ¼ HI ¼ 0 and decreases with increasing H (Eq. (20)), as it was found

experimentally in [34]. For magnetization 4πM=V at H ! 0, when rn ¼ 0, the model (Eq. (25))

yields

4πM 0ð Þ

V
¼

V

4π
1�

∂B⊥

∂H⊥

� �

Hc: (28)

Since B decreases with increasing H, ∂B⊥=∂H⊥ð Þ < 0, and therefore the expression in parenthe-

ses is greater than unity. This makes 4πM 0ð Þ=V greater than Hc, thus explaining appearance of

the excess magnetization at HI as it is seen, e.g., in Figures 9 and 12.

The infinite slab in perpendicular field represents ellipsoid with η = 1. If the slab is thick (i.e.,

d≫ δ), the LMTF model converts to the PL model for specimens with unity demagnetization.
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Specifically, in the thick slabs rn ¼ H=Hc (Eq. (18)), and therefore (a) B ¼ h=rnð ÞHc ¼ Hc and

Hi ¼ B=μ ¼ Hc, and (b) 4πM=V ¼ �Hc þH, meaning that 4πM 0ð Þ=V ¼ �Hc and Hcr ¼ Hc,

exactly as it takes place in the PL model (Figure 4b). The third condition of Eq. (11) B ¼ H

follows from the law of the flux conservation always valid for infinite slabs. Thus the LMTF

model explains why the PL model works the best for thick specimens: because in such case

combined contributions due to near-surface field inhomogeneity and due to the S/N interfaces

(both are characterized by the ratio δ=d) are negligible compared to the bulk terms in Eqs. (15)

and (17).

Now, when we are convinced in correctness of the formulas for magnetization (see more in

[25, 26]), we can rewrite Eq. (17) in its canonical form coinciding with the mandatory form

for the total free energy Eq. (4):

~FM ¼ ~FM H ¼ 0ð Þ �

ð
H

0

M � dH ¼ Fs0 �

ð
H

0

M � dH ¼ Fn0 �
H

2
c

8π
V �

ð
H

0

M � dH (29)

where the components of M are given by Eqs. (24 and 25).

7. Concluding remarks

More than three decades starting from the 1930s, the problem of the IS was in the main focus of

experimental and theoretical researches on superconductivity. This resulted in significant pro-

gress reached in understanding properties of the IS as well as properties of superconducting state

as a whole. Excellent reviews of these researches are available in [1, 12]. However some puzzles

in the IS properties remained open until their possible explanations emerged in studies of recent

years. In this chapter we mostly focused at results of these studies.

In particular, we discussed a recently developed phenomenological model of the IS composed

for infinite slabs in arbitrary tilted magnetic field. Naturally, this model is not and cannot be

free of disadvantages. One of them can be associated with the use of an oversimplified

Tinkham approximation for the field distribution and domain shape near the surface through

which the flux enters and leaves the specimen. We believe that modern experimental capabil-

ities associated, e.g., with muon spectroscopy and noninvasive scanning magnetic microscopy,

can help to resolve this important and very interesting issue, which we discussed in the Section

IV. The new model discussed in Section VI is restricted by the slab-like specimens. Its extension

to all ellipsoidal shapes covered in the model of Peierls and London is another possible avenue

of research on the IS.

Finally, it is important to remind that the IS is one of two inhomogeneous superconducting

states. The second state is the mixed state in type-II superconductors, taking place in vast

majority of superconducting materials, including those used in practical applications. There-

fore understanding of properties of the IS can help to understand properties of the mixed state.

As an example, the field distribution and shape of the normal domains (vortices in type-II

materials) near the specimen surface should be similar in both these inhomogeneous states.
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