
Chapter 3

Adaptive Steering and Trajectory Control of Wheeled

Mobile Robots for Autonomous Navigation

Mariam Al-Sagban and Rached Dhaouadi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64227

Provisional chapter

Adaptive Steering and Trajectory Control of Wheeled
Mobile Robots for Autonomous Navigation

Mariam Al-Sagban and Rached Dhaouadi

Additional information is available at the end of the chapter

Abstract

This chapter presents a new reactive navigation algorithm for a wheeled mobile robot
(WMR) with a differential drive mechanism moving in unknown environments [1]. The
mobile robot is controlled to travel to a predefined goal position safely and efficiently
without any prior map of the environment. The navigation is achieved by modulating
the steering angle and turning radius. To avoid obstacles while seeking the goal position,
the dimensions and shape of the robot are incorporated to determine the set of all
possible collision‐free steering angles. The algorithm then selects the optimum steering
angle candidate to contour the obstacle. Simulation and experimental results on a WMR
prototype are used to validate the proposed algorithms.

Keywords: recurrent neural networks, obstacle avoidance, robots

1. Introduction

Over the years, mobile robots have evolved rapidly incorporating a wide spectrum of
applications. They aid within the field of medical technologies, assist in vehicle driving, and
can be occupied for use within hazardous rescue missions. Mobile robots helped monitor the
spread of oil during the catastrophic spill on the Gulf of Mexico [2]. Additionally, robots were
of great aid during the Japanese Fukushima nuclear crisis in monitoring the radiation levels
and cleaning up leftover debris [3].

In performing all previous tasks, mobile robots must be equipped with autonomous naviga‐
tion. This is described as the arrival at of the robot at a target location without any assistance,
and whilst avoiding obstacles present around. Perception, path planning, localization, and

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

motion control are the key elements that build toward autonomous navigation. With percep‐
tion, sensors pick up information regarding the robots immediate environment that are then
perceived and translated within the robot. The next step is path planning, which is the robot’s
ability to come to a consensus regarding the required action as a result of its expected goal.
The final step occurs with motion control through which the robot executes the required action
through its actuators [4].

In this chapter, we focus on path planning in unknown environments [5]. Path planning
represents a key feature of autonomous navigation. The problem of path planning is usually
classified in three categories according to the given environment and constraints:

• Global Path Planning—This framework requires full knowledge of the robot workspace; a
global map is supplied as given input.

• Local Path Planning (Sensor‐Based Path Planning)—This framework requires partial
knowledge of the workspace. Therefore, only an incomplete map is supplied.

• Reactive Navigation (Obstacle Avoidance)—In this framework, no a priori information is
required about the workspace. Instead, obstacles are discovered in real time while the robot
is executing its motion.

Due to the inherent nature of the obstacle avoidance problem, navigation algorithms do not
produce efficient paths and do not guarantee global convergence as would global path
planning algorithms. This would result the robot in producing inefficient paths or failing to
reach the goal position (trap position).

The implementation of path planning and obstacle avoidance techniques on a real mobile robot
imposes different types of constraints including kinematic, dynamic, and time constraints. The
differential drive robot must follow a curve path due to the kinematic constraint as it is unable
to reach the desired point place instantly and in a short period of time. Disregarding this
limitation, when dealing with path planning and obstacle avoidance techniques, would lead
to an unsafe design as the transitional curve may potentially intersect with obstacles and,
therefore, result in a collision.

2. Autonomous navigation concepts

2.1. The configuration space

For a two‐dimensional robot, the robot configuration can be fully described by rigidly attaching
a frame to the robot and then specifying the position and orientation of this frame in the global
frame. The complete specification of the location of every point on the robot is called a
configuration, q. The set of all possible configurations is called a configuration space or C‐
space (� ∈ �). A rigid object moving in a plane is, therefore, specified by the triple configuration,

q = (x, y, θ), and the configuration space can be represented by � = ℝ2 × �� 2 , where SO(2) is
the special orthogonal group of 2‐D rotations [6].

Robot Control42

The introduction of new notation is important for the description of collisions. The workspace
in which the robot moves will be denoted as �. When the robot moves in a plane, the work‐
space is now denoted as W = ℝ2. The subset of this workspace occupied by obstacles is then
denoted as � ⊂ �, and the subset occupied by the robot at configuration is denoted as� � ⊂ �. The robot must avoid a configuration causing it to come into physical contact with
any obstacle, as this would cause a collision otherwise. The set of configurations in which the
robot would come into a collision with an obstacle is defined as the obstacle configuration
space,

= { | () = 0}.obst q qÎ /IC C A O (1)

On the other hand, the set of all collision‐free configurations is defined as the free configuration
space. It is defined as the set difference

= \free obstC C C (2)

The configuration space of a rigid robot translating in the plane � = ℝ2 is two‐dimensional,
easily visualized in Figure 1. The circular‐shape robot is presented with an obstacle in the
workspace. When sliding the robot around the obstacle, the boundary configuration can be
determined. As a result, motion planning for the robot in the workspace is converted to motion
planning for a point robot in the configuration space [7].

Figure 1. Construction of the configuration space.

2.2. Definition of obstacle avoidance

Let qtarget be a target configuration. At time ti the robot is in configuration q(ti). The robot senses
a portion of the environment using its onboard sensors. Let the set of workspace obstacles seen

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

43

at configuration q(ti) be � � �� ⊂ �. The objective is to compute a motion control vector ui

such that

• The robot progresses to the target location F(q(ti), qtarget) < F(q(ti + T), qtarget), where�:� × � ℝ+ is a function that evaluates the progress of one configuration to another [8].

• The trajectory does not collide with the obstacles ,where ���, � is the set

of configurations of the trajectory followed from q(ti) to q(ti + T). T > 0 is the sampling period.

The solution of the problem is a sequence of control vectors {u1, …, un} computed in real time
that guide the robot eventually to the target configuration while avoiding the sensed obstacles
in the environment as shown in Figure 2.

Figure 2. Obstacle avoidance problem [8].

2.3. Kinematics of a two-wheel differential drive robot

A differential drive robot is composed of one passive wheel and two coaxial wheels. The
passive wheel provides stability, while the coaxial pair steer the robot through carefully
modulating their velocities. A straight line motion is achieved through equal velocities in both
wheels, while left and right motion occurs if the right wheel is faster than the left and the left
wheel is faster than the right, respectively. Pivoting is noticed when both wheels steer equally
as fast, but in opposite directions. A zero turning radius is a major advantage with this motion
configuration. An initial rotation can trigger motion in any direction. Further advantages to
this robot configuration include the simple mechanical structure and kinematic model and the
low fabrication cost. However, this robot configuration has also a few drawbacks: the wheels
must be driven with exactly the same velocity profile, which can be challenging considering
the actual variations between wheels, motors, and environmental differences. It is also difficult
for the robot to move on irregular surfaces. Moreover, the orientation of the robot may change
abruptly if one active wheel loses contact with the ground [9].

Robot Control44

There are two types of nonholonomic constraints governing the motion of the robot platform:
Pure rolling constraint and no lateral slip constraint [10]. The pure rolling constraint implies
that the robot wheels have a pure rolling motion without any slipping. This constraint is
described by the following equations

cos sin = ,r wx y L Rq q q w+ + && & (3)

cos = .l wx y sin L Rq q q w+ - && & (4)

The no lateral slip constraint implies that the robot’s center point velocity is only in the direction
of the axis of symmetry and its lateral component is zero. It is given by

cos sin = 0.y xq q-& & (5)

Without reference to forces and masses, robot kinematics implies a relationship between the
position of the robot and its wheels, velocities, and the equations of motion. This section
analyzes the mathematical kinematic relationship related to a differentially driven vehicle. The
robot configuration is illustrated in Figure 3.

Figure 3. Kinematics of a two‐wheel robot.

Let the rotational velocities of the left and right wheel be ωL and ωR, respectively, and Rw be the
wheel radius then. Then, assuming no wheel slippage, the translational velocities of the wheels
are given by

= ,l l wv Rw (6)

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

45

= .r r wv Rw (7)

Let the robot forward velocity in the local frame be v, the angular velocity about its Instanta‐
neous Center of Rotation (ICR) axis be ω, and let L be half the distance between the wheels, as
shown in Figure 4. Then the forward and angular velocities of the robot can be derived from
the wheels velocities as follows:

1 1
2 2
1 1

2 2

.l

rL L

vv
vw -

é ù é ùé ù
= ê ú ê úê ú
ê úë û ë ûë û

(8)

Figure 4. Instantaneous turning radius.

Let θ be the robot orientation with respect to the global x‐axis, then the robot velocity vector
in the global frame is given by

cos 0
sin 0 .

0 1

x
v

y
w

q
q

q

é ù é ù
é ùê ú ê ú= ê úê ú ê ú
ë ûê ú ê úë û ë û

&
&
&

(9)

Figure 4 shows the instantaneous turning radius rc that can be evaluated by

= .r l
c

r l

v v
r L

v v
æ ö+
ç ÷ç ÷-è ø

(10)

Robot Control46

2.4. Odometry

A robot’s global frame position is measured via the dead reckoning method. This method
integrates incremental movements measured through wheel encoders and a compass to
estimate position, given a known initial start location. The compass delivers the robot’s
orientation, θ. The incremental movements are measured through wheel encoders and a
compass. The robot orientation is θ, while the angular velocities of the left and right wheels ωl

and ωr, respectively, estimate the two‐dimensional position (x, y) via encoders. Encoders utilize
encoder pulses to deliver accurate arrival times through the measurement of angular velocities.
For encoder resolution, p, and elapsed time, Δt, the angular velocities of the wheels is then
defined as

2= .r,l p t
pw
D

(11)

Next, the robot kinematic Eqs (6–9) are used to find the robot velocities and . Let T denote
a fixed sampling time. Then, the robot position (x, y) in the global frame is found by performing
trapezoidal integration

old old= (),
2
Tx x x x+ +& & (12)

old old= ().
2
Ty y y y+ +& & (13)

Since the position estimation involves a numerical integration of the measurements, there will
be an error accumulation over time. As a result, a meaningful estimate of the position cannot
be attained with the dead reckoning method.

Systematic and nonsystematic errors are usually encountered with the dead reckoning
method. Systematic errors arise due to the misalignment and the unequal diameter of both
wheels, while nonsystematic errors may occur as a result of wheel slippage incidents or
nonhomogenous environment with uneven floors.

3. Collision avoidance algorithm

In this section, the proposed collision avoidance algorithm is developed using the following
parameters. The configuration q(ti) denotes the position and orientation of the robot in the
global frame, while � � �� represents only the sensed portion of the environment. This
measured portion of the environment is used to construct the robot’s workspace polar map,

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

47

which allows the set of obstacles � � �� to be identified and the configuration space � to be

computed. Next, the operation of the robot is performed in the C‐space to simplify the motion
planning and navigation. The motion of the two‐dimensional robot in the global frame can be
simplified to that of a one point (robot reference point) in the C‐space. The optimum steering
angle γdesired is selected by identifying all the workspace obstacles and classifying the available
gaps that can be accessed by the robot. The nonholonomic constraints are taken into account
by computing the required radius of curvature rc such that ���, � which is the set of configura‐

tions of the trajectory followed from q(ti) to q(ti + T) does not intersect with any obstacle,

. This is achieved by restricting the radius of curvature to an adaptive
upper bound. Finally, the robot executes the control action ui = (γdesired, rc). The process is
repeated until the robot converges to the target position qtarget. The algorithm is pictorially
illustrated in Figure 5.

Figure 5. Reactive navigation algorithm in action.

Robot Control48

3.1. Identification of reference steering angle

The steering angle with which the robot takes in the absence of obstacles is referred to as the
reference steering angle, γref. It is an intermediate variable that will later help us find the desired
steering angle γdesired, which is derived as follows. Let the robot configuration shown in Figure 6
be:

= (, ,),r r r rq x y q (14)

Figure 6. The robot’s trajectory to qtarget in the absence of obstacles.

where (xr, yr) is the position of the robot in the x − y plane, and θr ∈ [0, 2π) is the robot’s
orientation with respect to the x‐axis.

Let the target configuration be

target target target target= (, ,).q x y q (15)

Let � � be the vector connecting the robot reference point to the target location. The phase angle

of � � is given by

target

target

= arctan .r

r

y y
x x

a
-

-
(16)

Orientation error is corrected for by turning the robot in an angle defined as follows:
γref = α − θr , − π ≤ γref ≤ π. The range of γref is chosen in such a way that the smaller turning angle
is selected. The robot can turn clockwise (right) or counter clockwise (left). Figure 6 illustrates

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

49

the trajectory taken by the robot to move to the target configuration. The robot finally achieves
a straight line path once its x‐axis is on line with the error vector.

3.2. Model of robot environment

The robot environment is modeled by constructing a polar map of the workspace in the local
robot frame. At a given instant of time, the distances from the robot to all the surrounding
obstacles are measured by a laser range finder and used to build the partial polar map. The
laser range sensor is calibrated to scan the 200° front view of the robot in 20 sectors with a 10°
angular resolution, as illustrated in Figure 7. The measured data is returned as a set of data
points:

1 2 20(()) = { , ,..., ,..., }.i jq t p p p pP (17)

A point pj is expressed by a pair (dj, βj) where dj is the distance between the robot and the
obstacle at sector j. βj is the orientation of the jth sector, Sj, with respect to the local x‐axis. The
subset of workspace obstacles seen at configuration q(ti) is identified by applying a threshold
on dj,

(()) = { (())| }.i j i j safeq t p q t d RÎ £O P (18)

Figure 7. Polar map of the workspace.

Robot Control50

The choice of the threshold Rsafe plays an important role in the obstacle avoidance algorithm.
If Rsafe is large, then the obstacle avoidance will start too soon which results in a suboptimal
path. Also, by selecting a large Rsafe, the algorithm may fail to detect any gaps in the environ‐
ment and, therefore, incorrectly report a trap situation. For example, the robot in Figure 8
successfully detects a gap in the environment with Rsafe1 but fails to do so when using a large
value Rsafe2.

Figure 8. The effect of using a large value for Rsafe.

The detection range threshold Rsafe is allowed to take different values depending on the
situation encountered:

safe

0.1 if robot isclose to targetconfiguration;
=

0.5 otherwise.
m

R
m

ìï
í
ïî

(19)

The robot is considered close to the target configuration if:

2 2
target target() ()r rx x y y e- + - £ (20)

where ε is the target threshold.

3.3. Evaluation of configuration space

The 2D robot with radius R computes the Cobst for a given set of workspace obstacles, �. Assume

for a moment that a single obstacle exists, � = �� . As illustrated in Figure 9, �obst is found

through tracing the robot’s configuration as it slides around pj. Hence, the following relations
can be written for Circle Cj enclosing �obst with Radius R and center Ij = (Ij,x, Ij,y):

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

51

2 2 2
obst , ,= { |() () },j x j yq x I y I RÎ - + - £C C (21)

, = cos ,j x j jI R d b+ (22)

, = sin , 100 100 .j y j j jI d b b- £ £o o (23)

Figure 9. C‐space algorithm.

Next, we find the radial distance Li which is the radial distance between the robot and the
boundary of �� at angle βi. The equation of Cj in polar coordinates is

,2 2
, ,

,

= , = 2(),j y
j j x j y j

j x

I
I I atan

I
r f+ (24)

2 2 22 cos() = .i j j i i jL L Rr r b f+ - - (25)

Equation 24 can be solved for Li, giving:

2 2 2
min max= min{ cos() ()}, .sini j i j j i j iL Rr b f r b f a b a- ± - - £ £ (26)

Equation 26 has a real value if αmin and αmax are selected as:

min max= min{ sin }, = max{ sin }j j
j j

R Ra f a f
r r

± ± (27)

Robot Control52

The above analysis is for the case when � contains a single obstacle point. In the common case
where � consists of m obstacle points, Cobst is found by:

1
= .obst j

j m£ £
UC C (28)

The exact robots radius was utilized to enlarge the obstacle points. However, control errors
arise within the algorithm even when using accurate robot dimensions. Therefore, the radius
is modified to Rs = R + dsafe. This serves as a space buffer that adds a safety margin. In our
implementation dsafe is chosen to be 20% of the robot radius.

3.4. Selection of desired steering angle

The sectors in � are classified as free or occupied. The jth sector Sj is occupied if Lj ≤ Rsafe;
otherwise, it is free. Adjacent free sectors are grouped together to form gaps. Let Nfree denote
the number of sectors forming a gap. The gaps are classified as follows:

free

free

free

if > 3,
if = 3,
if < 3.

wide N
gap medium N

narrow N

ì
ï= í
ï
î

(29)

The desired steering angle is set as the angle of the gap edge with minimum cost. To ensure
the selection of the widest possible gap, the search at the beginning is performed over the free
wide gaps. if no solution exists within this category, the algorithm searches for a gap in the
medium category. The algorithm searches within the narrow gaps, only if the latter two
categories did not contain any solution.

1 ref 2Cost() = () .j j jc cb g b b- + (30)

The equation is explained as follows: the term c1(γref − βj) refers to the closeness of the goal
location to the desired steering direction. The second term, c2βj, indicates how close the current
robot heading is to the current steering direction. The coefficients are chose to be c1 = 0.3 and
c2 = 0.7, as with this, more weight is given to the steering angles resulting in a smoother
trajectory.

In Figure 10, the oscillatory trajectory of the robot is exemplified. At the initial start time t0, the
robot’s polar map has gaps G1 and G2. At this time, the robots steers toward G2 as it closer to
the qtarget. After an elapsed time T, the robot no longer has G2 within its range as it achieves a
better view, steering the robot toward G1. However, this action brings the robots back to its
initial state at t0 where both gaps are visible. With this repetitive motion, the robot gets trapped
in an infinite loop of repetitive actions. One way to solve this problem is to adjust the steering

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

53

angle adaptively and smooth the trajectory while avoiding the trap situations as described
later in the chapter.

Figure 10. Trajectory oscillation scenario due to a trapped situation.

The algorithm used to select the desired steering angle is summarized as follows:

if �ref ∈ � then

desired ref=g g

elseif �wide ≠ � then

wide
desired = arg min ().

j
jCost

b
g b

ÎG

else if �medium ≠ � then

desired
medium

= arg min ().j
j

Cost
b

g b
ÎG

else if �narrow ≠ � then

desired
narrow

= arg min ().j
j

Cost
b

g b
ÎG

Robot Control54

else

Turn 180° around.

end if

end if

3.5. Identification of adaptive radius of curvature

The robot follows a circular arc with constant wheel velocities instead of the desired steering
angle due to the nonholonomic kinematic constraint. A collision could take place when going
from the initial to the final path configuration as it may be interested with ����� � �� . An
example of a collision is demonstrated in Figure 11, where the robot had steered with a
relatively large radius.

Figure 11. The robot collides with an obstacle because it uses a large turning radius.

The sector along the local x‐axis is labeled as S0 and the sector along the desired steering angle

is labeled as Sdesired. Next, define ��� as the distance between the robot front reference point and
the obstacle point oj as shown in Figure 12. This distance is evaluated in terms of the variable
Lj as follows:

2 2= (cos) (sin) ,m
j j j j jL L a Lb b+ + (35)

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

55

Figure 12. Turning radius selection.

where a is the actual distance separating the middle point m of the wheels axis from the robot
front reference point. Lmin is then defined as the minimum distance to the nearest obstacle point
situated between Sdesired and S0. The optimum turning radius rc is selected so that the robot
trajectory goes through (Lmin, γdesired) as shown in Figure 12. The turning radius is derived as
follows. Consider the isosceles triangle where the two equal sides have length rc and the
remaining side has length Lmin. From the law of cosines,

2 2 2
min 1= 2 2 cos .c cL r r a- (36)

α1 can be found as

1 22 = 180,a a+ (37)

2 desired= 90 ,a g- (38)

1 desired= 2 .a gÞ (39)

Robot Control56

Using the double angle formula and equation 32, we can find rc as

min

desired

= .
2sin()c

L
r

g
(40)

A safety margin is introduced by reducing the turning radius so that the robot passes through
the point (Lmin − dsafe2, γdesired) instead. Also, the turning radius rc is forced to saturate if it is
greater than a threshold value rlarge. In our implementation, dsafe2 is selected to be 1.2R and
rlarge = 0.5m.

4. Experimental results

4.1. Mobile robot platform

A prototype robot platform was designed and built to validate the proposed algorithms. The
platform has a differential drive mechanism and is designed to operate indoors on flat solid
surfaces. Forward, backward, and steered motion is generated by controlling the right and left
wheel velocities based on the differential steering concept. The platform control system
includes a single board computer and a microcontroller, thus providing a dependable and
strong computing environment. The platform comprises also a large range of sensors including
ultrasonic sensors and a laser range sensor for obstacle detection, as well as a compass and
encoders for localization. Figure 13 shows a front view picture of the mobile robot platform.

The obstacle avoidance algorithms described earlier are tested on the mobile robot platform
in different environment settings. The testing is conducted indoors in a lab environment where
the lab furniture is to be avoided. The obstacles are arranged in five different scenarios that
vary in difficulty. For all scenarios, the sample time is T = 1 s, the robot initial configuration is
(0, 0, − 90∘) while the target x–y location is (1.6 m, − 1.5 m). Hence, the initial error in position
is 2.1932 m.

4.2. Environment setting 1

The robot’s initial configuration is connected to the target configuration through a direct
path indicated by a straight line as observed in Figure 14a. The trajectory, of length 2.2711 m,
is depicted in Figure 14b. In Figure 14c, the robot’s velocities are presented and are smooth
in the global frame. Figure 14d exemplifies the control action. An infinite radius of 0.5 is set
for keeping the plot in rage as the robot would steer in an infinite radius when moving in a
straight line.

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

57

Figure 13. Mobile robot platform.

Figure 14. Experimental results. (a) Robot initial position, target position, and the surrounding obstacles; (b) The obsta‐
cle points in green, the area occupied by the robot at each instance in time in red, and the reference point trajectory in
blue; (c) The robot velocities; (d) The robot control action.

Robot Control58

Figure 15. Illustration of the trajectory control algorithm at different time intervals. The obstacles surrounding the ro‐
bot at a given instant of time are shown as black dots in the Cartesian coordinate frame. A rough estimate of the obsta‐
cle contour is defined by the solid yellow line. The classified sectors are shown in the polar histogram. The desired
steering angle is indicated by a dashed green line, while the reference steering angle is indicated by a solid red line.

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

59

Critical time samples with some intermediate values are shown in Figure 15. At a sample of
12 s, the robot is only capable of viewing the square obstacles front side. This classifies the front
gaps as occupied. The reference steering angle is classified to be in an occupied sector as it is
of −20° value. Hence, the reference angle γdesired with a value 30° is selected as the next best
alternative, and the corresponding turning radius is approximately 0.205 m as shown in
Figure 14d. Figure 15b illustrates the robot at a sample time of 26 s. At this sample, the robot
can only observe the obstacles’ right side and has a γref of −54° and a γdesired of −10°. Additionally,
the robot takes a turn with a 0.5 m radius. The sample at 49 s is seen in Figure 15c. γdesired is
simply equated to γref as it resides in a free sector. This moves the robot straight to the target.
This scenario course was completed within 70 s.

Figure 16. Experiment 2 results. (a) The robot initial position, target position, and the surrounding obstacles; (b) The
obstacle points in green, the area occupied by the robot at each instance in time in red, and the reference point trajecto‐
ry in blue. (c) The robot velocities; (d) The robot control vector.

Robot Control60

Figure 17. (a) Shows the robot entering the passage; (b) shows the robot inside the passage; (c) shows the robot exiting
the passage.

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

61

Figure 18. Experiment 3 results. (a) The robot testing environment; (b) the robot trajectory; (c) the robot velocities; (d)
the robot control vector.

4.3. Environment setting 2

A scenario of wide entrance but narrow exit was modeled as in Figure 16a. The robot was
able to make it through the passage within 74 s and with a 2.2539 m trajectory length, shown
in Figure 16b below. Figue 16c and 16d depict the robot velocities and control actions,
respectively. Figure 17 illustrates with polar histograms for when the robot first enters the
passageway, moves within it and then exits.

4.4. Environment setting 3

The difference in this scenario is that the narrow nature of the passage way is greater than that
depicted in scenario 2, as shown in Figure 18a. As a result, the robots ability to pick up on and
detect the narrow gaps that are only slightly larger than its size is tested. As shown in
Figure 18b, the robot successfully makes it through the pathway and its corresponding

Robot Control62

velocities and control actions during the trajectory are illustrated in Figure 18c and 18d,
respectively. Figure 19 provides details via histograms from when the robot enters to when it
leaves the passageway 19.

Figure 19. (a) Shows the robot entering the passage; (b) Shows the robot inside the passage; (c) Shows the robot exiting
the passage.

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

63

4.5. Environment setting 4

The difference between this scenario, depicted in Figure 20a, and scenario 3 is the addition of
an obstacle to block the exit from the passageway, forming a dead end for the robot. The
trajectory taken by the robot is presented in Figure 20b, 20c, and 20d represent the robot’s
velocity and control actions through this passageway, respectively. In Figure 20c, fluctuations
left and right can be seen for the turning angle, γdesired. However, at t = 31 s the robot approaches
the dead end and comes to realize that the narrow gap is in fact blocked. The robot thus steers
left and now envisions the dead end as a gap, resulting in the robots attempt to steer toward
it once more. This is illustrated in Figure 21c. After 179 s, the robot completes the mission of
contouring the obstacles and overcoming the oscillations back and forth having travelled a
total of 6.0243 m.

Figure 20. Experiment 4 results (a) The robot initial position, target position, and the surrounding obstacles; (b) The
obstacle points in green, the area occupied by the robot at each instance in time in red, and the reference point trajecto‐
ry in blue; (c) The robot velocities; (d) The robot control vector.

Robot Control64

Figure 21. (a) Robot detects a passage; (b) robot discovers a dead end and attempt to turn away; (c) after the robot
moves away, the dead end appears as a gap.

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

65

4.6. Environment setting 5

The three obstacles in scenario 5 are placed in such a way to form a narrow gap that is smaller
than the robot size. This makes the robot’s initial steering to fall into a blocked path as
depicted in Figure 22a. The robot ends up at the target location due to its nature to persistently
search for a gap, as illustrated in Figure 22b, the target location as shown in Figure 22b. The
robot velocities and control actions are depicted in Figure 22c and Figure 22d, once more,
depict the robot’s respective velocities and control actions.

Figure 22. Experiment 5 results. (a) The robot testing environment; (b) The robot trajectory; (c) The robot velocities; (d)
The robot control vector.

5. Conclusion

This chapter presents a reactive navigation algorithm for a wheeled mobile robot under
nonholonomic constraints and in unknown environments. The mobile robot can travel safely
and efficiently to a preset destination having no prior knowledge of the environment. The

Robot Control66

shape and dimensions of the robot are all incorporated to produce the control algorithm that
determines the set of all steering angles that result in no collisions. The selection of the steering
angle depends on the one that is closest to the target and is identified as the widest gap. In
addition, the algorithm takes into account the nonholonomic constraints of differentially
steered robots by computing circular trajectories with adaptive radius of curvature. A mobile
robot platform was built and used to assess and validate the performance of the algorithms
over a variety of unstructured indoor environments. The results demonstrate that the naviga‐
tion algorithm is capable of driving the robot safely through different obstacle arrangements
and avoids successfully trap situations.

Author details

Mariam Al‐Sagban* and Rached Dhaouadi

*Address all correspondence to: g00006931@aus.edu

American University of Sharjah, Sharjah, the United Arab Emirates

References

[1] M. Al‐Sagban, “Autonomous robot navigation based on recurrent neural networks,”
Master’s thesis, American University of Sharjah, 2012.

[2] Robots attempt record breaking Pacific Ocean voyage. http://www.bbc.co.uk/news/technol‐
ogy‐15790088, 14, March 2012.

[3] Honda shows smarter robot, helps in nuclear crisis. http://www.taiwannews.com.tw/etn/
news_content.php?id=1753308, 09, Nov 2011.

[4] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots. Scituate,
MA, USA: Bradford Company, 2004.

[5] M. AlSagban and R. Dhaouadi, “Neural‐based navigation of a differential‐drive mobile
robot,” in 12th International Conference on Control Automation Robotics & Vision
(ICARCV), 2012, pp. 353–358.

[6] W.H. Mark Spong and M. Vidyasagar, Robot Modeling and Control. New York, USA:
Wiley, 2006.

[7] M.V. Mark W. Spong, Seth Hutchinson, Principles of robot motion: Theory, algorithms, and
implementation. Cambridge, Mass. [u.a.]: MIT Press, 2005.

[8] J. Minguez, F. Lamiraux, and J.‐P. Laumond, “Motion planning and obstacle avoid‐
ance,” in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer Berlin

Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
http://dx.doi.org/10.5772/64227

67

Heidelberg, 2008, pp. 827–852, 10.1007/978‐3‐540‐30301‐5_36. [Online]. Available:
http://dx.doi.org/10.1007/978‐3‐540‐30301‐5_36

[9] G. Campion and W. Chung, “Wheeled robots,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds. Springer Berlin Heidelberg, 2008, pp. 391–410,
10.1007/978‐3‐540‐30301‐5_18. [Online]. Available: http://dx.doi.org/
10.1007/978‐3‐540‐30301‐5_18

[10] O. Mohareri and R. Dhaouadi, “A neural network based adaptive tracking controller
for nonholonomic wheeled mobile robots with unknown dynamics,” in Proc. of
the ASME 2010 International Mechanical Engineering Congress & Exposition (IM‐
ECE2010), vol. 6, November 12–18, 2010.

Robot Control68

	Chapter 3
Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation

