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1. Introduction 

In the calculation of frictional force of a flexible element such as a belt, rope or cable 

wrapped around the cylinder, the famous Euler's belt formula (Hashimoto, 2006) or simply 

known as the belt friction equation (Joseph F. Shelley, 1990) is used. The formula is useful 

for designing a belt drive or band brake (J. A. Williams, 1994). On the other hand, a belt or 

rope is conveniently used to tighten a luggage to a carrier or lift up the luggage from the 

carrier. In that case, for the sake of adjusting the belt length and keeping an appropriate 

tension during transportation, various kinds of belt buckles are used. These belt buckles 

have been devised empirically and there was no theory about why it can fix the belt. The 

first purpose of this chapter is to present the theory of belt buckle clearly by considering the 

self-locking mechanism generated by wrapping the belt on the belt. Making use of the belt 

tension for a locking mechanism, a belt buckle with no locking mechanism can be made. The 

principle and some basic property of this new belt buckle are also shown. 

The self-locking of belt may occur even in the case where a belt is wrapped on an axis two or 

more times. The second purpose of this chapter is to present the frictional property of belt 

wrapped on an axis two and three times through deriving the formulas corresponding to an 

each condition. Making use of this self-locking property of belt, a belt-type one-way clutch 

can be made (Imado, 2010). The principle and fundamental property of this new clutch are 

described. 

As the last part of this chapter, the frictional property of flexible element wrapped on a hard 
body with any contour is discussed. The frictional force can be calculated by the curvilinear 
integral of the curvature with respect to line element along the contact curve. 

2. Theory of belt buckle 

Notation 
C  Magnification factor of belt tension 
F   Frictional force, N 
Fij = Fji   Frictional force between point Pi and Pj , N 
L  Distance between two cylinder centers, m 
N  Normal force of belt to surface, N 
Nij= Nji   Normal force of belt between point Pi and Pj , N 
Pi   Boundary of contact angle 
R  Radius of main cylinder, m 
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Ti   Tension of belt in i’th interval, N 
r  Radius of accompanied cylinder, m 
μ   Coefficient of friction for belt-cylinder contact 
μb   Coefficient of friction for belt-belt contact 
θ  Angle 

θi  Angle of point Pi 

θij =θji   Contact angle between Pi and Pj 

2.1 Friction of belt in belt buckle 
Figure 1 (a) shows a cross sectional view of a belt buckle and a belt wrapped around the two 
cylindrical surfaces. T1 and T4 (T1>T4 ) are tensions of the belt at both ends. There is a 
double-layered part where the belt is wrapped over the belt. Figure 1 (b) shows the enlarged 
view around the main axis. For simplicity, the thickness of the belt was neglected. 
According to the theory of belt friction, following equations are known for belt tensions of 
T1 , T2 and T3 (Joseph F. Shelley, 1990). 

 12 34
1 2 2 3,bT e T T e Tμ θ μθ= =  (1) 

T4’ and T4” are of inner belt tension at P1 and P2 respectively. The normal force to a small 
element of the inner belt at angle θ is denoted as dNb, which can be written as 

 2( )
2

b
bdN e T dμ θ θ θ−=  (2) 

Making use of T4’ and T4”, the normal forces of inner belt for an each section are expressed as 
 

 

                      (a) Belt buckle                                                              (b) Enlarged view 

Fig. 1. Mechanical model of belt buckle and enlarged veiw around main axis 
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The frictional force between P1 and P6 is 

 
6

16

1
16 16 4( 1)F dN e T

θ μθ
θ
μ= = −∫  (4) 

The inner belt tension T4’ is the sum of the frictional force F16 and the belt tension T4. 

 16
4 4 16 4'T T F e Tμθ= + =  (5) 

The frictional force F12 acting on the inner belt is composed of two forces denoted as F12in 
and F12out. The frictional force F12in is acting on the cylindrical surface, which is generated by 
the normal forces dNb and dN12. The normal force dNb is exerted from the outer belt. The 
other normal force dN12 is generated by the inner belt tension. So, F12in is given by 

 
1 1

12 12

2 2

2
12 12 4( 1) ( 1) 'b

in b
b

T
F dN dN e e T

θ θ μ θ μθ
θ θ

μμ μ
μ

= + = − + −∫ ∫  (6) 

Making use of Eq. (2), the frictional force F12out acting on the belt-belt boundary can be 
written as 

 
1

12

2
12 2( 1)b

out b bF dN e T
θ μ θ
θ
μ= = −∫  (7) 

The frictional force F12 is the sum of Eqs. (6) and (7). 

 12 12
12 2 4( 1) 1 ( 1) 'b

b

F e T e Tμ θ μθμ
μ

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠
 (8) 

As the belt tension T4” is the sum of F12 and T4’ , making use of Eq. (5) and (8), T4” can be 
written as 

 26 12
4 12 4 4 2" ' ( 1) 1b

b

T F T e T e Tμθ μ θ μ
μ

⎛ ⎞
= + = + − +⎜ ⎟

⎝ ⎠
 (9) 

Making use of Eq. (3), the frictional force F25 can be written as 

 
2

25

5
25 25 4( 1) "F dN e T

θ μθ
θ
μ= = −∫  (10) 

As the belt tension T3 is the sum of F25 and T4”, making use of Eqs. (9) and (10), T3 can be 
expressed as 

 25 26 12
3 25 4 4 2" ( 1) 1b

b

T F T e e T e Tμθ μθ μ θ μ
μ

⎧ ⎫⎛ ⎞⎪ ⎪= + = + − +⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

 (11) 
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Substituting Eq. (1) into Eq. (11) to eliminate T2 gives 

 
( )

56

1234 25
3 4( )1 ( 1) 1 /b

b

e
T T

e e

μθ

μ θμ θ θ μ μ+=
− − +

 (12) 

 Substituting Eq. (1) into Eq. (12) to get the relation between T1 and T4 gives 

 
( )

12 34 56

1234 25

( )

1 4( )1 ( 1) 1 /

b

b
b

e e
T T

e e

μ θ μ θ θ

μ θμ θ θ μ μ

+

+=
− − +

 (13) 

In the same manner from Eq. (1) to Eq. (13), in the case of T1<T4, corresponding relation of 
Eq. (13) yields as 

 34 56 12 16 12( )
4 1( 1) 1b b

b

T e e e e Tμ θ θ μ θ μθ μ θ μ
μ

+⎧ ⎫⎛ ⎞⎪ ⎪= + − +⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

 (14) 

2.2 Property of formulas of belt buckle 
The validity of Eqs. (13) and (14) might be checked by supposing an extreme case of either 
μ=0 or μb=0. Substituting μ=0 into Eq. (13) gives 

 
12

12
1 4

2

b

b

e
T T

e

μ θ

μ θ=
−

 (15) 

Next, substituting μb=0 into Eq. (13) gives 

 
34 56

34 56

34 25

( )
( )

1 4 4( )
121

e
T T C e T

e

μ θ θ
μ θ θ

μ θ θθ μ

+
+

+= =
−

 (16) 

Substituting μb=0 into Eq. (15) or substituting μ=0 into Eq. (16) gives T1=T4. Substituting 

12 0θ =  into Eq. (13) to remove the double-layered segment on the ratio of belt tension yields 

the conventional equation of belt friction. 

 34 56( )
1 4T e Tμ θ θ+=  (17) 

Equation (17) is also obtained by substituting 12 0θ =  into Eq. (16). This means that the ratio 

of belt tension is magnified by the factor C 

 
34 25( )

12

1

1
C

eμ θ θθ μ +=
−

 (18) 

due to the double-layered segment even in the case of μb=0. As far as these inspections are 

concerned, there is no contradiction in Eq. (13). As Eqs. (13), (15) and (16) are of fractions, 

the factor of T4 might become infinity meaning T4/T1=0. This fact virtually implies the 

occurrence of self-locking. Figure 2 shows the relation of μb and θ12 satisfying b 12 2eμ θ =  in 

Eq. (15). Self-locking occurs in the region above this curve where b 12 2eμ θ > . On the other 

hand, in the region below this curve, self-locking does not occur. In the case of μ=0, the 

equilibrium of moment of belt tension about O in Fig. 1 gives 
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Fig. 2. Boundary curve between self-locking condition and sliding condition 

 4 2 12T T T= −  (19) 

In the locking state with μ=0, T4=0 so that T1=2T2=2T3. It means that belt tension T1 is halved 
to T2 by the belt-belt friction. 
As the angle of double-layered segment θ12 is determined by the geometry of the buckle, 
some calculations were carried out to know the properties of Eq. (13) and Eq. (15) providing 
r/L=R/L=1/4. The direction of belt tension T1 and T4 were assumed to be the same direction 
for simplicity. Results are shown in Figs. 3 and 4. Figure 3 corresponds to the Eq. (15) where  
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Fig. 3. Change of belt tension ratio with unfolding angle ζ in the case of μ=0. Belt tension 
ratio increases greatly with an increment of the coefficient of friction μb especially in the 
vicinity of locking condition. It is very sensitive to angle ζ. 
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Fig. 4. Change of belt tension ratio with unfolding angle ζ in the case of μ=μb. Belt tension 
ratio increases greatly with an increment of the coefficient of friction. 
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Fig. 5. Change of belt tension ratio with unfolding angle ζ in the case of μ=0. The ratio of belt 
tension changes according to Eqs. (13) or (15). 

the coefficient of friction is μ=0. The ratio of belt tension increases with an increment of the 
coefficient of friction μb. It increases greatly when it approaches the locking condition. 
Figure 4 shows some results obtained by Eq. (13) providing μ=μb. The ratio of belt tension 
becomes far bigger than the that of Fig. 3. 
Some experiments were carried out to verify the validity of Eq. (15) by wrapping a belt 
around the outer rings of rolling bearings to realize the condition of μ=0. Belt tension T1 was 
applied by the weight. Belt tension T4 was measured by the force gauge. Figure 5 shows the 
results. Experimental data are almost on the theoretical curves. As predicted by the Eq. (15), 
self-locking was confirmed for the belt with μb=0.5 in the region of ζ<10˚ where 12 2beμ θ > . 
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2.3 Calculation of arm torque 

Figure 6 (a) shows the mechanical model of belt buckle (Imado, 2008 a). Figure 6 (b) shows a 

three-dimensional model of the buckle. The arm of the buckle rotates around the point O2. 

The angle of arm is denoted by α . The intersection angle of the line O-O2 and O2-O1 is 

denoted by β. From geometrical consideration, the angle ┚ is given by 

 β π α φ= + −  (20) 

Applying the cosine theorem to the triangle OO1O2, length L is given by 

 2
2 1 2 cos( )L L κ κ α φ= + + − ,  where 1 2/L Lκ =  (21) 

The symbol ζ  denotes the angle of line O-O1. 

 1ζ φ β= −  (22) 

Applying the cosine theorem and sine theorem to the triangle OO1O2 gives  

 
2 2 2

1 2 2
1 1

1

cos , sin sin( )
2

L L L L

LL L
β β φ α+ −

= = −  (23) 

Substituting Eq. (21) into Eq. (23)  and substituting Eq. (23) into Eq. (22) gives 

 1 1
tan sin( )

cos( )
ζ φ φ α

κ α φ
− ⎧ ⎫⎪ ⎪= − −⎨ ⎬

+ −⎪ ⎪⎩ ⎭
 (24) 

ζ , the angle of center line O-O1, can be calculated from the arm angle α  by Eq. (24). Note 

the angle ζ  is equal to α  when L1 becomes 0. 
The moment of the arm about point O2 due to belt tensions T2 and T3 is expressed by 

 2 2 3 3M c T c T= +  (25) 

where c2 and c3 are geometrical variables that can be calculated from the position of contact 

boundaries P2, P3, P4 and P5. Dividing the arm torque M with RT1, torque due to belt tension 

T1 about point O, gives non-dimensional moment N. 

 

 32
2 3

1 1

1 TT
N c c

R T T

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (26) 

Making use of Eq. (1), the fractions of belt tension in Eq. (26) can be calculated by 

 
12 12 34

32

1 1

1 1
,

b b

TT

T Te e eμ θ μ θ μθ= =  (27) 

Figure 7 shows some examples of non-dimensional torque N. For simplicity, the coefficients 

of friction were taken to be μ=μb. The non-dimensional torque N decreases to be negative 

value with decrement of arm angle α . It means an occurrence of directional change in arm 
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torque. This negative torque acts so as to hold the arm angle in a locking state without any 

locking mechanism. The angle where arm torque N becomes 0 is denoted by Cα . It depends 

on the geometry of buckle and the coefficients of friction μ and μb. Making use of Eqs. (13) 

and (24), the fraction of belt tension can be calculated. Figure 8 shows some results. The 

fraction of belt tension, T4/T1, decreases with arm angle α . It becomes 0 at Lα α= . 

According to Eq. (13), the fraction of belt tension T4/T1 becomes negative when arm angle α  

becomes less than Lα , Lα α< . The physical meaning of negative value in the fraction of belt 

tension is that the belt tension T4 should be compressive so as to satisfy the equilibrium 

condition of the force. But a belt cannot bear compressive force so that negative value in the 

fraction of belt tension is actually unrealistic. It means the belt was locked with the buckle. 

The angle Lα  becomes larger with an increment of the coefficients of friction. As the 

coefficient of friction is generally greater than 0.15, the locking condition is easily satisfied. 

Once the locking condition is satisfied, the belt is dragged into the buckle with a decrement 

of arm angle α . Then the belt tension becomes greater. 
 
 

 
 

Fig. 6. Mechanical model of belt buckle to calculate arm torque and 3D model 

3. Theory of belt friction in over-wrapped condition 

3.1 Friction of belt wrapped two times around an axis 

Figure 9 shows a mechanical model (Imado, 2008 b). The point Pi (i=1, 2, 3) is a boundary of 

contact and Ti (i=1, 2, 3, 4) is tension of the belt. Symbol θi denotes the angle of point Pi . The 

belt is over-wrapped around the belt in the range from P1 to P2 denoted by θ1. The axis x is 

taken so as to pass through the point P2, which is an end of the belt. T1 is bigger than T4. T4 is 

an imaginary belt tension. There is no contact from P2 to P3 due to the thickness of the belt-

end. According to the theory of belt friction (Joseph F. Shelley, 1990), analysis starts with the 

conventional equation.  

 1 1
1 2 3

b bT e T e Tμ θ μ θ= =  (28) 
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Fig. 7. Non-dimensional arm toruque N decreases with arm angle α  

 
 
 
 

 

Fig. 8. Fraction of belt tension T4/T1 decreases with arm angle α  
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Fig. 9. Mechanical model of belt wrapped two times around an axis 

The belt tension T2 or T3 can be expressed by the belt tension T3’, where T3’ is inner belt 
tension at the point P1 as shown in Fig. 9.  

 3 1( )
2 3 3 'T T e Tμ θ θ−= =  (29) 

Making use of Eqs. (28) and (29), T1 can be expressed as 

 1 3 1{ ( )}
1 3 'bT e Tμ θ μ θ θ+ −=  (30) 

The inner belt is normally pressed onto the cylinder by the outer belt. The normal force to a 
small segment of the inner belt at angle θ denoted by dNb is 

 2
b

bdN e T dμ θ θ=  (31) 

On the other hand, the normal force is also generated by inner belt tension itself. The normal 
force exerted on the cylinder between Pi and Pj is denoted by Nij. Normal force acting to a 
small segment of the cylinder at angle θ is given by 

 21 4dN e T dμθ θ=  (32) 

Then, making use of Eqs. (31) and (32), the frictional force between the inner belt and 
cylinder denoted by F12in is given by 

 
1 1

1 12
12 21 40 0

( 1) ( 1)b
in b

b

T
F dN dN e e T

θ θ μ θ μθμμ μ
μ

= + = − + −∫ ∫  (33) 

Denoting the radius of cylinder by r and neglecting the thickness of the belt, the equilibrium 
equation of moment of the cylinder is 

 ( )1 12 13 4inT r F F T r= + +  (34) 
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Here, the frictional force F13 exerted on the surface between P1 and P3 is given by 

 
3

3 11

1

( )( )
13 3 3' { 1} 'F e T d e T

θ μ θ θμ θ θ
θ

μ θ −−= = −∫  (35) 

Substituting Eqs. (33) and (35) into Eq. (34) gives 

 1 3 1 1( )2
1 3 4( 1) { 1} 'b

b

T
T e e T e Tμ θ μ θ θ μθμ

μ
−= − + − +  (36) 

Substituting T2 and T3’ in Eq. (36) as functions of T1 by making use of Eqs. (28) and (30) gives 

 
1

1 3 1

( )

1 4
( )

(1 ) 1

b

b

b

e
T T

e e

θ μ μ

μ θ μ θ θμ
μ

+

− −
=

⎛ ⎞
− − +⎜ ⎟

⎝ ⎠

 (37) 

This is the targeted equation that expresses the relation between T1 and T4. 
Equation (37) can be checked by supposing an extreme case of either μ=0 or μb=0. 
Substituting μ=0 into Eq. (37) gives T1=T4 as a matter of course. Substituting of μb=0 into Eq. 
(37) requires limiting operation. 

 1

1
0

lim (1 )b

b b

e
μ θ

μ

μ μθ
μ→

− = −  (38) 

Making use of Eq. (38), Eq. (37) becomes Eq. (39) for the case of μb=0. 

 
1

3 1
1 4( )

1

e
T T

e

μθ

μ θ θμθ − −=
− +

 (39) 

Equation (39) implies the belt may be locked firmly around an axis when the denominator 
of the fraction in Eq. (39) becomes 0. Substituting μ=0 into Eq. (39) gives T1=T4 again as a 
matter of course. 
Substituting μ=μb into Eq. (37) gives 

 1 3( )
1 4T e T

μ θ θ+=  (40) 

Equation (40) is exactly the same form as the Euler’s belt formula though was derived from 
the expression that took an effect of over-wrapping of belt into account. Equation (40) 
implies that the belt cannot be locked on the cylinder as far as the wrapping angle is finite. 
Letting θ1=0 in Eq. (37) to eliminate the over-wrapping part gives 

 3

1 4T e T
μθ=  (41) 

This is the well-known Euler’s belt formula. So the Euler’s belt formula was proved to be 
included as a special case in Eq. (37). Equation (41) can also be obtained from Eqs. (39) and 
(40).  
Next, let’s consider some locking conditions. According to Eq. (37), the belt tension ratio 
T4 /T1 can be expressed as 
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1 3 1

1 1

( )

4
( ) ( )

1

(1 ) 1b

b b

b

e e
T

T ee

μ θ μ θ θ

θ μ μ θ μ μ

μ
μ

− −

+ +

⎛ ⎞
− − +⎜ ⎟

Γ⎝ ⎠= =  (42) 

The locking condition is satisfied when the numerator of Eq. (42) becomes 0 meaning T4 =0. 
So, the discriminant of locking condition can be expressed as 

 1 3 1( )1
(1 ) 1e eκμθ μ θ θ

κ
− −⎛ ⎞Γ = − − +⎜ ⎟

⎝ ⎠
 (43) 

Locking condition is satisfied in the case of Γ≤0. Critical point is Γ=0. Here, κ denotes a ratio 
of the coefficient of friction. 

 /bκ μ μ=  (44) 

As 1 1eκμθ ≥  and 3 1( ) 0e μ θ θ− − > , κ should be less than unity to make the value of locking 

discriminant of Eq. (43) be Γ<0. As can be seen in Fig. 9, the angle θ3 is smaller than 2π due to 

the thickness of the belt. From geometrical consideration in Fig. 9, following equation is 

obtained. 

 cos 1
r t

r t r
α = ≈ −

+
 (45) 

Here, t is thickness of the belt and r is a radius of the cylinder. When angle α  is small, the 

angle α  can be roughly estimated by 

 2 /t rα ≈  (46) 

Supposing the angle of non-contact is α =15˚, the corresponding critical locking condition 

can be evaluated by solving Eq. (43). Figure 10 shows some solutions. The critical angle of 

belt locking θ1 decreases with an increment of the coefficient of friction μ. Provided the 

coefficient of friction is constant, the critical angle of belt locking θ1 increases with an 

increment of κ. This fact means that the belt is likely to lock with a decrement of κ. So the 

smaller coefficient of friction μb is preferable for self-locking. The limiting condition for the 

belt locking is κ =0 or μb=0.  

Figure 11 illustrates the effect of κ on the fraction of belt tension T4 /T1 for the case of μ=0.3 

and θ3=345°. Making use of Eq. (41), the convergence point is calculated. It is T4 /T1 =exp(-

μθ3)≈0.164. It is clear that the fraction of belt tension T4 /T1 is greatly influenced by the 

magnitude of κ, μb /μ. The belt tension ratio T4 /T1 decreases with an increment of over-

wrapping angle θ1 except for the case of κ=1.4. When 1κ ≥ , the fraction of belt tension is 

always positive, so that the self-locking never occurs. Provided θ1=360°, θ3=345° and μ=0.3, 

the critical ratio of the coefficient of friction κc for the self-locking with two times over-

wrapping condition was calculated by using the discriminant Eq. (43). It was κc=0.735. The 

corresponding line was plotted with a dashed line in Fig. 11. The magnitude of κ should be 

smaller than κc to cause the self-locking.  
Figure 12 shows a method by which the coefficient of friction between the belt and belt can 
be reduced so as to satisfy the self-locking condition. When a polyethylene film was 
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wrapped together with belt, an occurrence of self-locking was confirmed. But self-locking 
never occurred without polyethylene film. 
 

 
 

Fig. 10. Change of critical over-wrapping angle θ1 for self-locking with ratio of the 
coefficients of friction κ. 

 

 
 

Fig. 11. Fraction of belt tension T4 /T1 decreases rapidly with increment of over-wrapping 
angle θ1 for the case of smaller κ. 

www.intechopen.com



 New Tribological Ways 

 

248 
 

 

Fig. 12. Polyethylene film was wrapped together with belt to reduce the coefficient of 
friction μb. Self-locking was recognized in experiment with polyethylene film. But it never 
occurred without polyethylene film. 

3.2 Friction of belt wrapped three times around axis 
A belt can be wrapped more than two times around an axis. Let us consider the case where a 

belt is wrapped three times around an axis as shown in Fig. 13. The point Pi (i=1, 2, 3) is a 

boundary of contact. Tension of belt is denoted by Ti (i=1, 2, 3, 4) or Ti’ and T1>T4. There are 

two kinds of the coefficients of friction μ and μb.  μb is the coefficient of friction between belt 

and belt. The belt does not in contact with the axis from the point P2 to P3 due to the 

thickness of belt-end. In order to consider the equation of belt friction, the belt is divided 

into 5 sections from outside to inside as a, b, c, d and e in terms of frictional force as shown 

in Fig. 14. The frictional force working on an each section is expressed by either Fsi or Fso , 

where the first subscript s means the name of section and the second subscript i means 

inside and o means outside respectively. Note that Fsi works clockwisely and Fso works in a 

counter-clockwise direction. Considering the equilibrium of the force in an each section, 

following equations are obtained. 

 1 2aiT F T= +  (47) 

 3 2 1 'biT T F T= = +  (48) 

 
1 2
' '

ci co
T F F T= − +  (49) 

 3 2 1' ' "di doT T F F T= = − +  (50) 

 1 4" ei eoT F F T= − +  (51) 

Denothing the normal force from the section a to c by Nac, the normal force acting to a small 

segment at angle θ is given by 

 2
b

acdN e T dμ θ θ=  (52) 

Frictional force Fai is calculated by integrating Eq. (52). 

 ( )1
1

20
1b

ai b acF dN e T
θ μ θ
θ

μ
=

= = −∫  (53) 
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Fig. 13. Mechanical model of belt wrapped three times around an axis  

 

 

Fig. 14. Mechanical model with frictional force direction and the coefficients of friction  
corresponding to an each section. 

In the same manner, infinitesimal normal force from the section b belt to d belt is given by 

 
( )1

1
'

μ θ θ θ−= b

bd
dN e T d  (54) 

Frictional force Fbi is calculated by integrating Eq. (54). 
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 ( ) ( )( )3 3 1 3 1

1 1

1 1
' 1 '

θ θ μ θ θ μ θ θ

θ θ
μ μ θ− −= = = −∫ ∫ b b

bi b bd b
F dN e T d e T  (55) 

Making use of Eq. (52), infinitesimal normal force from section c belt to e belt is given by 

 2 2 2' 'b b b
ce acdN e T d dN e T d e T dμ θ μ θ μ θθ θ θ= + = +  (56) 

Frictional force Fci is calculated by integrating Eq. (56). 

 ( ) ( )( )1 1
1

2 2 2 20 0
' 1 'b b

ci b ce bF dN e T T d e T T
θ θ μ θ μ θμ μ θ= = + = − +∫ ∫  (57) 

Making use of Eq. (54), infinitesimal normal force from section d belt to the axis is given by 

 
( ) ( ) ( )1 1 1

1 1 1
" " '

μ θ θ μ θ θ μ θ θθ θ θ− − −= + = + b

d bd
dN e T d dN e T d e T d  (58) 

Frictional force Fdi is calculated by integrating Eq. (58). 

 ( ) ( )( ) ( )( ) ( )( )3 3 1 1 3 1 3 1

1 1

1 1 1 1
" ' 1 " 1 '

θ θ μ θ θ μ θ θ μ θ θ μ θ θ

θ θ

μμ μ θ
μ

− − − −= = + = − + −∫ ∫ b b

di d

b

F dN e T e T d e T e T  (59) 

Making use of Eq. (56), infinitesimal normal force from section e belt to the axis is given by 

 4 4 2 2'b b
e cedN e T d dN e T d e T d e T dμ θ μ θμθ μθθ θ θ θ= + = + +  (60) 

Then, the frictional force Fei is given by 

( ) ( ) ( )( )1 1
11

4 2 2 4 2 20 0
' 1 1 'b b b

e i e
b

F dN e T e T e T d e T e T T
θ θ μ θ μ θ μ θμθμθ μμ μ θ

μ
= = + + = − + − +∫ ∫  (61) 

Neglecting the thickness of the belt, the equilibrium requirement of the moment gives 

 1 4d i e iT F F T= + +  (62) 

Substituting Eqs. (59) and (61) into Eq. (62) gives 

 ( )( ) ( )( ) ( )( )3 1 3 1 1 1

1 1 1 2 2 4
1 " 1 ' 1 '

μ θ θ μ θ θ μ θ μθμ μ
μ μ

− −= − + − + − + +b b

b b

T e T e T e T T e T  (63) 

The belt tensions T1’, T1”, T2 and T2’ in Eq. (63) should be expressed by the function of T4. 
From the law of action and reaction, 

 , ,= = =
co ai eo ci do bi

F F F F F F  (64) 

Substituting Eqs. (53), (55), (57), (59) and (61) into Eqs. (47) to (51) give 

 1
1 2 2

b
aiT F T e Tμ θ= + =  (65) 

 ( )3 1

2 3 1 1
' '

μ θ θ−= = + = b

bi
T T F T e T  (66) 

 ( )( ) ( )1 1 1
1 2 2 2 2 2 2' ' 1 ' 1 ' 'b b b

ci coT F F T e T T e T T e Tμ θ μ θ μ θ= − + = − + − − + =  (67) 
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 ( ) ( )( )3 1 3 1

3 2 1 1 1 1
' ' " " " 1 1 '

μ θ θ μ θ θ μ
μ

− − ⎛ ⎞
= = − + = − + = + − −⎜ ⎟

⎝ ⎠
b

di do di bi

b

T T F F T F F T e T e T  (68) 

 ( ) ( )1 1
1 4 2 2 4" 1 1 'b

ei eo
b

T F F T e T T e Tμ θ μθμ
μ

⎛ ⎞
= − + = − − + +⎜ ⎟

⎝ ⎠
 (69) 

 

Making use of Eqs. (65), (66) and (67) gives, 

 
( ) ( )1 3 1 3

1 2 3
' '

μ θ θ μ θ θ+ += =b b

T e T e T  (70) 

 

Substituting Eq. (68) into Eq. (70) and making use of Eq. (67) gives 

 
( ) ( ) ( )( )1 3 3 1 3 1 1

1 1 2
" 1 1 '

μ θ θ μ θ θ μ θ θ μ θμ
μ

+ − −⎧ ⎫⎛ ⎞⎪ ⎪= + − −⎨ ⎜ ⎟ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

b b b

b

T e e T e e T  (71) 

 

Making use of Eqs. (65), (66) and (67) gives 

 ( )1 3

1

2
'

μ θ θ+
=

b

T
T

e

 (72) 

 

Substituting Eq. (72) into Eq. (71) gives 

 
( ) ( ) ( )( )1 3 3 1 3 11

1 1 1
" 1 1

μ θ θ μ θ θ μ θ θμ θ μ
μ

+ + − − ⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
b bb

b

T e T e e T  (73) 

Rearranging Eq. (73) gives, 

 

( )
( ) ( )

3 1

1 3 3 1
1 1 1

1 1

"

μ θ μ θ

μ θ θ μ θ θ

μ
μ

+ + −

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠= =

b b

b

b

e e

T T AT

e

 (74) 

 

Making use of Eqs. (65) and (72) gives 

 ( )

3

1 3
2 2 1

1
'

μ θ

μ θ θ+

+
+ =

b

b

e
T T T

e

 (75) 

 

Substituting Eq. (75) into Eq. (69) gives 

 
( )( )

( )

3 1

11

1 3
1 1 4 1 4

1 1
" 1

μ θ μ θ

μθμθ
μ θ θ

μ
μ +

+ −⎛ ⎞
= − + = +⎜ ⎟
⎝ ⎠

b b

b

b

e e

T T e T BT e T

e

 (76) 

Substituting Eq. (76) into the left hand side of Eq. (74) gives, 
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( )( )
( )

( )
( ) ( )

"

μ θ μ θ

μθμθ
μ θ θ

μ θ μ θ

μ θ θ μ θ θ

μ
μ

μ
μ

+

+ + −

+ −⎛ ⎞
= − + = +⎜ ⎟
⎝ ⎠

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠= =

b 3 b 1

11

b 1 3

b 3 b 1

b 1 3 3 1

1 1 4 1 4

b

b

1 1

e 1 e 1

T 1 T e T BT e T

e

1 e e 1

T AT

e

 (77) 

Equation (77) can be written in the form of 

 
1

1 4

e
T T

A B

μθ
=

−
 (78) 

where 

 
( )

( ) ( )
( )( )

( )

3 1

3 1

1 3 3 1 1 3

1 1
1 1

, 1

μ θ μ θ
μ θ μ θ

μ θ θ μ θ θ μ θ θ

μ
μ μ

μ+ + − +

⎛ ⎞
− − −⎜ ⎟ + −⎛ ⎞⎝ ⎠= = −⎜ ⎟

⎝ ⎠

b b

b b

b b

b

b

e e
e e

A B

e e

 (79) 

Eqs. (78) and (79) are the targeted equations that express the relation between T1 and T4 in 
the case of a belt wrapped three times around an axis . 

3.3 Characteristics of belt friction equation with three times wrapping around axis 
The equation derived in the previous section seems complex. It can be checked by assuming 
some extreme cases such as μ=0, μb=0 and μ=μb. In the case of μ=0, Eq. (79) becomes, 

 
( )

( )
( )( )

( )

3 1 3 1

1 3 1 3

1 1 1
,

μ θ μ θ μ θ μ θ

μ θ θ μ θ θ+ +

+ − + −
= = −

b b b b

b b

e e e e
A B

e e

 (80) 

then 

 
( )

( )

1 3

1 3

1

μ θ θ

μ θ θ

+

+
− = =

b

b

e
A B

e

 (81) 

Substituting Eq. (81) and μ=0 into Eq. (78) gives T1=T4.  
In the case of μb=0, limiting operations are required. For the term A in Eq. (79), 

 ( ) ( )3 1

3 1
0

lim
μ θ μ θ

μ

μ μ θ θ
μ→

− = −b b

b
b

e e  (82) 

For the term B in Eq. (79), 

 ( )( )3 1

1
0

lim 1 1 2
μ θ μ θ

μ

μ μθ
μ→

+ − =b b

b
b

e e  (83) 

 

Then Eq. (79) becomes, 

 
( )
( )3 1

3 1

1

1
, 2

μ θ θ

μ θ θ
μθ

−

− −
= =A B

e

 (84) 
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Substituting Eq. (84) into (78) gives 

 
( )( )

3

3 1
1 4

3 1 1
1 2

μθ

μ θ θμ θ θ θ −
=

− − +

e
T T

e

 (85) 

In order to consider the smallest wrapping angle of three times wrapping, substituting θ1=0 

into Eq. (85) gives, 

 
3

1 4
31

e
T T

μθ

μθ
=

−
 (86) 

On the other hand, substituting θ1=θ3 into Eq. (85) gives, 

 
3

1 4
31 2

e
T T

μθ

μθ
=

−
 (87) 

Equation (87) shows the relation of belt tension with the largest wrapping angle of three 

times wrapping. The locking condition is satisfied when the denominator of Eqs. (86) and 

(87) become 0, so that in the case of θ1=θ3, only 1/2 of the coefficient of friction is required 

for self locking in compared with the case of θ1=0. 

 In the case of μb=μ, Eq. (79) becomes, 

 
32

1
, 0μθ= =A B

e

 (88) 

 

so that Eq. (78) becomes, 

 ( )1

1 32

1 4 4

μθ
μ θ θ+= =

−
e

T T e T
A B

 (89) 

Substituting θ1=0 into Eq. (89) gives, 

 32
1 4T e Tμθ=  (90) 

 

Substituting θ1=θ3 into Eq. (89) gives, 

 33
1 4T e Tμθ=  (91) 

Note the magnitude of the wrapping angle of Eqs. (90) and (91).  They are exactly the same 

form as the Euler’s belt formula though they were derived considering the effect of over-

wrapping of belt on belt friction. 

Next, Substituting θ1=0 into Eq. (79) provided the boundary of two and three times over-

wrapping of belt gives, 

 
( )

( )

3

3

1 1 1

, 0

μ θ

θ μ μ

μ
μ

+

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠= =

b

b

b

e

A B

e

 (92) 
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then Eq. (78) becomes 

 
3

3

( )

1 4 4

1

(1 ) 1 1

b

b

b

e
T T T

A B
e

θ μ μ

μ θ μ
μ

+

= =
− ⎛ ⎞

− − +⎜ ⎟
⎝ ⎠

 (93) 

On the other hand, substituting θ1=θ3 into Eq. (37) in the section 3.1 that was the equation for 
two times over-wrapping conditions gives, 

 
3

3

( )

1 4

(1 ) 1 1

b

b

b

e
T T

e

θ μ μ

μ θ μ
μ

+

=
⎛ ⎞

− − +⎜ ⎟
⎝ ⎠

 (94) 

Equation (93) is completely corresponding to Eq. (94) so that both equations are continuous. 
Figures 15 and 16 show some calculated results by using Eqs. (37), (78) and (79). Figure 15 is 
of μ=0.25 and θ3=350°. With an increment of κ, namely with an increment of μb, the ratio of 
belt tension T4 /T1 increases. Self-locking occurs with wrap angle less than 720° in the case of 
κ=0.5 and 0.6, so that they were calculated by Eq. (37). On the other hand, in the case of 
κ=0.7, 0.8 and 0.9, the wrap angle less than 720° is not enough for self-locking to occur. They 
requires wrap angle greater than 720° so that they were calculated by Eqs. (78) and (79). 
Figure 16 is of μ=0.2 and θ3=350°. All of them require wrap angle greater than 720° to enter 
the self-locking condition. 
The threshold of self-locking for three times wrapped belt is obtained by equating A to B in 
Eq. (79).  

 ( )( ) ( ){ }3 13 1 3 11 1 1 1
μ θ θμ θ μ θ μ θ μ θμ

μ
−⎛ ⎞

− + − + − =⎜ ⎟
⎝ ⎠

b b b b

b

e e e e e  (95) 

 
 

Fig. 15. Change of belt tension ratio with wrap angle 
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Fig. 16. Change of belt tension ratio with wrap angle 

 

 

Fig. 17. Change of critical angle for self-locking with ratio of the coefficients of friction 

Equation (95) is the discriminant of the self-locking condition for three times wrapped belt. 
When the coefficients of friction μ, μb and the angle θ3 are given, the magnitude of critical 
angle θ1 necessary for self-locking is calculated by solving Eq. (95).  Figure 17 shows some 
solutions of Eq. (95) with angle θ3=350°. If an angle θ3 and the coefficient of frictions μ and μb 
are given, self-locking occurs with the wrap angle θ1 over the corresponding curve. But it 
does not occur with wrap angle θ1 under the corresponding curve. According to Fig. 17, it is 
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clearly seen that wrap angle θ1 becomes larger with an increment of κ. It also becomes larger 
with a decrement of the coefficient of friction μ. Provided κ is small enough, it is noticeable 
that the self-locking occurs theoretically even with these small coefficients of friction. 

4. Novel clutch utilizing self-locking property of belt 

Paying attention to the self-locking property of belt as described in the previous section, a 
novel clutch mechanism can be developed (Imado et al., 2010). Figure 18 shows a simplified 
three-dimensional image of the novel clutch. Figure 19 shows a cross sectional view of the 
clutch. Rotational torque is transmitted from the power ring to the inner axis by the belt. In 
declutching condition, a belt is only rotating with the power ring. Due to the centrifugal 
force or some restitutive property of belt, the belt is pressed against the internal face of the 
power ring. To transmit the rotation of power ring to the internal axis, the sleeve on the 
inner axis is slid along the axis to push the end face of the trigger pin that is attached at the 
end of the belt and rotating with the power ring. As the sleeve is rotating with the same 
angular speed of the inner axis, the frictional force to the trigger pin drags the belt so as to 
coil around the inner axis. The trigger pin works as a synchronizer. As soon as the belt 
comes in contact with the axis, the belt coils automatically around the axis by the frictional 
force between the belt and axis. Then due to the self-locking property of belt, the rotation of 
the power ring is transmitted to the inner axis without any slip as far as self-locking 
 
 
 
 

 
 
 
 

Fig. 18. Three-dimensional image of novel clutch. Rotational torque is transmitted from 
power ring to inner axis by self-locking belt. 
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Trigger Pin

Belt

Sleeve

Power

   Ring

 

Fig. 19. Cross section of novel clutch 

 

( a ) ( b )

Power Ring
ωP ωP

ωi

 

Fig. 20. Frontal views of main part of belt-type clutch in (a) locked-up condition and (b) 
unlocked condition 

condition is satisfied. As long as driving torque is applied, the self-locking state is 
maintained. Semi-locking state can be realized by adjusting the over-wrapping angle of the 
belt. When the rotational speed of the power ring becomes smaller than that of the inner 
axis, the rotation of the inner axis uncoils the belt so that declutching occurs automatically. 

Figure 20 shows frontal views of the main part of the clutch in a state of locked-up condition 
and unlocked condition respectively. From the mechanical point of view, an accurate 
centering operation is required in assembling individual rotational machine components. 
Because the torque is transmitted through a flexible belt, this delicate centering operation is 
not so strictly required for this novel clutch. The belt-type clutch works even in the case 
where a power ring and an inner axes are either slightly off-centered or inclined with each 
other.  
Figure 21 shows prototype clutch. Brake torque can be applied by the belt brake. It was 
confirmed experimentally that rotational torque could be transmitted without any slip 
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Fig. 21. Photograph of belt-type clutch 

where there was an eccentricity. A steel belt with 12 mm wide and 0.12 mm in thickness was 
used in the prototype clutch. In order to reduce the coefficient of friction between belt and 
belt μb, a small amount of grease of molybdenum disulfide, MoS2, was spread between the 
belt and belt. Test condition was summarized in Table 1. According to Eq. (43), the critical 
wrap angle θ1 of the clutch in Fig. 9 was 105° as shown in Table 1. Considering unsteadiness 
of the coefficients of friction, two kinds of experiments were carried out. One was of θ1=90°, 
the other was of θ1=120°. Then, self-locking occurred in the case of wrap angle θ1=120°. On 
the other hand, self-locking never occurred in the case of θ1=90°. As far as this experimental 
result was concerned, the validity of Eq. (43) was verified. 
 

 

Table 1. Dimensions of clutch and the coefficients of friction 

5. Generalization of belt/rope friction formula 

The belt formula written in a text, it is usually explained by a figure illustrating a flexible 
element partially wrapped on a cylindrical surface. But actually there are many kinds of 
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surface. So far, frictional force calculation of a flexible element to these surfaces has not been 
clearly explained in a text. In this section, the friction of flexible element in the generalized 
condition is studied. Fige 22 shows a belt wrapped around an arbitrary surface. The 
equilibrium equation of the force acting to an infinitesimal line element ds is (Hashimoto, 2006) 

 
dT

d
T

μ θ =  (96) 

Let denote the curvature and the radius of curvature by κ and ┩ respectively. The small wrap 
angle dθ can be written as 

 
1

d ds dsθ κ
ρ

= =  (97) 

Substituting Eq. (97) into Eq. (96) gives 

 
dT

ds
T

μκ =  (98) 

Equation (98) means that the friction of a flexible element on a generalized curve can be 
evaluated by line integral of the curvature with respect to curvilinear length s. 
 

 

Fig. 22. Flexible element wrapped around body of arbitrary profile 

 
Now, a position vector r of a curve C in parametric expression with t is 

 ( ) ( ) ( ) ( )t x t y t z t= + +r i j k  (99) 

Differential coefficient with respect to the parameter t is expressed as r$  or x$ . On the other 

hand, the differential coefficient with respect to curvilinear length s is expressed as r’ or x’. 
The unit tangential vector u , curvature κ and a line element ds of the curve C are (Yano &  

Ishihara, 1964) 

 
2 2 2

x y z

x y z

+ +
= =

+ +

i j kr
u

r

$ $ $$
$ $ $ $

 (100) 

 
( )

2

3/2

( )( ) ( )
, ds dtκ

⋅ ⋅ − ⋅
= =

⋅

r r r r r r
r

r r

$ $ $$ $$ $ $$
$

$ $
 (101) 

www.intechopen.com



 New Tribological Ways 

 

260 

For a plane curve of z=0 in Eq. (99), substituting Eq. (99) into Eq. (101) gives 

 2 2
2 2 3/2

,
( )

xy xy
ds x y dt

x y
κ

−
= = +

+

$$$ $$$ $ $
$ $

 (102) 

Substituting Eq. (102) into the left side of Eq. (98) gives 

 
2 2

xy xy
ds dt

x y
μκ μ

−
=

+

$$$ $$$
$ $

 (103) 

The unit principal normal vector m of the curve C is given by the formula (Yano & Ishihara, 
1964) 

 '
/ '

'

d dt

dt ds
= =
u u

m u
u

 (104) 

Making use of Eq. (100) gives 

 { }2 2 2

1
' ( ) ( )

( )
y xy xy x xy xy

x y
= − + −

+
u i j$ $$$ $$$ $ $$$ $$$

$ $
 (105) 

 2 2
2 2 2

'
( )

xy xy
x y

x y
κ

−
= + =

+
u

$$$ $$$ $ $
$ $

 (106) 

Substituting Eqs. (105) and (106) into Eq. (104) gives 

 =
2 2

y x

x y

− +

+

i j
m

$ $

$ $
 (107) 

Here, the direction of the vector m is toward the center of curvature. Then, an outward 

normal vector n can be defined as 

 =
2 2

y x

x y

−
= −

+

i j
n m

$ $

$ $
 (108) 

The direction of the normal vector n is denoted by θ 

 1tan
x

y
θ − ⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

$
$

 (109) 

Differentiating Eq. (109) with respect to t gives 

 
2 2

x y xy

x y
θ

−
=

+

$ $$ $$$$
$ $

 (110) 

Comparing Eq. (110) with Eq. (103) gives 

 
2 2

xy xy
ds dt dt

x y
μκ μ μθ

−
= =

+

$$$ $$$ $
$ $

 (111) 

www.intechopen.com



Frictional Property of Flexible Element   

 

261 

Hence, making use of Eq. (111), integration of Eq. (98) becomes 

 ( ) ( )2 1 2 1log /ds dt T Tμκ μθ μ θ θ= = − =∫ ∫ $  (112) 

Equation (112) means that fraction of belt tension is determined by angular difference of the 

outward normal vectors at the contact boundaries and is unrelated to the intermediate 

profile. Equation (98) might be applied to the three dimensional problems. 

As an example, let’s consider a rope spirally wrapped around a cylinder with radius a. The 

parametric expression of a spiral with parameter t is (Yano & Ishihara, 1964) 

 cos , sin ,x a t y a t z bt= = =  (113) 

Substituting Eq. (113) into Eqs. (99) and (101) gives 

 ( )2 2 2 2/ ,a a b ds a b dtκ = + = +  (114) 

Substituting Eq. (114) into Eq. (98) and integrating with respect to the parameter t from t1 to 

t2 gives 

 

( )
( )2

2 1
2

1

1
exp

1 /

T
t t

T b a
μ
⎧ ⎫
⎪ ⎪= −⎨ ⎬
⎪ ⎪+⎩ ⎭

 (115) 

The member t2-t1 in Eq. (115) is usually a wrap angle for a plane problem. But it is not wrap 
angle in the three dimensional problem. In the case of b=0, Eq. (115) becomes well known 
Euler’s belt formula. On the other hand, when b becomes infinity, Eq. (115) yields T1=T2. 
Hence, for a three-dimensional problem, the frictional force of a rope is influenced on a way 
of wrapping. Figure 23 (a) shows some results of calculation of Eq. (115) provided t1=0 and 
t2=2n┨. Tension ratio T2/T1 decreases with an increment of the fraction of b/a.  
Let’s consider another example of a modified spiral defined by Eq. (116). 

 cos , sin , 1
4

t
x a t y a t z bt

nπ
⎛ ⎞= = = −⎜ ⎟
⎝ ⎠

 (116) 

According to Eq. (116), it can be seen that the velocity component in z direction decreases 
linearly with parameter t and becomes 0 at t=2n┨. The components of Eq. (101) for the curve 
of Eq. (116) are 

 
( )2 2 2

2 2 2
2 2

2
1 , ,

2 2 4

b t nt b
a b a

n n n

π
π π π

−⎛ ⎞ ⎛ ⎞⋅ = + − ⋅ = + ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r r r r r r$ $ $$ $$ $ $$  (117) 

Substituting Eq. (117) into Eq. (101) gives 

 
( )2 2 2 2 2 2 2 2

2 2
3

2 2
2 2

4 1 4 4
, 1

2

2 1
2

a a n b n n t t t
ds a b dt

n
t

n a b
n

π π π
κ

π
π

π

+ + − + ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠⎧ ⎫⎪ ⎪⎛ ⎞+ −⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

 (118) 
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Fig. 23. Change of tension ratio T2/T1 with coefficient ratio b/a of spiral 

Substituting Eq. (118) into Eq. (98) and integrating with respect to parameter t from t1=0 to 
t2=2n┨ gives 

 
2 2 2
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2 2 2 2 2 2
1

11
log log tan

1 1

T

T

β γ βγμ
βγ β γ γ γ β γ γ

−
⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ +⎪ ⎪⎜ ⎟ ⎜ ⎟= +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ + + − + +⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 (119) 

where ( )/ , 1 / 2b a nγ β π= =  

Considering the case of ┛=0, namely b=0 of Eq. (119) requires limiting operation. 

 
2 2

2 2 20

1
lim log 2

1
n

γ

β γμ μ μ π
βγ ββ γ γ γ→

⎛ ⎞+⎜ ⎟ = =
⎜ ⎟+ + −⎝ ⎠

 (120) 

Hence, the result of plane problem is included as a special case of ┛=0 in Eq. (119). Figure 23 
(b) shows some results of calculation of Eq. (119). The tension ratio of T2/T1 in Fig. 23 (b) 
becomes larger than that of the corresponding value of Fig. 23 (a). 
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Fig. 24. Experimental method to evaluate the coefficient of friction of string wrapped 
spirally around cylinder 

 

Table 2. Summary of experimental result to evaluate the coefficient of friction of string 
wrapped spirally around cylinder 

In order to confirm the validity of Eq. (119), simple experiments were carried out. Figure 24 

shows experimental method. The diameter of the pipe was 25 mm. The string of 1.8 mm in 

diameter was wrapped around the pipe in a way according to Eq. (116) by using a steel 

scale. The weight of 98 N was hung at the end of the string. The other end of the string was 

connected to the force gauge that was fixed firmly to the stay. The weight was lifted up by 

hand at first. Then the weight was released quietly and string tension was measured by the 

force gauge. As the parameter t in Eq. (116) was taken from t=0 at z=0 to t=2n┨ at z=L, the 

constant b in Eq. (116) can be calculated by b=L/(n┨). The coefficient of friction was 

calculated by Eq. (119). Experimental results are summarized in Table 2. Because almost 

same values were obtained regardless of the test condition, the validity of Eq. (119) was 

confirmed. 

6. Closure 

Frictional property of a flexible element was considered in this chapter. The theory of belt 

buckle has been clarified by considering an effect of over-wrapping of belt on belt friction. 

Frictional fixation of the belt buckle is caused by self-locking property of belt friction. Self-
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locking occurs even in the case where a belt is wrapped around an axis two or more times. 

Two conditions are required to bring about self-locking. One is smaller coefficient of belt-

belt friction than that of belt-axis friction. The other is larger wrap angle than the critical 

wrap angle. Utilizing the self-locking property of belt, a novel one-way clutch was 

developed. The problem of this clutch is how to get the smaller and stable coefficient of belt-

belt friction for long time use. Friction of a flexible element wrapped around a generalized 

profile was studied. However, the friction of twisted flexible element in a thread, rope and 

wire has not been clarified yet. Further research is required.  
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