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Preface to “Image Processing in Agriculture  
and Forestry” 

This book contains high quality works from the Special Issue entitled “Image Processing in 

Agriculture and Forestry” that demonstrate significant achievements and advances in these areas. They 

are self-contained works addressing different imaging-based procedures and applications.  

Images are the main source of information in perception systems in agriculture. These images can 

be captured from machine vision systems on-board autonomous or non-autonomous ground vehicles, 

unmanned aerial vehicles and satellites, as well on manually operated and static systems. Several devices 

with complementary metal-oxide-semiconductor (CMOS) or charge-coupled device (CCD) technologies 

have been used, operating in the visible spectrum (red-green-blue (RGB)-based) or in multiple spectra 

(RGB and infrared). Satellite imagery has been also used, including Synthetic Aperture Radar (SAR) 

operating in the L-band, as well as hyperspectral devices from the Landsat 5 Thematic Mapper (TM), 

Landsat 8 Operational Land Imager, and WorldView-2. 

Regarding image processing methods and algorithms, this book contains artificial neural networks 

(including convolutional), machine learning and classifiers, specific segmentation approaches (including 

vegetation indices), and three-dimensional (3D) reconstruction. 

Regarding agricultural and forestry applications, several different methods are addressed and the 

order of papers in the book is determined according to the application of these methods. A brief 

description is provided in this preface for each paper. The first paper provides guidelines for selecting 

machine vision systems for different tasks (navigation and plant detection). The second and third papers 

are focused on navigation and obstacle avoidance. The fourth to sixth papers deal with canopy-based 

approaches on trees. Aboveground biomass (AGB), phenotyping, chlorophyll, water content, leaf area 

index (LAI), and nutrient contents are addressed in the seventh to tenth papers. Land cover changes are 

addressed in the eleventh paper and soil analysis is covered in the twelfth and final paper. A brief 

description of the papers in the order they appear in the book follows: 

1. Guidelines are provided for selecting machine vision systems for optimum performance in

navigation, crop detection, specific treatments, and different tasks on board autonomous and non-

autonomous agricultural vehicles. This implies the analysis of spectral bands (visible and infrared),

imaging sensors and optical systems (including intrinsic parameters), and geometric visual system

arrangement (considering extrinsic parameters and stereovision systems).

2. Simple cross-correlation functions are used to establish high-resolution navigation control, in the

centimeter range, for secure and robust navigation in small agricultural robots. Any color CMOS or

CCD cameras with near infrared (NIR) sensitivity (~800 nm to 900 nm) can be used. 

3. A deep convolutional neural network is fine-tuned for the detection of a specific obstacle based on

RGB-images captured with an iPhone 6. 

4. Three-dimensional (3D) reconstruction, based on feature descriptors and matching, was applied for

characterizing tree canopies in croton and jalapeno pepper plants and lemon trees based on a

binocular stereo (two high-definition cameras assembled on a wooden box with a parallel optical

axis). 

5. Contrast stretching for image enhancement and thresholding was applied for detecting peach

blossoms on trees using an off-the-shelf unmanned aerial system (UAS), equipped with a

multispectral camera (near-infrared, green, blue). 

6. Artificial neural networks were used for early yield prediction in apple orchards, where canopy

images captured with a RGB camera were segmented into fruit, foliage, and background categories.

7. Non-parametric MaxEnt and Random Forests machine learning algorithms were employed to

model AGB retrieval from Synthetic Aperture Radar (SAR) L-band backscatter intensity and

coherence images. 

8. K-means clustering and minimum-distance classification were used on red-green-blue (RGB)

images of sorghum plants as a means to measure stalk thickness (plant phenotyping) as an essential 



x 

step for crop breeders to improve sorghum for energy production. 

9. Twenty spectral vegetation indices (chlorophyll, water content, and LAI) from off-nadir viewing

satellite imagery (WorldView-2) were obtained by combining different bands to estimate the stress-

related biophysical variables of capital intensive orchard crops. 

10. Partial least squares regression was applied to achieve field measurements and vegetation indices

derived from WorldView-2 images to produce canopy nutrient (nitrogen) levels, AGB, and LAI

maps in order to determine the biophysical variations of a mangrove forest. 

11. A Random Forest classifier (pixel-based and object-based) was used to determine land cover change 

on Assateague Island as a result of Hurricane Sandy from Landsat 5 Thematic Mapper (TM) and

Landsat 8 OLI sensors for pre- and post-processing [11].

12. A neural network model was used for estimating soil structure, soil texture, bulk density, pH, and

drainage category using color and texture descriptors from images captured with a smartphone

with GPS. 

Industrial evolution and future connected systems are demanding cutting-edge technologies in all

fields, including agriculture and forestry. In this regard, readers can find an excellent source of resources 

in this book regarding the development of the research and industrial activity involving imaging and 

processing procedures focused on agricultural and forestry applications. 

The international scientific, farming, and industry communities worldwide are also indirect 

beneficiaries of the abovementioned developments. Indeed, this book provides insights and solutions for 

the many different problems addressed. Also, it lays the foundation for future advances in the face of new 

challenges. In this regard, new imaging sensors, technologies, and procedures contribute to the solutions 

of existing agricultural and forestry problems. Likewise, the need to resolve certain problems demands 

the development of new imaging technologies and associated procedures. 

We are grateful to everyone involved in the publication of this book. Without the invaluable 

contributions of the authors together with the excellent help of the reviewers, this book would not have 

come into fruition. More than 50 authors have contributed to this book. 

Thanks are also extended to the Journal of Imaging and the team of people involved in the 

production of this book for their support and encouragement. 

Gonzalo Pajares Martinsanz and Francisco Rovira-Más 

Special Issue Editors 
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Abstract: Machine vision systems are becoming increasingly common onboard agricultural vehicles
(autonomous and non-autonomous) for different tasks. This paper provides guidelines for selecting
machine-vision systems for optimum performance, considering the adverse conditions on these
outdoor environments with high variability on the illumination, irregular terrain conditions or
different plant growth states, among others. In this regard, three main topics have been conveniently
addressed for the best selection: (a) spectral bands (visible and infrared); (b) imaging sensors
and optical systems (including intrinsic parameters) and (c) geometric visual system arrangement
(considering extrinsic parameters and stereovision systems). A general overview, with detailed
description and technical support, is provided for each topic with illustrative examples focused on
specific applications in agriculture, although they could be applied in different contexts other than
agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly
Effective Agriculture and Forestry Management) project for effective weed control in maize fields
(wide-rows crops), funded by the European Union, where the machine vision system onboard the
autonomous vehicles was the most important part of the full perception system, where machine vision
was the most relevant. Details and results about crop row detection, weed patches identification,
autonomous vehicle guidance and obstacle detection are provided together with a review of methods
and approaches on these topics.

Keywords: machine-vision; spectral bands; imaging sensors; optical systems; geometric arrangement;
3D/2D mapping; crop rows detection; weed control; guidance; obstacle detection

1. Introduction

The incorporation of machine vision systems in agricultural environments is becoming more and
more common, and is undergoing a period of continuous boom and growth, particularly onboard
agricultural vehicles (autonomous and non-autonomous), but not limited to this case. These systems
can be used for different agricultural tasks, including crop (patches, rows) detection, weed identification
for site-specific treatments, monitoring or canopy identification, among others, where precise guidance
is required and the security and surveillance in the area of influence become crucial issues.

J. Imaging 2016, 2, 34 1 www.mdpi.com/journal/jimaging
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With progress, machine vision systems become imperative in autonomous vehicles and very
useful for driver assistance in non-autonomous vehicles, considering that they work under adverse
outdoor conditions from the point of view of image processing, required for such purposes. A review
of control systems in autonomous vehicles was carried out in [1–3], where four subsystems were
identified: guidance, weed detection, precision actuation and mapping. Imaging sensors were used for
different tasks, including guidance, weed detection or phenotyping analysis. Crop rows detection and
weeds identification are common tasks in precision agriculture where image processing techniques
are used for site-specific treatments [4–16], guidance based on crop lines following [17–20], obstacle
detection for security purposes [21–25] or mapping the environment in olive trees [26], among others.
Recent technological advances have allowed the incorporation of vision systems onboard Unmanned
Aerial Vehicles (UAVs), which can also be considered as agricultural vehicles, demanding priority
attention [27].

Once a vision system is to be installed onboard an agricultural vehicle, either for assistance,
autonomy or specific applications, with the purposes expressed above, several questions are to be
considered, namely: what is the system? What specifications should it have it? Where should we place
it onboard the vehicle? How should it be oriented it towards the 3D scene? Answers to these and other
problematic questions are crucial, and they are to be considered for any engineering design, affecting
the machine vision system and its integration onboard the vehicle. The following main issues are to be
addressed, without forgetting the economic costs:

1. Tradeoff between vision system specifications and performances. Operating spectral ranges
are to be identified, i.e., multispectral, hyperspectral, including visible, infrared, thermal or
ultra-violet. Spectral and spatial sensor’s resolutions are also to be considered including the
intrinsic parameters.

2. Definition of the region of interest and panoramic view. Apart from the spatial resolutions
mentioned above, the optical system plays an important role in acquiring images with sufficient
quality, based on lens aperture. At the same time, lens distortions and aberrations are to be
determined. The field of view, in conjunction with the sensor resolution, must also be determined.

3. Vision system arrangement with specific poses onboard the vehicles (ground or aerial). All issues
concerning this point are related to the vision system location: height above the ground, distance
to the working area or region of interest, rotation angles (roll, yaw and pitch). Extrinsic parameters
are involved.

Thus, regarding the above considerations this paper addresses three main issues concerning the
machine vision systems onboard agricultural vehicles, namely: (a) spectral-band selection; (b) imagers
sensors and optical systems and (c) geometric system pose and arrangement. The main contribution of
this paper involves such issues, which are to be considered before a machine vision system is selected
to be installed onboard an agricultural vehicle for specific tasks in agriculture.

This paper is organized in two parts. The first one comprises three Sections 2–4. Section 2 describes
the spectral band selection. Section 3 is devoted to imaging sensors and optical systems. Section 4
deals with the geometric system pose. Illustrative examples in agricultural contexts are also provided
to clarify the related issues. The second part comprises Section 5, which describes a case study, based
on the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management) project [28].
In the corresponding subsections of Section 5 we explicitly indicate the link with Sections 2–4. Finally,
an additional appendix provides the basic concepts for camera system geometry.

2. Spectral-Band Selection

2.1. Visible Spectrum

Most agricultural tasks using machine vision systems require image processing techniques with
the aim of identifying specific spectral signatures. Vegetation indices allow the extraction of spectral
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features by combining two or more spectral bands, based on reflectance properties produced by the
vegetation [29,30]. Some of them use only the three visible spectral bands, i.e., Red (R), Green (G)
and Blue (B), where the goal is to enhance some specific band, accentuating the spectral signatures
(color) of interest. In this regard, if the greenness is the interest, the G band values are to be enhanced,
when soil segmentation is the interest, the R band values should be enhanced, excess green and
excess red are two well-known indices for such purposes [11]. The first one is applied for detecting
green plants, including crop patches and crop rows, weed patches, leaves and other vegetative parts.
The second one is used for other purposes such as soil analysis (organic composition, moisture, etc.).
CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) are two
common technologies used in imaging sensors devices. They are both based on the photoelectric effect
to produce digital intensity values from incident light over specific picture elements (pixels), which are
the smallest units, conveniently arranged in matrices with specified horizontal (H) and vertical (V)
sizes or linearly as an array of pixels. Section three is devoted to sensors.

The greater the intensity of light, the more electrons are produced [31]. Light consists of photons
(discrete particles), but a light source produces photons randomly throughout time. This causes noise
in the perceived intensity of the light and this magnitude is equivalent to the square root of the number
of photons generated by the source of light (Shot Noise) measured in electrons (e−). Ideally, every
photon would be converted in one electron, so that this conversion is governed by physical laws.
Nevertheless, there are factors altering the ideal conversion, which produce what is known as noise,
such as the read-out noise due to electronic operation, camera processing noise or dark current shot
noise, among others, leading to discrepancies between the ideal and real performance. The electrons
generated are stored within each pixel in the Well and the number of electrons that can be stored
is known as Saturation Capacity or Well Depth (measured in e−), so that if the Well receives more
electrons than the saturation capacity no additional electrons are stored. The charge measured in the
Well is called the Signal and the error due to this measurement is known as Temporal Dark Noise
(TDN) or Read Noise (measured in e−). After this, the grey imaging value (Grey Scale) is obtained by
converting the signal value expressed in electrons into pixel values in bits (8, 16 or others) through
Analog to Digital Units (ADUs). The ratio between the analog signal value and the digital grey scale
value is known as Gain (measured in electrons per ADU) which differs from the analog to digital
conversion. Manufacturers provide information about the ratio between the ideal and real situations
measured in terms of Signal to Noise Ratio (SNR) in decibels (dB) or equivalently in bits of data,
applying the conversion expression bit = log2(10SNR/20). Typical values of SNR are around 50–60 dB
which can be determined through specific calibration processes. This is a quality measurement of
camera performance between the ratio of noise versus the signal together with Dynamic Range,
this last one also measured in dB or bits. The difference is that Dynamic Range considers only the
TDN, while SNR also includes the root mean square summation of the Shot Noise. There is another
metric known as Absolute Sensitivity Threshold, which is the minimum number of photons required
to obtain a signal equivalent to the noise produced by the sensor. Below this threshold value no
significant signal is produced. Sometimes, light density (photons/µm2) against signal (e−) or SNR are
available and the best sensor is the one with the highest signal/SNR values for the same light densities.
The above is valid for both CCD and CMOS devices.

CCD and CMOS are blind to color, so that when color is to be generated a band-pass filter is placed
in front of each sensor to allow the incidence of light according to the input radiation. Depending
on the type of system, i.e., with a unique CCD or several, different technologies are used. A typical
arrangement in imaging sensors with a unique CCD is the known as Bayer’s filter. Alternating
red-green and blue-green pixels are conveniently placed to obtain RGB (Red, Green, Blue) images,
complementary color’s filters (cyan, magenta, yellow) can also be used to produce CMY images.
Software-based image processing techniques allow the direct/reverse transformation between the two
colors models. In CCD devices, the charge produced on the pixels by the incident light is transferred,
using vertical shift registers, to a node or nodes where the charges are converted to voltage, buffered

3
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and sent out as an analog signal, which is amplified and digitalized by an analog to digital (A/D)
converter through the ADU. In CMOS devices, each pixel contains its own converter from charge to
voltage, sometimes including amplifiers, noise reducers and electronic digitization. Because of this,
the output uniformity is greater in CCD than in CMOS, giving high image qualities but with higher
noise. In contrast, CMOS technology produces lower levels of noise with faster read-out, and lower
power consumption.

Manufacturers of camera-based sensors (CCD, CMOS) provide for each device a data-sheet
containing information (sometimes graphical) about the sensor sensitivity measured in terms of
absolute Quantum Efficiency (QE) or Relative Response (RR) [31]. QE is the percentage of photons
converted to electrons at a specific wavelength, expressed in percentage. The Signal (as a measure of
the charge, as mentioned above) is computed as the product of LightDensity (LD), expressed as the
number of photons/µm2, the pixel area (pixel size, PS) and QE as follows,

Signal = LD × PS2 × QE (1)

Figure 1a displays an illustrative generic graph representing a RR against wavelengths for a
RGB sensor. Figure 1b also displays the QE against wavelengths for a three spectral RGB sensor with
response in the near infrared and beyond. If the sensor is monochrome, a typical profile could be the
one represented in Figure 1c, also against wavelengths.
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Figure 1. Generic spectral responses: (a) Relative Response (RR) for a RGB sensor; (b) Quantum
Efficiency (QE) for a RGB sensor; (c) RR for a monochrome sensor.

2.2. Spectral Corrections: Vignetting Effect and White Balance

In agricultural outdoor environments the machine vision system works in adverse conditions
where the natural illumination contains high NIR and UV spectral components (radiation). Generally,
imaging sensors are highly sensitive to NIR radiation starting at 760 nm and to a lesser extent to
UV, below 400 nm. Indeed, based on the spectral responses displayed in Figure 1b, the NIR heavily
contaminates the three spectral channels (R, G and B), mainly the red channel in the range 760–800 nm,
producing images with hot colors. This makes identification of green vegetation unfeasible. To avoid
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this undesired effect, cut-off filters are required, such as a Schneider UV/IR 486 [32]. Its operating
curve specifies that wavelengths below 370 nm and above 760 nm are blocked, i.e., both UV and NIR
radiations. Figure 2a displays just a corrupted image acquired without the UV/IR 486 cutting filter
and Figure 2b equipped with such filter. As mentioned above, without such a filter the contamination
is obvious and the undesired effect is clearly minimized with the filter. These images were acquired
with a CCD-based sensor with the corresponding optical system onboard the tractor dedicated to
maize crops belonging to the fleet of robots in the RHEA project [28]. Details about this system are
provided in section five.

 
(a) (b)

Figure 2. Effect of the UV/IR cutting filtering: (a) without filter; (b) with filter.

Despite the blocking filtering, a vignetting effect still remains, requiring correction. As specified
by the manufacturer, the Schneider UV/IR 486 cut-off filter is based on what is known as thin-film
technology containing more than thirty coats on one of its sides and a multi-resistant coating on the
opposite one. The incidence angle of rays in the periphery of the filter is greater than in the center
and they must travel longer distances along the different layers of interference. This effect is more
pronounced the lower is the focal length of the lens, i.e., lenses with wide-angles. These cutting filters,
particularly IR filters, are generally incorporated by the manufacturer on off-the-shelf digital cameras,
because its selection for a specific agricultural application is unnecessary. The vignetting effect causes
important anomalies on the spectral features. Indeed, because of the larger distances travelled by these
rays, the IR wavelengths are filtered with higher intensity in areas far from the image center than in the
central part of the image. By proximity of IR and Red (R) wavelengths in the spectrum, this last one is
also affected with an excess of filtering at the expense of Green (G) and Blue (B) bands introducing
an excess of G with respect to R, expressed with higher greenness at the external parts of the image
and particularly at the corners. Figure 3a displays an image with greenness segmentation by applying
the ExG index [8,11]. It is clear that an excess of green plants are segmented. Two approaches can be
considered to correct this undesired effect. The first consists on the installation of UV/IR cutting filters
just in front of the sensor (CCD, CMOS), with the aim of minimizing the distances traveled by the rays.
As mentioned before, in off-the-shelf digital cameras this filter is built-in at the factory and most of
the time no additional actions are required. In the second approach, when the first fails or it is not
possible, specific spectral bands (R,G and B) corrections are required via software. For each pixel (x,y)
a normalized distance ranging in [0,1] is computed as follows,

d(x, y) =
(x − xc)

2 + (y − yc)
2

(xd − xc)
2 + (yd − yc)

2 (2)

5
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where (xc,yc) and (xd,yd) are the coordinates of the image center and a corner point respectively,
Figure 3b. Thus, the following intensity corrections can be applied,

R′(x, y) = R(x, y) + µRd(x, y); G′(x, y) = G(x, y) + µGd(x, y); B′(x, y) = B(x, y) + µBd(x, y) (3)

The corrected spectral values R’, G’ and B’ for each pixel location at (x,y) are obtained by adding
to the original spectral values R, G and B (normalized in the range [0,1]) a term which is a function
of the normalized distance d(x,y) and multiplied by the corresponding correction factor µR, µG and
µB ranging in [0,1]. In this example, only R is to be increased but not the green and blue, because the
greenness segmentation is intended. Figure 3c displays the corrected image by applying the following
correction factors µR = 0.3, µG = µB = 0.0; as can be seen, the excess of greenness has been considerably
reduced with the unique emphasis on R.

 

(a) (b)

(c)

Figure 3. Vignetting: (a) effect with emphasis on the external parts; (b) correction mask; (c) corrected image.

The B spectral band is also affected by proximity to the UV band when a cutting UV/IR filter is
used. In this regard, a blue correction could be suitable in order to increase intensity values in the blue
band. Nevertheless, because in agricultural applications the greenness is usually the interest, as in the
above example, the blue correction is unnecessary.

White balance is another option for improving image quality, based on the correction with
reference to known spectral values. Assume we have a reference white panel with nominal spectral
white values R, G, B as (255, 255, 255) or equivalently (1, 1, 1) for normalized values. Considering
a region on the known white reference panel with sizes of 50 × 50 pixels as an example, the average
values RW, GW, BW are computed for such a region and the white balance correction is applied as
given by Equation (4). Figure 4 displays in (a) an original image with balance correction in (b).

⎡

⎢

⎣

R′

G′

B′

⎤

⎥

⎦
=

⎡

⎢

⎣

255/RW 0 0
0 255/GW 0
0 0 255/BW

⎤

⎥

⎦

⎡

⎢

⎣

R

G

B

⎤

⎥

⎦
(4)
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The problem with the application of white balance is that the black area must be correctly located
and free of additional effects, such as projection of shades affecting exclusively to such region but
not to other parts in the image. For example, a shadow from the cabin on the reference panel causes
anomalies on the spectral correction in the rest of the image.

 
(a) (b)

Figure 4. White balance: (a) original image; (b) corrected image.

2.3. Infrared Spectrum

It is well-known in remote sensing applications [33], where green vegetation is to be identified
from sensors onboard airborne or satellite platforms equipped with multi(hyper)-spectral imagery
sensors, that near infrared is a useful band for plant identification and phenotyping because green
vegetation produces high reflectance in the NIR band due to chlorophyll activity and absorption [34,35].
In this regard, according to the agricultural application to be developed, the best approach consists
of determining the matching between the agricultural objects to be detected and the sensor spectral
response. Figure 5a displays typical reflectance spectra profiles at different wavelengths for crop and
soil, which are roughly drawn from the information provided in [34], where the maximum reflectance
is achieved between 700 nm and 1300nm. Thus, considering that NIR corresponds to wavelengths
falling within the 760 to 1400 nm range, the best sensor for capturing crop reflectance should be
the one with the higher response inside this range. There exist sensors based on Indium Gallium
Arsenide (InGaAs) technologies covering different infrared ranges, roughly Short-Wave infrared
(SWIR, ~1400–3000 nm), Mid-Wave infrared (MWIR, ~3000–8000 nm), and Long-Wave infrared (LWIR,
~8000–15,000 nm). Figure 5b displays two responses covering two spectral ranges corresponding to
two respective versions of the Bobcat-640-GigE sensor [36]. This sensor contains a detector based on
InGaAs (Indium/Gallium/Arsenic) as the substrate to build the focal plane array with two readout
integrated circuit (ROIC) modes (Integrate Then Read, ITR and Integrate While Read, IWR) and
noise level of 90 e− and 640 × 512 pixels. Other substrates are also possible for NIR-based devices,
covering different spectral ranges, such as Indium/Antimonide (InSb), Mercury/Cadmium/Tellurium
(HgCdTe) among others with different sensibilities.
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Figure 5. (a) Typical spectral reflectance profiles for crops and soil roughly drawn from the information
provided in [34]; (b) Relative response from two generic sensors covering Near-Infrared (NIR) and
Short-Wave infrared (SWIR) spectral ranges.

So, if we want to detect crop reflectance below 900 nm the most appropriate sensor is the one
covering the range between 550 to 1700 nm, otherwise, if the crop reflectance is above 900 nm, the sensor
covering the range from 900 to 1700 nm should be acceptable.

Table 1 summarizes different ranges of wavelengths (λ), expressed in nm, and related to the
spectral bands (S) commonly used in agricultural applications, particularly for greenness identification.
They cover Ultra-Violet (UV), Visible with Blue (B), Green (G), Red (R) and Infra-Red (IR) split on
Near-Infrared (NIR), Short, Mid and Long waves.

Table 1. Spectrum (S) and wavelengths λ (nm).

S λ (nm) S λ (nm) S λ (nm) S λ (nm)

UV 1–380 Visible 380–780

Blue 450–500

IR

Near 760–1400

Green 500–600
Short-Wave (SWIR) 1400–3000
Mid-Wave (MWIR) 3000–8000

Red 600–760 Long-Wave (LWIR) 8000–15,000

2.4. Illustrative Examples and Summary

Assume we have a sensor with the spectral specifications displayed in Figure 1a, where the
agricultural application consists in the crop row detection of green plants for guiding purposes in
maize fields, where typical reflectance values are around 560 nm. Wavelengths for green reflectance is
around 500–570 nm, thus the sensor response according to Figure 1a provides a relative red reflectance
r = 0.20 and a relative green reflectance g = 0.80 and the Green Red Vegetation Index (GRVI) [33],
GRVI = (g − r)/(g + r), results in 0.60. Nevertheless, if the reflectance sensor profiles are the ones
provided in Figure 1b, r = 0.02 and a relative green reflectance g = 0.35 and GRVI is 0.89, then the
sensor represented in Figure 1b is more efficient in this kind of situation. The best sensor for greenness
identification, where wavelengths range from 500–570 nm, is the one with a green spectral response
covering this range with tails being the minima out of such a range. In contrast, if the red spectral
response in the range of 500–570 nm is null, the GRVI achieves maximum values. In short, the best
sensor for greenness identification will be the one with high green spectral responses in 500–570 nm and
null for the red ones, i.e., with minimum overlapping between the spectral R and G bands. Regarding
a monochrome sensor with its relative response displayed in Figure 1c, we can see that for 560 nm
its response is close to 1.0, i.e., with a good performance for the intended greenness identification.
Sometimes, during tilling operations, perhaps for automatic guidance [37], the goal is the identification
of spectral responses from the soil. Consider that we are interested in the segmentation of dry clay soils
with reflectance values around 650 nm. According to Figure 1a,b GRVI values are respectively −1.0
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and −0.9; again the sensor represented by Figure 1a provides the best performance. Table 2 displays
values for different vegetation indices [8,11] based on r, g and b values for 560 nm according to the RR
and QE spectral responses in Figure 1a,b respectively. The best performances are achieved with the
maximum values marked in bold.

Table 2. Vegetation indices values for RR and QE for a wavelength of 560 nm.

Vegetation Indices
RR for 560 nm, Figure 1a
r = 0.20; g = 0.80; b = 0.01

QE for 560 nm, Figure 1b
r = 0.02; g = 0.35; b = 0.03

GRVI = (g − r)/(g + r) 0.60 0.89
ExG = 2 g − r − b 1.39 0.65

ExR = 1.4 r – g −0.52 −0.32
ExGR = ExG − ExR 1.91 0.97

CIVE = 0.441r − 0.811 g + 0.385b + 18.78745 18.23 18.52
VEG = gr−ab(a−1) with a = 0.667 which was

defined in [38]
10.85 15.29

There exist commercial 2CCD (bi-channel) [39] or 3CCD (three-channels) [40] devices capturing
simultaneously visible RGB in raw Bayer or separated together with NIR, respectively. Visible and
NIR spectra are separated by the dichroic coatings of the prism with a separation wavelength of about
760 nm in the 2CCD device and about 600 nm and also 760 nm for the separation of the green, red and
NIR in the 3CCD device.

Sometimes, a band pass NIR filter can provide a solution by placing it in front of the optical
system in the visible imager. In this regard, based on the visible spectral responses displayed in
Figure 1, we must consider that the sensor is still active with sufficient responses for wavelengths
inside the infrared range so that the CCD or CMOS cells are activated with wavelengths crossing the
NIR filter. This was the solution proposed in [41,42] in the context of stereovision systems intended for
autonomous navigation.

Another solution is the one proposed in [35], where the IR cutting filter in the visible camera, if
any, is removed, allowing the input of NIR so that the RGB spectral channels contain an amount of
NIR, i.e., R + NIR, G + NIR and B + NIR. With a filter blocking the blue wavelengths, placed in front of
the lens or immediately in front of the sensor, the blue channel should be exclusively impacted with
NIR exclusively providing the NIR component. Subtracting the blue channel (containing only NIR)
from the other two, R, G and NIR spectral responses are obtained. Nevertheless, because the responses
from all devices are real, and differ from the nominal or ideal, this procedure requires an extra effort in
order to define the best cutting blue filter and also the combination of bands to obtain the required R
and NIR real responses to derive vegetation indices by using R and NIR channels. A calibration and
estimation is carried out in the laboratory with a tunable monochromatic light source spectrometer.

Active sensors are used for phenotyping studies based on Normalized Difference Vegetation
Index (NDVI) and canopy densities [43]. A monochrome CCD camera (5 MPix) is mounted in
a position two meters above the canopy surface inside a box with a LED light panel also inside the box
illuminating the surface to produce nine spectral wavelengths (465, 500, 525, 590, 615, 625, 660, 740
and 850 nm) as the active light source for multispectral images.

Plant phenotyping represent an important challenge in agriculture applications where wavelength
band selection plays an important role for determining some specific parameters such as morphology,
biomass, leaf forms, fruit characteristics, yield estimations, water content, photosynthetic activity
or stress. Different machine vision systems are to be considered because of the advances in
imaging techniques, involving spectroscopy (multi-hyper), thermal infrared, fluorescence imaging,
3D imaging, and recently tomographic imaging (Nuclear Magnetic Resonance Imaging, Positron
Emission Tomography, X-ray Computed Tomography) for seeds, roots or transport analysis [44].

Under the above considerations, the specifications and features for a machine vision system in
outdoor applications and particularly for agricultural tasks can be summarized as follows:
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1. Broad spectral dynamic range with adjustable parameters to control the amount of charge received
by the sensor, considering the adverse environmental conditions that cause high variability on
the illumination in such outdoor environments. In this regard, specific considerations are to
be assumed depending on the vehicle (ground, aerial) where the machine vision system is to
be installed onboard. Of particular relevance is the effect known as bidirectional reflectance,
which appears in sunny days due to angular variations, which may become critical in aerial
vehicles [45].

2. Ability to produce images with the maximum spectral quality as possible, avoiding or removing
undesired effects such as the vignetting effect.

3. A system robust enough to cope with adverse situations and with responses as deterministic
as possible.

3. Imaging sensors and Optical Systems Selection

3.1. Imaging Sensors

An important step during the machine-vision selection process is to consider the imaging sensors
and the optical system together. As mentioned before, CCD or CMOS devices consist of pixels
conveniently arranged in matrices with specified horizontal (H) and vertical (V) sizes or linearly
as an array of pixels. The variety of sensors with different H × V sizes or linear sizes is certainly
high, commercially there is a high variety of ranges, from 160 × 120 to 6576 × 4384 or above, UV
and NIR-based systems contain the lower resolutions. The product H × V determines what is called
MegaPixel (MP) in terms of millions of pixels, for example, a device with resolutions of 3376 × 2704
is measured as 9.1 MP. Physically each pixel has its own horizontal (h) and vertical (v) sizes, typical
values range from 3.45 to 7.50 µm. The nominal sensor sizes, horizontal (Sh) and vertical (Sv), can
be computed as Sh = h × H and Sh = v × V; nevertheless, real dimensions are a bit larger in size
because the required alignments and arrangements. In summary, CCD and CMOS chip sizes vary
considerably [46]. Historically, these dimensions come from Vidicon TV cameras with their imaging
tubes projecting the image in a circle with a given diameter. CCD/CMOS chips are designed with
rectangular dimensions with their corresponding diagonal lengths. The following association (type,
diagonal) is established between the type of sensor and its diagonal in length units expressed in mm:
(1/8”, 2.0), (1/6”, 3.0), (1/4”, 4.0), (1/3.6”, 5.0), (1/3.2”, 5.68), (1/3”, 6.0), (1/2.7”, 6.72), (1/2.5”, 7.18),
(1/2.3”, 7.7), (1/2", 8.0), (1/1.8”, 8.93), (1/1.7”, 9.50), (1/1.6”, 10.07), (2/3”, 11.0), (1/1.2”, 13.3), (Super
16 mm, 14.54), (1”, 16.0), (4/3”, 21.6), (Canon APS-C, 26.7), (Pentax Sony Nikon DX, 28.4), (Canon
APS-H, 34.5), (35 mm, 43.3), (Leica S2, 54.0), (Kodak KAF 3900, 61.3), (Leaf AFi 10, 66.57) or (Phase One
P 65+, 67.4). A specific sensor is assigned to the type whose diagonal is at least as large as the one of
the sensor. For example, assume a chip with sizes 11.6 × 9.5 mm2, with diagonal of 14.99 mm, it will be
assigned to the type 1”. This will lead to some geometric constraints of particular interest in machine
vision systems in agriculture and particularly for stereovision systems and also when choosing the
optical lenses, as we will see later.

In terms of agricultural applications, the choice of a sensor will be determined by its potential
features. So, if poor illumination conditions are expected, such as the ones carried out at dawn
or dusk the most suitable should be a CMOS technology. CMOS is also appropriate when timing
is critical, for example when the time between image acquisition and actuation is extremely low.
This could be the case during weeds removal by applying herbicide, based on nozzle sprayers, where
the camera is attached to each single nozzle sprayer and weeds are identified for immediate spraying.
Cameras in zenithal positions with respect to the region of interest, CMOS should be suitable as it
provides rapid responses. Nevertheless, in most agricultural applications, involving image processing,
time is critical but not extreme. Moreover, illumination conditions cause problems because of high
variability in days with alternating periods of sun and clouds with rapid and frequent changes. Also,
problems can appear in days with high/low lighting intensity due to sunny/cloudy days in the
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outdoor agricultural environments, but these problems are never critical enough to require the use of a
CMOS. Here, CCD-based sensors could be appropriate, conveniently connected to real time processors
under efficient HW/SW architectures [47]. In this regard, Giga Ethernet (GigE, sometimes including
dual ports), Camera Link, USB 2.0, USB3 Vision (USB 3.0) or IEEE 1394a,b (FireWire) are appropriate
interfaces to guarantee sufficient data (images) transmission rates. A description about specific features
and reasons for choosing the right camera bus are given in [48] based on throughput, cable length,
standardized interface, power over cable, CPU usage, I/O synchronization and also effective cost,
where relative rankings are provided for each bus.

Additionally, to deal with the adverse illumination conditions in outdoor agricultural
environments we have still available two resources: exposure time and aperture. They can be controlled
either by the optical system, by applying external control via HW/SW, or based on image processing
or both, to achieve sufficient qualities avoiding images with over/under-exposure [49].

Exposure time is the time that the sensor is continuously receiving the light until the signal is
produced. The higher the exposure time the greater is the light received by the sensor and vice versa.
The exposure time values depend on several factors, including the type of sensor, such values are
specified by manufacturers, generally varying from 3 µs to 60 s as maximum values in internal control
mode and to ∞ for external control.

A trade-off must be achieved between the exposure time and aperture. The Exposure Value (EV),
Equation (5), has been defined to combine both magnitudes so that different combinations give the
same exposure value.

EV = log2

(

F2/t
)

(5)

where F is the f -number (defined in Section 3.2) and t is the exposure time.
EV is used in professional photography where there exists a broad knowledge about the more

appropriate values for specific scenes, so that by fixing one of them the other can be obtained from
Equation (5), once the EV is determined, based on existing look-up tables. In agricultural outdoor
environments, as far as we know, there are no evidences about such values. In this regard, in optical
systems with manual aperture, i.e., when the f -number must be set before the agriculture task, the
best option is to apply a control via image processing. This is the case in the RHEA project [28] for
weeds and crop row detection, where a Region Of Interest (ROI) was selected (Section 5), which is
the area where specific treatment is to be applied and also the area containing the crop rows used as
reference for guiding the autonomous vehicle. The image brightness on the ROI is processed, based on
histogram image analysis, and the exposure time is conveniently increased or decreased depending on
first order statistical histogram values, such as the mean and standard deviation. An image processing
procedure was designed in [50] to automatically set the exposure time.

Another issue concerning the selection of imaging devices is the capability to capture frames,
measured as frame rates per second (fps). Depending on the sensory technologies and spatial
resolutions, currently fps can vary from 7 to 1300 or above; so that, in general, CMOS-based technologies
allow the sensors to achieve higher fps than CCD-based. In this regard, from the point of view of
agricultural applications, it is required to determine the best fps choice for performance. Common
operation speeds in autonomous ground agricultural vehicles can range from 3 km/h (0.83 m/s) to
8 km/h (2.22 m/s) or higher. This means that the ROI to be processed, once it is mapped on the image
plane, must be defined with sufficient length to guarantee that it can be processed inside the specified
time limits, when the autonomous vehicle moves forward. In this regard, the fps and the tasks allocated
to the imaging processor must be considered, because the processor is probably in charge of other
different processes coming from other sensors [47].

3.2. Optical Systems

The amount of radiance received by the sensor is controlled by the optical system consisting of
the following main features and elements [51]:
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1. Set of lenses, which is the main part of the optical system. Manufacturers provide information
about the focal length (f ) and related parameters. Sometimes includes a manual focus setting or
autofocus to achieve images of objects with the appropriate sharpness. Systems with variable
focal length exist, based on motorized equipment with external control. The focal length is
a critical parameter in agricultural applications which is to be considered later for geometric
machine vision system arrangement.

2. Format. Specifying the area of the sensor to be illuminated. This area should be compatible with
the type of imaging sensor, specified above. An optical system that does not illuminate the full
area creates severe image distortions. Figure 6 displays a sensor of type 2/3” and a lens of 1/2”,
i.e., the full sensor area is greater than the area illuminated by the lens.

3. Iris diaphragm automatic or manual. This consists of a structure with movable blades producing
an aperture which controls the area where the light, traveling towards the sensor, passes.
Manufacturers specify it in terms of a value called the f -stop or f -number, which determines the
ratio of f, to the area of the opening or more specifically the diameter (A) of the aperture area,
i.e., N = f /A. The aperture setting is defined as steps or f -numbers, where each step defines a
reduction by a half of the intensity from the previous stop and consequently a reduction in the
aperture diameter of 2−1/2. Figure 7 displays a lens aperture according to the f -number which is
minimum in (a) with 16 and maximum in (b) with 1.9. Depending on the system, the scale varies,
represented in fractional stops. So, to compute the scaled numbers in steps of N = 0, 1, 2, . . . ,
with the scale s, the following sequence is normally used: 20.5(Ns). The scales are defined as full
stop (s = 1), half stop (s = 1/2), third stop (s = 1/3) and so on. The following is an illustrative
example, if s = 1/3 the scaled numbers are: 1, 1.1, 1.3, . . . , 2.5, . . . 16, . . .

4. Holders and interfaces. With the aim of adapting the required accessories, filter holders are specified.
The type of mount (C/F) is also provided by manufactures.

5. Relative illumination and lens distortion. Relative illumination and distortion (barrel and pincushion)
are provided as a function of focal distances.

6. Transmittance (T): Fraction of incident light power transmitted through the optical system.
Typical lens transmittances vary from 60% to 90%. A T-stop is defined as the f -number divided
by the square root of the transmittance for the lens. If T-stop is N the image contains the same
intensity as the ideal lens with transmittance of 100% and with f -number N. Relative spectral
transmittance with respect wavelengths is also usually provided. Special care should be taken to
ensure the proper transmission of the desired wavelengths toward the sensor.

7. Optical filters. Used to attenuate or enhance the intensity of specific spectral bands, they transmit
or reflect specific wavelengths. To achieve the maximum efficiency, their different parameters
should be considered, including central wavelength, bandwidth, blocking range, optical density,
cut on/off wavelength [52]. A common manufacturing technique consists of a deposition of
layers alternating materials with high and low index of refraction. An example of a filter is the
Schneider UV/IR 486 cut-off filter [32].

 

Figure 6. Imaging distortion caused by a sensor of type 2/3” and a lens of 1/2”.
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(a) (b) 

Figure 7. Lens aperture according to the f-number: (a) minimum with 16; (b) maximum with 1.9.

The choice of the optical system for agricultural applications is of special relevance in order to
guarantee a correct performance oriented toward the acquisition of images with sufficient quality.
In this regard, the image must be correctly focused (manually or with autofocus) because feature
extraction depends highly on focus. Plants and structures that are out of focus do not provide
appropriate features for discrimination. A compatible format between sensor and lens is mandatory
in order to avoid distortions. An iris diaphragm could be automatic for self-adjusting, although
a manual diaphragm could sometimes be suitable such that it can be controlled for a sufficient amount
of illumination, which together with the exposure time control and image analysis allows the correct
control for acquisition of images with the required quality. Transmittance and optical filters should be
chosen properly to minimize undesired effects, such as vignetting. In agricultural applications the
focal length selection is crucial for defining the most appropriate ROI. The next section is devoted to
this issue.

3.3. Focal Length Selection

An important subject concerning the optical system is the selection of the focal length [53].
Depending on the field of view, the working distance where objects of interest are placed and the
sensor sizes, the focal length requires a convenient selection. As mentioned before, it is well-known
that the main element in the optical systems is the lens with its corresponding focal length, f, where in
a converging lens all incoming rays parallel to the optical axis intersect. Figure 8 displays the basic
elements of a generic converging optical system. H represents the field of view in the scene, h is the
sensor size, D is the working distance and d is the distance from the lens to the image plane, i.e.,
the focus distance where the object appears focused on the image plane.

The Gaussian lens expression and magnification factor (m) are given as follows,

1
f
=

1
D

+
1
d

; m =
h/2
H/2

=
d

D
(6)
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Figure 8. Optical system setup.
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By combining both expressions, the following relation can be derived,

f =
hD

h + H
(7)

For example, consider an agricultural machine vision application based on the Kodak KAI 04050
M/C sensor, specified in Section 5.1, with horizontal size 2336 pixels × 5.5 µm/pixel = 1285 mm.
The ROI is 3 m wide or a tree is 3 m height, i.e., H = 3 m and the working distance is D = 5m.
Under these considerations, applying the Equation (7) the required f results in 10.68 mm, which is
a reference for selecting the focal length.

4. Geometric Visual System Attitude

4.1. Initial Considerations

Once the above issues have been considered, the next action, oriented toward the visual system
selection in agricultural applications, is the geometric system arrangement. The main goal in this
regard consists of determining the vision system pose, particularly onboard autonomous ground
vehicles, where a set of specific 3D extrinsic parameters, involving translation and rotation matrices,
are critical. These parameters combined with the also critical intrinsic parameters (focal length, sensor
dimensions) allow us to determine how the 3D scene in the field is to be projected on the image plane.
This represents an important challenge; particularly during the vision system selection process. Indeed,
there are several tasks with specific requirements. The following is a list of examples:

1. Crop row detection: sometimes a fixed number of crop rows are to be detected for crops and
weeds discrimination for site-specific treatments or precise guiding [5,7,10–16]. Depending on
the number of crop rows to be detected or to follow during guidance, the vision system must be
conveniently designed such that the required number of rows, considering the inter crop row
spaces, can be imaged with sufficient image resolutions.

2. Plants leaves, weed patches, fruits, diseases: different applications have been developed based on
sizes of structures. In [54] morphology of leaves is used for weed and crop discrimination based
on features by applying neural networks. Apples are identified and counted on their context on
the trees in [55]. Fungal or powdery mildew diseases are identified in [56,57]. The machine vision
must provide sufficient information and the structures (leaves, patches fruits) must be imaged
with sufficient sizes and dimensions to obtain discriminant features for the required classification
or identification. In this regard, small mapped areas could be insufficient for such a purpose.

3. Tracking stubble lines: machine vision systems for tracking accumulations of straw for automatic
baling in cereal has been addressed in [58], where a specific width is required to guide the tractor
dragging the baling machine.

4. Spatial variations: plant height, fruit yield, and topographic features (slope and elevation) have
been studied in [59], where specific machine vision system arrangements are studied.

5. 3D structure and guidance: stereovision systems are intended for 3D structure determination and
guidance [20,21]. Multispectral analysis is carried improving the informative interpretation of
crop/field status with respect to the 2D image plane. The panoramic 3D structure obtained
must contain sufficient resolution for such interpretation and also provide a map where the
autonomous ground vehicle applies path planning and obstacle avoidance for safe navigation.
A variable field of view setup has been experimented for guidance in [22]. An adapted NDVI was
used in [60] for distinguishing soil and plants trough a camera-based system for precise guidance
in small vehicles.
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4.2. System Geometry

The above are illustrative examples where the correct definition of intrinsic and extrinsic
parameters will determine the machine vision effectiveness. The process to select a machine vision
system, assuming image perspective projection, consists of the following steps:

1. Fix the position of the machine vision Cartesian system onboard the vehicle.
2. Take as reference the central point of the sensor o, i.e., the point where the two diagonals in the

image plane intersect. This point will be the origin of the secondary coordinate system oxyz, with
axes (x,y,z).

3. Fix the origin O and associated Cartesian axes (X,Y,Z) of the primary world coordinate system
OXYZ. This is an imaginary system where the 3D points in the scene are to be referenced.
Its positioning must be conveniently set as to facilitate the agricultural tasks.

Given a point W(X,Y,Z) with its corresponding spatial coordinates, the goal is to define the
mapping of this point onto the image plane to obtain its coordinates (x,y) with respect to the system oxyz,
either expressed as length or pixels units. Under the image perspective projection, the problem becomes
a transformation between two 3D Cartesian coordinate systems, namely OXYZ and oxyz. To do that
the following steps are required, where at each step an elemental homogenous transformation matrix
is applied as follows [61]:

1. Initially the systems OXYZ and oxyz are both coincident, including their origins.
2. Move the origin of oxyz to a new spatial position located at W0(X0,Y0,Z0), which is the point chosen

to place the central point of the image plane, i.e., the origin of the oxyz system. This operation is
carried out by applying a translation operation through the matrix G.

3. Rotate the axes x, y and z with angles α, β and θ respectively. These rotations produce the
corresponding elementary movements to place the image plane oriented toward the 3D scene
(ROI) to be analyzed. These operations are carried out by applying the following respective
operations Rα, Rβ and Rθ .

4. Once the image plane is oriented toward the scene, the point W(X,Y,Z) is to be mapped onto the
image plane to form its corresponding image. This is based on the image perspective projection
by applying the perspective transformation matrix P.

The point W(X,Y,Z) is mapped onto the image coordinates x and y through the following
composition of elementary matrices in homogenous coordinates as defined in Appendix A.

⎛

⎜

⎜

⎜

⎝

x

y

z

k

⎞

⎟

⎟

⎟

⎠

= PRθRβRαG

⎛

⎜

⎜

⎜

⎝

X

Y

Z

1

⎞

⎟

⎟

⎟

⎠

(8)

The sizes of the sensor are measured in length units as expressed above as Sh and Sv, thus
considering the origin of the oxyz reference system placed at the central point of the sensor device, the
endpoints of the sensor are located at (−Sh/2, + Sh/2) and (−Sv/2, + Sv/2) for axes x and y respectively.
The coordinates x and y are also expressed in length units with values in the following ranges: i.e.,
−Sh/2 ≤ x ≤ +Sh/2 and –Sv/2 ≤ y ≤ +Sv/2. Thus, to express x and y in pixel coordinates, xp and yp

respectively the following transformation is applied,

xp =
(Sh/2 + x) H

Sh
yp =

(Sv/2 + y)V

Sv
(9)

Given a vision system setup, we can determine the imaging mapping of pixels in the 3D
agricultural scenario allowing efficient analysis focused on secure specific operations. The following is
a list of issues that can be established under the vision system setup for its correct selection:
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1. Mapping of specific areas: to determine the number of pixels in the image, which allows us
to determine if the imaged area is sufficient for posterior image processing analysis, such
as morphological operations where the areas are sometimes eroded. For example, it is very
important to determine if such areas can provide discriminatory information based on shape
descriptors for dicotyledons against monocotyledons or other different species. Maximum and
minimum weed patches dimensions should be also of interest [6,7,10–14,16,62].

2. Crop lines in wide row crops: determination of the maximum number of crop lines that can be
fully seen widthwise. Maximum resolution that can be seen along with discriminant capabilities.
Separation between crop lines to decide if weed patches can be distinguished or they could
appear overlapped with the crop lines. Crop lines width and coverage [6,7,10].

3. Fruits: sizes of fruits for robust identification [63], where the imaged dimensions determine
specific shapes based on sufficient fruit’s areas.

4. Canopy: where plant’s heights or other dimensions can be used as the basis for different
applications, such as for plant counting to determine the number of plants of small young
peach trees in a seedling nursery [64].

Illustrative examples are provided in section five in the context of the RHEA project [28], where
the goal is to determine the best camera system arrangement for crop rows detection.

The machine visual system geometry represents an important issue to be considered in machine
vision systems for agriculture:

1. The loss of the third dimension when the 3D scene is mapped onto 2D requires additional
considerations in order to guarantee imaged working areas (ROIs) with sufficient resolutions
and qualities.

2. Camera system arrangements onboard agricultural vehicles, together with the definition of the
sensor’s resolutions and optical systems, are to be considered.

3. It is appropriate simulation studies to determine the best resolutions, based on geometric
transformations from 3D to 2D.

4.3. Stereovision Systems

Stereovision systems, based on conventional lenses, are specifically dedicated to build 3D maps for
different purposes in agriculture [65], including vehicles navigation, operator-assisted and autonomous
systems [41], precision agriculture [42], recognition of fruits [66] or for obstacle avoidance for safety
purposes [67]. Following the Barnard and Fishler [68] terminology, the problem of stereovision consists
of the following steps: image acquisition, camera modeling, image matching and depth determination.
The key step is the image matching, that is, the process of identifying the corresponding points in
3D scene. A set of constraints are generally applied for solving the matching problem, as explained
in [68–70]: epipolar, similarity, uniqueness or smoothness.

Epipolar: derived from the system geometry, given a pixel in one image its correspondence in the
other image will be on the unique line where the 3D spatial points belonging to a special line (epipolar)
are imaged. Similarity: matched pixels have similar attributes or properties. Uniqueness: a pixel in
the left image must be matched to a unique pixel in the right one, except for occlusions. Smoothness:
disparity values in a given neighborhood change smoothly, except at a few discontinuities belonging
to the edges, such as borders on trunks or obstacles.

Consider two image planes, IL and IR associated to two stereo-cameras with parallel optical axes
and projection centers OL and OR respectively and separated a baseline B, Figure 10a. The world
coordinates system is defined by OXYZ, with the effective focal length, f, which is assumed to be identical
in both optical systems. Let P(X,Y,Z) a 3D point expressed in OXYZ, which is projected onto the images
planes on PL(XL, YL, ZL) and PR(XR, YR, ZR) with respect the image coordinates systems OLXLYLZL

and ORXRYRZR. The projected rays POL and POR define the epipolar plane, whose intersections with
image planes define the epipolar line. Given the projected point PL in the left image, its corresponding
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point PR in the right image lies on the epipolar line, which defines the epipolar constraint for stereo
matching. The difference d = XL − XD is known as disparity. By applying triangulation and the similar
triangles principle, once d is known by applying stereo correspondence, the depth, Z, for the point P

can be established and hence the 3D determination. Figure 10b and Equation (10) display the similar
triangles and the depth derivation.

OL :
B
2 +X

Z = XL
f

OR : −
B
2 −X

Z = XR
f

⎫

⎬

⎭

⇒
XL = f

Z

(

X + B
2

)

XR = f
Z

(

X − B
2

)

⎫

⎬

⎭

⇒ d = XL − XR =
f B

Z
⇒ Z =

f B

d
(10)

Once both f and B parameters have been fixed, the main issue is the computation of the
disparity for each pixel or for specific features (edges, regions, interest points), this is known as
the correspondence problem, which has been addressed broadly, although in different robotics
contexts [71], but equally valid in agricultural settings.

In this regard, consider the following example, where we want to design a stereovision
system with the following specifications and requirements: baseline 10 cm, the spatial coverage
in the X direction should be at least 30 m for a distance Z of 60 m, and f of 10 mm.
From Equation (10) we can obtain: XL = 10mm

60×103mm

(

30 × 103mm + 100mm
2

)

≈ 5.01mm and XR =

10mm
60×103mm

(

30 × 103mm − 100mm
2

)

≈ 4.99mm, i.e., as an example, the CCD Kodak KAI 04050 M/C
sensor, described in section five, with image resolutions of 2336 × 1752 pixels and 5.5 × 5.5 µm
pixel-sizes suffices for this purpose. Indeed, XL/5.5 and XR/5.5 result in 910.61 pixels, falling inside
the image resolutions.

Precision in stereovision systems in agricultural applications becomes an important issue, because
sometimes the ratio between 3D parameters and measurement errors becomes very significant. Indeed,
assume the goal is to determine plant heights with few centimeters, if the systematic error introduced by
the stereovision system is also of centimeters, the results could be dramatic and the system performance
will be limited. This issue has been conveniently addressed in [72] under different system settings.
Part of these limitations arises from the arrangement of the cells in the CCD/CMOS sensor device [73].
Assume the device contains n pixels (elements) along the horizontal X direction defined by its width p,
Figure 9a, we can thus deduce the following relationship expressed in Equation (11),

tgβ =
np

2 f
≈ β(radians); for very small angles :

p

f
=

2β

n
(11)

where β determines the Field of View (FOV) angle.
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Figure 9. Precision in stereovision systems (images from [73]): (a) geometric setting and parameters
defined by the CCD; (b) geometric relations on triangles from the 3D mapping.
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Figure 10. Stereovision system geometry with parallel optical axes (images from [73]): (a) mapping of
3D point P(X,Y,Z) onto image planes; (b) geometric parameters on similar triangles.

From the geometric relations in Figure 9b the following equations can be derived,

tgγ =
Z + ΔZ

B/2
; tgα =

Z

B/2
(12)

Z + ΔZ = B
2 tgγ

ΔZ = B
2 tgγ − Z = 1

2 Btg(α + θ)− Z = B
2 tg

(

tg−1
(

2Z
B

)

+ θ
)

− Z
(13)

where ΔZ determines the accuracy in terms of the distance Z and the baseline. The Equation (13) can
be expressed as a function of Z per baseline units as follows,

ΔZ

B
=

1
2

tg

(

tg−1
(

2Z

B

)

+ θ

)

− Z

B
(14)

As an illustrative example, let a stereovision system with baseline B = 30 cm and f = 10 mm
where each pixel is 5 µm as defined by the manufacturer. According to Equation (14) we need to
know θ, which can be inferred from Figure 9, under the following assumption θ ≈ tg−1 (p/ f ) ≈
tg−1 (5 × 10−3mm/10mm

)

≈ 5 × 10−4rad. Once obtained, the inaccuracy for a distance of 4m can
be derived from Equation (13), as: ΔZ = 30cm

2 tg
(

tg−1 ( 800cm
30cm

)

+ 5 × 10−4rad
)

− 400cm ≈ 5.4cm, this
means that the system must be validated with this inaccuracy to be considered as feasible or unfeasible.
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5. A Case Study: Machine Vision Onboard an Autonomous Vehicle in the RHEA Project

The RHEA project [28] was envisaged for precision agricultural tasks in maize (Zea mays L.),
wheat (Triticum aestivum L.) and olive trees (Olea europaea L.), and the experiments were performed
over four years with a final demo (May, 2014) in two fields located in Arganda del Rey, Madrid, Spain,
(40◦ 18′ 50.241”, −3◦ 29′ 4.653” for wheat and 40◦ 18′ 57.924”, −3◦ 29′ 3.7134” for maize and olive trees).
A fleet of autonomous vehicles (ground and aerial) equipped with different sensors, all including
a machine vision system, were the innovative elements used for such purpose. This case of study
is focused on the machine vision system, installed onboard an autonomous ground vehicle based
on a commercial tractor chassis, Figure 11a, used for weed detection and its removal in maize fields
(wide row-crops). Weed detection is based on crop rows detection with respect the ground vehicle
that allows the location of weed patches, at the same time it acts as an aid for guiding the vehicle.
This study describes the full machine vision system onboard a tractor, considered as a whole, oriented
toward a specific agricultural application. The full system contains a specific description related to the
main issues addressed in the first part on this paper, i.e., spectral-band selection (Section 2), imaging
sensors and optical systems (Section 3) and geometry (Section 4). This is explicitly stated.

(a) (b)

Figure 11. Machine vision system: (a) onboard the autonomous vehicle; (b) camera and optical systems
and other elements in a housing system. Images adapted and taken from [47] respectively.

5.1. Machine Vision System Specifications

The main components in the machine vision system were a camera-based with its optical system
and an IMU (Inertial Measurement Unit), both embedded into a housing system with a fan controlled
by a thermostat for cooling purposes, assuming that some agricultural tasks are conducted under
high working temperatures, above 50 ◦C, Figure 11b. The housing system is IP65 protected to work
in harsh environments (exposure to dust, drops of liquid from sprayers, etc.). The goal was to apply
specific treatments in the ROI in front of the vehicle, which was a rectangular area 3 m wide and
2 m long, Figure 11a. It covers four crop rows in the field, as specified in RHEA. This area starts at
3 m (Section 5.2) with respect to a virtual vertical axis traversing the center of the image plane in the
camera, i.e., where the scene is imaged, Figure 12.

The IMU, of LORD MicroStrain® Sensing Systems (Williston, VT, USA) is a 3DM-GX3®-35
high-performance model miniature Attitude Heading Reference System (AHRS) with GPS [74].
It is connected via RS232 to the processor and provides information about pitch and roll angles.
These angles were used as aid for estimating the crop rows in the image, based on the geometric
imaging projections from 3D to 2D, as described in Section 5.2.

Specific considerations about spectral-band selection (Section 2), imaging sensors and optical
systems specifications (Section 3) are provided below. The camera-based sensor, Figure 13a, is the
SVS4050CFLGEA model from SVS-VISTEK [75] and is built with the CCD Kodak KAI 04050M/C
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sensor with a GR Bayer color filter; its resolution is 2336 × 1752 (H × V) pixels with a 5.5 by 5.5 µm
pixel size. The manufacturer provides a data sheet for this device, with additional specifications,
namely: frame rate (16.8 fps), sensor size (h × v =12.85 × 964 mm), type sensor format (1”), optical
diagonal (1606 mm), minimum/maximum exposure times (6 µs/60 s or ∞ external), Red/Green/Blue
gains modes (manual and auto), SNR (58 db/9 bit), internal memory (64 MB), manual/automatic white
balance, lens mount (C-Mount), information about the operating temperature. The RR covers typical
ranges in the visible spectrum, see Figure 1a as reference, starting at 300 nm with tails above 760 nm,
i.e., receiving the impact of UV/IR radiations. The camera is Gigabit Ethernet compliant connected to
the main processor. This processor consists of a CompactRIO-9082 [76], with a 1.33 GHz dual-core Intel
Core i7 processor, including an LX150 FPGA with a Real-Time Operating System. LabVIEW Real-Time,
release 2011, from National Instruments [77], was used as the development environment. On average,
each image was processed on 400 ms.

The optical system, Figure 13a,b, consists of a lens with focal length of 10 mm, f-number varying
from 1.9 to 16 covering maximum and minimum aperture respectively, format of 1” (as required by
the sensor format) and transmittance of 86%; it is equipped with an external UV/IR 486 filter with
cutting wavelengths below 370 nm and above 760 nm, as described in Section 2.2.

In RHEA the f-number was fixed to 8 (intermediate value) and the exposure time was controlled
by applying the procedure described in [50], which was based on the histogram analysis of the ROI.
Vignetting correction was applied, as described in Section 2.2. No white balance was used because
of the problems with shadows mapped onto the reference panel, described in Section 2.2. The frame
rate was fixed to 3 fps, which was sufficient. Indeed, the maximum speed of the vehicle during the
working operation was fixed to 6 Km/h, so that the vehicle requires 1.8 s to travel the 3 m length of the
ROI, i.e., we had available about 5 frames, allowing us to discard possible failed images.

 

Figure 12. Camera system geometry. Image from [47].
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(a) (b)

Figure 13. Charge Coupled Device (CCD) sensor, lens and UV/IR cut filter: (a) assembled; (b) separated.

5.2. 3D Mapping onto 2D Imaging

Figure 13 displays the camera system geometry, based on the considerations addressed in Section 4.
OXYZ is the reference frame located in the ground with its axes oriented as displayed; h is the height
from O to the origin o of the reference frame oxyz attached to the camera; roll (θ), pitch (α), and yaw (β)
define the three degrees of freedom of the image plane with respect to the referential system; d is the
distance from the beginning of the ROI to the X axis.

As an illustrative example for defining the vision system geometry, consider the camera-based
sensor and optical system specified in Section 5.1. based on the geometric scheme described in the
Appendix A. The ROI is imaged onto the image plane as displayed in Figure 14a. Six crop rows are
specified (which is a number different from the four crop rows in RHEA) separated from each other
0.75 m; eight horizontal strips are considered with a separation of 50 cm. The ROI is placed on the
ground with 4.5 × 4 m2 (wide and long), placed 3 m ahead of the tractor with reference to the origin of
the world coordinate system OXYZ, i.e., with XYZ coordinates (0,0,3) m, respectively. The extrinsic
camera parameters are: (X0,Y0,Z0) ≡ (0,2,0) m and (α,β,θ) ≡ (20◦,0◦,0◦). Figure 14b displays the same
ROI imaged with the same arrangement but with a different θ, i.e., (α,β,θ) ≡ (20◦,0◦,+5◦). As we can
see the image becomes distorted in the second case. The asterisk displayed in both images is the
mapping of a reference point with coordinates (X,Y,Z) ≡ (0,1,1) m.

(a) (b)

Figure 14. Geometric imaging projections of a Region Of Interest (ROI) for the SVS4050CFLGEA
sensor with two different settings at (X0,Y0,Z0) ≡ (0,2,0) m: (a) with (α,β,θ) ≡ (20◦,0◦,0◦); (b) with
(α,β,θ) ≡ (20◦,0◦,+5◦).

Assume the same sensor SVS4050CFLGEA placed at (X0,Y0,Z0) ≡ (0,2,0) m, given a simulated
patch with size 20 × 20 cm2 placed onto the ROI described above at different distances from the center
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O in the world coordinate system OXYZ. The imaged areas of this patch are measured in pixels and
displayed in Table 3 as a function of the distances from the center, i.e., with Z values of 3, 4, 5 and
6 m, Y = 0 and X = ±10 cm; with two α values (15◦ and 20◦), β and θ both fixed to 0◦ and also for the
following four focal lengths (3.5, 8.0, 10.0, 12.0) mm.

Table 3. Imaged areas in pixels for a patch of 20 × 20 cm2 at different distances form the origin in the
coordinates of the world system, α angles and focal lengths.

Distances from O (m) α
◦ f (mm) Area (pixels) Distances from O (m) α

◦ f (mm) Area (Pixels)

3

15

3.5 756

5

3.5 212
8.0 3901 8.0 1070

10.0 6136 10.0 1675
12.0 8840 12.0 2415

20

3.5 710 3.5 188
8.0 3645 8.0 1007

10.0 5684 10.0 1596
12.0 8296 12.0 2320

4

15

3.5 371

6

3.5 120
8.0 1900 8.0 637

10.0 2934 10.0 1026
12.0 4312 12.0 1428

20

3.5 342 3.5 110
8.0 1806 8.0 620

10.0 2818 10.0 998
12.0 4128 12.0 1388

We can see that the maximum/minimum areas are 8840/110 pixels, which corresponds
respectively to imaged patches of 94 × 94 and 11 × 10 pixels2 for the same patch on the 3D ROI.
This allows the evaluation of the vision system configuration in order to discriminate shapes or for
posterior processing such as morphological operations. For example, if binary morphological erosion
is applied over the above areas with a 3 × 3 structuring element these areas are reduced to 8464/72
pixels representing reduction rates of 4.2%/34.5%. This means that the best arrangement is the first
one as the largest area allows for better subsequent discrimination based on area analysis. Designers
can use the vision system geometry for different simulations. However, in addition, the following
robot simulators could be used for previous analysis on agricultural environments [78,79].

5.3. Crop Rows Detection and Weed Coverage

Three methods were tested in RHEA for crop rows detection [5,10,80], the vignetting effect,
produced by the use of the Schneider UV/IR 486 cut-off filter, was compensated based on the approach
proposed on subsection (2.2). No white balance was required because this action was replaced by
histogram analysis on the ROI, as explained in the above references. Alignments of row pixels
were identified in [5] along specific directions defining the crop rows. Maximum accumulations
corresponding to the number of expected crop rows define the crop rows. This approach, inspired by
the human visual perception, is a simplification of the Hough transform [16]. Linear regression was
applied in [10,80], where greenness was identified based on the computation of vegetation indices [11]
followed by automatic thresholding. The IMU provides pitch and roll angles, which together with the
remainder intrinsic/extrinsic parameters and Equation (8) the expected crop rows are drawn on the
image, and then linear regression (least squares and Theil-Sen respectively) was applied for adjusting
the expected crop rows to the real ones on each image.

More than 3000 images were analyzed belonging basically to three groups according to the growth
stage of the crop: Low (5 cm), Medium (15 cm), High (30 cm). The images were acquired over different
days under different illumination conditions, i.e., cloudy, sunny days, and days with high light
variability. With the set of images analyzed and considering the maize crops at the above-mentioned
three growth stages (low, medium, high), the averaged percentage of successes displayed in Table 4
were obtained.
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Table 4. Percentage of success for crop lines detection for three (low, medium, high) maize growth stages.

Crop Lines Detection

Maize growth stage Low Medium High
% of success 95 93 90

For each image, a density matrix of weeds associated with each ROI was computed. This matrix
contains low, medium, and high density values. Figure 15 illustrates two consecutive images along
a sub-path. They contain three types of lines defining the cells required for computing the density
matrix as follows:

1. Once the crop lines are identified, they are confined to the ROI in the image (yellow lines).
2. To the left and right of each crop line, parallel lines are drawn (red). They divide the inter-crop

space into two parts.
3. Horizontal lines (in blue) are spaced conveniently in pixels so that each line corresponds to

a distance of 0.25 m from the base line of the spatial ROI in the scene.
4. The above lines define 8 × 8 trapezoidal cells, each trapezoid with its corresponding area Aij

expressed in pixels. For each cell, the number of pixels identified as green pixels was computed,
Gij, (drawn as cyan pixels in the image). Pixels close to the crop rows were excluded, with a margin
of tolerance which represents 10% of the width of the cell along horizontal displacements. This is
because this margin contains mainly crop plants but not weeds. The weed coverage for each cell
is finally computed as dij = Aij/Gij, expressed in percentage. The different dij values compose the
elements of the density matrix.

 

Figure 15. Consecutive images along a sub-path with the detected crop lines (yellow); parallel lines to
the left and right crop lines (red); horizontal lines covering 0.25 m in the field. Images taken from [47].

From a set of 500 images, obtained during the test campaigns mentioned above and also with the
different growth stages, the weed coverage was classified according to three levels (Low, less than 33%,
Medium, between 33% and 66%, and High, greater than 66%), associated to the Liquefied Petroleum
Gas pressure levels of the physical weed controller used for weed removal in RHEA. These percentages
are checked against the criterion of an expert, who determined the correct classification. The results
are summarized in Table 5.

Table 5. Percentage of success for weeds detection for three (low, medium, high) maize growth stages.

Maize Growth Stage

Weed densities Low Medium High
% of success 92 90 88
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As before, the worst value corresponds to maize fields with a high growth stage, which is
consistent with the real situation because of the reasons expressed above. Part of the inaccuracy comes
from the incorrect crop lines detection.

5.4. Guidance

Nowadays, GPS systems are commonly used, being a well-known approach for autonomous
guidance. However, in RHEA, tractor’s guidance was achieved by combining GPS and machine
vision systems.

In RHEA a Mission Manager software-based was developed for handling the multi-robot system.
It is responsible for generating global trajectories determining the path planning [81], which are
previously established for each vehicle before the mission starts [82]. Regarding the global path
following planned for the tractor, parallel routes that move alternately from one extreme of the field to
the other are planned, following the crop row direction and turning in the headlands (the outer areas
of the field). At the first stage, the GPS was used to provide information to the tractor to place it at the
beginning of the crop rows, points belonging to the plan, as aligned as possible.

Once the tractor is placed and aligned, the tractor starts moving along the crop rows following
the planned path by using GPS information. Specifically, a RTK-GPS (Real Time Kinematics-Global
Positioning System) sensory system was used consisting of two GNSS (Global Navigation Satellite
Systems) rover antennas, one for XYZ positioning and the other for heading calculations [47,81], where
the correction signal is produced locally generated with a reference (local) base station, providing
localization errors of below ±2 cm. Precise guidance was applied for controlling deviations from the
planned path, based on the machine-vision system.

The system determines the diagonal (D) line equidistant to the two central crop rows detected
in the image. Considering the bottom line in the image defining the ROI, two principal points are
identified. The first is exactly the central point (Pc) in the horizontal row crossing the full image and
overlapped with the bottom line in the ROI. The second (Pi) is the intersection point between D and
the same bottom line in the ROI.

The difference between the x-horizontal coordinates of Pi and Pc determines the deviation with
respect the correct trajectory. This difference (positive, negative or null) transformed from image pixels
to length measurements was used for trajectory correction.

When Pi and Pc match, no correction was required; otherwise, the appropriate correction with
respect the planned path (line-of-sight) was applied. In order to assume incorrect information provided
by the machine vision system because of failures during the crop row detection, lower and upper
limits were established considering that deviations greater than ±3 cm are ignored and that the path
following continues with the GPS following the line-of-sight. The limit of ±3 cm represents the 8%
with respect the half of the distance of 75 cm existing between adjacent crop rows.

Figure 16a,b display two consecutive images acquired during the execution of a straight trajectory
from the line-of-sight with their processed images and crop rows detected in the ROI (weeds are also
identified around the crop lines). The tractor in 16a undergoes a slight deviation from the correct
trajectory. Indeed, the upper right corner in the box, belonging to the tractor, is very close to the
rightmost crop row and that this box is misaligned with respect to the four crop lines detected in the
image displayed in 16c. This misalignment is corrected and can be observed in Figure 16b where the
box is better centered relative to the central crop rows, Figure 15d. This situation was very common on
rough maize fields because they contain abundant irregularities.
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(a) (b)

 
(c) (d)

Figure 16. Alignment of the vehicle along the crop rows. Images adapted and taken from [47]:
(a) original image with deviation; (b) original image after correction; (c) misalignment of the tractor
with respect the crop rows; (d) misalignment corrected.

For testing purposes, a set of 400 images were randomly selected. Corrections ordered by the
machine vision system were checked. After each correction, the position of the vehicle with respect
the crop rows in the next image was verified. A correction has been demanded for 30% of the images
(120 images). From these, the tractor was correctly positioned on 89% of the subsequent images.
For the remaining images, the correction was erroneously demanded. In these cases, the following
path was exclusively based on GPS for guidance. Figure 17 illustrates the comparison between the use
of the information provided by the machine vision system and the use of the information provided
exclusively by the GPS for crossing the maize field, where it is noteworthy that the row detection
system slightly improves the row following, taking into account that the theoretical path to be followed
using only the GPS system corresponds to the center of the row by which the two results are compared.
It is worth noting that the crop rows at the end of the experimental field were slightly damaged (the last
10 m), due to the large number of tests performed, and in this area, the vision system for row detection
produced a large number of errors.
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Figure 17. Comparison of the vehicle guidance in a maize field, represented as the lateral error of the
rear axle with respect to the theoretical center of the rows. Image from [47].

5.5. Security: Obstacle Detection

Spatial and temporal analyses were applied in video sequences in obstacle detection for safety
purposes in [25]. The spatial analysis is based on the b* channel in the CIELAB color space where most
objects can be distinguished from the main structures (plants and soil). When objects contain high red
and/or white components L* and a* channels were used. Texture information for each pixel is also
computed, based on differences between maximum and minimum gray level values in a neighborhood
environment around the pixel. Binary images were obtained at each step and combined with the logical
and binary operation to obtain a final binary image containing potential objects in the environment.
The temporal analysis is based on the difference between two consecutive frames where significant
differences are obtained where objects appear and a new binary image is computed. The matching of
the binary image obtained based on spatial analysis was compared to the one obtained for temporal
differentiation. A comparison is established between the two binary images to verify/discard binary
matches, which determine the presence of objects. Figure 18 displays illustrative examples with
three persons and a vehicle coming from the front containing dangerous situations on the working
agricultural scenario. New trends and methods are currently being tested based on deep learning
approaches [67] following the ISO/DIS 18497 which is a standard for safety of highly automated
agricultural machines, including tractors.

Figure 18. Peoples and a vehicle identified as obstacles in the working environment.
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6. Conclusions

Machine vision is a relevant system in agricultural vehicles (autonomous and non-autonomous)
for different tasks, including UAVs. An appropriate choice of such systems is an additional guarantee
the successful performance of tasks in outdoor environments. In this regard, this paper has addressed
the following three main topics for a correct selection in agricultural environments: (a) spectral band
for identifying significant elements (plants, soil, objects); (b) imaging sensors and optical systems for
mapping the scene onto images with sufficient quality and (c) geometric system pose and arrangement
for mapping specific areas. A general overview, with detailed description and technical support, has
been provided for each topic with illustrative examples focused on specific applications in agriculture.
This represents a set of guidelines with sufficient details and descriptions, so that future engineers have
sufficient basis for designing machine vision systems in agricultural applications, which represents
a compilation and condensation of scattered ideas in the teeming area of applications in agriculture
based on machine vision systems. The way is open for the incorporation of new incoming technologies,
particularly 3D systems such as the ones based on Time of Flight (ToF) technologies.

A case study is provided as a result of research in the RHEA project (funded by the European
Union) for effective weed control in maize fields (wide-rows crops) where many of the technical issues
described in the paper have been applied with successful results.
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Appendix A. Camera System Geometry

The point W(X,Y,Z) is expressed in the 3D space with respect to the OXYZ world reference system.
The origin o of the image plane is displaced with respect O according to the vector w with coordinates
(X0,Y0,Z0). The elementary translations and rotations as described in Section 4 are expressed as follows,
including the focal length (f ),
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The elementary matrices involved are defined as follows, where CX ≡ cosX and SX ≡ sinX.

G =

⎛

⎜

⎜

⎜

⎝

1 0 0 −X0

0 1 0 −Y0

0 0 1 −Z0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

P =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

f 1

⎞

⎟

⎟

⎟

⎠

Rα =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 Cα Sα 0
0 −Sα Cα 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

Rβ =

⎛

⎜

⎜

⎜

⎝

Cβ 0 −Sβ 0
0 1 0 0

Sβ 0 Cβ 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

Rθ =

⎛

⎜

⎜

⎜

⎝

Cθ Sθ 0 0
−Sθ Cθ 0 0

0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

(A2)

R = RθRβRα =

⎛

⎜

⎜

⎜

⎝

Cθ Sθ 0 0
−Sθ Cθ 0 0

0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

Cβ 0 −Sβ 0
0 1 0 0

Sβ 0 Cβ 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 Cα Sα 0
0 −Sα Cα 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

CθCβ CθSαSβ + CαSθ −CαSβCθ + SθSα 0
−SθCβ −SθSαSβ + CαCθ SθCαSβ + CθSα 0

Sβ −SαCβ CαCβ 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

(A3)

The composition of the elementary rotation matrices derive in a composed rotation matrix
as follows,
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Finally, the projections on the image plane are expressed as,

x = − f
(X−X0)CθCβ+(Y−Y0)CθSαSβ+CαSθ+(Z−Z0)(−CαSβCθ+SθSα)

(X−X0)Sβ+(Y−Y0)(−SαCβ)+(Z−Z0)CαCβ− f

y = − f
(X−X0)(−SθCβ)+(Y−Y0)(SθSαSβ+CαCθ)+(Z−Z0)(CαSβSθ+CθSα)

(X−X0)Sβ+(Y−Y0)(−SαCβ)+(Z−Z0)CαCβ− f

(A6)
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Abstract: Most of the relevant technology related to precision agriculture is currently controlled by
Global Positioning Systems (GPS) and uploaded map data; however, in sensitive areas with young or
expensive plants, small robots are becoming more widely used in exclusive work. These robots must
follow the plant lines with centimeter precision to protect plant growth. For cases in which GPS fails,
a camera-based solution is often used for navigation because of the system cost and simplicity. The
low-cost plant camera presented here generates images in which plants are contrasted against the soil,
thus enabling the use of simple cross-correlation functions to establish high-resolution navigation
control in the centimeter range. Based on the foresight provided by images from in front of the
vehicle, robust vehicle control can be established without any dead time; as a result, off-loading the
main robot control and overshooting can be avoided.

Keywords: vision-based navigation; infield navigation; steering control; plant camera

1. Introduction

In the field of agricultural research, precision farming and bio-farming agricultural robots are
becoming more important because of the growing availability of robots as well as new and alternative
applications that robots can provide or will provide in the near future. These alternative applications
include testing and measurement applications, and research has focused on the placement of small
chemical or insect bombs at precise infield positions for pest control. When wind from helicopter
propellers prevents precise application, the payload is too small for deployment using helicopters,
or views close to the ground [1] or mechanical manipulation are required, infield robots are the
right choice. However, only robots with small wheels and low weight can be used when young or
expensive plants need to be protected. Therefore, the vehicle cannot drive over the plant lines, and a
method for inter-row weeder guidance is required. The typical drilling distance for wheat is 16 cm in
Germany; thus, navigation precision must be in the centimeter range, which can be accomplished with a
vision-based system [2–4]. Standard Global Positioning System (GPS) approaches often fail to produce
high resolution over the entire field because when a satellite is hidden by an obstacle, such as a tree,
hill, building, or the horizon, the resolution of the calculated position jumps to the meter range. Even a
high-resolution real-time kinematic GPS that uses two GPS devices and a radio connection to transfer
the correction data faces similar problems when the radio connection is lost. For a ground-based
radio connection, such a loss of connection can occur without obstacles because ground-reflected radio
waves experience a 180◦ phase shift of directly transmitted waves, which results in the attenuation
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of the transmitted wave [5]. Under good satellite and radio conditions, real-time kinematic GPS can
reach centimeter-scale resolution for slow vehicle speeds [6] or at larger time steps of one second [7]. In
addition, typical maps uploaded to agricultural machineries have a grid size in the meter range [8]. A
meter-scale grid is sufficient for large agricultural machines but not for small field robots. Accordingly,
alternative or complementary techniques are required for precise navigation control. The best practice
is to use an actual view of the plant lines to determine the correct direction to navigate [2,9–11]. For an
automobile, navigational laser scanners and camera systems are common [12]; however, laser scanners
are expensive and optimized for automobile applications; thus, they have large and overlapping spots
to ensure the safe detection of all potential obstacles instead of centimeter-scale resolution [13,14].
Low-cost laser scanners are produced for indoor use and are not designed to operate in conditions
with high amounts of water, dust and vibration, and they fail when exposed to direct sunlight, which is
the greatest disadvantage for infield applications. In research applications, laser scanners are versatile
under good weather conditions for a range of applications, including measurements of tree-row
crops [15] or corn crops [16]. Although the cost of camera systems is decreasing, they lack robust plant
detection software, which must be implemented in the system by the user. However, a normalized
difference vegetation index (NDVI) processing system may be implemented along with plant detection
software. NDVI is commonly used in agriculture to detect chlorophyll activity and separate plants
from the soil. Although different formulas can be used to process NDVI signals and images, they
always result in a grayscale or binary image with an adequate threshold. Both types of images can
be used for high-resolution navigation control, and most high-resolution navigation applications use
Hough transformations to detect plant rows [2,9–11,17], the cross-correlation is a simpler approach
in terms of processing power for a small embedded system. The combination of these images with a
mask representing the plant line, for cross-correlation result in a precise position signal, which can
be used to (lock-in) follow along the plant line. The cross-correlation function has a high filtering
effect and is thereby good for noise reduction and outlier suppression. Using the binary image and
mask results in a dramatic reduction of calculation power for microcontrollers/processors and field
programmable gate arrays (FPGA), because they can use the logical “AND” and a counter for the
whole math. Additionally, the horizontal use of the images has the grade advantage for parallelizing
the calculation process, and thereby accelerating the result determination. The foresight provided
by the image in front of the vehicle provides sufficient calculation time and timely decision support.
Accordingly, vehicle control can be established without any dead time, and overshooting of the control
output can be avoided. The calculating power costs in a small embedded system are low and will
continue to decrease in the future, thereby enabling effective image-based navigation control systems
for infield robot applications.

2. Methods

The plant-based navigation described in this article is a combination of two robust concepts: the
image of a known scene with a known plant camera system and the cross-correlation mathematical
operation that determines the degree of similarity of two functions. In this case, the cross-correlation
determines the degree of similarity of a pixel line from both an image and mask, which corresponds to
the periodic plant line structure.

2.1. Plant Camera and Imaging

The plant camera should be mounted as high as possible on the field robot. The mounting angle
should provide a good compromise between foresight and high-resolution views close to the robot,
which also depends on the viewing angle of the objective. A typical arrangement is shown in Figure 1.
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Figure 1. Mounting position of the plant camera on top of the field robot.

With respect to costs, any color complementary metal-oxide-semiconductor (CMOS)
charge-coupled device (CCD) cameras with near infrared (NIR) sensitivity (~800 nm to 900 nm)
can be used. The IR-cutoff filter must be removed, and a low-pass filter from approximately 645
nm to 950 nm (RG645, SCHOTT AG, 55122 Mainz, Germany) should be used. Better results can
be achieved with an adapted double band-pass filter [18], although this configuration has a higher
cost. An adequate CMOS chip is the Aptina MT9V032STC (Aptina Imaging Corporation, San Jose,
CA, USA), which has high NIR sensitivity at 850 nm (Figure 2) and provides an image with 752 ×
480 pixels.

Figure 2. Spectral distribution of the RGB color chip MT9V032STC. Additional spectral range of the
low pass filter (a) and optimized double band-pass filter (b) [18].

Figure 2 shows the usable spectral range of the camera chip after implementing an optical filter.
The green and blue channels are only sensitive in the NIR range, and the red channel is sensitive to
red and NIR light. Figure 3 shows the spectral characteristics of a plant, and the highest amplitude of
spectral response is between the red and NIR range. Therefore, these spectral components are often
used for the NDVI.
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Figure 3. Characteristic spectral distribution of plants and soil. Measured 2012 at a campaign by
Gebbers et al. with a spectrophotometer (400 to 1000 nm, build of MMS1 NIR enhanced optical modules
(Zeiss, Jena Germany) and LOE-USB controller (tec5, Oberursel, Germany)) [19].

The formula for the NDVI must be adapted to the spectral composition of the new “RGB” channels
of the color chip.

(NIR − R) / (NIR + R) → ((Bchannel + Gchannel) − Rchannel) / Rchannel (1)

Several optimizations can be used improve the contrast between plants and soil in the images [18],
but the most important are debayering control and white balancing termination in custom cameras.
These algorithms are usually optimized for RGB images and do not operate properly for new channel
configurations. With optimized NDVI images, enhanced binary images can be produced [18], and they
simplify the subsequent image processing applications [20].

Images of winter wheat were taken at the early growth state, and they were not optimal in
terms of quality and viewing direction compared with images from fixed-mounted camera on a
field robot platform. Although the images were not optimal, they demonstrate the robustness of the
cross-correlation algorithm.

2.2. Cross-Correlation

The discrete form of the cross-correlation is shown in Equation (2). The calculation width from
−N to N corresponds to the search window width of the cross-correlation, which will be subsequently
used for tracking the position of the resulting maximum.

CC(k) =
N

∑
n=−N

B(n)·A(n + k) (2)

The cross-correlation algorithm describes the identity of two functions, with one discrete function
moved over the other and each data point (pixel) then multiplied. Finally, all of the results are summed,
and the position of this sum is then stored or displayed (Figure 4).
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Figure 4. Correlation between simplified signals A and B.

The maximum of the correlation result provides the highest identity position of the two functions.
For a periodic function, the result will have a periodic maximum. With respect to the round shape of
the maxima peak, the center of the peak can be calculated by the distance between the −3 dB (1/

√
2)

and −6 dB (0.5) points or displayed in a small search window for peak tracking of the median position
width. Navigation control must follow the peak signal; therefore, the mask function does not have to
be moved over the entire pixel line of the image, which reduces the amount of calculation cycles to
the number of pixels from the mask function (−N to N). During perfect navigation control, the peak
signal of the correlation is always in the middle of the results (Figure 5), and the input signals for the
control loop to follow the specific plant line represent deviations from optimal conditions. Therefore,
the search window for tracking can be even smaller than the mask window. For example, the window
size for the cross-correlation is four or five periods wide, and the window size for the tracking search
is one period.

Figure 5. Application of the discrete cross-correlation between a 50-line averaged image signal and
three-pulse rectangular shape mask. The center point of the correlation result is marked with a yellow
and red point.
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Because the middle range of the image is optimal for this application, an inexpensive objective for
the camera system can be used. Optical distortions caused by the objective affect the outer part of the
image, although they can be ignored for this application. The image will also be used for additional
image processing applications [21], with a higher quality lens used in practice.

3. Strategies

Several strategies can be used to obtain adequate results for this navigation approach, including
mask design, average number of image line determination, error correction establishment, and
embedded system design.

3.1. Mask

The mask function can be estimated or calculated by different functions or methods. With a fixed
camera mount and known drilling distance, an empirical mask can be used in most cases. At the
starting point in front of the field, the robot system can calculate the actual mask. These calculations
do not affect the control loop because the mask will be calculated only once at the initializing/starting
phase after each turnaround at field ends. After stretching out the perspective in the image, a fast
Fourier transform (FFT) function can be used to determine the basic frequency of the plant line
distance, which should be the frequency for the periodic mask function. Based on the stretched
image, the maximum peak intensities of the cross-correlation can be used by varying the periodicity
of the rectangular-shaped mask from the expected nearby lower periodicity to higher periodicity.
Alternatively, a low-pass filter, such as a Gaussian-shaped filter, can be applied to the image lines in
the x-direction. The threshold based binary result can be used to obtain a rectangular signal; in this
case, a median duty cycle is a good choice for the mask function.

In addition, the mask function length, or the number of periods to be used for the correlation,
must be set. A short mask produces a small number of calculations, whereas a large mask provides a
better filtering effect and is more robust against outliers. For this application, a very large mask must
be adapted at the border side because the perspective image causes changes in both the periodicity and
duty cycle (Figure 5). For the same camera mounting position, a correction function or lookup table
can be used to adapt the mask limb. However, with respect to calculation power, a medium-size mask
is a good compromise. One rectangle is too sensitive and can lead to frequent missing plants in the
line. Four rectangles are robust as long as four plants are not missed; this exception will be discussed
later. Image stretching evens the linear mask correction function for the y position, with the mask
decreasing in size from the bottom to the top y lines. In addition, small variations of mask scaling can
be used to calculate results with the highest minimum-to-maximum distance or the best fit. Increasing
differences from the best mask scale to expected scale provide additional terrain information. Larger
scales indicate that a hill is coming, whereas smaller scales indicate that a hill has passed. For a field
robot with an integrated hybrid power system, this information can be used to direct the robot to
provide a higher amount of power, such as by increasing the generator turns per minutes.

3.2. Number of Tracking Points and Averaged Image Lines

In natural scenes, the field arrangement is never perfect. Therefore, an individual image line in
the x direction can appear as noise, which is useless for a tracking result or point and may be caused
by drilling errors or animal interference at the specific area. Significant effort is required to write a
program that can manage all of the existing or possible exceptions, and a more effective solution is
to reduce the number of tracking points and calculate them with an averaged image line. Due to
the perspective distortion in the image, a limited number of lines is available for averaging in the
y direction because the result is approaching an increasingly flat line. Depending on the mounting
position and camera resolution, each setup will have its own optimal compromise for the number of
tracking points and averaged image lines, which can be performed by averaging 10 or 50 lines or using
a certain percentage of lines above and below the actual y position, such as 20 lines combined with an
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additional 20 lines above and below. This process results in a high degree of filtering, but the average
of each 20-line package must be calculated only once. These packages can be weighted by 0.25, 0.5
and 0.25, which results in a Gaussian filter response. Thousands of combinations of filter types and
lengths are possible. With respect to calculation power, simple algorithms are preferable because the
cross-correlation can filter as well.

Figure 6 demonstrates that the differences at the center region are minimal as long as plants are
not missing in the line.

The number of calculated tracking points is not constrained because the averaged regions can
overlap. A larger overlap results in smaller potential movements of the tracking points, although it
requires additional calculation power to perform averaging and has an additional disadvantage of
reduced tracking at small curve radius.

Figure 6. Four plotted lines showing the normalized average result at the same y position. Line A is an
average of 20 lines, line B is an average of 40 lines, line C is an average of 60 lines, and line D is the
Gaussian result (20 × 0.25 + 20 × 0.5 + 20 × 0.25).

3.3. Error Correction

Because of the imperfect field situation, the cross-correlation can produce higher maxima to the
left and right of our tracking maximum. Therefore, the search window size should be reduced to one
maximum. Determining the field conditions can reduce the window size [22]. If the maximum jump is
towards the window corner or the distance between minimal and maximal values is too small, then
a warning or error signal is indicated. If the error signal is missing for results at higher y positions,
then certain errors can be ignored and compensated by a linear regression as described below. Figure 7
shows a typical search window result with the recused width during a normal operation cycle, and the
gray areas indicate the warning region for the center point. The warning region is an example and can
be adapted to the camera resolution and view field.

Larger field areas may not be in the correct order, which might be caused by animals or drilling
errors. Drilling errors are not frequent in gardening, but such errors occur more frequently during
grain cultivation. At the drilling machine stopping position for grain refilling, islands of excessive
or missing plants can occur, and the cross-correlation cannot find a tracking point in such areas; as a
result, the entire solution will be adapted with a spline or linear regression calculation for the expected
driving direction. This function helps to find outliers and can bridge gaps in an image. Possible
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tracking points in line and close to the spline position will be used in the algorithm, and the robot can
follow the spline interpolation over the gap areas. This process is the correct procedure for use in an
area with excessive numbers of plants, which is determined by the NDIV information. For missing
plants, this strategy is justified if the gap is smaller than the robot. For larger gaps, the robot should
ask the supervisor to drive around the gap or use additional image analysis techniques to ensure that
holes in the ground are not present. Due to the reduced curve-driving capability of drilling machines,
the interpolation function requires only several terms for fitting the curve shape. The main driving
direction is the y direction in the image; therefore, the function depends on the y coordinate:

f(y) = a + by + cy2 + dy3 (3)

Figure 7. Search window at the center position of the cross-correlation result. The median is used to
detect the nearest thickness points of the peak function, and the middle position is marked. Both plots
were obtained from the results of a binary image. The gray areas indicate the warning regions for
tracking point quality.

If the regression coefficient is inadequate, then historical tracking points from previous images
can be used to strengthen the interpolation function. Therefore, the movement should be stored in
memory, with at least the last image saved.

Additional error corrections can be implemented by using alternative information sources [17],
such as gyroscopes, accelerators, magnetic compasses, barometers and GPS. This process is called
“sensor fusion”, and in combination with calculated information from the sensor signals, it helps to
resolve critical issues.

All needed parameters and functions for the cross correlation are summarized in the workflow
diagram in Figure 8.

3.4. Embedded System

To offload the main computer of the robot system, the direction correction data should be
calculated by an independent system. Many semiconductor chips can be used to perform such
calculations at low cost and low power consumption. For simple solutions, it is impractical for the
robot to transport a large computer workstation because of the increased power consumption and
payload, although the advantage of this solution is the high degree of potential parallelization. XMOS
has developed an XS1-L16A-128-QF124 microprocessor with 16 processor cores for $20, and FPGAs are
available from multiple companies at prices ranging from $2 to $10,000. The NVIDIA Tegra K1 chip
has quad ARM processors and 192 graphics processing units (GPUs), and a computer-like evaluation
kit (Jetson TK1) costs €170. However, a more optimized solution is to use modern software to design
and evaluate application specific optimized processors.
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Figure 8. Simplified workflow diagram for the main path.

The required processing architecture for robot applications must be heterogeneous because both
robotics control applications as well as dataflow-oriented applications are used. Robot control is
clearly part of the application, which is more control-flow oriented. Therefore, the most suitable target
architecture is a standard central processing unit (CPU) and varies according to the algorithm used
for image processing. Here, a clear data-flow orientation is most suitable; therefore, hardware with
maximal parallelization would be most beneficial to host this part of the application and specific
processor architectures, such as very long instruction word (VLIW) processors, GPUs and FPGAs, are
most suitable. Because the FPGA architecture can combine control- and data-flow oriented processors,
this hardware is most suitable for the target application described in this paper. Promising FPGA
architecture is found in the Zynq platform by Xilinx, which combines a dual core ARM 9 processor
with reconfigurable hardware and a number of standard interfaces, such as the controller area network
(CAN), Peripheral Component Interconnect Express (PCI Express), Serial Peripheral Interface (SPI),
analogue, and a high number of digital I/Os [23]. More suitable architecture, Zynq Ultrascale, will be
available in future and will include an ARM Mali GPU, quad core ARM A53, dual core R5 and many
more features.

The aforementioned architectures exhibits the trends of current and future embedded system
platforms, which clearly follow the trend of heterogeneity in terms of their processing units because
of applications that have different requirements, particularly for embedded applications. These
requirements can be either functional or non-functional. Functional requirements include specific
algorithms that deliver results according to a quality of service request (e.g., image resolution,
frame rate), whereas nonfunctional requirements include real-time operation, high throughput, high
reliability, and availability; these functions are crucial because real-time requirements are essential for
the proper and safe operation of a system. Most of the recent achievements have enabled embedded

41



J. Imaging 2015, 1, 115–133

platforms to measure and control themselves to adapt to these requirements, even during run-time
operations. [24]. Here, a specific adaptation of the processing element is used to self-tune the complete
architecture according to the current status of the processor and environment [25] to resolve the issue
of a static computing architecture that cannot be optimized for a specific and dynamic application.
These architectures are able to self-tune the processor, accelerator and specific interface cores using the
reconfigurable portion of the chip by exploiting dynamic and partial reconfigurations. Here, a chip
component is updated during run-time operations, whereas the rest of the chip remains in operation.
This feature enables chip configurations according to the changing requirements of an application,
thus increasing the flexibility of an embedded system tremendously.

4. Results

Figures 9–11 illustrate the cross-correlation algorithms implemented on plant images with real
in-field conditions. Figures 9 and 10 use the average of 20 lines and were calculated every 10 lines.
Figure 9 shows two scenes with small angles and middle position errors, and the mounting height and
viewing direction provide an adequate foresight that is typically 20 m.

Figure 9. Two winter wheat scenes photographed using the low-cost plant camera. The left side shows
a gray-scale NDVI image, and the right side shows a binary image. Both sides are overlain with the
individually calculated tracking points.

Figure 9 shows that the tracking points exhibit small variations from a straight line. The differences
from a linear regression line and between grayscale and binary images are discussed later. For this
camera perspective, the tracking point presents excellent following of the plant lines, and variations
from the linear regression are small (see Table 1). Figure 10 shows a similar field scene but with
different mounting angles. The resulting images include the horizon and have a maximum field of
view, although with higher restrictions for pixel resolutions in the upper 30% of the images.

Figure 10 demonstrates the enormous potential foresight of this plant-based navigation solution,
with the algorithm losing tracking at several pixel lines before the horizon. Nevertheless, tracking is
possible for over 50 m using a low-resolution camera. Figure 11 shows two field scenes with curves in
the plant line.
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Figure 10. Three winter wheat scenes photographed using the low-cost plant camera. The left side
shows a gray-scaled NDVI image, and the right side shows a binary image. Both sides are overlain
with the individually calculated tracking points. Scenes one and two in the grayscale images show
two and four red tracking points, respectively, which indicate exceedance of the warning level and an
excessively small difference between the maximum and minimum.

The results in Figure 11 demonstrate that the algorithm can find tracking points without requiring
straight lines in the image. The fitting curves demonstrate the good predictive potential of future
directions, even with poor quality images in which the bright-sky pixel intensities reduce the dynamic
range for infield pixels. Figure 12 shows two extreme situations for which the field of view is inadequate
for this application.
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Figure 11. Two winter wheat scenes with a curved path. The left side shows the gray-scaled NDVI
image, and the right side shows the binary image. Both sides are overlain with the individual calculated
tracking points. Scene 1 uses an average of over 11 lines for the gray-scale image, over 15 lines for
the binary image and a three period mask. Scene 2 uses an average of over seven lines for both the
gray-scale and binary image and a four period mask. Scene 2 is overlain with a third-order fit.

Figure 12 demonstrates the robustness of the algorithm, even under the worst image quality
conditions. Here, the viewing angle is too flat and the image contrast is reduced by the bright-sky
pixels. In addition, the size of the plants is highly variable, and larger gaps with missing plants are
observed. Under these extreme conditions, it is important to determine if the mask is appropriate for
the actual scene or image. The width of the mask can be analyzed with additional loops that vary the
width. The median level in Figure 7 is caused by the maximum and minimum values in the search
window, and this difference also indicates the quality of the tracking point, is used as a warning signal
and can be used to manipulate the mask size for the cross-correlation calculation. Figure 13 shows
the position of the maximum difference for the calculations using masks varying from −2 to +2 pixel
widths per period. Multiple points at the +2 level indicate that the mask should be wider, and multiple
points at the −2 level indicate that the mask should be narrower.

As shown in Figure 11, a third-order fit is a simple but adequate function for interpolating or
evaluating individual tracking points. Table 1 presents the R2 and root mean square error (RMSE)
statistics for the third-order regression for the demonstrated scenes.

A stability index with values greater than 0.9 demonstrates accuracy in the tracking points
determined with the cross-correlation application. The binary results exhibit nearly the same stability
as long as the image quality is adequate. For low-quality images from Scenes 6 to 9, the binary results
differ from the gray-scale results. Therefore, the faster binary approach requires an adequate camera
mounting and good plant camera system with efficient binary results independent of lighting [18].
The first scene shows an orthogonal tracking line, for which the R2 value is useless for typical straight
driving directions; as a result, the RMSE value should be used as the quality indicator. With respect to
the different viewing angles and view fields, the RMSE values at the starting point can be compared
after normalization to the given plant line distance of 160 mm. This line distance is equivalent to the
mask periodicity.
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Figure 12. Two winter wheat scenes with both curved and flat viewing directions. The left side shows
the gray-scaled NDVI images, and the right side shows the binary images. Both sides are overlain with
the individual calculated tracking points.

Figure 13. The quality of the mask size is indicated by the maximum difference between the maximum
and minimum values in the search window for each tracking point. The mask size varies from +2 to
−2 additional pixels for the periodic structure of the mask. This example plot was produced from the
first image in Figure 10.

Table 1. Results for the third-order regressions.

R2 RMSE
Normalized RMSE in

mm
Scene Gray Binary Gray Binary Pixel/Row Gray Binary

1 0.3362 0.1477 1.508 2.299 64 3.77 5.75
2 0.9962 0.9909 0.9015 0.9328 47 3.07 3.18
3 0.9984 0.9935 0.8452 1.345 64 2.11 3.36
4 0.9904 0.9753 0.870 1.071 59 2.36 2.90
5 0.9728 0.9205 1.758 1.210 77 3.65 2.51
6 0.9303 0.5164 2.844 4.820 80 5.69 9.64
7 0.9968 0.9866 0.8468 1.029 38 3.57 4.33
8 0.9463 0.9744 2.726 1.957 58 7.52 5.40
9 0.9644 0.6476 2.365 4.021 114 3.32 5.64
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Binary Results

The binary images should be processed by appropriate algorithms in the plant camera system;
however, this processing is beyond the scope of this paper. Regardless of how the binary images are
obtained, proper binary image processing improves the performance of the cross-correlation because
the resulting binary images exhibit sharper peaks as shown in Figure 14.

Figure 15 shows a small terrain effect in the image. Variations from the perspective function used
to shrink the masks width indicate changes in the terrain.

Figure 14. Cross-correlation results from one averaged pixel line over a window size with three periods.
The left side shows the gray-scale results, and the right side shows the binary results.

Figure 15. Terrain effect is indicated by a difference between the linear mask shrinking by the
perspective in the image, and the mask size with highest maximum. Below zero indicates a valley and
above zero indicates a hill.

The diagram in Figure 15 demonstrates the possibility for detecting terrain features. For
a more difficult situation with a curve, the mask shrinking factor caused by the curve must be
additionally considered.

5. Conclusions

The combination of a plant camera and cross-correlation algorithm results in a robust in-field
navigation solution for robots working with sensitive plants. This solution uses the plant lines
themselves to follow precise tramlines. The results of this study demonstrate that the proposed
approach avoids driving over plants and provides accurate navigation control in the centimeter range.
In addition, the proposed approach overcomes the issue of jumps that hinder GPS-driven solutions.
Because plant lines were drilled with large agricultural machinery, the minimum curve radius is
restricted, which provides a number of possibilities for reducing the power required to calculate
the algorithms.

1. Image lines in the x direction can be concentrated by averaging in the y direction.
2. The cross-correlation function does not have to move over the entire pixel line.
3. The moving mask of the cross-correlation can be reduced to a few periodic replications with a

rectangular shape, thereby reducing the length of the used pixels and number of multiplications.
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4. The reduced mask must only move over a length smaller than one period to have only one
maximum peak of the cross-correlation in the inspection window.

5. Missing tracking points can be interpolated using a simple linear regression function.

In addition, the required calculation power can be reduced using the binary result from the plant
camera. The multiplied binary image line and a binary mask can be replaced by the logical conjunction
“AND”, which can be performed in parallel during one clock cycle in a FPGA.

All of the algorithms required for this application are reduced to multiplications and summations,
which is an important point for implementing algorithms in a small embedded system with restricted
resources. All line averaging can be performed in parallel, and for reduced packages, even the
cross-correlation can be performed in parallel. The inspection window for the cross-correlation must
follow shifts in the tracking points and is therefore a cascaded operation. After two or three parallel
correlations, the shift must be added and then the new run starts with the shifted window position.
Using this window provides a substantial advantage in potential error detection. If the calculated
tracking points fall in the edge region of the window or if the difference between the maximum and
minimum value in the window is too small, then these tracking points can be ignored. A simple linear
regression can be used to calculate a tracking function, and outlier tracking points can be overbridged,
which also illustrates the robustness of this navigation solution. The detailed description of this
application and its resulting simplicity are significant advantages in the establishment of steering
control in small embedded systems that offload the main system of the field robot. The steering
command is not the only output of the solution, and the foresight provides additional information
on field conditions, such as direction, hills and valleys, assumed obstacles, and the field ends. Such
additional information is important for providing correct overall field driving plans or management.
When this information is combined with sensor signals, such as gyros and accelerators, the main
system can determine if the approaching hill has too great of an ascending slope for the robot.

The next step in this line of study will be changing the correlation direction from the x axis to the
orthogonal axes of the fitted line. This modification could enable the application to follow sharper
curves in the image because the averaging of lines in the y direction can filter out the plant lines, while
the averaging in the expected direction cannot perform this filtering. Figure 16 shows the difference
between the averaging directions. In addition, the cross-correlation will output higher peaks in the
expected direction, thus improving the quality of the tracking points.
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Figure 16. Different averaging directions determining different resulting input functions for the cross
correlation. Upper plot is the result of the averaging in y-direction. Lower plot is the result of the
33◦ direction.
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Abstract: In this paper, an algorithm for obstacle detection in agricultural fields is presented.
The algorithm is based on an existing deep convolutional neural net, which is fine-tuned for detection
of a specific obstacle. In ISO/DIS 18497, which is an emerging standard for safety of highly automated
machinery in agriculture, a barrel-shaped obstacle is defined as the obstacle which should be robustly
detected to comply with the standard. We show that our fine-tuned deep convolutional net is capable
of detecting this obstacle with a precision of 99.9% in row crops and 90.8% in grass mowing, while
simultaneously not detecting people and other very distinct obstacles in the image frame. As such,
this short note argues that the obstacle defined in the emerging standard is not capable of ensuring
safe operations when imaging sensors are part of the safety system.

Keywords: deep learning; obstacle detection; autonomous; ISO

1. Introduction

In order for an autonomous vehicle to operate safely and be accepted for unsupervised operation,
it must perform automatic real-time risk detection and avoidance in the field with high reliability [1].
This property is currently being described in an ISO/DIS standard [2], which contains a short
description of how to meet requirements for obstacle detection performance. The requirements
for tests and the test object are described in Section 5 in the standard. The standard uses a standardized
object, shown in Figure 1 which is meant to mimic a human seated (torso and head). This standardized
object makes sense for non-imaging sensors such as ultrasonic sensors, LiDARs or Time-of-Flight
cameras, which measures the geometrical properties of the objects or distance to the objects. However,
for an imaging sensor such as an RGB camera, the definition of this standardized object does not
guarantee safety. In this short note, we will present how deep learning methods can be used to design
an algorithm that robustly detects the standardized object in various situations, including high levels
of occlusion. Based on this, the algorithm is able to comply with the standard, but at the same time, it
is not detecting people and animals, as they are not part of the trained model.

Deep convolutional neural networks have demonstrated outstanding performance in various
vision tasks such as image classification [3], object classification [4,5], and object detection [4–6]. LeCun
et al. formalized the idea of the deep convolutional architecture [7], and Krizhevsky et al. introduced a
paradigm shift in image classification with the AlexNet [3]. In recent years the AlexNet has been used
in various deep learning related publications.
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Figure 1. Standardized obstacle.

2. Materials and Methods

In this section, we present the data used for this paper, together with a short description of how
the deep learning algorithm was trained and implemented.

2.1. Data Collection

The results in this paper are based on recordings performed in both row-crop fields and grass
fields. The recordings were part of a research project aimed at improving safety for semi-autonomous
and autonomous agricultural machines [1]. The recordings contain various kinds of obstacles, such as
people, animals, well covers and the ISO standardized obstacle. All obstacles are stationary and the
data is recorded while driving towards and past them. The sensor kit (seen in Figure 2a) used for the
experiments includes a number of imaging devices: a thermal camera, a 3D LiDAR, an HD-webcam
and a stereo camera. In this paper, we only focus on the RGB-images. Images from the experiments
and recordings are seen in Figure 2.

(a) (b) (c)

Figure 2. Images from experiments and recordings. (a) The sensor kit mounted on a mower;
(b) An example image from the recordings in grass; (c) An example image from the recordings
in row crops.

2.1.1. Training Data

An iPhone 6 was used to record five short videos of the ISO standardized obstacle. The recordings
include various rotations, scales, and intensity of the object. A total of 437 frames from the videos were
extracted and bounding boxes of the object were created. Example frames from the videos can be seen
in Figure 3.
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Figure 3. Examples of training data.

2.2. Training of Deep Convolutional Network

Deep learning is utilized for barrel detection using a sliding window approach similar to [6].
We start by fine-tuning AlexNet (Available at the Caffe model zoo [8]), which is pre-trained on data
from the image-net competition [9] for ISO standardized obstacle detection. By fine-tuning the neural
network to images of the ISO obstacle, which has a specific shape, texture and color, the algorithm
will be very good at detecting the occurance of this specific object in the image. At the same time, the
algorithm will also be very good at rejecting other objects in the image (animals, people, etc.), thereby
meeting the standard with respect to performance, but not with respect to safety.

To increase the number of training examples (both positive and negative), we randomly sampled
sub-windows of the extracted training images. A sub-window was labeled as positive (containing
an object) if it had over 50% intersection over union with the labeled bounding boxes. To include
additional negatives, non-face sub-windows are collected from Annotated Facial Landmarks in the Wild

database [10] in a similar approach. A total of 1925 positive and 11, 550 negative samples have been
used in this paper. These examples were then resized to 114 × 114 pixels and used to fine-tune
a pre-trained AlexNet model. The original AlexNet model outputs a vector of 1000 units, each
representing the probability of the 1000 different classes. In our case, we only want to detect if an image
patch contains an ISO object or not. Hence, the last layer is changed to output a two-dimensional vector.
For fine-tuning, we used 14K iterations and batch size of 100 images, where each batch contained 67
positive and 33 negative examples. During fine-tuning, the learning rate for the convolutional layers
was 10 times smaller than the learning rate of the fully connected layers.

After fine-tuning, the fully-connected layers of the AlexNet model can be converted into
convolutional layers by reshaping layer parameters [11]. This makes it possible to efficiently run
the network on images of any size and obtain a heatmap of the ISO obstacle classifier. Each pixel in a
heatmap shows the network response, which is the likelihood of having an ISO obstacle, corresponding
to the 114 pixel ×114 pixel region in the original image. In order to detect ISO obstacles of different
sizes, the input images can be scaled up or down. The chosen training image resolution is half the
resolution used in the original AlexNet. Reducing the resolution of the training images allows us to
reduce the input image by half, thus reducing processing time, while maintaining the resolution of the
resulting heatmaps. An example of a resulting heatmap is illustrated in Figure 4.

(a)
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4. Illustration of ISO obstacle and resulting heatmap. (a) RGB image from the row crop field;
(b) Resulting heatmap.
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The model was trained using the Caffe framework [12] using a single GPU (4 GB Quadro K2100M).
The training time was approximately 1–2 h.

2.3. Detection of ISO Obstacle using Deep Convolutional Network

When the deep convolutional network has been trained, it can be used to detect the ISO obstacle
in color images. In order to detect the obstacle at multiple distances, the input image needs to be scaled
accordingly. In this paper, we use 13 scales, which are all processed by the same network structure.
We use 13 scales to be able to detect the barrel when it is far away (57 pixel × 57 pixel in the original
image) and up close (908 pixel × 908 pixel). As described in the previous section, the output is a
heatmap, where the intensity reflects the likelihood of an ISO obstacle.

Based on the heatmap, one can detect the obstacle and draw a bounding box. Each pixel in the
heatmap corresponds to a 114 pixel × 114 pixel sub-window in the input image. To remove redundant
overlapping detection boxes, we use non-maximum suppression [6] with 50% overlap threshold.

3. Results

The results are based on data collected in two different cases, at three different dates. The data has
been collected at different times during the days to ensure different lighting conditions. In both cases,
we use the model trained on the data presented in Section 2.1.1. Despite this, the results in this paper
are of a preliminary nature, as various weather conditions and scenarios are not included in the data.

3.1. Row Crops

Based on the presented algorithm, a total of 7 recordings have been evaluated with respect to
detection of the ISO obstacle in row crops. The recordings also contain other kinds of obstacles such as
people and animals. The recordings contain a total of 14, 153 frames with 20, 414 annotated obstacles
(8126 of those are the ISO obstacle).

In the ISO standard, the obstacles needs to be detected within a defined safety distance. The safety
distance is a product of the expected working speed and machine type. Hence, there is no fixed value
for this. In Figure 5, a histogram of the achieved detection distances is shown. It is seen that the
algorithm is able to detect the obstacle both at close range (3–6 m) and also at far range (over 15 m).
The ISO obstacle is present in front of the machine a total of 14 times and the algorithm is able to detect
the obstacle everytime. The detection distance, which is the distance of the first positive detection, for
these 14 times, ranges from 10 m to 20 m, with an average of 14.56 m.

Evaluating all frames, at frame level with all annotated objects, we achieve TP (true positive) = 2851,
FP (false positive) = 1, TN (true negative) = 7105 and FN (false negative) = 4919. The high number of
false negatives is a result of annotations, where the ISO obstacle is located more than 20 m away, which
is more than the achieved detection range. Based on this, we achieve a hit rate of 36.7% Equation (1),
which is the ratio between positive detections and all annotations of the ISO obstacle, and a precision of
99.9% Equation (2) (As there are less than 10, 000 datapoints, we are not able to present the last decimal
as a result). In the standard, it is stated that the system must achieve a success rate of 99.99%, however,
it is unclear how this should be tested. As stated above, the algorithm is able to detect the ISO obstacle
when the ISO obstacle is within 10 m of the machine at a precision of almost 100%.

hit rate =
TP

TP + FN
=

2851
2851 + 4919

= 0.3669 (1)

precision =
TP

TP + FP
=

2851
2851 + 1

= 0.9996 (2)
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Figure 5. Histogram of detection distances.

In Figure 6, the achieved hit rate for different distance ranges is shown. It is seen that the algorithm
is not able to detect the obstacle in all frames (the hit rate is below 1). However, with a precision close
to 100%, a single detection is reliable enough to be considered a detection of the ISO obstacle present
in the recordings. Hence, the success rate is 99.9%, estimated at frame level, within an average safety
distance of 14.56 m.
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Figure 6. Hit rate, evaluated at frame level, for different distance ranges (e.g. 0.97 is the mean hit rate
for all frames in range 4–7 m). Red: hit rate for the 7 recordings, and blue: average hit rate.

3.2. Grass Mowing

We also evaluated the algorithm in a much more difficult case; grass mowing. In grass mowing,
the obstacles are often highly occluded (a scenario that is not described in detail in the standard).
The recording contains the ISO obstacle and people. The recordings contain a total of 19, 390 frames
with 936 annotated ISO obstacles.

As with the row crops case, we evaluate the achieved detection distance. In the recording, the
ISO obstacle is detected when the ISO obstacle is within approximately 6 m of the machine. The ISO
obstacle is present in front of the machine a total of 8 times and the algorithm is able to detect the
obstacle everytime.

Evaluating all frames at frame level, we achieve TP = 307, FP = 31, TN = 18,337 and FN = 787.
The high number of false negatives is a result of annotations, where the ISO obstacle is located more

54



J. Imaging 2016, 2, 6

than 6 m away, which is more than the achieved detection range. Based on this, we achieve a hit rate
of 28.1% Equation (3)

hit rate =
TP

TP + FN
=

307
307 + 787

= 0.281 (3)

precision =
TP

TP + FP
=

307
307 + 31

= 0.908 (4)

and a precision of 90.8% Equation (4). Again, the ISO obstacle is successfully detected everytime we
are driving towards it, however, the achieved precision is lower than 99.99% which is stated in the
standard. As seen in Figure 7, the ISO obstacle is highly occluded. In the standard, it is noted that
the obstacle must appear unobscured to ensure high levels of system confidence and if the obstacle
is obscured, the manufacturer must understand how this affects performance. In the grass case, we
show how the system is affected by this. The precision drops from 99.9% to 90.8% and the achieved
detection distance drops from an average of 14.56 m to 6 m. The lower precision is due to a higher
number of false positives. Most of these false positives are the tractor in the image. The tractor will
always be present in the same position in the image and further developments could remove this in
post-processing or by including tractor images as negatives in the training data.

Figure 7. Detections in grass mowing case. Notice that people are not detected.

4. Discussion

The results show that we are able to robustly detect the presence of the ISO obstacle in various
conditions including different lighting and heavy occlusion. The results also show that the algorithm
is not able to detect the presence of the other obstacles within the image frame—even people. This is
not a surprise, as the model has been trained on the ISO obstacle and not on other types of obstacles.

We are using a large deep learning model to detect a simple object and it might seem like we
are overdoing it. However, by using deep learning and pre-trained networks, we have been able to
design a robust classifier for detecting the ISO obstacle in various scenarios, using only a few minutes
of training video. This shows the power of these models and how they can be exploited.

In this paper, we have implemented the algorithm using Caffe and the corresponding MATLAB
interface, which means that it does not run in real-time. However, CNN implementations ready for
real-time applications exist in literature [13]. Furthermore, deep learning algorithms are also being
utilized in detection systems for the car industry, where deep learning models are able to classify
between a number of different obstacles. This is powered by high-end embedded boards from NVIDIA,
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which has recently launched a 300 USD board [14], enabling real-time deep neural nets on UAVs and
UGVs. These observations make it fair to assume that agricultural machines could also benefit from
that computing power.

The ISO standard states that the system must have a success rate of 99.99% in various weather
conditions, however, it is unclear how this success rate should be measured. We are not able to detect
the ISO obstacle in all frames, however, we achieve a precision of 99.9%, and are able to detect the
ISO obstacle at an average distance of 14.56 m in row crops. In the grass mowing case, the obstacle
was highly occluded which affected the achieved detection distance. Furthermore, the presence of the
tractor within the image frame resulted in more false positives. These should be removed to ensure
higher precision. We have not been able to test the performance in various weather conditions, hence,
the results obtained in this paper is of a preliminary nature.

The most important result in this paper is that we are able to show that an imaging system
can be designed to comply with the ISO standard and completely miss important obstacles such as
people—both kids and adults. We argue that the standardized obstacle presented in the standard is not
fully adequate to ensure safe operations with highly autonomous machines in agriculture. The design
of the obstacle is based on a human head and torso (human sitting down), but we show that we can
detect this type of obstacle and at the same time completely miss the people in front of the machines.
As the ISO standard aims to represent a human sitting down, we suggest that the standardized obstacle
should resemble a more life-like person, if a standardized object is required. In our experiments, we
have used mannequins for this task. It is important that the life-like obstacles have the same properties
as the current ISO obstacles with respect to color, material, and temperature (hot water). The life-like
obstacle could be used to test different possible postures, such as standing, lying and sitting. However,
other kinds of obstacles could also be present in the fields. Including other types of obstacles, such
as animals, in the requirements, could potentially increase safety overall. However, even doing this,
there is no guarantee that the methods will be able to detect real obstacles in the fields, as they might
not be perfectly described by the trained algorithm. Deep learning methods have achieved very good
performance in very difficult image and object recognition tasks. This is accomplished through access
to a vast amount of image training data, where objects like people, animals and cars are depicted in
thousands of different postures, sizes, colors and situations. The deep learning framework is able
to encapsulate this great amount of variability and thereby produce beyond-human performance in
object recognition tasks. This is being exploited in the work towards autonomous cars and could also
be done in agriculture.

5. Conclusions

In an emerging standard for safety of highly automated machinery in agriculture, a barrel-shaped
obstacle is defined as the obstacle which should be robustly detected to comply with the standard.
In this paper, we show that by using deep learning techniques, we are able to achieve a high level
of precision in two different cases in agricultural operations, with one of the cases concerning highly
occluded obstacles. The algorithm detects the ISO specified obstacle in every test run, but it completely
misses important obstacles such as people.

Therefore, we argue that the standardized obstacle presented in the standard is not fully adequate
to ensure safe operations with highly autonomous machines in agriculture and further work should be
conducted to describe an adequate procedure for testing the obstacle detection performance of highly
autonomous machines in agriculture.
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Abstract: Three-dimensional (3D) reconstruction of a tree canopy is an important step in order to
measure canopy geometry, such as height, width, volume, and leaf cover area. In this research,
binocular stereo vision was used to recover the 3D information of the canopy. Multiple images
were taken from different views around the target. The Structure-from-motion (SfM) method was
employed to recover the camera calibration matrix for each image, and the corresponding 3D
coordinates of the feature points were calculated and used to recover the camera calibration matrix.
Through this method, a sparse projective reconstruction of the target was realized. Subsequently,
a ball pivoting algorithm was used to do surface modeling to realize dense reconstruction. Finally,
this dense reconstruction was transformed to metric reconstruction through ground truth points
which were obtained from camera calibration of binocular stereo cameras. Four experiments were
completed, one for a known geometric box, and the other three were: a croton plant with big leaves
and salient features, a jalapeno pepper plant with median leaves, and a lemon tree with small leaves.
A whole-view reconstruction of each target was realized. The comparison of the reconstructed box’s
size with the real box’s size shows that the 3D reconstruction is in metric reconstruction.

Keywords: 3D images; multiple view reconstruction; metric reconstruction; plant reconstruction;
machine vision; stereo vision

1. Introduction

Three-dimensional (3D) reconstruction of a plant/tree canopy can not only be used to measure
the height, width, volume, area, and biomass of the target, but also can be used to visualize the object
in virtual 3D space. 3D reconstruction is also called 3D digitizing or 3D modeling. Plant/tree 3D
reconstruction could be cataloged into two types: (1) depth-based 3D modeling; and (2) image-based
3D modeling. Depth-based 3D modeling involves using sensors, such as, ultrasonic sensors, lasers,
Time-of-Flight (ToF) cameras, and Microsoft red, green, and blue depth (RGB-D) cameras.

Using ultrasonic sensors, Sinoquet et al. [1] created a 3D model of corn plant profiles and
canopy structure. The 3D results were used to calculate the leaf area and its distribution in the plant.
Tumbo et al. [2] used ultrasonics in the field to measure citrus canopy volume. Twenty ultrasonic
transducers were arranged on vertical boards (10 sensors per side). The ultrasonic sensors were
installed behind a tractor, which was assumed to travel at an approximate speed of 0.5 km/h. A formula
was provided to calculate the volume. To study the accuracy of this calculation, Zaman and Salyani [3]
conducted research on the effect of ground speed and foliage density on canopy volume measurement.
The experimental results showed that there was a 17.37% to 28.71% difference between the estimated
and manually measured volumes.
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Also using laser sensors, Tumbo et al. [2] described how to measure citrus canopy volume.
Comparisons were made between the estimated volume and manually measured volume. The results
showed high correlation. Wei and Salyani [4] employed a laser scanner and developed a laser scanning
system, data acquisition system, and corresponding algorithm to calculate tree height, width, and
canopy volume. To evaluate the accuracy of their system, a rectangular box was used as a target.
Five repeated experiments were conducted to measure the box’s height, length, and volume. However,
no direct comparison between estimated volume and manually measured volume of citrus trees was
made. Wei and Salyani [5] extended the same laser scanning system to calculate foliage density. They
defined foliage density as the ratio of foliage volume to tree canopy volume, where foliage volume was
defined as the space contained within the laser incident points and the tree row plane, while canopy
volume was defined as the space enclosed between outer canopy boundary and the tree row plane.
Lee and Ehsani [6] developed a laser scanner-based system to measure citrus geometric characteristics.
After the experimental trees were trimmed to an ellipsoid shape, whose volumes were easy to manually
measure, the surface area and volume were estimated by using a laser scanner. Rosell et al. [7] reported
the use of a 2D light detection and ranging (LIDAR) scanner to obtain the 3D structures of plants.
Sanz-Cortiella et al. [8] assumed that there was a linear relationship between the tree leaf area and the
number of impacts of laser beam on the target. The point clouds generated by the laser scanner were
used to calculate the total leaf area. Both indoor and outdoor experiments were conducted to validate
this assumption. Zhu et al. [9] reconstructed the shape of a tree crown from scanned data-based
on alpha shape modeling. A boundary mesh model was extracted from the boundary point cloud.
This method resulted in a rough shape reconstruction of a big (20-meter high) tree.

Studying the application of a ToF camera, Cui et al. [10] described a 3D reconstruction method
initiated by scanning the object using the ToF camera, and the reconstruction was realized through
the combination of 3D super-resolution and a probabilistic multiple scan alignment algorithm. In 3D
reconstruction, a ToF camera was usually used in combination with a red, green, and blue (RGB) camera.
The ToF camera provided depth information, and the RGB camera would give color information.
Shim et al. [11] presented a method to calibrate a multiple view acquisition system composed of ToF
cameras and RGB color cameras. This system has the ability to calibrate multi-modal sensors in real
time. Song et al. [12] combined a ToF image with images taken from stereo cameras to estimate a
depth map for plant phenotyping. The experiments were conducted in a glasshouse using green
pepper plants as targets. The canopy characteristics such as stem length, leaf area, and fruit size were
estimated. This estimation was a challenging task since occlusion was occuring. The depth information
from the ToF image was used to assist the determination of the disparity between left and right images.
A global optimization method, using graph cuts developed by Boykov and Kolmogorov [13], was
also used to find the disparity. The result using the graph cuts (GC) method was compared with
the one resulting from combing graph cuts and ToF depth information. A quality evaluation was
conducted, and GC + ToF gave the highest score. A smooth surface reconstruction of a pepper leaf was
obtained using this method. Adhikari and Karkee [14] developed a 3D vision system to automatically
prune apple trees. The vision system was composed of a ToF 3D camera and a RGB color camera.
Experimental results showed that this system had about 90% accuracy in identifying pruning points.

The RGB-D camera is a Microsoft [15] product called Kinect that is designed for Xbox360. Kinect
is composed of a RGB camera, a depth camera, and an infrared laser projector. Kinect was mostly
used indoors for video game and view reconstruction. Izadi et al. [16] and Newcombe et al. [17]
used a moving Kinect to reconstruct a dense indoor view. Kinect Fusion was employed to realize the
reconstruction in real time because there was a special requirement on their hardware, specifically
the GPU, to use it. Chene et al. [18] applied Kinect on 3D phenotyping of plants. An algorithm was
developed to segment the depth image from the top view of the plant. The 3D view of the plant was
then reconstructed from the segmented depth image. Azzari et al. [19] used Kinect to characterize
vegetation structure. The measurements calculated from their depth image matched well with the
results of a plant size measured manually. Different experiments were conducted in the lab, and
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in an outdoor field under different light conditions—such as early afternoon, late afternoon, and
night. Experimental results showed that the Kinect had a limitation under direct sunlight. Wang and
Zhang [20] used two Kinect devices to make a 3D reconstruction of a dormant cherry tree that was
moved into a laboratory environment. During the experiment, some parts of the branches were missed
due to occlusion and a long distance between camera and tree. The reconstructed results could be used
for automatic pruning.

Image-based 3D modeling involved reconstructing the 3D properties from 2D images by using
single camera or stereo cameras. Zhang et al. [21] used stereo vision to reconstruct a 3D corn model.
The boundaries of the corn leaves were extracted and matched. The 3D leaves were modeled using
a space intersection algorithm from 2D boundaries. This was a two-image reconstruction. Song [22]
used stereo vision to model crops in horticulture. The cameras were installed on the top of the crops,
and a top view of the crop was reconstructed. Han and Burks [23] did work on 3D reconstruction of a
citrus canopy. Multiple images were used, and consecutive images were stitched together through
image mosaic techniques. The canopy was reconstructed from the stitched image. The results did not
realize real-size reconstruction.

The estimation of camera matrices is the first step in 3D reconstruction. The method of
self-calibration described by Pollefeys et al. [24,25] is usually used. Fitzgibbon and Zisserman [26]
described a method to automatically recover camera matrices and 3D scene points from a sequence
of images. These images were sequentially acquired through an uncalibrated camera, and image
triplets were used to estimate camera matrices and 3D points. Then the consecutive image triplets were
formed into a sequence through one-view overlapping or two-view overlapping. Snavely et al. [27]
developed a novel method to recover camera matrices and 3D points from unordered images. All
these technologies were known as Structure from Motion (SfM). The sparse feature points were used to
match the images. The most often used features were called Scale Invariant Feature Transform (SIFT)
as described by Lowe [28].

Quan et al. [29] did research on plant modeling based on multiple images. SfM was used to
estimate camera motion from multiple images. Here, instead of using sparse feature points, quasi-dense
feature points as described by Lhuillier and Quan [30] were used to estimate camera matrices and 3D
points of the plant. The leaves of the plant were modeled by segmenting the 2D images and computing
the depths using the computed 3D points, and the branches were drawn through an interactive
procedure. This modeling method was suitable for a plant with distinguishable leaves. To model a tree,
which has small leaves, Tan et al. [31] did research on image-based 3D reconstruction. SfM was also
employed to recover camera matrices and 3D quasi-dense points. To make a full 3D reconstruction of
the tree, the visible branches were first reconstructed, followed by the occluded branches. The occluded
branches were reconstructed through an unconstrained growth and constrained growth method.
Subsequently, the leaves were added to the branches. Some of the leaves were from segmented images,
while others were derived from the synthesizing methodology. Teng et al. [32] used machine vision to
recover the sparse and unoccluded leaves in three dimensions. The method used was similar to the
work of Quan et al. [29]. The results of the 3D reconstruction were used to classify the leaves and to
identify the plant’s type.

Furukawa and Ponce [33] provided a patch-based multiple view stereo (PMVS) algorithm to
produce dense points to model the target. Small rectangular patches, called surfel, were used as feature
points. The cameras’ matrices were pre-calibrated using the method provided by Snavely et al. [27].
Features in each image were detected, then matched across multiple images. An expansion procedure,
similar to the method provided by Lhuillier and Quan [30], was used to produce a denser set of patches.

Santos and Oliveira [34] applied the PMVS method to agricultural crops, such as basil and
ixora. Plants with big and unoccluded leaves were well reconstructed. The reported processing time
for 143 basil images was approximately 110 min, and almost 40 min for 77 ixora images. The image
numbers will increase with the plant’s size, consequently the processing time required will also
increase with the increased number of images. Most of the processing was spent on feature detection
and matching. The matching procedure was conducted through serial computation; however, if it
could be conducted in parallel computation, the processing time would be significantly reduced.

60



J. Imaging 2016, 2, 28

Currently, a Graphics processing unit (GPU)-based SIFT, which is known as SiftGPU described by
Wu [35], is available to do key points detection and matching via parallel computing. The bundler
package described by Snavely [36] and the PMVS package developed by Furukawa and Ponce [33]
were combined into a single package called VisualSFM by Wu [37], which involved using parallel
computing technology. This would significantly decrease the running time.

The objectives of our study were to:

• Provide a new method to calibrate camera calibration matrix in metric level.
• Apply the fast software ‘VisualSFM’ on complicate objects, e.g., plant/tree, to generate a full-view

3D reconstruction.
• Generate the metric 3D reconstruction from projective reconstruction and achieve real-size 3D

reconstruction for complicate agricultural plant scenes.

2. Materials and Methods

2.1. Hardware

In this paper, two Microsoft LifeCam Studio web high definition (HD) cameras (1080 p) were
assembled inside a wooden box, and mounted approximately in parallel, with the baseline at 30 mm,
as shown in Figure 1. To acquire images, they were connected to a Lenovo IdeaPad Y500 laptop
with a NVIDIA GeForce GT650M GPU, which can be used in parallel computation to accelerate the
computing time in feature points detection and matching.

(A) (B) 

Figure 1. Stereo cameras which are used to acquire images: (A) whole view; (B) inside view.

2.2. Stereo Camera Calibration

A 3D point (
→
X) and its projection (

→
x ) in 2D image is related through camera calibration matrix

P. The relationship is expressed as s
→
x = P

→
X, where

→
x = (x, y, 1)T is in homogenous form in 2D,

→
X = (X, Y, Z, 1)T is in homogenous form in 3D, P is a 3 × 4 matrix, and s is a scale. The objective of
camera calibration is to determine camera calibration matrix P, which includes both intrinsic parameters
and extrinsic parameters. Zhang [38] provided a flexible technique for camera calibration using only
five images taken from different angles. A checkerboard was used as calibration pattern. For each
image, the plane of the checkerboard was assumed as z-plane, so the Z coordinates for all the 3D
points were zero. X and Y coordinates could be obtained from the actual checkerboard size. All these
provided ground truth. A Matlab toolbox, developed by Bouguet [39], was used to solve camera
calibration matrix using Zhang’s algorithm. This toolbox is not only suitable for a single camera, but is
also suitable for stereo cameras.

The external camera parameters provided by Zhang’s [38] method were built on each
checkerboard’s own coordinate system, not on the same world coordinate system. In order to build
the same world coordinate system, a large 2D x-z coordinate system was plotted on an A0-size paper,
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together with a vertical checkerboard (Figure 2), and all of these provided the 3D ground truth on the
same coordinate system. The detailed 2D x-z coordinate system is shown in Figure 3. Each line in the
x-z plane was at 50 mm spacing. The middle line (oz) was rotated −10◦ around Oorig to get the left
line, and rotated +10◦ around Oorig to get the right line. The checkerboard was then placed at different
locations on the left, middle, and right line (marked as 1 through 45 in Figure 3). The 3D coordinates of
each corner on the checkerboard, at each location, could be solved as the ground truth. Two images
were taken at each location from the left and right cameras. From these 2D images, the 2D projection
of these corners could also be solved.

Based on these 2D and 3D coordinates, the gold standard algorithm of Hartley and Zisserman [40]
was used to calculate the camera matrices for both left and right cameras.

 

Figure 2. World coordinate system (2D x-z system plus vertical checkerboard).

Figure 3. 2D x-z coordinate system (each line is 50 mm separated).
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Based on camera calibration matrix and 2D image coordinates, we can get estimated 3D points.
When compared to the actual 3D points, we can estimate the error in X, Y, and Z directions (Figure 4).
These experimental results showed that this stereo camera set had good accuracy when the distance
between cameras and the target was less than 800 mm. The statistical analysis for errors in the X, Y,
and Z directions are shown in Table 1. The mean error in x direction is 0.42 mm, the mean error in y

direction is 0.36 mm, and the mean error in z direction is 2.78 mm.

(A) 

(B) 

(C) 

Figure 4. Error plots in X, Y, and Z direction. (A) errors in x direction; (B) errors in y direction; (C) errors
in z direction.
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Table 1. Statistical analysis of errors between estimated and actual corners.

Axis Mean Absolute Error (mm) Standard Deviation (mm)

X 0.42 0.35
Y 0.36 0.31
Z 2.78 1.74

2.3. Image Acquisition

To make a full view reconstruction of the plant or tree, multiple images from different view
angles had to be taken over the target. The stereo camera (shown in Figure 1) and a laptop with
image acquisition software were used to acquire the images. One setup of the experiment is shown in
Figure 5, where the target plant was in the center, and the stereo cameras positions are shown around
it. The images taken from the adjacent locations should have an overlapping region.

 

Figure 5. An example of stereo camera setup for image acquisition with the 3D reconstruction results
(56 stereo pairs were used).

2.4. Feature Points Detection and Matching

At the beginning, feature points were detected as Harris corners [41]. A pixel was selected as a
salient pixel if its response was an eight-way local maximum. Normalized cross correlation (NCC)
and normalized sum of squared differences (NSSD) described by Richard [42] could be used to match
the features. Harris corner features were not invariant to affine and scale transform. Mikolajczyk and
Schmid [43] provided different scale and affine invariant feature point detectors, such as Harris-Laplace
and Harris-Affine. Mikolajczyk and Schmid [44] did a performance evaluation for four different local
feature detectors (Harris-Laplace, Hessian-Laplace, Harris-Affine, and Hessian-Affine) and 10 different
feature descriptors. Lowe [28] provided a Scale Invariant Feature Transform (SIFT) descriptor to
describe the detected keypoints. Using Lowe’s SIFT research, Yan and Sukthankar [45] derived a
PCA-based SIFT (PCA-SIFT), and Morel and Yu [46] provided an affine SIFT (ASIFT). To enhance
the computing speed of SIFT, a speeded up robust features (SURF) was provided by Bay et al. [47].
To further improve the computation speed of SIFT, a parallel algorithm called SiftGPU was provided
by Wu [35].

Snavely et al. [27] applied SIFT on multiple-view reconstruction from unordered images.
Snavely [36] provided the software called Bundler to realize this method. In Snavely’s research, the SIFT
feature points for each image were detected. Each pair of two images were then matched using ANN
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algorithm from Arya et al. [48]. This process was conducted in serial computation. The computation
time required increased significantly as the number of input images and the number of feature points
per image increased. Santos and Oliveira [34] applied Bundler on their plant phenotyping, and they
reported that almost one hour would be needed to match the features for each two images of the total
143 images, and almost 30 min for 77 images.

Wu [37] provided a fast method called visual structure from motion (SfM) method to accelerate
the feature points’ detection, matching, bundle adjustment, and 3D reconstruction. Wu’s method was
applied in this paper.

2.5. Sparse Bundle Adjustment

Given a set of images, the matched feature points, also known as 2D projections, could be found
through the feature matching algorithm introduced in the previous section. Each matched feature point
had a corresponding 3D point in the scene. The camera matrices and 3D points could be estimated
through bundle adjustment method [40]. The j-th 3D point X̂j will be projected on the i-th image as x̂i

j

through the i-th camera calibration matrix P̂i, where x̂i
j = P̂iX̂j [40]. By minimizing the errors between

re-projected projection x̂i
j and the actual projection xi

j, the camera calibration matrix P̂i, and sparse

3D points X̂j could be estimated. A software package called sparse bundle adjustment (SBA) was
provided by Lourakis and Argyros [49] to realize this minimization.

2.6. Dense 3D Reconstruction Using CMVS and PMVS

The patch model developed by Furukawa and Ponce [33,50] to produce 3D dense reconstruction
from multiple view stereo (MVS) was used in this research. Patch was reconstructed through three
steps: feature matching, patch expansion, and patch filtering. Feature matching was used to generate an
initial bundle of patches. Then the patches were made denser. The outliers were removed by filtering.
Finally, the patches were used to build a polygonal mesh. Furukawa and Ponce [51] developed
software called PMVS to implement this method. PMVS used the output (camera matrices) from
Bundler as the input. Other inputs for PMVS were from another software called CMVS [52].

2.7. Stereo Reconstruction Using VisualSFM

VisualSFM, which was proposed by Wu [37], integrated three technologies together: feature points
detection and matching [35], multicore bundle adjustment [53], and dense 3D reconstruction [33].
Multiple images from a full view of the plant/tree would be imported into this software. A fully
reconstructed result would be generated through the previously mentioned three steps.

2.8. Metric Reconstruction

The result from bundle adjustment was not metric reconstruction, which means that the
reconstructed result did not show the actual size of the target.

A direct reconstruction method using ground truth was provided by Hartley and Zisserman [40]
to realize the metric reconstruction. Using pre-calibrated stereo cameras, the Euclidean ground truth
of a set of 3D points Xi

euc could be solved from the 2D correspondence xi
1 ↔ xi

2 , and the estimated 3D
points Xi

est could be obtained from bundle adjustment. The estimated 3D points and the Euclidean
3D points were related through a homography transformation (H). Then we have Xi

euc = H·Xi
est.

The first two images from the stereo camera were used to solve the Euclidean ground truth from the
2D projection. From our stereo camera calibration we knew that this stereo camera pair had good
accuracy only when the distance between camera and the target was less than 580 mm. Therefore,
those 3D points whose Z coordinates were bigger than 580 mm would be filtered as outliers.

To minimize the homography fitting error, these two sets of 3D points had to be normalized. After
normalization, using the method described by Hartley and Zisserman [40], the centroid of the new
points was at the origin, and the average distance from the origin is

√
3. After applying normalization,
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Xi
newpts1 = T1·Xi

euc and Xi
newpts2 = T2·Xi

est the homography between {Xi
newpts1} and {Xi

newpts2} was
estimated using rigid transformation Forsyth and Ponce [54]. By fitting rigid transformation, we
get Xi

newpts1 = Hest·Xi
newpts2. To de-normalize it, we have Xi

euc = H·Xi
est, where H = T−1

1 ·Hest·T2.
Applying H on all the 3D points from bundle adjustment, we can transfer them back to metric scale.
The new camera calibration matrix was Pi

euc = Pi
est·H−1.

3. Experimental Results and Discussion

Four test experiments were conducted, one was a box with known geometry, and the other three
were a croton plant with salient features, a jalapeno pepper plant with medium-size leaves, and a
lemon tree with small leaves.

Test 1: A hexagon box with a given geometry was used to verify the reconstruction result. The box
was placed on the top of a table. The stereo camera was manually moved around the box to take
the images. Images taken at the adjacent locations should have some overlap, which is good for
feature matching. The side length of the hexagon is 64 mm, and the height is 70 mm. To give the box
texture, paper with printed citrus leaf images was wrapped around the box, as shown in Figure 6.
Approximately 86 images were taken from various positions around this box using the stereo camera.
The box was first reconstructed by using VisualSFM [37]. The result is shown in Figure 7A. The box
was then was reconstructed by applying the metric reconstruction method (mentioned in step 2.8).
The result is shown in Figure 7B, which shows the real size of the target.

 

Figure 6. Hexagon box with texture.

(A) (B)

Figure 7. 3D reconstruction. (A) projective reconstruction; (B) metric reconstruction.

The reconstructed length for each side of the above hexagon and the reconstructed height of each
side face are shown in Tables 2 and 3.
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Table 2. Estimated length vs. actual length.

Length L1 L2 L3 L4 L5 L6

Estimated length (mm) 64.19 63.47 68.82 65.59 63.00 61.99
Actual length (mm) 64.00 64.00 64.00 64.00 64.00 64.00

error (mm) 0.19 −0.53 4.82 1.59 −1.00 −2.01

Table 3. Estimated height vs. actual height.

Height H1 H2 H3 H4 H5 H6

Estimated height (mm) 70.45 68.53 71.10 68.13 70.68 69.03
Actual height (mm) 70.00 70.00 70.00 70.00 70.00 70.00

error (mm) 0.45 −1.47 1.10 −1.83 0.68 −0.97

From this verifying test, we can see that the hexagon box is well reconstructed. The estimated
length and height of the box is very close to the actual size. This method was then applied to
complicated objects, such as a plant and a small tree.

Test 2: Three kinds of plants with different leaf sizes were reconstructed using the method
introduced. The croton plant has big and sparse leaves with salient features. The jalapeno pepper has
medium and sparse leaves. The lemon tree has small and dense leaves. They are shown in Figure 8.

 
(A) (B) (C) 

Figure 8. Experimental plants/tree: (A) Croton plant; (B) Jalapeno pepper plant; (C) Lemon tree.

Firstly, the objects were reconstructed in projective views by using VisualSFM from Wu [37].
Then the metric reconstruction algorithm (mentioned in step 2.8) was applied to get the 3D
reconstruction in Euclidean space. For croton plants, the first pair of images were used as the ground
truth. The feature points for these two images were extracted and matched. Together with the camera
matrices of the stereo cameras, the actual 3D points could be calculated by using triangulation method
of Hartley and Zisserman [40]. The estimated 3D points for the same 2D correspondences could be
found from the reconstructed results of VisulaSFM. By applying rigid transform, the transformation
between actual 3D points and estimated 3D points could be achieved. Applying this transformation to
all the estimated 3D points for all the images, the final metric 3D reconstruction could be obtained,
which is shown in Figure 9A. A similar process was applied to the other two plants. For the pepper
plant, the first pair of images was used, and for the lemon tree, the seventh pair of images was
used. The reconstructed view of the target was displayed in a bounding box, which was shown in
Figure 9B,C respectively.
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(A) (B)

(C)

Figure 9. Reconstructed plants. (A) croton; (B) pepper; (C) lemon.

To roughly calculate the volume of the reconstructed plant canopy, the bounding box was divided
into voxels. If the 3D point is inside the voxel, then that voxel will be marked as used. Unused voxels
will be removed, as shown in Figure 10. All the 3D reconstructed points reside inside some voxels.
The summation of the volume of all these voxels will be the canopy volume. There is a tradeoff
between the size of the voxel and the volume of canopy. This tradeoff was not analyzed in this research
since it is not the primary task. The estimated volume for these three plants are shown in Table 4.

 
(A) (B)

Figure 10. Demo of volume calculation. (A) Bounding box was divided into voxels; (B) Voxels left after
removing unused voxels.
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Table 4. Volumes of these three plants.

Experimental Targets # of Voxel Hits/# of Total 3D Points Voxel Size (mm3) Volume (cm3)

Croton 16,156/19,579 28.46 1.23 × 103

Jalapeno pepper 28,591/38,773 12.61 3.61 × 102

Lemon tree 48,609/96,680 3.76 1.83 × 102

4. Conclusions

This paper demonstrated a new approach to calibrate the camera calibration matrix on a metric
level and then implemented the VisualSFM method to make a projective reconstruction of a plant/tree
canopy. Stereo cameras were employed to estimate the actual 3D points for image pairs. The projective
reconstructed view was then transformed to metric reconstruction by applying rigid transformation.
A verifying experiment was performed by reconstructing a hexagon box. The result showed that
this method can reach the true size of the target object. The same method was applied on three
kinds of plant/tree with different leaf sizes. The reconstructed results presented a good visual
view in 3D with reconstructed leaf features retaining their defining characteristics. This approach
provides a metric reconstruction method that can achieve real-size reconstruction, which is a significant
accomplishment in practical applications such as, 3D visualization, plant phenotypeing, robotic
harvesting, and precision spraying, where real-size characteristics of plants are important for successful
production practices.
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Abstract: One of the tools for optimal crop production is regular monitoring and assessment of
crops. During the growing season of fruit trees, the bloom period has increased photosynthetic
rates that correlate with the fruiting process. This paper presents the development of an image
processing algorithm to detect peach blossoms on trees. Aerial images of peach (Prunus persica)
trees were acquired from both experimental and commercial peach orchards in the southwestern
part of Idaho using an off-the-shelf unmanned aerial system (UAS), equipped with a multispectral
camera (near-infrared, green, blue). The image processing algorithm included contrast stretching of
the three bands to enhance the image and thresholding segmentation method to detect the peach
blossoms. Initial results showed that the image processing algorithm could detect peach blossoms
with an average detection rate of 84.3% and demonstrated good potential as a monitoring tool for
orchard management.

Keywords: blossoms; digital image processing; machine vision; peaches; unmanned aerial system

1. Introduction

Idaho is popularly known for potatoes, but the state grows other specialty crops which include
peaches. Numerous types of peaches are grown in the southwestern part of Idaho, which is warmer as
compared to other regions. The state produces about 5300 tons of peaches [1]. In addition to peaches,
Idaho agriculture produces apples, pears, cherries, apricots, nectarines, plums and grapes. The specialty
crop industry in Idaho is thriving. However, the industry is currently facing the challenges of labor
shortage, increasing labor cost, and the pressure of a growing market. Because of these challenges,
fruit growers need to adopt new technologies that can aid in optimizing crop production.

One of these new technologies, known as precision agriculture, is an agricultural management
concept based on measuring crop variability in the field and responding to field issues [2].
Crop variability has both temporal and spatial components that need to be considered. The spatial
component is facilitated by the use of the global positioning system (GPS), which enables the farmer to
locate the precise location in the field. In combination with advanced sensors that could measure field
conditions such as moisture levels, nitrogen levels, and organic matter content, it allows the creation of
maps that show the spatial variability of the field.

Although precision agriculture has been used mostly for row crops such as corn and wheat,
studies have shown that the technology has been adopted for specialty crops which include fruit
trees [3]. One of the precision agriculture technologies that has been reported is remote sensing.
Remote sensing can be implemented using a satellite or aerial system [4]. The downsides of using
satellites are the cost for real-time, high-resolution images and the frequency of data collection, which
could affect the temporal aspect of crop production [5]. Another remote sensing method is using aerial
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systems, which can be classified as manned or unmanned. Similar to satellites, a manned aerial system
is costly, and it may not be economically feasible for smaller fields. However, with the proliferation
of cheap commercial unmanned aerial systems (UAS) such as the 3DR Iris and DJI Phantom series
(Figure 1), remote sensing using unmanned aerial systems can be very promising for fruit growers
with small acreages.

Figure 1. Off-the-shelf unmanned aerial systems. (a) 3DR Iris+; (b) DJI Phantom 2.

A number of researchers have used unmanned aerial systems for civilian applications which
include power line detection, roadway traffic monitoring, wetland analysis, and agriculture.
Li et al. [6] developed an image processing algorithm for power line detection using Hough transform.
A pulse-coupled neural filter was used to remove background noise before applying the Hough
transform. Coifman et al. [7] investigated the use of UASs to monitor roadway traffic to facilitate
offline planning and real-time management applications. A feasibility study by Ro et al. [8], which
conducted a field experiment at a local interstate using UASs, concluded that UAS applications will
become popular in the transportation area in the near future. The use of UAS photogrammetry
provided a valuable and accurate enhancement to wetland delineation, classification, and health
assessment [9].

Another area that has received a lot of attention for UAS application is agriculture. One of the
examples of the use of unmanned aerial systems (UASs) for fruit trees is the crop monitoring and
assessment platform (C-MAP) developed at Northwest Nazarene University [10]. The C-MAP is
composed of an off-the-shelf UAS equipped with a multispectral camera. Figure 2 shows one of the
C-MAP UASs flying over an experimental apple orchard with different watering methods, a drip and
a sprinkler. An image processing algorithm was developed in this study to calculate the enhanced
normalized difference vegetation index (ENDVI), which is a combination of the near-infrared band,
green band, and blue band, and generated a false color image. The red color region has high ENDVI
while the blue color region has the lowest ENDVI values. The false color image clearly shows the
variability of the field caused by the difference in water input [11].

In this paper, the application of CMAP is extended to the detection of blossoms of peaches using a
customized image processing algorithm. It has been reported that there is an increase of photosynthetic
activity during the bloom period, which correlates with the fruiting process [12]. Peaches follow a
linear pattern of crop development each year that allows the farmers to manage the fruit production
and make sure that the crop is progressing as it should. In addition, farmers scout the orchard during
the blooming season and use the observed amount of blooms with other parameters including crop
density and the number of leaves on trees to predict yield. Early prediction of yield helps growers in
marketing their products and in the packing operations [13]. The objectives of this study are: (1) to
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expand the use of CMAP to detect peach blossoms; and (2) to develop an image processing algorithm
to detect peach blossoms.

Figure 2. Monitoring of apple orchard using C-MAP. (a) UAS flying over an apple orchard; (b) False
color image showing water variability.

2. Materials and Methods

2.1. Target Field

The target fields in this study are an experimental peach orchard located north of Parma Idaho at
the University of Idaho Research and Extension Center and a peach orchard located north of Marsing
Idaho owned by Symms Fruit Ranch. Both orchards are located in the western part of the state of
Idaho. The Parma orchard contains a variety of peach types, whereas the Symms orchard contains
one type of peach (Prunus persica), which is the target crop in this study. The Parma orchard was
approximately two acres and although the orchard at Symms was much larger, approximately only
two acres were observed for the study.

2.2. Image Acquisition System

Two UASs were used in this study, both of which were DJI Phantom Quadcopters [14].
A DJI Phantom 3 Professional quadcopter was used to capture peach images in the RGB color
spectrum. The camera for the DJI Phantom 3 Professional uses a 1/2.3′′ complementary metal-oxide
semiconductor (CMOS) sensor with 12.4 megapixels (4000 × 3000). A DJI Phantom 3 Advanced
was used to capture multispectral images of the peach orchard. The camera for the DJI Phantom 3
Advanced also uses a 1/2.3′′ CMOS sensor with 12.4 megapixels (4000 × 3000) but the camera was
modified to capture near-infrared band centered at 750 nm, green band, and blue band. The two UASs
were used to capture images in both orchards. Both DJI Phantom quadcopters utilized a navigation
controller which could control the drone either manually or autonomously if interfaced with a tablet.
A tablet with the DJI Go application software was used to connect and interface with the controller
in order to calibrate the DJI drones and to allow for GPS and waypoint following during flights.
The captured image files were written on two SD cards inside the drones and then a computer with

74



J. Imaging 2017, 3, 2

MATLAB software was used to access and download the image files from the cards in order to perform
image processing and analysis.

2.3. DroneDeploy

The software used on the tablet to collect the images was DroneDeploy [15]. DroneDeploy is a
cloud-based software compatible with DJI Phantom 3 drones which uses Google Maps and GPS to
construct a flight plan. Figure 3 shows the operation of the UAS using DroneDeploy. Once a drone is
calibrated with the DJI Go app, a flight plan can be created in the DroneDeploy app at any given place
as long as the device has Wi-Fi or a flight be loaded without Wi-Fi if the flights were pre-synced to
the device beforehand. Using the touch display of the tablet, DroneDeploy allows for the user to tap
and drag the boundaries of the flight zone overlaid over the desired region shown on Google maps.
The figure shows how DroneDeploy works with the DJI Phantom.

Figure 3. Operation of UAS using DroneDeploy. (a) Planning the flight using DroneDeploy; (b) Sending
flight plan to UAS; (c) UAS – DJI Phantom 3; (d) Orthomosaicked image.

Figure 4 shows a screen shot of DroneDeploy, where the region enclosed by the blue rectangle
is the desired field. DroneDeploy then plans the flight and calculates the position where to take the
images in order to obtain pictures that cover the whole field, which is shown as grey dots on the figure.
DroneDeploy also shows the coverage area, the number of images that will be taken, file size, and
flight time when planning a flight. Once a flight plan is set, the DroneDeploy application allows for
the user to adjust the altitude and the number of pictures the drone will take during the flight with
Frontlap and Sidelap selections (Figure 5). Once the flight is initiated, DroneDeploy will automatically
fly the drone along the given path and capture images at the given way points. Though the drone
flies autonomously, the drone can be immediately switched back into manual flight by flipping the
fight state switch on the controller. Once the images are taken, a computer accessing the DroneDeploy
website can be used to upload the images and create an orthomosaic picture of the captured images.
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Figure 4. Tablet screenshot of DroneDeploy.
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Figure 5. Image acquisition and stitching using DroneDeploy.

2.4. Image Acquisition

The images collected for this study were taken between the dates of 8 March 2016 and
20 April 2016. The pictures were taken every week except for the two weeks of bloom in which
images were taken multiple days in a week. All data collection flights were dependent upon weather
and solar conditions due to the impact they might have on the flight ability of the drones. All of
the flights were completed between the times of 8 a.m. and 2 p.m. and were normally conducted
with little to no wind. Although the conditions were clear skies, about half the images obtained were
taken in cloudy weather. Sample images taken from the color camera and the modified camera are
shown in Figure 6. Figure 6b shows a sample image acquired from the experimental field using the
modified camera.

Figure 6. Sample images acquired at peach orchards. (a) Sample RGB image of peach blossom;
(b) Sample multispectral image of peach blossom.
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2.5. Image Processing and Analysis

The acquired images were processed and analyzed using MATLAB and its Image Processing
Toolbox. The focus of this paper is the processing of images from the multispectral images. The image
processing involved the separation of the three bands and analyzing the color distribution. For the
analysis of the color distribution, pixels of the peach blossoms and pixels of the ground (weeds) were
manually selected and the pixel values of the three bands (NIR, green, and blue) were determined.
The pixel values of the peach blossoms and the ground were plotted to show their distribution. Figure 7
shows the pixel value distribution of the blossom and the ground. Although we could easily draw a
line and separate the peach blossom and ground, there is still some overlap between them. A contrast
stretching operation was made on each band to improve the color difference between the blossom
and the background [16]. Figure 7 shows the color distribution when the contrasts of each band were
stretched. The near-infrared versus the blue band shows the separation between the two clusters.
By using a very rudimentary thresholding process, the blossom could easily be segmented.

Figure 7. Color distribution of blossoms and weeds. (a) Original image; (b) Contrast stretched image.

2.6. Peach Blossom Detection

Figure 8 shows the image processing algorithm to detect the peach blossom. The first step is to
stretch the three bands individually and then combine them. A simple thresholding operation for
the near-infrared and blue bands is used for the segmentation of the blossom from the background.
The thresholded image g(x,y) is obtained as follows:

g(x, y) =

{

1 i f fblue(x, y) > 128 and fNIR(x, y) > 128

0 i f fblue(x, y) ≤ 128 and fNIR(x, y) ≤ 128
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Figure 8. Image processing algorithm for blossom detection.

This segmentation process detects the blossom from the multispectral image. Figure 9 shows the
image processing results. After the thresholding operation, a morphological size filtering process was
used to remove “salt and pepper” noise. The overlaid image demonstrates the high success rate of
detecting the blossom from the image.

Figure 9. Image processing for blossom detection. (a) Original image (NGB); (b) Color stretching;
(c) Blossom detection; (d) Blossom overlay.

The success rate of the blossom detection algorithm was evaluated using 20 randomly selected
test images. The peach blossoms in the test images were manually identified and an evaluation mask
was created for each test image. The success rate was calculated as follows:

success rate =
number o f blossom pixels f rom blossom detection algorithm

number o f blossom pixels f rom test image mask
× 100%
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3. Results and Discussion

The results from the peach blossom detection algorithm showed that the blossoms were properly
segmented from the raw multispectral image, with an average detection success rate of 84.3%. One of
the reasons for the effective blossom detection is the use of the modified multispectral camera.
With the modified filter of the camera, objects with high chlorophyll will have high reflectance
in the near-infrared and green bands, but low reflectance in the blue band. In the image, the weeds
have a red-brown hue because of the high chlorophyll content as compared with the other objects
in the image. The colors of the peach blossoms are composed of a white and light pink hue. Some
of the blossoms have a hue similar to that of the branch and some part of the ground. It can also
be observed in Figure 7 that the light color of the blossom shows the high amount of near-infrared,
green, blue values as compared to the weeds. Furthermore, the contrast stretching operation helped
the thresholding process by increasing the separation of the pixel values between the blossoms and
the ground specifically in the blue band. The contrast stretching did not affect the distribution in the
near-infrared band. On the other hand, the morphological size filtering operation may have affected
the detection success rate by removing small blossom pixels that were considered noise. However, the
noise filtering operation was required to remove noise pixels.

Using the binary image of the blossom detection algorithm, the blossom density could be generally
approximated by doing a series of calculations. Knowing the approximate height above the blossoms
at which the pictures were taken, and having the images from the drone being flown over a known
2 m × 2 m square PVC pipe at that height, the density of the blossoms could be obtained. Processing
this image as shown in Figure 10, the number of square meters per pixel was found for that given
height, which could then be applied to the binary peach blossom detection images, yielding an
approximate density of the blossoms in square units. Using the flying height of 10 m, the size of the
PVC square, and the image spatial resolution of 4000 × 3000 pixels, the approximate coverage area
was 600 square meters. When the density of the peach blossoms was correlated to the square units, the
result would not be perfect, but as long as the height of the images was consistent across all images,
a correlation to fruit yield could be attempted.

 

Figure 10. Image processing process for pixel density calculation.

Since the peach trees are planted at about 3 m intervals, the trees in the images were separated by
creating a grid over the image and putting the trees in individual boxes. Figure 11 shows the result of
this grid as well as the resulting peach segmentation over the image. The blossom density from each
tree can then be estimated by doing a pixel count in each box.
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Figure 11. Image processing results for tree grid separation.

Although such a process of tree segmentation could not be done for every image and would
be very inaccurate, future work of this study will involve the detection of individual trees by way
of boundaries. Using the boundaries, the blossom density of each tree would then be directly and
accurately calculated. A blossom density map can then be produced, which could be used to aid yield
estimation and other subsequent orchard management operations. The farmer could also use the
blossom density map to provide a temporal analysis of the orchard blossoms.

4. Conclusions

An image processing algorithm was developed to detect blossoms on peach trees. The image
acquisition system used an on-the-shelf UAS, the DJI Phantom 3. The UAS camera was modified to
allow near-infrared, green, and blue bands. Images from experimental and commercial peach orchards
were used as target fields. The DroneDeploy software was used to plan the flight path, collect the
images, and for image mosaicking. The image processing analysis showed that contrast stretching
of the images’ three bands enhanced the color of the blossoms from the background. A very basic
thresholding segmentation method was used to segment the blossoms. Initial results showed that the
blossoms can be detected using the thresholding operation with an average detection rate of 84.3%.
Future study will involve the improvement of blossom density calculation and the development of an
algorithm for exact tree segmentation.
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Abstract: (1) Background: Since early yield prediction is relevant for resource requirements of
harvesting and marketing in the whole fruit industry, this paper presents a new approach of using
image analysis and tree canopy features to predict early yield with artificial neural networks (ANN);
(2) Methods: Two back propagation neural network (BPNN) models were developed for the early
period after natural fruit drop in June and the ripening period, respectively. Within the same periods,
images of apple cv. “Gala” trees were captured from an orchard near Bonn, Germany. Two sample
sets were developed to train and test models; each set included 150 samples from the 2009 and 2010
growing season. For each sample (each canopy image), pixels were segmented into fruit, foliage,
and background using image segmentation. The four features extracted from the data set for the
canopy were: total cross-sectional area of fruits, fruit number, total cross-section area of small fruits,
and cross-sectional area of foliage, and were used as inputs. With the actual weighted yield per
tree as a target, BPNN was employed to learn their mutual relationship as a prerequisite to develop
the prediction; (3) Results: For the developed BPNN model of the early period after June drop,
correlation coefficients (R2) between the estimated and the actual weighted yield, mean forecast error
(MFE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were 0.81, −0.05,
10.7%, 2.34 kg/tree, respectively. For the model of the ripening period, these measures were 0.83,
−0.03, 8.9%, 2.3 kg/tree, respectively. In 2011, the two previously developed models were used to
predict apple yield. The RMSE and R2 values between the estimated and harvested apple yield were
2.6 kg/tree and 0.62 for the early period (small, green fruit) and improved near harvest (red, large
fruit) to 2.5 kg/tree and 0.75 for a tree with ca. 18 kg yield per tree. For further method verification,
the cv. “Pinova” apple trees were used as another variety in 2012 to develop the BPNN prediction
model for the early period after June drop. The model was used in 2013, which gave similar results
as those found with cv. “Gala”; (4) Conclusion: Overall, the results showed in this research that
the proposed estimation models performed accurately using canopy and fruit features using image
analysis algorithms.

Keywords: ANN; back propagation neural network (BPNN); image analysis; machine learning;
precision horticulture; sustainability
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1. Introduction

Early and accurate prediction of fruit yield is relevant for the market planning of the fruit industry,
trade, supermarkets, as well as for growers and exporters to plan for the need of labour and bins,
storage, packing materials, and cartons [1]. In the European Union (EU), about 12 million tons of
apples are harvested every year, making it the most important fruit crop in the EU with year- to
year variations of ca. two million tons. Yield prediction becomes essential after the last natural fruit
abortion, i.e., June drop, when the first reliable yield estimates may be obtained and fruit are still small,
green, and often occluded by leaves or other fruit, until harvest time; the accuracy of yield prediction
and challenges change during fruit ontogeny. To date, yield prediction is mainly based on historic
performance of an orchard in the previous years, i.e., empirical data. In order to improve the accuracy
and efficiency for apple yield estimation, the automatic prediction using computer vision technology
is increasingly receiving attention [2–9].

Previous apple detection studies concentrated on the late period of fruit maturation, when the
number of fruits obtained from image analysis closely correlated between algorithm prediction and
manually counted fruits in an image. Stajnko et al. [2] segmented cv. “Jonagold” apple fruit from the
image taken on 7 September using colour features and surface texture. Fruit detection rates in the
images were 89% of the apples visible on the images. Kelman and Linker [8] detected mature green
apples in tree images using shape analysis and the correct detection of the apples was 85% of the
apples visible in the images.

Moreover, to predict yield during the early growing period, Linker et al. [10] aimed to detect
green “Golden Delicious” apple fruit from RGB images on only a part of an apple tree to facilitate
the study; the algorithm accurately detected more than 85% of the apples visible in the images under
natural illumination. Zhou et al. [5] proposed a recognition algorithm based on colour features to
estimate the number of young “Gala” apples after June drop with a close correlation coefficient of R2

of 0.80 between apples detected by the fruit counting algorithm and those manually counted and R2 of
0.57 between apples detected by the fruit counting algorithm and actual harvested yield.

However, as noted in some of these studies, some regions of the apple tree are occluded, where
leaves cover the apple fruit, making their assessment difficult during counting in the orchard. A certain
number of fruit grow well inside the canopy close to the tree trunk, especially as trees grow older
and into their high yielding phase, and pose a challenge to detect, especially, in the early stages of
fruit growth. Hence, the present work is based on the hypothesis that these limitations with image
processing to detect fruit early in the season may be overcome by the integration of characteristics of
the canopy structure of the tree. From an apple tree canopy image, the features of the canopy structure
are extracted by image processing [2,5]. There are artificial intelligence algorithms, which could be
employed to model the relationship between the features and harvested yield.

An artificial neural network (ANN), as a commonly used machine learning algorithm, has the
potential of solving such problems, when the relationship between the inputs and outputs is not
well understood or is difficult to translate into a mathematical function. Many ANN applications
dealing with this similar situation in agriculture have been reported [11]. Back Propagation Neural
Network (BPNN) was used to predict maize yield from climatic data with an accuracy at least as
good as polynomial regression [12]. The use of ANN for apple yield prediction was reported in [6].
They used the number of fruit at different times during fruit ontogeny as well as the actual yield for
each image per tree as training parameters and reported that the application of ANN improved apple
yield prediction based on image analysis.

The objective of this study was to improve the accuracy of early yield prediction by taking features
of the tree-canopy structure (number of fruit FN, area of fruits FA, area of fruit clusters FCA, and foliage
leaf area (LA)) in the canopy image into account, besides the apple fruit number. The aims of the
present paper are: (1) to describe the processes of extracting canopy features and “learning” the
relationship between the features and actual yield per tree by use of a back propagation neural network
(BPNN) using the data from 2009–2010; (2) to evaluate the BPNN prediction models to analyse the
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relation between the estimated and harvested apple yield; and (3) to represent the accuracy of the
BPNN models by predicting the yield for 30 samples from 2011.

2. Materials and Methods

2.1. Site Description and Image Acquisition

Apple cv. ”Gala” trees, trained as slender spindles and spaced at a tree distance of 1.5 and
a row distance of 3.5 m oriented North to South, were located at the University of Bonn, Campus
Klein-Altendorf, Germany (50.6◦ N, 6.97◦ E, 180 m a.s.l.). The “Gala Model 1” was used to train and
test 90 thirteen-year-old “Pinova” apple trees on dwarfing M9 rootstock, spaced also at 3.5 m × 1.5 m
and also trained to slender spindles after June drop in 2012. In 2013, the model was used to predict the
yield of 30 samples of “Pinova” apple trees, which were captured during the same period.

The soil is a rich luvisol on alluvial loess with a score of 92 on a 100 point soil fertility scale.
The climate is dominated by Atlantic Western weather buffered by the mild Rhine river influence and
604 mm annual rainfall, thereby not requiring any irrigation. A total of 180 images were captured at
1.5 m height and at a constant distance of 1.4 m perpendicular to each tree row in natural daylight
using a commonly available digital camera type Samsung (Seoul, South Korea) VB 2000 with German
Schneider (Green Bay, WI, USA) lens with automated white calibration in “auto-focus” mode (without
the use of the zoom) set to 3 Megapixels per image. White and red calibration spheres of 50 mm
diameter (polystyrene) were used to determine fruit size. A 2 m × 3 m white drapery cloth was placed
behind the target tree to distinguish fruits from trees in other rows. Images (Table 1) were captured
twice, i.e., when fruit were light-green after June drop about three months before harvest (period 1;
“Gala Model 1”) and when fruit were red during the fruit ripening period half a month before harvest
(period 2; “Gala Model 2”), on the preferred western side of the tree. Illumination for the first image
acquisition was estimated ca. 800 µmol PAR and for the second date ca. 600 µmol PAR m−2·s−1 using
an EGM-5 (PPSystems, Amesbury, MA, USA). Images were obtained on these apple trees, in the early
afternoon (3 to 5 pm) on days with indirect light to exclude stray or blinding light, and deep shades at
a time of low solar angle on the second date (period 2).

Table 1. Characteristics of samples. Tree fruit load % refers to the % of trees carrying a high
(>mean + SD), low (<mean − SD), and moderate fruit load, respectively.

Season Numbers of Trees
Number of Images
(Period 1, Period 2)

Yield/Tree
(mean ± SD)

Tree Fruit Load (%)
High, Mod, Low

2009 60 60; 60 20.62 ± 4.90 20; 68; 12
2010 90 90; 90 16.68 ± 5.43 18; 63; 19

2009 & 2010 150 150; 150 18.26 ± 5.55 15; 67; 18
2011 30 30; 30 18.63 ± 4.17 10; 70; 20

After harvest, fruit were sorted using a commercial grading machine (type MSE2000, Greefa,
Geldermalsen, The Netherlands) to provide fruit, counts for each individual tree, size for each
individual fruit, and cumulative yield/tree.

Matlab (version 2011b, Mathwoks Inc., Natik, MA, USA) was used for the image processing and
modeling. Typical images are shown in Figure 1. To improve the data processing speed, images were
uniformly resized to 512 × 683 pixels. The parameters used in this paper, are listed in Table 2.
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(a) (b) 

Figure 1. Sample apple tree at different times; left picture (a) was acquired in the early period after the
June drop (period 1), about 3 months before harvest, right picture (b) was acquired during the ripening
period (period 2), about 15 days before harvest.

Table 2. Description of parameters for yield prediction.

Parameter Description Parameter Description

IA Sum of pixels of the whole images YE The estimated yield of apple tree
FA Sum of pixels belonging to apple fruits F1 FA/IA
FN Number of fruit F2 FN/200

FCA
Sum of pixels belonging to apple
clusters F3 (FA– FCA)/IA

LA Sum of pixels belonging to foliage F4 LA/IA
YA The actual yield of apple tree F5 YA/50

MAPE Mean Absolute Percentage Error SD Standard deviation of the error
MFE Mean Forecast Error RMSE Root Mean Square Error

Note: the fruit number per tree is below 200; the actual yield per tree is below 50 kg.

2.2. Apple Fruit and Leaf Feature Description

Fruit and foliage are two main components of the apple tree canopy. Based on the images of the
apple tree canopy, the fruit number (FN) and the fruit area (FA) are the first two essential features
for yield prediction. The third feature is the area of the apple clusters (FCA) in the image, because
apple clusters are a conspicuous characteristic of canopy structure, which can be comprised of more
than two apples. Compared with the pixel proportion of the bright red calibration sphere (Figure 1a),
which was of the size range for an apple fruit in period 1, if the fruit domain exceeded the size of the
calibration sphere by 3-fold, it was assumed to be an apple cluster. Since the leaves can impact apple
yield estimation by occluding fruit, foliage area (LA) is the fourth one.

As we consider FA, FN, LA, and FCA extracted from canopy images as essential parameters for
yield prediction [5], we converted them to the ratios F1, F2, F3 and F4 (Table 2). These ratios were
subsequently employed for modelling and the different steps in the modelling process are visualized
in a flowchart (Figure 2).

Figure 2. Outline of the processing steps.

85



J. Imaging 2017, 3, 6

2.3. Fruit Identification and Feature Extraction (Step 1)

The implemented fruit recognition algorithms were based on a previous study [5] (Figure 3).
The RGB images were transformed to a binary image and analysed to count the apples within the
picture. Pixels of each connected domain were summed as its area to computed FA, FN and FCA.

  

(a) (b) 

Figure 3. Image of same tree at different times, (a) in July; (b) in the beginning of September.

2.4. Leaf Identification and Feature Extraction (Step 2)

A method was developed for automated recognition of foliage within the tree image.
Before foliage identification, the fruit domains were removed from the canopy image (Figure 4).
Both RGB and HSI colour systems were used to segment leaves in the image automatically. Figure 4
gives an overview in order of image processing. The proposed method was employed to separate
foliage from the background (white drapery, branches and sky) in the image.

 

If G – B < 10 then 

R = 0, G = 0 and B = 0 

Transformation RGB to 

HSI for H image

If H < Threshold then 

R = 0.G = 0 and B = 0 

Branches 

Trunk 

Figure 4. Proposed algorithm for leaf discrimination; an example of image processing.

The map of colour difference (green minus blue, i.e., G − B) for each pixel is shown in Figure 5.
The green minus blue value was larger for the foliage compared with the background (white drapery
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and sky), which could be used to segment foliage from the image at a threshold colour difference G-B
of 10. For each pixel, if the colour difference was below 10, then the R, G, B colour values of this pixel
were set to zero (Figure 4).

Figure 5. Example of an image of an apple tree with colour-coded mapping of colour differences
between G (green) and B (blue) for each pixel, showing the leaves as bright colour dots and the
background in deep blue.

However, background pixels (branches and trunk) were incorrectly assigned the same
classification as foliage pixels. Specifically, in the hue (H) image, the pixels were divided into two classes
(Figure 4), and one of them consisted of the deeper colour pixels represented by branches and trunk.
Eventually, using the Ostu’s algorithm [12], a threshold (T) was obtained. The branches and trunk
were removed from the image at the threshold T. Foliage cross-sectional area (LA) was computed by
summing pixels that belonged to foliage.

2.5. Development of BPNN Yield Prediction Model (Step 3)

The ratios F1, F2, F3, F4 and F5 (Table 3) were computed based on the parameters IA, FA, FN, FCA,
LA and YA (Table 2). One data set of 150 images acquired in period 1 was collected as set 1, and the
other set of 150 images acquired in period 2 was collected as set 2. Sixty images were sampled in the
summer of 2009 and ninety images were sampled in the summer of 2010 for the two sets, i.e., each set
included 150 samples, respectively. Each sample consisted of five parameters. Two BPNN prediction
models were built for the two periods using Sets 1 and 2, respectively.

The Back Propagation Neural Network (BPNN) was trained with an error back-propagation
learning algorithm used for computing the ANN weights and biases [13]. In this present study, the
inputs were the four features from the apple tree image and a vector of features in BPNN, which
were different from that of Rozman [6], and the output was the forecast yield. As BPNN was trained,
the weights of inputs for each processing unit were adjusted, and the network gradually “learned”
the input/output relationship to minimize MSE between the actual yield of an apple tree and the
estimated yield of the sample set.
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Table 3. Example of 15 trees for modelling.

Tree

Sets Set 1 Set 2

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

1 0.0159 0.3100 0.0159 0.5495 0.4571 0.0552 0.5100 0.0331 0.2278 0.4571
2 0.0041 0.1800 0.0041 0.4265 0.3355 0.0279 0.3850 0.0242 0.2100 0.3355
3 0.0103 0.3100 0.0103 0.4718 0.3808 0.0348 0.4900 0.0199 0.1900 0.3808
4 0.0088 0.2550 0.0088 0.7245 0.3679 0.0347 0.6100 0.0199 0.2052 0.3679
5 0.0214 0.5250 0.0193 0.7022 0.4423 0.0590 0.5500 0.0297 0.2066 0.4423
6 0.0081 0.3850 0.0081 0.5714 0.4509 0.0318 0.5350 0.0251 0.2372 0.4509
7 0.0108 0.4000 0.0060 0.5024 0.3611 0.0320 0.4700 0.0159 0.1893 0.3611
8 0.0125 0.3750 0.0125 0.7344 0.3648 0.0440 0.5400 0.0329 0.2084 0.3648
9 0.0060 0.3100 0.0060 0.4066 0.5106 0.0549 0.5000 0.0327 0.3360 0.5106
10 0.0149 0.3900 0.0149 0.7559 0.3863 0.0537 0.5100 0.0329 0.2101 0.3863
11 0.0191 0.4550 0.0170 0.7116 0.4431 0.0596 0.4350 0.0340 0.1902 0.4431
12 0.0096 0.3350 0.0096 0.4149 0.3944 0.0445 0.5750 0.0269 0.1753 0.3944
13 0.0144 0.4150 0.0144 0.7099 0.4131 0.0546 0.3900 0.0229 0.2593 0.4131
14 0.0180 0.3150 0.0148 0.6459 0.3526 0.0585 0.3850 0.0173 0.1663 0.3526
15 0.0041 0.1800 0.0041 0.4265 0.3355 0.0279 0.3850 0.0242 0.2100 0.3355

A typical three-layer BPNN with one input layer, one hidden layer, and one output layer was
employed in our present study. To determine the optimal number of hidden neurons, the number of
hidden neurons was initially calculated as Equation (1), and the value of NA was adjusted to select the
best one based on the minimization of the mean squared errors (MSE), which is a statistical measure
showing how well the model predicts the output value and the target value (yield).

NH = (NI + NO)
1/2 + NA, NA ∈ [0, 10] (1)

- NI is the number of input neurons,
- NO is the number of output neurons,
- NH is the number of hidden neurons,
- NA is the number of the neurons, which can be added in hidden neurons based on MSE.

Before BPNN training, the main parameters were set (Table 4). In order to reduce extra or
over-fitting of the 150 samples, 90% of the samples composed the training set, which was used to
develop the model, and the remaining 10% was used for the test set [14]. Both the training and test set
were selected randomly, guaranteeing a balanced proportion between positive and negative outcomes.
During BPNN training, the target parameter and the inputs were all inserted into the neural network.
Each node in the input and hidden layers were connected to each of the nodes in the next layer (hidden
or output). All connections between nodes were directed (i.e., the information flows only one way),
and there are no connections between the nodes within a particular layer. Each connection between
nodes had a weighting factor. These weighting factors were modified using the back-propagation
algorithm based on the “error” during the training process to produce “learning”.

Table 4. Relative parameter settings before the training BPNN.

Parameter Value Parameter Value

Input F1, F2, F3, F4 Hidden layer transfer function Logarithmic sigmoid
transfer function

Target F5 Output layer transfer function Linear transfer function

Output Forecast value Learning function Gradient descent
learning function

Performance function MSE Training function Levenberg-Marquardt
back-propagation
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2.6. The Measures for Model Evaluation

Four statistical approaches were employed to evaluate the model: R2, MFE, RMSE, and MAPE.
Mean Forecast Error (MFE) is a measure of unbiasedness of the predictions, defined as Equation (2),
and MFE is closer to 0, then the model becomes less unbiased. Root mean squared error (RMSE)
is an often used measure of the difference between values predicted by a model and those actually
observed from the object being modeled, and is defined as Equation (3). It can rule out the possibility
that large errors of opposite signs could cancel out in a MFE measure. The Mean Absolute Percentage
Error (MAPE) is computed through a term-by-term comparison of the relative error in the prediction
with respect to the actual value of the variable, and is defined as Equation (4). Thus, the MAPE is
an unbiased statistical approach for measuring the predictive capability of a mode [14,15].

MFE =
1
N

N

∑ (YA − YE) (2)

RMSE =

√

1
N

N

∑ (YA − YE)
2 (3)

MAPE =
N

∑|(YA − YE)/YA| ×
100
N

(4)

3. Results

3.1. Data Analysis

The objective of the work was to evaluate algorithms for the detection of young light green
apple fruit three months before harvest as accurately as possible. As shown in Table 3 for the same
apple tree, the canopy feature values were developed from July (period 1) to September (period 2).
In period 1, when the apple fruit was small, the computed values (fruit-related ratios) of F1, F2, and F3

were much smaller compared with the foliage-related ratio F4; in period 2, the values of F1, F2, and F3

increased with increasing fruit size. Therefore, the fruit detection is strongly dependent on the amount
of foliage in the canopy, which makes it almost impossible to detect apple fruit using image analysis in
period 1. In period 2, the obvious colour and size changes of apple fruits make the detection easier and
the influence of the foliage becomes weak. Overall, F1 appears to be the most important parameter,
because it reflects the area of all apples in the tree image. Hence, it includes the overall information on
the size and number of all apples.

3.2. BPNN Model Structure and Validation

The BPNN “Prediction Model 1” for the early period after June drop consists of 4 input neurons,
12 hidden neurons and 1 output neuron, and the BPNN “Prediction Model 2” for the ripening period
consists of 4 input neurons, 11 hidden neurons, and 1 output neuron.

Both models performed well relative to each other, and illustrate that ANN could be employed to
predict the apple yield. Table 5 shows the small differences between the early and late yield prediction
model for cv. “Gala” regarding R2 (0.02), RMSE (0.15 kg/tree), MFE (0.02), and MAPE (0.45 %), and
shows that the results of Model 1 (Table 5) were similar to those of Model 2 (Table 6) with Model 1
being slightly inaccurate.
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Table 5. The model structure and the evaluation of model performance for cv. “Gala”.

Model

Parameter
Structure

Samples (Trees)
of 2009 and 2010

RMSE in kg/Tree MAPE (%) MFE R2

Model 1
Train set

4-12-1
135 2.34 10.67 −0.05 0.81

Test set 15 2.53 12.40 0.16 0.80

Model 2
Train set

4-11-1
135 2.27 8.9 −0.03 0.83

Test set 15 2.31 10.36 −0.06 0.82

Table 6. Comparison between actual yield and predicted yield; n = 150 trees.

Model
Actual Yield (A) in

kg per 150 Trees
Predicted Yield (P)
in kg per 150 Trees

Difference
(|A – P|) in kg

Mean Difference
in kg per Tree

Model 1 2736 2744 8 0.05
Model 2 2736 2740 4 0.03

3.3. Yield Prediction for Subsequent Year

To evaluate their reliability and robustness, the two BPNN yield prediction models, based on
combining both the 2009 and 2010 data, were used to predict the yield for next year (2011). In the
growing season of 2011, 30 trees (Table 1) were selected for a wide variability of fruit load and were
photographed in July and September as samples to validate the performance of “Prediction Model 1”
and “Prediction Model 2”, respectively. The results indicate the two models have good reliability and
robustness, and the correlation increased from 0.62 to 0.75 near harvest time (Figure 6).
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Figure 6. Yield prediction for 2011 based on (a) “Prediction Model 1” for young apple fruit in July and
(b) “Prediction Model 2” for ripe apple fruit in September for the subsequent year (n = 30 trees).

3.4. Yield Prediction for Other Apple Varieties

The results (Tables 7 and 8) shows that the “Pinova” model performs similar to the “Gala”
model 1. This “Pinova” model also could be used to predict the yield for the subsequent year (Figure 7).
These again proved that a BPNN model, based on the features from the canopy, could be used for
apple yield prediction at the orchard level.
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Table 7. The model structure and the evaluation of model performance which was developed based on
samples of 2012 for cv. “Pinova”.

Model

Parameter
Structure

Samples (Trees)
of 2012

RMSE in kg/Tree MAPE (%) MFE R2

“Pinova”
Model

Train set
4-10-1

80 2.24 11.45 −0.14 0.89
Test set 10 2.53 14.19 0.06 0.88

Table 8. Comparison between actual yield and predicted yield for 2012; n = 90 trees.

Model
Actual Yield (A) in

kg per 100 Trees
Predicted Yield (P)
in kg per 100 Trees

Difference
(|A–P|) in kg

Mean Difference
in kg per Tree

“Pinova” Model 1817 1822 5 0.06

y = 0.9716x
R² = 0.7812

RMSE= 2.53Kg
MAPE= 7.10%
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Figure 7. Yield prediction for 2013 based on the prediction “Pinova” Model for young apple fruit in
July for the subsequent year (n = 34 trees).

4. Discussion

The majority of studies have used image processing algorithms to estimate total fruit number
and fruit diameters to achieve yield prediction shortly before the fruit maturity and harvest [16–18].
However, counting the number and measuring the size of fruit by machine vision is based on the
premise that all fruit on a tree can be seen and are not occluded by leaves. The scientific challenge
is to identify each fruit in the tree image with some fruit hidden within the canopy, especially in the
early period (Figure 1a). However, early prediction is essential for planning labor, bins, and harvest
organization as well as transport, grading, and storage. Hence, four features were extracted from the
tree image (Table 2), which were closely related to yield prediction and, moreover, changed with the
growth of the fruit (Table 3). BPNN was employed for the analysis of the relationship between the four
features and the actual yield to model yield prediction (Figure 6).

The small differences between the early and late yield prediction model for cv. “Gala” in Table 5
could be attributed to the fact that the proposed method with the neural network, based on the features
from canopy images, can reduce the adverse influence from foliage. Hence, the method could be used
for apple yield prediction in early and late growing periods after June drop, even when the apple fruit
are small and green. In Table 6, the small differences between the harvested and the predicted yield for
both models suggest that the BPNN model based on the features of canopy could provide accurate
apple yield prediction at the individual orchard level.
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In the two BPNN models for early prediction in July and pre-harvest in September, four features
were extracted from the tree canopy image from the respective period as inputs into the model, and
the apple yield can then be predicted. This approach with a resolution of 2.4 and 2.3 kg/tree apples
(Table 5) is a further advancement to the ANN model of Rozman et al. [6], in which the numbers of
fruits at different times (the time between June drop to near harvest time was divided into several
periods) are input parameters resulting in a RMSE of 2.6 kg/tree for cv. “Braeburn” and 2.8 kg/tree for
“Golden Delicious” both in September, possibly too short before harvest of these late ripening varieties
to organize labour and bins.

In previous research, Zhou et al. [5] showed that R2 values in the calibration data set between
apple yields estimated by image processing and actual harvested yield were 0.57 for young cv. “Gala”
fruit after June drop, which improved to R2 = 0.70 in the fruit ripening period. By comparison, the
presented combined approach (Table 5) improved the coefficient of determination (R2) for young,
small, and light-green cv. “Gala” fruit to 0.81 and for ripening fruit to 0.83. This is also an advancement
of the results of Rozman et al. [6] with a correlation (r) between the forecast and actual yield of r = 0.83
for “Golden Delicious” and 0.78 for “Braeburn”, with standard deviations (SD) of 2.83 and 2.55 kg. In
our study, R2 was 0.81 and SD was 2.28 kg for “Gala” (Table 5).

Other work concentrated on optimising recognition of green apple fruit cv. “Golden Delicious”,
but without yield prediction [8,18], while Cheng et al. [19] showed how yield estimation strictly
depends on the crop load of the apple tree.

Aggelopoulou et al. [20] estimated the yield of apple trees based of flower counts, a method which
is only suitable for med-climates such as Greece. However, the majority of apple growing countries in
Northwestern Europe such as Germany, Belgium, Holland, England, and Poland encounter late frost,
which can dramatically reduce the yield, accentuated by an unpredictable June drop with the same
effect, making proper yield predictions before June drop impossible.

The results shown in Figure 7 validated the practicability of the models. The RMSE values
between estimated apple yield and actual harvested yield was 2.6 kg/tree for the early time, and
improved at near harvest time to 2.5 kg/tree. The BPNN model trained with the samples of 2009 and
2010 and with the tree images in July 2011 can be used to predict the yields of apple trees from 2011.

Further research will show where and why we under- or over-estimate the fruit yields per tree.
The tree shape employed here, slender spindle, should allow similarly good results with similar tree
shapes such as tall, spindle, super spindle, fruit wall, and Solaxe tree training systems.

5. Conclusions

The novelty of the approach is the combination of fruit features with (four) tree canopy features
(number of fruit FN, single fruit size FA, area of fruit clusters FCA, and foliage leaf area (LA)) to develop
two back propagation neural network (BPNN) models for early yield prediction, i.e., for young, small,
green fruitlets and mature red fruits. Apple was used as a model fruit or crop and the algorithms were
developed for image acquisition under natural light conditions in the orchard. The results showed that
BPNN can be used for apple yield prediction and that those four selected canopy features are suitable
for early yield prediction and present an elegant way for predicting fruit yield using machine vision
and machine learning for apple and possibly other fruit crops.

6. Outlook

The present work was obviously conducted in our own orchard with apple trees as slender
spindles, as typical for this growing region, to develop these algorithms. Hence our next project will
focus to separate a site-specific model from a general model and investigate the adaptation of the
proposed model to other tree forms or similar fruit such as nectarine, peach, or kaki.
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Abstract: The main objective of this paper is to investigate the effectiveness of two recently popular
non-parametric models for aboveground biomass (AGB) retrieval from Synthetic Aperture Radar
(SAR) L-band backscatter intensity and coherence images. An area in Siberian boreal forests was
selected for this study. The results demonstrated that relatively high estimation accuracy can be
obtained at a spatial resolution of 50 m using the MaxEnt and the Random Forests machine learning
algorithms. Overall, the AGB estimation errors were similar for both tested models (approximately
35 t¨ha´1). The retrieval accuracy slightly increased, by approximately 1%, when the filtered
backscatter intensity was used. Random Forests underestimated the AGB values, whereas MaxEnt
overestimated the AGB values.

Keywords: SAR; MaxEnt; random forests; estimation error; forest; biomass; carbon

1. Introduction

Aboveground biomass (AGB) is an important variable in carbon accounting and climate science.
In particular, forest AGB is relevant because forests constitute approximately 70%–90% of the Earth’s
aboveground biomass [1].

The AGB is defined as the mass of living organic matter growing above ground level per unit area
at a particular time. The difference in AGB over time allows for measurement of carbon sequestration
(excluding root growth) and carbon emission from deforestation, forest degradation, and forest fires.
The estimation of AGB in the boreal forest is of special concern as it constitutes the largest biome
in the world and has substantial carbon accumulation capability. Russia, as the country with the
largest forested area in the world (809 million ha [2]), provided more than 90% of the carbon sink
of the world’s boreal forests between the years 2000 and 2007 [3]. Despite this importance, Russia’s
boreal forest has the highest uncertainty in carbon stock calculations [4,5]. This is mostly due to poor
measurements of biomass stocks, forest degradation, deforestation, and forest growth. Additionally,
due to the lack of financial support, some forested regions in Siberia have not been inventoried for
more than 20 years [6]. Therefore, there is a strong need for earth observation-based methods to reduce
costs and improve biomass estimations.
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The most common method of measuring AGB is estimation from field measurements, such as
stem diameter and tree height, using allometric models. However, due to the sampling nature of
the field measurements and their high acquisition costs, they can only be collected over small areas.
Satellite technology together with reliable in situ measurements allows for accurate and relatively
cost-efficient wall-to-wall AGB estimates.

There are different remote sensing techniques for AGB retrieval. Several publications provide
a comprehensive review of use of remote sensing techniques for biomass estimation including
sourcebooks of recommended methods and data sources [7–16]. The estimates using optical sensors are
feasible at low biomass levels using vegetation indices, bidirectional reflectance distribution function
(BRDF), and texture [17–22]. The latest results of biomass estimation using Landsat data showed
that an accuracy of ˘36% can be measured in the boreal zones [23]. The most accurate estimates are
gathered from airborne light detection and ranging (LiDAR) systems. The only archive data from
the satellite profiling LiDAR for measuring and monitoring vegetation are from the Ice, Cloud, and
land Elevation (ICESat) Geoscience Laser Altimeter System (GLAS). However, the data have some
limitations related to the large footprint, sparse coverage, and sensitivity to terrain variability [24–28].
Another technique that has a potential for forest AGB estimation is synthetic aperture radar (SAR).
Similar to LiDAR sensors, radar systems are sensitive to the geometrical properties of observed objects;
on the contrary, SAR platforms are imaging sensors. SAR is an active system that transmits microwave
energy at wavelengths ranging from 3.1 cm (the X band) to 23.6 cm (the L band). Longer wavelengths,
i.e., L-band, are preferable due to its deeper penetration into the forest canopy and due to saturation of
radar signal at higher biomass levels [29–31]. Especially, SAR data with long wavelength, horizontal
and vertical polarizations, interferometric capabilities, and global acquisition strategy are of great
value for biomass retrieval. Data from those sensors are already available as archive data from L-band
Japanese Earth Resources Satellite 1 (JERS-1) and Advanced Land Observing Satellite (ALOS) Phased
Array L-band Synthetic Aperture Radar (PALSAR), or as new acquisitions from ALOS-2 PALSAR-2.
Moreover, new SAR missions are planned that will ensure data continuity, e.g., the European Space
Agency’s P-band (68.9 cm) BIOMASS mission [32] and the UK NovaSAR S-band mission [33].

SAR data have been investigated for more than 30 years and were proved to be physically related
to forest parameters until the saturation point showing correlation coefficients of up to approximately
0.9 [29,34–36]. Many SAR properties have been successfully exploited to quantify biomass:
backscattering intensity [37,38], interferometric phase [39,40], interferometric correlation [41–43],
polarimetric signature [44,45], SAR tomography, and radargrammetry [46–48]. In particular, satellite
SAR data at the L-band have provided low AGB or growing stock volume (GSV) estimation error
down to approximately 20% when forest stands greater than 10 ha were used and/or a multi-temporal
approach was implemented [31,49–52]. Until now, only few retrieval results using interferometric
coherence synergistically with backscatter over Russian boreal forests have been published [50,53,54].

Table 1 [50–52,55–60] presents a summary of the SAR retrieval statistics reported in the literature
over Russian boreal forests, the same type of forest that was used in this study. The estimation error is
represented as the root mean square error (RMSE) and the relative RMSE, i.e., the RMSE divided by
the mean GSV or AGB.
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The study presented in this paper is based on multi-temporal ALOS PALSAR L-band backscatter
intensity and coherence data. Both types of data were used as explanatory variables for AGB retrieval
at a local scale of 0.25 ha. The AGB was estimated using two non-parametric machine learning
algorithms: maximum entropy (MaxEnt) and Random Forests. Both models are popular in applied
research. The MaxEnt approach [61] is particularly popular in species distribution modeling [62,63].
However, the method was also successfully implemented for AGB estimation at regional and global
scale [60,64]. The Random Forests [65] are widely used for classification in ecology [66–68] as well as for
AGB estimation [27,58,69–74]. The Random Forests were found to be superior to other methods such
as support vector machine (SVM), k-nearest neighbour (KNN), Gaussian processes (GP), and stepwise
linear models [75]. So far Random Forests have not been compared with the MaxEnt approach.

In summary, the aim of this paper is to:

1. use SAR L-band backscatter and coherence data synergistically to improve AGB estimation at
a local scale;

2. compare AGB retrieval results using two recently popular machine learning algorithms.

2. Test Site and Available Data

2.1. Study Site

The study site is located in Krasnoyarskiy Kray in the Southern part of Central Siberia, Russia,
approximately 120 km northeast of the city Krasnoyarsk—part of the Bolshe Murtinsky forest enterprise
(center coordinates: 57˝121N and 93˝491E, Figure 1). The area is characterized by a continental
climate with long, severe winters and short, warm, and wet summers. From mid-October until the
beginning of April, the mean temperature is approximately ´15 ˝C; in summer the mean temperature
is approximately +15 ˝C. The annual precipitation is below 450 millimeters.

 

Figure 1. Extent of the study area and the spatial distribution of the reference points. Background image
acquired by the Landsat 5 TM satellite (data available from the U.S. Geological Survey Earth Explorer).

The research area covers almost 2000 km2. The area is mainly characterized by needleleaf,
coniferous forests. The dominant trees are pine, spruce, fir, and larch. The main disturbances are
logging activities and fire events. The study site is characterized by gentle topography with heights
from 90 m to 572 m above sea level (a.s.l.) with an average height of 243 m a.s.l. The slopes range from
0˝ to 54˝ (riverside), with a mean value of 6˝.
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2.2. Available Data

The ALOS PALSAR L-band data were used for the explanatory variables. The data were delivered
in Single Look Complex (SLC) Level 1.1 format. The data were provided by the Japan Aerospace
Exploration Agency (JAXA) within the third phase of the Kyoto and Carbon Initiative [76,77]. In total,
19 scenes were available for this study area (Table 2). The weather data were downloaded from
http://www.sibessc.uni-jena.de/ [78].

Ten scenes were acquired between 2006 and 2011 in fine beam single (FBS) mode and nine scenes
were obtained in fine beam dual (FBD) mode. In the case of the FBS mode, the data were collected in
horizontally transmitted and horizontally received polarization (HH), and in the case of the FBD mode,
the data were given in HH and horizontally transmitted and vertically received (HV) polarizations.

The spatial resolution of the single-look image is 9.37 m in range and 3.14 m in azimuth for data
acquired in the FBD mode and 4.68 m in range and 3.14 m in azimuth for data acquired in the FBS
mode. The acquisition angle is 34.3˝.

The forest inventory data were used as the dependent variable. The field data were provided by
the Russian State Forest Inventory within the SIBERIA project [79]. The inventory dates back to 1998.
Because of the time difference between inventory data and the SAR data acquisitions (>10 years) the
field data were updated using semi-empirical phytomass models [80] and growth (yield) tables [81].
The latter were developed by the International Institute for Applied Systems Analyses (IIASA) in
collaboration with the V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences,
and Moscow State Forest University. Those models and tables are recommended for use in forestry
and forest management in Russia (Protocol of the Council of Federal Agency of Forest Management
No. 2, dated 8 June 2006) [81].

The original data were gathered in the framework of the Russian forest inventory and planning
(FIP) and are available in GIS vector format. Attributes such as GSV, age, tree height, diameter at breast
height, and species composition were provided. All information is given for a forest stand, i.e. a group
of trees occupying a specific area uniform in species composition, size, age, and management strategy.
In total, information about 1604 stands was available.

Table 2. Summary of SAR data available for the test site. The data acquisition time was approximately
16 GMT—10 PM local time in summer or 11 PM local time in winter. The weather parameters are given
as a mean from eight daily measurements [78]. The weather station is located approximately 50 km
southwest from the center of the test site.

Image Name Acquisition Date Acquisition Mode
Weather Conditions: Mean Temperature (˝C)/Wind Speed

(m/s)/Precipitation (mm)/Snow Depth (mm)

ALPSRP049391140 28 December 2006 FBS dry frozen conditions, ´17.8/0.5/0/238.8
ALPSRP056101140 12 February 2007 FBS dry frozen conditions, ´18.9/1.7/0/340.4
ALPSRP082941140 15 August 2007 FBD wet unfrozen conditions, 13.6/1.2/0/0 (2 days before heavy rain)
ALPSRP089651140 30 September 2007 FBD wet unfrozen conditions, 13.1/3.9/-/0 (3 days before heavy rain)
ALPSRP103071140 31 December 2007 FBS dry frozen conditions, ´5.9/4.4/0/279.4
ALPSRP109781140 15 February 2008 FBD dry frozen conditions, ´17.2/0.4/0/381
ALPSRP129911140 2 July 2008 FBD wet unfrozen conditions, 19.7/1.7/0.3/0
ALPSRP136621140 17 August 2008 FBD wet unfrozen conditions, 16.8/1.6/0.8/0
ALPSRP156751140 2 January 2009 FBS dry frozen conditions, ´12.7/1.1/0/299.7
ALPSRP163461140 17 February 2009 FBS dry frozen conditions, -31.3/0.6/0/459.7
ALPSRP190301140 20 August 2009 FBD wet unfrozen conditions,14.7/0.8/1/0 (6 days before heavy rain)
ALPSRP197011140 5 October 2009 FBD dry unfrozen conditions,11.5/1.6/0/0
ALPSRP210431140 5 January 2010 FBS dry frozen conditions, ´33.7/1.5/0/589.3
ALPSRP217141140 20 February 2010 FBS dry frozen conditions, ´22.9/1.2/0/599.4
ALPSRP243981140 23 August 2010 FBD dry unfrozen conditions, 22.6/2.3/0/0
ALPSRP250691140 8 October 2010 FBD wet unfrozen conditions, 1.4/1.7/0.5/10.2
ALPSRP257401140 23 November 2010 FBD dry frozen conditions, ´12.9/1.7/0/119.4
ALPSRP264111140 8 January 2011 FBS dry frozen conditions, ´23.3/1.5/0/360.7
ALPSRP270821140 23 February 2011 FBS dry frozen conditions, ´27.6/0.5/0/429.3
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3. Processing Methods

3.1. Forest Inventory Data

The available forest inventory data are for 1998. Therefore, the first step of AGB retrieval was
an update of the reference data. The data were improved to the year 2010. The data update consisted
of four stages. First, the forest stands that changed from forest to non-forest were excluded by visual
interpretation using very high and high resolution optical data. Cloud-free images were selected
from KOMPSAT-2 and RapidEye. The data were acquired from spring to autumn in 2010, 2011, and
2012. Then, from the resulting stands only those were selected in which at least 60% of the trees
belong to a single species. The reason for the selection is that the growth (yield) tables were done
for dominant tree species. In the second step, the stands were used in the semi-empirical phytomass
models. The basis for the improvement of the old inventory data is a site index (SI). SI is defined as the
edaphic and climatic characteristics of a site that have an impact on the growth and yield of a given
tree species [82]. Usually SI classes are determined by the relationship between the mean tree height
and the mean age of a stand. As the SI was not available in the original forest inventory data it was
calculated from the following equation [83]:

Ht “ 22.47
´

1 ´ e´0.0234Ap1´e´0.0057Aq
¯0.548

` p3 ´ SIq Δ (1)

Δ “ 4.35
´

1 ´ e´0.0205A
¯0.957

(2)

where Ht represents tree height, A denotes forest stand age, and Δ is the interval between site indexes.
In the case of Russian forests, the SI from Ib, Ia, I–V, Va, and Vb are denoted as where the class

with the lowest SI indicates the best site conditions for forest trees to grow. The site indexes II and III
are dominant in the study area with fir, birch, and aspen as the dominant species (Figure 2).

 

Figure 2. The number of stands with more than 60% of tree species per site index; site index code:
´1-Ib, 0–Ia, 1–I, 2-II, 3-III, 4-IV, 5-V, 6-Va.
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After calculating the SI, the growth rate was derived by implementing the Richards–Chapman
growth function in polynomial quadratic form [81]:

GSVgrowth rate “ c1c2c3

´
1 ´ e´c2 A

¯c3´1
e´c2 A, (3)

where A denotes age and ci are the parameters that have an ecological interpretation and depend on
site index (SI) [81]:

ci “ ci3SI2 ` ci2SI ` ci1. (4)

After obtaining the GSV growth rate, the correction coefficient GSVcc was calculated:

GSVcc “
GSVin´situ

GSVmodel
(5)

where GSVin´situ represents the GSV measured in the field, whereas GSVmodel is the GSV calculated
according to the models [81] for a particular site index and forest stand age. A new GSV was
then derived:

GSVnew “ GSVin´situ ` Adi f f GSVgrowth rateGSVcc (6)

where Adi f f is the age difference between the old inventory and reference year 2010 and equals 12.
Thirdly, GSV were converted to AGB. Based on freely available in situ measurements of forest live

biomass (phytomass) [83], a regional allometric model relating GSV to AGB was developed (Figure 3).
The final step of the reference data processing was to rasterize the inventory data to 50 m spatial

resolution, and then to erode the stands. An erosion of two pixels was used (100 m) to avoid border
effects in the SAR products. Then, the stands were converted into points using the center of gravity
(centroid) of the stand. The final updated AGB values ranged from 0 to 224 t¨ ha´1, with a mean value
of 98 t¨ ha´1. The stand size with erosion varied from 0.5 to 130 ha, with a mean value of 16 ha that
corresponds to 64 pixels. The stand age varied from 20 to 290 years. Six hundred forty-one stands
remained for the investigations.

Figure 3. Allometric model relating AGB to GSV using in situ measurements of forest phytomass.

3.2. SAR Data Processing and Data Selection

The first pre-processing steps of SAR data included data calibration and multi-looking. In order to
obtain data with squared pixels of approximately 50 m spatial resolution, the following multi-looking
factors (range x azimuth) were used: FBS mode 6 ˆ 15, FBD mode 3 ˆ 15. Thereafter, the SAR
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backscattering coefficient was calculated as γ˝, which includes a correction of the backscatter for the
local incidence angle θi [84]:

γ0 “ σ0 A f lat

Aslope

ˆ
cos pθq

cos pθiq

˙n

(7)

where σ0 is the backscattering coefficient and θ the incidence angle measured at mid-swathe (34.3˝).
A f lat and Aslope represent the local and the true pixel area, respectively. The cosine of the local incidence
angle θi corrects the radiometry of backscatter for local slopes and converts the data from σ˝ to γ0.
This correction is known as a topographic normalization based on the local incidence angle and pixel
area. In total eight backscatter images acquired in FBD mode were generated. The data selection was
based on the recommendations from previous studies, in which it was reported that the backscatter
data acquired during summer and autumn were superior to the winter acquisitions with regards to
the AGB/GSV retrieval [31,85,86].

To reduce the speckle effect in the backscatter data, a filtering approach was implemented.
The method was based on a multi-temporal speckle filtering calculated according to [87]:

Jk px, yq “
xIky

N

Nÿ

i“1

Ii px, yq

Ii
(8)

where I is the local mean value of pixels in a window with a center at (x, y) in image I, k = 1,..,N
and N represents the number of multi-temporal images, with intensity at position (x, y) in the k
image—Ii px, yq . Jk filters uncorrelated speckle between the images. In this study, N was equal to 8 for
filtering of intensity images and window size was 5 ˆ 5. No larger filtering window size was used
because already large multi-looking factors were implemented.

The coherence images were calculated according to [88]:

γ “ |γ| ejφ “
E

�
g1g˚

2
(

b
Et|g1|2uEt|g2|2u

(9)

where φ is the phase and E{} represents expected value.
Coherence measures the degree of correlation between two SAR images and takes values between

0 for total decorrelation and 1 for perfect correlation. Data processing consisted of co-registration at
sub-pixel level (less than 0.05 pixel), common range and azimuth band filtering, and interferogram
calculation and flattening. Coherence was estimated by spatial averaging within a two-dimensional
window. In this study an adaptive estimation window was used with a window size between 3 ˆ 3
and 5 ˆ 5. A larger window size was used in the areas of low coherence in order to reduce the
coherence bias. The resulting coherence was computed using the same number of looks as in the
case of backscatter data (FBS mode 6 ˆ 15, FBD mode 3 ˆ 15 in range, and azimuth). This number of
looks significantly reduced the coherence overestimation for low coherence values, as described in [89].
Therefore, the coherence bias was calculated to be close to zero (for coherence equal to 0 the values were
~0.002). The coherence was generated for 19 SLC pairs (Table 3). As a master image the image acquired
in 2010 was used, additionally coherence for data acquired in 2011 was calculated. The perpendicular
baselines Bn were between 224 and 3829 m and thus shorter than the critical baselines: 14.7 and 7.3 km
for the FBS and FBD modes, respectively. Five coherence images were considered for the AGB retrieval.
The latter were selected according to the stable weather and environmental conditions during the data
acquisition [50] and a simple visual interpretation. To avoid coherence variability due to topography,
slopes greater than 5˝ were masked out (mainly riverside areas). The mask was implemented to all
SAR products used for AGB estimation. The SAR images were geocoded and normalized using the
Shuttle Radar Topography Mission (SRTM) 90 m digital elevation model version 4.1 [90,91]. The SAR
pre-processing was performed with the GAMMA Interferometric SAR Processor [92]. The backscatter
data were geocoded using the bicubic-log spline resampling method while the coherence data were
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processed with the bicubic spline interpolation approach. The final spatial resolution of the SAR
products was 50 m.

Table 3. Summary of coherence images generated for the test site.

PALSAR Data Perpendicular Baseline |Bn| (m) Temporal Baseline Bt (days)

5 January 2010 & 20 February 2010 789 46
23 August 2010 & 8 October 2010 461 46

8 October 2010 & 23 November 2010 224 46
28 December 2006 & 5 January 2010 2390 1104
12 February 2007 & 5 January 2010 1111 1058

12 February 2007 & 20 February 2010 1899 1104
31 December 2007 & 5 January 2010 1086 736

31 December 2007 & 20 February 2010 297 782
15 February 2008 & 5 January 2010 2190 690

15 February 2008 & 20 February 2010 1401 736
2 January 2009 & 5 January 2010 3041 368

2 January 2009 & 20 February 2010 3829 414
17 February 2009 & 5 January 2010 2339 322

17 February 2009 & 20 February 2010 3126 368
5 January 2010 & 8 January 2011 2978 368

20 February 2010 & 8 January 2011 2190 322
5 January 2010 & 23 February 2011 3780 414

20 February 2010 & 23 February 2011 2992 368
8 January 2011 & 23 February 2011 803 46

In addition to the backscatter and coherence data, the normalized ratio of the backscatter in linear
scale and coherence, Rn, was calculated:

Rn “
γ0{γ ´ min

`
γ0{γ

˘

max
`
γ0{γ

˘
´ min

`
γ0{γ

˘ . (10)

The rationale behind the ratio calculation is purely statistical. The ratio was introduced to enhance
the backscatter relation to AGB and to reduce the number of potential outliers influencing the AGB
retrieval error. In this approach, coherence γ values are considered as weighting factors for the
backscatter γ˝ (linear scale) and strengthen the response over forested areas. The ratio calculation was
performed using a reference coherence image with a temporal baseline of 46 days. The SLC data for
the coherence calculation were acquired in winter 2010, namely on 5 January 2010 and 20 February
2010. This coherence was selected due to the highest dynamic range of coherence values resulted
from optimal and similar environmental conditions during the data acquisition, as well as the short
perpendicular baseline Bn. The resulting ratio values over forested areas are relatively high compared
to the values over non-forested and sparsely forested areas. For example, a value of 0.16 of backscatter
on a linear scale with a corresponding coherence value of 0.2 (dense forest) is approximately 0.8,
whereas a backscatter value of 0.07 with a coherence value of 0.6 (non-forest) is approximately 0.1.
In order to adjust the ratio values to a single scale, the values were normalized and ranged from 0 to 1.
A normalized ratio between available backscatter data (in linear scale) acquired on 23 August 2010 and
8 October 2010 in both polarizations and the coherence between acquisitions taken in 2010 (5 January
and 20 February) were calculated. The resulting range of calculated values is illustrated by box plots
(Figure 4, plot A).

On each box the central mark is the median, the edges of the box are the 25th and 75th percentiles,
and the whiskers extend to the extreme values. Most of the values varied from 0 to approximately
0.2 show an almost linear relationship up to approximately 60 t¨ ha´1 and a non-linear relationship
for higher AGB values (Figure 4B,C). The values close to the upper boundary represented small
heterogeneous stands in the forest inventory data (<8 ha).
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Figure 4. (A) presents box plots for four calculated ratios between backscatter images (acquired on 23
August 2010 and 8 October 2010) and coherence acquired in winter 2010 (5 January and 20 February);
(B) and (C) present the ratio as a function of aboveground biomass (AGB).

In total, 13 SAR products were selected for AGB retrieval. The examples of the generated SAR
products are presented in Figure 5.

  
(A) (B)

 
(C) (D)

Figure 5. Subset of SAR products used for AGB retrieval. (A): backscatter data acquired on 23
August 2010 in HV polarization in dB; (B): filtered backscatter image in dB; (C): coherence between 5
January 2010 and 20 February 2010; (D): normalized ratio between acquired on 23 August 2010 in HV
polarization and coherence (5 January & 20 February 2010).
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3.3. AGB Retrieval Models

In this study, two non-parametric data fusion machine learning algorithms were considered:
maximum entropy (MaxEnt) and Random Forests. In both cases the updated forest inventory was
used as the response data. The model’s training was done on 90% of the sample size (577 samples),
whereas 10% was used for independent validation (64 samples). For the selection of training and
validation data, a stratified sampling was implemented. Only 10% of the response data was used for
the independent validation as the mentioned algorithms calculate unbiased model error using 25%
in the case of MaxEnt and approximately 1/3 in the case of Random Forests of the data randomly
excluded from the training data.

The first approach was a model based on the MaxEnt algorithm. The model was run using the
MaxEnt program for maximum entropy modeling version 3.3.3 k (under Java Runtime Environment).
The MaxEnt is an exponential model that can be compared with the generalized linear (GLM) and
generalized additive (GAM) models. The concept of the method is to estimate the probability
distribution of maximum entropy constrained by a set of remote sensing variables. Through numerous
iterations, the weights of these variables are adjusted to maximize the average sample likelihood
(training gain). The weights are then used to estimate the distribution over the whole space for each of
the AGB classes. In this study, AGB reference data were divided into seven AGB classes, in t¨ ha´1:
0–40, 40–60, 60–80, 80–100, 100–120, 120–140, and >140. The values were grouped such that each class
could be represented equally in terms of occurrences. The classes’ representation is illustrated as
a histogram (Figure 6).

Figure 6. Number of measurements in selected AGB class.

Then, the AGB value was calculated for each pixel using the maximum probability weighted
average [64]:

zAGB “

řN
i“1 Pn

i AGBiřN
i“1 Pn

i

(11)

where i refers to the class number, Pi is the MaxEnt probability, AGBi is the estimated average biomass
range, and zAGB is the predicted value of AGB for each pixel.

As an input for the MaxEnt algorithm, all available variables were used and two groups of
data were distinguished. The first one contained unfiltered data, whereas the second one was with
backscatter data filtered according to Equation (8).
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In the MaxEnt program the resampling of the data for each replication is done by bootstrapping,
whereas the jackknife tests are used for calculation of variable contribution. The jackknife tests are
generated using regularized gain and AUC. The jackknife test is used in two cases: withhold one
predictor and refit model and withhold all predictors but one and refit the model. To determine the
variable percent contribution, in each iteration of the training algorithm the increase in regularized
gain was added to the contribution of the corresponding variable, or subtracted from it if the resulted
value was negative. At the end the values were converted to percentages.

The second approach was based on a supervised Random Forests® regression approach, available
as the randomForest package in the R software [93]. It is an ensemble learning method that operates by
constructing a large number of trees by randomly selecting the predictors and then calculating a mean
prediction from all individual regression trees. Each tree is constructed using a different randomly
permuted sample from the input dataset. One-third of the data are left out of the bootstrap sample and
not used in the construction of the tree. This sample is called out-off-bag (OOB) and is used to obtain
an unbiased estimate for the retrieval error, OOB error.

The randomForest package also provides measures for evaluating the importance of the different
predictors in the model development. In this study, we used the measure that is computed from
permuting OOB data and permuting each predictor variable for each tree. The difference between
the OOB MSE and predictor MSE are then averaged over all trees, and normalized by the standard
deviation of the differences.

In order to evaluate the accuracy and performance of the implemented models, the following
quantitative measures were considered for the independent validation:

a. root mean square error (RMSE) is defined as:

RMSE “

gffe
řn

i“1

´
AGBre f piq ´ zAGBi

¯2

n
(12)

where AGBre f piq represents AGB reference value for stand i, zAGBi predicted AGB and n a number of
AGB observations.

b. corrected root-mean-square error (rRMSEcor) is defined as:

rRMSEcor “
b

RMSE2
Sat ´ RMSE2

Re f (13)

where RMSESat represents the root mean square error in a satellite-derived estimation of AGB and
RMSERe f is the root mean square error in the forest inventory data. According to the manual on forest
inventory and planning in Russian forests, the maximum error of GSV is expected to be 15% [94].
This value was also considered in the AGB estimation because GSV is the main component of AGB.
According to [95], GSV constitutes in our test site 73% of AGB.

Additionally, relative RMSEs were calculated by dividing the RMSEs by the mean AGB and
multiplying by 100%.

c. bias is defined as the mean of estimation error:

bias “

řn
i“1

´
zAGBi ´ AGBre f piq

¯

n
(14)

where positive values of bias expresses overestimation, and negative values underestimation.
The models’ predictive performance was evaluated using pseudo R-squared (1-MSE/variance) [93]

in the case of the Random Forests and an area under receiver operating characteristic curves (AUC) [96]
in the case of the MaxEnt. The parameters were generated using the models’ testing samples.
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4. Retrieval Results

4.1. MaxEnt Performance

As an output of MaxEnt seven continuous probability distribution maps with pixel values from 0
to 1 were obtained, where 1 is a high predicted probability of being classified to a specified AGB class.
The probability values were then used to calculate the final AGB map according to Equation (11).

To assess the MaxEnt algorithm performance, AUC was calculated by bootstrapping 25% of the
training data. The AUC was computed for each AGB class (Figure 7).

The AUC values are higher than 0.7, which shows that the model performed well. Only in the
case of filtered data or the 60–80 t¨ ha´1 AGB class was the AUC was lower than 0.6. The highest
predictive power of the model was observed for the high and the low AGB ranges. The mean AUC for
all AGB classes was calculated to be 0.76 and 0.77 for unfiltered and filtered datasets, respectively.

To assess the importance of the predictors, the variable percent of contribution was calculated.
A high value indicates that the model depends more on that variable (Figure 8A,B).

 

Figure 7. Evaluation of MaxEnt model performance using Area Under the Receiver Operator Curve
(AUC) for testing dataset (A) with unfiltered and (B) with filtered backscatter data; aboveground
biomass (AGB) classes 0: 0–40, 40: 40–60, 60: 60–80, 80: 80–100, 100: 100–120, 120: 120–140, 140:
>140 t¨ ha´1.

 

Figure 8. Predictor importance presented as percent contribution (A) dataset with unfiltered and
(B) with filtered backscatter data.

In the case of the dataset with the unfiltered backscatter, the variable that mostly decreased model
performance when it was omitted was coherence between data acquired on 17 February 2009 and 20
February 2010. For the filtered dataset, it was the ratio of backscatter in HH polarization acquired on 8
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October 2010. Therefore, the coherence and normalized ratio appear to contain the most information
that is not present in the other variables. The backscatter acquired on 23 August 2010 in HH and on 8
October 2010 in HH polarization seem to be of less importance for AGB prediction.

The variable importance was also analyzed per AGB class. To better illustrate how the variable
contribution changes among the seven AGB classes, the data were distinguished between coherence,
backscatter, and normalized ratio (Figure 9).

 

Figure 9. Coherence, backscatter, and normalized ratio contributions versus AGB classes. (A) Dataset
with unfiltered or (B) filtered backscatter data. Class 0 represents AGB values from 0 to 40, 40: 40–60,
60: 60–80, 80: 80–100, 100: 100–120, 120: 120–140, 140: >140 t¨ ha´1.

Figure 9 confirms with a mean percent contribution value of 51.2% that in the case of unfiltered
data the most important variables were coherence data. The data were the most important in four AGB
classes: 0–40, 40–60, 60–80, and >140 t¨ ha´1. The mean percent contribution for the ratio products was
36.8% and for the backscatter products was 12%. Therefore, the backscatter seems to provide the least
information for MaxEnt. When the filtered data were used, the most important group of data was
the ratio layers, with a mean percent contribution of 47.7%. The data were the most important in two
classes, i.e., AGB classes 80–100 and 100–120 t¨ ha´1. The second most important type of data was the
coherence products, with a mean percent contribution of 38.3%. The data contributed most to the AGB
retrieval for three AGB classes 60–80, 120–140, and >140 t¨ ha´1. The backscatter data provided the
least information for the retrieval. The mean percent contribution was 13.9%. In both plots the rise of
the ratio importance is related to the decrease of the influence of the backscatter and coherence.

4.2. Random Forests Performance

The higher percent of variance explained was calculated for the dataset with filtered backscatter,
the value of the pseudo R-squared was 38.4%. In the case of the unfiltered dataset the pseudo
R-squared was 36.4%. The values were calculated based on the testing sample (OOB sample). Overall,
the Random Forests predictor importance ranking (Figure 10) revealed only small differences between
the datasets with unfiltered and filtered backscatter data. The ranking showed that of the 13 predictors
the normalized ratio between the backscatter in HV polarization acquired on 8 October 2010 and
coherence (5 January & 20 February 2010) was the most important for the retrieval of AGB with values
of 26% and 28.7% for the unfiltered and filtered datasets, respectively. The mean value of the increase
in MSE in the case of all ratio products was 22.2% and 24.9%.

The second most important data group in the case of the both datasets was backscatter products.
The mean value of the increase in MSE was 17.4% and 17.9%. Random Forests suggested that
coherence products had the smallest influence on AGB retrieval with a mean value of 16.4% and 15.4%
for unfiltered and filtered datasets, respectively.
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Figure 10. Predictor importance presented as increase in MSE for (A) unfiltered dataset and (B) dataset
with filtered backscatter data.

4.3. AGB Mapping Results

Figures 11–14 show SAR-derived AGB maps with a spatial resolution of 50 m. Each map presents
AGB retrieval results expressed in t¨ ha´1. The first two maps show AGB values derived by the MaxEnt
algorithm; the other two are by the Random Forests. Examining the results with a simple visual
interpretation, it can be noticed that the maps differ taking into account the spatial variability of AGB
values. In the case of the AGB maps generated by MaxEnt, the values seem to be more heterogonous
both in high and low biomass ranges.

The range and the mean value of the retrieved AGB for each map are given in Table 4.

Table 4. Range of derived AGB.

Method
MaxEnt Unfiltered

Dataset
Random Forests

Unfiltered Dataset
Maxent Filtered

Dataset
Random Forests
Filtered Dataset

Range t¨ ha´1 0–140 0–160 0–150 0–170
Mean AGB t ha´1 87 95 89 97

In the case of the MaxEnt algorithm, the AGB ranged from 0 to 140 (150 t¨ ha´1), whereas the
values computed by the Random Forests were higher by 10 t¨ ha´1. The mean values derived by
MaxEnt were lower than 90 t¨ ha´1 and in the case of Random Forests greater than 95 t¨ ha´1.

 

Figure 11. AGB map generated using the MaxEnt algorithm and a dataset with unfiltered
backscatter data.
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Figure 12. AGB map generated using the MaxEnt algorithm and a dataset with filtered backscatter data.

 

Figure 13. AGB map generated using the Random Forests algorithm and a dataset with unfiltered
backscatter data.

To better observe the differences in spatial distribution, the difference maps between updated
forest inventory (in situ data) and SAR-derived AGB were calculated (Figure 15). Green represents
overestimation, whereas red is underestimation. In yellow are the AGB values estimated correctly.

In general, there are almost no differences between maps generated using unfiltered and filtered
datasets. In the case of MaxEnt, the retrieved AGB values are displayed in green, which means
overestimation. The Random Forests tends to underestimate. The AGB values are displayed in red and
orange. In both cases, the overestimation can be seen on the borders of the stands. The underestimation
is observed for stands with high AGB values.
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Figure 14. AGB map generated using the Random Forests algorithm and a dataset with filtered
backscatter data.

(A) (B) 

(C) (D) 

Figure 15. AGB difference maps between updated forest inventory (in situ) and SAR-derived AGB.
(A) MaxEnt model—unfiltered data; (B) Random Forests—unfiltered data; (C) MaxEnt model with
filtered backscatter; (D) Random Forests with filtered backscatter.
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4.4. Validation

Table 5 summarizes the accuracies of the MaxEnt and the Random Forests AGB retrieval
when using backscatter data (filtered and unfiltered), coherence images, and normalized ratio
products. The corrected RMSE and relative corrected RMSE were calculated for a training sample and
an independent sample.

Table 5. Validation of AGB retrieval results. RMSE values are given for training and validation samples
(training/validation).

Model Dataset RMSEcor (t¨ ha´1) rRMSEcor (%) Bias (t¨ ha´1)

MaxEnt
Unfiltered 33.3/36.4 34.3/39.5 12.0/5.2

Filtered 28.7/35.8 29.6/38.8 6.9/4.3

Random Forests
Unfiltered 21.6/35.4 22.3/38.4 3.2/´4.4

Filtered 21.3/35.0 22.0/36.9 0.9/´4.5

In the case of MaxEnt, the corrected RMSE was 36.4 t¨ ha´1 (33.3 t¨ ha´1 for the training sample)
and 28.7 t¨ ha´1 (35.8 t¨ ha´1 for the training sample) for unfiltered and filtered datasets, respectively.
Overall, the estimation error of 39.5% (34.3% for training sample) was calculated for an unfiltered
dataset and 38.8% (29.6% for the training sample) for a dataset with filtered backscatter data. The bias
of 5.2 t¨ ha´1 (12 t¨ ha´1 for the training sample) was calculated in the case of unfiltered data and of
4.3 t¨ ha´1 (6.9 t¨ ha´1 for the training sample) in the case of the dataset with filtered backscatter data.

The Random Forests results show similar estimation error. The corrected RMSE was 35.4 t¨ ha´1

(21.6 t¨ ha´1 for training sample) and 35.0 t¨ ha´1 (21.3 t¨ ha´1 for training sample) for unfiltered and
filtered datasets, respectively. The relative corrected RMSEs of 38.4% (22.3% for the training sample) in
the case of unfiltered datasets and of 36.9% (22.0% for the training sample) were calculated. The bias of
´4.4 t¨ ha´1 (3.2 t¨ ha´1 for the training sample) and of ´4.5 t¨ ha´1 (0.9 t¨ ha´1 for the training sample)
was calculated in the case of unfiltered and filtered data, respectively.

It should be noted that a difference of more than 10 t¨ ha´1 in the case of the Random Forests
between corrected RMSE calculated using training and validation datasets could result from the small
size of validation sample.

5. Discussion

In general, the MaxEnt machine learning algorithm as well as the Random Forests regression
approach provided good AGB retrieval results compared to previous studies [51,52,55,58,60].
The reported analyses also used ALOS PALSAR L-band data for AGB/GSV retrieval over Siberian
boreal forests. The researchers reported RMSEs between 33 and 87 m3¨ ha´1 and 55 t¨ ha´1 at the
coarser scales, and 36.4 t¨ ha´1 at 0.25 ha scale. Those results are similar to or worse than those derived
in this study. The results presented in this paper showed that a relatively high estimation accuracy
(down to 30%) can be obtained at a local scale. The AGB estimation showed only slightly better results
when a dataset with filtered backscatter intensity was used.

When the model performance is taken into account, the MaxEnt performed better than the
Random Forests. The area under the receiver operator curve (AUC) was higher than 0.7, except the
AGB range from 60 to 80 t¨ ha´1, whereas Random Forests reached an R2 of 38.4%. MaxEnt generated
AGB maps with dominantly overestimated AGB values, whereas Random Forests provided slightly
underestimated values. The range of derived AGB values was underestimated but similar and
differs by 10 t¨ ha´1 between the applied models. The mean AGB provided by Random Forests
was comparable to the reference AGB mean. MaxEnt showed an underestimation of approximately
10 t¨ ha´1. The estimation bias was lower in the case of Random Forests.

MaxEnt and Random Forests provided measures for evaluating the importance of the predictors
used in the model construction. The algorithms showed no agreement between derived variable
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rankings. In the case of MaxEnt, the coherence together with the ratio products were the most important
for model construction, whereas ratio and backscatter products provided the most information in the
case of modeling with Random Forests. In both cases, the ratio products seem to provide important
information for AGB retrieval. Within the data groups, in the case of the MaxEnt the most important
variables were the coherence between images acquired on 17 February 2009 and 20 February 2010, the
normalized ratio between the backscatter from 23 August 2010 in HV and coherence, the backscatter
from 23 August 2010 in HV polarization for unfiltered dataset. For filtered dataset, the most important
variables within the data groups were the normalized ratio between the backscatter from 8 October
2010 in HH polarization and coherence, the coherence between images acquired on 17 February 2009
and 20 February 2010, and the backscatter image acquired on 23 August 2010 in HV polarization.
In the case of Random Forests, the most important variables were the normalized ratio between the
backscatter acquired on 8 October 2010 in HV polarization and coherence, the backscatter acquired
on 23 August 2010 in HH polarization, and the coherence between images from 2 January 2009 and
5 January 2010 for both unfiltered and filtered datasets. The coherence images generated with the
temporal baseline (Bt) greater than 46 days were superior to those derived with shorter Bt.

6. Conclusions

In this study we have demonstrated the feasibility of synergistic usage of backscatter and
coherence for aboveground biomass (AGB) retrieval for boreal forests in Siberia at a local scale of
0.25 ha. This research was focused on the further exploitation of SAR data. The ALOS PALSAR L-band
backscatter was combined with coherence, introducing the backscatter–coherence normalized ratio.
The latter was developed based on the statistical data analysis. In total 13 variables were used for the
AGB estimation. For the AGB retrieval two popular machine learning algorithms were implemented.
The MaxEnt and the Random Forests performed well, showing promising AGB estimations and
demonstrating the model’s robustness. The corrected RMSEs were between 35.8 and 36.4 t¨ ha´1 and
between 35.8 and 35.0 t¨ ha´1 for MaxEnt and Random Forests, respectively. The estimation error
slightly decreased, by approximately 1%, when the filtered backscatter intensity was used. In this
study, the retrieval of AGB using the SAR products was demonstrated only for Siberian unmanaged
forests. It is expected that the estimation error over well-managed forests could be further reduced.
Estimation improvement is also foreseen at the stand level due to the reduction of the spatial variability
in the SAR data. Another issue that could have an influence on the retrieval accuracy is the reference
data. Using optical remote sensing data and recommended yield tables and semi-empirical phytomass
models in Russian forestry and forest management, the authors updated the old inventory data.
Unfortunately, it was not possible to fully validate the obtained values in the field, hence the error in
the reference data was only partially known.

The models provided different variable importance rankings. However, in both cases the
normalized ratio products seem to contain important information for the model development.
The coherence data were the most important in the low and high AGB ranges, whereas the ratio
was most important for middle to high AGB ranges. Thus, a strategy of using different datasets for
estimation of low, medium, and high AGB values could further increase biomass retrieval accuracy.
It was observed that the backscatter data increased their contribution in the model construction after
filtering. In terms of the retrieved AGB values, the Random Forests algorithm provided AGB mean
estimation almost the same as the reference value. MaxEnt provided slightly overestimated AGB
values, whereas Random Forests tended to underestimate the AGB values.

The MaxEnt and Random Forests machine learning algorithms demonstrated their potential use
for forestry applications, especially for estimations in remote areas. Often no information about AGB is
available in those regions. The models could be used to provide AGB estimations with relatively low
estimation errors. Moreover, the results generated for different time spans could easily be applied for
AGB change monitoring, which is very important from the carbon account calculations perspective.
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Abstract: The increasing energy demand in recent years has resulted in a continuous growing
interest in renewable energy sources, such as efficient and high-yielding energy crops. Energy
sorghum is a crop that has shown great potential in this area, but needs further improvement. Plant
phenotyping—measuring physiological characteristics of plants—is a laborious and time-consuming
task, but it is essential for crop breeders as they attempt to improve a crop. The development of
high-throughput phenotyping (HTP)—the use of autonomous sensing systems to rapidly measure
plant characteristics—offers great potential for vastly expanding the number of types of a given crop
plant surveyed. HTP can thus enable much more rapid progress in crop improvement through the
inclusion of more genetic variability. For energy sorghum, stalk thickness is a critically important
phenotype, as the stalk contains most of the biomass. Imaging is an excellent candidate for
certain phenotypic measurements, as it can simulate visual observations. The aim of this study
was to evaluate image analysis techniques involving K-means clustering and minimum-distance
classification for use on red-green-blue (RGB) images of sorghum plants as a means to measure stalk
thickness. Additionally, a depth camera integrated with the RGB camera was tested for the accuracy
of distance measurements between camera and plant. Eight plants were imaged on six dates through
the growing season, and image segmentation, classification and stalk thickness measurement were
performed. While accuracy levels with both image analysis techniques needed improvement, both
showed promise as tools for HTP in sorghum. The average error for K-means with supervised stalk
measurement was 10.7% after removal of known outliers.

Keywords: image analysis; stalk thickness; K-means; minimum distance

1. Introduction

In this age of increasing concerns about population growth, energy demands and environmental
risks, the need to expand energy resources in a sustainable manner is intensifying. Non-renewable
energy from fossil fuels will be insufficient at a certain point in the future [1,2]. Additionally, carbon
dioxide emissions from fossil fuels have led to concerns about rising levels of greenhouse gases [3],
increasing the importance of developing alternative energy sources, like dedicated energy crops that
reduce net carbon dioxide emissions. One solution to these issues is to increase energy crop production
by maximizing crop output per unit area.

Improving crop productivity is possible through improvements in breeding and genetics.
Historically, breeders and geneticists relied on manual labor to evaluate crop physical traits
(phenotypes) on a relatively small number of plant varieties. The advent of sensing and
robotics has provided the potential to drastically accelerate the advances of breeding and genetics
through “high-throughput phenotyping” (HTP). This new research field involves using autonomous
technologies to rapidly and accurately measure phenotypes on a large number of plants, enabling the
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selection of promising varieties and genes from a broader genetic pool to make faster strides in crop
improvement. With dedicated energy crops, the most important phenotypes are biomass yield, rate of
growth and resistance to typical crop stresses.

Certain crops like sorghum (Sorghum bicolor) have been demonstrated to have excellent potential
for dedicated bioenergy production. Sorghum is a C4 plant with a high biomass accumulation rate,
and it can be economically produced and harvested in four months or less with suitable environmental
conditions [3–5]. While some varieties of sorghum are grown mainly for grain (grain sorghum), others
are grown mainly for the sugars they produce (sweet sorghum) or for their high levels of biomass
(forage sorghum or “energy sorghum”) [6].

Plant breeders can potentially accelerate biomass production improvements in energy sorghum
by using an HTP approach. Previous studies have pursued automation of phenotype-measurement
techniques involving lasers, light curtains, ultrasonic sensors and artificial vision [7–9]. The use of
phenotypic data along with genotypes of energy sorghum has been reported in a few recent studies [10–
13]. Artificial vision systems are able to extract meaningful information from images, such as qualitative
and quantitative morphologic variables [14], like plant height, width and shape, stem diameter and
leaf number, area and angle. There is also the potential to use spectral characteristics in images to
measure plant health, such as by correlating greenness to chlorophyll content [15–18]. Machine vision
is potentially faster, more reliable and more robust than manual phenotyping methods [19]. A needed
development in machine vision is the capability of working under difficult imaging conditions, like
varying light levels, spectra and angles in crop fields, as well as varying temperature, etc. [20].

In a dedicated energy crop like energy sorghum, stalk thickness and plant height are the most
significant phenotypes correlated to biomass, because a large majority of the plant dry matter resides
in the stalk. Plant height can be measured with ultrasonic sensors, but an automated measuring system
for stalk thickness remains a significant challenge because of the possible occlusion of the stalk and
the difficulty of differentiating the stalk from connected stems. Numerous imaging techniques for
HTP have been developed, and many are available at the Plant Image Analysis website [21]. Two of
the available software resources at that website are Root Estimator for Shovelomics Traits (REST; [22])
and Digital Imaging of Root Traits (DIRT; [23]), both of which are dedicated to the analysis of images
to measure root morphology, such as width, depth, length, shape and diameter. Neither of these
incorporates measurement of distance between camera and plant material. It is clear that currently
available software offers length measurement capabilities for plants, particularly root masses, but the
authors are not aware of existing software dedicated to plant stalk measurement, particularly when
camera distance is included. The first objective of this research was to evaluate common image analysis
techniques as potential tools for measuring stalk thickness that could be used in automated HTP. The
second objective was to evaluate an active depth camera as a tool for measuring distance between
camera and plant, a measurement that would likely be necessary if an image-based stalk thickness
measuring system were to be deployed.

2. Experimental Section

2.1. Materials

2.1.1. Energy Sorghum Material

Two genetic varieties of energy sorghum known as R07019 (Variety A) and R07007 (Variety B)
were planted in plastic pots. These varieties have been studied as potential dedicated energy crops by
Dr. John Mullet of Texas A&M University and were made available for this phenotyping study. Four
plants per variety were planted, two plants to a pot. Each pot was supplied with 17 g of Osmocote
14-14-14 slow release fertilizer (Scotts). The plants were grown under well-watered conditions; i.e.,
the soil surface was kept moist throughout the experiment. All pots were progressively thinned to
1 plant per pot as the seedlings grew. The pots were placed in a greenhouse where environmental
conditions were monitored with a TinyTag Data Logger c© (Gemini Data Loggers). The average daily
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minimum temperature and relative humidity were 24.1 ◦C (±1.1 ◦C) and 36.0% (±14.0%), respectively.
The average daily maximum temperature and relative humidity were 32.3 ◦C (±1.8 ◦C) and 69.9%
(±11.3%). Plants emerged roughly five days after planting and were without branching nodes for the
first few weeks. Thus, the first images were collected about three weeks after planting, when the plants
began to exhibit thicker stalks and leaves emerging from the stalk.

2.1.2. Camera

An inexpensive (under $200 USD in 2015) combined camera (Creative Technology Ltd., Milpitas,
CA, USA, Model VF0780), composed of a standard RGB camera and a 3D active camera (SoftKinetic
Inc., Sunnyvale, CA, USA), was used to capture images of the sorghum plants. The 3D camera employs
the time-of-flight (TOF) concept, measuring the time between emitting a pulse of light and receiving
the reflected light, to measure depth values in a field-of-view plane. TOF cameras, or “depth cameras”,
are commonly composed of a near-infrared (NIR) source and a CMOS pixel-array detector. The depth
camera used includes a three-chip TOF system designed to be sensitive only in the 850 to 870-nm
range, matching the NIR source. This TOF system provides a 320 × 240 resolution image in which
pixel values relate to the distance from image objects to the emitter on the camera. Manufacturer
specifications list the depth values’ precision as in the range of 5 to 300 cm, with the best performance
from 15 cm to 100 cm. The field of view (FOV) of the RGB and depth cameras is not identical. The RGB
camera resolution can be selected from 320 × 240 to 720 × 1280. Initially, 320 × 240 was maintained
in the RGB images for consistency with the depth images, but in later stages of plant growth, the RGB
resolution was increased to 720 × 1280 for more precise measurements of stalk thickness.

2.1.3. Imaging Environment

A polyvinyl chloride (PVC) pipe frame was built to hold a black cotton cloth to block sunlight
in the greenhouse and to aid in isolating sorghum plants from their surroundings, facilitating plant
classification during image analysis. The cloth also helped block possible incoming NIR energy that
might interfere with the depth camera.

2.2. Methods

Over a period of ten weeks, images and stalk thickness measurements of the sorghum plants
were collected on roughly a weekly basis. According to recommendations by Dr. William Rooney
of Texas A&M University [24], stalk thickness was to be measured immediately above the plant’s
third internode to provide consistent and representative measurements of the entire stalk. In the early
stages of growth, sorghum plants did not exhibit internodes, so a measurement height of 7 cm above
the soil was used until internodes were defined, a situation that occurred about six weeks after data
collection began. Sorghum stalks have a roughly elliptical cross-section, so effective thickness was
determined based on an elliptical shape model. Manual thickness measurements were made with a
caliper. Both the wider (major-axis) and narrower (minor-axis) dimensions of the stalk were measured
for each plant on each data collection date. The wider dimension of the sorghum stalk, which is
perpendicular to the direction at which the leaves emerge, was oriented perpendicular to the camera
viewing direction. A marker was placed on the pots during the first measurement so that each time
measurements were made, the orientation of the plants would be the same. Distance from the camera
lens to the background cloth was measured with a ruler to the nearest half cm.

Plants were placed between roughly 25 and 70 cm from the camera, as manually measured
with a ruler to the nearest half cm, horizontally from the edge of the camera lens to the center of the
sorghum stalk. Distances were varied to provide a range of distances to compare between manual
and depth-camera measurements and also, in some cases, to provide adequate distance to image the
entire plant. The camera was placed so that the point where caliper measurements were made was
just below the image center. In the later stages when plants had developed internodes, the camera
was placed so that the third internode was slightly below the center of the image. The camera was
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horizontally leveled to reduce possible error from image distortion that might occur if the camera were
not perpendicular to the plant’s frontal plane.

2.2.1. Image-Distance Calibration

Image-distance calibration consisted of producing a conversion factor from pixels to length units
(mm). A 47.6-mm diameter PVC tube was placed in front of the camera at distances from 20 to 90 cm in
10-cm increments, and an RGB image was collected at each distance. The number of pixels belonging
to the object at each distance was determined, and an equation was developed to convert pixels to
distance. The accuracy of the depth camera measurements was considered independently, and this
analysis is considered below.

2.2.2. Image Analysis

To measure the stalk thickness of a sorghum plant in an image, pixels associated with the stalk
must be segmented from pixels associated with other parts of the plant, as well as from the background.
K-means clustering and minimum-distance classification were used in this work.

K-Means Algorithm

The K-means clustering algorithm used in this article was adapted from Peter Corke [25] and
performs a color-based segmentation based on a pre-selected C number of clusters. The algorithm
maps each RGB value to the color xy-chromaticity space and then identifies clusters to segregate the
pixels into image classes associated with those clusters. The algorithm initially selects locations in
the data space as cluster centers and then calculates the Euclidean distance [26] between each pixel
and every cluster center in multiple iterations. At the end of an iteration, each pixel is assigned to the
cluster with the closest center, and every cluster center location is recalculated as the average location
of the pixels assigned to that cluster. The final result is a classification of the image into C number
of classes [25,27–29].

Each image was segmented into ten classes. The user identified the five classes that best
represented the plants based on whether or not the class clearly contained almost exclusively plant
matter, and cluster center locations were stored to a text file. After segmentation, the noise in the image
was reduced with a morphological opening with a 9 × 9 square kernel. The five selected classes were
then combined to produce a binary image that was an initial separation of plant from background. The
combined image was then processed by area opening to remove small artifacts. Finally, to reduce the
effects of plant lesions and minor stalk deformities, a morphological closing with a 5 × 5 square kernel
was applied to the image. The result was a binary image of the plant segmented from the background;
Figure 1a.

(a)

Figure 1. Cont.

122



J. Imaging 2016, 2, 4

(b)

Figure 1. RGB original, classified and binary images of sorghum plants during the third week
of growth of June, Plant 3B. (a) Segmentation using K-means clustering; (b) segmentation using
minimum-distance classification.

Minimum Distance Algorithm

Minimum-distance classification of color images considers the three RGB components as
orthogonal coordinates in the Euclidean space, and individual pixels are assigned to classes according
to their RGB distance from pixel classes that have been defined by training. Four classes were defined
by the user according to homogeneous zones in the images, as shown in Figure 2a. In this figure, the
four classes are clearly separable [26]: the black cloth background, enclosed by the blue rectangle;
the green sorghum plant leaf, enclosed by the green rectangle; the bright sorghum stalk, enclosed in
orange; and the brown soil, enclosed in red. The spectral separability is shown in the histograms of
Figure 3. The statistical properties shown are distribution, mean and standard deviation, which were
used as the references for the minimum-distance classification algorithm. The mean is the center point
to which pixel RGB-space distances are compared, while standard deviation is used as a threshold to
determine whether or not a pixel is assigned to a defined class. Each image pixel was compared to
all class means, and the shortest distance determined whether a pixel would be assigned to one class
or another. A threshold of two standard deviations from all four classes was used to label pixels as
“unclassified”. Once the images were processed, the plant regions were stored as binary images (Figure
1b) and used subsequently to calculate stalk thickness.

(a) (b)

Figure 2. Images of sorghum Plant 1A on June 30. The minimum distance classification
required training samples to segment the images: (a) original image and the location where the
samples were obtained, enclosed by rectangles (blue = background; orange = bright stalk; green = plant
leaf; red = soil); (b) image segmented into the five classes, including unclassified pixels.

Stalk Thickness Calculation Algorithm

Stalk-thickness calculation was conducted in “supervised” and “unsupervised” modes. In the
supervised mode, the user selected a location in the image to define the stalk center. A 3 × 3 pixel
window was then used to automatically scan the image in search of the edges of the stalk. Once the
edge pixels were identified by the algorithm, stalk thickness in pixels was calculated by subtracting the
edge location on the right from the edge location on the left. In unsupervised mode, the user identified
the stalk center and allowed the algorithm to select upper and lower stalk thickness measurement
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locations. The average thickness based on the upper and lower measurements was taken as the stalk
thickness (Figure 4). In both modes, stalk thickness in pixels was multiplied by the pixel-length
conversion factor, which was dependent on the distance between plant and camera, to obtain stalk
thickness in mm.
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Figure 3. Frequency histograms of RGB values for each training sample. The solid line in the middle of
the distribution indicates the location of the mean value, while the dashed lines indicate the location of
two times the standard deviation of the each training sample. The information from the histograms
was used to define each class center cluster; meanwhile, the standard deviation was used to define the
class threshold. (a) Background; (b) plant; (c) soil; (d) stalk.

Depth Camera Accuracy

For every plant image collected, a manual measurement of the distance between the camera and
plant stalk was conducted with a ruler, to the nearest half centimeter. In the depth-camera images, the
pixel values represented the distance between the object and the camera. The depth-camera images
included some erroneous pixel values, so the average of a group of pixels belonging to the plant
stalk was used to minimize the effect of noise in the images. Two representative areas of the stalk in
the depth image were selected by the user, and a 3 × 3 window was selected from each area. The
average value from the 18 selected pixels was used as the depth-camera distance between camera and
plant. Depth-camera distances were evaluated by comparing them to manual stalk-to-camera distance
measurements by way of simple linear regression.
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(a)

(b)

Figure 4. Results of image analysis. The golden box and red lines show the location where the stalk
thickness was measured during this procedure: (a) K-means clustering, supervised stalk selection; (b)
minimum-distance classification, supervised stalk selection.

3. Results and Discussion

The stalk thickness values determined through image analysis were compared to the
manually-measured values and the percent error calculated for each plant and each date (Table 1).
Averaged across all plants and dates, the average percent errors were 27.9 for K-means with
unsupervised stalk measurement (KMU), 19.5 for minimum distance with unsupervised stalk
measurement (MDU), 16.0 for K-means with supervised stalk measurement (KMS) and 16.7 for
minimum distance with supervised stalk measurement (MDS). All KMS stalk-thickness measurements
are plotted against the caliper values in Figure 5a. Linear regression of these data points resulted in
an R2 value of 0.28, indicating that KMS measurements only account for 28% of the variability in the
caliper measurements.
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Table 1. Comparison of stalk thickness measurements using K-means unsupervised (KMU), K-means
supervised (KMS), minimum-distance unsupervised (MDU) and minimum-distance supervised (MDS)
modes. The plant ID shows the plant number and the variety. The measured value indicates the value
obtained with the stalk thickness calculation algorithm. The points in bold were determined to be
outliers and removed from the final analysis (see Figure 5).

Measured Value (mm) Percent Error (%)

Date Plant ID Caliper Reading (mm) KMU MDU KMS MDS KMU MDU KMS MDS

30 June 1A 25.58 24.12 32.27 28.47 27.47 5.71 26.17 11.29 7.41
2A 33.17 28.96 40.13 30.15 29.18 12.69 20.98 9.12 12.04
3A 30.82 31.18 31.41 28.25 26.88 1.17 1.91 8.32 12.77
4A 32.59 35.75 35.11 32.85 27.31 9.70 7.74 0.80 16.20
1B 29.75 21.84 30.62 29.65 31.45 26.59 2.92 0.35 5.70
2B 28.61 27.57 37.41 34.60 32.96 3.64 30.78 20.95 15.19
3B 27.76 21.65 26.22 27.49 25.36 22.01 5.56 0.96 8.65
4B 25.62 60.49 39.14 32.77 26.98 136.10 52.79 27.90 5.29

7 July 1A 40.81 19.07 58.85 45.05 49.09 53.27 44.20 10.38 20.28
2A 48.14 34.41 41.70 36.72 38.83 28.52 13.38 23.73 19.34
3A 34.91 20.73 35.05 26.69 26.85 40.62 0.40 23.55 23.08
4A 44.34 29.50 36.88 33.76 34.52 33.47 16.82 23.86 22.15
1B 38.35 15.44 31.84 26.24 29.48 59.74 16.97 31.58 23.13
2B 32.73 21.52 32.23 31.33 29.43 34.25 1.51 4.29 10.07
3B 29.09 25.07 30.90 27.86 30.43 13.82 6.22 4.23 4.61
4B 47.65 20.16 28.48 28.80 29.31 57.69 40.23 39.56 38.49

14 July 1A 36.54 35.44 34.25 38.05 32.10 3.01 6.27 4.13 12.16
2A 36.04 40.80 40.50 34.42 32.92 13.21 12.38 4.51 8.64
3A 35.38 41.10 41.98 37.50 36.87 16.17 18.65 5.99 4.22
4A 33.68 41.59 35.09 37.14 36.47 23.49 4.20 10.27 8.29
1B 36.68 35.40 36.81 32.76 31.55 3.49 0.37 10.69 14.00
2B 34.51 31.20 36.08 34.98 35.55 9.59 4.54 1.36 3.00
3B 22.22 35.39 38.57 29.83 30.71 59.27 73.59 34.23 38.23
4B 37.28 44.04 34.63 34.32 31.37 18.13 7.11 7.94 15.85

21 July 1A 20.45 28.60 31.55 32.77 31.88 39.85 54.29 60.24 55.91
2A 25.51 22.77 25.98 27.00 26.77 10.74 1.84 5.82 4.94
3A 25.17 24.36 26.34 24.41 24.77 3.22 4.65 3.04 1.59
4A 34.26 31.41 32.74 32.10 32.20 8.32 4.43 6.32 6.01
1B 21.01 16.10 57.74 18.67 17.11 23.37 174.81 11.16 18.58
2B 24.75 37.99 25.20 26.23 27.25 53.49 1.83 5.98 10.11
3B 25.70 43.96 39.39 44.28 44.75 71.05 53.28 72.30 74.13
4B 22.89 37.24 36.41 38.16 38.99 62.69 59.07 66.71 70.32

4 August 1A 21.01 24.12 23.31 24.66 23.14 14.80 10.97 17.35 10.12
2A 25.22 28.96 29.13 32.09 32.09 14.83 15.50 27.24 27.24
3A 25.58 31.18 26.33 27.66 26.99 21.89 2.94 8.13 5.51
4A 27.03 35.75 24.83 29.06 29.70 32.26 8.15 7.49 9.88
1B 20.45 21.84 21.55 23.79 23.54 6.80 5.39 16.31 15.11
2B 23.02 27.57 27.43 30.18 30.48 19.77 19.17 31.08 32.41
3B 22.26 21.65 21.28 24.46 25.90 2.74 4.42 9.88 16.33
4B 26.22 60.49 22.49 24.16 24.31 130.70 14.21 7.88 7.29

11 August 1A 24.23 19.07 23.31 23.55 23.64 21.30 3.78 2.83 2.42
2A 25.23 34.41 29.13 29.12 27.96 36.39 15.46 15.42 10.81
3A 24.25 20.73 26.33 22.87 21.86 14.52 8.59 5.69 9.86
4A 26.13 29.50 24.83 31.99 30.26 12.90 4.99 22.43 15.80
1B 19.14 15.44 21.55 17.32 17.40 19.33 12.60 9.51 9.07
2B 20.31 21.52 27.43 20.13 20.32 5.96 35.07 0.91 0.02
3B 21.19 25.07 21.28 27.78 28.26 18.31 0.41 31.08 33.38
4B 21.68 20.16 22.49 20.80 20.96 7.01 3.76 4.06 3.34
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Close inspection of Figure 5a indicated that several of the data points may be outliers, so
the following procedure (adapted from [30,31]) was used in an effort to identify actual outliers
that should be removed from consideration. (1) Residuals were calculated and plotted against the
caliper measurements, indicating heteroscedasticity (i.e., residual values were lower at low stalk
thickness values and higher at high stalk thickness values). (2) Based on the fact that residuals were
heteroscedastic, both KMS and caliper measurements were transformed by taking their logarithms.
Log(caliper) was regressed against log(KMS), and residuals were again plotted, indicating that
heteroscedasticity had been mitigated. (3) Studentized residuals of the log(caliper) vs. log(KMS)
relationship were calculated, and the distribution of the studentized residuals was determined. At the
positive and negative tails of the distribution, seven data points were identified as being significantly
disconnected from the rest of the data. This evaluation provided the basis for identifying suspected
possible outliers. (4) The original images associated with the suspected outliers were observed to
determine whether anomalies that could produce major errors could be identified. With each of the
suspected outliers, the images suggested that significant error-causing anomalies were present, so
these data points were removed, and simple linear regression was conducted on the resulting dataset
(Figure 5b). Results of the analysis after removing outliers provided an R2 value of 0.70, indicating that
KMS measurements accounted for 70% of the variability in the caliper measurements. Furthermore,
with the outliers (identified in Table 1) removed, the resulting average error for KMS measurements
was reduced to 10.7%.
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Figure 5. Linear regressions for caliper measurements vs. K-means supervised measurements: (a)
the regression before removing outliers (R2 = 0.28, RMSE 6.27 mm); (b) after removal of outliers
(R2 = 0.70, RMSE 3.19 mm). Plot units are in mm.

As a representation of the image classification errors, Figure 6 shows the original and two classified
images of Plant 4B on 30 June, which had the highest error of all plants measured on that date (except
with MDS). It can be observed that this plant had leaves emerging from the sides of the stalk over most
of the stalk area. This problem made it difficult for the stalk measurement algorithm to identify the
actual edges of the stalk, contributing error to the measurement. On 7 July, the plant with the highest
percent error had non-plant pixels in the binary image of the stalk, indicating poor segmentation that
led the analysis to measure only part of the stalk. These are the types of errors common to the high
error image-based measurements.
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(a) (b) (c)

Figure 6. The images presented are examples of anomalies in the experiment. K-means, unsupervised
(KMU), minimum-distance, unsupervised (MDU) and K-means, supervised (KMS) were three out of
the four different methods in this experiment. (a) 30 June, 4B; (b) 30 June, 4B, KMU (136.10); (c) 30
June, 4B, MDU (52.79). In parenthesis, the error between the manual measurement and algorithm
measurement is shown (see also Table 1).

In terms of the plant growth stage at which measurements were most accurate, later-stage plants
had lower error than early-stage plants. By the seven-week point, the plants had developed reasonably
well-defined stalks that were easier to segment and measure. The relatively low percent error at
later growth stages showed the techniques to be most accurate at the time phenotyping would be
most useful. In terms of which methods were most accurate, K-means clustering was more accurate
with supervised stalk measurement, but minimum-distance classification was more accurate with
unsupervised stalk measurement. Supervised stalk measurement had lower error than unsupervised
when using either K-means or minimum distance. This result suggests that the position where stalk
thickness is measured is critical to the accuracy of the measurement, and future research should focus
on how the image-processing algorithm determines the best measurement location. As previously
mentioned, the most obvious errors in measuring stalk thickness occurred when leaves protruding
from the stalk were included in the stalk-thickness measurement. Additional image-processing
techniques—e.g., to consider whether the left and right stalk edges are parallel—could better isolate
the stalk, enabling the largest stalk thickness measurement errors to be mitigated. In other cases, the
source of major error was either unknown or related to poor image segmentation, probably due to lack
of contrast at particular points on the plant. To mitigate these errors, more research would be required,
as solutions are not obvious.

The results of comparing depth-camera distance measurements to manual camera-to-stalk
distance measurements are presented in Figure 7. The plot of data points indicates a high level of
linearity, and the R2 value of 0.96 indicates that the depth camera accounted for 96% of the variability in
actual camera-to-stalk distance. The average error for camera-to-stalk distance on a given day ranged
from about 5% to 20%, while the root mean square error (RMSE) was 2.5 cm. It is clear from the plot that
at camera-to stalk distances greater than 65 cm, the percent error is low. Stalk thickness error associated
with a depth-camera distance RMSE of 2.5 cm is approximately 3%, meaning that the roughly 10%
average stalk thickness error resulting from image processing is large compared to depth-camera
error. The depth-camera feature of this combined camera thus appears to be acceptably accurate
to provide distance data that would enable calculation of pixel-to-length conversion factors. If this
capability could be combined with the image-processing techniques to segment the plant and calculate
the number of pixels associated with the thickness of a stalk, then stalk thickness measurement for
energy sorghum plants could be fully automated. The issue of pixel-to-pixel correspondence between
depth images and RGB images is an issue remaining to be solved.
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Figure 7. Linear regression of distance measurements from the camera to the plant, measured manually
and measured with the depth camera images. The R2 value calculated for this relationship is 0.96, and
the RMSE is 2.5 cm.

4. Conclusions

This study showed that an inexpensive combined (RGB plus depth) camera and common image
analysis techniques (K-means clustering and minimum-distance classification) have potential for
measuring stalk thickness in a high-throughput phenotyping system for energy sorghum plants.
Furthermore, the integrated near-infrared time-of-flight depth camera showed excellent potential
for providing distance measurements that would be required if stalk thickness were to be measured
in an automated way. Incidentally, these techniques could be applied to other monocots, such as
maize and rice. If successfully implemented, such a combined system could greatly reduce the labor
and time required to make such measurements in experiments involving phenotyping, ultimately
enabling many more plants to be measured than currently possible and potentially accelerating crop
improvement.
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Abstract: Stress-related biophysical variables of capital intensive orchard crops can be estimated with
proxies via spectral vegetation indices from off-nadir viewing satellite imagery. However, variable
viewing compositions affect the relationship between spectral vegetation indices and stress-related
variables (i.e., chlorophyll content, water content and Leaf Area Index (LAI)) and could obstruct
change detection. A sensitivity analysis was performed on the estimation of biophysical variables via
vegetation indices for a wide range of viewing geometries. Subsequently, off-nadir viewing satellite
imagery of an experimental orchard was analyzed, while all influences of background admixture
were minimized through vegetation index normalization. Results indicated significant differences
between nadir and off-nadir viewing scenes (ΔR2 > 0.4). The Photochemical Reflectance Index
(PRI), Normalized Difference Infrared Index (NDII) and Simple Ratio Pigment Index (SRPI) showed
increased R2 values for off-nadir scenes taken perpendicular compared to parallel to row orientation.
Other indices, such as Normalized Difference Vegetation Index (NDVI), Gitelson and Merzlyak (GM)
and Structure Insensitive Pigment Index (SIPI), showed a significant decrease in R2 values from nadir
to off-nadir viewing scenes. These results show the necessity of vegetation index selection for variable
viewing applications to obtain an optimal derivation of biophysical variables in all circumstances.

Keywords: biophysical variables; orchards; vegetation indices; view angle sensitivity

1. Introduction

Monitoring and managing of capital intensive orchard crops through precision agriculture is
centered around the estimation of stress-related biophysical variables such as chlorophyll content [1,2],
water content [2–4] and Leaf Area Index (LAI) [5]. Time consuming, labor intensive and destructive in

situ measurements of biophysical variables could be circumvented through remotely sensed imagery
and spectral vegetation indices [6,7]. Examples include the Photochemical Reflectance Index (PRI) [8]
for chlorophyll content [1,3], the Water Index (WI) [9] for water content [2] and the standardized
LAI-Determining Index (sLAIDI) for LAI [5]. On the one hand, practical use of remotely sensed
spectral imagery in temperate climates requires near-to-daily revisit times because of the high cloud
cover [10]. On the other hand, heterogeneous orchards require high spatial resolution imagery
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to provide frequent and accurate information on field and plant conditions [11]. Currently, this
combination of both high spatial and temporal resolutions is feasible with high spatial resolution
satellite sensors capable of off-nadir viewing, such as GeoEye-1, Quickbird, Pleaides, WorldView-1,
WorldView-2 and WorldView-3.

The main downside of using these agile satellites is the influence of variable viewing angles on the
relationship between biophysical variables and spectral measurements or vegetation indices [4,12,13].
Although information from multiple view angles is considerably greater than from a single angle
and could provide information regarding structural variables (i.e., plant cover, canopy height and
biomass) [14,15], varying viewing angles within and between time series could obstruct change
detection due to the confusion between genuine changes and viewing geometry influences. In the
past, several methods were constructed to remove the influence of variable viewing and illumination
angles. The most common is the use of Bidirectional Reflectance Distribution Function (BRDF) models
to standardize and produce nadir equivalent reflectance values [16–21]. However, this could remove
useful information regarding vegetation structure [19,21,22] or plant stress [4] and requires a wide
range of viewing angles over a short period of time. Therefore, existing research focused mostly on
imagery of low spatial resolution images (i.e., > 20 m spatial resolution e.g., Moderate Resolution
Imaging Spectroradiometer (MODIS)) [17,19,21,23] and/or at fixed view angles (e.g., +/´ 55˝, +/´ 36˝

and 0˝ for the pushbroom CHRIS (Compact High Resolution Imaging Spectrometer) sensor mounted
on the PROBA (Project for On-Board Autonomy) platform) [24].

In addition, the research on the effects of variable viewing conditions focused mostly on vegetative
systems with a continuous canopy cover, such as forests [18,24,25], grasslands [24] and soybeans [26].
However, high spatial resolution satellite imagery over orchard cropping systems will always contain
mixtures of canopies and background (i.e., soil, grass and shadow) [27,28]. This mixture effects can be
further aggravated by the variable viewing conditions. Recent studies have shown the necessity and
usefulness of the removal or reduction of background effects through either unmixing algorithms [29]
or vegetation index corrections [28]. However, both methods were developed for nadir viewing
imagery and assumed the presence of the full range of canopy fractions.

The goal of this study was to investigate the view-angle sensitivity of common spectral vegetation
indices on the estimation of biophysical variables—i.e., chlorophyll content, water content and
LAI—in orchards. In high spatial resolution imagery, changing view angles causes both BRDF- and
mixture-related differences. As the latter influence can be minimized through a correction method, the
view-angle sensitivity of common vegetation indices for high spatial resolution imagery of hedgerow
cropping systems can be assessed and minimize the effects of varying viewing angles on change
detection within and between time series. Synthetic imagery of a virtual orchard was used to include
variable orchard conditions, as well as different background scenarios—i.e., non-vegetated, vegetated
and partially vegetated. Finally, imagery from a satellite with off-nadir viewing capacities over an
experimental orchard was investigated to highlight the importance of changing viewing geometry
towards the estimation of biophysical variables.

2. Materials

2.1. Synthetic Imagery

Synthetic imagery was used in this study to improve our understanding of the effects of a
changing viewing geometry on the remotely sensed data and the information derived from it [28,30,31].
The synthetic data provided exact cover fractions, spectral signatures and biophysical variables of
the target crop for a range of viewing compositions. Additionally, the simulations were used to
investigate the overall effect of viewing composition on the estimation of biophysical variables via
vegetation indices.

In compliance with [28,31], the virtual orchard, developed by [32], consisted of virtual citrus trees
(Citrus sinensis L.). The trees were arranged in a 3.5 by 2 m grid (row orientation of 7˝; i.e., north-south
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direction). Within each orchard, several sections of the virtual orchard were modified to mimic stressed
conditions for chlorophyll content, water content and LAI. Stressed leaf spectra were modified through
PROSPECT [33]. Chlorophyll contents were extracted from in situ-measured unmodified leaf spectra
and reduced by 25% and 50% and the water content by 15% and 30% [32]. LAI stress was introduced
by randomly removing or adding leaves to the virtual trees representing 56% and 125% of the original
LAI [32]. The spatial distribution and range of each variable is shown in Figure 1.

(a) 

(c) 

(b)

(d)

Figure 1. Spatial distribution of biophysical and structural variables in the virtual orchard for (a)
chlorophyll content, (b) water content, (c) leaf area index and (d) canopy cover fractions.

From these virtual orchards, different images were rendered in a physically-based ray-tracer
(PBRT) [34]. The model has previously been calibrated and validated with the Radiation Transfer
Model Intercomparison (RAMI) online model checker [35,36] and field data obtained in a citrus orchard
in Wellington, South Africa [32,37]. Images were rendered with a direct and diffuse light source
(solar elevation of 79.2˝ and solar azimuth of 339.6˝) mimicking South African winter solstice [32].
The spectral range of the synthetic images was 350-2500 nm with a spectral resolution of 10 nm, while
the spatial resolution of the sensor was fixed at 2 m. The resulting canopy cover fractions within the
2 m pixels are shown in Figure 1d. The influence of different viewing compositions was investigated
by adjusting the position of the sensor. The sensor’s azimuth angles were varied between 0 and 315˝

with 45˝ increments and the sensor’s view angle was varied between 0 and 60˝ with 15˝ increments.
As a result, each orchard composition was rendered from 33 different sensor positions.

The influence of different orchard conditions was investigated by varying the orchard floor or
background through four different scenarios, while the position of the virtual trees remained identical
for each scenario. Through these modifications, the sensitivity of commonly used vegetation indices to
orchard- and viewing parameters could be investigated.
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‚ Scenario 1 (S1), a uniform soil background, consisting of an Albic Leptic Luvisol soil [38] measured
in situ [39], shown in Figure 2a. Soil reflectance was assumed Lambertian.

‚ Scenario 2 (S2), a uniform weed background (Figure 2b), consisting of Phleum pratense L. modeled
with leaf reflectance obtained from the Leaf Optical Experiment database [32,40].

‚ Scenario 3 (S3), a variable weed and soil background, consisting of a weed background with
random and irregular soil patches (65/35% cover fraction distribution), depicted in Figure 2c.

‚ Scenario 4 (S4), a variable weed background with a chlorophyll gradient. The weed background
was modified similar to the leaf reflectances, increasing the chlorophyll content from 75% to the
reference value (i.e., uniform weed background). A true color representation of the variable weed
background is shown in Figure 2d.

(a) (b) 

(c) (d) 

Figure 2. Spatial distribution of background scenarios (a) uniform soil background (S1); (b) uniform
weed background (S2); (c) variable weed and soil background (S3); (d) variable weed background with
a chlorophyll gradient.

2.2. Real Imagery

2.2.1. Study Area

The irrigated orchard, planted with Conference pear trees (Pyrus communis L. cv. “Conference”)
on Quince C rootstock, was situated in Bierbeek, Belgium (50˝49134.59”N, 4˝47142.83”E). The 2.5 m
high trees were planted in 2000 in a 3.5 by 1 meter grid. They were trained in a V-system with four
fruiting branches on one central stem [41]. The orchard was situated on a south-east facing slope (3.5˝)
with a loamy soil and two dominant row azimuths, namely 41 and 131˝. The trees received 100% of
the crop evapotranspiration (ETc) [42,43], throughout most of the growing season.

The non-irrigated or rainfed orchard, situated in Kerkom, Belgium (50˝46124.25”N, 5˝09127.05”E),
was planted in 2000 with Conference pear trees on Quince A rootstock. The 3.5 m high trees, planted in
a 3.75 by 1.75 m grid, were trained in a Spindle bush system [41]. The orchard was situated on a south
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facing slope (1.1˝) with a loamy soil and a row azimuth of 197˝. The trees were rainfed and received
no additional water input.

In both orchards, the soil under the trees was kept weed free for about 0.3 m from the trunk and
grass was sown in between the tree rows.

2.2.2. Satellite Imagery

WorldView-2 multispectral images were acquired under different off-nadir viewing angles, with
a ground sampling distance of 2.0 m and a spectral resolution complying eight bands: Coastal
(400–450 nm), Blue (450–510 nm), Green (510–580 nm), Yellow (585–625 nm), Red (630–690 nm), Red
Edge (705–745 nm), NIR1 (Near InfraRed 1; 770–895 nm) and NIR2 (860–1,040 nm). The acquisition
details for the WorldView-2 images are shown in Table 1. All images were radiometrically [44],
atmospherically [45] and geometrically corrected [46].

Table 1. Metadata of WorldView-2 acquisitions used in this study.

Location Year
Day Of Year

(DOY)
Off-Nadir

Viewing Angle (˝)
Satellite

Azimuth (˝)
Satellite

Elevation (˝)

Irrigated
Orchard

2011 214 10.8 45.9 78
2012 148 2.7 181.1 86.7

232 18.9 209.8 68.6
2013 189 26.1 14.7 60.7

214 25.6 107.9 61

Rainfed
Orchard

2011 196 43.3 116.1 39.7
214 4.8 68.6 84.7

2012 148 15 199.8 72.9
232 23.7 211.1 62.9

2013 187 28 99.1 58.2
214 27.4 133.5 58.7

2.2.3. Reference Plots

During each satellite acquisition, ground reference plots were monitored, each plot consisting
of four adjacent trees. In the rainfed orchard, 16 plots were selected on fixed intervals within two
adjacent rows of similar structure and age. In the irrigated orchard, 32 plots were selected with variable
age, soil type and row orientation. The position of each plot was determined with a differential
global positioning system (Trimble RTK 58000). Spatial variation was introduced by the application of
one-sided root-pruning (rainfed orchard) and deficit irrigation (irrigated orchard). The location of the
ground measurements and both root-pruning and deficit irrigation treatments is shown in Figure 3.

3. Methods

3.1. Vegetation Indices

The spectral vegetation indices used in this study were divided into categories based on their
proven or expected relationship with biophysical and structural variables (i.e., chlorophyll content,
water content and LAI). The used vegetation indices are listed in Table 2 [5,8,9,47–63]. The indices
were chosen because of a proven link with biophysical variables in fruit orchards [1,2,64].

136



J. Imaging 2016, 2, 15

T
a

b
le

2
.

O
ve

rv
ie

w
of

th
e

bi
op

hy
si

ca
la

nd
st

ru
ct

u
ra

lv
eg

et
at

io
n

in
d

ic
es

u
se

d
in

th
is

st
u

d
y,

th
ei

r
fo

rm
u

la
ti

on
an

d
re

fe
re

nc
e.

T
he

d
is

ti
nc

ti
on

w
as

m
ad

e
be

tw
ee

n
ch

lo
ro

ph
yl

lc
on

te
nt

,w
at

er
co

nt
en

ta
nd

Le
af

A
re

a
In

de
x

(L
A

I)
—

re
la

te
d

in
di

ce
s.

Ve
ge

ta
ti

on
in

di
ce

s
w

er
e

ap
pr

ox
im

at
ed

by
W

or
ld

V
ie

w
-2

ba
nd

s.

In
d

e
x

F
o

rm
u

la
ti

o
n

R
e
fe

re
n

ce
W

o
rl

d
V

ie
w

-2
B

a
n

d
C

o
m

b
in

a
ti

o
n

C
hl

or
op

hy
ll

co
n

te
n

t
re

la
te

d
in

di
ce

s
N

D
V

I(
N

or
m

al
iz

ed
D

iff
er

en
ce

Ve
ge

ta
ti

on
In

de
x)

(R
N

IR
´

R
R

ed
)/

(R
N

IR
+

R
R

ed
)

[4
7]

(R
N

IR
1

´
R

R
ed

)/
(R

N
IR

1
+

R
R

ed
)

O
SA

V
I(

O
pt

im
iz

at
io

n
SA

V
Iª

)
(1

+
0.

16
)*

(R
80

0
´

R
67

0)
/(

R
80

0
´

R
67

0
+

0.
16

)
[4

8]
(1

+
0.

16
)*

(R
N

IR
1

´
R

R
ed

)/
(R

N
IR

1
´

R
R

ed
+

0.
16

)
M

C
A

R
I(

M
od

ifi
ed

C
A

R
Ib

)
[(

R
70

0
´

R
67

0)
´

0.
2

*
(R

70
0

´
R

55
0)

]*
(R

70
0/

R
67

0)
[4

9]
[(

R
R

ed
-e

dg
e

´
R

R
ed

)´
0.

2
*

(R
R

ed
-e

dg
e

´
R

G
re

en
)]

*
(R

R
ed

-e
dg

e/
R

R
ed

)

TC
A

R
I(

Tr
an

sf
or

m
ed

C
A

R
Ib

)
3

*
(R

70
0

´
R

67
0)

´
0.

2
*

(R
70

0
´

R
55

0)
*

(R
70

0/
R

67
0)

[5
0]

3
*

(R
R

ed
-e

dg
e

´
R

R
ed

)´
0.

2
*

(R
R

ed
-e

dg
e

´
R

G
re

en
)*

(R
R

ed
-e

dg
e/

R
R

ed
)

Z
M

(Z
ar

co
an

d
M

ill
er

)
R

75
0/

R
71

0
[5

1]
-

SR
PI

(S
im

pl
e

R
at

io
Pi

gm
en

tI
nd

ex
)

R
43

0/
R

68
0

[5
2]

R
C

oa
st

al
/R

R
ed

PR
I(

Ph
ot

oc
he

m
ic

al
R

efl
ec

ta
nc

e
In

de
x)

(R
53

1
´

R
57

0)
/(

R
53

1
+

R
57

0)
[8

]
(R

G
re

en
´

R
Bl

ue
)/

(R
G

re
en

+
R

Bl
ue

)
N

PC
I(

N
or

m
al

iz
ed

Pi
gm

en
tC

hl
or

op
hy

ll
In

de
x)

(R
68

0
´

R
43

0)
/(

R
68

0
+

R
43

0)
[5

3]
(R

R
ed

´
R

C
oa

st
al

)/
(R

R
ed

+
R

C
oa

st
al

)
C

TR
1

(C
ar

te
r

In
de

x)
R

69
5/

R
42

0
[5

4]
(R

R
ed

-e
dg

e
+

R
R

ed
)/

(2
*R

C
oa

st
al

)
C

TR
2

(C
ar

te
r

In
de

x)
R

69
5/

R
76

0
[5

5]
(R

R
ed

-e
dg

e
+

R
R

ed
)/

(2
*R

N
IR

1)
SI

PI
(S

tr
uc

tu
re

In
se

ns
it

iv
e

Pi
gm

en
tI

nd
ex

)
(R

80
0

´
R

45
0)

/(
R

80
0

+
R

65
0)

[5
2]

(R
N

IR
1

´
R

C
oa

st
al

)/
(R

N
IR

1
+

R
R

ed
)

G
M

(G
it

el
so

n
an

d
M

er
zl

ya
k

In
de

x)
R

75
0/

R
55

0
[5

6]
R

R
ed

-e
dg

e/
R

G
re

en
W

at
er

co
n

te
n

t
re

la
te

d
in

di
ce

s
W

I(
W

at
er

In
de

x)
R

90
0/

R
97

0
[9

]
R

N
IR

1/
R

N
IR

2
M

SI
(M

oi
st

ur
e

St
re

ss
In

de
x)

R
16

00
/R

82
0

[5
7,

58
]

-
C

A
I(

C
el

lu
lo

se
A

bs
or

pt
io

n
In

de
x)

0.
5

*
(R

20
00

+
R

22
00

)´
R

21
00

[5
9]

-
N

D
W

I(
N

or
m

al
iz

ed
D

iff
er

en
ce

W
at

er
In

de
x)

(R
85

0
´

R
12

40
)/

(R
85

0
+

R
12

40
)

[6
0]

-
L

A
I

re
la

te
d

in
di

ce
s

R
D

V
I(

R
en

or
m

al
iz

ed
D

iff
er

en
ce

Ve
ge

ta
ti

on
In

de
x)

(R
80

0
´

R
67

0)
/‘

(R
80

0
+

R
67

0)
[6

1]
(R

N
IR

1
´

R
R

ed
)/

‘
(R

N
IR

1
+

R
R

ed
)

TV
I(

Tr
ia

ng
ul

ar
Ve

ge
ta

ti
on

In
de

x)
0.

5
*

[1
20

*
(R

75
0

´
R

55
0)

´
20

0*
(R

67
0

´
R

55
0)

]
[6

2]
0.

5
*

[1
20

*
(R

R
ed

´
R

G
re

en
)´

20
0*

(R
R

ed
´

R
G

re
en

)]
N

D
II

(N
or

m
al

iz
ed

D
iff

er
en

ce
In

fr
ar

ed
In

de
x)

(R
85

0
´

R
16

50
)/

(R
85

0
+

R
16

50
)

[6
3]

-
sL

A
ID

I(
st

an
da

rd
iz

ed
LA

ID
et

er
m

in
in

g
In

de
x)

5
*

[(
R

10
50

´
R

12
50

)/
(R

10
50

+
R

12
50

)]
[5

]
-

W
it

h
R

x
th

e
re

fle
ct

an
ce

at
ba

nd
or

w
av

el
en

gt
h

x;
N

ea
r

In
fr

ar
ed

(N
IR

);
ªS

oi
l-

A
dj

us
te

d
Ve

ge
ta

ti
on

In
de

x
(S

A
V

I)
;b

C
hl

or
op

hy
ll

A
bs

or
pt

io
n

in
R

efl
ec

ta
nc

e
In

de
x

(C
A

R
I)

.

137



J. Imaging 2016, 2, 15

(b
) 

(a
)

F
ig

u
re

3
.

R
G

B
W

or
ld

V
ie

w
-2

sa
te

lli
te

im
ag

er
y

ta
ke

n
ov

er
(a

)t
he

ir
ri

ga
te

d
pe

ar
or

ch
ar

d
in

B
ie

rb
ee

k,
B

el
gi

um
on

D
ay

of
Ye

ar
(D

O
Y

)2
32

in
20

12
an

d
(b

)t
he

ra
in

fe
d

or
ch

ar
d

in
K

er
ko

m
,B

el
gi

um
on

D
O

Y
14

8
in

20
12

.T
he

hi
gh

lig
ht

ed
ar

ea
s

in
di

ca
te

th
e

de
fic

it
ir

ri
ga

ti
on

tr
ea

tm
en

t(
re

d)
an

d
th

e
ro

ot
-p

ru
ni

ng
tr

ea
tm

en
t(

bl
ue

),
w

hi
le

th
e

sy
m

bo
ls

re
pr

es
en

tt
he

lo
ca

ti
on

of
th

e
gr

ou
nd

m
ea

su
re

m
en

tp
lo

ts
.

138



J. Imaging 2016, 2, 15

Vegetation indices for which representative WorldView-2 band combinations were available, are
also listed in Table 2. The conversion from narrowband to broadband vegetation indices should be
viewed as an approximation as the exact wavelengths from the narrowband vegetation indices overlap
in two or more satellite bands, e.g., WI (Water Index [9]).

3.2. Vegetation Index Correction

To remove canopy fraction differences for all high spatial resolution orchard images, a vegetation
index correction was applied [28]. This correction algorithm rescaled the range of index values for
all pixels to the range of index values for the pure canopy pixels (i.e., pixels with a canopy fractions
over 0.8). The correction was applied in a moving window of size 7 by 7 pixels. Within each moving
window, (i) background was assumed uniform, (ii) the pure canopy pixels were assumed to represent
the true vegetation index range in the pure canopy pixels for that moving window and (iii) the presence
of the full range of canopy fractions was assumed. Before the correction was applied, outliers were
detected and removed, based on the threshold of 1.5 times the inter-quartile range from the upper or
lower quartile [65]. Afterwards, the index values for each pixel were averaged from all the moving
windows that included that pixel. In general, this correction assumed that the variability along the
y-axis (i.e., vegetation index value) was only caused by the variability in tree conditions, while the
variability along the x-axis (i.e., canopy fraction) was caused by the admixture of the background
component. More information on this vegetation index correction can be found in [28].

For the synthetic images, the exact tree cover was known for each pixel. For the real satellite
imagery, the canopy cover fraction was estimated through a Gram-Schmidt pan-sharpening [66] to
produce multispectral bands with a panchromatic resolution (0.5 m). This pan-sharpened image was
classified through unsupervised classification [67] and resampled for each 2 m multispectral pixel to
provide an estimation of the canopy fractions, similar to Hamada et al. [68].

3.3. Determination of in situ Measured Biophysical and Structural Variables

During satellite acquisitions, biophysical variables were determined based on the inversion of
leaf spectral measurements on 20 samples per plot. A validation experiment was acquired with lab
measured chlorophyll and water content which achieved R2 values of 0.79 and 0.85 between measured
and modeled water and chlorophyll content respectively (results not shown here). In addition,
hemispherical photographs were collected for each plot using a Kodak Professional DCS 660 digital
camera (6 mega pixels) with a Sigma 8mm Circular Fisheye lens (Sigma Corporation, Tokyo, Japan).
Each plot was sampled 5 times at fixed positions [69] and processed with the CAN-EYE software to
determine LAI based on canopy gap fraction [70]. An overview of the mean and standard deviations
of for both orchards is shown in Table 3.

Table 3. The mean (˘ standard deviation) of leaf chlorophyll, leaf water content and Leaf Area Index
(LAI) for the reference plots in both the irrigated (n = 32) and rainfed orchard (n = 16).

Location Chlorophyll Content (µg/cm²) Water Content (mg/cm²) LAI

Irrigated Orchard 82.9 (˘14.1) 19.1 (˘2.0) 2.5 (˘0.6)
Rainfed Orchard 81.3 (˘10.8) 17.8 (˘3.2) 1.5 (˘0.5)

4. Results

4.1. Synthetic Imagery

The synthetic imagery in this study provided exact cover fractions, spectral signatures and
biophysical variables of the target crop for a range of view angles. The simulations were used to
investigate the overall effect of viewing geometry on the estimation of biophysical variables through
vegetation indices without the influence of sensor/target anomalies.
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In a first step the ground references or tree endmembers—pure canopy pixels collected from scenes
of individual trees without background—were used to illustrate optimal coefficient of determination
values (R2) between biophysical variables and vegetation indices. The variation of R2 values between
vegetation indices and chlorophyll content, water content and LAI for different viewing compositions
is shown in Figure 4. As only pure canopy pixels were used, view angle effects regarding variable
canopy fraction distributions could be assumed absent and resulting effects attributed to BRDF.

Figure 4. Viewing composition distribution of coefficient of determination (R2) values between (a)
Normalized Difference Vegetation Index (NDVI), (b) Optimization Soil-Adjusted Vegetation Index
(OSAVI), (c) Modified Chlorophyll Absorption in Reflectance Index (MCARI), (d) Transformed
Chlorophyll Absorption in Reflectance Index (TCARI), (e) Zarco and Miller (ZM), (f) Simple
Ratio Pigment Index (SRPI), (g) Photochemical Reflectance Index (PRI), (h) Normalized Pigment
Chlorophyll Index (NPCI), (i) Carter Index (CTR1), (j) Carter Index (CTR2), (k) Structure Insensitive
Pigment Index (SIPI), (l) Gitelson and Merzlyak Index (GM), (m) Water Index (WI), (n) Moisture
Stress Index (MSI), (o) Cellulose Absorption Index (CAI), (p) Normalized Difference Water Index
(NDWI), (q) Renormalized Difference Vegetation Index (RDVI), (r) Triangular Vegetation Index (TVI),
(s) Normalized Difference Infrared Index (NDII), (t) standardized Leaf Area Index Determining Index
(sLAIDI) and (a–l) chlorophyll-, (m–p) water content and (q–t) Leaf Area Index (LAI) respectively.
Star symbols denote illumination source, dotted lines denote tree row orientation and white crosses
indicate different scenes. Index values were obtained from scenes without background to represent
tree endmembers.

Figure 4 illustrates the complexity of viewing composition influences on biophysical and structural
variables estimation through vegetation indices. On the one hand, several indices—such as the NDVI,
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TCARI, PRI and CAI indices—showed an increase of R2 values with increased sensor zenith angles.
On the other hand, the sLAIDI showed higher R2 values with LAI at nadir compared to off-nadir
viewing angles. Figure 4 was only illustrative for imagery under ideal circumstances—i.e., pure canopy
scenes without the influence of background. Therefore, the viewing composition distribution of R2

values for the uniform weed background (S2) are shown in Figure 5 prior to the vegetation index
correction (Section 3.2). Figure 5 was limited to results from the S2 background scenario, as other
scenarios presented similar distributions.

 

Figure 5. Viewing composition distribution of coefficient of determination (R2) values between
(a) NDVI, (b) OSAVI, (c) MCARI, (d) TCARI, (e) ZM, (f) SRPI, (g) PRI, (h) NPCI, (i) CTR1, (j) CTR2,
(k) SIPI, (l) GM, (m) WI, (n) MSI, (o) CAI, (p) NDWI, (q) RDVI, (r) TVI, (s) NDII, (t) sLAIDI and (a–l)
chlorophyll-, (m–p) water content and (q–t) LAI respectively. Star symbols denote illumination source,
dotted lines denote tree row orientation and white crosses indicate different scenes. Index values were
obtained from scenes with a uniform weed background (S2) before a vegetation index correction.

The distribution of R2 values in Figure 5 illustrated the influence of variable viewing angles on
vegetation indices in a realistic scenario (i.e., uniform background of vegetation). For several indices,
this distribution was mirrored around the row orientation (i.e., NDVI, SRPI, PRI, SIPI and NDII). This
effect could most likely be attributed to variable canopy fraction distribution, as off-nadir viewing
imagery perpendicular to the row orientation would represent a decreasingly smaller fraction of
background. To circumvent this problem, a vegetation index correction algorithm (Section 3.2) was
applied. The distribution of R2 values for S2 after the correction is shown in Figure 6. In addition,
viewing geometry differences for R2 values between index values and biophysical variables are listed
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in Table 4. For Table 4, the differences between viewing compositions were quantified through the
range of R2 values for each index and all viewing compositions in each scenario (Section 2.1).

Despite the correction algorithm removing the effects of variable canopy distribution in Figure 6
and Table 4, several indices were still significantly dependent on viewing composition. Only the
distribution of R2 values for S2 was shown in Figure 6, as other background scenarios showed
similar distributions, although the scale varied depending on either vegetated or non-vegetated
background scenarios.

Figure 6. Viewing composition distribution of coefficient of determination (R2) values between
(a) NDVI, (b) OSAVI, (c) MCARI, (d) TCARI, (e) ZM, (f) SRPI, (g) PRI, (h) NPCI, (i) CTR1, (j) CTR2,
(k) SIPI, (l) GM, (m) WI, (n) MSI, (o) CAI, (p) NDWI, (q) RDVI, (r) TVI, (s) NDII, (t) sLAIDI and (a–l)
chlorophyll-, (m–p) water content and (q–t) LAI respectively. Star symbols denote illumination source,
dotted lines denote tree row orientation and white crosses indicate different scenes. Index values were
obtained from scenes with a uniform weed background (S2) after a vegetation index correction.

Figure 6 shows the dependency of viewing compositions for several vegetation indices while
estimating biophysical and structural variables. Some indices showed higher R2 values for nadir
viewing scenes and a decrease towards more off-nadir viewing scenes, for example the ZM (Figure 6e),
SIPI (Figure 6k) and GM1 indices (Figure 6l). SRPI (Figure 6f), PRI (Figure 6g) and NDII (Figure 6s)
showed increased R2 values for off-nadir scenes perpendicular to the row orientation, while R2 values
decreased for scenes parallel to row orientation for higher sensor zenith angles.
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Table 4. Overview of the ranges for coefficient of determination values (R2) between biophysical
or structural variables and vegetation indices over different viewing compositions (Section 2.1).
The distinction was made between chlorophyll content, water content and Leaf Area Index
(LAI)—related indices. Results were shown for reference (without background) and a uniform soil
background (S1), a uniform weed background (S2) background, a variable weed and soil background
(S3) and a variable chlorophyll weed background (S4) after the use of a vegetation index correction
(Section 3.2).

Index Reference R2 Range S1 R2 Range S2 R2 Range S3 R2 Range S4 R2 Range

Chlorophyll content related indices

NDVI 0.67 *–0.77 * 0.03 *–0.20 * 0.26 *–0.39 * 0.06 *–0.21 * 0.30 *–0.43 *
OSAVI 0.31 *–0.61 * 0.01 *–0.06 * 0.01 *–0.11 * 0.01 *–0.05 * 0.02 *–0.12 *
MCARI 0.77 *–0.95 * 0.42 *–0.53 * 0.09 *–0.46 * 0.09 *–0.33 * 0.11 *–0.49 *
TCARI 0.93 *–0.97 * 0.40 *–0.65 * 0.25 *–0.67 * 0.29 *–0.55 * 0.29 *–0.65 *

ZM 0.78 *–0.90 * 0.31 *–0.50 * 0.37 *–0.57 * 0.31 *–0.50 * 0.43 *–0.59 *
SRPI 0.81 *–0.94 * 0.41 *–0.57 * 0.59 *–0.67 * 0.45 *–0.61 * 0.59 *–0.70 *
PRI 0.68 *–0.71 * 0.56 *–0.62 * 0.52 *–0.60 * 0.34 *–0.58 * 0.55 *–0.65 *

NPCI 0.83 *–0.93 * 0.40 *–0.57 * 0.57 *–0.67 * 0.44 *–0.61 * 0.58 *–0.69 *
CTR1 0.87 *–0.91 * 0.42 *–0.58 * 0.40 *–0.63 * 0.22 *–0.48 * 0.40 *–0.66 *
CTR2 0.80 *–0.89 * 0.19 *–0.42 * 0.39 *–0.58 * 0.18 *–0.39 * 0.45 *–0.61 *
SIPI 0.69 *–0.81 * 0.04 *–0.22 * 0.24 *–0.43 * 0.07 *–0.21 * 0.28 *–0.48 *
GM 0.79 *–0.90 * 0.31 *–0.51 * 0.40 *–0.61 * 0.30 *–0.50 * 0.44 *–0.61 *

Water content related indices

WI 0.22 *–0.41 * 0.07 *–0.21 * 0.10 *–0.20 * 0.07 *–0.16 * 0.08 *–0.21 *
MSI 0.18 *–0.45 * 0.02 *–0.12 * 0.04 *–0.17 * 0.01 *–0.08 * 0.04 *–0.17 *
CAI 0.50 *–0.84 * 0.01 *–0.13 * 0.02 *–0.25 * 0.00–0.12 * 0.02 *–0.21 *

NDWI 0.24 *–0.45 * 0.05 *–0.15 * 0.08 *–0.18 * 0.03 *–0.08 * 0.08 *–0.20 *

LAI related indices

RDVI 0.26 *–0.55 * 0.01 *–0.10 * 0.00–0.13 * 0.01 *–0.08 * 0.00–0.15 *
TVI 0.23 *–0.71 * 0.00–0.01 * 0.00–0.06 * 0.00–0.01 * 0.00–0.02 *

NDII 0.30 *–0.53 * 0.07 *–0.29 * 0.09 *–0.26 * 0.05 *–0.22 * 0.09 *–0.26 *
SLAIDI 0.53 *–0.75 * 0.04 *–0.21 * 0.00 *–0.21 * 0.03 *–0.17 * 0.02 *–0.20 *

* p-value < 0.01.

4.2. Real Imagery

Similarly to the synthetic imagery, the satellite imagery was corrected for canopy cover fraction
distribution based on the vegetation index correction algorithm described in [28]. Afterwards,
index values for each plot were extracted. The R2 values between vegetation indices and measured
biophysical variables are presented in Table 5.

The results depicted in Table 5 showed significant correlations between biophysical variables
and vegetation indices when combining both orchards. Significant R2 values were found between
chlorophyll content and the PRI, SRPI, NPCI and CTR1 indices. However, after processing imagery
for both orchards separately, significantly higher R2 values were found in the rainfed orchard for
chlorophyll related indices. For example, R2 values of 0.64, 0.59 and 0.58 for OSAVI, NDVI and CTR2
index values respectively. On the other hand, indices in the irrigated orchard showed no significant
correlations. To visualize the influence of variable viewing geometry on the relationship between index
values and biophysical variables, R2 values were calculated for each available viewing composition.
In order to compare different row orientations, only the relative angle between the row azimuth and
view azimuth was used. The results are shown in Figure 7.
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Table 5. Coefficient of determination (R2) values between biophysical and structural variables and
vegetation indices for satellite imagery (Section 2.2.2) after the use of a vegetation index correction
(Section 3.2). The distinction was made between chlorophyll content, water content and Leaf Area
Index (LAI)—related indices for both orchards combined and for each orchard separately. Indices for
which appropriate bands were not available were omitted (Table 2).

Index

R2 Values
both

Orchards
(n = 232)

R2 Values
Irrigated
Orchard
(n = 144)

R2 Values
Rainfed
Orchard
(n = 88)

Index

R2 Values
both

Orchards
(n = 232)

R2 Values
Irrigated
Orchard
(n = 144)

R2 Values
Rainfed
Orchard
(n = 88)

Chlorophyll content related indices Water content related indices

NDVI 0.03 0.00 0.59 * WI 0.00 0.01 0.16 *
OSAVI 0.01 0.06 * 0.64 * MSI - - -
MCARI 0.03 0.12 * 0.48 * CAI - - -
TCARI 0.01 0.00 0.02 NDWI - - -

ZM - - -
SRPI 0.14 * 0.04 0.30 * LAI related indices
PRI 0.25 * 0.06 * 0.16 * RDVI 0.00 0.00 0.01

NPCI 0.18 * 0.03 0.40 * TVI 0.01 0.01 0.02
CTR1 0.37 * 0.01 0.27 * NDII - - -
CTR2 0.12 * 0.04 * 0.58 * SLAIDI - - -
SIPI 0.02 0.02 0.38 *
GM 0.05 * 0.02 0.43 *

* p-value < 0.01.

 

Figure 7. Viewing composition distribution of coefficient of determination (R2) values between
(a) Normalized Difference Vegetation Index (NDVI), (b) Optimization Soil-Adjusted Vegetation Index
(OSAVI), (c) Modified Chlorophyll Absorption in Reflectance Index (MCARI), (d) Transformed
Chlorophyll Absorption in Reflectance Index (TCARI), (f) Simple Ratio Pigment Index (SRPI),
(g) Photochemical Reflectance Index (PRI), (h) Normalized Pigment Chlorophyll Index (NPCI), (i) Carter
Index (CTR1), (j) Carter Index (CTR2), (k) Structure Insensitive Pigment Index (SIPI), (l) Gitelson and
Merzlyak Index (GM), (m) Water Index (WI), (q) Renormalized Difference Vegetation Index (RDVI),
(r) Triangular Vegetation Index (TVI) and (a–l) chlorophyll-, (m) water content and (q–r) Leaf Area Index
(LAI) respectively. Star symbols viewing geometries. Index values were obtained after the use of a
vegetation index correction (Section 3.2) from imagery at irrigated and rainfed orchard (Section 2.2).
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Figure 7 showed the influence of viewing geometry on the estimation of biophysical and structural
variables through vegetation indices. For several indices, the shaded side of the canopy presented
higher R2 values compared to the sunlit side—i.e., NDVI (Figure 7a), MCARI (Figure 7c), TCARI
(Figure 7d), CTR2 (Figure 7j) and RDVI (Figure 7q). Conversely, several indices were presenting higher
R2 values for the sunlit side compared to the shaded side—i.e., CTR1 (Figure 7i) and TVI (Figure 7r).
Finally, some indices presented high R2 values for both sunlit and shaded sides—i.e., OSAVI (Figure 7b),
SIPI (Figure 7k) and WI (Figure 7m)—further illustrating that variable viewing geometry should be
avoided or accounted for.

5. Discussion

The use of remote sensing within capital intensive orchard crops provides alternatives to time
consuming, labor intensive and destructive in situ measurements. Practical use in hedgerow orchards
under temperate climate conditions requires the use of high spatial resolution satellite sensors with
off-nadir viewing capabilities [10,11]. However, this presence of variable viewing angles could affect
the relationship between biophysical variables and spectral measurements [4,12,13]. Moreover, variable
viewing angles within and between time series could obstruct the distinction between genuine changes
and viewing geometry influences. In this study, the distribution of R2 values for different viewing
compositions (Figures 4–7) and the ranges for different background scenarios (Table 4) showed the
necessity of careful selection of vegetation indices for applications using spectral imagery acquired
under or subject to multiple viewing geometries.

For high spatial resolution imagery, changing viewing geometries would cause both differences
related to Bidirectional Reflectance Distribution Function (BRDF) influences [21] and to variable canopy
fraction mixtures. The former was visible for the tree endmembers, rendered without background
and extracted from pure canopy pixels (Figure 4). For these reference images, several indices showed
a variable distribution favoring more nadir viewing—i.e., sLAIDI (Figure 4t)—or off-nadir viewing
scenes—i.e., OSAVI (Figure 4b), WI (Figure 4m), CAI (Figure 4o) and TVI (Figure 4r). These effect
could be attributed to the inherent BRDF effects and should be avoided or corrected for [16–21].
However, other indices showed a less significant change in R2 values and were less affected for these
ideal circumstances.

The synthetic imagery also demonstrated a high dependence of several indices towards canopy
fraction distribution (Figure 5), which was removed through a vegetation index correction (Figure 6).
After the correction, the lowest R2 values from the synthetic imagery were found for the most variable
background scenario—i.e., the soil and weed background or S3 (Table 4). Generally, the differences
between different background scenarios were relatively small. This was most likely the result of the
vegetation index correction [28], which removed most of the influence of background mixtures and
variable canopy cover fractions. Exceptions hereof were indices that were related to vegetative cover
fraction, e.g., NDVI [71], which showed significantly higher R2 values for vegetated backgrounds (S2
and S4, Table 4) compared to non-vegetated backgrounds (S1 and S3, Table 4). This could be the result
of the assumption of Lambertian behavior for the soil backgrounds. Although the range of R2 values
will be similar, the R2 values could be lower for non-Lambertian backgrounds. Overall, the R2 values
were significantly higher between vegetation indices and chlorophyll content compared to LAI and
water content, because of larger differences between treatments and the inherent relationship between
leaf area and the amount of canopy water content [5].

For the synthetic imagery, several commonly used vegetation indices presented an influence
towards variable viewing geometries. PRI, NDII and SRPI values showed higher R2 values
perpendicular to the row orientation compared to parallel to rows for higher off-nadir view angles
(Figure 6). This might be attributed to the inclusion of background with parallel viewing to the rows,
as imagery perpendicular to the rows would not present any background. Overall, differences between
off-nadir viewing parallel or perpendicular to the row orientation might be greater without the use of
the vegetation index correction to normalize for different canopy cover fractions. On the other hand,
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this view angle sensitivity of PRI was similar to [24,25,72], finding a large difference between PRI
values from forward (shaded) and backward (sunlit) scattered scenes. Other indices, such as NDVI,
GM, ZM and SIPI, showed a decrease in R2 values from nadir to off-nadir viewing scenes (Figure 6).
These results were similar to studies indicating a high dependence of NDVI towards variable viewing
angles [24,73,74] and a degraded correlation with NDVI-derived products [18].

The R2 values of satellite derived vegetation indices (Table 5) were significantly lower compared
to the synthetic images (Table 4). This was most likely by the restricted amount of point measurements
for the real imagery and the use of different row orientations within and between the orchards. On the
other hand, also a suboptimal vegetation index correction could cause a decrease in R2 values between
indices and variables. For the rainfed orchard, R2 increased significantly because of the similar row
azimuth for all ground control plots. For the irrigated orchard, a significant decrease in R2 values was
the result of both sunlit and shaded canopies within one scene, as both 41 and 131˝ row orientations
were monitored. The increased influence of shadow compared to the synthetic imagery was caused
by a decrease in illumination elevation and the presence of a hedgerow cropping system causing
one predominantly shaded and sunlit side [41,75]. Several studies have shown the negative effect of
shaded canopy parts on the correlation between vegetation indices and biophysical variables [3,4,76].
As the virtual orchard trees consisted of spherical canopies, shaded canopy sections and the effects of
shadow on the vegetation indices were of less importance [3].

The vegetation index correction algorithm could not mitigate the inclusion of shadow on the
variation of index values, as it is not directly related to canopy cover fraction. Conversely, problems
could be avoided by segmenting or classifying the canopies into sunlit and shaded areas—e.g.,
Stagakis et al. [2,3]. However, for hedgerow systems problems with canopy anisotropy would be
enlarged and cause significant differences between both faces of the canopy [13], obstructing derivation
of structural variables—i.e., plant cover, canopy height and biomass—from multiple viewing angles.
Another solution would be the minimization of shaded pixels in the analysis [3,76,77]. To illustrate
the usefulness of this approach, a selection was made for all satellite images (Section 2.2) based on
row orientation, viewing and illumination angles. Similarly to [4], scenes with high off-nadir viewing
angles—i.e., off-nadir viewing angles over 20˝—and viewing geometries opposite to the sun were
removed as they consisted mostly of shaded canopies. Off-nadir viewing angles under 20˝ would
result in partially sunlit scenes and were shown less affected [4]. The average R2 values for all indices
after the selection of sunlit image pixels are shown in Table 6.

Table 6 illustrated the usefulness of pixel selection based on scene illumination for the irrigated
orchard, as a significant increase in R2 values was found between biophysical variables and index
values compared to Table 5. The indices showing a significant increase also showed higher R2 values
for sunlit scene compositions in Figure 7. On the other hand, indices which presented higher R2 values
for shaded scene compositions—i.e., NDVI, CTR2, MCARI, OSAVI and TCARI—showed similar or
decreased R2 values.

For the rainfed orchard, a significant decrease of R2 values was present for almost all indices after
the selection of sunlit pixels compared to Table 5. This was the effect of the different growing systems
within both orchards. On the one hand, the Spindle bush system (rainfed orchard) resulted in open
tree canopies and more sunlit areas [41]. On the other hand, the hedgerow V-system (irrigated orchard)
resulted in variable canopy faces—i.e., one predominantly sunlit and shaded side [41].

With regards to the optimal vegetation indices for high spatial resolution imagery, PRI, CTR1, SIPI
and GM provided more stable correlations with chlorophyll content for variable viewing geometries
(Figure 6, Tables 5 and 6). However, these indices were highly affected by the canopy fraction
distribution and should be corrected or normalized prior to analysis (Figures 5 and 6). With regards to
water content and LAI, WI and sLAIDI provided good correlations for nadir viewing scenes, with a
significant decrease towards off-nadir viewing angles. Other vegetation indices could be used in certain
circumstances, but should be avoided in time series with variable viewing angles, e.g., NDVI, OSAVI,
MCARI, TCARI, RDVI and TVI (Figure 6, Tables 5 and 6). Although the vegetation indices (Table 2)
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were selected based on previous studies in fruit orchards, the list was not complete [1,2,64]. Further
research is required for vegetation indices not represented here prior to their use for applications with
multiple viewing angles.

Table 6. Coefficient of determination (R2) values between biophysical and structural variables and
vegetation indices for satellite imagery (Section 2.2.2) after the use of a vegetation index correction
(Section 3.2). The distinction was made between chlorophyll content, water content and Leaf Area
Index (LAI)—related indices for both orchards combined and for each orchard separately. Pixels were
selected based on the combination of large off-nadir viewing angles (i.e., over 20˝) and a viewing
geometry on the opposite side of the rows with regards to the illumination source. Indices for which
appropriate bands were not available were omitted (Table 2).

Index

R2 Values
both

Orchards
(n = 160)

R2 Values
Irrigated
Orchard
(n = 112)

R2 Values
Rainfed
Orchard
(n = 48)

Index

R2 Values
both

Orchards
(n = 160)

R2 Values
Irrigated
Orchard
(n = 112)

R2 Values
Rainfed
Orchard
(n = 48)

Chlorophyll content related indices Water content related indices
NDVI 0.01 0.01 0.01 WI 0.07 * 0.13 * 0.00
OSAVI 0.04 0.07 * 0.04 MSI - - -
MCARI 0.14 * 0.22 * 0.00 CAI - - -
TCARI 0.06 * 0.04 0.02 NDWI - - -

ZM - - -
SRPI 0.07 * 0.09 * 0.13 LAI related indices
PRI 0.24 * 0.28 * 0.20 RDVI 0.02 0.05 0.00

NPCI 0.09 * 0.11 * 0.14 TVI 0.00 0.17 * 0.01
CTR1 0.37 * 0.42 * 0.29 * NDII - - -
CTR2 0.02 0.06* 0.01 SLAIDI - - -
SIPI 0.16* 0.24* 0.21
GM 0.20* 0.23* 0.07

* p-value < 0.01.

Overall, the results illustrated the necessity of a vegetation index selection or correction based on
each specific circumstance and data set. However, through the careful selection of vegetation indices,
an optimal derivation of biophysical variable should be plausible for applications with multiple
viewing angles. Moreover, depending on the size of the available time series for a fixed target location,
index values could be normalized with regards to view angle—e.g., Seaquist and Olsson [73]. However,
the most important limitation to this approach is the high amount of images required within a relatively
small time window to minimize influences of a changing solar angle.

6. Conclusions

Stress-related biophysical and structural variables of capital intensive orchard crops can be
approximated with accurate and consistent estimations of spectral vegetation indices from off-nadir
viewing satellite imagery. However, the variable viewing compositions of each image could affect this
relationship. Most of the research studying this effect has focused on cropping systems with complete
canopy cover, while imagery over orchard cropping systems could cause mixtures between canopies
and backgrounds. This study investigated the sensitivity of common spectral vegetation indices on
changing viewing geometries and its relationship with the estimation of biophysical variables—i.e.,
chlorophyll content, water content and Leaf Area Index (LAI). Ultimately to minimize variable viewing
influences within and between time series, which could obstruct change detection because of the
confusion with genuine changes. This was achieved through the use of synthetic and satellite imagery
over a virtual citrus orchard and an experimental hedgerow pear orchard respectively.

Results indicated significant differences between nadir and off-nadir viewing scenes for some
indices (ΔR2 > 0.4). Several indices—such as the Photochemical Reflectance Index (PRI), Normalized
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Difference Infrared Index (NDII) and Simple Ratio Pigment Index (SRPI)—showed higher coefficient
of determination (R2) values for higher off-nadir view angles perpendicular compared to parallel to
the row orientation. On the other hand, indices—such as the Normalized Difference Vegetation Index
(NDVI), Gitelson and Merzlyak (GM), Zarco and Miller (ZM) and Structure Insensitive Pigment Index
(SIPI)—showed a decrease in R2 values from nadir to off-nadir viewing scenes.

In general, this study showed the necessity for a careful selection of vegetation indices for
estimating biophysical variables, especially for applications with multiple viewing angles.
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Abstract: Mangroves are one of the most productive coastal communities in the world. Although
we acknowledge the significance of ecosystems, mangroves are under natural and anthropogenic
pressures at various scales. Therefore, understanding biophysical variations of mangrove forests is
important. An extensive field survey is impossible within mangroves. WorldView-2 multi-spectral
images having a 2-m spatial resolution were used to quantify above ground biomass (AGB) and leaf
area index (LAI) in the Rapid Creek mangroves, Darwin, Australia. Field measurements, vegetation
indices derived from WorldView-2 images and a partial least squares regression algorithm were
incorporated to produce LAI and AGB maps. LAI maps with 2-m and 5-m spatial resolutions
showed root mean square errors (RMSEs) of 0.75 and 0.78, respectively, compared to validation
samples. Correlation coefficients between field samples and predicted maps were 0.7 and 0.8,
respectively. RMSEs obtained for AGB maps were 2.2 kg/m2 and 2.0 kg/m2 for a 2-m and a 5-m
spatial resolution, and the correlation coefficients were 0.4 and 0.8, respectively. We would suggest
implementing the transects method for field sampling and establishing end points of these transects
with a highly accurate positioning system. The study demonstrated the possibility of assessing
biophysical variations of mangroves using remotely-sensed data.

Keywords: mangrove; above ground biomass; leaf area index; WorldView-2; partial least
squares regression

1. Introduction

Mangrove forests are a dominant feature of many tropical and subtropical coastlines. They have
a variety of growth forms, including intertidal trees, palms and shrubs, that often grow in dense
stands [1]. Although mangroves form valuable ecosystems along sheltered coastal environments,
on the global scale, they are disappearing at an alarming rate [2]. For instance, by 2000, the worldwide
mangrove extent has fallen below 15 million ha, down from 19.8 million ha in 1980 [3]. The world has
thus lost five million ha of mangroves over twenty years, or 25% of the extent found in 1980. The main
reasons for rapid mangrove destruction and land clearings are urbanization, population growth, water
diversion, aquaculture, agriculture and salt pond construction.

Land clearings throughout catchments and in urbanized areas can cause an increased volume of
water entering watercourses, carrying substances, such as topsoil, chemicals, rubbish and nutrients.
These substances deposit on sediments in which mangroves grow. The increased amount of water
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influences the rate of erosion or deposition of sediments, causing a significant problem for the health
of aquatic habitats. Therefore, when sustainable developments are progressing through land clearing,
it is necessary to ensure effective mangrove conservation.

To set the balance between mangrove conservation and developments, one of the vital
roles of monitoring and ultimately managing mangroves is to create an accurate and up-to-date
quantitative analysis of their baseline health parameters. However, assessing mangrove health is not
a straightforward task. This is due to the complex structure of forests, their biophysical variations and
the interaction between mangroves, soil, water and salinity. Therefore, indirect measures that correlate
with the levels of vegetation stresses, such as above ground biomass (AGB), canopy nutrient levels,
particularly canopy nitrogen level, and leaf area index (LAI), can eventually be considered.

Most of the conventional methods that have been developed for estimating AGB, LAI and canopy
nutrient levels have limitations when extended over space and time. For example, estimating biomass
using the allometric method is based on measureable canopy dynamics, such as tree height and
diameter at breast height (DBH). Due to the within-stand heterogeneity of canopies, labour-intensive,
site- and species-specific field measurements are crucial [4–6]. However, field sampling within
mangrove forests is challenging. Many mangrove species have complex aerial root systems, which
make sampling difficult. Furthermore, mangroves are dense and rather difficult to walk through.
Remotely-sensed data addresses the major challenges (especially field sampling) identified with
already developed conventional methods that estimate AGB and LAI. Most remote sensing-based
approaches are capable of estimating plant biophysical characteristics by reducing the shortcomings of
field observations.

There are numerous studies to estimate the biophysical characteristics of vegetation using
remotely-sensed data. The key issue is to correlate the intensity of electromagnetic energy absorbed
or reflected by the plant (spectral reflectance) with ground measurements of biophysical variables.
This spectral reflectance is either measured in situ (using spectrometers) or via airborne or spaceborne
sensors. Several studies have found strong correlations between forest biomass or LAI and spectral
reflectance values at different wavelengths [7,8]. Eckert [9] and Ahamed et al. [10] summarized different
studies that analysed the levels of vegetation greenness in terms of vegetation indices derived from
remotely-sensed data for estimating biomass. For example, Anaya et al. [7] and Satyanarayana et al. [11]
used the normalized difference vegetation index (NDVI) calculated from red and near infrared
wavelengths of remotely-sensed data for estimating biomass. However, compared to other terrestrial
vegetation types, little has been adapted to mangroves.

Compared to other terrestrial ecosystems, a few studies associated with field samples and
remotely-sensed data for producing thematic maps over mangrove forests can be found [11–16].
Clough et al. [17], Green and Clark [18] and Green et al. [14] established a relationship between
vegetation indices derived from remotely-sensed data and in situ LAI samples for mangroves.
Kamal et al. [15] studied the spatial resolution of satellite images, spectral vegetation indices and
different mapping approaches for LAI estimation at Moreton Bay, Australia, and Karimunjawa Island,
Indonesia. The study confirmed that the LAI estimation accuracy using remotely-sensed data was
site specific and varied across pixel sizes and image segmentation scales. Since there is no recorded
study related to the Rapid Creek mangrove forest in Darwin, Australia, the demand still exists for
estimating the LAI of mangroves by integrating in situ samples, remotely-sensed data and advanced
statistical regression algorithms. To the same extent, we could find only a few studies that mapped
AGB of mangroves over a large area. For example, recently, Zhu et al. [16] retrieved mangrove AGB
from field data and WorldView-2 (WV2) satellite images. This study tested Sonneratia apetala and
Kandelia candel mangrove species and a limited number of vegetation indices for AGB mapping over
the study site. The study confirmed the importance of the red-edge band of WV2 satellite image and
associated vegetation indices for AGB estimation over other spectral regions. Komiyama et al. [19],
Komiyama et al. [5], Fu and Wu [4] and Perera and Amarasinghe [20] derived only a relationship
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between mangrove canopy dynamics, AGB and vegetation indices. Therefore, testing the possibility of
mapping AGB of mangroves over a large area from remotely-sensed data is still required.

This study aimed to quantify the spatial distribution of LAI and AGB of mangroves using field
measurements and WV2 satellite images. To achieve this aim, the study compared two different spatial
resolutions of WV2 data (original spatial resolution of multispectral bands (2 m) with resampled
multispectral bands (5 m)) and partial least squares regression algorithm for mapping LAI and AGB
variations over a large area.

2. Data and Methods

2.1. Study Area

The Rapid Creek mangrove forest in Darwin, Northern Territory, Australia, was selected as
the test site for this study (Figure 1). This area is dominated by five different mangrove species:
Avicennia marina, Ceriops tagal, Bruguiera exaristata, Lumnitzera racemosa and Rhizophora stylosa [21].
Other species do not represent significant coverage to be considered separately.

Figure 1. Rapid Creek coastal mangrove forest, Darwin, Northern Territory, Australia. The distribution
of field sampling plots (5 m × 5 m) is shown in the map (the sizes of magenta squares are not to the
scale). Aerial photographs © Northern Territory Government.

2.2. Field Sampling, Satellite Data and Predictor Variables

A total of 29 plots, 5 m × 5 m in extent, were identified in the field. These plots were selected
with trees having similar characteristics (species, age, height and DBH) to represent calculated values
accurately. Each of them was oriented in a north-south and east-west direction in order to locate them
easily in the satellite image. Inside each plot, five trees were selected to take measurements based on
their ability to be identified in satellite images; that is isolated and without clumping to neighbouring

155



J. Imaging 2016, 2, 24

tree crowns. A sampling pattern was determined considering the accessibility, density of mangrove
forest, mangrove greenness and species variation. Attention was also given to avoid areas close to
water features due to the danger of salt water crocodiles that inhabit the region.

Tree height, diameter at breast height and species were recorded. Species were identified based
on the guidelines provided by Duke [22] and Wightman [23]. The positions of each the tree and the
four corners of each plot were recorded using the non-differentially-corrected Global Positioning
System (GPS). Apart from the GPS measurements, we collected some additional measurements to
support positioning field plots in the image. These measurements especially refer to distances to
closest roads, water features and other features that can easily be identified in the image.

2.2.1. Remotely-Sensed Data and Predictor Variables

An overlapping pair of WV2 satellite images acquired on 26 July 2013 was used as the
remotely-sensed data for this study. The main reason for having an overlapping pair of images was
to prepare a stereo model of the area to manually extract individual tree crowns. The satellite image
capture coincided with the field data acquisition. The satellite is in a nearly circular, Sun-synchronous
orbit with a period of 100.2 min. The spatial resolution of multispectral bands was 2.0 m, and the
panchromatic band was 0.5 m. Table 1 shows the detailed spectral band description of WV2 images.

Table 1. Spectral band information of WorldView-2 images.

Band Spectral Range (nm) Spatial Resolution (m)

Panchromatic 447–808 0.5

Coastal 396–458

2

Blue 442–515
Green 506–586
Yellow 584–632

Red 624–694
Red-edge 699–749

NIR1 765–901
NIR2 856–1043

WV2 images were radiometrically corrected according to the method described by
Heenkenda et al. [21]. First, digital numbers were converted to at-sensor-radiance values, and
then, they were converted to top-of-atmosphere reflectance values. The dark pixel subtraction
technique in ENVI 5.0 software was applied to remove the additive path radiance. Finally, images were
geo-referenced using rational polynomial coefficients provided with the images and ground control
points extracted from digital topographic maps of Darwin, Australia. The georeferenced surface
reflectance values were used for further analysis.

Non-mangrove areas of images were masked as per Heenkenda et al. [21]. Class-specific
rules were developed based on the contextual information from the WV2 images, geometry and
neighbourhood characteristics of objects at different hierarchical levels to separate mangrove coverage
only (see Heenkenda et al. [21] for a detailed description).

Plant growth is correlated with the expansion of leaf canopy and the increasing weights of woody
elements. Hence, the AGB and LAI of mangroves can relate to vegetation indices derived from
remotely-sensed data. To take the maximum advantage of the relatively narrow spectral bands of
WV2 multispectral images, this study selected nine vegetation indices and the green, yellow, red,
red-edge, NIR1 and NIR2 bands of the WV2 image to predict LAI and AGB over the study area
(Table 2). These narrowband greenness indices use spectral reflectance values in the red, red-edge,
NIR1 and NIR2 regions, and they produce a measure of the photosynthetic characteristics of vegetation.
Hence, narrowband greenness indices are more suitable measures of the biophysical variations and
vigour of green vegetation than broadband greenness vegetation indices. Vegetation indices shown in
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Table 2 were calculated for predicting AGB and LAI from WV2 data. Then, spectral bands of the WV2
satellite image and vegetation indices were stacked together to form one image with multiple layers
(15 layers) for further processing.

Table 2. Predictor variables generated from the WorldView-2 multispectral image for estimating above
ground biomass and leaf area index. NIR1, NIR2, red edge, red and green: surface reflectance of Near
Infrared 1, Near Infrared 2, red-edge, red and green wavelength regions, respectively.

Vegetation Index Band Relationship Source

Normalized Difference
Vegetation Index (NDVI) (NIR1 − red) / (NIR1 + red)

Rouse et al. [24] and
Ahamed et al. [10]

Normalized Difference Red
Edge index (NDRE) (NIR1 − Red Edge) / (NIR1 + Red Edge)

Ahamed et al. [10] and
Barnes et al. [25]

Green Normalized Difference
Vegetation Index (GNDVI) (NIR1 − green) / (NIR1 + green)

Ahamed et al. [10], Li et al. [26]
and Gitelson et al. [27]

Green Normalized Difference
Vegetation Index 2 (GNDVI2) (NIR2 − green) / (NIR2 + green) Mutanga et al. [28]

Normalized Difference
Vegetation Index 2 (NDVI2) (NIR2 − red) / (NIR2 + red) Mutanga et al. [28]

Normalized Difference Red
Edge index 2 (NDRE2) (NIR2 − Red Edge) / (NIR2 + Red Edge) Mutanga et al. [28]

Renormalized Vegetation
Index (RDVI) (NIR1 − red) /

√
NIR1 + red Li et al. [26]

Ratio Vegetation Index (RVI) NIR1/red Li et al. [26]

Modified Soil Adjusted
Vegetation Index (MSAVI) (1 + 0.5) (NIR1 − red) / (NIR1 + red + 0.5) Qi et al. [29]

The WV2 multispectral bands were resampled to a 5-m spatial resolution using the cubic
convolution resampling method. This was done to simulate remote sensing images from other
satellite missions that provide multispectral images within the same spectral region, such as RapidEye.
The number of band ratios and vegetation indices was calculated as explained in Table 2. The green
(506 nm–586 nm), red (624–694 nm), red-edge (699 nm–749 nm), NIR1 (765 nm–901 nm) and NIR2
(856 nm–1043 nm) bands of the WV2 image and the calculated band ratios and indices were stacked
together to form a single image with 15 bands of a 5-m spatial resolution for further processing.

An overlapping panchromatic image pair was oriented to ground coordinates following the digital
photogrammetric image orientation steps in the Leica Photogrammetric Suite (LPS)/ERDAS IMAGINE
software to obtain a stereo model of the area. The rational polynomial coefficients (RPC’s) calculated
during the image acquisition and ground control points extracted from the digital topographic map of
Darwin, Australia (scale of 1: 10,000), were used as references. Further, the quality of the stereo model
was assessed by comparison with ground control points. Then, outlines of the mangrove field plots
that were assessed in the field were digitised using a stereo model. To identify the four corners of field
plots in the image, the GPS locations, as well as the indirect measurements that were collected during
field sampling were used. To calculate the corresponding predictor variable values of each plot, all
pixels within a field plot polygon were considered. However, pixels that represented less than 70% in
extent within a plot were discarded from further calculation.

The study selected the digital cover photography method developed by Macfarlane et al. [30]
for calculating the LAI of field sampled mangrove trees. Since mangroves are densely clustered with
muddy soil underneath the canopy cover, the digital cover photography method is more reliable than
plant canopy analysers or area meters (LAI-2200C, LI-3100C, LI-COR 6400, etc.). Vertical photographs
of the canopy, pointing the lens of the camera upwards, were taken using a Panasonic Lumix DMC-FT2
compact digital camera. Two levelling bubbles were attached to the camera to ensure that photographs
were taken without a tilt. The camera was set to an aperture priority-automatic exposure mode. Due to
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the densely-clustered nature of mangroves, it is impossible to isolate one tree and take photographs
that represent its canopy area. Therefore, 16 evenly-spaced photographs were taken within each plot.
The number of trees within the plot was counted.

2.2.2. Estimating the Leaf Area Index

According to Macfarlane et al. [30], vertical photographs were used to estimate the large gaps
between mangrove trees, small gaps within mangrove trees, the proportion of the ground area covered
by the vertical projection of foliage and branches, the crown cover, the crown porosity and the
woody-to-total area ratio of each sampling plot. A detailed description of the method to estimate
LAI using digital photographs can be found in Macfarlane et al. [30], Pekin and Macfarlane [31] and
Heenkenda et al. [32].

All digital photographs were classified using eCognition software for further calculations.
By considering the contrast between vegetation and the background (the sky) of the photographs, areas
with higher blue reflectance values were classified as sky. The ratio between the reflectance of blue and
red bands was further considered to separate the background and the vegetation. The background was
further classified into large gaps (gL) between tree crowns and total gaps (gT), considering the relation
to neighbouring features. For example, if the area of the gap is less than 50 pixels and it is surrounded
by vegetation, it is classified as a small gap within a tree. Finally, a total number of pixels for large
gaps and small gaps was summed to obtain gT (see Heenkenda et al. [32] for the detailed description).

Vegetation was further classified into leaf area and branches/stems. The greenness values
were used to identify branches/stems from vegetation. Hence, the greenness was calculated from
photographs using Equation (1) [33].

Greenness = 2 × G − B − R (1)

where G, B and R represent the reflectance (intensity levels) recorded with the green, blue and red
bands of the digital camera.

The fraction of foliage cover (ff) that is the proportion of the ground area covered by the vertical
projection of foliage and branches [30,31,34] and the crown cover (fc) were calculated as Equations (2)
and (3).

fc = 1 − gL/ ∑ Pixels (2)

ff = 1 − gT/ ∑ Pixels (3)

where gL is the total number of pixels of large gaps (gaps between tree crowns), gT is the total number
of pixels of gaps, fc is the crown cover, ff is the fraction of the foliage cover and ∑ Pixels is the total
number of pixels of the photograph.

Considering these results, the crown porosity (φ), which is the proportion of the ground area
covered by the vertical projection of foliage and branches within the perimeter of the crowns of
individual plants, was calculated from the Equation (4):

φ = 1 − ff
fc

(4)

where ff is the fraction of the foliage coverage and fc is the crown cover.
The effective plant area index (Lt) includes the contribution from woody elements to the total

plant cover. Hence, it provides an overestimation for leaf area index [30]. The effective plant area index
was estimated using the modified version of the Beer–Lambert law as specified in Equation (5).

Lt = −fc ×
ln (φ)

k
(5)

where fc is the crown cover; φ is the crown porosity; and k is the canopy extinction coefficient.
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As Perera et al. [35] suggested, the canopy extinction coefficient (k) was taken as 0.5 for this study.
This represents the average value of already published k values for mangroves around the world.
The factor k mainly depends on stand structure and canopy architecture; therefore, different vegetation
types have different values. For example, Breda [36] reviewed k values for forest stands with broad
leaves and found a range of values from 0.42 to 0.58. Macfarlane et al. [30] assumed k =0.5 for eucalypt
forests. Finally, we calculated the woody-to-total area ratio (α) and the actual leaf area index (LAI)
from Equations (6) and (7) [37,38].

α =
∑ (AreaB)

∑ (AreaV)
(6)

LAI = Lt × (1 − α) (7)

where ∑ (AreaB) is the total area of branches, except leaves; ∑ (AreaV) is the total area of vegetation
including branches; and Lt is the effective plant area index.

The final results represented an actual LAI of individual plots or a cluster of trees. This was then
divided by the number of trees to get a value per tree.

2.2.3. Estimating the Above Ground Biomass

The study selected the allometric method for estimating AGB from field measurements. The basic
theory of the allometric relationship is that the growth rate of one part of the organism is proportional
to that of another [5], and therefore, it depends on measurable canopy dynamics, such as tree height
and DBH. Once the regression relationship between canopy dynamics is established, the regression
equation estimates the standing biomass of a tree. However, allometric relationships for mangroves
are species and site specific [5]. Therefore, special attention was given to use allometric equations
developed for mangrove species in Northern Australia or Southeast Asia. Since there was no equation
derived for Sonneratia alba and Excoecaria agallocha var. ovalis, the common equation developed by
Bai [39] for mangroves in the Northern Territory, Australia, was used (Table 3).

The logarithmic transformation of DBH values was calculated using Microsoft Excel software.
Equations from Table 3 were used to calculate Log10 (Biomass). Finally, the calculated above ground
biomass values were converted to AGB per square meter (unit = kg/m2) considering the extent of
each plot.

Table 3. Log10-transformed allometric relationships used for different mangrove species. The equations
are in the form of log10 (Biomass) = B0 + B1 ∗ log10 (DBH); where DBH is the diameter at breast
height; B0 and B1 are regression coefficients. These equations are specific to Northern Australia [39–41],
North-eastern Queensland, Australia [41], and Sri Lanka [20] (biomass in kg and DBH in cm).

Mangrove Species B0 B1 Study

Avicennia marina −0.511 2.113 Comley and McGuinness [40]
Bruguiera exaristata −0.643 2.141 Comley and McGuinness [40]

Ceriops tagal −0.7247 2.3379 Clough and Scott [41]
Lumnitzera racemosa 1.788 2.529 Perera and Amarasinghe [20]

Rhizophora stylosa −0.696 2.465 Comley and McGuinness [40]
Sonneratia alba −0.634 2.248 Bai [39]

Excoecaria agallocha var. ovalis −0.634 2.248 Bai [39]

2.3. Predicting LAI and AGB

Multivariate regression methods are some of the most-widely used methods for estimating plant
biophysical and biochemical variables, in particular for developing empirical models of variables of
interest based on satellite image data. Among them, partial least squares regression (PLSR) receives
much popularity, as it has been designed to outperform the problems of collinearity of prediction
variables and over-fitting with relatively few samples. Hence, PLSR is suitable when the number
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of predictor variables is large and they are highly collinear [26,42,43]. This study selected the PLSR
algorithm to model the relationship between field samples and satellite data. The “pls” package in R
software [44] was used for the calculation.

In its simplest form, PLSR specifies a regression model by projecting the predictor variables and
response variables to a new space. That is, data are first transformed into a different and non-orthogonal
basis similar to a principal component analysis, and the most important partial least square components
are considered for building a regression model. Hence, the PLSR procedure extracts successive linear
combinations of partial least square factors or components. Once the optimal number of partial
least square components is selected, the relationship can be predicted over a large area. A detailed
description of the PLSR algorithm is available in Mevik and Wehrens [44], Hastie et al. [45] and
Wang et al. [43].

The PLSR algorithm performs best with normalized data without outliers [45]. Therefore, the LAI
sample data were normalized with the mean equal to zero and the variance equal to one and analysed
for outliers. The mangrove field plot polygons were considered to extract predictor variable values from
all pixels within plots, as described previously for a 2-m spatial resolution. Finally, these sampled pixels
were randomly divided into two sets: training (70% of sample data) and validation (30% of sample
data). By using the “pls” package, the optimal number of components for the prediction or predictive
abilities of the model was assessed considering the prediction root mean square error (RMSEP).
To obtain RMSEP, the model was internally cross-validated using the leave-one-out cross-validation
method with training data. Once the optimal number of components was selected, the model was
used to predict LAI over the study area using the “raster” package in R software [46]. Finally, we
de-normalized the raster maps considering the mean and variance of the original field samples to
obtain real LAI values. A low pass filter (3 × 3 kernel) was applied to smooth data by reducing local
variation and removing noise. This process was repeated to analyse the spatial variation of LAI over
the Rapid Creek mangrove forest with predictor variables of a 5-m spatial resolution.

Field samples of log-transformed AGB values (allometric equations directly calculated
log-transformed AGB) were analysed for the normality and outliers. Then, the above process was
repeated to predict AGB over the study area. The sampling plot polygons were considered to extract
predictor variable values from all pixels within plots.

2.4. Accuracy Assessment

The accuracies of models were internally assessed using a leave-one-out cross-validation method
with training samples at all instances. However, the accuracy of the predicted LAI and AGB maps was
assessed using validation data. Approximately one third of field samples of LAI and AGB separately
was considered as the validation data (randomly selecting 30% of the sampling pixels within field
plots). Root mean squared errors (RMSE’s) and correlation coefficients (r) between predicted values
and field measurements were recorded.

3. Results

The locations of field plots are shown in Figure 1. Three field plots at the northeast corner of
the study area have low biomass values. Their DBH values vary from 1.5 cm to 3.5 cm, and tree
heights vary from 1.4 m to 3.6 m. Figure 2A–C shows mangrove trees in these areas. They are
newly-regenerated, small trees. Some areas are covered with large, wide-spread, multi-stemmed
mangrove trees (Figure 2D,E). Their DBH values vary from 10.0 cm to 19.0 cm, and heights range
from 4.0 m to 8.0 m. There are some areas especially near water features covered by densely-clustered
mangroves with different heights (Figure 2F,G).
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Figure 2. Mangrove trees inside the Rapid Creek forest; (A–C) small, newly-regenerated mangrove
trees; (D,E) large, multi-stemmed mangrove trees; (F,G) densely-clustered areas.

The normal score plot of field samples is shown in Figure 3. The normal score represents
alternative values to data points within a dataset that would be expected from a normal distribution.
Points on the reference line are closer to normality, and horizontal departures indicate departures
from normality. Hence, few sampled mangrove trees were removed from further calculations, as
they exhibited non-normality with extremely low or high values (Figure 3A,B). The normality was
measured with respect to the coefficient of determination of regression (R2). The R2 of LAI equals 0.96,
and the log-transformed AGB showed 0.9. Once outliers were removed, the remaining field samples
were normally distributed.
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(A)

 
(B)

Figure 3. Normal score plots of field estimates of (A) leaf area index and (B) log-transformed above
ground biomass.

3.1. Predicting AGB and LAI

A number of studies indicated PLSR as a powerful tool to extract spectral signatures and to create
reliable models of LAI [25]. The performance of the PLSR model: a “goodness of fit” is represented
by a root mean squared error of prediction (RMSEP). The RMSEP of the PLSR for LAI prediction
was 0.69 with four components when considering a 2-m spatial resolution. This value confirmed
a good relation between predictor variables and LAI field samples. Therefore, four components with
all predictor variables were used for final mapping. The RMSEP of a 5-m spatial resolution was 0.78
with six components. Six components with all predictor variables were used for final mapping. If the
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prediction model is perfect, the RMSEP and RMSE (the root mean squared error for training and
validation data) should be very similar. However, the RMSE values of LAI map with a 2-m and a 5-m
spatial resolution were 0.75 and 0.78, respectively (Table 4). Although the slight difference with respect
to a 2-m spatial resolution shows model overfitting, the model performance for 5-m spatial resolution
data was good.

Figure 4A–D shows the cross-validated predictions with selected components versus measured
values (or field samples). Most of the points (normalized LAI and AGB values) slightly deviate from the
aspect ratio = 1 line. However, there is no indication of a curvature or other anomalies. The validation
results (RMSEP) are shown in Figure 4.

 

Figure 4. Cross-validated predictions for the normalized leaf area index (LAI) and above ground
biomass (AGB): (A) predicted versus field measured normalized LAI with 2-m spatial resolution
predictor variables; (B) predicted versus field measured normalized LAI with 5-m spatial resolution
predictor variables; (C) predicted versus field measured normalized LogAGB with 2-m spatial
resolution predictor variables; (D) predicted versus field measured normalized LogAGB with 5-m
spatial resolution predictor variables. (RMSEP, root mean square error of prediction).

The predicted LAI map with a 2-m spatial resolution is shown in Figure 5A. The highest LAI
value is 13.0, and the lowest one is 0.2. The mean LAI value is 3.9 with a standard deviation of 1.1.
Approximately 70% of data ranged from 0.8 to 4.5. Although LAI values are normally distributed,
the pattern has a high dispersion. The majority of data values are between 0.8 and 4.5. LAI values are
high where closer to edges of water features. The upper right side of the map (Figure 5A) shows low
LAI values, and this area is dominated by relatively small recently re-generated mangrove plants.

The predicted LAI map with a 5-m spatial resolution is shown in Figure 5B. The highest LAI
value is 13.3, and the lowest one is 1.1. The mean LAI value is 4.2 with a standard deviation of 0.8.
More than 70% of LAI values are between 3.2 and 4.8 showing a normal distribution. However, LAI
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values are high where closer to edges of water features. The upper right side of the map (Figure 5B)
shows low LAI values, as shown in the map with a 5-m spatial resolution (Figure 5B).

When comparing Figure 5A,B at this scale, it can be seen that results obtained from 2-m spatial
resolution images provide finer LAI spatial variations than results from 5-m spatial resolution images.
However, at a larger scale, Figure 5A shows scattered LAI variation patterns. These patterns do not
correctly represent the spatial variations of mangrove trees around those areas and, thus, the spatial
distribution of LAI of the area.

The visual appearances of the AGB maps are in-line with the field observations. Most of
the areas having low AGB values are dominated by relatively small and young mangrove trees.
For instance, three field plots at the northeast corner of the study area (Figure 1) have low biomass
values. The average measured DBH in this area was 1.8 cm, and the average height of mangrove trees
was 1.6 m. Mangrove trees are dense and tall along the water features, and these areas showed high
AGB values.

When considering the performance of the PLSR model for AGB, the RMSEP for a 2-m spatial
resolution was 0.89 kg/m2; however, once predicted AGB over the study area, the RMSE was 2.2 kg/m2.
The correlation coefficient obtained with respect to validation samples was 0.4 (Table 4). Hence, it can
be concluded that the model was over fitted. The RMSEP for a 5-m spatial resolution was 1.7 kg/m2,
and the RMSE with respect to validation data was 2.0 kg/m2 with strong linear correlation between
predicted and sampled AGB values.

Figure 5. Predicted maps: (A) leaf area index with a 2-m spatial resolution; (B) leaf area index with
a 5-m spatial resolution; (C) above ground biomass with a 2-m spatial resolution; and (D) above
ground biomass with a 5-m spatial resolution; using the partial least squares regression algorithm.
The distribution of field sampling plots is shown in the maps (the sizes of the black squares are not
to scale).
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The predicted AGB values with a 2-m spatial resolution ranged from 0.12 kg/m2 to 425.5 kg/m2

with a mean value of 22.5 kg/m2 and a standard deviation of 8.1 kg/m2 (Figure 5C). AGB values with
a 5-m spatial resolution ranged from 0.12 kg/m2 to 423.2 kg/m2 with mean value of 18.4 kg/m2 and
a standard deviation of 7.2 kg/m2 (Figure 5D). At both instances, the AGB values showed a skewed
distribution rather than a normal distribution. The majority of the data (more than 70%) were in
between 30 kg/m2 and 267 kg/m2. The main reason should be the extremely large, multi-stemmed
Avicenna marina and Rhizophora stylosa mangrove trees in this forest. They were spread over a large
area without secondary forest underneath. The highest measured, as well as highest predicted AGB
values represent these areas (423.2 kg/m2 and 425.5 kg/m2).

3.2. Accuracy Assessment

The RMSE values with respect to the validation samples and correlation coefficients between
predicted values and validation samples were recorded (Table 4). We used randomly-selected,
approximately one third of field samples as the validation samples for both instances. Although
the AGB map with a 2-m resolution showed low linear correlation between predicted values with
validation samples, the LAI map showed a good correlation. AGB and LAI maps with a 5-m spatial
resolution showed a strong linear correlation between predicted values and validation samples.

Table 4. Root mean square errors (RMSEs) and correlation coefficients (r) for above ground biomass
and leaf area index maps with respect to the validation samples.

Biophysical Variable RMSE Correlation Coefficient

Spatial resolution 2 m 5 m 2 m 5 m
Above ground biomass (AGB) 2.2 kg/m2 2.0 kg/m2 0.4 0.8

Leaf area index (LAI) 0.75 0.78 0.7 0.8

4. Discussion

The major advantage of assessing AGB and LAI from remotely-sensed data is the estimation
of AGB and LAI over large areas without having extensive field campaigns. This is also a solution
for many logistical and practical problems arising with field efforts. For example, access to interior
extremely-dense mangrove patches is extremely difficult. In addition, the methods are non-destructive,
relatively fast and economical with less labour force.

4.1. Predicting LAI

Mangrove canopies are densely clustered with overlaps. Extended root systems and muddy
soil underneath the canopy cover make it difficult for sampling. Although the widely-accepted
method for LAI estimation is the simulation of canopy light profiles using conventional instruments,
such as portable plant canopy analysers or area meters, the digital cover photography method is
more reliable than conventional instruments for mangrove forests. The digital cover photography
approach is independent from the radiation condition of the forest and can be used for an extensive
sampling. This method was later tested for types of cameras, digital file compression, image size
and ISO equivalences, and little or no effect on estimating LAI was found [31]. Lui and Pattey [33]
also recommended using the digital cover photography method by comparing its results with LAI
estimation from conventional equipment.

The mean value of the predicted LAI map with a 2-m spatial resolution (3.9) is slightly lower than
previously-recorded mangrove studies around the world. For instance, Clough et al. [17] estimated the
LAI of Rhizophora apiculata mangrove forest in Malaysia using three different methods and obtained
mean LAI values: 4.9, 4.4 and 5.1. LAI of Avicennia marina plantations in Thailand varied from 0.5 to
5.0. For the homogeneous mangrove stands at Moreton Bay, Australia, LAI values ranged from 0.26 to
3.23 with 1.97 as the mean value [15]. Kamal et al. [15] also assessed heterogeneous mangrove stands
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at Karimunjawa Island, Indonesia, and obtained LAI values from 0.88 to 5.33 (mean value = 2.98).
A remote sensing study on LAI in the British West Indies showed a range from 0.8–7.0 with 3.96 as the
mean. Statistics from the predicted LAI map of this study with a 5-m spatial resolution (4.2) was as
close as previous mangrove studies. However, comparing results from this study with other studies is
not a perfect approach to make a conclusion regarding the spatial distribution of LAI. They are site
and species specific. When looking at cross-validated predictions, most of the predicted LAI values are
lower than field sample values (Figure 4A,B). One consideration is the canopy extinction coefficient (k)
used to calculate Lt. Although the used value (0.5) represents the average of already published k values
for mangroves around the world, this might not be the correct value for this area. Further, LAI values
vary with the spatial resolutions of remote sensing images used for data processing. Kamal et al. [15]
recently confirmed that the accuracy of LAI estimation was site specific and depends on the pixel size
of the remotely-sensed images, and their study even indicated two different LAI distribution patterns
for homogeneous and heterogeneous mangrove forests.

The performance of the PLSR model: a “goodness of fit” is represented by a root mean squared
error of prediction (RMSEP). The accuracy of the predicted maps was assessed using the root mean
squared error (RMSE) compared to the validation samples. If the prediction model is perfect, RMSEP
and RMSE (the root mean squared error for training and validation data) should be very similar.
However, in this study, values related to a 2-m spatial resolution are slightly different, indicating
a model overfitting. The best model performances were shown when using a 5-m spatial resolution.
According to Zheng and Moskal [47], the accuracy of LAI estimation depends on two main reasons:
overlapping and clumping between leaves within canopies due to the non-random distribution of
foliage and light obstruction from canopy branches, trunks and stems. The first reason relates to this
study, as well, due to mangrove canopy overlapping. The latter will not be a problem because of using
vertical photographs rather than simulating light transmission. Another reason for obtaining low
accuracies with a 2-m spatial resolution than a 5-m spatial resolution would be the spatial mismatch
between field samples and predictor variables due to positional errors.

To establish the relationship between field samples and predictor variables, a corresponding
predictor pixel value for each field sample should correctly be extracted. Hence, the positional
accuracy of field samples and the pixel size is important. Laongmanee et al. [48] assessed the optimal
spatial resolution for estimating the LAI of Avicennia marina plantations in Thailand. The best results
were produced by satellite images with a 10-m spatial resolution. Although there is still room to
confirm this finding, Green and Clark [18] suggested analysing the information of satellite data within
a 5 m × 5 m block of pixels regardless of the spatial resolution for LAI estimation. Green and Clark [18]
also argued that although high resolution satellite data provide significantly greater levels of accuracy,
they were not capable of fixing positional errors. Hence, it is clear that the satellite data with a 2-m
spatial resolution are not suitable to establish this match-minimizing effect from the positioning errors.
According to this study, although 2-m or 5-m spatial resolutions can interchangeably be used for
mapping LAI in the Rapid Creek mangrove forest, we would recommend testing a 5 m × 5 m block of
pixels regardless of the spatial resolution for LAI estimation, as suggested by Green and Clark [18].
Further, we would recommend using the transect method for field sampling to minimize positional
errors. Two ends of transects can be established outside the mangrove forest with DGPS (differential
GPS). Then, all other measurements can be based on the established transect line with greater accuracy.

4.2. Predicating AGB

We used allometric equations for AGB calculation. Allometric relationships are highly species
specific and less site specific [5,19]. Although special attention was given to using allometric
relationships that were specifically developed for Northern Territory, Australia, mangrove species, we
used some equations that were developed for Northern Queensland, Australia, and Sri Lanka. In this
study, it was not possible to use the common equation proposed by Komiyama et al. [19], as it requires
the vegetation density, which we did not measure in the first place. Therefore, for the mangrove species
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for which we could not find already developed allometric equations, we used a generic equation
developed by Bai [39] for the Northern Territory, Australia, mangroves.

Some of the sampled Avicennia marina and Rhizophora stylosa species are multi-stemmed mangrove
trees. As explained by Clough et al. [49], when there are multi-stemmed mangrove trees, each branch
should be treated as a discrete tree, and the dry weight of the common butt should be included to
obtain a robust AGB of the tree. However, this discrepancy is important if the consideration is to
calculate the AGB of different woody parts of trees only, rather than total AGB [49]. Hence, in this
study, we treated each branch of multi-stemmed mangrove trees as a separate tree. The dry weight of
the common butt was neglected.

The predicted AGB maps are approximately in-line with visual field observations and AGB
calculations. Along water features, mangroves exhibit high AGB values. Mangroves are known to
have low productivity where closer to the landward margin [35]. These areas experience relatively less
tidal inundation frequency and shorter duration together with a minimal freshwater influence [50].
The low productivity is also connected with higher salinity and less nutrients, and this is strongly
evidenced in the Rapid Creek mangrove forest. Above ground biomass varies with the age of the tree,
temperature, solar radiation and oxygen, as well [51]. In this study area, there is no doubt that all
trees would experience the same temperature, solar radiation and oxygen, but the age of trees, salinity
and nutrients levels are different. As some parts of the Rapid Creek mangrove forest are regenerated
forests after clearings and natural disasters, there are trees with different ages. Especially closer to the
northeast corner of the forest, trees are younger than the rest of the forest and small, and they showed
low AGB values.

When considering the performance of the PLSR model for predicting AGB with a 2-m spatial
resolution, it was found that the model was over fitted (Figure 4). The high spectral variation and
shadows caused by canopy may create difficulty in developing PLSR model. However, the model
performance for a 5-m spatial resolution was at an acceptable level. There was a strong linear correlation
between predicted and field sample AGB values. The correlation coefficient is relatively high compared
to the very limited number of mangrove studies that are available to-date without indicating any
model overfitting. As we suspected earlier when estimating LAI from satellite data, one reason for
obtaining low accuracies with a 2-m spatial resolution than a 5-m spatial resolution would be the spatial
mismatch between field samples and predictor variables due to positional errors. When estimating
AGB from satellite data, a 5-m spatial resolution would be the most suitable approach against a 2-m
spatial resolution.

Although there are several studies investigating the relationship between the physical parameters
of mangrove trees and AGB and developing allometric equations, there is a limited number of
recorded studies mapping the spatial distribution of AGB over large areas around the world.
For instance, in Qi’ao Island, Guangdong Province, China, predicted AGB of mature Kandelia candel

mangroves ranged from 15.51 kg/m2 to 40.66 kg/m2 with the average value of 24.77 kg/m2, and
artificially-restored Sonneratia apetala mangroves ranged from 3.4 kg/m2 to 23.42 kg/m2 with the
average value of 11.38 kg/m2 [16]. However, in this study, we did not find Kandelia candel and
Sonneratia apetala mangroves, and thus, this limits the comparison possibilities.

Apart from the statistical analysis of model accuracies, the authors are confident about the LAI
and AGB model performances with respect to a 5-m spatial resolution at the northeast corner of the
study area, southern areas and areas along water features. For instance, as shown in Figure 2A–C,
northeast areas are dominated by regenerated small mangrove trees. Southern areas have relatively tall
and dense mangroves. There is no recorded natural or anthropogenic disasters related to these areas,
and mangrove trees are relatively mature. However, the model performances along the western edge
of the mangrove forest are confusing. These edges are dominated by Lumnitzera racemosa mangrove
trees and are tall and mature with relatively small DBH values (around 5 cm). On the other hand,
these trees receive less amounts of water, thus nutrients, compared to the other areas due to ground
height variations.
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The canopy height model of the vegetation has a direct and increasingly well-understood
relationship to above ground biomass, and therefore, one of the best predictors for biomass would be
a canopy height model [8]. Simard et al. [12] also used elevation data derived from the Shuttle Radar
Topography Mission (SRTM) for estimating mangrove heights and above ground biomass. They used
airborne laser scanning data and extensive field samples to calibrate these elevation data. We created
an accurate digital surface model of the area using a pair of WV2 panchromatic images. However, due
to the lack of elevation data with reliable accuracy, we were not able to create a canopy height model
of the area. Hence, although we identified the possibility of integrating the canopy height model as
a predictor variable, we did not use it.

In this study, we did not consider very small gaps (less than 2 m) between mangrove trees due to
processing difficulties with the spatial resolutions with which we dealt. Rather than masking out large
non-mangrove areas from satellite images, we would suggest identifying gaps between mangrove
trees and excluding them from further analysis. This would remove the noise of predicted images.
Additionally, the complexity of species composition, stand structures and the densely-clustered nature
of mangrove forests might add some errors, forming mixed pixels of remotely-sensed data.

5. Conclusions and Recommendations

One of the key issues associated with effective planning and management of mangrove forests is
up-to-date information about the ecosystem. To collect information, extensive field sampling is difficult
and time consuming. Compared to other terrestrial ecosystems, a few studies that are associated with
field samples and remotely-sensed data for producing thematic maps over mangrove forests can be
found. This study investigated mapping above ground biomass (AGB) and leaf area index (LAI) from
WorldView-2 satellite images and field samples. Site- and species-specific allometric relationships were
used for calculating above ground biomass for sampled trees. The leaf area index was obtained from
the digital cover photography method. Hence, the field sampling process was fast and economical.

The relationships between both biophysical variables, LAI and AGB, with predictor variables
(2-m spatial resolution) were established separately using the partial least squares regression algorithm.
Once these relationships were established, they were used to predict response variables over the study
area. The accuracies of predicted maps were analysed compared to validation samples. The process
was repeated for the predictor variables with a 5-m spatial resolution. The LAI map with a 2-m spatial
resolution showed a root mean square error of 0.75, and the map with a 5-m spatial resolution showed
a root mean square error of 0.78 compared to the validation samples. The correlation coefficients
between field samples and predicted maps were 0.7 and 0.8, respectively. Root mean square errors
obtained for AGB maps were 2.2 kg/m2 and 2.0 kg/m2 for a 2-m and a 5-m spatial resolution, and the
correlation coefficients were 0.4 and 0.8, respectively.

The satellite data with higher spatial resolution should be associated with accurately-positioned
field samples. Therefore, we would suggest implementing the transects method for field sampling
and establishing end points of these transects outside the mangrove forest with a highly accurate
positioning system, such as a differential GPS. Further, we would recommend analysing a 5 m × 5 m
block of pixels regardless of the spatial resolution for LAI and AGB estimation.

In conclusion, the study demonstrated the possibility of assessing the biophysical variations of
mangroves using WorldView-2 satellite data. This would lead to better mangrove conservation and
management of the Rapid Creek area.
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Abstract: The assessment of storm damages is critically important if resource managers are to
understand the impacts of weather pattern changes and sea level rise on their lands and develop
management strategies to mitigate its effects. This study was performed to detect land cover
change on Assateague Island as a result of Hurricane Sandy. Several single-date classifications were
performed on the pre and post hurricane imagery utilized using both a pixel-based and object-based
approach with the Random Forest classifier. Univariate image differencing and a post classification
comparison were used to conduct the change detection. This study found that the addition of the
coastal blue band to the Landsat 8 sensor did not improve classification accuracy and there was
also no statistically significant improvement in classification accuracy using Landsat 8 compared
to Landsat 5. Furthermore, there was no significant difference found between object-based and
pixel-based classification. Change totals were estimated on Assateague Island following Hurricane
Sandy and were found to be minimal, occurring predominately in the most active sections of the
island in terms of land cover change, however, the post classification detected significantly more
change, mainly due to classification errors in the single-date maps used.

Keywords: Assateague Island; Hurricane Sandy; change detection; Landsat 8;
object-based classification

1. Introduction

Hurricanes and other large coastal storms have significant impacts on human and vegetation
communities but they are also important agents of ecological succession in coastal ecosystems [1,2].
There are direct impacts to coastal vegetation such as damages caused by wind and storm surge [3,4] or
from increased soil salinity following a storm surge [2,5,6]. These impacts can alter vegetation patterns
within coastal habitats causing minor to irreversible changes to the landscape which in turn affects the
wildlife communities that utilize these unique and rare coastal habitats. It is expected that there will be
an increase in the frequency and intensity of hurricanes and other extreme storm events due to the
effects of changing global weather patterns [7,8]. Sea level is also expected to continue rising due to
glacial melting resulting in larger storm surges, greater flood damage and shoreline erosion [7,9,10].
These factors make the accurate assessment of hurricane damages to coastal ecosystems critically
important if resource managers are to understand how these changes may impact their lands so
improved management strategies can be developed [2,6,9].

These kinds of assessments need to be rapid and be easily repeatable so that potential problem
areas can be identified and mitigation strategies developed in a timely manner [11]. Remote sensing
provides a means by which hurricane impacts can be assessed over large areas quickly, accurately,
and repeatedly [2,5,6]. Because of its repetitive data collection, synoptic view, and digital format,
remotely sensed data has become an important resource for monitoring land cover change resulting
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from human and natural processes [12] and has been extensively used in a number of other studies
assessing hurricane damage to coastal ecosystems [2–6,9,13–15]

There is a variety of satellite remotely sensed imagery that can be utilized for studies involving
land cover classification and change detection. For over 40 years the Landsat program has been
providing moderate spatial resolution imagery that has proven to be invaluable for a large number
of studies in a wide variety of different disciplines [16,17]. While there are a number of sources for
higher spatial resolution imagery (e.g., Ikonos, Quickbird, Worldview), Landsat imagery has higher
spectral resolution (i.e., senses in more wavelengths) than most high spatial resolution data, covers
a larger extent, and since 2008 is freely available, making repeat land cover analysis possible. The
latest generation of Landsat satellites, Landsat 8, was launched 11 February 2013 and brings with
it several improvements. Previous Landsat sensors had a radiometric resolution of 8 bits or 256
possible values, but the new Operational Land Imager (OLI) sensor onboard Landsat 8 collects 12 bit
data which increases the number of potential values to 4096. This increase in radiometric resolution
enhances the sensor’s ability to detect small changes in the amount of energy reflected from objects
on the Earth surface and can lead to an improved ability to distinguish between objects with similar
spectral patterns [18]. The OLI also has three new bands, a blue band for coastal and aerosol studies, a
shortwave infrared band for cloud detection, and finally a quality assessment band used to indicate
possible bad pixels [19]. Furthermore, the spectral range of most of the original bands, especially the
NIR and SWIR bands, were narrowed to reduce the effects of water absorption [20,21]. Because of
these improvements, Landsat 8 is expected to produce superior analysis results compared to previous
Landsat sensors [22–24]. Given the recent availability of this imagery, little work has been formally
published testing these enhancements; nevertheless, a few have shown improved results [20,25].

Land cover classification has typically been accomplished using a pixel-based approach, where by
each pixel is independently classified using only the spectral reflectance values for that pixel [26–28].
Recently, object-based image analysis (OBIA) has been utilized for image classification and change
detection and has resulted in a significant improvement in accuracy especially for high spatial
resolution imagery [29–32]. Unlike the traditional pixel-based approach, OBIA starts by first
segmenting an image into spatially and/or spectrally homogenous, non-overlapping, groupings
of pixels known as image objects. The objects are then assigned a land cover class much like pixels
by a classification algorithm. Objects have an advantage over pixels in that they contain spatial and
spectral information that single pixels do not such as mean band values, mean ratios, size, shape, and
topological relationships that can all be utilized during the classification process [33,34].

OBIA is frequently used to extract information from high resolution imagery; however, it is
not limited to such imagery. While it can be used with moderate resolution data like Landsat, it
has been unclear whether there is an improvement in accuracy when doing so. Studies that have
made comparisons between pixel-based (PBC) and object-based (OBC) classification with moderate
resolution data have reached differing conclusions; some finding OBC outperformed PBC [35–37]
while other have found the opposite to be true [38]. Several studies found no significant difference
between methods [39,40].

Detecting and measuring change is important when studying natural resources. It can be
accomplished using two broad approaches. The first approach involves the comparison of two
individually classified maps. Post classification comparison (PCC) is a very popular method within this
approach and is perhaps the most commonly used methodology for change detection in general [41].
It involves overlaying two land cover maps from different dates and identifying the differences
between the classifications. The second approach involves analyzing multi-temporal data concurrently.
While the second approach is comprised of numerous methodologies, univariate image differencing
(UID) is often cited as the preferred method [42]. Furthermore, it is also the recommended change
detection method of the National Oceanic and Atmospheric Administration (NOAA) Coastal Change
Analysis Program (C-CAP) which, as part of the program, developed a comprehensive protocol for the
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implementation of land cover classification and change detection for coastal regions in the US from
remotely sensed data [43].

The main objective of this study was to quantify and qualify the type and amount of land cover
change that occurred on Assateague Island as a result of Hurricane Sandy. In addition to detecting land
cover change, several additional objectives were established including, evaluating the contribution
of the new Landsat 8 bands to classification accuracy, comparing the performance of Landsat 8 for
land cover classification with Landsat 5, comparing OBC and PBC using moderate resolution data,
and comparing the results of PCC to UID for change detection. Our results show that given the level
of classification detail (i.e., map classes) in this study, the new Landsat 8 coastal blue band did not
improve classification accuracy. Also, there was no statistically significant difference in classification
accuracy between using Landsat 8 compared to Landsat 5, again at the level of land cover detail
utilized. Furthermore, there was no significant difference between OBC and PBC. Finally, while land
cover change totals were found to be minimal on Assateague Island, issues of thematic error associated
with the PCC methodology results in significantly higher amounts of change identified compared to
the UID.

2. Methods

2.1. Study Area

Assateague Island is an undeveloped barrier island and part of the Delmarva
(Delaware-Maryland-Virginia) Peninsula on the Mid-Atlantic Coast (Figure 1). Assateague is
managed by three government agencies. The National Park Service (NPS) manages most of the land
within the Maryland portion of the island as well as some within Virginia. The U.S Fish and Wildlife
Service (USFWS) manage the lands within the rest of Virginia known as the Chincoteague National
Wildlife Refuge. The third agency is the Maryland Park Service (MPS) who manages a small, 3 km
long portion of the island within Maryland as a state park. The island is mostly undeveloped with the
exception of a few roads and parking lots, as well as campgrounds [44]. Coastal storms are responsible
for creating and maintaining a number unique habitat types that support a variety of important
species such as the threatened piping plover (Charadrius melodus) as well as numerous migratory birds,
deer, and the famous wild horses [45].
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Figure 1. States shown include Delaware (DE), Maryland (MD), and Virginia (VA), located in the
United States. The study area boundary shown in red includes both Assateague Island (dark grey) and
a portion of the surrounding mainland (light gray).

The island can be broken into three sections. The northern 10 km of the island, also known as
the North End, is a dynamic, storm structured environment that is much lower and narrower relative
to the rest of the island. The North End has seen significant changes as a result of anthropogenic
modifications. A jetty built in 1934 to hold open the Ocean City inlet has disrupted longshore transport
from the north and thus starves the North End of sand leading to increased erosion [46,47]. The low
and narrow characteristics of the North End make it vulnerable to storm waves and overwash and
thus erosion [44]. The middle of the island is widest section and the oldest. It includes a substantial
amount of maritime forest and is the most stable portion of the island. The southern portion of the
island is known as Tom’s Cove Hook and is an accretionary spit that has grown 6 km since the 1800s
and continues to develop southward.

The study area for this project, depicted by the red outline Figure 1, encompasses not only
Assateague Island but Sinepuxuent and Chincoteague Bay to the west as well as a portion of the
surrounding mainland. While the main focus of this study was assessing the impact of Hurricane
Sandy on Assateague Island, in order to expand the usefulness of this dataset, the surrounding
main lands were included as well since they can have ecological impacts on the resources within
Assateague [45]. The mainland is a mixture of both natural and manmade cover types, including
forest, shrubland, agriculture and development. Significantly more anthropogenic modifications to
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the landscape occur on the mainland compared to Assateague Island. While the entire study area
was classified and assessed for change, the change detection results will be elaborated on in terms of
changes on Assateague Island.

2.2. Imagery

For this study, data from two Landsat satellites were used. The pre-Hurricane Sandy imagery was
collected by the Landsat 5 Thematic Mapper (TM) sensor while the post-Hurricane Sandy imagery was
collected by the Landsat 8 OLI sensor. Hurricane Sandy struck the east coast in October 2012, almost a
year after Landsat 5 was decommissioned (November 2011). While Landsat 7 was functional during
the time of the hurricane, the failure in the scan line corrector made the data unusable for this study.

Two multi-temporal layer stacks were created, one for before the hurricane and the other for
after. Two images were picked for each stack, an early spring, leaf-off image and a late summer
image to capture the full phenological differences between classes. All imagery was downloaded from
USGS EarthExplorer (http://earthexplorer.usgs.gov). In addition to the seasonal requirements, all
imagery had to be cloud free and have near anniversary collection dates within each season in order
to avoid substantial differences in phenology between dates. Table 1 shows the collection dates for
the imagery used. The summer images were collected within 5 days of each other, however, there
was more than a month between the pre and post hurricane early spring imagery. Because Landsat 8
was launched February 2013, the earliest images available are in April 2013. There were no cloud free
Landsat 5 images available until 8 March 2011. Ultimately, the summer images were more important
for classification and change detection thus it was more important that these images be collected as
close to each other as possible. Also, despite the month or so difference in the spring images, the
phenology of the vegetation was consistent between the images.

Table 1. Imagery collection dates.

Layer Stack Sensor Spring Image Summer Image

Pre-Hurricane Sandy Landsat 5 TM 8 March 2011 31 August 2011
Post-Hurricane Sandy Landsat 8 OLI 14 April 2013 5 September 2013

2.3. Image Processing

All images were pre-processed prior to performing single-date classifications and change detection
using the ERDAS Imagine 2014 software [48]. The imagery for each date and season was first layer
stacked and clipped to the study area. The COST correction method [49] was used to radiometrically
and atmospherically correct all the images for increased comparability. The original COST correction
Equation (1) is shown below along with a table describing the equation variables (Table 2).

ρ =

[

πd2
(

Lmin +
DNi(Lmax−Lmin)

DNmax

)

−
(

Lmin +
DNmin(Lmax−Lmin)

DNmax

)

−
(

.01d2cos2θz
πEsun

)]

Esuncos2θz
(1)
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Table 2. Description of COST parameters.

Variable Description

d The sun-earth distance at time of collection
Lmin and Lmax Spectral radiance calibration factors

DNi The DN value at pixel i

DNmin
Band specific minimum DN value as determined by

user

DNmax
Maximum possible DN value for the data ( ex. 255 for

8 bit)
Esun Solar spectral irradiance

θz
Local solar zenith angle ( 90º- local solar elevation

angle)

Lmin and Lmax can be found in the image metadata along with the solar elevation angle needed to
calculate θz. Esun and d can be found in Chander and Markham [50]. The band specific DNmin value
is found through histogram exploration of each band. The above equation was adjusted in order to
perform the correction of the Landsat 8 imagery. Landsat 8 no longer requires that the imagery be
processed to radiance before converting to Top-of-Atmosphere reflectance (TOA). Instead, each band
can be processed directly to TOA using a constant multiplicative and additive rescaling factor provided
in the image metadata. Equation (2) presents the updated COST correction formula for Landsat 8.

ρ =

(

(DNi ∗ 0.00002 − 0.1)
cos2θz

)

−
(

(DNmin ∗ 0.00002 − 0.1)
cos2θz

)

− 0.01 (2)

Once corrected, derivative layers were generated in order to provide additional information along
with the original spectral bands and to improve classification accuracy. Two vegetation index layers
were generated for each image, a normalized vegetation index (NDVI) layer and a moisture stress index
(MSI) layer. In addition to the vegetation index layers, three tasseled cap (TC) transformation feature
layers (brightness, greenness, wetness) were also generated using the transformation coefficients for
Landsat 5 and Landsat 8 taken from Crist et al. [51] and Baig et al. [52] respectively. The tasseled cap
transformations for both sensors make use of the visible band (R, G, and B) as well as the Infrared
bands (NIR, SWIR 1, SWIR 2). The Landsat 8 transformations do not utilize the coastal blue band. The
corrected imagery and the five derivative layers were then stacked to create a single-date image stack.
For each time period, pre-hurricane and post-hurricane, the early spring and late summer images were
then stacked together to form the final multi-temporal image for classification.

2.4. Land Cover Classification

Land cover classification was carried out in three basic steps. First, reference data were collected
for classification training and accuracy assessment. Next a series of classifications were completed.
First the new coastal blue band was tested to assess its contribution to the overall classification accuracy.
Then, the pre and post hurricane imagery were classified using both the PBC and OBC approaches. In
the last step, the accuracy of all maps was calculated and statistically compared to fulfill several of the
research objectives.

2.4.1. Reference Data Collection

A modified version of the NOAA C-CAP classification scheme [43] was chosen for all the land
cover mapping in this study (Figure 2). The original 25 classes were condensed to 10 based upon a

priori knowledge of the study area and an examination of previously generated NOAA C-CAP land
cover maps. The classes in bold are the final land cover classes used. To improve classification accuracy,
four temporary classes were added in order to decrease the spectral variability of the developed and
unconsolidated shore classes.
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Figure 2. Modified National Oceanic and Atmospheric Administration (NOAA) Coastal Change
Analysis Program (C-CAP) classification scheme organized hierarchically. Land cover types in bold,
are the cover types of interest in this study. Land cover types in circles represent temporary classes that
were aggregated for the final maps.

Reference data are samples of the land cover classes defined by the classification scheme and are
used independently for developing the classification model (i.e. training) and assessing map accuracy.
Units that were selected for inclusion as reference data had to meet several requirements outlined in
Congalton and Green [53]: (1) the sample had to at least 90 m × 90 m in size, or 3 × 3 Landsat pixels
; (2) the area within each sample had to be spectrally homogenous (only one cover type); (3) a high
degree of variation had to be captured for each class; and (4) the samples had to well distributed across
the study area in order to avoid spatial autocorrelation.

The goal was to collect 100 samples per land cover class [53]. The reference samples were first
carefully inspected using high resolution imagery (2011 and 2012 National Agricultural Inventory
Program (NAIP) imagery and Google Earth). Sample unit labels were adjusted as needed. Field
reconnaissance was performed between July and August 2014 to confirm the land cover labels of
the selected reference data. Following the field reconnaissance, further photo interpretation was
conducted to carefully edit the remainder of the reference samples. The final sample totals can be
seen in Table 3. The goal of at least 100 samples was reached for all classes but scrub/shrub and
unconsolidated shore. These two classes encompassed a small percentage of the study area and/or
occurred in small patches that did not meet the minimum mapping unit. In order to avoid spatial
autocorrelation and spectral redundancy, fewer samples were collected [54]. The samples were divided
to achieve 50/50split between those samples used for training and those used for accuracy assessment.
In the case of scrub/shrub and unconsolidated shore, at least 50 samples were needed to ensure the
accuracy assessment was statistically valid for those classes and the remainders were used for training.
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Table 3. Number of reference data samples collected for each land cover class.

Land Cover Class Total Samples Training Accuracy

Agriculture 106 53 53
Deciduous Forest 102 52 50

Developed 121 71 50
Estuarine 100 50 50

Evergreen Forest 100 50 50
Mixed Forest 100 50 50
Open Water 121 61 60
Palustrine 105 55 50

Scrub/Shrub 85 35 50
Unconsolidated Shore 85 35 50

2.4.2. Land Cover Classifications

All classification processes were performed using Trimble eCognition Developer 9.0 [55]. Prior to
classification, an analysis was performed to determine the best parameters for segmentation using
the multi-resolution segmentation algorithm. The multiresolution segmentation algorithm requires
three user defined parameters, scale, shape, and compactness. While all three play a role in the
general shape and size of the polygons, the scale parameter has been found to have a significantly
greater control since it ultimately controls the amount of heterogeneity allowed in each segment [56].
Scale values from 2 to 40 were tested to determine the optimal scale parameter while the shape and
compactness parameters were held at 0.2 and 0.5 respectively. Three methods were used to determine
the optimal scale, autocorrelation [57], average local variance [58,59], and a measure that combines
both autocorrelation and segment variance known as the objective function [60]. The multiresolution
segmentation algorithm was used to perform a series of segmentations with equal weight assigned
to all bands in the image. The mean and standard deviation of the summer NIR band was exported
along with the final vector for all segmentations. A visual assessment of the “optimal” scale value
determined by each method was performed and a final scale was chosen. The same process was used
to determine the optimal scale parameter for both the pre and post-hurricane images separately. Due to
differences in the sensors that collected each image, it was not appropriate to use the same parameters.

An initial classification was performed on the post-hurricane summer image to assess the
contribution of the new coastal blue band to overall classification accuracy. An object based
classification was performed using the Random Forest (RF) classifier [61] (called Random Trees
in eCognition). After segmenting the image using the optimal parameters, the image segments were
intersected with the training data in order to select the training sample segments for the RF classifier.
The RF classifier is simple to run and only requires two parameters, the number of trees and the
number of randomly selected explanatory variables to select at each split. The number of trees has
to be high enough to ensure the out of box (OOB) error, or accuracy of the model, converges (once
converged the additional trees neither increases or decreases the OOB error) but the number of selected
variables can have an effect on the strength of the individual trees and the correlation between trees [61].
Rodriguez-Galiano et al. [62] found that once convergence is reached, the number of randomly selected
variables has very little effect on classification accuracy allowing it to run with little guidence. For this
study, each forest was grown using 500 trees and the square root of the number of available features
which is the default value for the number of randomly selected variables. While in an object-based
environment the model can be trained using a number of object features such as spectral and shape,
for this test only the mean spectral values were used to ensure that the RF classifier was only able
to choose from the spectral bands while developing the classification model. The classification was
performed twice, once with the coastal blue band and once without and the accuracy of each map
was calculated and compared. The results determined whether the coastal blue band would remain
included in the post-hurricane image.
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The post-hurricane and pre-hurricane imagery were then fully classified using both an OBC and
PBC with the RF classifier. After segmenting the image using the optimal parameters, the training
segments were again selected by intersecting the sample units with the image segments. With a
PBC, the model is trained solely on the mean and variance of all the bands and then applied to the
unclassified pixels, not the remaining image objects. With an OBC, the model can be trained using a
number of object features in addition to the mean band values and variance which is then applied to
unclassified segments. The input features used to train the classifier in the object-based environment
are given in Table 4.

The open space, other developed, unconsolidated far and near shore classes that were included in
the classification as temporary classes in order to break down the spectral variance of the developed and
unconsolidated shore classes were aggregated up one level (to unconsolidated shore and developed)
following the classification.

2.4.3. Accuracy Assessment

All land cover classifications underwent an accuracy assessment using the independent reference
data set. A traditional tally-based error matrix [63] was generated for each classification. The overall
accuracy as well as the kappa were all calculated from the error matrix [63]. For each of the object-based
classifications, an area-based error matrix [64] was also generated and the overall and kappa were
calculated. Several pairwise kappa comparisons took place between the numerous classification results.
First, the error matrices for the post-hurricane band testing were compared to assess whether there
was a significant difference in classification accuracy when the coastal blue band was included in
the classification. Next, a comparison took place between the OBC and PBC for both the pre and
post-hurricane images to determine whether the classification method produced significantly different
accuracies. Finally the matrices of the pre and post-hurricane maps were directly compared for both
classification methods (OLI-PBC vs. TM-PBC and OLI-OBC vs. TM-OBC) to determine if there was a
significant difference in accuracy using Landsat 8 compared to Landsat 5.

Table 4. Input features for object-based classification.

Spectral Feature Spatial Features Thematic Features

Mean Layer Values
Standard Deviation

Minimum Pixel Value
Maximum Pixel Value

Mean Difference to Neighbors
Mean Difference To Super-Objects

Ratio To Super-Objects
Difference in NDVI and NLWM

Difference in NIR, SWIR1, SWIR2

Area
Border Length

Length
Width

Length/Width

Min and Maximum % overlap
with the National Wetland

Inventory data layer

2.5. Land Cover Change

2.5.1. Univariate Image Differencing

A univariate image differencing was first carried out using the protocols outlined in Dobson et

al. [43]. A pixel-by-pixel subtraction, also known as image differencing, was performed using the pre
and post-hurricane NDVI layers and added into eCognition along with the vector boundaries of the
object-based post-hurricane classification. The multi-resolution segmentation algorithm was used to
segment the NDVI difference layer. During the segmentation, the polygons from the post-hurricane
classification acted as boundaries and the segments were then assigned a class according to the thematic
polygon it fell within [38] so that class specific change thresholds could be determined as explained in
Xian et al. [65]. Change thresholds were determined using a visual assessment with the goal of reducing
omission as much as possible especially on the island. Change thresholds were determined for all
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classes except for estuarine wetland to avoid errors associated with the higher tide in the pre-hurricane
summer image. Using the different change thresholds, the segments were classified as either change or
no-change based on their mean NDVI difference.

The next step in the process was to assign the pre-hurricane land cover class to each change area.
Prior to this, reference samples that fell within the segments labeled as change were removed and new
training samples selected using photointerpretation. The pre-hurricane image and updated training
data were then used to classify only those areas that were labeled as change. The classified change
areas were merged with the post-hurricane image to form a new complete pre-hurricane image.

2.5.2. Post Classification Comparison

In addition, a PCC between the two single-date maps was conducted to compare the results of the
univariate image differencing as described above against the results of the PCC. The two single-date
maps were overlaid. Areas that exhibited a change in land cover type between dates were considered
changed. Since these changed areas were already classified for both dates, no further classification
was necessary.

3. Results

3.1. Land Cover Classification

An initial classification was performed on the post-hurricane summer image to assess the
contribution of the new coastal blue band to overall classification accuracy. The RF classifier calculates
the importance of each variable in terms of model accuracy automatically while generating the
classification model. Table 5 gives the importance value of each band after running the RF classifier on
all bands in the summer image. Importance values greater than 0, indicate that the band was used at
a node within the model to generate a decision rule. Since all bands have a value greater than 0, all
bands were used at some point in the development of all the individual decision trees. Higher values
indicate that the band has a greater impact on classification accuracy; so for example, the NIR band
had the greatest impact on the accuracy of the model. The coastal blue band is at the very bottom
of the list indicating that its impact on accuracy of model was the least significant. To test this, two
classifications were performed, one with the coastal blue band and the other without. The accuracy
of the two maps was calculated and compared using a pairwise kappa comparison. The results are
presented in Table 6.

Table 5. Variable importance.

Band Importance

NIR 0.108458534
SWIR 1 0.101598412
SWIR 2 0.101203956

Brightness 0.099140197
Greenness 0.092806019

NDVI 0.089701816
Blue 0.083893582
Red 0.076913401

Green 0.069847479
MSI 0.066674672

Wetness 0.062730104
Coastal Blue 0.047031853
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Table 6. Overall accuracy and kappa of coastal blue band test.

Overall Accuracy Kappa

With Coastal Band 67.57% 0.63966
Without Coastal Band 67.57% 0.63964

The overall accuracy of the two maps was exactly the same. Likewise, the kappa values were
almost identical (Table 6), and a pairwise kappa comparison (Z-score = 0.470), confirms that there was
no significant difference at the 95% confidence interval (Z-score < 1.96). Since no significant difference
was found, the coastal blue bands were removed from the post-hurricane image in order to reduce the
number of unnecessary features during the single-date classifications.

The pre and post-hurricane imagery were then classified using both a pixel and object-based
classification. Figures 3 and 4 are the results of the pixel-based and object-based classification for both
of the single-date classifications respectively. There is strong agreement between the two maps created
using both methods.

3.2. Accuracy Assessment

For each of the maps produced an accuracy assessment was performed. For the object-based
maps, both a traditional tally-based error matrix and an area-based error matrix were generated. For
the pixel-based classifications, only a tally-based error matrix is appropriate. For each matrix, the
overall accuracy was calculated as well as the kappa. A pairwise kappa comparison was then run to
compare several of the matrices in order to determine if: (1) there was a significant difference in the
accuracy between the Landsat 8 and Landsat 5 maps; and (2) whether there was an improvement in
accuracy using the object-based compared to pixel-based classification.

3.2.1. Single Date Classification Accuracy

The overall accuracies are summarized in Table 7 along with the kappa and Z statistic for each
map. Remember that there is no area-based accuracy assessment for pixel-based classifications. All
single-date classifications had overall accuracies greater than 75% and all kappa values indicate a
moderate agreement between the map and the reference data. Additionally, the Z statistics indicate
that all maps were better than a random classification at the 95% confidence interval (Z Statistic >
1.96). The overall accuracy and kappa statistics for the area-based maps attained better accuracies
compared to the assessment using the tally-based matrix. These higher values for the area-based
vs. traditional analysis were expected as shown in MacLean and Congalton [64] and Campbell
et al. [38]. The overall accuracies between the pre and post hurricane maps were very similar for
both methods. The object-based pre-hurricane map did have a slightly higher overall accuracy than
the post-hurricane map. Secondly, the overall accuracies were similar for both the pixel-based and
object-based classifications, with the object based obtaining a slightly higher accuracy for both dates.
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Figure 3. Results of the single-date pixel-based classification.
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Figure 4. Results of the single-date object-based classification.
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Table 7. Summary of single-date classification accuracies.

Tally-Based Area-Based
Date Method Overall Kappa Z Statistic Overall Kappa Z Statistic

Pre-Hurricane
Pixel 78.90% 0.765 38.325 NA NA NA

Object 82.64% 0.807 43.255 89.59% 0.874 144.097

Post-Hurricane
Pixel 80.50% 0.783 40.567 NA NA NA

Object 81.66% 0.796 42.217 89.79% 0.866 172.217

Tables 8 and 9 present the user’s and producer’s accuracies [66] for all of the classifications
performed. Most user’s and producer’s accuracies were close to if not greater than 80%. The most
notable exception to this was the palustrine and scrub/shrub class which in all classifications performed
had producer’s accuracies below 70% for most cases and in the case of palustrine, the producer’s
accuracy never got above 60% with the exception of the area based assessment. User’s accuracies for
the two classes were better (above 60% in all cases); however, with the exception of a few cases, they
were still lower than the other categories. Palustrine areas were most confused with forested classes
and to a lesser extent estuarine wetlands. Scrub/shrub on the other hand was often confused with
agriculture and forest classes especially evergreen forests, as well as unconsolidated shore. Forested
areas, while performing better than palustrine and scrub shrub, also proved troublesome. Most user’s
and producer’s accuracies were not above 80%; however, they do not drop below 60%. One aspect that
was common for all three forest classes in all cases was that many samples were incorrectly classified
as palustrine or another forested class.

Table 8. User’s (UA) and producer’s (PA) accuracies for pre-hurricane classifications using object-based
(OBC) and pixel-based (PBC) classification methodology.

PBC OBC

Tally-based Tally-based Area-based
UA PA UA PA UA PA

Agriculture 100.00% 84.00% 97.87% 92.00% 98.12% 92.08%
Deciduous

Forest 70.31% 90.00% 74.55% 82.00% 78.48% 84.03%

Evergreen
Forest 66.67% 84.00% 82.22% 74.00% 85.65% 79.55%

Mixed Forest 72.41% 84.00% 82.98% 78.00% 82.02% 80.94%
Developed 65.75% 96.00% 84.21% 96.00% 84.29% 98.81%
Open Water 100.00% 98.21% 96.49% 98.21% 99.69% 99.80%

Estuarine 90.74% 98.00% 73.77% 90.00% 84.64% 96.30%
Palustrine 60.00% 22.64% 73.17% 56.60% 68.85% 60.87%

Scrub/Shrub 81.25% 54.17% 71.43% 72.92% 75.80% 68.64%
Unconsolidated

Shore 84.78% 78.00% 89.58% 86.00% 92.08% 85.33%

3.2.2. Kappa Analysis

A pairwise kappa analysis was performed after the creation of the error matrices to assess whether
there was a significant difference between the pre and post hurricane images (Landsat 8 vs. Landsat
5) as well as the object-based and pixel-based classifications. For the pre and post hurricane map
comparison, the results were compared for both the object-based and pixel-based classifications,
including the error matrices for the area-based assessment for the object based classification. For the
object-based vs. pixel-based comparison, only the tally-based error matrices were compared for each
method since an area-based assessment is not performed on a pixel-based map. Tables 10 and 11 present
the results of the pre vs. post hurricane analysis and the object vs. pixel-based analysis respectively.
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Table 9. User’s (UA) and producer’s (PA) accuracies for post-hurricane classifications using
object-based (OBC) and pixel-based (PBC) classification methodology.

PBC OBC

Land Cover
Class Tally-based Tally-based Area-based

UA PA UA PA UA PA
Agriculture 90.38% 88.68% 89.29% 94.34% 91.41% 95.31%
Deciduous

Forest 74.07% 80.00% 72.22% 78.00% 79.94% 78.65%

Evergreen
Forest 69.09% 76.00% 78.26% 72.00% 75.64% 76.17%

Mixed Forest 73.47% 72.00% 64.58% 62.00% 66.84% 68.51%
Developed 71.93% 82.00% 85.45% 94.00% 87.88% 97.95%
Open Water 100.00% 98.33% 100.00% 98.33% 100.00% 99.61%

Estuarine 88.68% 94.00% 83.93% 94.00% 90.36% 96.08%
Palustrine 60.87% 50.91% 66.00% 60.00% 71.53% 68.85%

Scrub/Shrub 80.00% 64.00% 80.00% 64.00% 79.68% 55.12%
Unconsolidated

Shore 92.45% 98.00% 90.74% 98.00% 94.44% 99.04%

The kappa analysis comparing the pre and post hurricane images indicates that there is no
significant difference between the two maps for both the pixel and object-based classifications since all
Z test statistics were less than 1.96. The kappa analysis comparing the object-based and pixel-based
classifications also indicates no significant difference between the two methods for either map.

Table 10. Kappa analysis comparing pre and post hurricane error matrices.

Method Accuracy Assessment Type Z Test Statistic

Object Tally-based 0.413
Area-based 0.950

Pixel Tally-based 0.640

* Significant at 95% confidence level.

Table 11. Kappa analysis comparing object-based vs. pixel-based classifications error matrices.

Classification Z Test Statistic

Pre-Hurricane 1.52
Post-Hurricane 1.11

* Significant at 95% confidence level.

3.3. Land Cover Change Detection and Classification

With the vector results of the post-hurricane classification included to act as boundaries, a
within-class segmentation was performed with the full weight placed on the results of the image
differencing between the post-hurricane and pre-hurricane NDVI. It was then possible to develop class
specific change threshold values using the class specific change means and standard deviations of the
resulting segments. Change thresholds were calculated by multiplying the standard deviation by an
adjustable parameter and then adding and subtracting that value from the mean. The appropriate
adjustable parameter and thus change thresholds for each class was determined by testing several
parameter values and visually assessing how well the resulting thresholds detected change within each
class. A parameter value of 1.5 was found to work best for all classes except for unconsolidated shore
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and scrub/shrub which required a value of 1 to detect all changes. Using the calculated thresholds, the
objects within the image were classified as either change or no-change. Areas labeled as change were
then classified with a pre-hurricane class and merged with the post-hurricane results.

Following the completion of the UID methodology, a PCC was also carried out between the two
single date maps. The pre and post hurricane map were unioned and areas with two different land
cover labels were classified as change. Figure 5 shows the difference between the areas classified as
change and no change using the two change detection methods. The PCC classified 8.98% of the
study area as change while the UID classified 0.339% of the area. It is important to note that while
developing change thresholds for the UID, change was not detected for estuarine wetlands in order
to reduce errors associated with the tide. For the PCC, the two maps were simply overlaid as they
were. The results from both change detection methodologies were overlaid to identify and measure
spatial agreement between areas labeled as change (Figure 6). Combined, 17275.59 ha were classified
as change and of this area, 523.53 ha were identified as change by both the PCC and UID (shown in
green in Figure 6). The area of agreement includes 80.63% of the area identified as change by the UID
methodology and 3.05% of the area identified as change by the PCC.

Given the high percentage of area identified as change by the PCC, some supplementary
evaluations were conducted to assess the results of the PCC. The PCC conducted previously was
performed using the object based maps which, when overlaid, can create slivers due to differences in
object boundaries between dates. A PCC was performed on the results of the pixel-based classifications,
eliminating slivers, and was compared to the object-based PCC. The percentage of the study area
classified as change by the pixel-based PCC was 8.59%, only a 0.3% drop compared to the object-based
PCC. Additionally, the effect of aggregating land cover classes on the amount of area classified
as change was investigated. Two aggregations and PCCs were performed. The first involved
aggregating mixed, evergreen, and deciduous forest up one level and reclassifying them as forest and
then performing a PCC with the reclassified maps. The second involved aggregating estuarine and
palustrine up to wetland in addition to the aggregation of the forest classes and performing a PCC for
a second time. Class aggregation was done for the object-based and pixel-based classifications. The
results are shown in Table 12. It should be noted that the percent difference in change area represents
the percent difference in total area classified as change after performing an aggregation and PCC
compared to total area classified as change using the PCC with the original land cover maps (all 10
classes with no aggregation). Thus there is no percent difference in change area for the original 10
classes (shown as NA in table)
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Figure 5. Areas of change and no-change as detected by the univariate image difference and post
classification comparison (PCC). Percent change under each map represents percentage of study area
classified as change by each method.
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Figure 6. Overlay of the areas classified as change by the Post Classification Comparison (PCC) and
Univariate Image differencing (UID). Areas in green represent agreement between methods while blue
and pink are areas identified as change by one method but not the other.
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Table 12. Results of aggregating land cover classes on PCC change detection.

Object-Based PCC

Class Aggregation
Total Area Classified As

Change (ha)

Percentage of Study
Area Classified As

Change

Percent Difference in
Change Area *

Original Classes 1,7149.86 8.98% NA
Aggregate Forest Classes 1,5030.63 7.87% 12.36%
Aggregate Forest and
Wetland Classes 1,4151.87 7.41% 17.48%

Pixel-Based PCC

Class Aggregation
Total Area Classified As

Change (ha)

Percentage of Study
Area Classified As

Change

Percent Difference in
Change Area *

Original Classes 1,6409.16 8.59% NA
Aggregate Forest Classes 1,4236.65 7.45% 13.24%
Aggregate Forest and
Wetland Classes 1,3515.3 7.07% 17.64%

* Compared to the total area classified as change using the original 10 land cover classes.

For both the object and pixel-based PCC, by aggregating the classes, the total area classified as
change dropped. There was a 12.36% drop in the total area classified as change just by aggregating the
forest classes together for the object-based PCC. A similar drop was seen with the pixel-based PCC.
The drop was slightly higher by adding in the aggregated wetland classes. While there was a drop in
the total area classified as change, the percent change still remains higher than that see with the UID.

Table 13. Land cover totals and area difference in hectares for the entire study area after using univariate
image differencing to generate the pre-hurricane map. A negative difference indicates a decrease in the
total area for that class between dates.

Pre-Hurricane Post-Hurricane Difference (ha) Percent Change

Deciduous Forest 5.67 5.67 0.00 0.000%
Developed 199.53 199.80 0.27 0.001%
Estuarine 4043.71 3966.58 −77.13 0.417%

Evergreen Forest 273.24 274.50 1.26 0.007%
Open Water 1,0457.08 1,0500.19 43.11 0.233%
Palustrine 1040.67 1048.59 7.92 0.043%

Scrub/Shrub 1100.70 1088.28 −12.42 0.067%
Unconsolidated

Shore 1368.77 1405.76 36.99 0.200%

Total = 0.969%

Tables 13 and 14 give the land cover totals and area differences on Assateague Island using the
UID and PCC respectively. Most of these changes within the island are expected to have been a result
of Hurricane Sandy since development is not common here. As can be seen in Table 13, the greatest
impact was to estuarine, scrub/shrub, unconsolidated shore, and open water. Both scrub/shrub
and estuarine experienced a decrease in area while unconsolidated shore experiences a considerable
increase. The results after performing the PCC (Table 14) exhibit similar trends with the addition
of palustrine wetlands that saw the largest increase between dates and unconsolidated shore which
saw a decrease. There is very little agreement on the direction (increase or decrease) and magnitude
of change.
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Table 14. Land cover totals and area difference in hectares for Assateague Island using PCC. A negative
difference indicates a decrease in the total area for that class between dates.

Pre-Hurricane Post-Hurricane Difference (ha) Percent Change

Deciduous
Forest 6.39 5.67 −0.72 0.004%

Developed 193.68 199.80 6.12 0.033%
Estuarine 4000.57 3966.58 −33.99 0.184%

Mixed Forest 9.90 0.00 −9.90 0.054%
Evergreen

Forest 284.85 274.50 −10.35 0.056%

Open Water 1,0644.9 1,0500.19 −144.71 0.783%
Palustrine 674.28 1048.59 374.31 2.024%

Scrub/Shrub 1112.58 1088.28 −24.30 0.131%
Unconsolidated

Shore 1562.22 1405.76 −156.46 0.846%

Total = 4.11%

4. Discussion and Conclusions

The main goal of this study was to quantify and qualify the type and amount of land cover
change that occurred on Assateague Island as a result of Hurricane Sandy. With hurricane change
detection established as the overarching goal, it was possible to perform several additional assessments;
comparing the performance of Landsat 8 to Landsat 5, and object vs. pixel-based classification. Several
findings resulted from this study and are discussed below.

4.1. Landsat 5 vs. Landsat 8

In this study the addition of the coastal blue band as well as the improvements in the Landsat
OLI sensor (radiometric resolution and spectral bandwidths) were tested. First, the difference in
accuracy between classifications was compared with and without the coastal blue band. The coastal
blue band was the only new band assessed as the cirrus band is comprised of wavelengths that
are almost completely absorbed by atmospheric moisture, providing little additional information.
Additionally, the quality control band does not contain any spectral information and is instead used to
assess the quality of the imagery. The coastal blue band was not found to improve the accuracy of the
classification. The result is understandable given the placement of the band in the electromagnetic
spectrum. In upland land cover classification, the visible bands often do not provide important
information necessary to distinguish one cover type from another; the infrared bands are better suited
to that end. Liu et al. [67] also found that both the coastal blue band and the new cirrus band had
little effect on the derivations of the tassel cap components and their ability to classify land cover
types. However, because this band is comprised of very narrow wavelengths, it would better be able
to penetrate water and improve bathymetric studies or studies investigating subaquatic vegetation. In
addition, its placement will make it important for detecting atmospheric conditions and improving
atmospheric correction because it is highly scattered.

With the increase in radiometric resolution, it was expected that the classification accuracy for the
post-hurricane map (Landsat 8) would be significantly better than the pre-hurricane (Landsat 5) maps
due to the improved separability of spectrally similar classes and improvement in bandwidth ranges.
Using several pairwise kappa analyses, however, it was found that there was no significant difference
in classification accuracy for either the object-based or pixel-based classifications.

It is possible that the differences in the training and accuracy samples between maps may have
had an impact. Each image underwent a separate segmentation and then the segments were intersected
with the reference unit centroids. It is not likely that the same size and shaped segments were generated,
thus each classification was trained with and applied to slightly different segments which could alter
the results. Furthermore, it is possible that the classification scheme used was not detailed enough for
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the higher radiometric resolution to make a difference in the classification accuracy. The NOAA C-CAP
classification scheme used here was designed to be used with 8 bit Landsat data collected by the TM
and Enhanced Thematic Mapper (ETM+) sensors, and has been successfully used to classify these
cover types for a number of years with a high level of accuracy. There may be enough information
stored in the 8 bit imagery to distinguish the spectrally similar classes. Additional studies would need
to be conducted using more detailed schemes to determine when the improved radiometric resolution
would be a benefit for land cover classification. It is important to keep in mind though that the 30
m spatial resolution may limit how detailed one can get. Furthermore, the enhanced radiometric
resolution may benefit studies where biological parameters are being measured from the imagery as
demonstrated in Dube and Mutanga [20] who found Landsat 8 OLI data provided better estimates of
above ground biomass compared to Landsat 7 ETM+.

4.2. Object vs. Pixel-Based Classification

While object-based classification has been shown to improve the classification accuracy of
high-resolution imagery, with moderate resolution imagery the benefits have not been clear. One of
the objectives of this study was to further investigate this relationship by comparing a pixel-based and
object-based classification using the same training data and classification algorithm, which has not
commonly been done in previous investigations. No significant difference between the object-based
and pixel-based classifications for both the pre-hurricane and post-hurricane imagery was found which
is similar to conclusions reached in other studies utilizing medium resolution imagery [39,40,68].

One of the main advantages of OBIA that allows it to perform well is its ability to reduce the
spectral variability within a class and thus confusion between classes. If there was not much within
class spectral variability to begin with, however, then the benefits of OBIA would be diminished. It
was pointed out in Campbell et al. [38] that a 30 m Landsat pixel is sizable and could be considered an
image object in-and-of itself and if the classification scheme was more detailed, then a single pixel may
reduce the spectral noise enough to allow the pixel to be classified accurately. On the other hand, if the
classes were very broad, then one would expect significantly more within-class spectral variability. For
example, the class forest would include the spectral characteristics of both deciduous and evergreen
forest or developed would include the characteristics of a multitude of objects such as grass, trees, roof
tops, pavement, etc. With broad classes, the reduction in noise may actually increase the classification
accuracy, especially for more heterogeneous classes.

4.3. Land Cover Change

One of the major objectives of this study was to quantify the land cover change that occurred
on the island as a result of Hurricane Sandy. The UID approach was implemented to detect changes
and then update the post-hurricane map in order to generate a more consistent pre-hurricane map.
From there, the land cover totals and differences were calculated. The PCC was also implemented to
detect where change had occurred and the type of change using the information provided in both
single-date maps.

Changes across the entire study area were minimal. By percent change, the UID labeled 0.336% of
the study area as change while the PCC labeled 8.98%. A minimal amount of change was expected
given the time frame of the study; however, the PCC method detected significantly more. There was
some agreement between the two methods. The UID methodology relies on the change in spectral
reflectance to detect change, not a difference in thematic labeling which is dependent on the quality of
the classification. Of the area classified as change using the UID, 80% of it was detected as change by
the PCC method indicating that the PCC was able to detect real land cover changes in the study area,
however, a great deal of false change was detected as well.

Two factors could explain why such a substantial difference was seen between the change
detection methodologies. First, an object-based PCC suffers from the effects of slivers. When different
sets of imagery undergo separate segmentations, it is rare that the resulting segments will exhibit the
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same geometry due to differences in the environmental conditions when the images were captured or
misregistration [69]. When overlaid, differences in the edges of the segments create slivers which can
lead to additional change errors. The second factor is thematic errors. The PCC method relies upon the
accuracy of the single-date maps. Errors in the maps will appear as erroneous changes and can occur
in both object-based and pixel-based PCC. In this case, two segments representing the same feature
may have different class labels because of the classification process, which results in a change error.

The object-based PCC was compared to the pixel-based PCC to assess the possible contribution
of slivers to the total change area detected by the PCC. Both methods detected a similar amount of
change with the pixel-based detecting slightly less, so slivers were perhaps a minimal component to
the object-based PCC. The differences in thematic labeling were investigated further by aggregating
classes prior to performing the PCC (see Table 12). By simply aggregating mixed, deciduous, and
evergreen forest together, the total area classified as change dropped by 12.36% and 13.24% for the
object-based and pixel-based maps respectively. One would not expect the composition of a forest
to change within two years, so this difference in area was due to differences in the labeling of these
forested polygons and pixels between maps. By aggregating the wetland classes, an even greater drop
was observed. The result of this investigation suggests that change detection errors could be reduced
by simply aggregating classes up to a higher level in the classification scheme. Nevertheless, even after
aggregating the wetland and forest classes, the percentage of the study area classified as change was
still over 7% for both PCCs indicating that a number of labeling errors still exists.

The object-based univariate image differencing method applied here has the advantage of
detecting changes due to spectral differences between dates and not because of differences in thematic
labeling. Furthermore, by enforcing the boundaries of the post-hurricane map during the segmentation
of the difference image, internal adjustments could be made to those segments that experienced real
change. Had the difference image been segmented without the enforced boundaries, when updating
the post-hurricane map, differences between the changed objects and the base map would result in
silvers as demonstrated in McDermid et al. [70]; however, there would be significantly fewer compared
to the PCC since only the overlap between the change objects and the base map occurs, Enforcing the
boundaries did not eliminate spurious slivers altogether. Boundary errors in the post-hurricane map
still resulted in slivers, some only a few pixels in size. Fuzzy boundaries between cover types also
make it difficult to accurately delineate features

While change was measured for the entire study area, this paper focuses mainly on the results
seen within Assateague Island. While the PCC estimated a greater amount of change within the island,
there were some consistent results. Estuarine, scrub/shrub, and unconsolidated shore experiences
the greatest changes on the island itself. Estuarine and scrub/shrub both saw decreases. Surprisingly,
unconsolidated shore saw a significant decrease with the PCC compared to the UID that showed an
increase. It is probable that this is due to the decrease in shoreline detected by the PCC and not with
the UID. It is difficult to say whether this was real change or not as it could have been explained by
differences in the tide.

While changes on the island were minimal, where they occurred is consistent with the structure
of the island itself. Most of the change detected within the northern 10 km of the island, known as the
North End, as well as the southernmost hook known as Tom’s Cove Hook (Figure 7). The center of
the island experienced almost no change with the exception of a few small overwash fans. The North
End much lower relative to the rest of the island and does not have a continuous, high dune to protect
the vegetation on the side closest to the bay. These characteristics leave the area very susceptible to
overwash which carries sand from the ocean onto the mainland. The North End saw an increase in
unconsolidated shore due to a large overwash fan burying estuarine wetland and scrub/shrub areas
that are close to the ocean due to this area being so narrow. Tom’s Cove Hook on the other hand is
an accretionary spit. Long shore transport carries sand from the northern portion of the island south
where it accumulates at the spit. The hook saw a significant increase in the southern tip of the spit
following the hurricane as well as a loss of a very small amount of estuarine and scrub/shrub habitat
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that was buried by a small overwash fan. In general the location and type of change detected on the
island is consistent with its ecology and topography.

It is important to note that these results should be taken as estimates. First, it was not possible
to collect reference data on the actual changes that occurred within this time span thus it was not
possible to assess the accuracy of these results. Second, a visual assessment was undertaken to choose
change threshold parameters. While more objective methods exist to develop change thresholds, since
change was expected to be minimal and the study area was small, a visual assessment was conducted
instead. The goal was to reduce omission, thus overestimation of change was preferred rather than
under estimation. It is possible that more change was detected than had actually occurred. Differences
in tide between the two dates may have also played a role in the final results. While estuarine habitat
was not included in the change detection process in order to reduce possible errors, a great deal of
unconsolidated shore and open water changes were classified as estuarine in the pre-hurricane map
leading to a higher decrease in estuarine wetlands than was actually experienced.

Figure 7. The North End before (a) and after (b) Hurricane Sandy. Tom’s Hook Cove before (c), and
after (d) the hurricane.

This study was limited to detecting large area changes. Given the spatial resolution of the Landsat
data, it was not possible to detect changes smaller than 30 m × 30 m in size. Higher spatial resolution
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data would be needed to detect smaller changes but it was not available for the entire study area.
Additionally, the use of Landsat data allows for this analysis to be integrated with pre-existing land
cover maps and with the data being freely available, these maps can be updated as needed.
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Abstract: Here we present work on using different types of soil profile imagery (topsoil profiles
captured with a smartphone camera and full-profile images captured with a conventional digital
camera) to estimate the structure, texture and drainage of the soil. The method is adapted from earlier
work on developing smartphone apps for estimating topsoil organic matter content in Scotland and
uses an existing visual soil structure assessment approach. Colour and image texture information
was extracted from the imagery. This information was linked, using geolocation information derived
from the smartphone GPS system or from field notes, with existing collections of topography, land
cover, soil and climate data for Scotland. A neural network model was developed that was capable of
estimating soil structure (on a five-point scale), soil texture (sand, silt, clay), bulk density, pH and
drainage category using this information. The model is sufficiently accurate to provide estimates
of these parameters from soils in the field. We discuss potential improvements to the approach
and plans to integrate the model into a set of smartphone apps for estimating health and fertility
indicators for Scottish soils.

Keywords: soil; structure; mobile phone; visual soil assessment

1. Introduction

Soil structure is the term given to the arrangement of differently-sized mineral particles and
organic material into larger, more complex arrangements in the soil. Good structure improves soil
hydraulic properties, allows air and roots to move freely through the soil and provides a suitable
habitat for microbes, fungi and soil fauna. Poor structure implies smaller overall pore space, reduced
numbers of large pores and a lack of internal spaces for the physical and chemical protection of organic
matter and living organisms. Soil texture is the proportional distribution of particles of different sizes,
commonly divided into sand (>50 µm), silt (2–50 µm) and clay (<2 µm) particles (these size range
definitions vary in the literature). Both soil texture and structure have important impacts on several
factors including plant growth, nutrient availability and soil hydrology.

Assessment of soil structure and texture is an important component of determining physical
condition and degradation of soils. The soil structure and its impact on soil health and resilience to
disturbance can be measured using a number of different approaches, including physical and visual,
while estimates of soil texture are normally carried out by hand or using a number of laboratory
approaches. It was demonstrated [1] that the geometric characteristics of soil pores varied under
different levels of compaction and structural damage. Visual soil assessment approaches give results
that in many cases link closely to direct physical measurements of structure-related soil parameters [2].

It has been pointed out [3] that laboratory-based assessment of soil sample structure does not
produce a fair indication of soil structure, and that soil structure does not lend itself to quantification.
The same is not true of soil texture, which can be measured directly in the laboratory but which
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still relies on fairly subjective “hand-texturing” approaches in the field. One alternative could be
to determine if image analysis of the visible structure of soils can lead to automated soil structure
assessment in the field. A clear statistical link has been drawn [4] between the spatial organisation
and forms of soil components at the microscopic scale, and the character and stability of soil structure.
If this is also true at larger scales such as those visible to digital cameras, then this automated image
analysis might be possible.

Changes in soil micromorphology, specifically relating to pore size distribution and hence to soil
structure, can be detected following changes to tillage practices [5]. The same management of soils
with different textural proportions (sand, silt, clay) will not result in the same soil structure. Therefore,
it is also worthwhile investigating whether soil texture can be linked to image analysis of soil profiles,
and estimated using the same approaches.

Mineralogical analysis may traditionally have provided better information on soil structure at
microscopic scales than micromorphological analysis [6]. However, improvements in characterising 2D
image of complex systems such as soil may now mean that image analysis is on an equal footing with
mineralogy in this area. Early work on digital information of pore structure (e.g., [7,8]) demonstrated
links between soil structure and image structure, but required careful preparation of soil samples
(i.e., impregnation with epoxy resin, sawing, polishing).

A study by [9] demonstrated a link between morphological measurements of soil structure in
the field and soil compaction. Visualisation of soil aggregate structure and pore size/connectivity
using X-ray tomography reveals links between structural parameters related to bulk density and
water movement [10]. It was also demonstrated [11] that the use of 2D tomography for assessing soil
structure properties could provide sufficient information to assess structural quality.

This implies that soil structural assessment, including information about bulk density, can be
automated through appropriate characterisation of photographs of soil profiles. The term “soil profile”
here is taken to mean a vertical section of the soil, not the description of the sequence and character of
the individual soil horizons, as it is sometimes taken to mean.

An approach has been described [12] for visual assessment of soil structure that gives a numerical
score to the structure. The soil features described in [12] are amenable to visual discrimination,
implying that a direct estimate of structural parameters may be possible. The benefit to farmers and
other land managers of a rapid, low-cost method of assessing soil structure and soil degradation is
emphasised in [13].

The Visual Evaluation of Soil Structure (VESS) approach developed by [12] (which was developed
for agricultural soils commonly found in northern Europe) can also be applied successfully to
Oxisols and potentially other tropical soils under different land use systems [14] and to tropical
soils under no-tillage agricultural systems [15]. Arguably, a single method of automated soil structure
assessment could potentially be applied in many parts of the world and to soils under many different
management systems.

Investigation between visually measurable pore-structure attributes and levels of compaction
show clear links that imply the ability to measure soil structure from digital imagery with
mathematically defined parameters [16]. A correlation was also shown [17] between visual soil
structure assessment scoring and the slope of the line between soil wetness and penetration resistance.
This demonstrated a clear link between visual assessment scoring and physically-relevant soil
structure measurements.

An assessment of different methods for visually assessing soil structure by [18] showed that many
approaches gave similar results and linked closely to shape and size of aggregates. These aggregates are
visible and may be amenable to detection through image analysis approaches. This is an approach that
has similarities to the method of [12] and that indicates that aggregate size in particular is something
that links both visual assessment and structure in soils.

Several methods exist for field-based assessment of soil structure, including a number that rely on
visual interpretation [19]. The VESS approach of [12] by Bruce Ball, however, provides an approach for
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determining soil structure visually, and provides information that relates well to measurements from
more instrument-reliant approaches for determining soil physical structure [20].

Our aim is to show that in the last two and a half decades technological, statistical and modelling
developments now mean that because it is possible to measure soil structure in the field rather than
the laboratory, the quantification of soil structure and soil texture can now be achieved through
image analysis directly linked to field-based soil structure assessment parameters and environmental
conditions. We make extensive use of Ball’s approach, including the numerical scoring system and an
image analysis method that utilises some of the descriptive features in this method.

Aggregate soil stability, a key parameter in soil structure, is influenced by a number of factors
including climate, vegetation growth and soil management amongst other parameters (including soil
texture) [21]. Our assessment also includes several of these environmental factors, although it does
not include land management history. In addition to structure, we estimate soil texture and drainage
class using the same image analysis approach. Building on previous work linking soil colour and
environmental factors to soil properties [22], we also include LOI (Loss On Ignition) as an estimate of
soil organic matter content, and soil pH. The overall method is related to current work in Digital Soil
Mapping, which links spatial covariates (and occasionally remote sensing) to soil properties.

2. Materials and Methods

2.1. Soil Photography

Using a smartphone camera, a total of 103 images were acquired of topsoil (upper 30 cm) from
sites across the north-east of Scotland. The sites were selected to provide variability in land cover,
soil type, topography and parent material. Images were captured using an iPhone 2, with the site
location also captured using the smartphone’s GPS. A colour correction card was placed within each
shot to allow post-capture image colour correction, as soil colour is one of the factors that is considered
important in mineralogy (and hence soil texture and structure). Natural lighting was used in each case,
with no artificial sources. All photographs were taken under at least reasonable lighting conditions,
without a flash being required. Colour correction was carried out using the approach described in [23],
and involved calculating the ratio between actual and expected RGB values at various intensity levels
(0–255 in intensity bands 16 units across). This ratio was then applied to all pixels across the image that
lay within the specific intensity level. Figure 1 shows two examples of the images that were captured.

 

Figure 1. Two examples of topsoil profile imagery captured using the smartphone camera. The colour
correction card in each image is approximately 10 cm long and 6 cm wide.
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A total of 54 images were selected from the profile photographs taken during the NSIS2
(National Soil Inventory of Scotland 2007–2009) field campaign. The protocol for how these profiles was
prepared and sampled is given in [24] and two examples of the imagery are given in Figure 2. The soil
profile face was cleaned and photographed prior to sampling, and where possible the photograph was
taken to clearly show the horizons and any important features of the soil. Clearly labelled signs with
the Site ID (National Grid Intersect) were used in the photographs.

 

Figure 2. Two examples of soil profile imagery captured during the NSIS2 field campaign. A tape
measure was placed against each profile to provide scale. In each image, the tape length is 75 cm.
Photographs credited to John Bell and Willie Towers.

For the smartphone imagery, structural assessment was carried out in the field using the approach
outlined by [12] and detailed in the instructions available at the website of Scotland’s Rural College
(SRUC). Prior to this work being carried out, the researchers involved spent time in the field testing the
VESS approach and ensuring that they were confident in producing replicable estimates of structure.
VESS scoring estimates were produced for the upper (top 15 cm) and lower (bottom 15 cm) of the
exposed soil, to capture variation in structure with depth. For the NSIS2 imagery, the same procedure
was carried out but only for the topsoil. In addition, the structural assessment for NSIS2 samples
was only carried out on agricultural soils, meaning that the imagery selected is restricted to this land
use/land cover class. Throughout this work, reference to soil structure is taken to mean assessment of
the VESS score.

Each of the soil samples was analysed for sample size according to the specified ranges
(<2 µm—clay; 2–50 µm—silt; >50 µm—sand). This analysis was carried out using a Mastersizer
2000 (Malvern Instruments). The same procedure was applied to samples relating to both types of
imagery. Loss On Ignition (LOI) was carried out for each sample at 450 ◦C for 24 h in a muffle furnace.
Bulk density was calculated from the volume and mass of an oven-dried core, dried at 105 ◦C for
24 h. pH was measured using a 0.01 M solution of CaCl2. Structure was assessed in the field using the
method described by [12] and involves a manual and visual assessment of how easily the soil breaks
up and the shapes/sizes of the soil fragments. Drainage is an assessment of the drainage characteristics
of the whole soil profile, and so depends also on features below the topsoil; values given include very
poor (1); poor (2); imperfect (3); moderate (4) and freely-draining (5).

2.2. Image Analysis

Each soil image (lossless JPEG format) was converted to digital numbers and stored as three
arrays (one each for red, green and blue pixel values) with values ranging from 0 to 255. Following
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colour correction (on the smartphone imagery—colour correction cards were not used in the NSIS2
protocol), non-soil pixels were removed by selection of pixels with high ratios of green or blue to red
(ratio greater than 1), or that had been identified as belonging to the colour correction card. Figure 3
shows two examples of this pixel elimination process using the same images as in Figure 1, with the
resulting images containing only pixels identified as belonging to soil or plant roots.

 

Figure 3. Topsoil profile imagery following removal of non-soil pixels (smartphone imagery). Note that
some soil pixels have also been removed as they were too dark to provide useful information in the
image analysis.

The average colour ratios for the upper and lower half of each image were then determined,
with a value given to the mean proportion of each total pixel intensity (i.e., not the absolute, but
the proportion of the summed RGB values) that was red, blue or green. Each image was therefore
represented by six values (mean R, mean G, mean B for top and bottom of image). These values have
been found useful in estimating topsoil organic matter content [22] and in estimating soil texture
in ongoing unpublished work by this research group. Each image does not represent the same soil
profile depth and so the upper and lower halves of the image are not representative of the same depths
each time.

For structural assessment, a greyscale version of the image was derived by taking the average of
the red, green and blue pixel values for each pixel. In order to assess the range of structures within each
image, a moving window centred on the pixel of interest was passed over each pixel to normalise the
intensity of that pixel in relation to its surroundings, followed by thresholding and boundary density
counting. Pixels that had been removed due to colour or intensity thresholding were not included in
this analysis. The following steps were carried out on each pixel of the greyscale image for a number
of moving window sizes:

1. Identify the minimum (Min) and maximum (Max) pixel values within the moving window;
2. Normalise the target pixel value P0 within the moving window range, defining the new pixel

value P1 as P1 = INT(256 × (P0 − Min)/(Max − Min)).
3. Following normalisation of each pixel, threshold the pixel value so that all values below 128 are

set to 0, and all values equal to or above 128 are set to 255.
4. For each horizontal row of pixels in the image, calculate the number of boundaries between 0

and 255 for neighbouring pixels in any direction (soil pixels only). Divide this number by the
number of soil pixels in the row.
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In practice, identification of the minimum and maximum pixel values within the moving window
was estimated by selecting 100 pixels at random within the moving window; this prevented the
processing time from becoming prohibitive as the moving window size increased. It was assumed
that selecting this number of pixels would provide a good estimation of the range of values within
the moving window. The following moving window sizes were used: 1, 2, 4, 8, 16, 32, 64, 128
and 256 pixels. In each case, the moving window included all pixels within this distance in the x
or y directions (i.e., a square window of side length 2N + 1, where N is the moving window size).
For moving window sizes of 8 or less, all pixels were used as the total number of pixels in the window
was less than 100.

The result of the above steps for each moving window size is to produce a set of images that
represents the local granularity of the image at a number of scales. This local granularity was assumed
to reflect the physical structure within the soil. Counting the proportion of boundaries between
thresholded pixels gives an indication of the distribution of aggregates within the image. The boundary
proportion value was recorded for all rows in the image and average values were recorded for the
upper and lower half of the image (discounting those pixels that contained non-soil pixels, the colour
correction card or that were within one moving window size of it).

2.3. Environmental Characteristics

The GPS-recorded location of each sample site was used to determine a number of environmental
characteristics. The parameters here were derived from a number of spatial datasets, including
the following:

• The Ordnance Survey landform PANORAMA digital terrain model at 50 m resolution [25].
• Annual mean rainfall and temperature for 1460 Meteorological Office Stations from 1941 to 1970

interpolated to a 100 m resolution across Scotland [26,27]. The digital data was obtained directly
from the Met Office by the Macaulay Institute under license agreement prior to 1994.

• Major soil subgroup (and soil parent material) from the 1:250,000 Soil Survey of Scotland at 100 m
resolution [28]. This data was digitised at the Macaulay Institute for Soil Research (now the James
Hutton Institute/JHI). Within this dataset, each map unit can contain a mixture of major soil
subgroups, and we used the percentage estimate of each given within each map unit.

• The Land Cover of Scotland 1988 (LCS88) survey was carried out based on interpretation of aerial
photographs and “ground-truth” assessment [29]. The work involved medium scale (1:24,000)
aerial photography acquisition for the whole of Scotland over a period from 1987 to 1989 and
interpretation of this imagery to obtain a 1:250,000 digital map of land cover that could be used
with GIS software. The resulting datasets, which were validated and found to have a mapping
accuracy of approximately 98%, were generated at the Macaulay Institute in 1989–1991 and
continue to form part of the Institute (now the James Hutton Institute) data holdings.

• Geology—21 classes derived from descriptions of parent material in the Scottish Soil Map.

2.4. Modelling Soil Characteristics

An artificial neural network (ANN) model was used to estimate soil structural and texture
parameters. The ANN was trained using 10-fold cross-validation. This method involves producing
10 subsamples of the training data, and 10 ANN models being developed, each trained with
9 out of the 10 randomly-generated subsamples and validated with the “missing” subsample.
Each ANN was validated using a different subsample. The structure of the ANN used 104 inputs,
including the 80 derived from environmental parameters and the 24 derived from image analysis
(textural measurement at nine different moving window sizes, red green and blue colour average for
both upper and lower image).

A single hidden layer in each ANN contained 10 nodes. There were 2 output nodes for the
smartphone imagery (LOI and VESS structure each normalised in the range 0 to 1) and 7 for the NSIS2
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imagery (drainage class, LOI, bulk density, sand, silt, clay and pH each normalised to the range 0 to 1).
Each ANN was trained using the backpropagation gradient descent algorithm with a learning rate
of 0.05. Training was carried out over 20,000 training steps each with random input selection, and
validated every 1000 training steps to allow optimal training to be selected.

In addition to the above ANN design, we also tested the model using information derived only
from (A) location information (80 inputs, same hidden node and output architecture) and (B) image
analysis (24 inputs, same hidden node and output architecture). The same training regime was also
used as for above. These secondary models were developed to allow us to determine the relative
importance of spatial covariates or image characteristics in the input model. It was anticipated that
image analysis would be more important for soil structural assessment and that spatial covariates
would be more important in estimating soil texture because: (1) the image resolution is not sufficient to
capture particles within the necessary size range to describe soil texture; and (2) the spatial covariates
used would have less impact on soil structure than local management conditions.

In terms of estimating drainage, LOI and pH, it was also suspected that the spatial covariates
would provide more useful information than image analysis, as visual examination of soil profiles
does not allow an obvious way of estimating these while environmental conditions are known to have
a strong influence on these soil characteristics.

Statistical evaluation of model performance was carried out using a number of metrics.
These included r2, RMSE (Root Mean Square Error), MAE (Mean Absolute Error), RPD (Ratio of
Performance to Deviation) and RPIQ (Ratio of Performance to Interquartile distance). RPD is the ratio of
standard error of prediction to the standard deviation of the variable’s actual values, and is commonly
used to provide an indication of model quality, with values greater than 2 often being taken to indicate
good model performance. However, [30] showed that RPD is closely related to r2, particularly for
normally distributed data and large sample size, with the relationship RPD = (1 − r2)−0.5 at this limit.
They proposed instead that RPIQ should be used, as described by [31], as it better represents the
spread of values in a dataset. The values given of RPIQ are usually within a factor of 2 of RPD values,
and so it is possible (but not to be encouraged) to take RPIQ values of greater than 2 to indicate good
model performance.

For structure and drainage, which are categorical variables rather than being continuous, the use
of r2 and some of the other statistical metrics is acknowledged to be suspect; the use of these is only
really appropriate for continuous variables. A more appropriate measure in this case is one of several
possible pseudo-r2 regression methods. However, as we are dealing here with variables that have
multiple possible values rather than being binary, it was felt that the standard r2 calculation could in
this case be used as a metric of performance.

3. Results

For topsoil structure, the range of values is from 1 (best) to 5 (worst) on a numerical scale described
in [32]. LOI values in Scottish topsoils can range between 0% and 100%, but the examples used here
were all mineral soils and so the values were lower. Drainage values ranged from 1 (worst) to 5 (best)
and were skewed towards good drainage (over 75% of the data points were given scores of 3 or above).
Bulk density values were skewed towards higher values, with only 36% of the values lying below
0.75 g·cm−3. Sand percentage values were approximately evenly distributed between 0% and 80%,
while silt values were skewed towards higher values (a majority of Scottish soils are sandy loams or
similar). Clay values were evenly distributed between 0% and 6%, with one value at 12%. The values
for pH were mostly clustered between 4.5 and 7, with a small proportion of values lying above or
below this range.

3.1. Model Results Using All Parameters

The accuracy with which each of the eight soil variables was estimated varied greatly in the
models using image analysis and spatial covariate data, as shown in Table 1.
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Table 1. Statistical evaluation of an artificial neural network (ANN) model using image analysis
and spatial covariate information. For each variable, the range of values seen in the data is also
given, to allow the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values to
be better understood. RPD—Ratio of Performance to Deviation; RPIQ—Ratio of Performance to
Interquartile distance.

Variable Range r2 RMSE MAE RPD RPIQ

Structure 1 to 5 0.59 0.83 0.67 1.58 1.20
LOI (%) 0 to 25 0.64 3.62 2.87 1.66 1.34

Drainage 1 to 5 0.50 1.02 0.89 1.42 0.98
Bulk density (g·cm−3) 0 to 1.5 0.57 0.25 0.21 1.52 1.66

Sand (%) 0 to 80 0.58 13.60 11.46 1.50 1.57
Silt (%) 0 to 80 0.63 11.16 8.64 1.62 1.69

Clay (%) 0 to 12 0.62 1.59 1.37 0.95 1.60
pH 3 to 8 0.61 0.45 0.36 1.52 1.55

3.2. Model Results Using Image Analysis Only

As expected, all variables were worse estimated using only image analysis parameters, but
the variation was not consistent (Table 2). Structure and bulk density estimates were not so strongly
influenced by the removal of spatial covariate data from the model, and soil texture estimation accuracy
was not reduced as greatly as expected. LOI and pH however saw relatively large drops in r2 and
increases in RMSE and MAE.

Table 2. Statistical evaluation of ANN model using image analysis data only.

Variable Range r2 RMSE MAE RPD RPIQ

Structure 1 to 5 0.50 0.97 0.82 1.51 1.10
LOI (%) 0 to 25 0.48 4.81 3.34 1.32 0.94

Drainage 1 to 5 0.43 1.50 1.26 1.21 0.89
Bulk density (g·cm−3) 0 to 1.5 0.52 0.29 0.25 1.40 1.48

Sand (%) 0 to 80 0.52 17.36 14.04 1.33 1.51
Silt (%) 0 to 80 0.55 13.45 10.13 1.40 1.57

Clay (%) 0 to 12 0.54 2.00 1.52 0.84 1.52
pH 3 to 8 0.49 0.68 0.50 1.32 1.35

3.3. Model Results Using Spatial Covariates Only

For the model using only spatial covariates, all parameters were again modelled with less accuracy
than with all inputs (Table 3). However, this reduction in model performance was different from that
seen with image analysis only; VESS structure and bulk density estimates saw poorer performance
while LOI and pH were estimated more accurately than with image analysis alone. Drainage class and
topsoil texture variables were estimated with approximately the same accuracy using the two types
of input.

Table 3. Statistical evaluation of ANN model using spatial covariate data only.

Variable Range r2 RMSE MAE RPD RPIQ

Structure 1 to 5 0.47 1.08 0.87 1.43 1.00
LOI (%) 0 to 25 0.60 4.01 3.06 1.50 1.17

Drainage 1 to 5 0.41 1.52 1.26 1.19 0.85
Bulk density (g·cm−3) 0 to 1.5 0.48 0.33 0.28 1.35 1.43

Sand (%) 0 to 80 0.53 16.27 13.25 1.40 1.51
Silt (%) 0 to 80 0.58 13.79 9.92 1.45 1.59

Clay (%) 0 to 12 0.54 1.93 1.44 0.91 1.47
pH 3 to 8 0.58 0.76 0.56 1.39 1.46
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4. Discussion

In absolute terms, none of the soil variables was estimated with an accuracy that would enable
their estimation in the field to replace laboratory or field analysis by a trained observer. None achieved
an RPD of greater than 2 (a value commonly taken to indicate “good” estimation) even with the best
model. Drainage and clay percentage had RPD values of less than 1.5. Clay in particular had extremely
low RPD values and did not follow the relationship given in [30] linking this with r2. The distribution
of values for clay may have affected this result, as it did not have a normal distribution, and the values
given for RPIQ were also below 2. However, for estimating values for land management decision
making or rapid condition assessment, the levels of accuracy achieved (as expressed by RMSE and
MAE) are sufficient to give a “low/medium/high” estimate of every variable estimated.

The best model developed for estimating VESS structure gives an RMSE value of less than 1, and
so if given a value of 2, for example, the user could be confident that the soil examined was not a 4 or 5.
For pH similarly, the user can safely assume that the value given is within 1 pH unit of the actual value.
This level of confidence is suitable for calculating liming rates. Drainage, bulk density and soil texture
parameters are given with sufficient accuracy to detect compaction or evaluate candidate management
options. Drainage in particular is an indication of the whole soil profile’s drainage characteristics
and so being able to make even a coarse assessment using information only from the upper soil is
potentially very useful.

The neural network models used spatial covariates for Scotland’s landscape. As such, the exact
models would provide poorer performance if applied elsewhere, particularly in geographical regions
with significantly different climate, soil or vegetation types. In order to achieve corresponding levels
of accuracy, models would need to be developed that were specific to the regions of interest, which
for many parts of the world may be difficult due to a lack of mapped information. The methodology
used here is strongly dependent on available data, both from soil surveys and from spatial datasets
with appropriate accuracy and resolution. As such, while globally applicable it would not provide
the same level of accuracy in parts of the world that were poorly surveyed and mapped, particularly
if these areas are spatially heterogeneous. This is an ongoing challenge for all areas of soil mapping,
particularly in the digital age. There is also a distinction to be made between natural/seminatural
and cultivated soils, where management is likely to play a much stronger role in soil characteristics.
Management was not a factor included in this work, and would be necessary to include for some soils,
particularly where agriculture has been present for hundreds of years.

The models are relatively small and computationally inexpensive, and could be implemented
within a smartphone app quite easily. An existing app that provides a template for this is the SOCIT
app, which estimates topsoil organic matter content for mineral soils in Scotland. This app links to
similar spatial covariates as are used in this work, by sending the topsoil image with user coordinates
to a server at the James Hutton Institute where the necessary large datasets are held. One limitation that
we cannot improve on within our own work is the positional accuracy achieved by smartphones and
tablets equipped with GPS; depending on the device and the quality of the signal acquired, this ranges
between approximately 5 and 50 m. In linking positional information to spatial covariates, we therefore
must be aware that in landscapes that are spatially heterogeneous, positional inaccuracy may increase
error rates for variables of interest.

Ongoing research in this area indicates that LOI, pH and bulk density in particular can be
estimated with better accuracy than demonstrated here, if sufficient data is provided. Spectroscopy
in particular can provide good estimates of many soil variables non-destructively. However, this
work was intended to produce a method of estimating all of the variables of interest from a dataset
of available imagery, reducing the need to gather additional information. We intend to expand the
resource of available data and imagery to produce a more robust and accurate model capable of
improving on the levels of accuracy demonstrated here. The final objective of this work is to produce
an app that can provide rapid assessments of several topsoil characteristics for Scottish soils.
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The working hypothesis, that information derived from imagery would be more important for
estimating structure while spatial covariates would provide more useful for estimating the other
parameters, was largely borne out. Structure is no doubt affected by environmental conditions but
is also strongly influenced by management, which is spatially variable but was not incorporated as
an input to the modelling. Characteristics relevant to structure are often visible (e.g., cracking, solid
blocky peds, macropores), implying that with appropriate image metrics, it should be possible to
measure indicators of these and other structural features.

We also saw that in addition to structure, bulk density modelling was strongly affected
by removing the imagery data from the modelling. It is possible that image features indicative
of densely-packed soils are correlated to the measured image characteristics, and this deserves
further study.

Soil texture variable estimation was approximately equal for the two data types, while LOI and
pH appear to more strongly linked to spatial covariates. It is not surprising that pH is more strongly
linked to environmental character than image metrics, as the visual appearance of topsoil does not
often provide clues to pH levels even to trained field surveyors. Local conditions such as vegetation or
parent material however are known to have a strong influence on soil pH levels.

An unexpected result was that the drop in model performance when removing one data type was
not as great as expected for any of the variables modelled. It appears that both image characteristics
and environmental conditions can contribute useful information to all variables that we studied here.
It is possible that the characteristics measured in the imagery are in some way connected to the
environmental conditions at each site, which would make it harder than expected to discriminate
between the relative importance of different inputs. For example, particularly wet and cold climate
conditions could result in soils with a specific visual appearance, which would be reflected in the
image analysis data produced.

Further work on the linkages between environmental conditions and the visual appearance of
the soil would help in resolving this. In order to achieve this, it is necessary to further investigate
the possible image metrics that could be measured, as those selected for this work may not be the
most appropriate. This would also benefit any further modelling work in the area of estimating soil
characteristics from soil profile image analysis. It would also help to improve the spatial resolution of
some of the parameters, particularly topography, as the current 100 m resolution that was used in this
work does not reflect the spatial heterogeneity of Scotland’s landscape in some areas, particularly the
fragmented mountainous regions in the north and west. Current work on digital soil mapping at the
James Hutton Institute includes the development of a range of 10 m resolution topography products,
to be incorporated into further research. As mentioned above, this will correspond to the approximate
resolution achieved by current smartphone/tablets equipped with GPS.

Currently, we are developing a collection of imagery for Scottish soils that covers a wider
range of soils and environmental conditions than was used in this work. We are also working
on the identification of image analysis metrics that provide better representation of the soil under
field conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

GPS Global Positioning System
VESS Visual Evaluation of Soil Structure
NSIS2 National Soil Inventory of Scotland (2)
SRUC Scotland’s Rural College
LOI Loss On Ignition
JHI James Hutton Institute
LCS88 Land Cover of Scotland 1988
GIS Geographic Information System
ANN Artificial Neural Network
RMSE Root Mean Squared Error
MAE Mean Absolute Error
RPD Ratio of Performance to Deviation
RPIQ Ratio of Performance to Inter-Quartile distance
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