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Abstract

A set of features computed from the primary amino acid sequence of proteins, is crucial in

the process of inducing a machine learning model that is capable of accurately predicting

three-dimensional protein structures. Solutions for existing protein structure prediction prob-

lems are in need of features that can capture the complexity of molecular level interactions.

With a view to this, we propose a novel approach to estimate position specific estimated

energy (PSEE) of a residue using contact energy and predicted relative solvent accessibility

(RSA). Furthermore, we demonstrate PSEE can be reasonably estimated based on

sequence information alone. PSEE is useful in identifying the structured as well as unstruc-

tured or, intrinsically disordered region of a protein by computing favorable and unfavorable

energy respectively, characterized by appropriate threshold. The most intriguing finding,

verified empirically, is the indication that the PSEE feature can effectively classify disorder

versus ordered residues and can segregate different secondary structure type residues by

computing the constituent energies. PSEE values for each amino acid strongly correlate

with the hydrophobicity value of the corresponding amino acid. Further, PSEE can be used

to detect the existence of critical binding regions that essentially undergo disorder-to-order

transitions to perform crucial biological functions. Towards an application of disorder predic-

tion using the PSEE feature, we have rigorously tested and found that a support vector

machine model informed by a set of features including PSEE consistently outperforms a

model with an identical set of features with PSEE removed. In addition, the new disorder

predictor, DisPredict2, shows competitive performance in predicting protein disorder when

compared with six existing disordered protein predictors.

Introduction

Proteins, being the fundamental structural macromolecules of a cell, are involved in most of
the cell functions. A fully functional protein is usually the one that is appropriately twisted,
coiled and folded into a specific three-dimensional conformation. The three-dimensional
structures of proteins specify their associated functions [1, 2]. It is well-known from the
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literature that the primary protein sequence alone has the essential information needed to
determine its corresponding secondary and tertiary structures [3]. However, proteins may mis-
fold under some physicochemical conditions that can alter the usual structural state [4–6].
Moreover, there is an abundance of proteins that are natively unstructured either at the
regional level or, sequence wide, known as intrinsically disordered regions (IDRs) or, intrinsi-
cally disordered proteins (IDPs) [5, 6]. IDRs and IDPs become biologically active through disor-
der-to-structure transitions [4, 7–13]. The connection of IDPs with critical human diseases,
such as cancer, cardiovascular diseases, neurodegenerative diseases, genetic diseases, diabetes,
amyloidosis and others, has created research areas such as prediction of protein disorder, iden-
tification of induced folding region, or binding sites in disordered proteins and drug discovery.

IDPs and protein sequences with IDRs that participate in important biological functions are
increasing fast in number [14]. However, the experimental annotation of disordered residues is
currently progressing slowly [15, 16]. Thus the computational tools [15–27] for predicting dis-
ordered residues using sequence-based features play an alternative and vital role in under-
standing the functions of disordered proteins and disordered protein regions. These tools that
use machine learning algorithms are useful in computational biology as they can produce
results quickly. The critical assessment of protein structure prediction, popularly known as
CASP competitions [28–30] evaluate the performances of existing disorder predictors bienni-
ally since 2002. These predictive tools require a set of features that capture the distinguishing
characteristics of the ordered and disordered residues to be predicted. In this article, we pro-
pose a novel and effective feature for characterizing different structural descriptors of protein
residues from its primary sequence.

Anfinsen’s thermodynamic hypothesis [3] explains that a protein gains the lowest free
energy in its natively stable structure. The structural stability of proteins requires a large num-
ber of inter-residual interactions. Such interactions among residues result in short range hydro-
gen-bond formation, van der Waals interactions as well as electrostatic interactions between
protein atoms. Inter-residual contact energies between residues in proteins can be estimated
from the residue-residue contacts observed in the crystal structures of globular proteins [31,
32]. Attempts have been made to predict the pairwise contact energy values among 20 different
amino acids from protein sequence [33]. Energy acts as a measure of proteins’ structural stabil-
ity. Lower free energy (especially negative energy) is favorable for stabilizing the folded state of
a protein, whereas an unstable protein gains higher free energy (especially positive energy) that
is unfavorable for its folded state.

In this work, we introduce a novel approach of predicting the contribution of position spe-
cific energy by each residue of a protein sequence to its total energy. We predict this energy per
residue from the protein’s primary sequence alone, which we term as Position Specific Esti-

mated Energy (PSEE). Note that PSEE does not require a known structure to compute energy,
unlike the energy functions [34–36]. The computation of PSEE considers the potential contact
partners (amino acids) and the contact energies in the neighborhood of the primary protein
sequence as well as the relative exposure of the target residues and its partners. Our empirical
results indicate that PSEE can serve as a valuable feature for the prediction of disordered pro-
tein, secondary structure types and accessible surface area where 1D sequence information to
3D structural information mapping is essential. As an application, we enhance our disordered
protein predictor, DisPredict [16] with the new PSEE feature, named as DisPredict2. DisPre-
dict2 outperforms DisPredict in predicting disordered residues and shows competitive results
with six existing disordered protein predictors in the literature.

Position Specific Estimated Energy (PSEE) and Disorder Prediction
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Materials and Methods

Extraction of Position Specific Estimated Energy (PSEE) from Sequence

The free energy of a protein chain is a function of effective inter-residual contacts in its three
dimensional conformation. Thomas and Dill described an iterative method [31] to extract
interaction potentials, named ENERGI, from a set of protein structures obtained from Protein
Data Bank (PDB) [14]. Initially, the 20 × 20 contact energy matrix in [31] is derived from
known structures of 37 protein chains. A similar approach is applied in [33] to recalculate the
contact energies between all possible pairs of 20 different amino acids using known structures
of 785 proteins from PDB. However, the amino acid composition in the primary structure of
protein determines its native structure with favorable energy. Therefore, it is believed that the
pairwise contact energy can be extracted from the amino acid sequence [33]. The predicted
pairwise contact energies in [33] are derived using the primary structures (amino acid
sequences) of 674 proteins by least square fitting with the contact energies derived from the ter-
tiary structures of 785 proteins. The actual and predicted energies are found to have a linear
relationship, explained in [33].

Here, we present a novel idea of extracting the position specific estimated energy (PSEE)
contribution of each residue in a protein from its sequence alone. The preliminary idea behind
predicting pairwise energies in [33] conveys that the energy contribution of a residue depends
on the amino acid type of that residue as well as the types of its partners in the sequence. We
hypothesized that the position specific energy for a protein residue includes the contact effects
with different types of amino acids within a neighborhood along the primary sequence. There-
fore, we utilize the energy matrix (P) derived in [33] and shown in Table 1, to include the effect
of having a variable count of different amino acid type residues that can form favorable con-
tacts with the target residue. Further, we hypothesized that the position specific energy

Table 1. Predicted pairwise contact energy matrix derived in [33].

A R N D C Q E G H I L K M F P S T W Y V

A -1.65 0.98 0.66 1.16 -2.83 1.2 1.8 -0.41 1.9 -3.69 -3.01 0.49 -2.08 -3.73 1.54 -0.08 0.46 0.32 -4.62 -2.31

R 0.98 0.21 1.08 -2.02 -0.41 0.91 -3.13 0.84 0.19 2.05 -0.6 2.34 2.09 -0.4 1.06 0.95 0.98 -5.89 0.36 0.08

N 0.66 1.08 0.61 0.32 -4.18 1.28 0.2 -0.32 1.84 -0.07 0.97 1.12 0.21 0.73 1.15 0.29 0.46 -0.74 0.93 0.93

D 1.16 -2.02 0.32 0.84 -0.82 2.67 1.97 0.88 -1.07 0.68 0.23 -1.93 0.61 -0.92 3.31 0.91 -0.65 -0.71 0.9 0.94

C -2.83 -0.41 -4.18 -0.82 -39.58 -2.91 -0.53 -2.96 -4.98 0.34 -2.15 -1.38 1.43 -3.07 -2.31 -2.33 -1.84 4.26 -4.46 -0.16

Q 1.2 0.91 1.28 2.67 -2.91 -1.54 0.1 1.11 2.64 -0.18 -0.58 0.43 1.9 0.77 -0.42 1.12 1.65 -2.06 -2.09 0.38

E 1.8 -3.13 0.2 1.97 -0.53 0.1 1.45 1.31 0.61 1.3 1.14 -2.51 2.53 0.94 1.44 0.81 1.54 -1.07 1.29 0.12

G -0.41 0.84 -0.32 0.88 -2.96 1.11 1.31 -0.2 1.09 -0.65 -0.55 -0.16 -0.52 0.35 2.25 0.71 0.59 1.69 -1.9 -0.38

H 1.9 2.05 1.84 -1.07 -4.98 2.64 0.61 1.09 1.97 -0.71 -0.86 2.89 -0.75 -3.57 0.35 0.82 -0.01 -7.58 -3.2 0.27

I -3.69 0.19 -0.07 0.68 0.34 -0.18 1.3 -0.65 -0.71 -6.74 -9.01 -0.01 -3.62 -5.88 0.12 -0.15 0.63 -3.78 -5.26 -6.54

L -3.01 -0.6 0.97 0.23 -2.15 -0.58 1.14 -0.56 -0.86 -9.01 -6.37 0.49 -2.88 -8.59 1.81 -0.41 0.72 -8.31 -4.9 -5.43

K 0.49 2.34 1.12 -1.93 -1.38 0.43 -2.51 -0.16 2.89 -0.01 0.49 1.24 1.61 -0.82 0.51 0.19 -1.11 0.02 -1.19 0.19

M -2.08 2.09 0.21 0.61 1.43 1.9 2.53 -0.52 -0.75 -3.62 -2.88 1.61 -6.49 -5.34 0.75 1.39 0.63 -6.88 -9.73 -2.59

F -3.73 -0.4 0.73 -0.92 -3.07 0.77 0.94 0.35 -3.57 -5.88 -8.5 -0.82 -5.34 -11.25 0.32 -2.22 0.11 -7.09 -8.8 -7.05

P 1.54 1.06 1.15 3.31 -2.13 2.97 1.44 2.25 0.35 0.12 1.81 0.51 0.75 0.32 -0.42 1.12 1.65 -2.06 -2.09 0.38

S -0.08 0.95 0.29 0.91 -2.33 0.85 0.81 0.71 0.82 -0.15 -0.41 0.19 1.39 -2.22 1.12 -0.48 -0.06 -3.03 -0.82 0.13

T 0.46 0.98 0.46 -0.65 -1.84 -0.07 1.54 0.59 -0.01 0.63 0.72 -1.11 0.63 0.11 1.65 -0.06 -0.96 -0.65 -0.37 1.14

W 0.32 -5.89 -0.74 -0.71 4.26 -0.76 -1.07 1.69 -7.58 -3.78 -8.31 0.02 -6.88 -7.09 -2.06 -3.03 -0.65 -1.73 -12.39 -2.13

Y -4.62 0.36 0.93 0.9 -4.46 0.01 1.29 -1.9 -3.2 -5.26 -4.9 -1.19 -9.73 -8.8 -2.09 -0.37 -0.37 -12.39 -2.68 -3.59

V -2.31 0.08 0.93 0.94 -0.16 -1.91 0.12 -0.38 0.27 -6.54 -5.43 0.19 -2.59 -7.05 0.38 0.13 1.14 -2.13 -3.59 -4.82

doi:10.1371/journal.pone.0161452.t001
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contribution of a protein residue is related to the relative solvent accessibility (RSA) of the target
residue and the residues within its neighborhood region. The RSA of a residue is used to deter-
mine its proportional exposure (pExp) or proportional burial (pBur) that defines its effective
contact surface, therefore can characterize the local environment of that residue in the tertiary
structure. In the process of protein folding, the hydrophobic amino acids, having less pExp, act
as a driving force to develop the core in the tertiary structure, while the hydrophilic residues
usually stay on the surface of the protein with relatively higher pExp. Thus, pExp (or pBur) of a
residue can provide useful information in capturing the local solvent effects and can help in
computing favorable (negative) energy contribution of that residue in its native structure.

Let, AAi be the i
th amino acid residue of the protein sequence, where i 2 1,. . .,L and L be the

length of that protein sequence. Ni is the neighborhood region around AAi that consists of the
contact partner residues of AAi. Ni includes the contact radius (CR) number of residues on the
either side of a target residue (AAi). Thus the size of Ni is equal to 2CR. The predicted pairwise
contact energy between AAi and AAj is denoted by P(AAi, AAj), where AAj belongs to Ni. We
weight this contact potential by the proportional burial of the contact partners to capture the
essential contact effect in the estimation of position specific energy of the target residue AAi.
Therefore, PSEE(AAi) is formulated as Eq 1.

PSEEðAAiÞ ¼ pBurðAAiÞ
P

AAj2Ni
PðAAi;AAjÞ � pBurðAAjÞ

2CR

" #

ð1Þ

Computation of proportional exposure (or, burial). RSA of a protein residue is calcu-
lated by normalizing the accessible surface area (ASA) of that residue by the surface area of the
same type of residue in a reference state. We used the ASA normalizing values derived in [37]
using Gly-X-Gly tripeptide as the reference state for a given residue X. Therefore, the propor-
tional exposure (pExp) and burial (pBur) can be expressed by the Eqs 2 and 3.

pExpðAAiÞ ¼
predicted ASAðAAiÞ

ASAðAAiÞ in the extended conformation Gly � X � Gly

� �

ð2Þ

pBurðAAiÞ ¼ 1� pExpðAAiÞ ð3Þ

The ASA normalization values are listed in Table 2. We utilized a new ASA predictor frame-
work, REGAd3p [34], to generate predicted ASA of the residues. REGAd3p [34] is a new real-

Table 2. ASA normalization values for 20 amino acids in Å2, proposed in [37].

Amino Acid (AA) ASA normalization value Amino Acid (AA) ASA normalization value

Alanine (A) 129.0 Leucine (L) 201.0

Arginine (R) 274.0 Lysine (K) 236.0

Asparagine (N) 195.0 Methionine (M) 224.0

Asparatate (D) 193.0 Phenylalanine (F) 240.0

Cysteine (C) 167.0 Proline (P) 159.0

Glutamine (Q) 225.0 Serine (S) 155.0

Glutamate (E) 223.0 Threonine (T) 172.0

Glycine (G) 104.0 Tryptophan (W) 285.0

Histidine (H) 224.0 Tyrosine (Y) 263.0

Isoleucine (I) 197.0 Valine (V) 174.0

doi:10.1371/journal.pone.0161452.t002

Position Specific Estimated Energy (PSEE) and Disorder Prediction
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value ASA predictor from protein sequence alone that showed maximum Pearson correlation
coefficient (PCC) value of 0.76 on a blind test dataset.

Determining contact radius (CR). PSEE of a residue serves as a measure of the structural
stability of that residue being located in that specific position. The structurally stable proteins,
so as the residues of proteins, gains energetically favorable (negative) condition compared to
the unstructured counterparts. The quantification of PSSE by Eq 1 involves the determination
of the contact radius (CR) of the neighborhood around the target residue. It is assumed that the
target residue forms effective local contacts with the CR number of residues on its either side.
To determine the CR parameter for the computation of PSEE, we applied PSEE as a feature to
characterize the structured (ordered) and unstructured (disordered) residues. We performed
experiments to search for the best CR parameter value in the range of 4 to 30. We executed this
experiment on the DisProt database [38] of disordered proteins that stores manually curated
annotations of ordered and disordered residues. The recent release of DisProt version 6.02 con-
tains 694 proteins with 1539 disordered regions. We excluded three chains from this set, Id:
DP00688, DP00195, DP00642, as they have unknown amino acids, such as X, B and Z. Fur-
thermore, the Cysteine (C) amino acid, being highly reactive due to its sulfhydryl group, caused
abnormal PSEE values for some residues of 11 more protein sequences which we have dis-
carded for the aforementioned reason. A very high Cysteine-Cysteine pairwise interaction
energy is also explicit in Table 1. Thus we excluded those 11 chains while tuning the value of
CR. This purification resulted a list of 680 protein chains, we label as DisProt680 dataset, from
DisProt database [38]. Subsequently, we computed the mean PSEE, formulated by Eq 4, of the
DisProt annotated ordered (o) and disordered (d) residues.

PSEEðoÞ ¼
P

PSEEðoÞ
no

and PSEEðdÞ ¼
P

PSEEðdÞ
nd

ð4Þ

Here, no and nd are the total number of ordered and disordered residues, respectively. We

computed PSEEðoÞ and PSEEðdÞ for CR values of 4 to 30. For each value of CR, we define the
threshold, t(PSEE), for PSEE based identification of ordered and disordered residues as the

value that is equally distant from PSEEðoÞ and PSEEðdÞ. Fig 1 shows the PSEEðoÞ, PSEEðdÞ
and t(PSEE) for CR from 4 to 30.

Fig 1 illustrates that PSEE identifies the energetically induced gap between the structured
and unstructured residue and clearly draws the separation line in terms of t(PSEE) for all values

of CR. For CR values equal to 4 to 30, PSEEðoÞ ranges from -0.51 to -0.58, whereas PSEEðdÞ
ranges from -0.13 to -0.15. Therefore, PSEE could recognize the energetically favorable (nega-
tive) condition of structured residues. We utilize t(PSEE) of the corresponding CR values to
classify ordered versus disordered residues to determine the best CR value that most distin-
guishes PSEE values of ordered and disordered residues. We plot the PSEE based disorder clas-
sification performance in terms of balanced accuracy (ACC), precision (PPV) andMatthews

correlation coefficient (MCC) in Fig 2. We carried out this preliminary classification based on
PSEE only to identify the effective CR value, thus we ignored the actual numerical values of the
performance metrics here. Fig 2 shows that PSEE values calculated with a CR value of 9 per-
form the disordered residue classification most accurately based on the DisProt680 dataset.
Thus we obtained the best CR value 9 and we used the same for the rest of our experiments in
this work.

Prediction of Protein Disorder (DisPredict2)

We developed an enhanced disorder predictor, DisPredict2, by incorporating our proposed
novel feature, PSEE, into the feature set of our existing predictor, DisPredict [16]. DisPredict2

Position Specific Estimated Energy (PSEE) and Disorder Prediction
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is available at https://github.com/tamjidul/DisPredict2_PSEE as well as at http://cs.uno.edu/~
tamjid/Software/PSEE/PSEE.zip.

Datasets. We trained DisPredict2 with the same dataset as was utilized in order to train
DisPredict [16] to have an accurate assessment of the effectiveness of the novel feature PSEE.
DisPredict2 is trained with 477 protein sequences of the Short-Long (SL) [16, 39] dataset. The
SL477 dataset contains protein chains from DisProt [38] database. 50% of the disorder regions
in this dataset are short with less than or equal to 20 residues, and the rest are long. The allow-
able similarity between protein sequence pairs is 25%. SL477 dataset consists of approximately
25%, 34% and 40% of residues annotated as disordered, ordered and unknown. The unknown
residues are annotated as ‘X’. We ignored X residues for training and evaluation purposes.

We tested and compared the performance of DisPredict2 with that of DisPredict [16] based
on four independent datasets, DD73 [16], CASP8, CASP9 and CASP10. The DD73 dataset was

Fig 1. PSEEðoÞ, PSEEðdÞ and t(PSEE) for different contact radius (CR) values.Mean PSEE for ordered and disordered residues,
indicated by green line with circle marker and red line with diamond marker respectively, of DisProt680 dataset for CR values of 4 to 30. The
separation line or, threshold (t(PSEE)) is drawn with a black dashed line. The x-axis and y-axis show the CR and mean PSEE values,
respectively.

doi:10.1371/journal.pone.0161452.g001

Fig 2. Performance of ordered and disordered residue classification based on per residue PSEE value calculated using different
contact radius (CR) values.Classification performance is shown in terms of (A) ACC (blue bar), (B) PPV (purple bar) and (C) MCC (green
bar) for CR values equal to 4 to 30. The x-axis and y-axis show the CR values and the performance metric values, respectively.

doi:10.1371/journal.pone.0161452.g002
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prepared by us and we used it as a holdout dataset in [16]. While the training dataset, SL477,
was extracted from the protein chains of the DisProt database version 5.0, DD73 accommo-
dates 48 proteins from DisProt database version 5.1 to 6.02. The rest of the 25 single chain pro-
teins are extracted from PDB [14] with the following criteria: i) X-ray structures with
resolution� 3.0 Å, ii) length geq 50 residues, and iii) 30% sequence identity cut-off. Later we
removed sequences with more than 25% pairwise sequence similarity using BLASTCLUST
(ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html) from the NCBI-BLAST package [40].
Among 73 protein chains, 37 are fully disordered, 23 are fully ordered and 13 have both
ordered and disordered regions. For DisPredict2, we utilized the DD73 dataset for both inde-
pendent evaluation of the predictor and optimization of threshold for disordered residue classi-
fication. However, the CASP datasets were kept completely independent, and we did not carry
out any optimization on those datasets.

The CASP8 dataset contains 122 protein chains; of which, 103 chains are X-ray derived pro-
tein structures and 19 chains are NMR structures. This dataset has approximately 11% disor-
dered residues, and the rest of the residues are structured. We used 111 protein chains of the
CASP9 dataset to test and compare DisPredict2 versus DisPredict [16]. For this dataset, only
10% of the total residues were annotated disordered. The CASP9 dataset has a similar propor-
tion of X-ray and NMR derived protein structures. In the CASP10, 94 protein chains were used
to assess the disorder predictors. For all CASP datasets, a residue is considered disordered if it
lacks spatial coordinates or shows a high conformational variability across different X-ray
structures or NMR models.

Feature set. In DisPredict2 we appended PSEE to the 56 features per residue used in Dis-
Predict [16] along with PSEE. Therefore, we have 57 features per residue in DisPredict2. The
residue level information includes: (i) amino acid type, encoded by a single value, as all the nec-
essary information for the correct folding of a protein can be extracted from its amino acid
sequence [3]; (ii) seven physicochemical properties [41] of amino acids as different types disor-
dered regions (short or long) in a protein are found to have distinguished physicochemical
properties; (iii) twenty PSSMs (position specific scoring matrix) indicating the evolutionary
information conserved in each residue position of a protein sequence; (iv) three predicted sec-
ondary structure (helix, beta and coil) probabilities from SPINE-X [42], one predicted relative
surface area [43] and two predicted backbone torsion angle (phi, psi) fluctuations [35] since
disordered residues are characterized by a lack of stable secondary structure, high exposed area
and higher fluctuations of torsion angle; (v) one monogram and twenty bigrams computed
from PSSM [44] representing the conserved evolutionary information in the three-dimensional
structural level; (vi) one indicator for terminal residues, five residues from N terminal and C
terminal are indicated by -1.0 to -0.2 and +0.2 to +1.0 respectively with a step size of 0.2; and
(vii) one position specific estimated energy (PSEE) value. Finally, before feeding the features
into the classifier, 10 neighboring residues’ information, on the either side of the target residue,
was aggregated using a sliding window of 21, resulting in 21 × 57 = 1197 features per residue.

Predictor framework and performance evaluation. We developed DisPredict2 using the
support vector machine (SVM) algorithm, following our initially designed DisPredict predictor
[16]. In order to evaluate the contribution of the proposed PSEE feature in Disprodict2, we used
the identical parameter optimization and training procedure for the SVM algorithm as in DisPre-
dict [16]. Moreover, the same datasets were used with the PSEE feature appended with the previ-
ously used feature set. SVM with radial basis function (RBF) kernel simultaneously minimizes
the empirical classification error (training error) and generalized error (test error) by maximizing
the geometric margin of the separating hyperplane. The DisPredict2 predictor framework has
three levels. The first level is the parameter tuning that determines the optimal values of two
parameters for SVM classifier, namely C and γ, where C is the cost of misclassification that

Position Specific Estimated Energy (PSEE) and Disorder Prediction
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penalizes the feature space points on the wrong side of the decision boundary and γ is the param-
eter of the RBF kernel. The parameter selection was done by a grid search using 5% of the train-
ing dataset, which was guided by 5-fold cross validation with the accuracy (fraction of correctly
predicted residues) optimization. The best parameter values found by the grid search is, C = 0.5
and γ = 0.0078125. The second level of DisPredict2 development involves the prediction model
that generates both binary annotations and real valued probabilities of order versus disorder resi-
dues. The probability range, 0.5� range� 1.0, is considered as disorder probability and 0.0�
range< 0.5 is considered as order probability. The first and second level development of the pre-
dictor was done using LIBSVM [33]. The third level of the predictor is to optimize the threshold
for disorder classification and to adjust the predicted annotations of each residue based on the
optimized threshold. We employed Youden’s J statistic [45] to find the optimal threshold for dis-
order prediction by analyzing the receiver operating characteristic (ROC) curve using the pROC
package [46]. This statistic determines the optimal cut-off that maximizes the distance from the
identity (diagonal) line. The optimality criterion is formulated as,

maxðsensitivitiesþ specificitiesÞ ð5Þ

To make our predictor robust, we carried out the threshold optimization with an indepen-
dent test dataset, DD73. The best threshold value found is 0.79. Therefore, we curated the
annotation output given by the SVMmodel using 0.79� range� 1.0 as disorder probability
and 0.0� range< 0.79 as order probability. Further, we scaled the probability range [0.0, 0.79)
into [0.0, 0.5) for the ordered residues and [0.79, 1.0] into [0.5, 1.0] for the disordered residues
to make the DisPredict2’s output more natural for binary classification.

The binary outputs given by DisPredict2 is evaluated and compared using the measures
listed in Table 3. MCC is considered as the most balanced measure for binary classification
[29]. Additionally, we computed Area Under ROC Curve (AUC), considered as the measure for
the probability assignment. We further plotted the ROC curves and Precision-Recall curves.
The AUC values and the both curve plots are generated using the ROCR package [47].

Results

In this section, we highlight the usefulness of PSEE to characterize the structural stability of
protein residues. Our results show that PSSE can effectively distinguish ordered and disordered
residues, residues of three different secondary structures (helix, beta and coil) as well as resi-
dues with different physical properties (hydrophobic and hydrophilic). Therefore, PSEE can
effectively extract useful biological information from sequence, making it a useful feature for
machine learning based computational tools for disorder prediction, secondary structure pre-
diction, residue exposure prediction, contact prediction, binding region prediction etc. Further,
we report the predictive performance of DisPredict2, an updated version of disorder predictor,

Table 3. Name and definition of performance measuring parameters.

Name of metric Definition

True positive (TP) Number of correctly predicted disordered residues

True negative (TN) Number of correctly predicted ordered residues

False positive (FP) Number of incorrectly predicted disordered residues

False negative (FN) Number incorrectly predicted ordered residues

Balanced accuracy (ACC) 1

2
ð TP
TPþFN

þ TN
TNþFP

Þ
Precision (PPV) TP

TPþFP

Mathews correlation coefficient (MCC) ðTP�TNÞ�ðFP�FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p

doi:10.1371/journal.pone.0161452.t003
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DisPredict, integrating PSEE into the feature set. The superior performance of DisPredict2 vali-
dates the effectiveness of the proposed PSEE feature.

Discriminatory Capacity of PSEE

Ordered and disordered residues. Fig 3(A) shows the mean PSEE of ordered and disor-
dered residues of the DisProt680 dataset with contact radius of 9 on the either side of the target

residue. The absolute gap between PSEEðoÞ and PSEEðdÞ is 0.363 that makes PSEE a reason-
able feature to classify ordered versus disordered residues.

Further, we investigated the PSEE values at the regional level. Fig 3(B) plots the PSEE values
for IDRs and ordered regions (ORs) computed as the average PSEE values of the respective res-
idues of the regions. The average PSEE value for all IDRs is -0.391 and that for ORs is -1.00.
The black dashed line in Fig 3(B) shows the separation line, computed as the middle value
(-0.698) of the two average PSEE values for all IDRs and ORs. Therefore, the region below
-0.698 is energetically favorable, whereas above it is the unfavorable region. It shows that PSEE
values for some IDRs fall into the favorable region as well. To investigate this further, we segre-
gated the IDRs into four types depending on the length of IDRs; IDRs with� 5 residues,
(5–20] residues, (20–40] residues and� 40 residues. Then we computed the average PSEE for
all IDRs having similar lengths. Fig 4 shows the average PSEE for all ORs, IDRs, 4 different
types of IDRs along with the separation threshold shown in Fig 3(B). The relatively longer
IDRs with (20–40] and� 40 residues have PSEE values, -0.373 and -0.274, which are more
unfavorable (less negative) than that of considering all IDRs, -0.391. Therefore, PSEE is useful
in identifying long disordered regions. It is important to note that the average PSEE for shorter
IDRs with� 5 residues, -0.544, is close to the separation line, -0.698, thus these shorter IDRs
tend to have favorable energy. These short disordered regions are often called binding sites
which are biologically important, as they undergo disorder-to-order transitions by interacting
with various partners. Identifying the binding sites in disordered regions is one of the most
recent research areas due to the functional importance of binding sites. Our result shows that

Fig 3. Order versus disorder characterization of PSEE both in residue and region level. (A) Mean PSEE for ordered (green bar) and
disordered (red bar) residues of DisProt680 dataset. The bars are label with the respective mean PSEE values. (B) PSEE values for
ordered regions (green circle) and disordered regions (red diamond). The separation threshold between the average PSEE of all ordered
and disordered region is indicated by black dashed line. The x-axis and y-axis represent the region index and the corresponding PSEE
values.

doi:10.1371/journal.pone.0161452.g003
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PSEE values for short disordered regions reflect the usefulness of PSEE in binding site predic-
tion as well.

Helix, beta and coil residues. To manifest the performance of PSEE in capturing the
structural differences of three different types of secondary structure residues (helix, beta and
coil), we computed the mean PSEE for helix (h), beta (e) and coil (c) residues using Eq 6.

PSEEðhÞ ¼
P

PSEEðhÞ
nh

; PSEEðeÞ ¼
P

PSEEðeÞ
ne

; PSEEðcÞ ¼
P

PSEEðcÞ
nc

ð6Þ

We applied a new secondary structure predictor, called MetaSSPred [48], to generate pre-
dicted annotations for helix(h), beta (e) and coil (c) residues. MetaSSPred [48] is a balanced
secondary structure predictor that can overcome the under-prediction of less dominating beta
residues in the datasets. Helices and beta residues are usually located in the core of the protein,
having favorable energy. Beta residues are more structured compared to the helix residues. On
the other hand, coil residues stay on the surface areas of proteins and are highly flexible, having
unfavorable energy.

Fig 5(A) shows the PSEEðhÞ, PSEEðeÞ and PSEEðcÞ for residues of the DisProt680 dataset.
Beta residues have the highest negative PSEE and coils possess the lowest negative PSEE,
whereas helix residues stay in between the two. This result is reasonable to validate the useful-
ness of PSEE in identifying different secondary structure residues. To further confirm this, we
repeated a similar experiment on another dataset, generated by us in [34], specifically for

Fig 4. PSEE of different length disordered regions and all ordered regions. Average PSEE of different protein regions of DisProt680
dataset; ORs (green), IDRs (red) IDRs with� 40 residues (orange), IDRs with (20–40] residues (pink), IDRs with (5–20] residues (blue),
IDRs with leq 5 residues (purple) and the separation line between all IDRs and ORs is shown by black dashed line. The lines are labeled by
the corresponding numerical values of PSEE.

doi:10.1371/journal.pone.0161452.g004
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secondary structure analysis. This dataset is called the secondary structure dataset (SSD) con-
taining 1299 protein sequences with known structures from PDB. We ran DSSP [49] to gener-
ate the actual annotations of secondary structures for the residues of the SSD1299 dataset and
MetaSSPred [48] for the predicted annotations. The eight class annotations provided by DSSP
were converted into three classes using a similar mapping given in [34, 48]. The mean PSEE
values for the residues in the SSD1299 dataset are shown in Fig 5(B). PSEE consistently distin-
guished the three types of residues annotated by DSSP as well as MetaSSPred for the SSD1299
dataset. Therefore, PSEE will serve as a useful feature for secondary structure prediction.

Hydrophobic and hydrophilic residues. Hydrophobic (H) amino acids build up the core
of a protein and the hydrophilic or Polar (P) ones preferentially cover the surface of the pro-
teins and are in contact with solvent due to their ability to form hydrogen bonds. Therefore,
the hydrophobic residues gain energetically favorable conditions compared to hydrophilic resi-
dues. Hydrophobic amino acids are A, G, I, L, M, F, P, W, Y and V, whereas the hydrophilic
amino acids are R, N, D, C, Q, E, H, K, S and T. We computed mean PSEE for the H and P type
residues of both the DisProt680 dataset and the SSD1299 dataset. Fig 6 shows that for both of
the datasets, the mean PSEE values for hydrophobic and hydrophilic residues are negative and
positive, respectively. Thus PSEE effectively discriminates hydrophobic and hydrophilic

Fig 5. Secondary structure residue type characterization of PSEE. (A) Mean PSEE for beta (dark brown bar), helix (brown bar) and coil
(light brown bar) residues of DisProt680 dataset. (B) Mean PSEE for beta, helix, and coil residues of SSD1299 dataset. The blue and brown
set of bars represent the annotations from DSSP and MetaSSPred, respectively. The bars are label with the respective mean PSEE values.

doi:10.1371/journal.pone.0161452.g005

Fig 6. Mean PSEE of hydrophobic and hydrophilic residues. PSEE for hydrophobic (green bar) and hydrophilic (red bar) residues of (A)
DisProt680 dataset and (B) SSD dataset. The bars are label with the respective mean PSEE values.

doi:10.1371/journal.pone.0161452.g006
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residues. As the hydrophobicity of the residues are directly related to the ASA of the residues,
PSEE can serve as a useful feature for ASA prediction [34].

We further collected the hydrophobicity index for 20 different amino acids from [41] and
computed mean PSEE for 20 different amino acid residues of the SSD1299 dataset. Essentially
the residues with positive hydrophobicity should have a negative mean PSEE. Fig 7 shows the
correlation between the hydrophobicity index and the mean PSEE of 20 different amino acid
type residues with the correlation coefficient (CC) equal to -0.86. This result emphasizes that
(aggregated) PSEE is strongly correlated with the physical property, hydrophobicity, of the
amino acid residues, which in turn confirms that the proposed approach is not deviating from
the statistics obtained in previous work [41] significantly. A negative CC value is desirable as
the high (positive) hydrophobicity of a residue indicates structural stability, thus favorable
(negative) energy contribution. Proline is referred as hydrophobic, however it is found more in
turns (coils) with unstable structure than helix or beta sheets. Thus it has positive hydrophobic-
ity as well as positive PSEE that correspond to unstable structure.

Disorder Prediction Performance by DisPredict2

In this section, we measure the benefits of using PSEE as feature in the application of structure
(or disorder) classification and prediction in terms of comparing DisPredict2 with 7 other
state-of-the-art disorder predictors. These predictors include our initial disorder predictor,
DisPredict [16], as well as SPINE-D [19], MFDp [20], MFDp2 [21], Espritz [15], IUPred-Long
(IUPred-L) and Short (IUPred-S) [33]. SPINE-D [19] is a two-layered neural network based
technique that was initially developed for three state prediction (disordered residues in short
and long regions, ordered residue) and later reduced into two state prediction (disordered vs
ordered residues). Espritz [15] is a high throughput predictor that uses a recursive neural net-
work. MFDp [20] and MFDp2 [21] are meta predictors that combine different complementary
disorder predictors’ output to have further curated prediction. MFDp [20] combines four pre-
dicted disorder probabilities from IUPred-L [26, 33], IUPred-S [26, 33], DISOPRED2 [22] and
DISOclust [50], while its incremental version, MFDp2 [21], further incorporates sequence
based predicted disorder content from DisCon [52]. IUPred-L [26, 33] and IUPred-S [26, 33]
predict disordered residues in long and short regions, respectively, using predicted interaction
energies. The formulation used in [26, 33] included a sequential local environment by

Fig 7. Correlation betweenmean PSEE and hydrophobicity index of 20 amino acids.Mean PSEE (blue bar) and hydrophobicity index
(red bar) of 20 different types of amino acid residues of SSD1299 dataset. The data values are given in the data table under the plot.

doi:10.1371/journal.pone.0161452.g007
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involving interactions with potential partners. Our formulation of PSEE further improvises the
pairwise energy based feature by strategically combining the proportional burial information
of the potential partners which determines the local structural environment. For a comprehen-
sive comparison, we separately ranked the predictors in terms of balanced accuracy (ACC),
Precision (PPV), Mathews correlation coefficient (MCC) and Area Under ROC curve (AUC).
We gave the same rank to all predictors having similar scores. We assigned a cumulative score
(Sc) as a summation of ranks according to different metrics and determined the final rank
according to that cumulative score. The results highlight that DisPredict2 is competitive with
the different neural network based methods, meta-predictors as well as predictors that uses
predicted pairwise energy as a feature. Moreover, the comparative performance analysis of Dis-
Predict2 versus DisPredict is provided to focus the utility of PSEE as a feature for disorder
prediction.

Table 4 shows the performance comparison based on the DD73 dataset. This dataset is col-
lected from both DisProt [38] and PDB [14], and is independent from the training dataset,
SL477. DisPredict2 was assigned rank 1 in terms of ACC, MCC and AUC as well as achieved
highest Sc with a final rank of 1. MFDp2 gave the highest PPV only, however it finally ranked 2
according to the overall performance. Moreover, DisPredict2 provided 0.41%, 6.35%, 3.48%
and 1.36% improvement over DisPredict in terms of ACC, PPV, MCC and AUC under the
ROC curve, respectively. These improvements focus the benefits of using PSEE as feature. Fig 8
compares the ROC curves and precision-recall curves given by the predictors. DisPredict2, Dis-
Predict and SPINE-D gave comparable ROC curves outperforming the others, while DisPre-
dict2, DisPredict, MFDp and MFDp2 gave better precision for the recall range 0.3 to 0.8 than
those of the others.

Table 5 shows the performance of the predictors based on the CASP8 dataset. SPINE-D
stood first in terms of ACC and AUC scores, however it gave 33.5% and 7.4% lower PPV and
MCC than those MFDp2 whose rank is 1 according to these two scores. DisPredict2 showed
comparable performance in terms of all the metrics and attained the best cumulative score, and
finally was ranked 1. Thus the overall performance of DisPredict2 is promising. Furthermore,
DisPredict2 provided 0.38% lower ACC than that of DisPredict while resulted 18.73%, 8.81%
and 2.17% higher PPV, MCC and AUC than those of DisPredict. Fig 9 compares the ROC
curves and precision-recall curves. SPINE-D, Espritz, DisPredict2 and MFDp2 gave competi-
tive ROC curves, while the SPINE-D resulted the best precision-recall curve.

The comparative performances of the predictors on 111 protein chains of the CASP9 dataset
are reported in Table 6. This is a highly imbalanced dataset with approximately 10% of the

Table 4. Disorder prediction performances of 8 disorder predictors based on DD73 dataset.

Methods Targets ACC PPV MCC AUC (ROC) Ranks Cumulative Score (Sc) Final Rank

ACC PPV MCC AUC

DisPredict2 73 0.832 0.857 0.680 0.902 1 2 1 1 5 1

DisPredict [16] 73 0.829 0.806 0.663 0.890 2 5 3 2 12 2

SPINE-D [19] 73 0.822 0.766 0.639 0.890 4 8 5 2 19 4

Espritz [15] 73 0.715 0.817 0.494 0.826 7 3 7 6 23 5

MFDp [20] 73 0.828 0.796 0.658 0.883 3 6 4 5 18 3

MFDp2 [21] 73 0.821 0.873 0.675 0.889 5 1 2 4 12 2

IUPred-L [33] 73 0.742 0.812 0.532 0.806 6 4 6 7 23 5

IUPred-S [33] 73 0.708 0.787 0.471 0.798 8 7 8 8 31 6

Best performances are marked by bold.

doi:10.1371/journal.pone.0161452.t004
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residues as disordered. MCC is regarded as the best measure in evaluating prediction perfor-
mance on such an imbalanced dataset as it does not favor the over-prediction of the dominat-
ing class [29]. DisPredict2 achieved the best MCC and precision (PPV) score on the CASP9
dataset, while ranked 3rd according to ACC and AUC. Conversely, SPINE-D gave the best
ACC and AUC. However, it provided 26.5% lower precision than that of DisPredict2. DisPre-
dict2 obtained the 1st position in the final ranking with cumulative score differences of 2 and 4
from Espritz and SPINE-D respectively in 2nd and 3rd position. Moreover, DisPredict2 with
PSEE performed 20%, 5.76% and 1.69% better than DisPredict in terms of PPV, MCC and
AUC, respectively; with a slightly lower (2.66%) accuracy. In Fig 10(A) the ROC curves given
by DisPredict2, DisPredict, SPINE-D and Espritz show that they were competitive at different
points as a result of different thresholds, whereas SPINE-D resulted in the most consistent pre-
cision-recall curve. We observed a sharp drop of precision (PPV) in Fig 10(B) at a very low
recall value for SPINE-D, DisPredict and DisPredict2. A precision-recall curve essentially plots
the PPV and recall scores of a predictor at different threshold values. Therefore, these drops
can be the result of having decreasing PPV values (truly positive results out of total positive test

Table 5. Disorder prediction performances of 8 disorder predictors based on CASP8 dataset.

Methods Targets ACC PPV MCC AUC (ROC) Ranks Cumulative Score (Sc) Final Rank

ACC PPV MCC AUC

DisPredict2 122 0.807 0.628 0.600 0.894 3 5 2 2 12 1

DisPredict [16] 122 0.810 0.529 0.551 0.875 2 7 6 6 21 6

SPINE-D [19] 122 0.849 0.504 0.576 0.910 1 8 5 1 15 4

Espritz [15] 122 0.797 0.636 0.592 0.893 5 3 4 4 16 5

MFDp [20] 122 0.806 0.634 0.601 0.894 4 4 3 2 13 2

MFDp2 [21] 122 0.774 0.758 0.622 0.888 6 1 1 5 13 2

IUPred-L [33] 122 0.722 0.700 0.531 0.810 8 2 8 8 26 7

IUPred-S [33] 122 0.766 0.624 0.551 0.853 7 6 6 7 26 7

Best performances are marked by bold.

doi:10.1371/journal.pone.0161452.t005

Fig 8. ROC and precision-recall curves given by 8 disorder predictors for DD73 dataset.Comparison of disorder predictors in terms of
(A) ROC curve and (B) precision-recall curve on DD73 dataset. The area under ROC curves are given in the plot (A).

doi:10.1371/journal.pone.0161452.g008
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outcomes) at some threshold values. However, the PPV values show an increasing trend
afterwards.

Table 7 illustrates the performance comparison on the CASP10 dataset. This dataset has
only 6.2% of the residues annotated as disordered. DisPredict2 achieved reasonable ranks,
however not the best, in terms of all the scores. On the contrary, SPINE-D gave the highest
ACC and AUC values with very low precision (ranked 6th). Similarly, MFDp2 showed the best
precision with low ACC (ranked 6th) and Espritz gave best MCC with low ACC (ranked 5th).
The cumulative ranks of Dispredict2, SPINE-D and Espritz were same, therefore all three of
them were finally ranked 1st. Moreover, the performance of DisPredict2 is 39.06%, 15.73% and
3.58% higher in terms of PPV, MCC and AUC, respectively. Therefore, DisPredict2 turns out
to be a better disorder predictor than DisPredict [16] using PSEE as the only additional fea-
tures. Fig 11 shows that SPINE-D consistently resulted in better ROC and precision-recall
curves with the highest AUC and ACC values in Table 7, whereas the curves of DisPredict, Dis-
Predict2 and Espritz were comparable.

Amyloidogenic region (AR) prediction by DisPredict2. To emphasize the biological sig-
nificance of the outputs provided by DisPredict2, we collected 7 sequences from AMYPdb [51]

Fig 9. ROC and precision-recall curves given by 8 disorder predictors for CASP8 dataset.Comparison of disorder predictors in terms
of (A) ROC curve and (B) precision-recall curve on CASP8 dataset. The area under ROC curves are given in the plot (A).

doi:10.1371/journal.pone.0161452.g009

Table 6. Disorder prediction performances of 8 disorder predictors based on CASP9 dataset.

Methods Targets ACC PPV MCC AUC (ROC) Ranks Cumulative Score (Sc) Final Rank

ACC PPV MCC AUC

DisPredict2 111 0.699 0.471 0.407 0.823 3 1 1 3 8 1

DisPredict [16] 111 0.718 0.389 0.385 0.809 2 4 3 4 13 4

SPINE-D [19] 111 0.745 0.346 0.385 0.840 1 7 3 1 12 3

Espritz [15] 111 0.683 0.466 0.386 0.827 4 2 2 2 10 2

MFDp [20] 111 0.651 0.361 0.299 0.756 5 6 5 5 21 5

MFDp2 [21] 111 0.616 0.399 0.276 0.751 7 3 7 6 23 6

IUPred-L [33] 111 0.561 0.259 0.147 0.572 8 8 8 8 32 8

IUPred-S [33] 111 0.633 0.466 0.386 0.827 6 5 6 7 24 7

Best performances are marked by bold.

doi:10.1371/journal.pone.0161452.t006
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and computed the disorder probabilities of the residues by DisPredict2. These protein
sequences contain amyloidogenic regions (ARs) that are insoluble, however can improperly
interact to form amyloids. ARs play an important role in protein aggregation, and they are
directly linked with critical human diseases such as neurological disorders. Fig 12 shows the
location and description of ARs, mean and standard deviation of disorder probabilities of the
residues of ARs, along with probability plot for the proteins. The mean disorder probabilities
for seven amyloidogenic regions range from 0.213 to 0.776, with an average of 0.45 (approxi-
mately in the middle of the probability range) and standard deviation of 0.203. Therefore, Dis-
Predict2 identified the disorder (without amyloid formation) to order (with amyloid
formation) transitions and the associated structural flexibilities of amyloidogenic regions.

Discussion

In this paper, we describe the extraction of position specific estimated energy, named PSEE, for
each residues of a protein based on sequence information alone. The quantification of PSEE
includes the interaction effect of the target residue within a neighborhood in terms of pairwise

Fig 10. ROC and precision-recall curves given by 8 disorder predictors for CASP9 dataset. Comparison of disorder predictors in
terms of (A) ROC curve and (B) precision-recall curve on CASP9 dataset. The area under ROC curves are given in the plot (A).

doi:10.1371/journal.pone.0161452.g010

Table 7. Disorder prediction performances of 8 disorder predictors based on CASP10 dataset.

Methods Targets ACC PPV MCC AUC (ROC) Ranks Cumulative Score (Sc) Final Rank

ACC PPV MCC AUC

DisPredict2 94 0.719 0.347 0.370 0.839 3 4 2 2 11 1

DisPredict [16] 94 0.734 0.249 0.320 0.810 2 7 6 6 21 6

SPINE-D [19] 94 0.774 0.269 0.366 0.840 1 6 3 1 11 1

Espritz [15] 94 0.674 0.441 0.374 0.829 5 2 1 3 11 1

MFDp [20] 94 0.677 0.359 0.336 0.818 4 3 4 4 15 4

MFDp2 [21] 94 0.636 0.453 0.332 0.815 6 1 5 5 17 5

IUPred-L [33] 94 0.569 0.238 0.160 0.604 8 8 8 8 32 8

IUPred-S [33] 94 0.635 0.331 0.278 0.664 7 5 7 7 26 7

Best performances are marked by bold.

doi:10.1371/journal.pone.0161452.t007
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contact energies between different amino acid types. We define the estimated neighborhood
size in terms of the number of residues on either side of the target residue with which it can
form favorable contacts. Furthermore, it utilizes the predicted relative exposure (or burial) of a
residue to approximate the local three-dimensional conformational position and stability of
the residue. Our results show that PSEE is very effective in characterizing ordered (structurally
stable) and disordered (structurally unstable) residues as well as regions in protein sequences.
Moreover, a fine-grained analysis highlights that the average PSEE of the residues of the bind-
ing sites in disordered regions are well separable from those of disordered or ordered regions.
Therefore, PSEE detects the existence of critical binding regions in disordered proteins that
undergo disorder-to-order transitions and perform crucial biological functions [52]. Moreover,
PSEE is effective in distinguishing the residues of two different datasets with three different
types of secondary structures (helix, beta and coil). The residues with complementary physical
properties, such as hydrophobic and hydrophilic, are promisingly identified by PSEE. More-
over, it strongly correlated with the respective hydrophobicity index of 20 different types of
amino acids.

Here, we further discuss the capacity of PSEE to capture multiple structural properties of
the residues within the DisProt680 dataset. Fig 13 shows the correlation between pExp (or
pBur) and PSEE of disordered and ordered regions. The vertical dashed line is the separation
(-0.698) of PSEE for ORs and IDRs, and the horizontal dash-dotted line indicates separation
for exposed or, buried residues. We assumed that the residues with relative exposure less than
25%, computed by Eq 2, are buried. We collected ASA for the residues of the DisProt680 data-
set by running REGAd3p [34]. Therefore, the left of the vertical line is the energetically favor-
able regions, and most of the ordered regions (blue circle) have PSEE in this region and most of
the disordered regions (red diamond) have PSEE on the right side. Specifically, the first quad-
rant (top-right corner) of the plot is the major distribution area of the disordered regions with
unfavorable (positive) energy and higher exposure. On the other hand, the third quadrant (bot-
tom-left corner) of the plot is the essential region for ordered regions with favorable (negative)
energy and lower exposure. It is explicit in Fig 13 that the PSEE values of most of the disor-
dered regions are in the first quadrant. Therefore, PSEE can capture the exposure-property of

Fig 11. ROC and precision-recall curves given by 8 disorder predictors for CASP10 dataset. Comparison of disorder predictors in
terms of (A) ROC curve and (B) precision-recall curve on CASP10 dataset. The area under ROC curves are given in the plot (A).

doi:10.1371/journal.pone.0161452.g011
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Fig 12. List of proteins with amyloidogenic regions (ARs) and the disorder probability plots given by
DisPredict2. The yellow bar indicates the ARs and the red line shows the disorder probability of each residue
indicated by circle marker. The description of protein, location of AR are given on the left side each plot along
with the mean and standard deviation of disorder probability for the AR.

doi:10.1371/journal.pone.0161452.g012
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the residues and, at the same time, can categorize them as ordered or disordered. However, the
other quadrants also contain some disordered regions.

Fig 13 shows a similar correlation analysis between the coil-like tendency and PSEE of dis-
ordered and ordered regions. We collected coil probability of the residues of DisProt680 data-
set by running MetaSSPred [48] and assumed that the residues with higher than 50% coil
probability have flexible structure. Therefore, the first quadrant (top-right corner) of the plot is
the essential area for disordered regions with unfavorable (positive) energy and high coil prob-
ability. On the other hand, the third quadrant (bottom-left corner) of the plot is the essential
region for ordered regions with favorable (negative) energy and low coil probability. Fig 14
shows that most of the PSEE values for ordered regions fall in the third quadrant; where those
of disordered regions fall in the first quadrant. However, for both Figs 13 and 14, the other
quadrants also contain some disordered regions. This can be caused by mis-annotation of dis-
order [16] from DisProt database or the disorder-to-order transition of binding sites.

This promising correlation among different structural properties and the PSEE of protein
residues motivated us to propose PSEE as a feature for the development of predictive tools in
the area of bioinformatics and computational biology. To validate our argument, we con-
structed DisPredict2, a new disorder protein predictor, integrating PSEE in the feature set of an
existing disorder protein predictor, DisPredict [16]. DisPredict2 demonstrated improved per-
formance over DisPredict [16] and six other disorder predictors on four different datasets
including the CASP8, CASP9 and CASP10 datasets. Moreover, the disorder probability output
given by DisPredict2 resembles the flexible structural transformation of amyloidogenic regions
of proteins. Therefore, we believe that the new position specific residual feature, PSEE, and the

Fig 13. Correlation between PSEE and relative exposure of ordered and disordered regions. PSEE and relative exposure of ordered
regions are shown by blue circles and those of disordered regions are shown by red diamonds. The vertical dashed line separates the
average PSEE of ordered and disordered regions and the horizontal dash-dotted line separates the ordered and disordered regions with
more and less 25% exposure.

doi:10.1371/journal.pone.0161452.g013
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disorder predictor, DisPredict2, both will be effective in understanding several insights of pro-
tein structures and their respective functions.
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