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1. Introduction 

The advancement of technology has paved the way for signal processing methods to be 
implemented and applied in many simple tools useful in everyday life. This is most notable 
in the medical technology field where contributions involving the intelligent applications 
have boosted the quality of diagnosis. Proposing an objective signal processing methods 
able to extract relevant information from biosignals is a great challenge in telemedicine and 
auto-diagnosis fields.  

For the cardiac system, many signals can be treated and monitored; ElectroCardioGram 
(ECG), PhonoCardioGram (PCG), Echo/Doppler and pressure monitor, see Figure 1. 

 
Figure 1. The cardiac activity with different measurable signals [1]. 

The interest of this book chapter is the PCG signal. PCG and auscultation are noninvasive, 
low-cost and accurate for diagnosing some heart diseases. 
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The PCG signal confirms, and mostly, refines the auscultation data and provides further 
information about the acoustic activity concerning the chronology of the pathological signs 
in the cardiac cycle, by locating them with respect to the normal heart sounds. The cardiac 
sounds are by definition non-stationary signals, and are located within the low frequency 
range, approximately between 10 and 750 Hz. 

The analysis of the cardiac sounds, solely based on the human ear, remains insufficient for a 
reliable diagnosis of cardiac pathologies, and for a clinician to obtain all the qualitative and 
quantitative information about cardiac activity especially in the field of time intervals. 

Information, such as the temporal localization of the heart sounds, the number of their 
internal components, their frequency content, and the significance of diastolic and systolic 
murmurs, could all be studied directly on the PCG signal. In order to recognize and classify 
cardiovascular pathologies, advanced methods and techniques of signal processing and 
artificial intelligence will be used. 

For that, different approaches could be considered for improve the electronic stethoscope:  

Tool with embedded autonomous analysis, simple for home use by the general public for 
the purpose of auto-diagnosis, monitoring and warning in case of necessity. 

Tool with sophisticated analysis (coupled to a PC, Bluetooth link) for the use of 
professionals in order to make an in-depth medical diagnosis and to train the medical 
students. 

Whatever the approach, one of the first and most important phases in the analysis of heart 
sounds, is the segmentation of heart sounds. Heart sound segmentation partitions the PCG 
signals into cardiac cycles and further into S1 (first heart sound), systole, S2 (second heart 
sound) and diastole. 

Identification of the two phases of the cardiac cycle and of the heart sounds with robust 
differentiation between S1 and S2 even in the presence of additional heart sounds and/or 
murmurs is a first step in this challenge. Then there is a need to measure accurately S1 and 
S2 allowing the progression to automatic diagnosis of heart murmurs with the distinction of 
ejection and regurgitation murmurs. 

This phase of autonomous detection, without the help of ECG is based on signal processing 
tools such as: Shannon energy [2], Hilbert Transform [3], high order statistics [1], hidden 
Markov model [4] … 

In this chapter we present a new module for heart sounds segmentation based on time-
frequency analysis (S-Transform). The goal of this study is to develop a generic tool, suitable 
for clinical and home monitoring use, robust to noise, and applicable to diverse pathological 
and normal heart sound signals without the necessity of any previous information about the 
subject. The proposed segmentation module can be divided into three main blocks: 
localization of heart sounds, boundaries detection of the localized heart sounds and 
classification block to distinguish between S1 and S2. 
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The proposed methods are evaluated based on a database of 80 subjects (40 pathologic). This 
study is made under the control of an experienced cardiologist, in with the aim of validating 
the results of each method. 

This chapter is organized as follows: Section 2 describes the data base used in this study. It is 
followed by the Section 3 which describes the different methods proposed for the 
segmentation module (localization, boundaries detection and classification). The results and 
discussion are presented in Section 4 and Sections 5 and 6 give the future research and the 
conclusion. 

2. Data base 

Several factors affect the quality of the acquired signal, above all, the type of the electronic 
stethoscope, its mode of use, the patient’s position during auscultation, and the surrounding 
noise. According to the cardiologist’s experience, it’s preferable that the signals remain 
unrefined; filtration will only be applied subsequently in the purpose of signal analysis. For 
this reason we used prototype stethoscopes produced by Infral Corporation, and comprising 
an acoustic chamber in which a sound sensor is inserted. Electronics of signal conditioning 
and amplification are inserted in a case along with a Bluetooth standard communication 
module.  

Different cardiologists equipped with a prototype electronic stethoscope have contributed to 
a campaign of measurements in the Hospital of Strasbourg. In parallel, 2 prototypes have 
dedicated to the MARS500 project promoted by ESA, in order to collect signals form 6 
volunteers (astronauts). The use of prototype electronic stethoscopes by different 
cardiologists makes the database rich in terms of qualitative diversity of collected sounds, 
which in turn makes the heart sounds localization more realistic.  

The sounds are recorded with 16 bits accuracy and 8000Hz sampling frequency in a wave 
format, using the software “Stetho” developed under Alcatel-Lucent license. 

The dataset contains 80 subjects, including 40 cardiac pathologies sounds which contain 
different systolic murmurs. Each subject corresponds to one recording sound. The length of 
each sound is 8 seconds.  

3. Method 

3.1. Preprocessing 

At first the original signal is decimated by factor 4 from 8000 Hz to 2000 Hz sampling 
frequency and then the signal is filtered by a high-pass filter with cut-off frequency of 30 Hz, 
to eliminate the noise collected by the prototype stethoscope. The filtered signal is refiltered 
reverse direction so that there is no time delay in the resulting signal. Then, the 
Normalization is applied by setting the variance of the signal to a value of 1. The resulting 
signal is expressed by: 
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3.2. Localization of heart sounds 

The localization algorithms operating on PCG data try to emphasize heart sound 
occurrences with an initial transformation that can be classified into three main categories: 
frequency based transformation, morphological transformations and complexity based 
transformations [1]. The transformation try to maximize the distance between the heart 
sounds and the background noise, and the result is smoothed and tresholded in order to 
apply a peak detector algorithm. We note here, that the main goal of heart sound 
localization is to locate the first and the second heart sounds but without distinguishing the 
two from each other and without detecting the boundaries of located sounds. 

3.3. SRBF localization method 

We proposed the RBF method as a transformation to emphasize heart sounds and it was 
shown to have a good performance on low level noise signals [5]. However, In the presence 
of high level of noise, the performance of the RBF method decreases. This was not surprising 
because the method operates directly on the heart sound without any feature extraction 
step. To deal with this problem, we proposed a method for heart sounds localization named 
SRBF [6]. This method aims at extracting the envelope of the signal by applying the features 
extracted from the S-Transform matrix of the heart sound signal to the radial basis function 
(RBF) neural network. Compared with other existing methods for heart sounds localization, 
SRBF was shown to have a significant enhancement in term of sensitivity and positive 
predictive value and the robustness of this method was shown against additive white 
Gaussian noise.  

We will briefly explain the different steps of the SRBF method: 

 
Figure 2. Block Diagram of SRBF Method 

1. The S-Transform of the heart sound is calculated. A frequency range of 0-100 Hz was 
used to cover the main frequency band of S1 and S2 and to avoid murmurs which have 
in general a spectral energy above the frequency of 100 Hz [7]. 

2. A sliding window of 50 ms (so 100 samples) was operated on the S-matrix and an 
overlap of 75% was chosen. The feature extraction is done by applying some standard 
statistical techniques and transformations like Root Mean Square (RMS), the maximum 
and the average of each column of the S-matrix. Each array (100 samples) was divided 
into 5 segments and the mean of calculated features of each segment was calculated and 
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taken as input to the classifier. So for each step we have a 100 by 100 matrix which gives 
15 descriptors. 

3. A RBF neural network classifier is used and trained on two heart sounds samples (S1 
and S2) and two no heart sound samples (systole, diastole) selected randomly from the 
database. The target is fixed to 1 for S1 or S2 and 0 for the other components. So the 
envelope of the signal is constructed by the output of the RBF neural network. 

3.4. SSE localization method 

A new method for the localization of heart sounds is proposed in this study (SSE). It uses 
the S-matrix like the SRBF method (0-100 Hz) and it calculates the Shannon Energy (SE) of 
the local spectrum calculated by the S-transform for each sample of the signal x(t). Then, the 
extracted envelope is smoothed by applying an average filter (Figure 3).  

 
Figure 3. Block Diagram of SSE Method 

The S-Transform proposed in [8], of a time series x(t) is: 
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Where the window function w(τ-t) is chosen as: 
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And σ(f) is a function of frequency as:  
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The proposed SSE method calculates the Shannon energy of each column of the extracted S-
matrix as follows: 
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Each column of the S-matrix represents the local frequency at a specific sample. The advantage 
of the Shannon energy transformation is its capacity to emphasize the medium intensities and 
to attenuate low intensities of the signal which represents the local spectrum in the case the 
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SSE method. The main difference between the SSE and the SRBF method is the training phase 
needed for the RBF module. The RBF neural network in the SRBF method can be considered as 
a non-linear filter which is replaced with a simple average filter in the SSE method. 

3.5. Boundaries detection algorithm: An optimized S-transform approach 

The boundaries detection algorithm aims at estimating the onset and the endpoint of the 
located heart sounds. Accurate boundaries estimation is a very important step in the heart 
sound segmentation module and it is essential for the extraction of meaningful features 
from each part of heart cycles in order to perform an auto-diagnosis process.  

3.5.1. Overview of existing methods 

Different boundaries detection algorithms exists in the literature, in [2] the boundaries are 
estimated by applying a threshold on the extracted envelope of the signal, this is not be 
accurate for some cardiac cycles, because the envelope threshold level is used based on the 
average value of the whole recordings periods. The same authors propose another algorithm 
that employs the STFT (Short Time Fourier Transform) to explore the time-frequency domain 
of the signal [9]. Authors quantify the spectrogram at each segment to two values by applying 
a threshold that reserves 60% of the signal energy, however, it is not clear how the energy of 
the signal is calculated and the accuracy of the algorithm is not mentioned. In [10] authors use 
some biomedical features of heart sounds (S1 and S2) like the maximum duration of S1 and S2 
to determine the limit of estimated boundaries, the disadvantage of this method is that the 
estimation of energy of the signal is based on the time domain only, so in the presence of high 
level of noise the performance of this method will decrease dramatically. 

3.5.2. The OSSE algorithm 

In this chapter, we propose a new algorithm to estimate the heart sounds boundaries. The 
proposed algorithm tries to optimize the energy concentration of the S-transform at each 
located sound by using a window width optimization method. The envelope of the 
optimized S-transform is then recalculated by using the SSE approach and an adaptive 
threshold is applied to determine the onset and the ending of each located heart sound. Let 
us assume that L is the time located sounds after applying the localization method on the 
heart sound and S(M,N) is the S-matrix of the heart sound where M represents the 
frequency domain and N the time domain. 

The block diagram of the proposed algorithm (OSSE) is shown below (Figure 4). 

 
Figure 4. The block diagram of the OSSE Method 
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a. Estimate the boundaries limit 

The boundaries limits are estimated basing on the fact that the maximum duration of S1 and 
S2 is 150 ms [11]. So a 150ms window is applied in the proximity of detected S1 and S2 
peaks which covers 75ms in the backward direction of the S1 or S2 peak and 75ms in the 
forward direction. 

b. Optimized S-transform 

Many studies tried to improve the TF representation of the S-transform[12-14]. The main study 
in the literature interested to optimize the energy concentration in the TF domain was in [14]. 
That is, to minimize the spread of the energy beyond the actual signal components. As it well 
known, the ideal time-frequency transformation should only be distributed along frequencies 
for the duration of signal components. So the neighboring frequencies would not contain any 
energy and the energy contribution of each component would not exceed its duration [15]. 

The energy concentration in the Time-Frequency (TF) domain is a very important parameter 
for the algorithms that aim to detect the duration of any given events in a signal. Therefore, 
it should hold the same importance for the boundaries detection algorithm of heart sounds 
based on time-frequency features. However, in some cases, the S-transform suffers from 
poor energy concentration in TF domain. Hence, the importance of an energy concentration 
optimization process to improve the boundaries estimation of the heart sounds. 

The main approach is to optimize the width of the window used in the S-transform. The 
width of the Gaussian window can be controlled by several ways by adding a new 
parameter to the window equation. We use in this study the parameter p introduced in [14] 
and we investigate another parameter named α (see equation 6). Both of them control the 
Gaussian window width: 

 ( )
p

f
f

   (6) 

We note here that in this study when α vary, p is fixed to 1, and when p vary, α is fixed to 1. 
The optimal value can be calculated in two methods; the first method calculates one global 
parameter, which is recommended for signals with constant or very slowly varying 
frequency components. The second method calculates the time-varying parameter which is 
more suitable for signals with fast varying frequency components. The disadvantage of the 
second approach is its high computational complexity which makes it unsuitable for 
applications where time is an important factor. 

Based on the first approach, the optimization algorithm is applied on both parameters p and 
α, separately. The performance measure against each parameter is compared in section (5.2). 
The performance measure is based on the concentration measure (CM) proposed in [16]. For 
each α (or p) from a given set, the CM (α) can be expressed by [14]: 
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With ( , )xS t f is the normalized energy of the S-transform for each α; it’s given by: 
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The CM (α) and CM (p) are calculated and compared for all existing S1 and S2 sounds in the 
database. We note again that the main objective is to enhance the concentration energy of 
the S-transform in order to detect precisely the boundaries of the located heart sounds. We 
consider the parameter that reaches a higher CM to be more appropriate for the heart sound 
signals. 

c. The Adaptive threshold 

Performing an optimized S-transform before calculating the SSE envelope makes the choice 
of threshold less sensitive to the variation of different heart sounds. In this study, a 
threshold which equals 10 % of the maximum value of the SSE envelope is applied to refine 
the estimated boundaries. 

3.6. Distinguishing S1 and S2 

Most of the existing methods for the segmentation of heart sounds use the feature of systole 
and diastole duration to classify the first heart sound (S1) and the second heart sound (S2) 
[1,17-18]. These time intervals can become problematic and useless in several clinical real life 
settings which are particularly represented by severe tachycardia or in tachyarrhythmia 
(Figure 5).  

 
Figure 5. Example of an arrhythmic subject. 

Consequently with the objective of development of a robust generic module for heart sound 
segmentation, we present in this chapter two feature extraction methods based on the 
Singular Value Decomposition (SVD) technique applied on the S-matrix, to classify S1 and 
S2. We investigate also, the ability of a new individual features based on the width of the 
optimized Gaussian window of the S-Transform, to discriminate between S1 and S2. 

3.6.1. Feature extraction based on the S-Transform 

The SVD is a powerful tool that provides a compact matrix or compact significant 
information about single signal. Different ways exist in the literature aims to represent the 
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time-frequency matrix in a compact manner by using the SVD technique. In [19] authors 
extracted the eigenvalues of the time-frequency matrix. In [20] authors extended the method 
to also incorporate information from the eigenvectors to classify EEG seizures. In [21] the 
last technique is applied on the S-matrix in the aim to extract features for systolic heart 
murmur classification. Following this approach, this study proposes a feature extraction 
method for S1 and S2 classification.  

The time-frequency analysis is performed by the S-Transform. The S-matrix Si of the 
extracted heart sound Hi is decomposed by the SVD technique as follows: 

 T
iS UDV  (9) 

Where U(M×M) and V(N×N) are orthonormal matrices so their squared elements can be 
considered as density function[20], and D(M×N) is a diagonal matrix of singular values. The 
columns of the orthonormal matrices U and V are called the left and right eigenvectors 
which contains in this case the time and frequency domain information, respectively. The 
eigenvectors related to the largest singular values contain more information about the 
structure of the signal.  

Based on our experience, in this study, the first left eigenvector and the first right 
eigenvector that correspond to the largest singular values are used for the feature extraction 
process. The histogram (10 bins) for each related distribution function is calculated based on 
the density function. Five feature vectors obtained by this method are tested in the 
classification process; the eigentime histogram vector U1 (T-Features), the eigenfrequency 
histogram vector V1 (F-Features), the singular values vector D1 (SV Features) and the time-
frequency vector U1&V1 (TF Features). All vectors have a length of 10 features except the 
time-frequency vector that has a length of 20. 

3.6.2. Feature extraction using the EMD 

In the last few years, the Empirical Mode Decomposition (EMD) has been applied in many 
fields one of which the biomedical signal analysis, like the emotion classification in natural 
speech [22], analysis of gastroesphageal information [23]. EMD has been applied to a 
simulated heart sounds in [24] authors show that EMD provides clear information about the 
components of S1 and S2 and their instantaneous frequency behaviour. In [25] authors 
presented a feature analysis approach of heart sound based on the improved Hilbert-Huang 
Transform, and applied the improved HHT by Hilbert spectrum analysis of various cases of 
heart sounds. In this study, a new feature extraction method based on EMD technique and 
Shannon energy is proposed for S1 and S2 classification. 

As an alternative to the binomial TF transforms, EMD performs a multi-resolution analysis 
of non-stationary and nonlinear signals without the use of kernels or mother waveforms. To 
calculate the Intrinsic Mode Functions (IMFs), the local maxima and minima of extracted 
heart sound Hi(t)are calculated. They are interpolated by using the cubic spline curves 
which generates the upper and lower envelopes, respectively. Then the mean contour m1(t) 
is calculated, and the first component h1(t) is given as follows: 
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Now, h1 has to be refined by a sifting process. In the second sifting iteration we obtain: 

 11 1 11( ) ( ) ( )h t h t m t   (11) 

Where m11 is an average contour between the upper and lower envelopes of h1. This 
operation is repeated k times until h1k can be considered as zero-mean according to some 
stopping criterion (Rilling et al., 2003). The first intrinsic mode function IMF1(t) is given as: 

 1 1( 1) 1( ) ( ) ( )k kIMF t h t m t   (12) 

IMF1(t) should contain the finest scale or the shortest period component of the signal. The 
residue signal r1(t) is given by: 

 1 1( ) ( ) ( )ir t H t IMF t   (13) 

Considering r1 as a new signal the sifting process explained below is repeated to obtain the 
second IMF2(t). Similarly, a series of intrinsic mode functions are obtained and the final 
residue rn(t) is calculated. The stop criterion is when rn(t) becomes a monotonic function.  

The initial signal Hi(t) can be reconstructed as follows: 
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For each IMF vector, the Shannon Energy is calculated as: 
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Where i=1,…,4 and N is the number of samples of IMFi the Shannon energy is smoothed by 
using a median filter, and the feature vector is obtained by applying the same SVD approach 
used in section 2.5.1 at each calculated IMF (Figure 6). For each extracted heart sound the 
first four IMF is calculated. The others IMF don’t contain relevant information about S1 and 
S2. Five feature vectors obtained by this method are tested in the classification process; FV1 
(that correspond to IMF1 signal), FV2, FV3, FV4 and FV (that correspond to the average of 
calculated FVs). The length of each vector is 10. 

 
Figure 6. Feature vector (FV) of Heart Sounds (Hi) extracted using EMD and Shannon Energy (SE) 
before applying the SVD technique. 



 
Phonocardiogram Signal Processing Module for Auto-Diagnosis and Telemedicine Applications 127 

3.6.3. New individual features 

The parameters α and p used to optimize the width of the Gaussian window of the S-
Transform, are tested as a new individual features to discriminate between S1 and S2. It is 
known from a physiological point of view, that S1 is more complicated than S2 [26]. 
However, S2 in general contain higher frequency than S1. These physiological differences 
will necessarily lead to different time-frequency content behavior which we will aim to 
reveal with α and p parameters. Figure 7 shows a S1 and S2 signals examples with the 
corresponding optimized S-transform obtained with α=0.8 and 0.5, respectively. 

 

 
Figure 7. S1 and S2 signals (top), Optimized S-transform obtained with α=0.8 for S1 and α=0.5 for S2 
(bottom). 

4. Results and discussion 

4.1. Localization methods 

The performance of the SBRF and the SSE methods was measured as the methods capacity 
to locate S1 and S2 correctly. It was measured by sensitivity and positive predictive value: 

 
TP

Sensitivity
TP FN




 (16) 

And positive predictive value:  

 
TP

PPV
TP FP




 (17) 

A sound is true positive (TP) if it is correctly located, all others detected sounds are considered 
as false positive (FP) and all missed sounds are considered as false negative (FN).  

Results in Table 1 show that SRBF method reaches a higher PPV (98%) than the SSE method 
for the clinical signals without any additive noise. However, SSE reaches a higher sensitivity 
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(96%) than the SRBF method (92%). The supervised approach performed by the RBF block 
in the SRBF method makes the extracted envelope more discriminative between the 
different parts of the signal than the unsupervised SSE method. Therefore, it is not 
surprising that the number of false detected sounds in the SRBF method is lower than the 
SSE method, which also explains the PPV results. The same reasons can also account for the 
false negative alarms which are higher in the SRBF method than the SSE method and which 
gives a higher sensitivity to the SSE method. In the presence of an additive white Gaussian 
noise, the performance of the SSE method is better with 93% sensitivity and 94% PPV. The 
robustness of both methods against noise is very significant. This is due to the advantage of 
performing a time-frequency analysis which makes methods more robust against noise. 
Figure 8 shows the envelopes extracted by the SSE and the SRBF method that correspond to 
a pathologic sound with a systolic murmur. Figure 9 shows the robustness of each method 
against white additive noise. 
 

Method Sensitivity PPV Sensitivity (Noise) PPV (Noise) 

SRBF 92% 98% 91% 93% 

SSE 96% 95% 93% 94% 

Table 1. Sensitivity and Positive Predictive Values for the SRBF and SSE methods applied on the 
clinical sounds set without and with additive Gaussian noise. 

 
Figure 8. Envelope extraction (dashed lines) for a signal with systolic murmur, (top) SRBF envelope, 
(bottom) SSE envelope. 
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Figure 9. (top) Envelope extraction for two normal PCG signal without and with additive Gaussian 
noise, (middle) their SRBF envelopes, (bottom) their SSE envelopes. 

4.2. Boundaries detection 

The performance measure against each parameter is compared (Table2). The values of α and 
p are chosen from a set; 0 <α< 2, 0<p<2, with a step of 0.1; so twenty values as total for each 
variable. 
 

Heart Sounds Optimal α CM(α) Optimal p CM(p) CM( α =1, p=1) 
S1 0.82±0.45 0.0185±0.0017 1.1±0.5 0.0186±0.0018 0.0177±0.0015 
S2 0.55±0.3 0.0186±0.0015 1.37±0.5 0.0186±0.0018 0.0175±0.0014 

Total 0.68±0.37 0.0185±0.0016 1.23±0.5 0.0186±0.0018 0.0176±0.0015 

Table 2. Performance measure given by the maximum values of CM (α) and CM (p) for a given 
parameters set of α and p, respectively. 

The optimal α is reached when CM(α) is maximized, and the optimal p is reached when CM 
(p) is maximized. Results from Table 2 show that there are no significant differences 
between the two parameters α and p concerning the performance measure. However, results 
show an important difference between optimized concentration measure and standard 
concentration that correspond to the standard S-transform with α=1 and p=1. The maximum 
values of concentration measures CM (α) and CM (p), that corresponds to the optimum α 
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and p, respectively, are obtained with α <1 and p>1. This is can be explained by the fact that 
when α<1 and p>1, the Gaussian window of the S-transform is narrower (Figure 10), which 
improves the detection of the sudden changes in the signal, like the onset and the ending of 
the first and the second heart sounds. However, when a window is narrower in time 
domain, we loss in term of frequency resolution. The compromise is performed by the 
optimization process that operates on the variable that control the variance of the Gaussian 
window, α or p for example. The criterion of the performance is the concentration energy 
measure. The enhancement of energy concentration in the TF domain, influence clearly on 
the boundaries estimation results (Table 3). 

 
Figure 10. Normalized Gaussian window for different values of p (left) and for different values of α 
(right). 

 

Method S1(ms) S1(Noise) S2(ms) S2 (Noise) 
SSE 122.4±7.2 127.8±9.6 95.2±8.3 101.2±7.4 

OSSE 110.7±4.32 113.6±6.5 69.1±5.4 77.9±8.2 
Reference 105.8±6 74.8±5.65 

Table 3. S1 and S2 durations (ms) estimated by the SSE and OSSE methods with and without additive 
noise. 

The “Reference” row in Table 3 represents the manual measures made by the cardiologists 
by using the software stetho developed under the license of Alcatel-Lucent. Results show 
the efficiency of optimizing the energy concentration of the S-transform in order to estimate 
more realistic boundaries for S1 and S2. Measures obtained by the SSE algorithm (without 
optimizing the S-transform) are always higher than the results given by the OSSE algorithm 
where an optimization process is performed. This is not surprising since the OSSE algorithm 
has a better energy concentration in the TF domain, which minimizes the spread of the 
energy beyond the S1 and the S2. Figure 11 shows the boundaries detection results, with 
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and without optimization of the S-transform, applied on a S2 example and figure 12 shows 
the OSSE results applied on the entire heart sounds (normal and pathologic). 

 
Figure 11. (top) S2 signal with two detected boundaries calculated by the optimized S-transform and 
the standard S-transform (dashed line), S-transform with the optimum value α=0.5 (p=1), standard S-
transform with α=1 (p=1), (bottom) SSE envelope for the optimized S-transform and standard S-
transform (dashed line). 

 
Figure 12. OSSE method applied on a normal heart sound (top) and pathological heart sound (bottom). 
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4.3. Feature extraction for S1 and S2 classification 

4.3.1. Evaluating the feature vectors obtained by the SVD technique 

The localization of heart sounds is established by using the SSE method. The boundaries of 
the heart sounds are determined by the OSSE algorithm. The results were visually inspected 
by a cardiologist and erroneously extracted heart sounds were excluded from the study. The 
feature extraction process extracts a feature vector per extracted sound Si (S1 or S2) and each 
of these vectors is averaged across available extracted sounds from each subject. So from 
each subject in the database, we obtain one S1 feature vector and one S2 feature vector to use 
in the training and classification process. 

A 3-Neirest Neighbor (KNN) classifier is used to evaluate the performance of the four 
feature vectors obtained by the two methods and the 5-fold approach is used for cross 
validation. The choice of KNN classifier was based on its simplicity of and its robustness to 
a noisy training data. 

The time domain feature vector reaches 92% classification rate, however, the frequency 
feature vector reaches 85% classification rate (81% sensitivity and 88% specificity). The 
Time-Frequency vector (TF Features) reaches the higher classification rate with 95% 
sensitivity and 97% specificity. The singular values are almost indistinguishable from each 
other and it is shown by the low classification rate for the SV features. For the EMD based 
method, the FV feature vector reaches a high classification rate with 94% sensitivity and 97% 
specificity (Table4). 
 

KNN 
T- 

Features 
F-Features

SV 
Features 

TF 
Features 

FV1 FV2 FV3 FV4 FV 

Sensitivity 92% 81% 60% 95% 88% 81% 82% 65% 94% 
Specificity 92% 88% 65% 97% 91% 97% 94% 95% 97% 

Table 4. Sensitivity and specificity for the nine extracted feature vectors evaluated by a KNN classifier. 

In most cases seen in the medical field, S2 has a higher frequency than S1. This is due to the 
fact that S2 is the heart sound associated with the closure of the aortic valve in a context of 
high left ventricular pressure, the mitral closing occurring at low left ventricular pressure 
(S1). However, this criterion cannot be generalized on all real life cases because some 
medical conditions are characterized by S2 frequency content lower than S1 frequency 
content. Hence, the importance of time-frequency and multi-resolution based features 
approach, especially in a generic module, which can explain the high performance obtained 
with the TF and FV features vectors.  

4.3.2. Evaluating α and p to discriminate S1 and S2 

The parameters used in the optimization process (section 3.3.2) to determine the boundaries 
of each extracted sound Si (S1 or S2) are averaged across available extracted sounds from 
each subject. So from each subject in the database, we obtain one S1 feature (α or p) and one 
S2 feature (α or p). 
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The main objective is to investigate the ability of these features to discriminate between S1 
and S2. The probability that the two groups (S1 and S2) comes from distributions with 
different medians is calculated for each feature (α and p) by the Mann-Whitney-U-test 
(p<0.005). The receiver Operating Characteristic Curve (ROC) is also calculated for each 
feature and the Areas under the ROC Curve (AUC) are showed in figure 13.  

The Results are presented in Table 5. Significant differences between the groups, with 95% 
confidence are found for both features α and p.  
 

Feature p-value AUC Sensitivity Specificity 
α <0.0001 0.83 0.79 0.72 
p 0.0047 0.64 0.609 0.671 

Table 5. Significant values (U-test), AUC values, sensitivity and specificity for the parameters α and p 
when used to distinguished between S1 and S2. 

 
Figure 13. ROC curves for α and p parameters. 

The classification results are promising for the parameter α (AUC =0.83). This is very 
interesting since this parameter was also used to refine the boundaries detection of S1 and 
S2. However, the results of the parameter p are significantly lower than the results of α 

(AUC =0.64). This gives a primary idea about the sensitivity of each parameter against the 
clinical signals. Further measures and tests should verify or deny this hypothesis. 

5. Future research 

5.1. Classification of heart sounds 

A new time-frequency based feature is proposed and validated to distinguish with S1 and 
S2 (Section 4.3.2). Another parameter can be tested by applying another windows type at the 
S-transform like the arbitrary and varying shape window [13]. A combination of several 
features can also be used to classify S1 and S2 more accurately. This can be performed by 
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combining the α parameter with the TF_Features vector (see section 4.3.1). Then a feature 
selection algorithm becomes necessary to select the most accurate features. 

On another hand, the classification of normal and pathological heart sounds is the final 
objective of any heart sounds auto-diagnosis framework. The classification rate will depend 
first on the segmentation results, which was the main objective of this book chapter. Then 
classic steps of feature extraction, feature selection, designing and testing classification 
systems, will be needed to complete the classification process  

5.2. Real time application 

One of the objectives of this study is to develop an auto diagnosis for various situations 
encountered in cardiology in real time. However, the S-Transform that can be considered as 
the heart of the proposed segmentation framework, suffers from a high computational burden. 
The implementation of a fast S-Transform algorithm on FPGA or GPU card will be necessary. 

5.3. Sociological and psychological aspect 

Introducing a smart stethoscope as a monitoring tool for home use, involves new problems 
related to sociological and psychological aspect of the user (patient). A smart stethoscope is a 
tool to facilitate the diagnosis process and to make it more objective and it will never replace 
the cardiologist and other advanced techniques of Cardiology. This should be taken into 
consideration in the deployment process in a telemedicine framework for example. The 
ergonomic aspect of the measuring instrument, the way to display the data and to transmit it, 
will be more than necessary elements to any future tool, simple for home use by the general 
public for the purpose of auto-diagnosis, monitoring and warning in case of necessity. 

6. Conclusion 

In this book chapter, a robust module for heart sounds segmentation has been proposed. 
The module is divided into three blocks; localization, boundaries detection, and 
classification of heart sounds (S1 and S2). Several methods are proposed during this study: 

- A heart sounds localization method based on the S-transform and Shannon Energy, 
named SSE, is proposed and evaluated against white additive Gaussian noise. 

- A method for boundaries detection named OSSE is proposed. It is based on an 
optimization process for the energy concentration in the TF domain provided by the S-
transform. 

- A feature extraction methods based on Singular Value Decomposition (SVD) technique 
to distinguish between S1 and S2 are examined. The parameters used in the time-
frequency optimization process to determine the boundaries of each extracted sound 
are also investigated and validated as discriminative features between S1 and S2. 

Dividing the proposed segmentation method into three separate blocks, enable us to 
perform a targeted optimization at each level. This confers the feature of robustness to the 
proposed module, which is a more than necessary element to any auto-diagnosis module 
applicable in real life conditions. 
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The main objective of this study is to present a robust and generic PCG segmentation 
method useful in real life conditions (clinical use, home care, professional use …). The 
methods in the proposed framework are evaluated on a real data (80 subjects) with different 
noise levels and they are validated by the cardiologist.  

More robustness tests against noisy signals, algorithms complexity, facility of 
implementation and more signals, would contribute to optimize the proposed module. 
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