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Abstract

This chapter serves as an introduction to 3D representations of scenes or
Structure From Motion (SfM) from straight line segments. Lines are frequently
found in captures of man-made environments, and in nature are mixed with more
organic shapes. The inclusion of straight lines in 3D representations provide
structural information about the captured shapes and their limits, such as the
intersection of planar structures. Line based SfM methods are not frequent in the
literature due to the difficulty of detecting them reliably, their morphological
changes under changes of perspective and the challenges inherent to finding corre-
spondences of segments in images between the different views. Additionally,
compared to points, lines add the dimensionalities carried by the line directions and
lengths, which prevents the epipolar constraint to be valid along a straight line
segment between two different views. This chapter introduces the geometrical
relations which have to be exploited for SfM sketch or abstraction based on line
segments, the optimization methods for its optimization, and how to compare the
experimental results with Ground-Truth measurements.

Keywords: structure from motion, 3D abstraction, SLAM, 3D sketch,
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1. Introduction

Most of the methods for environment abstraction from multiple views are just
relying on points and ignoring other basic shapes like lines. Line based Structure
from Motion methods based on lines create an abstraction based on straight line
segments from a set of images. Analogously to point based abstraction methods like
SIFT, in order to estimate the three-dimensional coordinates of lines in an spatial
representation, the correspondences between lines among multiple images must be
obtained by using detection and matching. The matching process for lines across the
different views will return correspondences that can be exploited using 3D geomet-
ric relations. The matched features (points or lines) among views are used to
estimate the position of cameras, referred to as extrinsic parameters. From the
camera poses, the features are forward projected in the 3D abstraction or sketch.

The 3D line abstraction methods based on straight line segments that are most
frequently found in the literature are designed to work altogether with detailed
point-based reconstructions [1], therefore employing the camera extrinsic parame-
ters obtained from these point rotation and translation invariants. This permits
higher accuracy in the 3D reconstructions than using solely straight lines. A
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different approach employs only straight line segment correspondences in the
reconstruction, independently of point based 3D reconstructions [2]. This approach
has been proved advantageous over the first one in scenarios where not enought
feature points can be accurately put in correspondence between the different views.
There are few publications about uncertainty analysis in 3D line reconstructions
based on lines. One of the most recent ones explains the state of the art for these
metrics [3].

Oppositely to points, straight lines have a direction, and this dimensionality can
be exploited geometrically. The intersection of coplanar straight lines reveal geo-
metrical information. Likewise, groups of segments will also indicate the location of
the most probable vanishing points from a camera plane [4]. These geometric
properties are not offered by points, therefore lines can be a good complement
when performing a spatial reconstruction [5, 6]. Additionally, pairs of straight line
segments are often related by the strong constraints of parallelism and orthogonal-
ity [7, 8]. This allows to combine individual similarities of pairs of segments
altogether with the coplanarity constraints [9]. A recent work employed 3D lines to
reconstruct surfaces [10].

1.1 SfM lines carry higher complexity

In literature, research about straight segments have always been developed after
works related to feature points. Lines have often been left as a complement for
applications of these works devoted to feature points. There are reasons for the line
based SfM to be more complex than a feature point based one:

1. Detection of points is restrained to sole coordinates in images, while line
detection extends to several pixels that are ideally adjacent to other pixels of
the line. Nevertheless, in practice, detecting the limits of a straight line
segment is not trivial in real images, due to digital noise, occlusions or changes
in illumination. Algorithms describing different continuity criteria must be
employed in order to obtain a reliable edge detection in an image.
Moreover, as an straight line means a special case of an edge, detected edges
have to be fit to straight lines. Fitting edges to straight segments can be
accomplished by applying linear regression for the points comprising an edge
in the image. Finally, the method has to find the endpoints of straight line
segments, accounting for fragmentation or occlusions.

2.A set of pictures of the same scene may feature different kinds of viewpoint
changes among captures, including camera rotations, zooms and translations.
These changes in the camera viewpoint produce a morphological
transformation of the primitives in the captured frame, which translates
into displacements of the detected primitives, changes on their shape,
distortions, fragmentation or even the impossibility to detect the same
primitive in another image by employing the same operations that served to
detect it in one of the pictures. Some of these transformations are not
applicable to points, for instance a fragmentation: A point is either fully
present or not, but it should not be such a thing as a detected fragmented
point. Therefore, there are more morphologic transformations that can
affect 2D line segments than the ones that can affect points, due to camera
viewpoint change. Generally, prominent viewpoint transformations increase
the difficulty in matching primitives, because the greater the transformation of
the same primitives among different images of the scene, the greater the
difficulty to match them.
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3.Matching primitives between images is not always accurate, specially when
dealing with line segments. When finding counterparts for primitives detected
in other images, it is common to come out with several mismatched primitives.
These wrongly matched primitives are referred to as matching outliers [11].
Matching outliers can produce that the description of the structure of groups
of primitives can not be correctly compared to others, and employing
inaccurate structure descriptions to propagate the matching to other images
may cause problems when computing the final 3D abstraction. Some of the
sources of the difficulties matching lines are because line segments are
subject to more morphological transformations than points. The
description of individual lines are therefore more subject to these
transformations, and less truthfully at the end. This fact forces line
matching methods to rely more on structure of neighborhoods than
points. The accuracy of the description of these neighborhoods compared with
the real morphological transformation of the lines it comprises are highly
dependent on the ratio of matching outliers.

4.In the frame of 3D reconstruction from relations between feature points,
known the relative position of two cameras and the position of one point on
the first image, there is a constraint that forces the counterpart of this
point on the second image to lay on a line. It is called epipolar constraint.
But a single infinite 2D line represented in two images does not feature
epipolar constraint. The only point-to-point valid correspondences in
matched segments under a viewpoint change are their endpoints. For this
case of a line segment, in order to estimate its position in 3D, is required to
detect in the images both endpoints of the line segment. In some cases it may
be difficult to accurately detect the end of a line segment in an image. For
instance, a segment can end by merging with another edge under a different
slope, progressively dimming until it vanishes, by intermittent occlusions, or
being abruptly fragmented. Moreover, one or both segment endpoints may lay
in the limits of the frame, and in this case it will not be possible to extract the
3D pose of the line.

The above mentioned tasks portrait the main differences between lines and
points raised out during the engineering of a complete line-based 3D sketch gener-
ation method from images. For each stage of the method,specific tasks and prob-
lems have to be solved in the state-of-the art: detection of borders, matching lines
over pairs of views, comparing the line matching performance against competition,
relate the matched primitives among sets of more than two images, estimation of
spatial lines, optimizing the abstraction and exploiting the resulting 3D structure.

2. Estimate 3D straight line segments

A 3D line can be thought as a multi-view entity that relates a perceivable line
segment in the real world to its counterparts in images, given that these have been
correctly detected and matched. The process of generating a 3D representation from
different pictures of the scene is visually represented in Figure 1.

For the SfM problem, the poses of the cameras that took the pictures are not
provided, and it is up to the SfM algorithm to simultaneously estimate the poses for
the cameras and primitives. In the present case, SfM has to estimate the pose of the
lines in space, relative to the cameras. The first requirement for the method is the
calibration matrix K for each camera, which provides the transformation between
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Figure 1.
Visual vepresentation from [2]. It depicts the challenge of converting a set of 4 pictuves into a 3D sketch
featuring the line segments and camera axis. The 4 cameras ave represented as three axis veference frame in ved.

each point in one image, in homogeneous coordinates, to a ray in Euclidean three-
dimensional space. Secondly, SfM has to estimate the projection matrices P for the
cameras, representing a map from 3D to 2D:

x = PX, (1)

where x is a 2D point on the image, and X its projection in 3D space. K is intrisic
to each camera, while P is extrinsic and embeds the 3D translation and rotation of
the camera’s image plane. The estimated translation is valid up to scale.

A common space can be built to host the cameras and spatial lines. For this new
common space the camera that took the first processed picture takes the place of the
origin, and for the rest of cameras P can be estimated from the lines matched
between the captured images. Alternatively, camera poses can also be retrieved
from a feature-point based SfM pipeline and these cameras be employed for the
estimation of spatial lines. For instance, the feature-point descriptor SIFT [5] can be
used to match points in images with a low ratio of outliers. These feature point
relations are obtained both in the foreground and background. A set of relations
between points or lines in two images allows to estimate the homography con-
straints between both views by applying the 5-point algorithm [12] using the points
or the segment endpoints. A purge of outliers can be performed employing
RANSAC [13] for robust estimation. Therefore, a set of stereo 3D projections is
obtained combining the available images pairwisely, and each stereo system featur-
ing both camera poses and a point cloud. The objective is to obtain an unique 3D
point cloud sketch, embedding all cameras and point matches. Hence, camera poses
are sequentially stacked, relative to each other, in the new spatial reference frame.
And the 3D estimations for the feature points in the new 3D space can be computed
as the center of gravity for their position relative to the common camera in both
stereo systems. Finally a sparse bundle adjustment [14] is used to minimize the
pixel distance of the back-projected 3D point and the original observation of this
point on each image in homogeneous coordinates. These reprojection errors on the
planes of the cameras are minimized employing the Levenberg-Marquardt algo-
rithm. The resulting keypoint-based 3D reconstruction contains the optimized 3D
estimations for the cameras and the point cloud.

Several straight segment matching methods are based on texture descriptors
[15, 16], coloring [17] or in keypoint-line projective invariants [18, 19]. Under these
conditions, matching results will be influenced by the level of texture in the images.
In the case that a low number of detected segments can be distinguished by
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employing image texture based descriptor, or in case that a low number of feature
points are identified throughout the set of images, the resulting set of matched lines
will not be satisfactory. On the other hand, if line matching is rooted on weak
epipolar constraints [1], line matching will be highly dependent on the accuracy of
the camera poses.

Extrinsic parameters for cameras are needed to project the matched lines into
space. Having the same segment completely detected and without fragmentation
for both views under viewpoint change, endpoints are the only points in a segment
with known exact counterpart in the other image. Unfortunately, segment detection
is not accurate in the location of the endpoints. Therefore, the most accurate
abstractions will be the ones built rooted on camera extrinsics obtained from a
dense feature point based SfM. As written above, known the projection matrices P
of two cameras, a point on an image projects as a 3D ray in Euclidean space. And
this 3D ray projects like an infinite 2D line on any plane different than the one that
contains the point. Therefore, each 3D point X, will have its image into an epipolar
line e, contained in the image. As the unknown point is constrained into a line in the
other image plane, analogously a segment will be constrained between both epipolar
lines corresponding to the segment endpoints. This weak epipolar constraint can be
employed for matching segments between images [1].

3. Geometric relations

A 3D abstraction method estimates the position of 3D line segments I" = {I';, I', I's,
..., v}, from an unordered sequence of images, taking from cameras with planes
Y = {YL,Y2,Y3,..., YM). Straight lines are detected in the original images, put in
correspondence among them, forward projected into space, and rewritten in
homogeneous coordinates.

The 3D line based sketch {Y,I'} is built from the knowledge of correspondences
among line projections / on camera planes, and the intrinsics of all the cameras. The
following paragraphs explain the linear triangulation of these observations, as
performed from scale-space images. This allows to discriminate and weight down
lines that have been detected on two or more scales with a different slope. The
practical consequence is that prior to any 3D extrapolation of the observed lines,
matching inliers with inconsistent endpoint location among scales on both images
can be avoided, as these lines might introduce uncertainty in the estimation for the
pose of the camera.

The camera poses P are estimated from the endpoint correspondences of . The
Essential matrix E is computed from the camera pairs, by using the Five-Point
Algorithm [12], and RANSAC [13] for hypotheses generation. Having E and /, the
relative camera rotation and translation among the first pair of cameras P/ = [R|t]
are estimated using cheirality check and discarding the triangulated endpoints that
are not in front of the cameras. The left camera is chosen to have the pose P! = [I|0],
and the newly added cameras are stacked from this position in the unique reference
frame.

The forward projection of lines in 3-space is described in the page 196 of Hartley
and Zisserman’s book [20]. The 3D forward projection I'; of a line, bundled in the
same reference frame, can be obtained using the DLT method on the set of stereo
3D camera back-projections. This is performed in homogeneous coordinates
because it allows to consider line endpoints in the infinite. Therefore, from now on,
when a 2D point is mentioned it will be supposed homogeneous coordinates. There
exists a 3 x 3 matrix E, known as the essential matrix, such that if # and «’ are a pair
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of matched points, then #'Eu = 0. If a sufficient number of matched points are
known, the matrix E may be computed as the solution of an overdetermined set of
linear equations. For the present problem, the internal calibration of the cameras is
known, therefore it is possible to determine from E the relative placement of the
cameras and hence the relative locations of the 3D points corresponding to the
matched points. A linear triangulation method is projective-invariant because only
camera and line distances are minimized.

The above described DLT method for lines starts with the segments on the pair
of cameras {Y“, Y”} with the highest inlier ratio. Based on this first triangulation,
the other cameras are appended to the 3D abstraction: The next camera Y is chosen
according to the higher inlier ratio of line matching with Y* and Y. Analogously,
the following camera Y” is picked among the ones with the higher inlier ratio of line
matching with previously selected cameras. The detection of 2D lines [ in the
original images carry an uncertainty for the position of these observations. This
uncertainty implies that no 3D point X will satisfy that their projections on cameras
Y! and Y? are x; = P'X, x, = P’X respectively. Moreover, the image points do not
satisfy the epipolar constraint x,Fx; = 0. Therefore, a method that only minimizes
the distances on the image from the estimations to the observations is required:

A projective-invariant triangulation method. A linear triangulation [20] method
does not depend on the projective frame in which X is defined.

The forward projection from a normalized 2D line observed on the camera
image plane m, denoted by I”, is the plane PmTll'-", so the condition for a point X, to
be in this plane is:

(I")'P,X, = 0. )

Each point X, returns a linear equation in the entries of P,,. Denoting by
«%, p and &, ; the forward projection of the endpoints of [;,, named X} and X,

under P,,, then any other 3D point on the line X*(u) = X% + uX?% projects to
a point:
7" (1) = P (Xip + uXip) = % + uxip, ()
which is on the line segment [;".

In the described method, an unique reference frame is built. The world reference
system is fixed onto the first camera, hence its camera matrix, Pg, is computed with
Rg =1 and Tg = 0. The extrinsics for the partner camera P, on the baseline is
obtained from the essential matrix by using RANSAC. Before the subsequent DLT
triangulations with a new camera, its extrinsics are estimated also by RANSAC from
the 2D-3D results of the already computed DLT. From here, new cameras will be
added incrementally, just one per DLT iteration, in order to avoid DLTs between
two uninitialized camera projection matrices.

For DLT it is required a set of observed line correspondences, l;" to l;f, matched

among images. The projection on the image plane of camera m of an endpoint X g

of the spatial line I'; is denoted as «”; ; = P, X ;5. This point on the m-th camera

plane is matched to its counterpart on the n-th camera 8" ; = P, X ; g. Both equa-
tions can be combined into AX ;r = 0, where A is the matrix of equation coeffi-
cients. It is built from the matrix rows A, contributed from each correspondence,
whose resemble the movement of each line between both views. Xj g contains the
unknowns for the endpoint position.

By using the cross product on the m-th camera: I’ x (PwX jg) =0,
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Xm (P2 XjE) — (P XjE) = 0, (4)
V(02 X jE) — (P0 X j£) = O, (5)
xm (Pl X jE) =9, (P X jE) =0 (6)

where (x,,,,) and (x,,y,) are the coordinates of x”/ ; and x” . respectively. p;’

is the 7-th row of P,,. It can be decomposed similarly for P,, and compose the
equation of the form AX ;r = 0. Solving:

T 1T
xmpfn _Pm

37 2T
A= ymp;ﬂT p;nT ’ )
XnPy — Py
Py —py

The solution for the 4 equations of the over-determined problem (four equations
for four homogeneous variables) is only valid up to scale. The set of points in space
mapping to a 3D line Ij via P,,, is the plane P,,I;.

The result of the linear triangulation process is I'; and #/, represented in cartesian
coordinates.

Every 3D segment I; is estimated as the center of gravity of the estimations for
the same line for each par of images. The set of line projections observed in Y is

represented as [ = {li, l%, e lll\,, e l% }. A Line Feature is defined as a subgroup of
projections from [ of the same 3D line I';. The Line Features are noted as L = {L1, L,
.»Ln}. The 3D lines I are obtained by forward projecting the endpoints of / from
pairs of camera planes of Y, by using linear triangulation, analogously to Direct
Linear Transformation (DLT) [20]. The cameras Y are sequentially bundled in the
same reference frame. The new ones are stacked according to the L-to-I" corre-
spondences, computed in the previous stereo pair of cameras. The merged estima-
tions for 3D lines {I';} are computed as the center of gravity of the spatial lines.

The 3D sketch {Y,I'} generated by linear triangulation is used as input for an
optimization algorithm. The least-squares optimization named Sparse Bundle
Adjustment (SBA) [14] is based on the Levenberg—Marquardt algorithm, and uses
as input the estimated camera extrinsics Y and the set I', now containing unique
estimations for each 3D line [21].

The 3D estimations for lines and cameras are drawn in the same spatial sketch,
altogether with the cameras. Next, these spatial line segments I are fit to different
different planes P. I" is therefore segmented into different groups according to the
planes P, and so is done with their projections L. The group of Line Features fitted
to the plane P is noted as F;. The intersections of the coplanar lines F; on the

camera plane Y/ are the spatial points 7. Therefore, the algorithm can go back to
the original images, now known which line segments are coplanar. The intersections
of these coplanar lines on the images are described similarly as a feature point.
Following this analogy, the descriptor for this feature point will be the pair of two
coplanar lines drawing it. We have the correspondences of the straight lines accross
images, so we can extrapolate these correspondences to their intersection for the
cases where they are coplanar. Secondly, known the correspondences between these
intersections, they can be triangulated analogously as it was performed in the first

routine with the endpoints of I. The correspondences in 7 J are then fed into the
linear triangulation algorithm, in order to create initial estimates for the 3D

intersections by forward projecting 7 /. The set of estimations for the 3D points
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resembling the intersections is a sparse cloud, and it is denoted as R. Finally, and
same as with the endpoints, the 3D intersections R enter the least-squares optimi-
zation. The SBA returns the new optimized estimations for Y, and the optimal 3D
intersections R. The spatial line and camera pose estimations are corrected by
forward projecting them from the newly estimated camera planes Y. This returns
the final sketch {Y,I'}. The high level diagram on Figure 2 shows the process
described in this section.

3.1 Bundle adjustment for line segments

In the case of feature points, the final position of the projected features relative
to the camera poses is estimated throughout an optimization process. As a part of
most SfM pipelines, bundle adjustment [14] is based on Levenberg-Marquardt, and
it rearranges the poses of the cameras and 3D points. The cost function of this
optimization process is engineered to find the minimum distance error between the
reprojection of every 3D point onto each camera plane and their original observa-
tion. A limit value for the residual is usually set to stop the iterative process for the
event of convergence, while another threshold is set to end the optimization when
reaching a maximum number of iterations.

Along matched segments under a viewpoint change, the only point-to-point
valid correspondences are their endpoints. Segment’s endpoint location are notice-
ably less accurate than a rotation and scale invariant feature point. Employing line
endpoints as the sole set of geometrical constraints in the adjustment might not be
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Figure 2.
Figure from [2]. Graphic representation of the 3D abstraction layer of the method. The different cameras are
represented as drones.
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adequate to improve the 3D sketch. Some of the reasons for this are that recurrent
segment mismatches, fragmentation or the inaccurate placement of counterparts
may prevent the convergence of the optimization. It is possible to perform a line-
based Bundle Adjustment by converting the primitives into Pliicker coordinates
[20, 21] within the cost function of the optimisation process. This allows a reduction
in the number of parameters and the computational cost.

3.2 How to compare the results with Ground Truth meshes

In order to prove the validity of a 3D abstraction method, it has to be
benchmarked against a Ground Truth dataset for SfM, which includes both intrinsic
and extrinsic parameters for the cameras. These are built with synthetic images
from 3D models [22], or with real pictures [23] teamed with 3D model data includ-
ing the pose of the cameras and the measurements from 3D scanning or Lidar. Both
synthetic and real Ground-Truth datasets include a 3D model. The resulting point
cloud is aligned with the Ground Truth mesh. The normal distance between the
surface of the mesh and the points is computed. In order to assess how the gener-
ated sketch fits the Ground Truth model, the Mean Square Error of the distance
between both spatial shapes is computed, because it acts as the natural loss function
of a Gaussian distribution. In the case of 3D line sketch, in order to compare the
sketch with the Ground truth mesh, the 3D straight segments must be discretized
into points. To measure the difference in proportions between the generated 3D
sketch and the Ground Truth mesh, the normal distance between the surface of the
mesh and the discretized points on the lines is computed. Using the obtained error
in the distances, discretized points on the lines are coloured to account how far they
are from the surface of the mesh. There are several variables that condition the
resulting 3D sketch number of images: Firstly, the number of images showing
common elements of the scene is one of them. Secondly, the number of segments
that can be matched between images. Thirdly, the transformation between both
images might condition the matching inlier ratio, and hence, the number of seg-
ments correctly projected into space.

For 3D line sketching methods, the length of the final 3D lines will depend on
the fragmentation of the detected lines, and its number is closely related to the
number of line correspondences between the images. Therefore, results of 3D
reconstructions will unavoidably depend on the performance of the method
for stages before the spatial projection. Quantitative measurements for 3D abstrac-
tion are performed on Ground Truth datasets. The proportions of the generated
sketch is measured based on the distance between the segments and the Ground
Truth mesh.

Employing a feature-point based abstraction method is profitable for datasets
with a sufficient number of pictures featuring textured surfaces, so a dense 3D point
cloud can be created. For these 3D abstractions, cameras are located accurately due
to the precision of the point rotation and translation invariants. This is the case of
the results obtained by abstraction methods working altogether with SIFT pipelines
[1, 22], but requiring dozens of high definition pictures with textured surfaces for
SIFT to be able to accurately estimate the camera extrinsics.

There are real world applications of Computer Vision that does not always
permit to obtain high definition pictures, in textured environments, without blur-
ring and digital noise. For these applications it can be advantageous to estimate the
camera extrinsics independently of any feature point 3D reconstruction [2].

Figure 3 shows a quantitative comparison of the methods [2] and [1] with just 6 and
8 images chosen from the dataset. Figure 4 increases the number of images to 10
and 12. The test cases are labeled as Sg, comprising image numbers
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Quantitative comparison with & images: Dataset Sy
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Figure 3.

Figure from [2]. Quantitative comparison using the sets S¢ and Ss. This figure is better viewed on a screen with
a 4x zoom. (a) Sample of the set. (b) and (c) [2] against Se, vesulting in 175 lines. (d) and (e) Same
superposed onto the Ground Truth mesh. (f) Histogram of distances to Ground Truth with [1] method. The
maximum distance to be accounted is set to be 0.8, alveady considered as outlier. (g) Sparse atomic lines
returned by [1] method. (h) to (1) [1] against the set Sg, with 294 segments. (m) and (n) same measurements
for the result by [1]. (o) shows the histogram for this latter result.

{6,9,86,46,49,126} from [22], Sg further add two more images {89,129} to the list,
S0 includes {8,10,12,88,90,48,50,52,128,130}, and Sy, further adds images {92,132}
to the latter. The resulting 3D line sketches from both sides of the house are aligned
by using common lines. This completed sketch is finally aligned to the Ground
Truth in order to measure the precision. Note that this experiment takes into
account just a the variation of the number of images in the dataset [22]. The results
show that the method [2] obtains more usable results for a low number of images,
and the results of method [1] are only more adequate than method [2] when the
number of images gets close to a dozen. The spatial lines are colored attending to its
distance to the surface of the Ground Truth mesh.
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Quantitative comparison with 10 images: Dataset Syq.
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Figure 4.

Figure from [2]. Quantitative comparison using the sets Sio and S.,. This figure is better viewed on a screen
with a 4x zoom. (a), (b) and (c) [2] against S,o. The obtained 475 lines have been discretized in points. The
distance from each point in the cloud to the surface of the Ground Truth mesh is represented in colors. (d) and
(e) Same superposed onto the Ground Truth mesh. (f) Histogram of distances to Ground Truth with the [2]
method. The maximum distance to be accounted is set to be 0.8, alveady considered as outlier. (g) Sparse atomic
lines veturned by the method [1]. It has been aligned with the Ground Truth mesh. (h) to (1) Same for the
method [2] against the set S,, with 556 segments. (m) and (n) same measurements for the result by [1].

(0) shows the histogram for this latter result.

4. Conclusions

A 3D abstraction method receives as input the camera intrinsic parameters and
several pictures of the scene. There are two different approaches: The first one does
not require the camera extrinsics estimated from an external SfM pipeline, nor the
Ground Truth camera poses [2]. It sources the line correspondences from a line
matching method, and is able to generate 3D sketches from sets of pictures. This
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kind of approaches get an edge against datasets with low number of images, or
when these present corrupted texture, blurring, and low definition images where
the feature point descriptor fails to detect a fair number of keypoints. The reduced
number of correspondences limit the thickness of the point cloud generated by the
SfM pipelines, and therefore the accuracy of the estimated camera extrinsics. With
inaccurate estimations for the cameras, exploiting homography constraints is not
adequate to source line correspondences. Oppositely, [2] is able to reconstruct
simple line-based sketches with fair precision and number of lines. It required lower
number of images to obtain more complete abstractions than method [1]. The range
of scenarios where it is advantageous to use method [1] for 3D abstraction includes
sets of pictures of simple objects, with low texture, poor illumination, low resolu-
tion, blurring or under other conditions that make difficult the success of a point
based algorithm. In these scenarios it outperforms the competition in terms of
quantity of lines, precision and completeness of the abstraction. Another conclusion
is that camera extrinsics are unavoidably required for 3D abstractions featuring
many lines, because the estimation for the camera poses will not be accurate if the
line matching method returns matching outliers or line fragmentation.

On the other hand, for datasets with moderate number of images, which clear
textures, the second approach can be profitable. In this case, the geometric relations
from the related points among the images will permit the feature point based
pipeline to generate a moderately dense 3D point cloud. In this case, the poses of the
cameras obtained by the point based pipeline can be trusted, and used as basis for
line matching and linear projection to generate the 3D sketch. The results obtained
with method [1] with datasets of hundreds of images are very good. An abstraction
using this method will team perfectly with a dense reconstruction.

Both approaches are valid for their range of applications. The first one is valid
for difficult datasets with noise and low number of images. The second approach
will shine with datasets with high texture and many pictures, because it will will
profit of the high precision obtained from feature point based 3D reconstruction
pipelines for locating the cameras.
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