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Abstract

Differential operators that are defined on a differentiable manifold can be used to study
various properties of manifolds. The spectrum and eigenfunctions play a very signifi-
cant role in this process. The objective of this chapter is to develop the heat equation
method and to describe how it can be used to prove the Hodge Theorem. The Minakshi-
sundaram-Pleijel parametrix and asymptotic expansion are then derived. The heat equa-
tion asymptotics can be used to give a development of the Gauss-Bonnet theorem for
two-dimensional manifolds.
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1. Introduction

Topological and geometric properties of a manifold can be characterized and further studied
by means of differential operators, which can be introduced on the manifold. The only natural
differential operator on a manifold is the exterior derivative operator which takes k-forms to
k + 1 forms. This operation is defined purely in terms of the smooth structure of the manifold,
used to define de Rham cohomology groups. These groups can be related to other topological
quantities such as the Euler characteristicc. When a Riemannian metric is defined on the
manifold, a set of differential operators can be introduced. The Laplacian on k-forms is perhaps
the most well known, as well as other elliptic operators.

On a compact manifold, the spectrum of the Laplacian on k-forms contains topological as well
as geometric information about the manifold. The Hodge theorem relates the dimension of the
kernel of the Laplacian to the k-th Betti number requiring them to be equal. The Laplacian
determines the Euler characteristic of the manifold. A sophisticated approach to obtaining
information related to the manifold is to consider the heat equation on k-forms with its solution
given by the heat semigroup [1-3].
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The heat kernel is one of the more important objects in such diverse areas as global analysis,
spectral geometry, differential geometry, as well as in mathematical physics in general. As an
example from physics, the main objects that are investigated in quantum field theory are
described by Green functions of self-adjoint, elliptic partial differential operators on manifolds
as well as their spectral invariants, such as functional determinants. In spectral geometry, there
is interest in the relation of the spectrum of natural elliptic partial differential operators with
respect to the geometry of the manifold [4-6].

Currently, there is great interest in the study of nontrivial links between the spectral invariants
and nonlinear, completely integrable evolutionary systems, such as the Korteweg-de Vries
hierarchy. In many interesting situations, these systems are actually infinite-dimensional Ham-
iltonian systems. The spectral invariants of a linear elliptic partial differential operator are
nothing but the integrals of motion of the system. There are many other applications to physics
such as to gauge theories and gravity [7].

In general, the existence of nonisometric isospectral manifolds implies that the spectrum alone
does not determine the geometry entirely. It is also important to study more general invariants
of partial differential operators that are not spectral invariants. This means that they depend
not only on the eigenvalues but also on the eigenfunctions of the operator. Therefore, they
contain much more information with respect to the underlying geometry of the manifold.

The spectrum of a differential operator is not only studied directly, but the related spectral
functions such as the spectral traces of functions of the operator, such as the zeta function and
the heat trace, are relevant as well [8, 9]. Often the spectrum is not known exactly, which is why
different asymptotic regimes are investigated [10, 11]. The small parameter asymptotic expan-
sion of the heat trace yields information concerning the asymptotic properties of the spectrum.
The trace of the heat semigroup as the parameter approaches zero is controlled by an infinite
sequence of geometric quantities, such as the volume of the manifold and the integral of the
scalar curvature of the manifold. The large parameter behavior of the traces of the heat kernels
is parameter independent and in fact equals the Euler characteristic of the manifold. The small
parameter behavior is given by an integral of a complicated curvature-dependent expression.
It is quite remarkable that when the dimension of the manifold equals two, the equality of the
short- and long-term behaviors of the heat flow implies the classic Gauss-Bonnet theorem. The
main objectives of the chapter are to develop the heat equation approach with Schrodinger
operator on a vector bundle and outline how it leads to the Hodge theorem [12, 13]. The heat
equation asymptotics will be developed [14, 15] andit is seen that the Gauss-Bonnet theorem
can be proved for a two-dimensional manifold based on it. Moreover, this kind of approach
implies that there is a generalization of the Gauss-Bonnet theorem as well in higher dimensions
greater than two [16, 17].

2. Geometrical preliminaries

For an n-dimensional Riemannian manifold M, an orthonormal moving frame {ey,...,e,} can be
chosen with {wj,...,w,} the accompanying dual coframe which satisfy
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a)i(ej) :6,‘]'7 i7j:1,...7n (1)
It is then possible to define a system of one-forms w;; and two-forms Q;; by solving the equations,

Vxei =Y wi(X) g,  RXY)ei=Y Qi(X,Y)e )
] ]

It then follows that the Christoffel coefficients and components of the Riemann tensor for M are
wjiler) = Swaj(en)eaei)y = (Veoejeiyy = Iy 3)
a

Qijj(exses) = X (Qujexses)easeig = ( R(ex.es)ej.ei)g = Rusji (4)

The inner product induced by the Riemannian metric on M is denoted here by (-, - ) : I'(TM)
x[(TM) — F(M) and it induces a metric on A*(M) as well. Using the Riemannian metric and
the measure on M, an inner product denoted (( -, - )) : AR(M) x A (M) — R can be defined on
AF(M) so that for a, g € AF(M),

() = jM (@), dou 5)

where if (x!,...,x™) is a system of local coordinates,
doy = det(gl.].) dx'A...A dx™

is the Riemannian measure on M. Clearly, ((«,)) is linear with respect to a, f and({a,a))=>0
with equality if and only if & = 0. Hodge introduced a star homomorphism * : A*(M) —
A"F(M), which is defined next.

Definition 2.1. (i) For w = ¥ <...<i, f;, ., @iA-+w;, define

B . .. .
w= X fii e i freen ) @05 A A,
i < e < g

i< <lpek

where ¢is 1, -1, or 0 depending on whether (iy,...,ik,j;;...,j,) is an even or odd permutation of
(1,...,n), respectively.

(if) If M is an oriented Riemannian manifold with dimension #, define the operator
o = (1) g AR (M) — AF(M) (6)

In terms of the two operators 4 and 6, the Laplacian acting on k-forms can be defined on the
two subspaces
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AT (M) = even A°(M),  A°H(M) = Boaa A(M) ™)
The operator d + 6 can be regarded as the operators on these subspaces,
Do =d+06: AY"(M) — A°¥(M), Dy =d+5: A M) — A (M) (8)
Definition 2.2. Let M be a Riemannian manifold, then the operator
Do =d+06: A" (M) — A% (M) 9)

is called the Hodge-de Rham operator. It has the property that it is a self-conjugate operator,
Dj = D; and D] = D,. It is useful in studying the Laplacian to have a formula for the operator

A = (d + 6)* and hence for D;Dy and D;D; as well.

Let {e1,...,e,} be an orthonormal moving frame defined on an open set U. Define as well the
pair of operators

Ef =wjn-+i(e) : A°(U) — A*(U),  Ej = awjn-—ife) : A"(U) — A*(U) (10)

Lemma 2.1. The operators E]-i satisfy the following relations

E'E} +EE =2, E'E+EE =0, EE+EE =2 (an

If M is a Riemannian manifold and V : I'(TM) xI'(TM) — I'(TM) is a Levi-Civita connection,
then a connection on the space A*(M), namely (X,w) — Vxa, can also be defined such that

(Vxw)(Y) = X(w(Y))-w(VxY), YeET(TM)

The connection may be regarded as a first-order derivative operator (X,Y,w) — D(X,Y)w.
Definition 2.3. The second-order derivative operator (X,Y,w) — D(X,Y)w is defined to be

D(X,Y)a) = Vvaa)—VVXya) (12)
In terms of the operator (Eq. (12)), define a second-order differential operator Ay : A*(M) —
A*(M) by

Ao = Z D(€i7€,‘)7 (13)

where {e;}] is an orthonormal moving frame. The operator A in Eq. (13) is referred to as the
Laplace-Beltrami operator.

Theorem 2.1. (Weitzenbock) Let M be a Riemannian manifold M with an associated orthonor-
mal moving frame {e;}}. The Laplace operator can be expressed as
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‘ 1 1
A=(d+0) = ~Adomg ¥ Ry E[E[EE; + R (14)
ijks

In Eq. (14), R is the scalar curvature, R = =}; ;R;;;; and Ay is the Laplace-Beltrami operator (13).

The operator defined by Eq. (14) does not contain first-order covariant derivatives and is of a
type called a Schrodinger operator. Thus, Weitzenbdck formula (14) implies the that Laplacian
can be expressed in the form A = -Ay—F and is an elliptic operator. The Schrédinger operator
(14) can be used to define an operator that plays an important role in mathematical physics.
The heat operator is defined to be

i)
=—+4 A 1
H 5 + (15)
The crucial point for the theory of the heat operator is the existence of a fundamental solution.
In fact, the Hodge theorem can be proved by making use of the fundamental solution.

Definition 2.4. Let M be a Riemannian manifold, 7 : E — M is a vector bundle with connec-
tion. Let Ay : I'(E) — I'(E) be the Laplace-Beltrami operator, which is defined by means of the
Levi-Civita connection on M and the connection on the vector bundle E. Let F : I'(E) — I'(E) be
a F(M)-linear map. Then, A = -A(—F is a Schrodinger operator. If a family of R-linear maps

G(tq,p): E, — E,

with parameter t > 0 and g,p € M satisfies the following three conditions, the family is called a
fundamental solution of the heat operator (15) where E, = 7! (p). First, G(t.q,p) : E, — E;isan
R-linear map of vector spaces and continuous in all variables t,q,p. Second, for a fixed w € E,,
let O(t,q) = G(t,q,p)w, for all t > 0, then 0 has first and second continuous derivatives in ¢t and g,
respectively andsatisfies the heat equation, which for ¢ > 0 is given by H6(t,q) = 0, which can
be written as

(% + Aq) G(tgp) =0 (16)

where A; acts on the variable 4. Finally, if ¢ is a continuous section of the vector bundle E, then

lim J G(t.qp)e(p) dv, = p(q)
M

t—0"
for all ¢, where dv, is the volume measure with respect to the coordinates of p given in terms of
the Riemannian metric.

Definition 2.5. Suppose a Go(t,q,p) is given. The following procedure taking Go(t,q,p) to
G(t,q,p) is called the Levi algorithm:
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6]
K()(i’, %P) = (& + Aq> G(tv ‘%P)v

t

Km+1 (tv q, P) = J

dTJ Ko(t-1,4,2)Kn (1, 2,p) do
0 M

! (17)
K(tv ‘7’ P) = Z (_1)m+lKﬂl (t7 ‘77 p)v

m=0

t
G(t,q,p) = Go(t,q,p) +J dTJ Go(t-1,9,2)K(7,z,p) dv,
0o Jm

The Cauchy problem can be formulated for the heat equation such that existence, regularity
and uniqueness of solution can be established. The Hilbert-Schmidt theorem can be invoked to
develop a Fourier expansion theorem applicable to this Schrédinger operator.

Suppose A : I'(E) — I'(E) is a self-adjoint nonnegative Schrodinger operator, then there exists a
set of C™ sections {¢,}c I'(E) such that

) = || w400 o=

Moreover, denoting the completion of the inner product space I'(E) by I'(E), the set {;} is a

complete set in I'(E), so for any i € I'(E),

v= 5 (e v,

Finally, the set {1),} satisfies the equation
Ay = Ay, Tip; = ey,

where A; are the eigenvalues of A andform an increasing sequence: 0 <Ay <Ay <..- where
liI‘I‘lkH(m /\k = o,

Denote U(t,q) by (T+)(g) when U(0,9) = ¢ (g) and T} satisfies the semigroup property andT; is
a self-adjoint, compact operator.

Theorem 2.2. Let G(t,¢,p) be the fundamental solution of the heat operator (15), then

Gltapho = T (4, (p) ), (q) as)

with w € E, holds in I'(E).

Proof: For fixed t > 0 and weE,, expand G(t, g, p)w in terms of eigenfunctions 1,(q),
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G(tv’%P)w = ;1 ai(tvpzw)wi(q)v Ui(t>paw) = JM <¢i(q)7c(tqul’)w> dv'i
Differentiating with respect to t and using Ay, = A1), we get

d d
501 (bpw) = JM (¥i(q), 5, Gt p)w) dvg = JMWI-(Q)7‘AqG(taq7P)w>qu

= —J (Aq(9),G(tq,p)w) dog = —AiJ (¥:(9),G(t.q.p)w) dug
M M
= -Aioi(t,p,w)

It follows from this that

ai(t,pw) = ci(pw)e ™

and since 0; depend linearly on w, so c;(p,w) = ci(p)w, where ¢;(p) : E, — R is a linear function.
There exists ¢;(p) independent of w such that ¢;(p)w = (¢i(p),w) so that

Gltapyw = L & (@) Cip)w)
Consequently, for any g € I'(E), we have

B(q) = lim JM G(t.q.p)B(p) dv, = él %(q)J’M(Ek(P),ﬁ(p)) dvy,

t—0

Moreover, f(q) can also be expanded in terms of the 1, basis set,
B = T n(a)| o)) do,

Upon comparing these last two expressions, it is clear that ¢x(p) = 1, (p) for all k andwe are
done.

One application of the heat equation method developed so far is to develop and give a proof of
the Hodge theorem.

Theorem 2.3. Let M, E, A be defined as done already, then
1. H={p eTI(E)|Ap = 0}is a finite-dimensional vector space.

2. For any ¢ € I'(E), there is a unique decomposition of i as i = 1, ®y,, where ¢,€ H and
€ A(L(E))-

The first part is a direct consequence of the expansion theorem and due to the fact HLA(I'(E)),
the decomposition is unique.

73
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The Hodge theorem has many applications, but one in particular fits here. It is used in
conjunction with the de Rham cohomology group H}j; (M). Define

ZK(M) = ker{d : AF(M) — AFTH(M)} = {a € A¥(M)| da = 0} (19)

BY(M) = Im {d : AFY (M) — AX(M)}=d(AF1 (M) (20)

Since d* = 0, it follows that B(M) c Z*(M) andthe k-th de Rham cohomology group of M is
defined to be

Hp (M) = Z(M) /B“(M) 1)

From Eq. (21), construct
Hp(M) = @& Hip (M) (22)

In 1935, Hodge claimed a theorem, which stated every element in HX (M) can be represented
by a unique harmonic form «a, one which satisfies both do = 0 and 06« = 0. Denote the set of

harmonic forms as H*(M).

Theorem 2.4. Let M be a Riemannian manifold of dimension 7, then
H*(M) = ker {d + 6 : AX(M) — A*(M)} = ker {A : AX(M) — A¥(M)} (23)

where A = (d + 6)*.
Proof: Since A = db + &d, this implies that A(A*(M)) ¢ A¥(M) andit is clear that

HY(M) c ker{d + 6 : AK(M) — A*(M)} C ker{A : A¥(M) — A*(M)} = ker {A : AK(M) — AF(M)}.
To finish the proof, it suffices to show that ker{A : AK(M) — A¥(M)} c H*(M). 1f
aegker{A : AF(M) — AF(M))}, that is Aa = 0, then

((Aaa)) = (((d + 6)aa)) = (((d + O)a,(d + 8)ar)) = ((da.dar)) + ((Oer.dex)) + 2({dev.5cr))
= ((da,da)) + {(da,6a)) = 0

This implies that da = 0 and da = 0, hence a € H*(M).
Theorem 2.5. Let M be a Riemannian manifold of dimension 7, then
1. H* (M) is a finite dimensional vector space for k = 0,1,2,..., n.

2. There is an orthogonal decomposition of A*(M) as

AR(M) = H (M) + d(AF (M) 4 5(AS (M) (24)
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Proof: By Theorem 2.1, A : A*(M) — A¥(M) is a Schrédinger operator, so the Hodge theorem
applies. Thus H*(M) is of finite dimension, so the first holds. The second part of the Hodge
theorem is A¥(M) = H*(M) + A(AF(M)). Since A(A¥(M))cd(AFH(M)) + 6(A*1(M)), we have
AK(M) = H*(M) + d(AF1(M)) 4 (A1 (M)). The three spaces in this decomposition are
orthogonal to each other, so (ii) holds as well.

Theorem 2.6. (Duality theorem) For an oriented Riemannian manifold M of dimension 7, the
star isomorphism * : H*(M) — H"*(M) induces an isomorphism

Hr (M) = Hg (M) (25)

The k-th Betti number defined as by(M) = dimH"(M, R) also satisfies by(M) = b,«(M) for
0<k<n.

3. The Minakshisundaran-Pleijel paramatrix

Let M be a Riemannian manifold with dimension n and E a vector bundle over M with an
inner product and a metric connection. Here, the following formal power series is consid-

ered with a special transcendental multiplier /% and parameters (£,p,q)€(0,%0) x Mx M,
defined by

1 _ 2 hd
Ho(tqp) = ——=pe” ™ T tulpa) : By — E (26)

(4nt)"?

In Eq. (26), the function p = p(p.q) is the metric distance between p and g in M, E, = ' (p) is
the fiber of E over p and ux(p,q) : E, — E, are R-linear map.

It is the objective to find conditions for which Eq. (26) satisfies the heat equation or the
following equality:

(a% + Aq) H.(t,qp)w =0 (27

To carry out this, a normal coordinate system denoted by {x1,...,x,} is chosen in a neighbor-
hood of point p and is centered at p. This means that if g is in this neighborhood about p, which
has coordinates (x1,...,x,), then the function p(p,q) is

p(p, q) = \/x] + - + 23 (28)

In terms of these coordinates, we calculate the components of g,

75
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0o o
5= (rar) G- dets) 29

and define the differential operator

A

n e}
0= Xp —
kgl £a

The notion of the heat operator (15) on Eq. (26) is worked out one term at a time. First, the
derivative with respect to t is calculated

2

o P4 P2 k| &
Z E 2t+ t ”k(PuQ)w

2
—Hu(t,p,g)w =
o =P = (30)

a (4mit)"?

It is very convenient to abbreviate the function appearing in front of the sum in Eq. (30) as

follows:
gfpz/ 4t
D(p) =— (31)
(p) (4"
Let {ej,...,e,} be a frame that is parallel along geodesics passing through p and satisfies
0
ei(p) = o
In terms of the function in Eq. (31), the operator A acting on Eq. (26) is given as
AoHe(tp,q)w = (A0 ) - (Z tkuk(m)W)
=0 (32)

—5—2% (e,D) - V,, ( i tkuk(pg)w) + @A ( i tkuk(p,q)w)
a=1 k=0 k=0

The individual components of (32) can be calculated as follows; since @ is a function
Ve, @ = ¢,D and so

S
(=)
S/
™
=
=
o
S
—~
e
\_/
/\
<
D
o
=
N
/@
2= |
Il

)
@hﬂ:—gawx 33)
1

Consequently,
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" -1 12
ep :%, %(e[,p)2 =1, Aop = n? + Ea logV'G

and the Laplace-Beltrami operator on the function @ is given by

AO(D:GD(p)((:—;—;t) 5 (1= alogf)) (34)

Expression (34) goes into the first term on the right side of Eq. (32). The second term on the
right-hand side of (32) takes the form,

- Xg
2% (ea®) - V,, (go Uk(p qw ) 20 (p) Z ? ( Y Fur(p.g)w ) o)

Vs, fupare)

Substituting these results into (32), it follows that

211
8o Holbap) = O(p) | B =3, (0710108 VG- ¥, | £ Pustpare (36)

Combining Eq. (36) with the derivative of H.. with respect to t in Eq. (35), the following version
of the heat equation results:

oo

0 17 1 A 17
(a—t—AO—F>Hw(t,q,p)w = (DKV +E6G) ;uo(p,q)w + X KVB +k+E6G) ur(p,q)w

k=1

—MM%wmmmﬂﬁﬂ (37)

This is summarized in the following Lemma.

Lemma 3.1. Heat equation (27) for H..(t,p,q) is equivalent to

(VS +k+ 4G6G) ur(p.g)w = (Ao + F) w1 (p,q)w (38)

forallk =0,1,2,... and Eq. (38) is initialized with u_(p,q) = 0.

In fact, for fixed p € M and w € E,, there always exists a unique solution to problem (Eq. (38))
over a small coordinate neighborhood about p.

Definition 3.1. Denote the solution of Eq. (38) by u(p,q)w, which depends linearly on w. Then,
un(p.q) : E, — E; and the Minakshisundaram-Pleijel parametrix for heat operator (Eq. 15) is
defined by

77
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Ze_f’z/‘“ Y un(p,g) : Ep — Eg (39)

He. t? 9 =
( P q) (47‘[t)n/ m=0

Based on Eq. (39), the N-truncated parametrix is defined based on Eq. (39) to be

) N
Hy(tg,p) = er/ zo P"u(p.g) : Ep — Eg (40)

1
(4mit)"?

Theorem 3.1. Choose a smooth function ¢ : MXM — M and let Go(t,q,p) = ¢(q,p)Hn(t,q,p)-
Then Gy (t,q,p) is a k-th initial solution of the heat operator (15), where k = [%— 4] and|z] is the
greatest integer less than or equal to z.

Proof: Clearly, Gy is a linear map of vector spaces andis continuous and C” in all parameters.
From the previous calculation, it holds that

0
(& —AO—F) HN(t,q,p)w = -

1 _ _n
Gt e+ Pun(pa) (41)

and uy(p,q) is C* with respect to p and g. Since N3¢ /4 is C¥([0,00) x Mx M), hence
H(p(p,q)Hy (t,,p))€CF([0,00) x Mx M). Consider integrating Gy against i(s,f),

N T o
JM Go(t,g,5)V¥(s,B) dus = méo t"‘jM We p*/4 Y(q,8)um(s,q)(s,B) dos (42)

The integral of Eq. (42) over M can be broken up into an integral over Q,(5) = {s € M|p(q.s)
< ¢/2} anda second integral over the set M-M,(§). On the latter set, the limit converges
uniformly hence

e’Pz/‘lt

Iim ——=0
e (472f)"?

To estimate the remaining integral, choose a normal coordinate system at 4 and denote the
integration coordinates as (s1,...,5,), then the integrand of Eq. (42) is given as

1 2 / 0 0
~lsl” /4t - =
(4711’)71/2 e ©(q.8)um(s.9)¢(s,p) [ det( ds: ’GS]' ) dsy--+dsy

Therefore, in the limit using Definition 2.4,

i JW) T P F) dos = wn(a)y(ap)

This result implies that
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lim JM Go(t%s)ll’(sﬁ) dos = g ltli% tmu,n(q,q)¢(q,ﬂ) = 1!’(‘77/3)”0(‘%‘7) = l/’(‘%ﬁ) (43)

t—0 m=0

The convergence here is uniform.

There exists an asymptotic expansion for the heat kernel which is extremely useful and has
several applications. It is one of the main intentions here to present this. An application of its
use appears later.

Theorem 3.2. (Asymptotic expansion) Let M be a Riemannian manifold with dimension n
andE a vector bundle over M with inner product and metric Riemannian connection. Let
G(t,q,p) be the heat kernel or fundamental solution for heat operator (Eq. (15)) and (Eq. (39))
the MP parametrix. Then as t — 0, G(t,p,p) has the asymptotic expansion G(t,p,p)~He(t,p,p),

that is, for any N > 0, it is the case that

G-, 1),7/2 2 un(pp) = O(F) (44)

and the symbol on the right-hand side of Eq. (44) signifies a quantity £ with the property that

Proof: It suffices to prove the theorem for any large N. Let Go(t,q,p) = ¢(q.,p)Hn(t,q,p) as in
Theorem 3.2. The conclusion of the theorem is equivalent to the statement

G(t,p,P)—Go (tvpvp) =0 (tN‘g)

From the previous theorem and existence and regularity of the fundamental solution, the
result G of Levi iteration initialized by Gy is exactly the fundamental solution. Equality
(Eq. (41)) means that there exists a constant A such that for any t€(0,T),

J _n
Ko(tq.p)] = |( +A)co< ap) S APV

Let v(M) be the volume of the manifold M. Using this result, the following upper bound is
obtained

t
|1<1<t,q,p>|sj dfj Ko (t=7.0,5)Ko(.5,)| do,
0 M

t e t i N N3+
sJ A2 (=) VAN (M)] d sJ ATNAN (M) de< AB——
0 0 N_E + l

We have set B = A - TN"20(M). Exactly the same procedure applies to |K;(t,q,p)|. Based on the
pattern established this way, induction implies that the following bound results
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tN—§+m Hn n
|Km(t7qap)‘ <A -B" (N—%'i‘l) (N_%+2)...(N—g+m) SA-Bm% a

The formula for Levi iteration yields upon summing this over m the following upper bound

K(tap)l< X [Kn(tap)|<A-e e
=
Using this bound, the required estimate is obtained,
' ~
IG(tg.p)-Colt.qp)| < |J dTJ do-Go(t-2.g 2)K (1)
0o Jum

t ~p/A(t-) )
SJ d’cJ 67/2 A - BT N o,
0o Im (4n(t-1))"

M,A - eBo(M)N2H

¢
< MnAeBtJ ™3 dto(M) =
0 1

1
7
N- 5 +
This finishes the proof.

Now if all the Hodge theorem is used, formal expressions for the index can be obtained.
Suppose D : I'(E) — I'(F) is an operator such that D*D and DD" are Schrodinger operators
andD" is the adjoint of D. Suppose the operators D*D : I'(E) — I'(E) and DD* : I'(F) — I'(E)
are defined, so they are self-adjoint and have nonnegative real eigenvalues. Then the spaces
I'y(E) and I',(F) can be defined this way

[W(E) =lp € [(E)ID'De = pep},  I'u(F) = {pel(F)|DD"¢ = pe} (45)
For any m > (), the dimensions of the spaces in (44) are finite and moreover,
[o(E) = ker{D : [(E) — I['(F)},  Io(F) = ker{D" : ['(F) — I'(E)}
Consequently, an expression for the index Ind (D) can be obtained from Eq. (45) as follows

Ind D = dim ker D-dim ker D* = dim I'y(E)-dim I'y(F)

Definition 3.2. For the Schrédinger operator A, let e : I'(E) — I'(E), for t > 0 be defined as
@ o)) = | Glrarioipis, (46)

where G(t,q,p) is the fundamental solution of heat operator (Eq. (15)).

Let 0 <Ay <Ay < - — oo be the eigenvalues of the operator A and {i),,1),,...} the corresponding

—tA

eigenfunctions. Intuitively, the trace of ™ is defined as
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et = T (e ) 47)
This is clearly Yxe ™ or ¥, e dim I'y(E), so the definition of tr is well-defined if and only if
T <o (48)

3

Theorem 3.3. For any p,geM, let {e; (p),...,en(p)} and {f,(q),....,f y(q)} be orthonormal bases on
E, and E, respectively, then the following two results hold for ¢ > 0,

N 2
(a) j jz (G(tap)es(p) f,(q))? dvgdo, < =,
_ MJab=1 N (49)
0 eW<J jz (G(Eap)ea(p) f,(0))? dogdo, < o=
k=1 MJab=1

Proof: When t > 0, G(t,q,p) is continuous and hence satisfies (a). For and w € I'(E), Theorem

2.5 yields the following expansion for G(t,q,p) € I'(E), hence the Parseval equality yields
|| 16tapf do, = T (g, p)r?
M k=1
Replacing w by the basis element ¢,(p), this implies that

N 2
> j Gt p)ea(p)? do,
M

= 35 Y e = T Y ey (p)ea(p)) = X () i)

a=1k=1 k=1a=1 k=

Then for any m, it follows that

S = B | Bl o< | T e o)) o,

k=1

N 2 N 2
—| an| X iGtapepae =] | X Gtape) @) duds, <=
M M a=1 M JM ab=1

Theorem 3.4. For any ¢ > (,

tr (e*4) = JMtr G(tp.p) dv, (50)

Proof: From Theorem 2.2, it follows that
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irGltpp) = 5 (Gltppe(p)ealp)) =

a=

I 5 et e = )iy

a=1 k=1

—_

Tz

< 5. et ()ea () () <p>>
k=1

Integrating this on both sides, it is found that

j tr Gltpp) dvp=j 5 e (p) () doy = ¥ e = tr ()
M M k=1 k=1

Note that Eq. (48) is a series with positive terms which converges uniformly as t — . There-
fore,

lim tr ¢™ = i lim ™ = dim Iy(E) (51)

f—so0 =1 o

In fact, as t — 0, the equality

1 1
Gltpp) = ———+ O —
( pp) (47_(t)n/2 <t}1/2)

and the previous theorem imply that lim; o tr ¢ = co.

4. An application of the expansions: the Gauss Bonnet theorem
As far as Ind (D) is concerned, it is the case for all + > 0 that,

Ind (D) = tr ¢™'P= tre®PP = J tr G, (tp,p) dvp—J tr G_(t,p,p) dv,
M M

by Theorem 3.5, where G.(t,p,p) are the fundamental solutions of &; + D*D and 0; + DD". As
t — 0, Theorem 3.2 assumes the form

oo

> t"usw(pp)

1
G t7 9 NHi: t7 5 = T
=(tpp)~He (Ep.p) @ty

Lemma 4.1. Let {A;} be the spectrum of the Laplacian on zero-forms, or functions, on M. Then,

L i JM ug(x,x) doy (52)

Z e*)\kt _
x (47ct)"? i=0
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Proof:

%e_}\kt - JM tr Glea) do = W% <IM Helx,t) dvx> g

The spectrum of the Laplacian on functions characterizes a lot of interesting geometric infor-
mation. Note that Eq. (52) can be written as

oo

1
Ait fk — J d
e @ ts, 4 ug(x,x) doy
; (4mt)"? ,EO ‘ T )

and the trace does not appear in the case of functions. The superscript on the Laplacian A?
denotes the form degree acted upon andsimilarly on other objects throughout this section.

Two Riemannian manifolds are said to be isospectral if the eigenvalues of their Laplacians on
functions counted with multiplicities coincide.

Corollary 4.1. Let M and N be compact isospectral Riemannian manifolds. Then M and N have
the same dimension and the same volume.

Proof: Let {A;} denote the spectrum of both M and N with dimM = m and dimN = n. Then it
follows that

1 - M I
(47'ct)m/2 kgo (Jmuk (P:p) dv,,)tk B Eo ¢

(47;)”/2 éo (JN 1 (q.q) dvq)tk

This implies that m = n, which in turn implies that

1
(4mt)™?

oo

z (JM”kM(P’P) dvp—JN uN(q,9) dvq> #

UM ug' (p.p) dvp—JN u™(q.9) dvq} = WH

Since the right-hand side of the equation depends on ¢, but the left-hand side does not, this
result implies that

| o p o, = | g, oo, (53)
M N

Iterating this argument leads to the set of equations

Juwnmwf{zwwwwq (54)
M N

for all k > 0. In particular, since 1o = 1, Eq. (53) leads to the conclusion vol (M) = vol (N).
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The proof illustrates that in fact there exist an infinite sequence of obstructions to claiming that
two manifolds are isospectral, namely the set of integrals [ uy dvy. The first integral contains
Im

basic geometric information. It is then natural to investigate the other integrals in sequence as
well. Recall that R,,VR;,--- denote the covariant derivatives of the curvature tensor at p. A
polynomial P in the curvature and its covariant derivatives is called universal if its coefficients
depend only on the dimension of M. The notation P(RP,VRP,...,V"R,,) is used to denote a
polynomial in the components of the curvature tensor and its covariant derivatives calculated
in a normal Riemannian coordinate chart at p. The following theorem will not be proved, but it
will be used shortly.

Theorem 4.2. On a manifold of dimension 7,
ui(p,p) = P{(Ry),  u(p,p) = PL(Ry,VR,,....V¥?R,), k=22 (55)

for some universal polynomials Py.

Thus, P is a linear function with no constant term and u;(p,p) is a linear function of the
components of the curvature tensor at p, with no covariant derivative terms. The only linear
combination of curvature components that produces a well-defined function u;(p,p) on a

manifold is the scalar curvature R(p) :Rg andso there exists a constant C such that
ur(pp) = C-R(p).
Theorem 4.3.

w(pp) = ¢R(p) (56)

Proof: The proof amounts to noticing that P} is a universal polynomial, so it suffices to
compute C over one kind of manifold. A good choice is to integrate over S" with the standard
metric and work it out explicitly in normal coordinates. It is found that u;(p,p) = n(n-1)/6
andit is known that R(p) = n(n-1) for all peS" andthis implies Eq. (56).

The large t or long-time behavior of the heat operator for the Laplacian on differential forms is
then controlled by the topology of the manifold through the means of the de Rham cohomol-
ogy. The small t or short-time behavior is controlled by the geometry of the asymptotic
expansion. The combination of topological information has a geometric interpretation. This is
made explicit by means of the Chern-Gauss-Bonnet theorem. The two-dimensional version of
this theorem will be developed here.

These results can be summarized by the elegant formula

st e*/lkf —

k=0 (4mit)"?

{o) 44| R o400}

where v(M) is the volume of M.
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Suppose that A is positive and here we let E, denote the possibly trivial eigenspace of A on p-
forms. If w € E'A’ then it follows that A" 'dw = dAPw = A dw, hence dw € EKH. Thus, a well-
defined sequential ordering of the spaces can be established. If w€E!, has the property that
dw =0, then Aw = APw = (6d + dd)w = d bw. Therefore, since A#0, it is found that w = d(} dw).
Thus, the sequence 0 — E} —%... =4 E" — 0 is exact. Since the operator d 4 6 is an isomor-

phism on @y Eﬁk, it follows that

Y (-1)°dim E}, =0 (57)

S

Theorem 4.4. Let {1} be the spectrum of the operator 4, then

Y(-1)* ¥ et = ¥(-1)°dim ker A°. (58)

El 1 s

Proof: By (57),

ZE T et = ZEyTe™
k

s s
The sum on the right Y is only over eigenvalues such that A? = 0 and so
> et = dim kerA?.

This has the consequence that

L1 et =y (1P et (59)
k

4 4

is independent of the parameter t. This means that its large or long t behavior is the same as its
short or small t behavior. To put it another way, the long-time behavior of tr ¢*4 is given by the
de Rham cohomology, while the short-time behavior is dictated by the geometry of the
manifold. Using the definition of the Euler characteristic, it follows that

x(M) = ¥,(-1)Pdim H), (M) =3,(-1)"dim ker 47 = ¥,(-1)" tre*"

= ¥, (-1 [ tr G(tx.x) do, (60)
Im
From the asymptotic expansion theorem, the following expression for x(M) results
1 o n
XM) = ——5 J tr 1 (x,x) doy ) £ 61
e (47Tt)n/2 k§0< M s§0 k() X) (61)

The u; in Eq. (61) are the coefficients in the asymptotic expansion for tr (¢**"). Since x(M) is
independent of ¢, only the constant or t-independent term on the right-hand side of Eq. (61) can
be nonzero. This implies the following important theorem.
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Theorem 4.5. If the dimension of M is even, then

n

—lfj S (1 tr ul () dog = o (62)
(471)”/2 M s=0 K xM), k=

NS -

Theorem 4.6. (Gauss-Bonnet) Let M be a closed oriented manifold with Gaussian curvature K
and area measure day, then

x(M) = % JM K day (63)

Proof: By the last theorem and the fact that tr u}(x,x) = tr uf_l (x,x), it follows that

1 2 1
X(M) = EJMEO (S Uy day = EJM( tr ul- tr uj + tr u?) day

(64)
1

1 2
:EJM 2 tr ud- tr ul)day = -— JM GK- tr ul) day

4m 3

since the scalar curvature is two times the Gaussian. Now it must be that tr ul(xx) =

CR(x) = 2CK(x), for some constant C. The standard sphere S? has Gaussian curvature one
andso C can be calculated from Eq. (64),

2= 5| GO dow = 5-G-0) - t4m)

Therefore, C = -2/3 and putting all of these results into Eq. (64), Eq. (62) results.

As an application of this theorem, note that the calculation of u; gives another topological
obstruction to manifolds having the same spectrum.

Theorem 4.7. Let (M,g) and (N,h) be compact isospectral surfaces, then M and N are
diffeomorphic.

Proof: As noted in Corollary 4.1,
|| ey dow = | 0 do,
M N

On a surface, the scalar curvature is twice the Gaussian curvature, so by the Gauss-Bonnet
theorem,

6rix(M) = JM u?/l(x,x) do, = J.N ull\](y,y) dv, = 6mx(N) (65)

However, oriented surfaces with the same Euler characteristic are diffeomorphic.
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5. Summary and outlook

The heat equation approach has been seen to be quite deep, leading both to the Hodge theorem and
also to a proof of the Gauss-Bonnet theorem. Moreover, it is clear from the asymptotic development
that there is a generalization of this theorem to higher dimensions. The four-dimensional Chern-

Gauss-Bonnet integrand is given by the invariant - {K*~4|p, > + |R|*}, where K is the scalar curva-

ture, |p, | ? is the norm of the Ricci tensor, | R| is the norm of the total curvature tensor andthe signature
is Riemannian. This comes up in physics especially in the study of Einstein-Gauss-Bonnet gravity
where this invariant is used to get the associated Euler-Lagrange equations.

Let R be the components of the Riemann curvature tensor relative to an arbitrary local frame
field {e;} for the tangent bundle TM and adopt the Einstein summation convention. Let m = 2s
be even, then the Pfaffian E,,(g) is defined to be

1 l. o ,
Em(g) = (87‘()55! Rilfzfzfl "‘Rizg,1i25j25j25,1 g(el/\"'/\em ANl (66)

The Euler characteristic x(M) of any compact manifold of odd dimension without boundary
vanishes. Only the even dimensional case is of interest.

Theorem 5.1. Let (M,g) be a compact Riemannian manifold without boundary of even dimen-
sion m. Then

xXM) = JM E.n(g) doym (67)

This was proved first by Chern, but of greater significance here, this can be deduced from the
heat equation approach that has been introduced here. There is a proof by Patodi [18], but
there is no room for it now. It should be hoped that more interesting results will come out in
this area as well in the future.
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