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Abstract

Differential operators that are defined on a differentiable manifold can be used to study
various properties of manifolds. The spectrum and eigenfunctions play a very signifi-
cant role in this process. The objective of this chapter is to develop the heat equation
method and to describe how it can be used to prove the Hodge Theorem. The Minakshi-
sundaram-Pleijel parametrix and asymptotic expansion are then derived. The heat equa-
tion asymptotics can be used to give a development of the Gauss-Bonnet theorem for
two-dimensional manifolds.
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1. Introduction

Topological and geometric properties of a manifold can be characterized and further studied

by means of differential operators, which can be introduced on the manifold. The only natural

differential operator on a manifold is the exterior derivative operator which takes k-forms to

kþ 1 forms. This operation is defined purely in terms of the smooth structure of the manifold,

used to define de Rham cohomology groups. These groups can be related to other topological

quantities such as the Euler characteristic. When a Riemannian metric is defined on the

manifold, a set of differential operators can be introduced. The Laplacian on k-forms is perhaps

the most well known, as well as other elliptic operators.

On a compact manifold, the spectrum of the Laplacian on k-forms contains topological as well

as geometric information about the manifold. The Hodge theorem relates the dimension of the

kernel of the Laplacian to the k-th Betti number requiring them to be equal. The Laplacian

determines the Euler characteristic of the manifold. A sophisticated approach to obtaining

information related to the manifold is to consider the heat equation on k-forms with its solution

given by the heat semigroup [1–3].
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The heat kernel is one of the more important objects in such diverse areas as global analysis,

spectral geometry, differential geometry, as well as in mathematical physics in general. As an

example from physics, the main objects that are investigated in quantum field theory are

described by Green functions of self-adjoint, elliptic partial differential operators on manifolds

as well as their spectral invariants, such as functional determinants. In spectral geometry, there

is interest in the relation of the spectrum of natural elliptic partial differential operators with

respect to the geometry of the manifold [4–6].

Currently, there is great interest in the study of nontrivial links between the spectral invariants

and nonlinear, completely integrable evolutionary systems, such as the Korteweg-de Vries

hierarchy. In many interesting situations, these systems are actually infinite-dimensional Ham-

iltonian systems. The spectral invariants of a linear elliptic partial differential operator are

nothing but the integrals of motion of the system. There are many other applications to physics

such as to gauge theories and gravity [7].

In general, the existence of nonisometric isospectral manifolds implies that the spectrum alone

does not determine the geometry entirely. It is also important to study more general invariants

of partial differential operators that are not spectral invariants. This means that they depend

not only on the eigenvalues but also on the eigenfunctions of the operator. Therefore, they

contain much more information with respect to the underlying geometry of the manifold.

The spectrum of a differential operator is not only studied directly, but the related spectral

functions such as the spectral traces of functions of the operator, such as the zeta function and

the heat trace, are relevant as well [8, 9]. Often the spectrum is not known exactly, which is why

different asymptotic regimes are investigated [10, 11]. The small parameter asymptotic expan-

sion of the heat trace yields information concerning the asymptotic properties of the spectrum.

The trace of the heat semigroup as the parameter approaches zero is controlled by an infinite

sequence of geometric quantities, such as the volume of the manifold and the integral of the

scalar curvature of the manifold. The large parameter behavior of the traces of the heat kernels

is parameter independent and in fact equals the Euler characteristic of the manifold. The small

parameter behavior is given by an integral of a complicated curvature-dependent expression.

It is quite remarkable that when the dimension of the manifold equals two, the equality of the

short- and long-term behaviors of the heat flow implies the classic Gauss-Bonnet theorem. The

main objectives of the chapter are to develop the heat equation approach with Schrödinger

operator on a vector bundle and outline how it leads to the Hodge theorem [12, 13]. The heat

equation asymptotics will be developed [14, 15] andit is seen that the Gauss-Bonnet theorem

can be proved for a two-dimensional manifold based on it. Moreover, this kind of approach

implies that there is a generalization of the Gauss-Bonnet theorem as well in higher dimensions

greater than two [16, 17].

2. Geometrical preliminaries

For an n-dimensional Riemannian manifoldM, an orthonormal moving frame {e1;…;en} can be

chosen with {ω1;…;ωn} the accompanying dual coframe which satisfy
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ωiðejÞ ¼ δij; i; j ¼ 1;…;n (1)

It is then possible to define a system of one-forms ωij and two-formsΩij by solving the equations,

∇Xei ¼ ∑
j
ωjiðXÞ ej; RðX;YÞei ¼ ∑

j
ΩjiðX;YÞej (2)

It then follows that the Christoffel coefficients and components of the Riemann tensor forM are

ωjiðekÞ ¼ ∑
a
〈ωajðekÞea;ei〉g ¼ 〈∇ekej;ei〉g ¼ Γi

kj (3)

Ωijðek;esÞ ¼ ∑
a
〈Ωajðek;esÞea;ei〉g ¼ 〈 Rðek;esÞej;ei〉g ¼ Rksji (4)

The inner product induced by the Riemannian metric on M is denoted here by 〈 � ; � 〉 : ΓðTMÞ

· ΓðTMÞ ! F ðMÞ and it induces a metric on ΛkðMÞ as well. Using the Riemannian metric and

the measure on M, an inner product denoted 〈〈 � ; � 〉〉 : ΛkðMÞ·ΛkðMÞ ! R can be defined on

ΛkðMÞ so that for α; β∈ΛkðMÞ,

〈〈α;β〉〉 ¼

ð
M

〈α;β〉g dvM (5)

where if ðx1;…;xmÞ is a system of local coordinates,

dvM ¼ detðgijÞ dx
1∧…∧ dxm

is the Riemannian measure on M. Clearly, 〈〈α;β〉〉 is linear with respect to α, β and〈〈α;α〉〉 ≥ 0

with equality if and only if α ¼ 0. Hodge introduced a star homomorphism * : ΛkðMÞ !

Λn−kðMÞ, which is defined next.

Definition 2.1. (i) For ω ¼ ∑i1<⋯<ik f i1⋯ik
ωi1∧⋯ωik , define

�ω ¼ ∑
i1 < ⋯ < ik
j1 < ⋯ < jn−k

f i1⋯ik
Eði1;…; ik; j1;…; jn−kÞωj1

∧⋯∧ ωjn−k
;

where E is 1, −1, or 0 depending on whether ði1;…;ik;j1;…;jn−kÞ is an even or odd permutation of

ð1;…;nÞ, respectively.

(ii) If M is an oriented Riemannian manifold with dimension n, define the operator

δ ¼ ð−1Þnkþnþ1�d� : ΛkðMÞ ! Λk−1ðMÞ (6)

In terms of the two operators d and δ, the Laplacian acting on k-forms can be defined on the

two subspaces
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Λ
evenðMÞ ¼ ⊕even Λ

kðMÞ; Λ
oddðMÞ ¼ ⊕odd Λ

kðMÞ (7)

The operator dþ δ can be regarded as the operators on these subspaces,

D0 ¼ dþ δ : Λ
evenðMÞ ! Λ

oddðMÞ; D1 ¼ dþ δ : Λ
oddðMÞ ! Λ

evenðMÞ (8)

Definition 2.2. Let M be a Riemannian manifold, then the operator

D0 ¼ dþ δ : Λ
evenðMÞ ! Λ

oddðMÞ (9)

is called the Hodge-de Rham operator. It has the property that it is a self-conjugate operator,

D�
0 ¼ D1 and D�

1 ¼ D0. It is useful in studying the Laplacian to have a formula for the operator

Δ ¼ ðdþ δÞ2 and hence for D�
0D0 and D�

1D1 as well.

Let {e1;…;en} be an orthonormal moving frame defined on an open set U. Define as well the

pair of operators

Eþ
j ¼ ωj ∧ � þiðejÞ : Λ

�ðUÞ ! Λ
�ðUÞ; E−

j ¼ ωj ∧ � −iðejÞ : Λ
�ðUÞ ! Λ

�ðUÞ (10)

Lemma 2.1. The operators E�
j satisfy the following relations

Eþ
i E

þ
j þ Eþ

j E
þ
i ¼ 2δij; Eþ

i E
−
j þ E−

j E
þ
i ¼ 0; E−

i E
−
j þ E−

j E
−
i ¼ −2δij (11)

If M is a Riemannian manifold and ∇ : ΓðTMÞ · ΓðTMÞ ! ΓðTMÞ is a Levi-Civita connection,

then a connection on the space Λ�ðMÞ, namely ðX;ωÞ ! ∇Xω, can also be defined such that

ð∇XωÞðYÞ ¼ XðωðYÞÞ−ωð∇XYÞ; Y∈ ΓðTMÞ

The connection may be regarded as a first-order derivative operator ðX;Y;ωÞ ! DðX;YÞω.

Definition 2.3. The second-order derivative operator ðX;Y;ωÞ ! DðX;YÞω is defined to be

DðX;YÞω ¼ ∇X∇Yω−∇∇XYω (12)

In terms of the operator (Eq. (12)), define a second-order differential operator Δ0 : Λ
�ðMÞ !

Λ
�ðMÞ by

Δ0 ¼ ∑
i
Dðei;eiÞ; (13)

where {ei}
n
1 is an orthonormal moving frame. The operator Δ0 in Eq. (13) is referred to as the

Laplace-Beltrami operator.

Theorem 2.1. (Weitzenböck) Let M be a Riemannian manifold M with an associated orthonor-

mal moving frame {ei}
n
1 . The Laplace operator can be expressed as
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Δ ¼ ðdþ δÞ2 ¼ −Δ0−
1

8
∑

i;j;k;s
Rijks E

þ
i E

þ
j E

−
kE

−
s þ

1

4
R (14)

In Eq. (14), R is the scalar curvature, R ¼ −∑i;jRijij and Δ0 is the Laplace-Beltrami operator (13).

The operator defined by Eq. (14) does not contain first-order covariant derivatives and is of a

type called a Schrödinger operator. Thus, Weitzenböck formula (14) implies the that Laplacian

can be expressed in the form Δ ¼ −Δ0−F and is an elliptic operator. The Schrödinger operator

(14) can be used to define an operator that plays an important role in mathematical physics.

The heat operator is defined to be

H ¼
∂

∂t
þ Δ (15)

The crucial point for the theory of the heat operator is the existence of a fundamental solution.

In fact, the Hodge theorem can be proved by making use of the fundamental solution.

Definition 2.4. Let M be a Riemannian manifold, π : E ! M is a vector bundle with connec-

tion. Let Δ0 : ΓðEÞ ! ΓðEÞ be the Laplace-Beltrami operator, which is defined by means of the

Levi-Civita connection onM and the connection on the vector bundle E. Let F : ΓðEÞ ! ΓðEÞ be

a F ðMÞ-linear map. Then, Δ ¼ −Δ0−F is a Schrödinger operator. If a family of R-linear maps

Gðt;q;pÞ : Ep ! Eq

with parameter t > 0 and q;p∈M satisfies the following three conditions, the family is called a

fundamental solution of the heat operator (15) where Ep ¼ π−1ðpÞ. First, Gðt;q;pÞ : Ep ! Eq is an

R-linear map of vector spaces and continuous in all variables t;q;p. Second, for a fixed w∈Ep,

let θðt;qÞ ¼ Gðt;q;pÞw, for all t > 0, then θ has first and second continuous derivatives in t and q,

respectively andsatisfies the heat equation, which for t > 0 is given by Hθðt;qÞ ¼ 0, which can

be written as

∂

∂t
þ Δq

� �

Gðt;q;pÞ ¼ 0 (16)

where Δq acts on the variable q. Finally, if ϕ is a continuous section of the vector bundle E, then

lim
t!0þ

ð

M

Gðt;q;pÞϕðpÞ dvp ¼ ϕðqÞ

for all ϕ, where dvp is the volume measure with respect to the coordinates of p given in terms of

the Riemannian metric.

Definition 2.5. Suppose a G0ðt;q;pÞ is given. The following procedure taking G0ðt;q;pÞ to

Gðt;q;pÞ is called the Levi algorithm:
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K0ðt; q; pÞ ¼
∂

∂t
þ Δq

� �

Gðt; q; pÞ;

Kmþ1ðt; q; pÞ ¼

ðt

0

dτ

ð

M

K0ðt − τ; q; zÞKmðτ; z; pÞ dvz

Kðt; q; pÞ ¼ ∑
∞

m¼0
ð−1Þmþ1Kmðt; q; pÞ;

Gðt; q; pÞ ¼ G0ðt; q; pÞ þ

ðt

0

dτ

ð

M

G0ðt − τ; q; zÞKðτ; z; pÞ dvz

(17)

The Cauchy problem can be formulated for the heat equation such that existence, regularity

and uniqueness of solution can be established. The Hilbert-Schmidt theorem can be invoked to

develop a Fourier expansion theorem applicable to this Schrödinger operator.

Suppose Δ : ΓðEÞ ! ΓðEÞ is a self-adjoint nonnegative Schrödinger operator, then there exists a

set of C∞ sections {ψi}⊂ ΓðEÞ such that

〈〈ψi;ψj〉〉 ¼

ð

M

〈ψiðxÞ;ψjðxÞ〉 dvx ¼ δij

Moreover, denoting the completion of the inner product space ΓðEÞ by ΓðEÞ, the set {ψi} is a

complete set in ΓðEÞ, so for any ψ∈ ΓðEÞ,

ψ ¼ ∑
∞

i¼1
〈〈ψ;ψi〉〉 ψi

Finally, the set {ψi} satisfies the equation

Δψi ¼ λiψi; Ttψi ¼ e−tλiψi

where λi are the eigenvalues of Δ andform an increasing sequence: 0 ≤λ1 ≤λ2 ≤⋯ where

limk!∞ λk ¼ ∞.

DenoteUðt;qÞ by ðTtψÞðqÞwhenUð0;qÞ ¼ ψðqÞ and Tt satisfies the semigroup property andTt is

a self-adjoint, compact operator.

Theorem 2.2. Let Gðt; q; pÞ be the fundamental solution of the heat operator (15), then

Gðt;q;pÞw ¼ ∑
∞

i¼1
eλit〈 ψiðpÞ;w〉ψiðqÞ (18)

with w∈Ep holds in ΓðEÞ.

Proof: For fixed t > 0 and w∈Ep, expand Gðt; q; pÞw in terms of eigenfunctions ψiðqÞ,
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Gðt;q;pÞw ¼ ∑
∞

i¼1
σiðt;p;wÞψiðqÞ; σiðt;p;wÞ ¼

ð
M

〈ψiðqÞ;Gðt;q;pÞw〉 dvq

Differentiating with respect to t and using Δψi ¼ λiψi, we get

∂

∂t
σiðt;p;wÞ ¼

ð
M

〈ψiðqÞ;
∂

∂t
Gðt;q;pÞw〉 dvq ¼

ð
M

〈ψiðqÞ;−ΔqGðt;q;pÞw〉dvq

¼ −

ð
M

〈ΔqψiðqÞ;Gðt;q;pÞw〉 dvq ¼ −λi

ð
M

〈ψiðqÞ;Gðt;q;pÞw〉 dvq

¼ −λiσiðt;p;wÞ

It follows from this that

σiðt;p;wÞ ¼ ciðp;wÞe−λit

and since σi depend linearly on w, so ciðp;wÞ ¼ ciðpÞw, where ciðpÞ : Ep ! R is a linear function.

There exists ~ciðpÞ independent of w such that ciðpÞw ¼ 〈~ciðpÞ;w〉 so that

Gðt;q;pÞw ¼ ∑
∞

i¼1
eλit ψiðqÞ〈~ciðpÞ;w〉

Consequently, for any β ∈ ΓðEÞ, we have

βðqÞ ¼ lim
t!0

ð
M

Gðt;q;pÞβðpÞ dvp ¼ ∑
∞

k¼1
ψkðqÞ

ð
M

〈~ckðpÞ;βðpÞ〉 dvp

Moreover, βðqÞ can also be expanded in terms of the ψk basis set,

βðqÞ ¼ ∑
∞

k¼1
ψkðqÞ

ð
M

〈ψkðpÞ;βðpÞ〉 dvp

Upon comparing these last two expressions, it is clear that ~ckðpÞ ¼ ψkðpÞ for all k andwe are

done.

One application of the heat equation method developed so far is to develop and give a proof of

the Hodge theorem.

Theorem 2.3. Let M; E; Δ be defined as done already, then

1. H ¼ {ϕ ∈ ΓðEÞjΔϕ ¼ 0} is a finite-dimensional vector space.

2. For any ψ ∈ ΓðEÞ, there is a unique decomposition of ψ as ψ ¼ ψ1⊕ψ2, where ψ1∈ H and

ψ2∈ ΔðΓðEÞÞ.

The first part is a direct consequence of the expansion theorem and due to the fact H⊥ΔðΓðEÞÞ,

the decomposition is unique.
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The Hodge theorem has many applications, but one in particular fits here. It is used in

conjunction with the de Rham cohomology group H
�
dR
ðMÞ. Define

Z
kðMÞ ¼ ker{d : Λ

kðMÞ ! Λ
kþ1ðMÞ} ≡ {α ∈ Λ

kðMÞj dα ¼ 0} (19)

B
kðMÞ ¼ Im {d : Λ

k−1ðMÞ ! Λ
kðMÞ}≡dðΛk−1ðMÞÞ (20)

Since d
2 ¼ 0, it follows that BkðMÞ ⊂ Z

kðMÞ andthe k-th de Rham cohomology group of M is

defined to be

H
k

dR
ðMÞ ¼ Z

kðMÞ=BkðMÞ (21)

From Eq. (21), construct

H
�
dR
ðMÞ ¼ ⊕k H

k

dR
ðMÞ (22)

In 1935, Hodge claimed a theorem, which stated every element in H
k

dR
ðMÞ can be represented

by a unique harmonic form α, one which satisfies both dα ¼ 0 and δα ¼ 0. Denote the set of

harmonic forms as HkðMÞ.

Theorem 2.4. Let M be a Riemannian manifold of dimension n, then

H
kðMÞ ¼ ker {dþ δ : Λ

kðMÞ ! Λ
�ðMÞ} ¼ ker {Δ : Λ

kðMÞ ! Λ
kðMÞ} (23)

where Δ ¼ ðdþ δÞ2.

Proof: Since Δ ¼ dδþ δd, this implies that ΔðΛkðMÞÞ ⊂ Λ
kðMÞ andit is clear that

H
kðMÞ ⊂ ker{dþ δ : Λ

kðMÞ ! Λ
�ðMÞ} ⊂ ker{Δ : Λ

kðMÞ ! Λ
�ðMÞ} ¼ ker {Δ : Λ

kðMÞ ! Λ
kðMÞ}:

To finish the proof, it suffices to show that ker{Δ : ΛkðMÞ ! Λ
kðMÞ} ⊂ H

kðMÞ. If

α∈ker{Δ : Λ
kðMÞ ! Λ

kðMÞ}, that is Δα ¼ 0, then

〈〈Δα;α;〉〉 ¼ 〈〈ðdþ δÞ2α;α〉〉 ¼ 〈〈ðdþ δÞα;ðdþ δÞα〉〉 ¼ 〈〈dα;dα〉〉þ 〈〈δα;δα〉〉þ 2〈〈dα;δα〉〉
¼ 〈〈dα;dα〉〉þ 〈〈δα;δα〉〉 ¼ 0

This implies that dα ¼ 0 and δα ¼ 0, hence α ∈ H
kðMÞ.

Theorem 2.5. Let M be a Riemannian manifold of dimension n, then

1. H
kðMÞ is a finite dimensional vector space for k ¼ 0; 1; 2;…; n.

2. There is an orthogonal decomposition of ΛkðMÞ as

Λ
kðMÞ ¼ H

kðMÞ þ dðΛk−1ðMÞÞ þ δðΛkþ1ðMÞÞ (24)
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Proof: By Theorem 2.1, Δ : ΛkðMÞ ! ΛkðMÞ is a Schrödinger operator, so the Hodge theorem

applies. Thus HkðMÞ is of finite dimension, so the first holds. The second part of the Hodge

theorem is ΛkðMÞ ¼ HkðMÞ þ ΔðΛkðMÞÞ. Since ΔðΛkðMÞÞ⊂dðΛk−1ðMÞÞ þ δðΛkþ1ðMÞÞ, we have

ΛkðMÞ ¼ HkðMÞ þ dðΛk−1ðMÞÞ þ δðΛkþ1ðMÞÞ. The three spaces in this decomposition are

orthogonal to each other, so (ii) holds as well.

Theorem 2.6. (Duality theorem) For an oriented Riemannian manifold M of dimension n, the

star isomorphism � : HkðMÞ ! Hn−kðMÞ induces an isomorphism

Hk
dRðMÞ ≃ Hn−k

dR ðMÞ (25)

The k-th Betti number defined as bkðMÞ ¼ dimHkðM; RÞ also satisfies bkðMÞ ¼ bn−kðMÞ for

0 ≤ k ≤ n.

3. The Minakshisundaran-Pleijel paramatrix

Let M be a Riemannian manifold with dimension n and E a vector bundle over M with an

inner product and a metric connection. Here, the following formal power series is consid-

ered with a special transcendental multiplier e−ρ
2=4t and parameters ðt;p;qÞ∈ð0;∞Þ·M·M,

defined by

H
∞
ðt;q;pÞ ¼

1

ð4πtÞn=2
e−ρ

2=4t ∑
∞

k¼0
tk ukðp;qÞ : Ep ! Eq (26)

In Eq. (26), the function ρ ¼ ρðp;qÞ is the metric distance between p and q in M, Ep ¼ π−1ðpÞ is

the fiber of E over p and ukðp;qÞ : Ep ! Eq are R-linear map.

It is the objective to find conditions for which Eq. (26) satisfies the heat equation or the

following equality:

∂

∂t
þ Δq

� �

H
∞
ðt;q;pÞw ¼ 0 (27)

To carry out this, a normal coordinate system denoted by {x1;…;xn} is chosen in a neighbor-

hood of point p and is centered at p. This means that if q is in this neighborhood about p, which

has coordinates ðx1;…;xnÞ, then the function ρðp;qÞ is

ρðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ⋯þ x2n

q

(28)

In terms of these coordinates, we calculate the components of g,
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gij ¼
∂

∂xi
;
∂

∂xj

� �

; G ¼ detðgijÞ (29)

and define the differential operator

∂
^

¼ ∑
n

k¼1
xk

∂

∂xk

The notion of the heat operator (15) on Eq. (26) is worked out one term at a time. First, the

derivative with respect to t is calculated

∂

∂t
H∞ðt;p;qÞw ¼

1

ð4πtÞn=2
e−ρ

2=4t ρ2

4t2
−
n

2t

� �

∑
∞

k¼0
tk ukðp; qÞwþ ∑

∞

k¼0
ktk−1ukðp;qÞw

� �

¼
1

ð4πtÞn=2
e−ρ

2=4t ∑
∞

k¼0

ρ2

4t2
−
n

2t
þ
k

t

� �

tkukðp;qÞw

(30)

It is very convenient to abbreviate the function appearing in front of the sum in Eq. (30) as

follows:

ΦðρÞ ¼
e−ρ

2=4t

ð4πtÞn=2
(31)

Let {e1;…;en} be a frame that is parallel along geodesics passing through p and satisfies

eiðpÞ ¼
∂

∂xi
jp

In terms of the function in Eq. (31), the operator Δ0 acting on Eq. (26) is given as

Δ0H∞
ðt;p;qÞw ¼ ðΔ0 ΦÞ �

	

∑
∞

k¼0
tkukðp;qÞw




þ2 ∑
n

a¼1
ðeaΦÞ � ∇ea

	

∑
∞

k¼0
tkukðp;qÞw




þΦ � Δ0

	

∑
∞

k¼0
tkukðp;qÞw


 (32)

The individual components of (32) can be calculated as follows; since Φ is a function

∇ea Φ ¼ eaΦ and so

eaΦðρÞ ¼ Φ′ðρÞeaðρÞ;

Δ0Φ ¼ ∑
a
{ea eaΦðρÞ−ð∇eaeaÞΦðρÞ} ¼ Φ″ðρÞ � ∑

a
ðeaρÞ

2 þΦ′ðρÞ � Δ0ρ;

Φ′ðρÞ ¼ −
ρ

2t
ΦðρÞ;

Φ″ðρÞ ¼
ρ2

4t2
−
1

2t

� �

ΦðρÞ

(33)

Consequently,
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eaρ ¼ xa
ρ
; ∑

a
ðeaρÞ2 ¼ 1; Δ0ρ ¼ n−1

ρ
þ 1

ρ
∂
^

log
ffiffiffiffi

G
p

and the Laplace-Beltrami operator on the function Φ is given by

Δ0 Φ ¼ ΦðρÞ ρ2

4t2
−
1

2t

� �

−
1

2t
ðn−1− ∂

^

log
ffiffiffiffi

G
p

Þ
� �

(34)

Expression (34) goes into the first term on the right side of Eq. (32). The second term on the

right-hand side of (32) takes the form,

2 ∑
n

a¼1
ðeaΦÞ � ∇ea

	

∑
∞

k¼0
tkukðp;qÞw




¼ 2Φ′ðρÞ ∑
n

a¼1

xa
ρ
� ∇ea

	

∑
∞

k¼0
tkukðp;qÞw




¼ −
ρ

t
ΦðρÞ∇

∂
^

=ρ

	

∑
∞

k¼0
tkukðp;qÞw


 (35)

Substituting these results into (32), it follows that

Δ0 H∞
ðt;q;pÞ ¼ ΦðρÞ ρ2

4t2
−
1

2t
−
1

2t
ðn−1− ∂

^

log
ffiffiffiffi

G
p

Þ− ρ
t
∇∂^ =ρ þ Δ0

� �

∑
∞

m¼0
tmumðp;qÞw (36)

Combining Eq. (36) with the derivative of H∞ with respect to t in Eq. (35), the following version

of the heat equation results:

∂

∂t
−Δ0−F

� �

H∞ t;q;pð Þw ¼ Φ ∇
∂
^ þ 1

4G
∂
^

G

� �

� 1
t
u0ðp;qÞwþ ∑

∞

k¼1
∇

^

∂ þ kþ 1

4G
∂
^

G

� �

uk p;qð Þw
��

−ðΔ0 þ FÞuk−1ðp;qÞw
�

tk−1
�

(37)

This is summarized in the following Lemma.

Lemma 3.1. Heat equation (27) for H∞ðt;p;qÞ is equivalent to

∇
∂
^ þ kþ 1

4G
∂
^

G

� �

ukðp;qÞw ¼ ðΔ0 þ FÞ uk−1ðp;qÞw (38)

for all k ¼ 0; 1; 2;… and Eq. (38) is initialized with u−1ðp;qÞ ¼ 0.

In fact, for fixed p ∈ M and w ∈ Ep, there always exists a unique solution to problem (Eq. (38))

over a small coordinate neighborhood about p.

Definition 3.1. Denote the solution of Eq. (38) by uðp;qÞw, which depends linearly on w. Then,

umðp;qÞ : Ep ! Eq and the Minakshisundaram-Pleijel parametrix for heat operator (Eq. 15) is

defined by
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H
∞
ðt;p;qÞ ¼

1

ð4πtÞn=2
e−ρ

2=4t ∑
∞

m¼0
tmumðp;qÞ : Ep ! Eq (39)

Based on Eq. (39), the N-truncated parametrix is defined based on Eq. (39) to be

HNðt;q;pÞ ¼
1

ð4πtÞn=2
e−ρ

2=4t ∑
N

m¼0
tmumðp;qÞ : Ep ! Eq (40)

Theorem 3.1. Choose a smooth function φ : M·M ! M and let G0ðt;q;pÞ ¼ φðq;pÞHNðt;q;pÞ.

Then G0ðt;q;pÞ is a k-th initial solution of the heat operator (15), where k ¼ ⌊ N
2 −

n
4 ⌋ and⌊z⌋ is the

greatest integer less than or equal to z.

Proof: Clearly, G0 is a linear map of vector spaces andis continuous and C∞ in all parameters.

From the previous calculation, it holds that

∂

∂t
−Δ0−F

� �

HNðt;q;pÞw ¼ −
1

ð4πtÞn=2
e−ρ

2=4ttN − n
2ðΔ0 þ FÞuNðp;qÞw (41)

and uNðp;qÞ is C∞ with respect to p and q. Since tN−n2e−ρ
2=4t is Ckð½0;∞Þ·M·MÞ, hence

Hðϕðp;qÞHNðt;q;pÞÞ∈C
kð½0;∞Þ·M·MÞ. Consider integrating G0 against ψðs;βÞ,

ð

M

G0ðt;q;sÞψðs;βÞ dvs ¼ ∑
N

m¼0
tm
ð

M

1

ð4πtÞn=2
e−ρ

2=4tψðq;sÞumðs;qÞψðs;βÞ dvs (42)

The integral of Eq. (42) over M can be broken up into an integral over Qqð
E

2Þ ¼ fs ∈ Mjρðq;sÞ

< E=2g anda second integral over the set M−Mqð
E

2Þ. On the latter set, the limit converges

uniformly hence

lim
t!∞

e−ρ
2=4t

ð4πtÞn=2
¼ 0

To estimate the remaining integral, choose a normal coordinate system at q and denote the

integration coordinates as ðs1;…;snÞ, then the integrand of Eq. (42) is given as

1

ð4πtÞn=2
e−jsj

2=4t ϕðq;sÞumðs;qÞψðs;βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det〈
∂

∂si
;
∂

∂sj
〉

s

ds1⋯dsn

Therefore, in the limit using Definition 2.4,

lim
t!0

ð

MðE=2Þ

1

ð4πtÞn=2
e−ρ

2=4t ϕðq;sÞumðs;qÞψðs;βÞ dvs ¼ umðq;qÞψðq;βÞ

This result implies that
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lim
t!0

ð

M

G0ðt;q;sÞψðs;βÞ dvs ¼ ∑
N

m¼0
lim
t!0

tmumðq;qÞψðq;βÞ ¼ ψðq;βÞu0ðq;qÞ ¼ ψðq;βÞ (43)

The convergence here is uniform.

There exists an asymptotic expansion for the heat kernel which is extremely useful and has

several applications. It is one of the main intentions here to present this. An application of its

use appears later.

Theorem 3.2. (Asymptotic expansion) Let M be a Riemannian manifold with dimension n

andE a vector bundle over M with inner product and metric Riemannian connection. Let

Gðt;q;pÞ be the heat kernel or fundamental solution for heat operator (Eq. (15)) and (Eq. (39))

the MP parametrix. Then as t ! 0, Gðt;p;pÞ has the asymptotic expansion Gðt;p;pÞeH∞ðt;p;pÞ,

that is, for any N > 0, it is the case that

Gðt;p;pÞ−
1

ð4πtÞn=2
∑
N

m¼0
tmumðp;pÞ ¼ O tN−n2


 �
(44)

and the symbol on the right-hand side of Eq. (44) signifies a quantity ξ with the property that

lim
t!0

ξ

tN−n2
¼ 0

Proof: It suffices to prove the theorem for any large N. Let G0ðt;q;pÞ ¼ ϕðq;pÞHNðt;q;pÞ as in

Theorem 3.2. The conclusion of the theorem is equivalent to the statement

Gðt;p;pÞ−G0ðt;p;pÞ ¼ O tN−n2

 �

From the previous theorem and existence and regularity of the fundamental solution, the

result G of Levi iteration initialized by G0 is exactly the fundamental solution. Equality

(Eq. (41)) means that there exists a constant A such that for any t∈ð0;TÞ,

jK0ðt;q;pÞj ¼ j
∂

∂t
þ Δ

� �
G0ðt;q;pÞj ≤ AtN− n

2

Let vðMÞ be the volume of the manifold M. Using this result, the following upper bound is

obtained

jK1ðt;q;pÞj ≤

ðt

0

dτ

ð

M

jK0ðt−τ;q;sÞK0ðτ;s;pÞj dvs

≤

ðt

0

½A2ðt−τÞN−n2τN−n2vðMÞ� dτ ≤

ðt

0

A2TN−n2τN−n2vðMÞ dτ ≤ AB
tN−n2þ1

N−
n

2
þ 1

We have set B ¼ A � TN−n2vðMÞ. Exactly the same procedure applies to jK2ðt;q;pÞj. Based on the

pattern established this way, induction implies that the following bound results
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jKmðt;q;pÞj ≤ A � Bm tN−n2þm

N− n
2 þ 1


 �

N− n
2 þ 2


 �

⋯ N− n
2 þm


 � ≤ A � Bm tm

m!
tN−n2

The formula for Levi iteration yields upon summing this over m the following upper bound

j~Kðt;q;pÞj ≤ ∑
∞

m¼0
jKmðt;q;pÞj ≤ A � eBttN−n2

Using this bound, the required estimate is obtained,

jGðt;q;pÞ−G0ðt;q;pÞj ≤ j

ðt

0

dτ

ð

M

dvzG0ðt−τ;q;zÞ~K ðτ;z;pÞj

≤

ðt

0

dτ

ð

M

e−ρ
2=4ðt−τÞ

ð4πðt−τÞÞn=2
A � eBτ � τN−n2 dvs

≤ MnAe
Bt

ðt

0

τN−n2 dτ vðMÞ ¼
1

N−
n

2
þ 1

MnA � eBtvðMÞtN−n2þ1

This finishes the proof.

Now if all the Hodge theorem is used, formal expressions for the index can be obtained.

Suppose D : ΓðEÞ ! ΓðFÞ is an operator such that D�D and DD� are Schrödinger operators

andD� is the adjoint of D. Suppose the operators D�D : ΓðEÞ ! ΓðEÞ and DD�
: ΓðFÞ ! ΓðEÞ

are defined, so they are self-adjoint and have nonnegative real eigenvalues. Then the spaces

ΓμðEÞ and ΓμðFÞ can be defined this way

ΓμðEÞ ¼ {ϕ ∈ ΓðEÞjD�Dϕ ¼ μϕ}; ΓμðFÞ ¼ {ϕ∈ΓðFÞjDD�ϕ ¼ μϕ} (45)

For any m > 0, the dimensions of the spaces in (44) are finite and moreover,

Γ0ðEÞ ¼ ker{D : ΓðEÞ ! ΓðFÞ}; Γ0ðFÞ ¼ ker{D�
: ΓðFÞ ! ΓðEÞ}

Consequently, an expression for the index Ind ðDÞ can be obtained from Eq. (45) as follows

Ind D ¼ dim ker D−dim ker D� ¼ dim Γ0ðEÞ−dim Γ0ðFÞ

Definition 3.2. For the Schrödinger operator Δ, let e−tΔ : ΓðEÞ ! ΓðEÞ, for t > 0 be defined as

ðe−tΔϕÞðqÞ ¼

ð

M

Gðt;q;pÞϕðpÞdvp (46)

where Gðt;q;pÞ is the fundamental solution of heat operator (Eq. (15)).

Let 0 ≤ λ1 ≤ λ2 ≤ ⋯ ! ∞ be the eigenvalues of the operator Δ and {ψ1;ψ2;…} the corresponding

eigenfunctions. Intuitively, the trace of e−tΔ is defined as
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tr e−tΔ ¼ ∑
∞

k¼1
〈〈e−tΔ ψk;ψk〉〉 (47)

This is clearly ∑ke
−λkt or ∑μ e−tμ dim ΓμðEÞ, so the definition of tr is well-defined if and only if

∑
k
e−λkt < ∞ (48)

Theorem 3.3. For any p;q∈M, let {e1ðpÞ;…;eNðpÞ} and {f 1ðqÞ;…;fNðqÞ} be orthonormal bases on

Ep and Eq, respectively, then the following two results hold for t > 0,

ðaÞ

ð
M

ð
∑
N

a;b¼1
〈Gðt;q;pÞeaðpÞ;f bðqÞ〉

2 dvqdvp < ∞;

ðbÞ ∑
∞

k¼1
e2λkt <

ð
M

ð
∑
N

a;b¼1
〈Gðt;q;pÞeaðpÞ;f bðqÞ〉

2 dvqdvp < ∞

(49)

Proof: When t > 0, Gðt;q;pÞ is continuous and hence satisfies (a). For and w ∈ ΓðEÞ, Theorem

2.5 yields the following expansion for Gðt;q;pÞ ∈ ΓðEÞ, hence the Parseval equality yields

ð
M

jGðt;q;pÞwj2 dvq ¼ ∑
∞

k¼1
e−2λkt〈ψkðpÞ;w〉2

Replacing w by the basis element eaðpÞ, this implies that

∑
N

a¼1

ð
M

jGðt;q;pÞeaðpÞj
2 dvq

¼ ∑
N

a¼1
∑
∞

k¼1
e−2λkt〈ψkðpÞ;eaðpÞ〉

2 ¼ ∑
∞

k¼1
∑
N

a¼1
e−2λkt 〈ψkðpÞ;eaðpÞ〉

2 ¼ ∑
∞

k¼1
e−2λkt〈ψkðpÞ;ψkðpÞ〉

Then for any m, it follows that

∑
m

k¼1
e−2λkt ¼ ∑

m

k¼1

ð
M

e−2λkt〈ψkðpÞ;ψkðpÞ〉 dvp ≤

ð
M

∑
∞

k¼1
e−2λkt〈ψkðpÞ;ψkðpÞ〉 dvp

¼

ð
M

dvp

ð
M

∑
N

a¼1
jGðt;q;pÞeaðpÞj

2 dvq ¼

ð
M

ð
M

∑
N

a;b¼1
〈Gðt;q;pÞeaðpÞ;f bðqÞ〉

2 dvqdvp < ∞

Theorem 3.4. For any t > 0,

tr ðe−tΔÞ ¼

ð
M

tr Gðt;p;pÞ dvp (50)

Proof: From Theorem 2.2, it follows that
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tr Gðt;p;pÞ ¼ ∑
N

a¼1
〈Gðt;p;pÞeaðpÞ;eaðpÞ〉 ¼ ∑

N

a¼1
∑
∞

k¼1
e−tλk〈ψkðpÞeaðpÞ〉ψkðpÞ;eaðpÞ

� �

¼ ∑
N

a¼1
∑
∞

k¼1
e−tλk〈ψkðpÞ;eaðpÞ〉

2 ¼ ∑
∞

k¼1
e−tλk〈ψkðpÞ;ψkðpÞ〉

2

Integrating this on both sides, it is found that

ð

M

tr Gðt;p;pÞ dvp ¼

ð

M

∑
∞

k¼1
e−tλk〈ψkðpÞ;ψkðpÞ〉

2 dvp ¼ ∑
∞

k¼1
e−tλk ¼ tr ðe−tΔÞ

Note that Eq. (48) is a series with positive terms which converges uniformly as t ! ∞. There-

fore,

lim
t!∞

tr e−tΔ ¼ ∑
∞

k¼1
lim
t!∞

e−tλk ¼ dim Γ0ðEÞ (51)

In fact, as t ! 0, the equality

Gðt;p;pÞ ¼
1

ð4πtÞn=2
þO

1

tn=2

� �

and the previous theorem imply that limt!0 tr e−tΔ ¼ ∞.

4. An application of the expansions: the Gauss Bonnet theorem

As far as Ind ðDÞ is concerned, it is the case for all t > 0 that,

Ind ðDÞ ¼ tr e−tD
�D− tr e−tDD�

¼

ð

M

tr Gþðt;p;pÞ dvp−

ð

M

tr G−ðt;p;pÞ dvp

by Theorem 3.5, where G�ðt;p;pÞ are the fundamental solutions of ∂t þD�D and ∂t þDD�. As

t ! 0, Theorem 3.2 assumes the form

G�ðt;p;pÞeH
�
∞
ðt;p;pÞ ¼

1

ð4πtÞn=2
∑
∞

m¼0
tmu�mðp;pÞ

Lemma 4.1. Let {λi} be the spectrum of the Laplacian on zero-forms, or functions, on M. Then,

∑
k
e−λkt ¼

1

ð4πtÞn=2
∑
∞

k¼0

ð

M

ukðx;xÞ dvx (52)
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Proof:

∑
k
e−λkt ¼

ð

M

tr Gðt;x;xÞ dvx ¼
1

ð4πtÞn=2
∑
k

	ð

M

ukðx;xÞ dvx



tk

The spectrum of the Laplacian on functions characterizes a lot of interesting geometric infor-

mation. Note that Eq. (52) can be written as

∑
i
eλit

e
1

ð4πtÞn=2
∑
∞

k¼0
ak t

k; ak ¼

ð

M

ukðx;xÞ dvx

and the trace does not appear in the case of functions. The superscript on the Laplacian Δ
p

denotes the form degree acted upon andsimilarly on other objects throughout this section.

Two Riemannian manifolds are said to be isospectral if the eigenvalues of their Laplacians on

functions counted with multiplicities coincide.

Corollary 4.1. LetM andN be compact isospectral Riemannian manifolds. ThenM and N have

the same dimension and the same volume.

Proof: Let {λi} denote the spectrum of both M and N with dimM ¼ m and dimN ¼ n. Then it

follows that

1

ð4πtÞm=2
∑
∞

k¼0

	ð

M

uMk ðp;pÞ dvp



tk ¼ ∑

∞

i¼0
e−λit ¼

1

ð4πtÞn=2
∑
∞

k¼0

	ð

N

uNk ðq;qÞ dvq



tk

This implies that m ¼ n, which in turn implies that

1

ð4πtÞm=2

ð

M

uM0 ðp;pÞ dvp−

ð

N

uNðq;qÞ dvq

� �
¼

1

ð4πtÞm=2
∑
∞

k¼1

	ð

M

uMk ðp;pÞ dvp−

ð

N

uNðq;qÞ dvq



tk

Since the right-hand side of the equation depends on t, but the left-hand side does not, this

result implies that

ð

M

uM0 ðp; pÞ dvp ¼

ð

N

uN0 ðq; qÞ dvq (53)

Iterating this argument leads to the set of equations

ð

M

uMk ðp; pÞ dvp ¼

ð

N

uNk ðq; qÞ dvq (54)

for all k > 0. In particular, since u0 ¼ 1, Eq. (53) leads to the conclusion vol ðMÞ ¼ vol ðNÞ.
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The proof illustrates that in fact there exist an infinite sequence of obstructions to claiming that

two manifolds are isospectral, namely the set of integrals

ð

M

uk dvp. The first integral contains

basic geometric information. It is then natural to investigate the other integrals in sequence as

well. Recall that Rp;∇Rp;⋯ denote the covariant derivatives of the curvature tensor at p. A

polynomial P in the curvature and its covariant derivatives is called universal if its coefficients

depend only on the dimension of M. The notation PðRp;∇Rp;…;∇kRpÞ is used to denote a

polynomial in the components of the curvature tensor and its covariant derivatives calculated

in a normal Riemannian coordinate chart at p. The following theorem will not be proved, but it

will be used shortly.

Theorem 4.2. On a manifold of dimension n,

u1ðp; pÞ ¼ Pn
1ðRpÞ; ukðp;pÞ ¼ Pn

k ðRp;∇Rp;…;∇2k−2RpÞ; k ≥ 2 (55)

for some universal polynomials Pn
k .

Thus, Pn
1 is a linear function with no constant term and u1ðp;pÞ is a linear function of the

components of the curvature tensor at p, with no covariant derivative terms. The only linear

combination of curvature components that produces a well-defined function u1ðp;pÞ on a

manifold is the scalar curvature RðpÞ ¼ R
ij
ij andso there exists a constant C such that

u1ðp;pÞ ¼ C � RðpÞ.

Theorem 4.3.

u1ðp;pÞ ¼
1

6
RðpÞ (56)

Proof: The proof amounts to noticing that Pn
1 is a universal polynomial, so it suffices to

compute C over one kind of manifold. A good choice is to integrate over Sn with the standard

metric and work it out explicitly in normal coordinates. It is found that u1ðp;pÞ ¼ nðn−1Þ=6

andit is known that RðpÞ ¼ nðn−1Þ for all p∈Sn andthis implies Eq. (56).

The large t or long-time behavior of the heat operator for the Laplacian on differential forms is

then controlled by the topology of the manifold through the means of the de Rham cohomol-

ogy. The small t or short-time behavior is controlled by the geometry of the asymptotic

expansion. The combination of topological information has a geometric interpretation. This is

made explicit by means of the Chern-Gauss-Bonnet theorem. The two-dimensional version of

this theorem will be developed here.

These results can be summarized by the elegant formula

∑
∞

k¼0
e−λkt ¼

1

ð4πtÞn=2
vðMÞ þ

1

6

ð

M

RðxÞ dvx � tþOðt2Þ

� �

where vðMÞ is the volume of M.
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Suppose that λ is positive and here we let E
p
λ denote the possibly trivial eigenspace of Δ on p-

forms. If ω ∈ E
p
λ then it follows that Δpþ1dω ¼ dΔpω ¼ λ dω, hence dω ∈ E

pþ1
λ . Thus, a well-

defined sequential ordering of the spaces can be established. If ω∈E
p
λ has the property that

dω ¼ 0, then λω ¼ Δpω ¼ ðδdþ dδÞω ¼ d δω. Therefore, since λ≠0, it is found that ω ¼ d 1
λ
δω


 �

.

Thus, the sequence 0 ! E0
λ !

d ⋯!d En
λ ! 0 is exact. Since the operator dþ δ is an isomor-

phism on ⊕k E
2k
λ , it follows that

∑
s
ð−1Þsdim Es

λ ¼ 0 (57)

Theorem 4.4. Let {λs
i } be the spectrum of the operator Δ, then

∑
s
ð−1Þs ∑

i
e−λ

s
i t ¼ ∑

s
ð−1Þsdim ker Δs: (58)

Proof: By (57),

∑
s
ð−1Þs∑

k

e−λ
s
kt ¼ ∑

s
ð−1Þs∑′e−λit

The sum on the right ∑′ is only over eigenvalues such that λ
p
i ¼ 0 and so

∑
′

e−λ
p

i
t ¼ dim kerΔp:

This has the consequence that

∑
p
ð−1Þp tr e−tΔ ¼ ∑

p
ð−1Þp∑

k

e−λ
p

k
t (59)

is independent of the parameter t. This means that its large or long t behavior is the same as its

short or small t behavior. To put it another way, the long-time behavior of tr e−tΔ is given by the

de Rham cohomology, while the short-time behavior is dictated by the geometry of the

manifold. Using the definition of the Euler characteristic, it follows that

χðMÞ ¼ ∑pð−1Þ
pdim H

p
dHðMÞ ¼∑pð−1Þ

pdim ker Δp ¼ ∑pð−1Þ
p tr e−tΔ

p

¼ ∑pð−1Þ
p

ð

M

tr Gðt;x;xÞ dvx
(60)

From the asymptotic expansion theorem, the following expression for χðMÞ results

χðMÞ ¼
1

ð4πtÞn=2
∑
∞

k¼0

	

ð

M

∑
n

s¼0
tr uskðx;xÞ dvx




tk (61)

The usk in Eq. (61) are the coefficients in the asymptotic expansion for tr ðe−tΔ
s

Þ. Since χðMÞ is

independent of t, only the constant or t-independent term on the right-hand side of Eq. (61) can

be nonzero. This implies the following important theorem.
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Theorem 4.5. If the dimension of M is even, then

1

ð4πÞn=2

ð

M

∑
n

s¼0
ð−1Þs tr uskðx;xÞ dvx ¼

0; k≠
n

2
;

χðMÞ; k ¼
n

2
:

8

<

:

(62)

Theorem 4.6. (Gauss-Bonnet) Let M be a closed oriented manifold with Gaussian curvature K

and area measure daM, then

χðMÞ ¼
1

2π

ð

M

K daM (63)

Proof: By the last theorem and the fact that tr u
p
kðx;xÞ ¼ tr u

p−1
k ðx;xÞ, it follows that

χðMÞ ¼
1

4π

ð

M

∑
2

p¼0
ð−1Þp tr u

p
1 daM ¼

1

4π

ð

M

ð tr u01− tr u11 þ tr u21Þ daM

¼
1

4π

ð

M

ð2 tr u01− tr u11Þ daM ¼
1

4π

ð

M

ð
2

3
K− tr u11Þ daM

(64)

since the scalar curvature is two times the Gaussian. Now it must be that tr u11ðx;xÞ ¼

CRðxÞ ¼ 2CKðxÞ, for some constant C. The standard sphere S2 has Gaussian curvature one

andso C can be calculated from Eq. (64),

2 ¼
1

2π

ð

S2
ð
1

3
−CÞ daM ¼

1

2π
ð
1

3
−CÞ � ð4πÞ

Therefore, C ¼ −2=3 and putting all of these results into Eq. (64), Eq. (62) results.

As an application of this theorem, note that the calculation of u1 gives another topological

obstruction to manifolds having the same spectrum.

Theorem 4.7. Let ðM;gÞ and ðN;hÞ be compact isospectral surfaces, then M and N are

diffeomorphic.

Proof: As noted in Corollary 4.1,

ð

M

uM1 ðx;xÞ dvx ¼

ð

N

uN1 ðy;yÞ dvy

On a surface, the scalar curvature is twice the Gaussian curvature, so by the Gauss-Bonnet

theorem,

6πχðMÞ ¼

ð

M

uM1 ðx;xÞ dvx ¼

ð

N

uN1 ðy;yÞ dvy ¼ 6πχðNÞ (65)

However, oriented surfaces with the same Euler characteristic are diffeomorphic.

Manifolds - Current Research Areas86



5. Summary and outlook

The heat equation approach has been seen to be quite deep, leading both to theHodge theorem and

also to a proof of the Gauss-Bonnet theorem.Moreover, it is clear from the asymptotic development

that there is a generalization of this theorem to higher dimensions. The four-dimensional Chern-

Gauss-Bonnet integrand is given by the invariant 1
32π2 {K

2
−4jρrj

2 þ jRj2},whereK is the scalar curva-

ture, jρrj
2 is thenormof theRicci tensor, jRj2 is thenormof the total curvature tensorandthesignature

is Riemannian. This comes up in physics especially in the study of Einstein-Gauss-Bonnet gravity

where this invariant isused toget theassociatedEuler-Lagrangeequations.

Let Rijkl be the components of the Riemann curvature tensor relative to an arbitrary local frame

field {ei} for the tangent bundle TM and adopt the Einstein summation convention. Let m ¼ 2s

be even, then the Pfaffian EmðgÞ is defined to be

EmðgÞ ¼
1

ð8πÞss!
Ri1 i2j2j1

⋯Ri2s−1 i2sj2sj2s−1
gðei1∧⋯∧ei2s ;ej1∧⋯∧ej2sÞ (66)

The Euler characteristic χðMÞ of any compact manifold of odd dimension without boundary

vanishes. Only the even dimensional case is of interest.

Theorem 5.1. Let ðM;gÞ be a compact Riemannian manifold without boundary of even dimen-

sion m. Then

χðMÞ ¼

ð
M

EmðgÞ dvM (67)

This was proved first by Chern, but of greater significance here, this can be deduced from the

heat equation approach that has been introduced here. There is a proof by Patodi [18], but

there is no room for it now. It should be hoped that more interesting results will come out in

this area as well in the future.
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