Familial hypercholesterolemia - preliminary results of genetic screening by NGS technique

M.Waluś-Miarka¹, J. Totoń-Żurańska², P. Wołkow², P. Kapusta², B.Idzior-Waluś¹, Maciej T. Małecki¹ 1 Dept.of Metabolic Diseases, 2 Center for Medical Genomics - OMICRON Jagiellonian University Medical College, Krakow, Poland Email: m.walus-miarka@uj.edu.pl

Familial hypercholesterolemia (FH) is an autosomal dominant monogenic lipid metabolism disorder and is characterized by significantly elevated LDL-cholesterol and premature ischemic heart disease. It is estimated that it occurs in approximately 1/500-1/250 persons in the general population. The detection of a molecular defect confirms the diagnosis of familial hypercholesterolemia. Early diagnosis and initiation of hypolipidemic therapy is important in the prevention of cardiovascular events in this group of patients.

<u>The aim</u> of the study was to assess the frequency of occurrence of genetic variants affecting cholesterol levels in the group of patients from Malopolska region with clinical suspicion of FH using next generation sequencing (NGS).

The <u>material</u> consisted of 99 patients aged 18-70 diagnosed with FH based on the criteria of the Simoon Broome Register.

Methods:

All patients underwent a questionnaire study, including family history, cardiovascular events and hypolipidemic treatment. In addition, a fasting lipidogram was performed using the enzymatic method. The secondary causes of hypercholesterolemia were excluded.

Ilumina MiSeq platform was used to study mutations. A panel including exons of FH-causing genes: LDLR, APOB, PCSK9 and STAP1, as well as genes with lower quantitative impact on cholesterol (apo E, ABCG5, ABCG8, LPL, NPC1, LPL, LDL-RAP1, LIPC, CELSR2) was developed. Genetic variants were classified based on the points determining their pathogenicity and impact: CADD, Fitcons, SIFT2 (Sorting Intolerant From Tolerant), Polyphen2, Mutation Taster, as well as their clinical relevance (ClinVar). Variants described as pathogenic according to at least 3 of the 5 metrics described above were considered pathogenic.

Mutations observed in LDL receptor gene in a group of patients with FH from Polish population

Gene	Mutation	Aminoacid	Ехо	Freq	Mutation Taster2	Polyphen-2	SIFT
		change	n				
LDLR	c.58G>A	p.Gly20Arg	1	1	Polymorphism	Benign	Damaging
LDLR	c.100T>G	p.Cys34Gly	2	5	Disease causing	Probably	Damaging
						damaging	
LDLR	c.313+1G>T		3	1	Disease causing		
LDLR	c.442T>C	p.Cys148Arg	4	1	Disease causing	Probably	Damaging
						damaging	
LDLR	c.530C>T	p.Ser177Leu	4	1	Disease causing	Probably	Damaging
						damaging	
LDLR	c.666C>A	p.Cys222*	4	1	Prediction disease	00	
					causing		
LDLR	c.782G>T	p.Cvs261Phe	5	1	Disease causing	Probably	Damaging
		r - 7			5	damaging	
LDLR	c.798T>A	n Asn266Glu	5	1	Disease causing	Probably	Damaging
LDLM	0.750177	p., (5p200010	5	-	Discuse equiling	damaging	DamaBing
	C 986GNT	n Cyc220Pho	7	2		Drobably	Domoging
LULK	0.900021	p.cys525File	'	2	Disease causing	riobably	Damaging
	o 1061		7	1	Dolumorphicm	uamaging	
LULK	0.1001-		/	1	Polymorphism		
1010	81>0		0		D'	Describit	D
LDLR	c.1222G>A	p.Glu408Lys	9	1	Disease causing	Possibly	Damaging
						damaging	
LDLR	c.1223A>T	p.Glu408Val	9	1	Disease causing	Probably	Damaging
						damaging	
LDLR	c.1328G>A	p.Trp443*	9	1	Disease causing		
LDLR	c.1449G>T	p.Trp483Cys	10	1	Disease causing	Possibly	Damaging
						damaging	
LDLR	c.1705+1G>		11	1	Disease causing		
	А						
LDLR	c.1775G>A	p.Gly592Glu	12	2	Disease causing	Probably	Damaging
						damaging	
LDLR	c.1862C>G	p.Thr621Arg	13	1	Disease causing	Probably	Damaging
						damaging	
LDLR	c.2390-		16	1	Polymorphism		Damaging
	16G>A						

In the study group 12 patients had pathogenic variants in the LDL receptor gene, previously described as associated with familial hypercholesterolemia. In 6 subjects pathogenic variants in the LDL receptor gene, not described earlier, were detected. 10 patients had mutations in the apo B 100 gene, of which 9 persons had the rs5742904 mutation - previously described as the most frequent mutation in the ApoB100 gene . In 1 person we found an ApoB100 mutation not described earlier. 2 people from one family had a mutation newly described as related to FH of the STAP1 gene. It is interesting to observe the

high frequency of pathogenic variants of ApoE in the studied group.

Characteristics of patients						
Parameter	N=96					
	n	x/Me	sd/IR			
Age (yrs)	93	44	14,09			
TC [mmol/l]	87	7,215	2,2072			
HDL-C [mmol/l] *	87	1,55	0,55			
LDL-C [mmol/l]	87	4,992	2,0692			
TG [mmol/l] *	86	1,26	1,1			
glucose [mmol/l] *	84	5	0,88			
BMI [kg/m2]	95	26,08	4,539			
WHR	91	0,866	0,0854			
SBP [mmHg]	90	132,4	17,55			
DBP [mmHg]	90	83	11,95			

Mutations observed in apo B gene and other genes associated with FH in patients with FH from Polish population

Gen	Mutacja	Zmiana	Exon	Freq	Mutation Taster2	Polyphen-2	SIFT
		aminokwasowa					
LDLRAP1	c.672C>T	p.Ser224Ser	7	1	Disease causing		Tolerated
PCSK9	c.60_65dupGCTGCT	p.Leu21_Leu22dup	1	1	Polymorphism		
STAP1	c.120+6T>C		1	2	Disease causing		
АРОВ	c.12382G>A	p.Val4128Met	29	1	Polymorphism	Benign	Tolerated
АРОВ	c.11833A>G	p.Thr3945Ala	27	1	Polymorphism	Benign	Tolerated
АРОВ	c.10708C>T	p.His3570Tyr	26	1	Polymorphism	Benign	Tolerated
АРОВ	c.10580G>A	p.Arg3527Gln	26	9	Disease causing	Probably damaging	Damaging
АРОВ	c.10579C>T	p.Arg3527Trp	26	1	Disease causing	Probably damaging	Damaging
АРОВ	c.10131G>A	p.Leu3377Leu	26	1	Disease causing		Tolerated
АРОВ	c.8462C>T	p.Pro2821Leu	26	2	Polymorphism	Benign	Tolerated
АРОВ	c.8353A>C	p.Asn2785His	26	1	Polymorphism	Benign	Tolerated
АРОВ	c.7696G>A	p.Glu2566Lys	26	10	Polymorphism	Benign	Tolerated
АРОВ	c.7615G>A	p.Val2539Ile	26	1	Polymorphism	Benign	Tolerated
АРОВ	c.6639_6641delTGA	p.Asp2213del	26	1	Disease causing		
АРОВ	c.3122-6G>A		20	1	Polymorphism		
АРОВ	c.2068-4T>A		14	1	Disease causing		
АРОВ	c.1594C>T	p.Arg532Trp	12	1	Polymorphism	Probably damaging	Damaging
АРОВ	c.538-9C>T		5	1	Polymorphism		

The results suggest that NGS is a useful method in the molecular diagnostics of familial hypercholesterolemia. NGS allows to examine the profile of genes affecting the cholesterol level in a patient, which may be important in determining new pathways of lipid disorders therapy.