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1. Introduction 

The aerodynamics of a jet transport in severe atmospheric turbulence, in particular 

involving plunging motion, is complex in that unsteady aerodynamic effects are significant 

and not well known. For instance, the aircraft response may lag behind the change in angle 

of attack and/or control surface deflections. Because of the change in angle of attack, the 

wing vortex wake may be pulsating. Coupled with the aircraft motion, the pulsating vortex 

wake would significantly affect the tail aerodynamics and hence, the aircraft stability and 

control characteristics. These are just a few possible phenomena in aircraft response to be 

identified. Unfortunately, these aerodynamic characteristics cannot be identified with 

existing ground testing techniques. Therefore, at present the only option to estimate the 

aircraft aerodynamic characteristics in severe atmospheric turbulence is to analyze the data 

from Flight Data Recorders (FDR). Traditional methods of system identification in 

aerodynamics, such as the maximum likelihood method (MMLE) (Maine & Iliff, 1986), the 

least-square or the stepwise regression method (Klein, 1981), or the Extended Kalman Filter 

(EKF) (Minkler & Minkler, 1993; Gelb 1982), have not been demonstrated to be applicable to 

estimating the unsteady aerodynamics based on these FDR data. Therefore, a more robust 

model identification technique would be needed. In addition, the established aerodynamic 

models should be directly usable in flight simulation. To satisfy these goals, the Fuzzy Logic 

Modeling (FLM) technique is adopted in the present application. The technique used here 

has been applied to model identification of a fighter aircraft from flight test data (Wang, et 

al. 2001; Wang, et al. 2002); aerodynamic estimation of transport aircraft from Flight Data 

Recorder (FDR) data (Lan & Guan 2005; Weng, et al. 2008; Chang, et al. 2009); identification 

of uncommanded motions from wind-tunnel dynamic free-to-roll test data (Lan, et al., Jan. 

2008; Lan, et al., May 2008); and non-aerodynamic problems with the FDR data (Lee & Lan 

2003; Lan, et al. 2006), just to name a few. 

In the following, the present fuzzy logic algorithm will be described in some detail. It 
follows with some simple verification examples in Section 3. In Section 4, application of the 
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FLM algorithm in aerodynamic model identification for a jet transport in severe atmospheric 
turbulence will be described in detail. Unsteady aerodynamics will be emphasized. 
Conclusions will follow in Section 5.  

2. Fuzzy logic modeling 

The general idea of the FLM technique is to set up the relations between system input and 
output variables. There are two approaches in the FLM technique. One is the fuzzy set 
approach, involving fuzzy sets, membership functions, weighting factors, and the if-then 
fuzzy rules (Zadeh 1973). The process involves three stages: fuzzification, fuzzy rule 
inference and defuzzification. The second approach is the internal function approach, 
involving the internal functions, membership functions, and the output cells (Takagi & 
Sugeno 1985). The same three stages mentioned above can also be identified. Since the first 
approach does not provide continuous derivatives needed in aerodynamics, the second 
approach will be utilized in the present paper.  

Basically, the present FLM algorithm represents a multi-dimensional, nonlinear interpolation 
scheme without requiring explicit functional forms between the input and output variables. In 
application, complex motions or relations involving many variables can be treated. 
Conceptually, each motion variable is divided into a number of ranges in which values of the 
membership functions are assigned. Each combination of membership functions, one from 
each motion variable, constitutes a fuzzy cell. Each fuzzy cell contributes to the prediction of 
the value of outcome equal to its internal function with an associated weighting factor. The 
latter represents an assembly of the membership grades of all variables. The final prediction of 
outcome is equal to the weighted average of contributions of all fuzzy cells. This overview will 
be repeated later by way of equations or formulas. 

Two main tasks are involved in the present FLM process. One is the identification of the 
coefficients of the internal functions. The other one is structure identification to identify the 
optimal structure of fuzzy cells of the model, in other words, the optimal number of 
membership functions for each variable. Details of fuzzification, fuzzy rule inference and 
defuzzification stages in the present FLM technique are described in the following (Wang, et 
al. 1998, 2001, 2002). 

2.1 Fuzzification 

In this stage, many internal functions are defined to cover the ranges of the influencing 
variables (i.e. input variables). The ranges of the input variables are all transformed into the 
domain of [0,1]. The membership grading also ranges from 0 to 1.0, with "0" meaning no 
effect from the corresponding internal function, and "1" meaning a full effect. These internal 
functions are assumed to be linear functions of input variables as follows: 

 
1 2 0 1 1( , , , , ) i i i i i

i r k r r k kP y x x x x p p x p x p x          (2.1) 

where i
rp , r=0, 1, 2,…, k, are the coefficients of internal functions iy , and k is number of input 

variables; i=1, 2, …, n, and n is the total number of fuzzy cells. 

The recorded data in FDR, such as flight altitude (h), calibrated airspeed (CAS), angle of 

attack (), accelerometer readings (ax, ay, and az), and Euler angles (, , and ), etc is chosen 
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as the variables in the compatibility analysis and eventually forming the data for specific 

fuzzy models. In the present Chapter, iy is defined to be an estimated aerodynamic 

coefficient of force or moment, and rx are the variables of the input data. The numbers of the 

internal functions (i.e. cell’s numbers) are quantified by the total number of membership 
functions (see below).  

The values of each fuzzy variable, such as the angle of attack, are divided into several 

ranges, each of which represents a membership function with ( )rA x as its membership 

grade. One membership function from each variable constitutes a fuzzy cell. For the ith cell, 

the corresponding membership grades are represented by ( )i
r rA x , r=1, 2,…, k. In other 

words, the membership functions allow the membership grades of the internal functions for 

a given set of input variables to be assigned. For a given system with input 

variables 1 2, , , ,r kx x x x  of one data point, the recorded values of each input variables are 

normalized by using (xr - xr,min)/(xr,max-xr,min) to transform them into the ranges of [0, 1]. The 

range, (xr,max - xr,min), represents the scaling factor and usually is assumed to have a larger 

range than what actually appears in the data with numerous data points to be more 

generally applicable for the resulting model. In the present application in aerodynamics, it is 

empirically assumed to be 1.8 times larger. Generally, overlapped straight lines, triangles or 

parabolas are frequently the shapes used to represent the grades.  

The membership functions partition the input space into many fuzzy subspaces, which are 

called the fuzzy cells. The total number of fuzzy cells is 1 2 r kn N N N N       . For a 

variable rx , the number of membership function is rN . Each fuzzy cell is in a different 

combination from others formed by taking one membership function from each input 

variable. 

Let N be the number of membership functions and j be the index for the j-th membership 

functions. Then the membership grades for triangular and parabolic shapes can be described 

as follows: 

2.1.1 Triangular membership functions 

1)N = 2: 

 A(xr) = xr ,    j =1 

 A(xr) = 1 – xr , j =2 

2)N  3: 

   For j =3 to N- m, where m is equal to the greater number of 0 and integer of (N-2)/2: 

 A(xr) = xr/du,    0  xr du 

A(xr) = (1 – xr)/(1– du),    du  xr  1 

where du = x1*(j – 2), and x1 =1.0/(N – m –1). 

For j  N – m 

A(xr)=(dd – xr)/dd,    0  xr  dd 

A(xr)= (dd – xr)/(dd –1),   dd xr 1 

where dd = x2*(j –N + m), and x2 = 1.0/(m+1). 
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2.1.2 Parabolic membership functions 

1)N=2: 

 A(xr) = xr ,    j =1 

 A(xr) = 1 – xr , j =2 

2)N  3: 

 For j = 3 to N-m, where m is again equal to the greater number of 0 and the integer of (N-
2)/2: 

 A(xr) = 2 2/ 2 / ,0r u r u r ux d x d x d      

 A(xr) =
2 2( 2 2 1) /(1 2 ), 1r u r u u u u rx d x d d d d x         

 where du = x1*(j – 2), and x1 =1.0/(N – m –1). 

 j > N – m 

 A(xr) =
2 2/ 2 / 1.0,0r d r d r dx d x d x d     

 A(xr) = 2 2 2( 2 ) /(1 2 ), 1r d r d d d d rx d x d d d d x       

 where dd = x2*(j –N + m), and x2 = 1.0/(m+1). 

The membership functions are illustrated in Fig. 1 for triangular shapes and Fig. 2 for 
parabolic shapes. In Fig. 1, although the membership functions are continuous functions, 
there are discontinuities in slopes at some points. However, differentiation of membership  
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Fig. 1. Triangular membership functions 
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functions is not performed in estimating derivatives. In the present application, 
aerodynamic derivatives are all estimated with a central difference scheme, which will be 
presented later. Because overlapped triangular membership function is simple and involves 
less computing time, it is the method to represent the grades of membership functions in the 
present FLM technique. Comparison of computed results based on these two types of 
membership function will be illustrated later.  
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Fig. 2. Parabolic membership functions 

2.3 Fuzzy rule inference 

A fuzzy cell is formed by taking one membership function from each variable, as indicated 
earlier. The total number of cells is the number of possible combinations by taking one 
membership function from each input variable. For every cell, it has a fuzzy rule to guide 
the input and output relations. For the jth data point, the rule of the ith cell is stated (Wang, et 
al. 1998) as: 

if 1, jx  is 1 1,( )i
jA x , and if 2, jx is 2 2,( )i

jA x , ... and if ,k jx is ,( )i
k k jA x for the jth data point, then the cell 

output is equal to its internal function:  

 1, 2, , , 0 1 1, , ,( , , , , )i i i i i
j j r j k j j r r j k k jP x x x x p p x p x p x         (2.2) 

www.intechopen.com



 
Fuzzy Logic – Emerging Technologies and Applications 

 

124 

where 1,2,...,i n  the index of the cells, n is the total number of cells of the model; 

1, 2, , ,( , , , , )i
j j r j k jP x x x x  is the internal function with parameters 0 1, ,..., ,...i i i i

r kp p p p to be 

determined, and ,( )i
k k jA x denotes the membership grade for ,k jx . Each function covers a 

certain range of input variables. 

2.4 Defuzzification 

In each fuzzy cell, the contribution to the outcome (i.e. the cell output) is based on the 
internal function, Eq. (2.2). The final prediction of the outcome is the weighted average of all 
cell outputs after the process of reasoning algorithm. Because of this weighting among many 
factors over large ranges of possibilities, the word “fuzzy” is derived to describe the 
method. However, its prediction is never “fuzzy”. The output is estimated by the center of 

gravity method. For the jth input ( 1, 2, , ,, ,..., ,...,j j r j k jx x x x ), the output is as follows: 

 
1, ,

1

1, ,
1

( ), , ( )

ˆ

( ), , ( )

n
i i i

j k j
i

j n
i i

j k j
i

product A x A x p

y

product A x A x





    


    




 (2.3) 

In Eq. (2.3) 1, ,( ),..., ( )i i
j k jproduct A x A x 

   is the weighted factor of the ith cell; and the index j 

of the data set, where j=1,2,…, m, and m is the total number of the data records; and the 

“product” stands for product operator of its elements in this Chapter. 

2.5 Parameter identification 

Given a set of membership functions for each input variable, the unknown coefficients of the 
internal functions are determined by using the Newton gradient-descent method. The 
accuracy of the established aerodynamic model through the fuzzy-logic algorithm is 
estimated by the sum of squared errors (SSE) and the squared multiple correlation 
coefficients (R2): 

 2

1

ˆ( )
m

j j
j

SSE y y


   (2.4) 

 

2

12

2

1

ˆ{ ( ) }

1

{ ( ) }

m

j j
j

m

j
j

y y

R

y y







 





 (2.5)   

In Eqs. (2.4) and (2.5), where ˆ
jy , the output of the fuzzy-logic model at data point j, is 

estimated by Eq. (2.3); yj is the data point used for the model training at point j; y  is the 

mean of the sample data, and m is the total number of data points. The model training is to 

determine the unknown coefficients of the internal functions, pri, by maximizing the value of 

R2. These coefficients are determined by the following iterative formula to minimize the sum 

of squared error (Eq. 2.4): 
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, 1 ,

( )i i
r t r t r i

r

SSE
p p

p



 


 (2.6) 

 1, ,

1

ˆ ( ,..., , ,..., )( )
ˆ2 ( )

i nm
j j k j r k

j ji i
jr r

y x x p pSSE
y y

p p


 

 
  (2.6a) 

 1 1, , ,

1 1, ,
1

ˆ [ ( ),..., ( )]

( ), , ( )

i i
j j k k j r j

i n
i ir

j k k j
i

y product A x A x x

p
product A x A x






     
 (2.6b) 

where r is the convergence factor or the step size in the gradient method; subscript index t 

denotes the iteration sequence, and ,r jx =1.0 if r=0 in Eq. (2.6b). Usually, the magnitude of 

r is chosen based on that of the gradient. Eq. (2.6), together with Eq. (2.6a), would result in 

summing contributions to the total p-coefficients from all data points. Instead, simplification 

is applied to result in a point-iteration approach, so that in each iteration over the dataset, 

the p-coefficients represent only the contribution from one data point. After simplification, 

Eq. (2.6) becomes  

For r = 0, 

 1 1 ,
0, 1 0, 0

1 1, ,
1

[ ( ), , ( )]
ˆ2 ( )

[ ( ), , ( )]

i i
k k ji i

t t j j n
s s

j k k j
s

product A x A x
p p y y

product A x A x





   






 (2.6c) 

and for r = 1, 2, , k, 

 
1 1 , ,

, 1 ,

1 1, ,
1

[ ( ), , ( )]
ˆ2 ( )

[ ( ), , ( )]

i i
k k j r ji i

r t r t r j j n
s s

j k k j
s

product A x A x x
p p y y

product A x A x





   






 (2.6d) 

The iteration during the search sequence stops when one of the following three criteria is 
satisfied (Wang, et al. 1998, 1999): 

 1) Cost= 1tSSE    (2.7)  

 2) RER= 1
2

t t

t

SSE SSE

SSE


  (2.8)  

 3) maxt t  (2.9) 

In the above criteria, Cost= tSSE  is the sum of squared errors (SSE) in current iteration to be 

denoted by “Cost” and RER=(cost_current - cost_previous)/cost_current (i.e. the relative 

error) for simplicity in descriptions; 1 and 2 are the required precision criteria; and maxt is a 

specified maximum iteration number. The convergence of modeling is achieved only when 

the first two criteria (Eqs. 2.7 and 2.8) are satisfied.   
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Given membership functions and the training data, this parameter identification procedure 

can be applied to establish a fuzzy-logic model, i.e. determining the p-coefficients in Eq. 2.2. 

One important reason for the fuzzy logic algorithm, as described above, to work well in 

nonlinear, robust interpolation is that it employs numerous internal functions to cover the 

whole ranges of input variables.  

2.6 Model structure identification 

In the fuzzy-logic model, the model structure is indicated by the number of membership 

functions for each variable. For a fuzzy-logic model with multiple variables, the structure is 

the combination of the numbers and forms of the membership functions assigned to all 

input variables. Since the sequence defines the one-to-one relationship between the numbers 

and the forms for each variable, the structure can be uniquely described by numbers of the 

membership functions.  

The model structure is determined by maximizing the correlation coefficient, Eq. (2.5). A 

search forward algorithm has been employed for the identification. At each search stage, 

there may be many fuzzy-logic models with different structure combinations. The search 

stage numbers are denoted by sN . Out of all the possible intermediate fuzzy-logic models at 

each search stage, for an efficient search, only some structures are developed and evaluated. 

Two selection criteria, to be given below, are used to choose these structures. With the 

incremental sequence and the selection criteria, the search forward algorithm is summarized 

as follows (Wang, et al. 1998): 

1. Specify the input variables rx , r = 1, 2,…, k and the output variable y; 

2. Assume an initial structure, also called parent structure as 10 20 0 0( , , , , , )r kN N N N  ; 

3. Begin at the search stage number sN =l , form all possible structures starting from the 

parent structure by adding one more membership function a time only to one input 

variable. Those all possible structures are called child structures as 

10 20 0 0( 1, , , , , )r kN N N N   , 10 20 0 0( , 1, , , , )r kN N N N   , , 

10 20 0 0( , , , , , 1)r kN N N N   . Perform the identification of internal coefficients in Eq. 

(2.1) for each child structure and then calculate the R2 by using Eq. (2.5); 
4. Select the top 5 child structures among all calculated values of R2as new parent 

structures for next search step sN = sN + l ; 

5. Go back to step 2) starting from the new parent structures and repeat the same 
procedures in steps 2) and 3) until the best structure is identified; 

6. Pick out the maximum value of R2among the child structures in each searching stage 

as 2
maxR . The structure with the largest 2

maxR corresponding to all picking values is the 

optimal structure within a sensible sN .    

The above process is illustrated in Fig. 3. In the structure identification, parameter 

identification to determine the p-parameters according to Eq. (2.6) is also needed. But the 

number of iteration to determine the p-parameters is limited to 2000, so that the best 

structure is decided on a relative basis. After this last step, Eq. (2.6) is applied iteratively 

until both the values of R2 and RER reach the requirements in the final parameter 

identification. 
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Fig. 3. Identification process for the best structure 

3. Some verification examples 

In application, the more complex the problem is, the more usefulness of the present 

algorithm would clearly exhibit. A complex problem in identifying the aerodynamic models 

of a jet transport in severe atmospheric turbulence will be presented in Section 4. Here, a 

simpler problem, yet complex enough for a conventional parameter identification method, 

will be used to show the robustness and reliability of the present algorithm. The idea is to 

assume the aerodynamic derivatives are known from the wind-tunnel forced oscillation test 

and the aerodynamic model data are generated from these derivatives. The algorithm is to 

obtain a numerical model containing the p-coefficients and the aerodynamic derivatives are 

then estimated for comparison with the test data. 

For this purpose, the rolling moment coefficient model will be examined. It is assumed to be 

a function of 

 , , , p, r, k,   (3.1) 

where k = b/2V, the reduced frequency and  is the oscillation frequency in the test. 

3.1 Wind-tunnel data 

Define the rolling motion,  (t), in wind-tunnel testing being described as follows. 

sin ( )n t    

sin np   

cos ( )n t    
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 ( ) cos( )t kt    (3.2) 

where n is the nominal angle of attack used in wind tunnel testing and p is the roll rate. 

Since the rolling moment coefficient is also affected by yawing motion, ψ(t), the latter in 

wind-tunnel testing is assuming to be: 

cos n     

cos n     ,  

r  , the yaw rate 

n   

 ( ) cos( )t kt    (3.3) 

According to the linear theory, the rolling moment coefficient is calculated from: 

 l l lp lr l
C C C p C r C         (3.4) 

where the bar over a variable indicate a dimensionless one. For example, / 2p pb V , where 

V is the airspeed. The verification will be performed at two conditions: one at small 

oscillation amplitudes, and the other one at large amplitude. These conditions are given in 

the following. 

3.1.1 Small amplitudes at two reduced frequencies 

3.1.1.1  = 5 deg.,  = 5 deg.,  = 5 deg., k=0.12 

The wind-tunnel data for a test model show: Cl = -0.0688; Clp= -0.17; Clr = 0.06; 
l

C  =-0.04 

Therefore,  

(Clp)osc= Clp + l
C  sin = -0.1735 

(Clr)osc = Clr - 
l

C  cos = 0.0998 

3.1.1.2  = 20 deg.;  =5 deg.,  = 5 deg., k=0.08 

The wind-tunnel data show: Cl = -0.2493; Clp= -0.10; Clr = 0.233; 
l

C  =-0.17 

Therefore,  

(Clp)osc= Clp + l
C  sin = -0.1581 

(Clr)osc = Clr - l
C  cos = 0.3927 
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3.1.2 Large amplitudes 

3.1.2.1  = 5 deg.,  = 30 deg.,  = 15 deg., k=0.12 

3.1.2.2  = 20 deg.;  =15 deg.,  = 15 deg., k=0.08 

All derivatives are taken to be the same as in the small amplitude case. 

3.2 Modeling results 

Based on Eq. (3.4), two sets of data are generated at k=0.12 and 0.08, which are then 

combined into one for modeling. In linear aerodynamic theory, the rolling moment 

coefficient is known to be independent of the roll angle (). Two models are set up with   = 

0 or without   in Eq. (3.1), and  given by Eq. (3.2) to test the robustness of the algorithm. To 

calculate the response, input data in the form of Eq. (3.4) for a cosine harmonic oscillation 

are prepared. The output from the model is then Fourier-analyzed to obtain the in-phase 

and out-of-phase response. The out-of-phase response is the damping component and is 

what to be presented below. Only the small-amplitude results are presented, because the 

large-amplitude results are very similar. 

3.2.1  = 5 deg.,  = 5 deg.,  = 5 deg., k=0.12 

Assume (t)  0 and is given by Eq. (3.2). The modeling results are: 

Cl = -0.0688; (Clp)osc = -0.1736; (Clr)osc = 0.0999 

On the other hand, if  is assumed 0 in the model data, the modeling results are: 

Cl = -0.0688; (Clp)osc = -0.1736; (Clr)osc = 0.0999 

It is seen that the results are identical at  = 5 degrees in both cases, and agree with the 

original wind-tunnel data very well. Same results are obtained if   is absent in the model 
structure. 

3.2.2  = 20 deg.;  =5 deg.,  = 5 deg., k=0.08 

Again, assume (t)  0 and is calculated with Eq. (3.2). The modeling results are: 

Cl = -0.2493; (Clp)osc = -0.1581; (Clr)osc = 0.3926 

If  = 0 or it is absent in the model data, the modeling results are: 

Cl = -0.2494; (Clp)osc = -0.1584; (Clr)osc = 0.3925 

The results at  = 20 degrees are nearly identical, except the last digit and also agree with 
the original data well. 

3.2.3 Large-amplitude test cases 

The large-amplitude test cases produce similarly accurate results as compared with the 
wind-tunnel data. Therefore, the results will not be repeated. 
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3.2.4 Concluding remarks 

In the above example the model prediction practically shows the same results as the wind-

tunnel data with or without the extra ϕ(t)-variable in the model. It illustrates one important 

concept in the present fuzzy logic aerodynamic modeling that more variables than what are 

known in the present linear theory may be included in the model without affecting the 

results of prediction. In the case of nonlinear theory, including more variables in the model 

allows presently unknown phenomena to be captured at the expense of more computing 

time. 

3.3 Modeling of wind-tunnel unsteady aerodynamic data 

Verification with other methods is difficult to conduct because of the unavailability of 

suitable data and published results. However, the present algorithm has been verified with 

wind-tunnel experimental data. The wind-tunnel data used consist of static, forced 

oscillation, and some cases with rotary balance data, in numerous sets. These data sets at 

various angles of attack and reduced frequencies are combined to set up six (6) aerodynamic 

models. The resulting models can predict aerodynamic hysteresis quite well (Wang, et al. 

1998, 1999). To save space, all these correlation results will not be presented, except one 

pitching moment curve. Fig. 4 presents the comparison of experimental data and modeling 

prediction. As indicated earlier, the modeling results predict only the mean approximation 

in the least-square sense and are seen here to re-produce well the hysteresis in the test data. 

Note that k is defined as  c /V in this case. The arrows indicate the direction of changes in 

Cm as  varies in Fig. 4. As will be explained later, if the hysteresis curve is 

counterclockwise, as shown at low ’s, the oscillatory pitch damping derivative is stable (i.e. 

negative in sign). On the other hand, if it is clockwise, as shown at high ’s, the damping 

derivative is unstable (i.e. positive in sign).   

 

Fig. 4. Comparison of experimental forced oscillation data with modeling results in pitching 
moment coefficient 
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4. Application to aircraft aerodynamic modeling 

4.1 Flight data 

The twin-jet transport in the present study encountered clear-air turbulence in cruise flight 

at the altitude around 10,050 m. As a result, several passengers and cabin crews sustained 

injuries, because of which this event was classified as an accident. The present study was 

initiated to examine possible concepts of accident prevention in the future. The dataset used 

for the modeling are extracted from the FDR during turbulence encounter lasting for 92 

seconds.  

The main aircraft geometric and inertial characteristics are taken, or estimated, as shown in 
Table 1: 

 

Geometric data Moments of inertia 

W (take-off) 1,431,800 N (321900 lb) Ixx 10,710,000 kg-m2 (7,899,900 slugs-ft2) 
S 260 m2 (2798.7 ft2) Iyy 14,883,800 kg-m2 (10,978,000 slugs-ft2) 

c  6.608 m (21.68 ft) Izz 25,283,271 kg-m2 (18,648,470 slugs-ft2) 

b 44.827 m (147.08 ft) Ixz 0.0 kg-m2 (0.0 slugs-ft2) 

Table 1. The main aircraft geometric and inertial characteristics 

The required operational parameters in FDR dataset for generating aerodynamic model data 

are time (t), CAS, pressure altitude (h), roll attitude (), pitch attitude (), magnetic heading 

(), longitudinal acceleration (ax), lateral acceleration (ay), vertical acceleration (az), angle of 

attack (), aileron deflection (a), elevator (e), rudder (r), stabilizer (s), engine EPR, outside 
air temperature, wind speed, wind direction, and fuel flow rate. Since only the normal 
acceleration is recorded in 8-Hz resolution (i.e. 8 points per second), all other parameters are 

interpolated with a monotone cubic spline to the same sampling rate. Based on the principle 
in flight data analysis, to estimate stability (or sensitivity) derivative with a flight variable, 
the corresponding flight variable must be sufficiently excited in the flight. This principle can 

be satisfied by choosing a large time period so that flight variables have sufficient variation 
during the time period, or by combining different flights if a model to represent a particular 
aircraft is desired. 

4.2 Compatibility analysis 

Typically, the longitudinal, lateral, and vertical accelerations (ax, ay, az) along the (x, y, z)-

body axes of aircraft, angle of attack , and the Euler angles (, , and ), as well as all 

control deflections are available and recorded in the FDR of all transport aircraft. Since the 

recorded flight data may contain errors (or called biases), compatibility analysis is 

performed to remove them by satisfying the following kinematic equations:  

 sin tan cos tanp q r        (4.1) 

 cos sinq r      (4.2) 

 ( sin cos )secq r      (4.3) 
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 ( sin )cos cos ( sin cos )sinx yV a g a g         ( cos cos )sin cosza g       (4.4) 

 [( cos cos )cos ( sin )sin ]/( cos )z xa g a g V          tan ( cos sin )q p r     (4.5) 

 cos ( cos sin ) / sin cosya g V p r        

sin [( cos cos )sin ( sin )cos ]/z xa g a g V          (4.6) 

where g is acceleration due to gravity, V is flight speed,  is sideslip angle, p is roll rate, q is 

pitch rate, and r is yaw rate in Eqs. (4.1) ~ (4.6). Let the biases be denoted 

by , , , , , , , , , , ,
x y za a a p q r Vb b b b b b b b b b b b     , respectively for ax, ay, az, etc. These biases are 

estimated by minimizing the squared sum of the differences between the two sides of the 

above equations. These equations in vector form can be written as: 

 ( ) ( )mz f x f x x   
  (4.7) 

where 

 ( , , , , , )Tz V     
 (4.8) 

 ( , , , , , , , , , , , )T
m x y zx a a a p q r V       (4.9) 

 ( , , , , , , , , , , , )
x y z

T
a a a p q r Vx b b b b b b b b b b b b       (4.10) 

where the subscript “m” indicates the measured or recorded values. The cost function is 
defined as: 

 1
( ) ( )

2
TJ z f Q z f  

     (4.11) 

where Q is a weighting diagonal matrix with elements being 1.0 except the one for the 

slowly varying flight speed being 10.0 and z
 is calculated with a central difference scheme 

with mz


, which is the measured value of z


. The steepest descent optimization method is 

adopted to minimize the cost function. As a result of the analysis, variables not present in 

the FDR, such as , p, q and r, are also estimated. 

The force and moment coefficients are obtained from the following flight dynamic equations 

(Roskam 2003) about the airplane body axes: 

 x x xma C qS T   (4.12) 

 y y yma C qS T   (4.13) 

 z z zma C qS T   (4.14) 

 Cl q S b = Ixx p – Ixz( r + pq) – (Iyy – Izz)qr  (4.15) 
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 Cm q S c  = Iyy q – Ixz (r2 – p2 ) – (Izz –Ixx)rp – Tm (4.16) 

 Cn q S b = Izz r – Ixz( p –qr) – (Ixx–Iyy)pq  (4.17) 

where m is the aircraft mass; q the dynamic pressure; S the wing reference area; Cx, Cz, and 

Cm the longitudinal aerodynamic force and moment coefficients; Cy, Cl, and Cn the lateral-

directional aerodynamic force and moment coefficients; Ixx, Iyy, and Izz
 

the moments of 

inertia about x-, y-, and z-axes, respectively; Ixy, Ixz, and Iyz the products of inertia; and Tx, Ty, 

Tz, and Tm the thrust terms about x-, y-, z-axes, and in equation of pitching moment, 

respectively in Eqs. (4.12) ~ (4.17). 

The above equations are used to determine all aerodynamic coefficients based on 

accelerometer readings (ax, ay, and az), Euler angles (, , and ), angular rates (p, q and r), 

and thrusts (Tx, Ty, Tz, and Tm). The angular rates are estimated through compatibility 

analysis. Since thrust was not measured during flight for most flight vehicles, those values 

and the effects on the forces and pitching moments in equations of (4.12), (4.13), (4.14), and 

(4.16) should be predicted by a thrust model (see Section 4.4).  

4.3 Equivalent harmonic motion 

The reduced frequency is a parameter to indicate the degree of unsteadiness in unsteady 

aerodynamics and is estimated in this paper by fitting the local trajectory with a harmonic 

motion. In the static case, the reduced frequency is 0. Large values of the reduced frequency 

imply the importance of unsteady aerodynamic effect. For longitudinal aerodynamics, the 

equivalent harmonic motion is the one based on the angle-of-attack variation following the 

classical unsteady aerodynamic theory of Theodorsen (Theodorsen 1935). For lateral-

directional aerodynamics, it is based on the time variation of roll angle (Wang, et al. 1998).  

For the longitudinal motion, the time history of the angle of attack () and time rate of angle 

of attack (d/dt, or ) is fitted with one of a harmonic motion at any instant as follows 

(Wang, et al. 1998): 

 ( )t = cos( )t      (4.18) 

 ( )t = sin( )a t     (4.19) 

where those terms on the left hand side of Eqs. (4.18) and (4.19) are given and the unknowns 

are the local mean angle of attack ( ), the local amplitude of the harmonic motion (a), the 

phase lag ( ), and the angular frequency ( ). These unknowns are calculated through an 

optimization method by minimizing the following cost function (least squares) 

 
2 2

1

( cos( )) ( sin( ))
n

i i i i
i

J a t a t        


                (4.20) 

In Eq. (4.20), where i is the measured value at point i and n is the number of the data points 

used in the optimization. For the case in the present study, n =20 is found to be the best 
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choice by correlating with a cosine wave with a constant frequency. The 20 points preceding 
and including the current time are employed in Eq. (4.20). The least-square method is found 
to converge well and gives reasonably accurate results. The lateral-directional equivalent 
reduced frequency is computed in the same manner.  

The local equivalent reduced frequency in the longitudinal motion is defined as, 

 k1=
c

V


 (4.21) 

where c is the mean chord length of wing airfoil section. The lateral-directional equivalent 

reduced frequency is defined as  

 k2=
2

b

V


  (4.22) 

where b is the wing span. 

4.4 Fuzzy-Logic thrust model 

As shown before, the thrust terms appear in the force equations and the pitching moment 

equation (Eqs. 4.12~4.14 and 4.16; but in the current application, Ty =Tz = 0.). Since the 

values of thrust for aircraft in flight cannot be directly measured in the current state of the 

art, they are not recorded in the FDR. The manufacturers of engines agreed that using such 

parameters as the Mach number, airspeed, flight altitude, temperature, the rpm of the 

pressure compressors and engine pressure ratios is adequate to estimate the engine thrust. A 

realistic thrust model is quite complex and cannot be represented by any simple equation. 

Since such thrust model is not available for the present study, a realistic one tied to the 

recorded engine performance parameters is developed with the fuzzy-logic algorithm. 

For a commercial aircraft, most likely only the axial force and the pitching moment are 

affected by thrust. This assumption will be made in this Chapter. Theoretically, clear-air 

turbulence (i.e. random change in u, w (or ) and v (or )) affect the engine performance 

through its effects on static and dynamic distortions at the engine face. However, its effects 

are not known and cannot be estimated, and therefore ignored in the present application. 

For the present purpose, data from the flight manual for the fuel flow rates ( fm ) at various 

altitudes (h), weights (W), Mach numbers (M), calibrated airspeed (CAS), engine pressure 

ratios (EPR), in cruise flight are utilized. Note that the drag polar for a given aircraft is 

generally not known to most researchers. To estimate it and hence the thrust magnitude in 

cruise, the assumption of a design lift-to-drag ratio (L/D) of 17.5 is made. This value of lift-

to-drag in cruise is assumed based on the past design experience for twin-jet transports. In 

the flight manual, various weights, altitudes, Mach numbers, CAS, EPR, and fuel flow rates 

in cruise are tabulated. The lift coefficient can be calculated at each flight condition 

immediately. As a result, the drag coefficient can be estimated from the assumption of lift-

to-drag ratio. Therefore, the design thrust in cruise at various Mach numbers can be 

estimated. For the Pratt & Whitney turbofan engines, thrust (T) is defined by EPR, so that 

the thrust model is set up as: 
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 T = f (h, W, M, CAS, EPR, fm ) (4.23) 

For GE or CFM turbofan engines, the rpm of the low-pressure compressor (N1) is used to set 
the level of thrust, so that the thrust model is set up as: 

 T = f (h, W, M, CAS, N1, fm )  (4.24) 

In the present study, the P&W turbofan engines powering the twin-jet transport under 

study will be illustrated. The actual thrust in operation is obtained by using the recorded 

variables in the FDR, in particular the fuel flow rates. 

The following climb equation (Lan & Roskam 2008) is to be satisfied in the least square sense 

over a 5-second internal: 

 sin
W dV

T D W
g dt

    (4.25) 

and 

 cos
D D

W L
  (4.26) 

All these equations are still valid in descent with negative climb angles (). The above 

equations are further employed for parameter identification in the process of modeling. 

Once the thrust model is generated as a function of h, W, M, CAS, EPR, and fm with the 

flight conditions of climbing, cruise, and descent, one can estimate the thrust magnitude by 

inserting these flight variables from the FDR into the model. 

4.5 Fuzzy-Logic unsteady aerodynamic models 

Modeling means to establish the numerical relationship among certain variables of interest. 

In the fuzzy-logic model, more complete necessary influencing flight variables can be 

included to capture all possible effects on aircraft response to atmospheric disturbances. For 

longitudinal aerodynamics, the models are assumed to be of the form: 

 Cx, Cz, Cm = f (, , q, k1, , e, M, p, s, q ) (4.27) 

where the left hand side represents the coefficients of axial force (Cx), normal force (Cz), 

and pitching moment (Cm), respectively. All variables on the right hand side of Eq. (4.27) 

have been defined in the previous section. It should be noted that the stabilizer angle (s) 

is included here, because it varies, though slowly, in flight to provide pitch trim (i.e. 

reducing the total static pitching moment to 0.0). The roll rate is included here because it 

is known that an aircraft under high aerodynamic loads at transonic speeds may have its 

longitudinal stability derivatives affected when additional disturbance due to roll rate is 

imposed. 

For the lateral-directional aerodynamics, 
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 Cy, Cl, Cn= f (, , , p, r, k2, a , r, M, ,  ) (4.28) 

where the left hand side represents the coefficients of side force (Cy), rolling moment (Cl) 

and yawing moment (Cn), respectively.  

4.6 Numerical results and discussions 

In the present study, the accuracy of the established unsteady aerodynamic models with six 

aerodynamic coefficients by using FLM technique is estimated by the sum of squared errors 

(SSE) and the square of multiple correlation coefficients (R2). Fig. 5 presents the 

aerodynamic coefficients of normal force Cz, pitching moment Cm, rolling moment Cl, and 

yawing moment Cn predicted by the unsteady aerodynamic models. The predicted data by 

the final refined models have good agreement with the flight data. The Cm-data scattering is 

most likely caused by turbulence-induced buffeting on the structure, in particular on the 

horizontal tail. Once the aerodynamic models are set up, one can calculate all necessary 

derivatives to analyze the stability. 

The fuzzy-logic aerodynamic models are capable of generating the continuous derivatives 

for the static and dynamic stability study of a twin-jet transport in turbulence response. 

Firstly, how the fuzzy-logic prediction is achieved will be illustrated with one numerical 

example in the Cz calculation. At first, the range for each variable is defined to be larger than 

what actually occurred in the present set of Cz-data as follows:  

[]=[-13,12], [ ]=[54,50], [q]=[-20,10], [k1]=[0,0.6], []=[-7,3], [e]=[-10,6], [M]=[0,1.6], [p]=[-

24,38], [s]=[-3,3], [ q ]= [4.964, 21.746] 

For the first cell (1,1,1,1,1,1,1,1,1,1), the coefficients in Eq. (2.1) after model training are found 

to be: 

1
kp =(2.61755, 1.26662, 1.42338, 2.07962, -0.44241, 2.78017, 1.78150, 1.30818, 1.82872, 1.67592, 

1.13787). 

Assume that in the following flight conditions Cz is to be predicted: 

=6.91015 deg.;  =2.95510 deg/sec; q=1.16609 deg/sec; k1= 0.01965; = -1.55252; e = 

0.68120 deg; M=0.77279; p= -2.62359 deg/sec; s=-0.13930 deg, q =11.0545 kpa 

These values of variables are converted to [0, 1]. For example, 

x = [6.91015-(-13)]/[12-(-13)] = 0.79641 
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Fig. 5. Predicted aerodynamic coefficients in normal force and moments for a twin-jet 
transport encountering severe atmospheric turbulence at cruise altitudes around 10,050 m 

Other variable values are converted in the same way. It follows that the cell internal function 
becomes 

P1=2.61755+(1.26662)*(0.79641)+(1.42338)*(0.54764)+(2.07962)*(0.70554)-
(0.44241)*(0.03275)+(2.78017)*(0.54475)+(1.7815)*(0.66758)+(1.30818)*(0.48299)+(1.82872)*(0.3
4478+(1.67592)*(0.47678)+(1.13787)*(0.3730)=11.04817  

The membership grades for the first cell are exactly equal to xr, being 0.79641, 0.54764, etc. 

Their product can be calculated to be 1.08536E-004. Therefore, the contribution of the first 

cell to the total output is 

11.04817*1.08536E-004=1.19912E-003  

The total output from all cells can be calculated to be 5.9962; while the denominator in Eq. 
(2.3) is calculated to be 7.46459. Therefore, the final prediction is 0.8033. Comparing with 
data of 0.81038, this prediction has an error of –0.88%. 

To examine the stability characteristics, it is imperative to understand the flight 
environment in detail. The corresponding flight data are presented in Fig. 6. Note that az is 
the same as an, the normal acceleration. The variation of normal acceleration is presented in 
Fig. 6(a), showing the highest an being 1.75 g around t = 3930 sec and the lowest being 0.02 g 

around t = 3932 sec. Fig. 6(b) shows that  is approximately in phase with an. When an is the 
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highest (around t = 3930 sec), the aircraft rapidly plunging downward with the altitude (h) 

reaching the lowest as shown in Fig. 6(c); and  is highest about 6.5 deg. in Fig. 6(b). At the 

same time, M is around 0.77 in Fig. 6(d). Since  reaches a value about 6.5 deg in transonic 
flight, compressibility effect is important. It should be noted that the turbulent vertical wind 

field was not measured or estimated in the FDR; but is included in the total. 

 

 

 

 

Fig. 6. The time history of flight variables for a twin-jet transport in severe atmospheric 
turbulence at the altitude around 10,050 m in transonic flight 

The aerodynamic derivatives extracted from the unsteady aerodynamic models can be 

calculated with a central difference scheme. The longitudinal stability derivative (Cm) is 

extracted from the model of Cm. It is evaluated with the central difference approach as 

follows:  
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 Cm = [Cm ( +, ---) - Cm (-, ---)]/2 (4.29) 

where  =0.5 degree represents that  is perturbed by 0.5 degree while keeping all other 
variables unchanged.  

The roll damping (Clp) is extracted from the models of Cl with the central difference 
approach as follows:  

 Cl p = [Cl (---, p+ p, ---) - Cl (---, p- p, ---)]/2p  (4.30) 

where  p is in deg/sec. Similarly, all other aerodynamic derivatives are calculated by using 
the same method. 

4.6.1 Effects of membership shape functions 

Before presenting the full aerodynamic characteristics, it is desirable to examine the effect of 

membership shape functions. The normal force coefficient, Cz = CN, and its derivatives in  

and d/dt play an important role in the plunging motion. Therefore, only these two 
derivatives are compared in Fig. 7. R2 for the triangular and parabolic shapes are 0.9787 and 
0.9786, respectively. Although the values of R2 are close to each other, details in the 

derivatives do differ, in particular in NC  in plunging motion, probably because in the 

neighborhood of the peak values of the shape functions, the difference in the membership 
grades tends to be small. As a result, the effect of parabolic shape functions would smooth 
out the variation. 

3922 3924 3926 3928 3930 3932 3934 3936

t, sec.

-6

-4

-2

0

2

4

6

8

10

C
N


, 
r
a

d
-1

3922 3924 3926 3928 3930 3932 3934 3936

t, sec.

-250

-200

-150

-100

-50

0

50

100

C
N

(d


/d
t)

, 
ra

d
-1

(a)

(b)

triangular

parabolic

 

Fig. 7. Effects of membership shape functions on estimated - and d/dt- derivatives of CN 
of a transport aircraft in atmospheric turbulence with plunging motion 
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From a physical point of view, it is expected that in plunging motion the NC  -derivative, 

which basically represents the virtual mass effect in unsteady aerodynamics (Sheu & Lan, 

2011), should vary sharply. Note that the dynamic derivative, NC  , is dimensionless (see 

below). In addition, with parabolic shape functions, modeling tends to take longer to 

converge. Therefore, in the following all derivatives are based on the model with the 

triangular membership shape functions. 

4.6.2 Stability derivatives for the whole time period 

The time period between 3927.5 sec and 3932.5 sec is emphasized in evaluating the stability 

characteristics, because of the plunging motion that affects the flight safety the most. All 

derivatives are converted to dimensionless ones in accordance with internationally known 

definition. For example, Clp is defined as Cl/(pb/2V) and Cmq as Cm/(q c /2V), where 

c is the mean chord length. Therefore, the units of all aerodynamic derivatives are in rad-1. 

The main longitudinal and lateral-directional stability derivatives along the flight path are 

presented in Fig. 8. It should be noted that these derivatives are evaluated at the 

instantaneous conditions, instead of about the trim conditions as have been traditionally 

done. From the point of view in static stability, initially, the configuration has longitudinal 

stability (Cz >0 and Cm <0) as shown in Fig. 8(a), stable longitudinal damping (Cmq <0) in 

Fig. 8(b), lateral stability (Cl < 0) and directional stability (Cn > 0) in Fig. 8(c), small roll 

damping (Clp < 0) and insufficient directional damping (Cnr small or positive) in Fig. 8(d). 

During the plunging motion, in the period between t = 3928.5 sec. and t = 3930.5 sec, Cm > 0 

and Cl > 0, so that the static stability becomes unstable. The aerodynamic instability is most 

likely caused by the motion that produces a time-dependent pressure distribution on the 

aircraft surface involving compressibility effects. 
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Fig. 8. The time history of main longitudinal and lateral-directional of the static stability 
derivatives along the flight path 

Fig. 9 presents the time history of main longitudinal and lateral-directional oscillatory 

derivatives along the flight path involving the and  -derivatives. Note that in Fig. 9(a), 

the oscillatory derivatives are defined as: 

 ( )mq osc mq mC C C     (4.31) 

 ( )zq osc zq zC C C     (4.32) 

In Fig. 9(c), the oscillatory derivatives are defined as 

 ( ) sinlp osc lp l
C C C      (4.33) 

 ( ) cosnr osc nr n
C C C      (4.34) 

During the plunging motion, the values have some differences between oscillatory and 

damping derivatives in Fig. 9(a) (Cmq and (Cmq)osc) and 9(c) (Cnr and (Cnr)osc) due to the effects 

of the dynamic derivatives (i.e.  and  -derivatives). The effects of -derivative on (Czq)osc, 

and  -derivative on (Clp)osc are small. However, the effect of  -derivative on (Cmq)osc is to 

improve the stability in pitch after t = 3929.5 sec; while the effects of  -derivative is to cause 

the directional characteristics more unstable (i.e. (Cnr)osc more positive). These results 

indicate that the turbulent crosswind has the effects on directional stability and damping. 

Although the dynamic derivatives tend to be small for the present configuration, these are 

much helpful to understand the unknown factors of instability characteristics. To be stable, 

(Czq)osc < 0, (Cmq)osc < 0, (Clp)osc < 0, and (Cnr)osc < 0. Physically, if it is unstable, the motion will 

be divergent in oscillatory motions. 
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Fig. 9. The time history of main longitudinal and lateral-directional oscillatory derivatives 
along the flight path 

All derivatives in Eqs. (4.31) ~ (4.34) are estimated individually with the aerodynamic 

models and added afterwards to retain the nonlinearity. In wind-tunnel testing, these 

derivatives are not separately measured; instead they are determined in combination. As an 

example, assuming that it is desired to extract the response in CN and Cm at average 

conditions given by k1 = 0.02, ǃ = -1.5, e = 0.0, M= 0.78, p = -3.0 deg/sec, s = -0.5, V=817 

ft./sec., q =234 psf (see Eq. 4.27). The corresponding flight condition is approximately the 

one during the plunging motion. The angle of attack is assumed to vary harmonically (e.g. a 

cosine function) with a reduced frequency equal to k1. From the fuzzy-logic models, the 

response can be determined to be as shown in Fig. 10. The arrows represent the directions of 
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change in ǂ. According to a linear theory for CN and Cm as functions of ǂ,  , q and q (see 

Eq. 3.4 for the example of an expression based on a linear theory), the following in-phase 

and out-of-phase integrals are given by: using CN as an example, 

 In-phase: 
2

0

NC d


    (4.35) 

 Out-of-phase: 
2

0

( / )NC d d d


    (4.36) 

After integration, Eq. (4.36) should produce Eq. (4.32) with Cz interpreted as CN. In addition, 

as shown in Fig. 10(a), the direction of the hysteretic curve is clockwise, and Eq. (4.36) 

should produce a positive value based on the linear theory. The sign of the integral (4.35), is 

represented by the slope of the hysteretic curve. Similarly, for the pitching moment, Fig. 

10(b), the direction of the hysteretic curve is counterclockwise and hence the out-of-phase 

integral should produce a negative value according to the linear theory (i.e. stable 

damping). The example illustrates the fact that the present fuzzy-logic models can produce 

results to simulate the forced-oscillation testing. Typically, the linear results are used in 

design; while the nonlinear results can be used in performance and simulation. 
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Fig. 10. Aerodynamic response due to a cosine harmonic oscillation at a reduced frequency 
of 0.02 in ǂ as extracted from the fuzzy logic models.  
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4.7 Flight dynamic application 

As indicated in Introduction, the aerodynamic models generated by the FLM algorithm can 
serve as the forcing functions and be coupled with the dynamic equations of motion for 
flight simulation or flight reconstruction in accident investigation. However, it was found 
that the flight dynamic equations require reformulation to improve numerical damping and 
avoid numerical divergence (Sheu & Lan 2011). As a result of numerical integration, the 
turbulent vertical wind can also be estimated from the difference in the total ǂ as measured 
by the aircraft ǂ-sensor and the motion-produced ǂ by numerical integration. The numerical 
example presented in the quoted reference is based on the same flight data examined in this 
Section. 

5. Conclusions 

The main objective in this paper was to illustrate the nonlinear unsteady aerodynamic 

models based on the FLM technique having the capability to evaluate the variations in 

stability of commercial aircraft with adverse weather effects. The present FLM technique 

was explained in detail and verified with simple examples and wind-tunnel data. It was 

shown that the FLM technique was capable of handling nonlinear and unsteady 

aerodynamic environment exhibited for a twin-jet transport in severe atmospheric 

turbulence with sudden plunging motion in transonic flight. The predicted results showed 

that the models could produce reasonable aerodynamic coefficients and several derivatives 

for the assessment of stability characteristics, especially for the study of unknown factors in 

adverse weather conditions. 

At the present time, any aircraft encountering severe atmospheric turbulence is considered 

uncontrollable. Since the aerodynamics represented by the fuzzy-logic models is realistic, 

they can be coupled with the numerical integration of flight dynamic equations to study 

possible improvement in controllability. However, to develop the control law, it is 

imperative to include the unsteady and nonlinear aerodynamic effects.  
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