THE OPEN LOGIC TEXT

Complete Build

Open Logic Project

Revision: c2fea4a (master)
2016-08-01

The Open Logic Text by the Open Logic Project is licensed under a Creative Commons Attribution 4.0 International License.

About the Open Logic Project

The Open Logic Text is an open-source, collaborative textbook of formal metalogic and formal methods, starting at an intermediate level (i.e., after an introductory formal logic course). Though aimed at a non-mathematical audience (in particular, students of philosophy and computer science), it is rigorous.

The Open Logic Text is a collaborative project and is under active development. Coverage of some topics currently included may not yet be complete, and many sections still require substantial revision. We plan to expand the text to cover more topics in the future. We also plan to add features to the text, such as a glossary, a list of further reading, historical notes, pictures, better explanations, sections explaining the relevance of results to philosophy, computer science, and mathematics, and more problems and examples. If you find an error, or have a suggestion, please let the project team know.

The project operates in the spirit of open source. Not only is the text freely available, we provide the LaTeX source under the Creative Commons Attribution license, which gives anyone the right to download, use, modify, rearrange, convert, and re-distribute our work, as long as they give appropriate credit.

Please see the Open Logic Project website at openlogicproject.org for additional information.

Contents

I Sets, Relations, Functions 10
1 Sets 12
1.1 Basics 12
1.2 Some Important Sets 13
1.3 Subsets 14
1.4 Unions and Intersections 15
1.5 Proofs about Sets 16
1.6 Pairs, Tuples, Cartesian Products 17
2 Relations 19
2.1 Relations as Sets 19
2.2 Special Properties of Relations 20
2.3 Orders 21
2.4 Graphs 23
2.5 Operations on Relations 24
3 Functions 26
3.1 Basics 26
3.2 Kinds of Functions 27
3.3 Inverses of Functions 28
3.4 Composition of Functions 29
3.5 Isomorphism 29
3.6 Partial Functions 30
3.7 Functions and Relations 30
4 The Size of Sets 32
4.1 Introduction 32
4.2 Enumerable Sets 32
4.3 Non-enumerable Sets 35
4.4 Reduction 37
4.5 Equinumerous Sets 38
4.6 Comparing Sizes of Sets 39
II First-order Logic 42
5 Syntax and Semantics 44
5.1 First-Order Languages 44
5.2 Terms and Formulas 46
5.3 Unique Readability 47
5.4 Main operator of a Formula 50
5.5 Subformulas 51
5.6 Free Variables and Sentences 52
5.7 Substitution 53
5.8 Structures for First-order Languages 54
5.9 Satisfaction of a Formula in a Structure 57
5.10 Extensionality 60
5.11 Semantic Notions 61
6 Theories and Their Models 65
6.1 Introduction 65
6.2 Expressing Properties of Structures 67
6.3 Examples of First-Order Theories 67
6.4 Expressing Relations in a Structure 70
6.5 The Theory of Sets 71
6.6 Expressing the Size of Structures 73
7 The Sequent Calculus 75
7.1 Rules and Derivations 75
7.2 Examples of Derivations 78
7.3 Proof-Theoretic Notions 82
7.4 Properties of Derivability 83
7.5 Soundness 86
7.6 Derivations with Identity predicate 90
8 Natural Deduction 92
8.1 Rules and Derivations 92
8.2 Examples of Derivations 95
8.3 Proof-Theoretic Notions 102
8.4 Properties of Derivability 103
8.5 Soundness 106
8.6 Derivations with Identity predicate 109
9 The Completeness Theorem 111
9.1 Introduction 111
9.2 Outline of the Proof 111
9.3 Maximally Consistent Sets of Sentences 113
9.4 Henkin Expansion 115
9.5 Lindenbaum's Lemma 116
9.6 Construction of a Model 117
9.7 Identity 118
9.8 The Completeness Theorem 121
9.9 The Compactness Theorem 121
9.10 The Löwenheim-Skolem Theorem 122
10 Beyond First-order Logic 123
10.1 Overview 123
10.2 Many-Sorted Logic 124
10.3 Second-Order logic 125
10.4 Higher-Order logic 129
10.5 Intuitionistic logic 131
10.6 Modal Logics 135
10.7 Other Logics 137
III Model Theory 138
11 Basics of Model Theory 140
11.1 Reducts and Expansions 140
11.2 Substructures 141
11.3 Overspill 141
11.4 Isomorphic Structures 142
11.5 The Theory of a Structure 142
11.6 Partial Isomorphisms 143
11.7 Dense Linear Orders 145
11.8 Non-standard Models of Arithmetic 147
12 The Interpolation Theorem 151
12.1 Introduction 151
12.2 Separation of Sentences 151
12.3 Craig's Interpolation Theorem 153
12.4 The Definability Theorem 155
13 Lindström's Theorem 158
13.1 Introduction 158
13.2 Abstract Logics 158
13.3 Compactness and Löwenheim-Skolem Properties 160
13.4 Lindström's Theorem 161
IV Computability 164
14 Recursive Functions 166
14.1 Introduction 166
14.2 Primitive Recursion 167
14.3 Primitive Recursive Functions are Computable 170
14.4 Examples of Primitive Recursive Functions 171
14.5 Primitive Recursive Relations 172
14.6 Bounded Minimization 174
14.7 Sequences 175
14.8 Other Recursions 176
14.9 Non-Primitive Recursive Functions 178
14.10 Partial Recursive Functions 179
14.11 The Normal Form Theorem 181
14.12 The Halting Problem 182
14.13 General Recursive Functions 183
15 The Lambda Calculus 185
15.1 Introduction 185
15.2 The Syntax of the Lambda Calculus 186
15.3 Reduction of Lambda Terms 187
15.4 The Church-Rosser Property 188
15.5 Representability by Lambda Terms 189
15.6 Lambda Representable Functions are Computable 189
15.7 Computable Functions are Lambda Representable 190
15.8 The Basic Primitive Recursive Functions are Lambda Repre- sentable 190
15.9 Lambda Representable Functions Closed under Composition 191
15.10 Lambda Representable Functions Closed under Primitive Re- cursion 191
15.11 Fixed-Point Combinators 193
15.12 Lambda Representable Functions Closed under Minimization 194
16 Computability Theory 196
16.1 Introduction 196
16.2 Coding Computations 197
16.3 The Normal Form Theorem 198
16.4 The s-m-n Theorem 199
16.5 The Universal Partial Computable Function 199
16.6 No Universal Computable Function 200
16.7 The Halting Problem 200
16.8 Comparison with Russell's Paradox 201
16.9 Computable Sets 203
16.10 Computably Enumerable Sets 203
16.11 Definitions of C. E. Sets 204
16.12 Union and Intersection of C.E. Sets 206
16.13 Computably Enumerable Sets not Closed under Complement 207
16.14 Reducibility 208
16.15 Properties of Reducibility 209
16.16 Complete Computably Enumerable Sets 210
16.17 An Example of Reducibility 211
16.18 Totality is Undecidable 212
16.19 Rice's Theorem 213
16.20 The Fixed-Point Theorem 215
16.21 Applying the Fixed-Point Theorem 218
16.22 Defining Functions using Self-Reference 219
16.23 Minimization with Lambda Terms 220
V Turing Machines 222
17 Turing Machine Computations 224
17.1 Introduction 224
17.2 Representing Turing Machines 226
17.3 Turing Machines 229
17.4 Configurations and Computations 230
17.5 Unary Representation of Numbers 232
17.6 Halting States 232
17.7 Combining Turing Machines 233
17.8 Variants of Turing Machines 235
17.9 The Church-Turing Thesis 236
18 Undecidability 239
18.1 Introduction 239
18.2 Enumerating Turing Machines 241
18.3 The Halting Problem 241
18.4 The Decision Problem 243
18.5 Representing Turing Machines 244
18.6 Verifying the Representation 246
18.7 The Decision Problem is Unsolvable 249
VI Incompleteness 251
19 Arithmetization of Syntax 253
19.1 Introduction 253
19.2 Coding Symbols 254
19.3 Coding Terms 255
19.4 Coding Formulas 256
19.5 Substitution 256
19.6 Derivations in LK 257
19.7 Derivations in Natural Deduction 260
20 Representability in Q 266
20.1 Introduction 266
20.2 Functions Representable in \mathbf{Q} are Computable 267
20.3 Computable Functions are Representable in Q 268
20.4 The Functions C 268
20.5 The Beta Function Lemma 269
20.6 Primitive Recursion in C 271
20.7 Functions in C are Representable in \mathbf{Q} 272
20.8 Representing Relations 275
20.9 Undecidability 275
21 Theories and Computability 277
21.1 Introduction 277
21.2 Q is c.e.-complete 277
$21.3 \quad \omega$-Consistent Extensions of \mathbf{Q} are Undecidable 278
21.4 Consistent Extensions of \mathbf{Q} are Undecidable 279
21.5 Computably Axiomatizable Theories 280
21.6 Computably Axiomatizable Complete Theories are Decidable 280
21.7 Q has no Complete, Consistent, Computably Axiomatized Ex- tensions 280
21.8 Sentences Provable and Refutable in \mathbf{Q} are Computably Insep- arable 281
21.9 Theories Consistent with \mathbf{Q} are Undecidable 282
21.10 Theories In Which \mathbf{Q} is Intepretable are Undecidable 282
22 Incompleteness and Provability 284
22.1 Introduction 284
22.2 The Fixed-Point Lemma 285
22.3 The First Incompleteness Theorem 286
22.4 Rosser's Theorem 288
22.5 Comparison with Gödel's Original Paper 288
22.6 The Provability Conditions for PA 289
22.7 The Second Incompleteness Theorem 290
22.8 Löb's Theorem 291
22.9 The Undefinability of Truth 293
VII Methods 295
23 Induction 297
23.1 Introduction 297
23.2 Induction on \mathbb{N} 298
23.3 Strong Induction 300
23.4 Inductive Definitions 301
23.5 Structural Induction 302
VIIIHistory 304
24 Biographies 305
24.1 Georg Cantor 305
24.2 Alonzo Church 306
24.3 Gerhard Gentzen 307
24.4 Kurt Gödel 308
24.5 Emmy Noether 309
24.6 Rózsa Péter 311
24.7 Julia Robinson 312
24.8 Bertrand Russell 314
24.9 Alfred Tarski 315
24.10 Alan Turing 316
24.11 Ernst Zermelo 317
Photo Credits 319
Bibliography 321

This file loads all content included in the Open Logic Project. Editorial notes like this, if displayed, indicate that the file was compiled without any thought to how this material will be presented. It is thus not advisable to teach or study from a PDF that includes this comment.

The Open Logic Project provides many mechanisms by which a text can be generate which is more appropriate for teaching or self-study. For instance, by default, the text will make all logical operators primitives and carry out all cases for all operators in proofs. But it is much better to leave some of these cases as exercises. The Open Logic Project is also a work in progress. In an effort to stimulate collaboration and improvemenent, material is included even if it is ony in draft form, is missing exercises, etc. A PDF produced for a course will exclude these sections.

To find PDFs more suitable for reading, have a look at the sample courses available on the OLP website.

Part I

Sets, Relations, Functions

The material in this part is a reasonably complete introduction to basic naive set theory. Unless students can be assumed to have this background, it's probably advisable to start a course with a review of this material, at least the part on sets, functions, and relations. This should ensure that all students have the basic facility with mathematical notation required for any of the other logical sections. NB: This part does not cover induction directly.

The presentation here would benefit from additional examples, especially, "real life" examples of relations of interest to the audience.

It is planned to expand this part to cover naive set theory more extensively.

Chapter 1

Sets

1.1 Basics

Sets are the most fundamental building blocks of mathematical objects. In fact, almost every mathematical object can be seen as a set of some kind. In logic, as in other parts of mathematics, sets and set theoretical talk is ubiquitous. So it will be important to discuss what sets are, and introduce the notations necessary to talk about sets and operations on sets in a standard way.

Definition 1.1 (Set). A set is a collection of objects, considered independently of the way it is specified, of the order of the objects in the set, or of their multiplicity. The objects making up the set are called elements or members of the set. If a is an element of a set X, we write $a \in X$ (otherwise, $a \notin X$). The set which has no elements is called the empty set and denoted by the symbol \varnothing.

Example 1.2. Whenever you have a bunch of objects, you can collect them together in a set. The set of Richard's siblings, for instance, is a set that contains one person, and we could write it as $S=\{$ Ruth $\}$. In general, when we have some objects a_{1}, \ldots, a_{n}, then the set consisting of exactly those objects is written $\left\{a_{1}, \ldots, a_{n}\right\}$. Frequently we'll specify a set by some property that its elements share-as we just did, for instance, by specifying S as the set of Richard's siblings. We'll use the following shorthand notation for that: $\{x: \ldots x \ldots\}$, where the $\ldots x \ldots$ stands for the property that x has to have in order to be counted among the elements of the set. In our example, we could have specified S also as

$$
S=\{x: x \text { is a sibling of Richard }\}
$$

When we say that sets are independent of the way they are specified, we mean that the elements of a set are all that matters. For instance, it so happens

1.2. SOME IMPORTANT SETS

that
$\{$ Nicole, Jacob $\}$,
$\{x:$ is a niece or nephew of Richard $\}$, and
$\{x:$ is a child of Ruth $\}$
are three ways of specifying one and the same set.
Saying that sets are considered independently of the order of their elements and their multiplicity is a fancy way of saying that
\{Nicole, Jacob\} and \{Jacob, Nicole\}
are two ways of specifying the same set; and that
$\{$ Nicole, Jacob $\}$ and
$\{$ Jacob,Nicole, Nicole $\}$
are also two ways of specifying the same set. In other words, all that matters is which elements a set has. The elements of a set are not ordered and each element occurs only once. When we specify or describe a set, elements may occur multiple times and in different orders, but any descriptions that only differ in the order of elements or in how many times elements are listed describes the same set.

Definition 1.3 (Extensionality). If X and Y are sets, then X and Y are identical, $X=Y$, iff every element of X is also an element of Y, and vice versa.

Extensionality gives us a way for showing that sets are identical: to show that $X=Y$, show that whenever $x \in X$ then also $x \in Y$, and whenever $y \in Y$ then also $y \in X$.

1.2 Some Important Sets

Example 1.4. Mostly we'll be dealing with sets that have mathematical objects as members. You will remember the various sets of numbers: \mathbb{N} is the set of natural numbers $\{0,1,2,3, \ldots\} ; \mathbb{Z}$ the set of integers,

$$
\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

\mathbb{Q} the set of rationals $(\mathbb{Q}=\{z / n: z \in \mathbb{Z}, n \in \mathbb{N}, n \neq 0\})$; and \mathbb{R} the set of real numbers. These are all infinite sets, that is, they each have infinitely many elements. As it turns out, $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ have the same number of elements, while \mathbb{R} has a whole bunch more- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are "enumerable and infinite" whereas \mathbb{R} is "non-enumerable".

We'll sometimes also use the set of positive integers $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ and the set containing just the first two natural numbers $\mathbb{B}=\{0,1\}$.

Example 1.5 (Strings). Another interesting example is the set A^{*} of finite strings over an alphabet A : any finite sequence of elements of A is a string over A. We include the empty string Λ among the strings over A, for every alphabet A. For instance,

$$
\mathbb{B}^{*}=\{\Lambda, 0,1,00,01,10,11, \quad \text { 000,001,010,011,100,101,110,111,0000, ...\}. }
$$

If $x=x_{1} \ldots x_{n} \in A^{*}$ is a string consisting of n "letters" from A, then we say length of the string is n and write len $(x)=n$.
Example 1.6 (Infinite sequences). For any set A we may also consider the set A^{ω} of infinite sequences of elements of A. An infinite sequence $a_{1} a_{2} a_{3} a_{4} \ldots$ consists of a one-way infinite list of objects, each one of which is an element of A.

1.3 Subsets

Sets are made up of their elements, and every element of a set is a part of that set. But there is also a sense that some of the elements of a set taken together are a "part of" that set. For instance, the number 2 is part of the set of integers, but the set of even numbers is also a part of the set of integers. It's important to keep those two senses of being part of a set separate.

Definition 1.7 (Subset). If every element of a set X is also an element of Y, then we say that X is a subset of Y, and write $X \subseteq Y$.

Example 1.8. First of all, every set is a subset of itself, and \varnothing is a subset of every set. The set of even numbers is a subset of the set of natural numbers. Also, $\{a, b\} \subseteq\{a, b, c\}$.

But $\{a, b, e\}$ is not a subset of $\{a, b, c\}$.
Note that a set may contain other sets, not just as subsets but as elements! In particular, a set may happen to both be an element and a subset of another, e.g., $\{0\} \in\{0,\{0\}\}$ and also $\{0\} \subseteq\{0,\{0\}\}$.

Extensionality gives a criterion of identity for sets: $X=Y$ iff every element of X is also an element of Y and vice versa. The definition of "subset" defines $X \subseteq Y$ precisely as the first half of this criterion: every element of X is also an element of Y. Of course the definition also applies if we switch X and Y : $Y \subseteq X$ iff every element of Y is also an element of X. And that, in turn, is exactly the "vice versa" part of extensionality. In other words, extensionality amounts to: $X=Y$ iff $X \subseteq Y$ and $Y \subseteq X$.

Definition 1.9 (Power Set). The set consisting of all subsets of a set X is called the power set of X, written $\wp(X)$.

$$
\wp(X)=\{x: x \subseteq X\}
$$

1.4. UNIONS AND INTERSECTIONS

Example 1.10. What are all the possible subsets of $\{a, b, c\}$? They are: \varnothing, $\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}$. The set of all these subsets is $\wp(\{a, b, c\})$:

$$
\wp(\{a, b, c\})=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}
$$

1.4 Unions and Intersections

Definition 1.11 (Union). The union of two sets X and Y, written $X \cup Y$, is the set of all things which are elements of X, Y, or both.

$$
X \cup Y=\{x: x \in X \vee x \in Y\}
$$

Example 1.12. Since the multiplicity of elements doesn't matter, the union of two sets which have an element in common contains that element only once, e.g., $\{a, b, c\} \cup\{a, 0,1\}=\{a, b, c, 0,1\}$.

The union of a set and one of its subsets is just the bigger set: $\{a, b, c\} \cup$ $\{a\}=\{a, b, c\}$.

The union of a set with the empty set is identical to the set: $\{a, b, c\} \cup \varnothing=$ $\{a, b, c\}$.

Definition 1.13 (Intersection). The intersection of two sets X and Y, written $X \cap Y$, is the set of all things which are elements of both X and Y.

$$
X \cap Y=\{x: x \in X \wedge x \in Y\}
$$

Two sets are called disjoint if their intersection is empty. This means they have no elements in common.

Example 1.14. If two sets have no elements in common, their intersection is empty: $\{a, b, c\} \cap\{0,1\}=\varnothing$.

If two sets do have elements in common, their intersection is the set of all those: $\{a, b, c\} \cap\{a, b, d\}=\{a, b\}$.

The intersection of a set with one of its subsets is just the smaller set: $\{a, b, c\} \cap\{a, b\}=\{a, b\}$.

The intersection of any set with the empty set is empty: $\{a, b, c\} \cap \varnothing=\varnothing$.
We can also form the union or intersection of more than two sets. An elegant way of dealing with this in general is the following: suppose you collect all the sets you want to form the union (or intersection) of into a single set. Then we can define the union of all our original sets as the set of all objects which belong to at least one element of the set, and the intersection as the set of all objects which belong to every element of the set.

Definition 1.15. If C is a set of sets, then $\cup C$ is the set of elements of elements of C :

$$
\begin{aligned}
& \bigcup C=\{x: x \text { belongs to an element of } C\}, \text { i.e., } \\
& \bigcup C=\{x: \text { there is a } y \in C \text { so that } x \in y\}
\end{aligned}
$$

Definition 1.16. If C is a set of sets, then $\cap C$ is the set of objects which all elements of C have in common:

$$
\begin{aligned}
& \bigcap C=\{x: x \text { belongs to every element of } C\}, \text { i.e., } \\
& \bigcap C=\{x: \text { for all } y \in C, x \in y\}
\end{aligned}
$$

Example 1.17. Suppose $C=\{\{a, b\},\{a, d, e\},\{a, d\}\}$. Then $\cup C=\{a, b, d, e\}$ and $\cap C=\{a\}$.

We could also do the same for a sequence of sets A_{1}, A_{2}, \ldots

$$
\begin{aligned}
& \bigcup_{i} A_{i}=\left\{x: x \text { belongs to one of the } A_{i}\right\} \\
& \bigcap_{i} A_{i}=\left\{x: x \text { belongs to every } A_{i}\right\} .
\end{aligned}
$$

Definition 1.18 (Difference). The difference $X \backslash Y$ is the set of all elements of X which are not also elements of Y, i.e.,

$$
X \backslash Y=\{x: x \in X \text { and } x \notin Y\} .
$$

1.5 Proofs about Sets

Sets and the notations we've introduced so far provide us with convenient shorthands for specifying sets and expressing relationships between them. Often it will also be necessary to prove claims about such relationships. If you're not familiar with mathematical proofs, this may be new to you. So we'll walk through a simple example. We'll prove that for any sets X and Y, it's always the case that $X \cap(X \cup Y)=X$. How do you prove an identity between sets like this? Recall that sets are determined solely by their elements, i.e., sets are identical iff they have the same elements. So in this case we have to prove that (a) every element of $X \cap(X \cup Y)$ is also an element of X and, conversely, that (b) every element of X is also an element of $X \cap(X \cup Y)$. In other words, we show that both (a) $X \cap(X \cup Y) \subseteq X$ and (b) $X \subseteq X \cap(X \cup Y)$.

A proof of a general claim like "every element z of $X \cap(X \cup Y)$ is also an element of $X^{\prime \prime}$ is proved by first assuming that an arbitrary $z \in X \cap(X \cup Y)$ is given, and proving from this assumtion that $z \in X$. You may know this pattern as "general conditional proof." In this proof we'll also have to make use of the definitions involved in the assumption and conclusion, e.g., in this case of " \cap " and " \cup." So case (a) would be argued as follows:

1.6. PAIRS, TUPLES, CARTESIAN PRODUCTS

(a) We first want to show that $X \cap(X \cup Y) \subseteq X$, i.e., by definition of \subseteq, that if $z \in X \cap(X \cup Y)$ then $z \in X$, for any z. So assume that $z \in X \cap(X \cup Y)$. Since z is an element of the intersection of two sets iff it is an element of both sets, we can conclude that $z \in X$ and also $z \in X \cup Y$. In particular, $z \in X$. But this is what we wanted to show.

This completes the first half of the proof. Note that in the last step we used the fact that if a conjunction $(z \in X$ and $z \in X \cup Y)$ follows from an assumption, each conjunct follows from that same assumption. You may know this rule as "conjunction elimination," or \wedge Elim. Now let's prove (b):
(b) We now prove that $X \subseteq X \cap(X \cup Y)$, i.e., by definition of \subseteq, that if $z \in X$ then also $z \in X \cap(X \cup Y)$, for any z. Assume $z \in X$. To show that $z \in X \cap(X \cup Y)$, we have to show (by definition of " \cap ") that (i) $z \in X$ and also (ii) $z \in X \cup Y$. Here (i) is just our assumption, so there is nothing further to prove. For (ii), recall that z is an element of a union of sets iff it is an element of at least one of those sets. Since $z \in X$, and $X \cup Y$ is the union of X and Y, this is the case here. So $z \in X \cup Y$. We've shown both (i) $z \in X$ and (ii) $z \in X \cup Y$, hence, by definition of " \cap," $z \in X \cap(X \cup Y)$.

This was somewhat long-winded, but it illustrates how we reason about sets and their relationships. We usually aren't this explicit; in particular, we might not repeat all the definitions. A "textbook" proof of our result would look something like this.

Proposition 1.19 (Absorption). For all sets X, Y,

$$
X \cap(X \cup Y)=X
$$

Proof. (a) Suppose $z \in X \cap(X \cup Y)$. Then $z \in X$, so $X \cap(X \cup Y) \subseteq X$.
(b) Now suppose $z \in X$. Then also $z \in X \cup Y$, and therefore also $z \in$ $X \cap(X \cup Y)$. Thus, $X \subseteq X \cap(X \cup Y)$.

1.6 Pairs, Tuples, Cartesian Products

Sets have no order to their elements. We just think of them as an unordered collection. So if we want to represent order, we use ordered pairs $\langle x, y\rangle$, or more generally, ordered n-tuples $\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

Definition 1.20 (Cartesian product). Given sets X and Y, their Cartesian product $X \times Y$ is $\{\langle x, y\rangle: x \in X$ and $y \in Y\}$.

Example 1.21. If $X=\{0,1\}$, and $Y=\{1, a, b\}$, then their product is

$$
X \times Y=\{\langle 0,1\rangle,\langle 0, a\rangle,\langle 0, b\rangle,\langle 1,1\rangle,\langle 1, a\rangle,\langle 1, b\rangle\}
$$

Example 1.22. If X is a set, the product of X with itself, $X \times X$, is also written X^{2}. It is the set of all pairs $\langle x, y\rangle$ with $x, y \in X$. The set of all triples $\langle x, y, z\rangle$ is X^{3}, and so on.

Example 1.23. If X is a set, a word over X is any sequence of elements of X. A sequence can be thought of as an n-tuple of elements of X. For instance, if $X=$ $\{a, b, c\}$, then the sequence " $b a c$ " can be thought of as the triple $\langle b, a, c\rangle$. Words, i.e., sequences of symbols, are of crucial importance in computer science, of course. By convention, we count elements of X as sequences of length 1, and \varnothing as the sequence of length 0 . The set of all words over X then is

$$
X^{*}=\{\varnothing\} \cup X \cup X^{2} \cup X^{3} \cup \ldots
$$

Problems

Problem 1.1. Show that there is only one empty set, i.e., show that if X and Y are sets without members, then $X=Y$.

Problem 1.2. List all subsets of $\{a, b, c, d\}$.
Problem 1.3. Show that if X has n elements, then $\wp(X)$ has 2^{n} elements.
Problem 1.4. Prove rigorously that if $X \subseteq Y$, then $X \cup Y=Y$.
Problem 1.5. Prove rigorously that if $X \subseteq Y$, then $X \cap Y=X$.
Problem 1.6. Prove in detail that $X \cup(X \cap Y)=X$. Then compress it into a "textbook proof." (Hint: for the $X \cup(X \cap Y) \subseteq X$ direction you will need proof by cases, aka VElim.)

Problem 1.7. List all elements of $\{1,2,3\}^{3}$.
Problem 1.8. Show that if X has n elements, then X^{k} has n^{k} elements.

Chapter 2

Relations

2.1 Relations as Sets

You will no doubt remember some interesting relations between objects of some of the sets we've mentioned. For instance, numbers come with an order relation < and from the theory of whole numbers the relation of divisibility without remainder (usually written $n \mid m$) may be familar. There is also the relation is identical with that every object bears to itself and to no other thing. But there are many more interesting relations that we'll encounter, and even more possible relations. Before we review them, we'll just point out that we can look at relations as a special sort of set. For this, first recall what a pair is: if a and b are two objects, we can combine them into the ordered pair $\langle a, b\rangle$. Note that for ordered pairs the order does matter, e.g, $\langle a, b\rangle \neq\langle b, a\rangle$, in contrast to unordered pairs, i.e., 2 -element sets, where $\{a, b\}=\{b, a\}$.

If X and Y are sets, then the Cartesian product $X \times Y$ of X and Y is the set of all pairs $\langle a, b\rangle$ with $a \in X$ and $b \in Y$. In particular, $X^{2}=X \times X$ is the set of all pairs from X.

Now consider a relation on a set, e.g., the <-relation on the set \mathbb{N} of natural numbers, and consider the set of all pairs of numbers $\langle n, m\rangle$ where $n<m$, i.e.,

$$
R=\{\langle n, m\rangle: n, m \in \mathbb{N} \text { and } n<m\} .
$$

Then there is a close connection between the number n being less than a number m and the corresponding pair $\langle n, m\rangle$ being a member of R, namely, $n<m$ if and only if $\langle n, m\rangle \in R$. In a sense we can consider the set R to be the $<-$ relation on the set \mathbb{N}. In the same way we can construct a subset of \mathbb{N}^{2} for any relation between numbers. Conversely, given any set of pairs of numbers $S \subseteq \mathbb{N}^{2}$, there is a corresponding relation between numbers, namely, the relationship n bears to m if and only if $\langle n, m\rangle \in S$. This justifies the following definition:

Definition 2.1 (Binary relation). A binary relation on a set X is a subset of X^{2}. If $R \subseteq X^{2}$ is a binary relation on X and $x, y \in X$, we write $R x y$ (or $x R y$) for $\langle x, y\rangle \in R$.

Example 2.2. The set \mathbb{N}^{2} of pairs of natural numbers can be listed in a 2dimensional matrix like this:

$\langle\mathbf{0}, \mathbf{0}\rangle$	$\langle 0,1\rangle$	$\langle 0,2\rangle$	$\langle 0,3\rangle$	\ldots
$\langle 1,0\rangle$	$\langle\mathbf{1}, \mathbf{1}\rangle$	$\langle 1,2\rangle$	$\langle 1,3\rangle$	\ldots
$\langle 2,0\rangle$	$\langle 2,1\rangle$	$\langle\mathbf{2}, \mathbf{2}\rangle$	$\langle 2,3\rangle$	\ldots
$\langle 3,0\rangle$	$\langle 3,1\rangle$	$\langle 3,2\rangle$	$\langle\mathbf{3}, \mathbf{3}\rangle$	\ldots
\vdots	\vdots	\vdots	\vdots	\ddots

The subset consisting of the pairs lying on the diagonal, i.e.,

$$
\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,2\rangle, \ldots\}
$$

is the identity relation on \mathbb{N}. (Since the identity relation is popular, let's define $\operatorname{Id}_{X}=\{\langle x, x\rangle: x \in X\}$ for any set X.) The subset of all pairs lying above the diagonal, i.e.,

$$
L=\{\langle 0,1\rangle,\langle 0,2\rangle, \ldots,\langle 1,2\rangle,\langle 1,3\rangle, \ldots,\langle 2,3\rangle,\langle 2,4\rangle, \ldots\}
$$

is the less than relation, i.e., Lnm iff $n<m$. The subset of pairs below the diagonal, i.e.,

$$
G=\{\langle 1,0\rangle,\langle 2,0\rangle,\langle 2,1\rangle,\langle 3,0\rangle,\langle 3,1\rangle,\langle 3,2\rangle, \ldots\}
$$

is the greater than relation, i.e., Gnm iff $n>m$. The union of L with $I, K=L \cup I$, is the less than or equal to relation: $K n m$ iff $n \leq m$. Similarly, $H=G \cup I$ is the greater than or equal to relation. L, G, K, and H are special kinds of relations called orders. L and G have the property that no number bears L or G to itself (i.e., for all n, neither $L n n$ nor $G n n$). Relations with this property are called antireflexive, and, if they also happen to be orders, they are called strict orders.

Although orders and identity are important and natural relations, it should be emphasized that according to our definition any subset of X^{2} is a relation on X, regardless of how unnatural or contrived it seems. In particular, \varnothing is a relation on any set (the empty relation, which no pair of elements bears), and X^{2} itself is a relation on X as well (one which every pair bears), called the universal relation. But also something like $E=\{\langle n, m\rangle: n>5$ or $m \times n \geq 34\}$ counts as a relation.

2.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have been given special names. For instance, \leq and \subseteq both relate their respective domains

2.3. ORDERS

(say, \mathbb{N} in the case of \leq and $\wp(X)$ in the case of \subseteq) in similar ways. To get at exactly how these relations are similar, and how they differ, we categorize them according to some special properties that relations can have. It turns out that (combinations of) some of these special properties are especially important: orders and equivalence relations.

Definition 2.3 (Reflexivity). A relation $R \subseteq X^{2}$ is reflexive iff, for every $x \in X$, Rxx.

Definition 2.4 (Transitivity). A relation $R \subseteq X^{2}$ is transitive iff, whenever $R x y$ and Ryz, then also $R x z$.

Definition 2.5 (Symmetry). A relation $R \subseteq X^{2}$ is symmetric iff, whenever $R x y$, then also Ryx.

Definition 2.6 (Anti-symmetry). A relation $R \subseteq X^{2}$ is anti-symmetric iff, whenever both $R x y$ and $R y x$, then $x=y$ (or, in other words: if $x \neq y$ then either $\neg R x y$ or $\neg R y x$).

In a symmetric relation, Rxy and Ryx always hold together, or neither holds. In an anti-symmetric relation, the only way for Rxy and Ryx to hold together is if $x=y$. Note that this does not require that Rxy and Ryx holds when $x=y$, only that it isn't ruled out. So an anti-symmetric relation can be reflexive, but it is not the case that every anti-symmetric relation is reflexive. Also note that being anti-symmetric and merely not being symmetric are different conditions. In fact, a relation can be both symmetric and anti-symmetric at the same time (e.g., the identity relation is).

Definition 2.7 (Connectivity). A relation $R \subseteq X^{2}$ is connected if for all $x, y \in X$, if $x \neq y$, then either Rxy or Ryx.
Definition 2.8 (Partial order). A relation $R \subseteq X^{2}$ that is reflexive, transitive, and anti-symmetric is called a partial order.

Definition 2.9 (Linear order). A partial order that is also connected is called a linear order.

Definition 2.10 (Equivalence relation). A relation $R \subseteq X^{2}$ that is reflexive, symmetric, and transitive is called an equivalence relation.

2.3 Orders

Definition 2.11 (Preorder). A relation which is both reflexive and transitive is called a preorder.

Definition 2.12 (Partial order). A preorder which is also anti-symmetric is called a partial order.

Definition 2.13 (Total order). A partial order which is also connected is called a total order or linear order. (If we want to emphasize that the order is reflexive, we add the adjective "weak"-see below).

Example 2.14. Every linear order is also a partial order, and every partial order is also a preorder, but the converses don't hold. For instance, the identity relation and the full relation on X are preorders, but they are not partial orders, because they are not anti-symmetric (if X has more than one element). For a somewhat less silly example, consider the no longer than relation \preccurlyeq on \mathbb{B}^{*} : $x \preccurlyeq y$ iff len $(x) \leq \operatorname{len}(y)$. This is a preorder, even a linear preorder, but not a partial order.

The relation of divisibility without remainder gives us an example of a partial order which isn't a linear order: for integers n, m, we say n (evenly) divides m, in symbols: $n \mid m$, if there is some k so that $m=k n$. On \mathbb{N}, this is a partial order, but not a linear order: for instance, $2 \nmid 3$ and also $3 \nmid 2$. Considered as a relation on \mathbb{Z}, divisibility is only a preorder since anti-symmetry fails: $1 \mid-1$ and $-1 \mid 1$ but $1 \neq-1$. Another important partial order is the relation \subseteq on a set of sets.

Notice that the examples L and G from Example 2.2, although we said there that they were called "strict orders" are not linear orders even though they are connected (they are not reflexive). But there is a close connection, as we will see momentarily.

Definition 2.15 (Irreflexivity). A relation R on X is called irreflexive if, for all $x \in X, \neg R x x$.

Definition 2.16 (Asymmetry). A relation R on X is called asymmetric if for no pair $x, y \in X$ we have $R x y$ and $R y x$.

Definition 2.17 (Strict partial order). A strict partial order is a relation which is irreflexive, asymmetric, and transitive.

Definition 2.18 (Strict linear order). A strict partial order which is also connected is called a strict linear order.

A strict partial order on X can be turned into a weak partial order by adding the diagonal Id_{X}, i.e., adding all the pairs $\langle x, x\rangle$. (This is called the reflexive closure of R.) Conversely, starting from a weak partial order, one can get a strict partial order by removing Id_{X}.

Proposition 2.19. 1. If R is a strict partial (linear) order on X, then $R^{+}=R \cup$ Id_{X} is a weak partial (linear) order.
2. If R is a weak partial (linear) order on X, then $R^{-}=R \backslash \operatorname{Id}_{X}$ is a strict partial (linear) order.

Proof. 1. Suppose R is a strict partial order, i.e., $R \subseteq X^{2}$ and R is irreflexive, asymmetric, and transitive. Let $R^{+}=R \cup \operatorname{Id}_{X}$. We have to show that R^{+}is reflexive, antisymmetric, and transitive.
R^{+}is clearly reflexive, since for all $x \in X,\langle x, x\rangle \in \operatorname{Id}_{X} \subseteq R^{+}$.
To show R^{+}is antisymmetric, suppose $R^{+} x y$ and $R^{+} y x$, i.e., $\langle x, y\rangle$ and $\langle y, x\rangle \in R^{+}$, and $x \neq y$. Since $\langle x, y\rangle \in R \cup \operatorname{Id}_{X}$, but $\langle x, y\rangle \notin \operatorname{Id}_{X}$, we must have $\langle x, y\rangle \in$ R, i.e., $R x y$. Similarly we get that Ryx. But this contradicts the assumption that R is asymmetric.
Now suppose that $R^{+} x y$ and $R^{+} y z$. If both $\langle x, y\rangle \in R$ and $\langle y, z\rangle \in R$, it follows that $\langle x, z\rangle \in R$ since R is transitive. Otherwise, either $\langle x, y\rangle \in$ Id_{X}, i.e., $x=y$, or $\langle y, z\rangle \in \operatorname{Id}_{X}$, i.e., $y=z$. In the first case, we have that $R^{+} y z$ by assumption, $x=y$, hence $R^{+} x z$. Similarly in the second case. In either case, $R^{+} x z$, thus, R^{+}is also transitive.
If R is linear, then for all $x \neq y$, either $R x y$ or $R y x$, i.e., either $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$. Since $R \subseteq R^{+}$, this remains true of R^{+}, so R^{+}is linear as well.

2. Exercise.

Example 2.20. \leq is the weak linear order corresponding to the strict linear order $<. \subseteq$ is the weak partial order corresponding to the strict partial order \subsetneq.

2.4 Graphs

A graph is a diagram in which points-called "nodes" or "vertices" (plural of "vertex")-are connected by edges. Graphs are a ubiquitous tool in descrete mathematics and in computer science. They are incredibly useful for representing, and visualizing, relationships and structures, from concrete things like networks of various kinds to abstract structures such as the possible outcomes of decisions. There are many different kinds of graphs in the literature which differ, e.g., according to whether the edges are directed or not, have labels or not, whether there can be edges from a node to the same node, multiple edges between the same nodes, etc. Directed graphs have a special connection to relations.

Definition 2.21 (Directed graph). A directed graph $G=\langle V, E\rangle$ is a set of vertices V and a set of edges $E \subseteq V^{2}$.

According to our definition, a graph just is a set together with a relation on that set. Of course, when talking about graphs, it's only natural to expect that they are graphically represented: we can draw a graph by connecting two vertices v_{1} and v_{2} by an arrow iff $\left\langle v_{1}, v_{2}\right\rangle \in E$. The only difference between a relation by itself and a graph is that a graph specifies the set of vertices, i.e., a
graph may have isolated vertices. The important point, however, is that every relation R on a set X can be seen as a directed graph $\langle X, R\rangle$, and conversely, a directed graph $\langle V, E\rangle$ can be seen as a relation $E \subseteq V^{2}$ with the set V explicitly specified.

Example 2.22. The graph $\langle V, E\rangle$ with $V=\{1,2,3,4\}$ and $E=\{\langle 1,1\rangle,\langle 1,2\rangle$, $\langle 1,3\rangle,\langle 2,3\rangle\}$ looks like this:

This is a different graph than $\left\langle V^{\prime}, E\right\rangle$ with $V^{\prime}=\{1,2,3\}$, which looks like this:

2.5 Operations on Relations

It is often useful to modify or combine relations. We've already used the union of relations above (which is just the union of two relations considered as sets of pairs). Here are some other ways:
Definition 2.23. Let $R, S \subseteq X^{2}$ be relations and Y a set.

1. The inverse R^{-1} of R is $R^{-1}=\{\langle y, x\rangle:\langle x, y\rangle \in R\}$.
2. The relative product $R \mid S$ of R and S is

$$
(R \mid S)=\{\langle x, z\rangle: \text { for some } y, R x y \text { and } S y z\}
$$

3. The restriction $R \upharpoonright Y$ of R to Y is $R \cap Y^{2}$
4. The application $R[Y]$ of R to Y is

$$
R[Y]=\{y: \text { for some } x \in Y, R x y\}
$$

2.5. OPERATIONS ON RELATIONS

Example 2.24. Let $S \subseteq \mathbb{Z}^{2}$ be the successor relation on \mathbb{Z}, i.e., the set of pairs $\langle x, y\rangle$ where $x+1=y$, for $x, y \in \mathbb{Z}$. Sxy holds iff y is the successor of x.

1. The inverse S^{-1} of S is the predecessor relation, i.e., $S^{-1} x y$ iff $x-1=y$.
2. The relative product $S \mid S$ is the relation x bears to y if $x+2=y$.
3. The restriction of S to \mathbb{N} is the successor relation on \mathbb{N}.
4. The application of S to a set, e.g., $S[\{1,2,3\}]$ is $\{2,3,4\}$.

Definition 2.25 (Transitive closure). The transitive closure R^{+}of a relation $R \subseteq$ X^{2} is $R^{+}=\bigcup_{i=1}^{\infty} R^{i}$ where $R^{1}=R$ and $R^{i+1}=R^{i} \mid R$.

The reflexive transitive closure of R is $R^{*}=R^{+} \cup I_{X}$.
Example 2.26. Take the successor relation $S \subseteq \mathbb{Z}^{2} . S^{2} x y$ iff $x+2=y, S^{3} x y$ iff $x+3=y$, etc. So $R^{*} x y$ iff for some $i \geq 1, x+i=y$. In other words, $S^{+} x y$ iff $x<y$ (and $R^{*} x y$ iff $\left.x \leq y\right)$.

Problems

Problem 2.1. List the elements of the relation \subseteq on the set $\wp(\{a, b, c\})$.
Problem 2.2. Give examples of relations that are (a) reflexive and symmetric but not transitive, (b) reflexive and anti-symmetric, (c) anti-symmetric, transitive, but not reflexive, and (d) reflexive, symmetric, and transitive. Do not use relations on numbers or sets.

Problem 2.3. Complete the proof of Proposition 2.19, i.e., prove that if R is a weak partial order on X, then $R^{-}=R \backslash \operatorname{Id}_{X}$ is a strict partial order.

Problem 2.4. Consider the less-than-or-equal-to relation \leq on the set $\{1,2,3,4\}$ as a graph and draw the corresponding diagram.

Problem 2.5. Show that the transitive closure of R is in fact transitive.

Chapter 3

Functions

3.1 Basics

A function is a mapping of which pairs each object of a given set with a unique partner. For instance, the operation of adding 1 defines a function: each number n is paired with a unique number $n+1$. More generally, functions may take pairs, triples, etc., of inputs and returns some kind of output. Many functions are familiar to us from basic arithmetic. For instance, addition and multiplication are functions. They take in two numbers and return a third. In this mathematical, abstract sense, a function is a black box: what matters is only what output is paired with what input, not the method for calculating the output.

Definition 3.1 (Function). A function $f: X \rightarrow Y$ is a mapping of each element of X to an element of Y. We call X the domain of f and Y the codomain of f. The range $\operatorname{ran}(f)$ of f is the subset of the codomain that is actually output by f for some input.

Example 3.2. Multiplication takes pairs of natural numbers as inputs and maps them to natural numbers as outputs, so goes from $\mathbb{N} \times \mathbb{N}$ (the domain) to \mathbb{N} (the codomain). As it turns out, the range is also \mathbb{N}, since every $n \in \mathbb{N}$ is $n \times 1$.

Multiplication is a function because it pairs each input-each pair of natural numbers-with a single output: $x: \mathbb{N}^{2} \rightarrow \mathbb{N}$. By contrast, the square root operation applied to the domain \mathbb{N} is not functional, since each positive integer n has two square roots: \sqrt{n} and $-\sqrt{n}$. We can make it functional by only returning the positive square root: $\sqrt{ }: \mathbb{N} \rightarrow \mathbb{R}$. The relation that pairs each student in a class with their final grade is a function-no student can get two different final grades in the same class. The relation that pairs each student in a class with their parents is not a function-generally each student will have at least two parents.

3.2. KINDS OF FUNCTIONS

Example 3.3. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined such that $f(x)=x+1$. This is a definition that specifies f as a function which takes in natural numbers and outputs natural numbers. It tells us that, given a natural number x, f will output its successor $x+1$. In this case, the codomain \mathbb{N} is not the range of f, since the natural number 0 is not the successor of any natural number. The range of f is the set of all positive integers, \mathbb{Z}^{+}.

Example 3.4. Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be defined such that $g(x)=x+2-1$. This tells us that g is a function which takes in natural numbers and outputs natural numbers. Given a natural number n, g will output the predecessor of the successor of the successor of x, i.e., $x+1$. Despite their different definitions, g and f are the same function.

Functions f and g defined above are the same because for any natural number $x, x+2-1=x+1$. f and g pair each natural number with the same output. The definitions for f and g specify the same mapping by means of different equations, and so count as the same function.

Example 3.5. We can also define functions by cases. For instance, we could define $h: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
h(x)= \begin{cases}\frac{x}{2} & \text { if } x \text { is even } \\ \frac{x+1}{2} & \text { if } x \text { is odd }\end{cases}
$$

Since every natural number is either even or odd, the output of this function will always be a natural number. Just remember that if you define a function by cases, every possible input must fall into exactly one case.

3.2 Kinds of Functions

Definition 3.6 (Surjective function). A function $f: X \rightarrow Y$ is surjective iff Y is also the range of f, i.e., for every $y \in Y$ there is at least one $x \in X$ such that $f(x)=y$.

If you want to show that a function is surjective, then you need to show that every object in the codomain is the output of the function given some input or other.

Definition 3.7 (Injective function). A function $f: X \rightarrow Y$ is injective iff for each $y \in Y$ there is at most one $x \in X$ such that $f(x)=y$.

Any function pairs each possible input with a unique output. An injective function has a unique input for each possible output. If you want to show that a function f is injective, you need to show that for any element y of the codomain, if $f(x)=y$ and $f(w)=y$, then $x=w$.

A function which is neither injective, nor surjective, is the constant function $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(x)=1$.

A function which is both injective and surjective is the identity function $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(x)=x$.

The successor function $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(x)=x+1$ is injective, but not surjective.

The function

$$
f(x)= \begin{cases}\frac{x}{2} & \text { if } x \text { is even } \\ \frac{x+1}{2} & \text { if } x \text { is odd }\end{cases}
$$

is surjective, but not injective.
Definition 3.8 (Bijection). A function $f: X \rightarrow Y$ is bijective iff it is both surjective and injective. We call such a function a bijection from X to Y (or between X and Y).

3.3 Inverses of Functions

One obvious question about functions is whether a given mapping can be "reversed." For instance, the successor function $f(x)=x+1$ can be reversed in the sense that the function $g(y)=y-1$ "undos" what f does. But we must be careful: While the definition of g defines a function $\mathbb{Z} \rightarrow \mathbb{Z}$, it does not define a function $\mathbb{N} \rightarrow \mathbb{N}(g(0) \notin \mathbb{N})$. So even in simple cases, it is not quite obvious if functions can be reversed, and that it may depend on the domain and codomain. Let's give a precise definition.

Definition 3.9. A function $g: Y \rightarrow X$ is an inverse of a function $f: X \rightarrow Y$ if $f(g(y))=y$ and $g(f(x))=x$ for all $x \in X$ and $y \in Y$.

When do functions have inverses? A good candidate for an inverse of $f: X \rightarrow Y$ is $g: Y \rightarrow X$ "defined by"

$$
g(y)=\text { "the" } x \text { such that } f(x)=y
$$

The scare quotes around "defined by" suggest that this is not a definition. At least, it is not in general. For in order for this definition to specify a function, there has to be one and only one x such that $f(x)=y$-the output of g has to be uniquely specified. Moreover, it has to be specified for every $y \in Y$. If there are x_{1} and $x_{2} \in X$ with $x_{1} \neq x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $g(y)$ would not be uniquely specified for $y=f\left(x_{1}\right)=f\left(x_{2}\right)$. And if there is no x at all such that $f(x)=y$, then $g(y)$ is not specified at all. In other words, for g to be defined, f has to be injective and surjective.

Proposition 3.10. If $f: X \rightarrow Y$ is bijective, f has a unique inverse $f^{-1}: Y \rightarrow X$.
Proof. Exercise.

3.4. COMPOSITION OF FUNCTIONS

3.4 Composition of Functions

We have already seen that the inverse f^{-1} of a bijective function f is itself a function. It is also possible to compose functions f and g to define a new function by first applying f and then g. Of course, this is only possible if the domains and codomains match, i.e., the codomain of f must be a subset of the domain of g.

Definition 3.11 (Composition). Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. The composition of f with g is the function $(g \circ f): X \rightarrow Z$, where $(g \circ f)(x)=g(f(x))$.

The function $(g \circ f): X \rightarrow Z$ pairs each member of X with a member of Z. We specify which member of Z a member of X is paired with as followsgiven an input $x \in X$, first apply the function f to x, which will output some $y \in Y$. Then apply the function g to y, which will output some $z \in Z$.

Example 3.12. Consider the functions $f(x)=x+1$, and $g(x)=2 x$. What function do you get when you compose these two? $(g \circ f)(x)=g(f(x))$. So that means for every natural number you give this function, you first add one, and then you multiply the result by two. So their composition is $(g \circ f)(x)=$ $2(x+1)$.

3.5 Isomorphism

An isomorphism is a bijection that preserves the structure of the sets it relates, where structure is a matter of the relationships that obtain between the elements of the sets. Consider the following two sets $X=\{1,2,3\}$ and $Y=\{4,5,6\}$. These sets are both structured by the relations successor, less than, and greater than. An isomorphism between the two sets is a bijection that preserves those structures. So a bijective function $f: X \rightarrow Y$ is an isomorphism if, $i<j$ iff $f(i)<f(j), i>j$ iff $f(i)>f(j)$, and j is the successor of i iff $f(j)$ is the successor of $f(i)$.

Definition 3.13 (Isomorphism). Let U be the pair $\langle X, R\rangle$ and V be the pair $\langle Y, S\rangle$ such that X and Y are sets and R and S are relations on X and Y respectively. A bijection f from X to Y is an isomorphism from U to V iff it preserves the relational structure, that is, for any x_{1} and x_{2} in $X,\left\langle x_{1}, x_{2}\right\rangle \in R$ iff $\left\langle f\left(x_{1}\right), f\left(x_{2}\right)\right\rangle \in S$.

Example 3.14. Consider the following two sets $X=\{1,2,3\}$ and $Y=\{4,5,6\}$, and the relations less than and greater than. The function $f: X \rightarrow Y$ where $f(x)=7-x$ is an isomorphism between $\langle X,<\rangle$ and $\langle Y,>\rangle$.

3.6 Partial Functions

It is sometimes useful to relax the definition of function so that it is not required that the output of the function is defined for all possible inputs. Such mappings are called partial functions.

Definition 3.15. A partial function $f: X \rightarrow Y$ is a mapping which assigns to every element of X at most one element of Y. If f assigns an element of Y to $x \in X$, we say $f(x)$ is defined, and otherwise undefined. If $f(x)$ is defined, we write $f(x) \downarrow$, otherwise $f(x) \uparrow$. The domain of a partial function f is the subset of X where it is defined, i.e., $\operatorname{dom}(f)=\{x: f(x) \downarrow\}$.

Example 3.16. Every function $f: X \rightarrow Y$ is also a partial function. Partial functions that are defined everywhere on X-i.e., what we so far have simply called a function-are also called total functions.

Example 3.17. The partial function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=1 / x$ is undefined for $x=0$, and defined everywhere else.

3.7 Functions and Relations

A function which maps elements of X to elements of Y obviously defines a relation between X and Y, namely the relation which holds between x and y iff $f(x)=y$. In fact, we might even-if we are interested in reducing the building blocks of mathematics for instance-identify the function f with this relation, i.e., with a set of pairs. This then raises the question: which relations define functions in this way?

Definition 3.18 (Graph of a function). Let $f: X \rightarrow Y$ be a partial function. The graph of f is the relation $R_{f} \subseteq X \times Y$ defined by

$$
R_{f}=\{\langle x, y\rangle: f(x)=y\}
$$

Proposition 3.19. Suppose $R \subseteq X \times Y$ has the property that whenever $R x y$ and $R x y^{\prime}$ then $y=y^{\prime}$. Then R is the graph of the partial function $f: X \rightarrow Y$ defined by: if there is a y such that $R x y$, then $f(x)=y$, otherwise $f(x) \uparrow$. If R is also serial, i.e., for each $x \in X$ there is $a y \in Y$ such that Rxy, then f is total.

Proof. Suppose there is a y such that $R x y$. If there were another $y^{\prime} \neq y$ such that $R x y^{\prime}$, the condition on R would be violated. Hence, if there is a y such that $R x y$, that y is unique, and so f is well-defined. Obviously, $R_{f}=R$ and f is total if R is serial.

3.7. FUNCTIONS AND RELATIONS

Problems

Problem 3.1. Show that if f is bijective, an inverse g of f exists, i.e., define such a g, show that it is a function, and show that it is an inverse of f, i.e., $f(g(y))=y$ and $g(f(x))=x$ for all $x \in X$ and $y \in Y$.

Problem 3.2. Show that if $f: X \rightarrow Y$ has an inverse g, then f is bijective.
Problem 3.3. Show that if $g: Y \rightarrow X$ and $g^{\prime}: Y \rightarrow X$ are inverses of $f: X \rightarrow Y$, then $g=g^{\prime}$, i.e., for all $y \in Y, g(y)=g^{\prime}(y)$.

Problem 3.4. Show that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both injective, then $g \circ f: X \rightarrow Z$ is injective.

Problem 3.5. Show that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both surjective, then $g \circ f: X \rightarrow Z$ is surjective.

Problem 3.6. Given $f: X \rightarrow Y$, define the partial function $g: Y \rightarrow X$ by: for any $y \in Y$, if there is a unique $x \in X$ such that $f(x)=y$, then $g(y)=x$; otherwise $g(y) \uparrow$. Show that if f is injective, then $g(f(x))=x$ for all $x \in$ $\operatorname{dom}(f)$, and $f(g(y))=y$ for all $y \in \operatorname{ran}(f)$.

Problem 3.7. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Show that the graph of $(g \circ f)$ is $R_{f} \mid R_{g}$.

Chapter 4

The Size of Sets

4.1 Introduction

When Georg Cantor developed set theory in the 1870s, his interest was in part to make palatable the idea of an infinite collection-an actual infinity, as the medievals would say. Key to this rehabilitation of the notion of the infinite was a way to assign sizes-"cardinalities"-to sets. The cardinality of a finite set is just a natural number, e.g., \varnothing has cardinality 0 , and a set containing five things has cardinality 5 . But what about infinite sets? Do they all have the same cardinality, ∞ ? It turns out, they do not.

The first important idea here is that of an enumeration. We can list every finite set by listing all its elements. For some infinite sets, we can also list all their elements if we allow the list itself to be infinite. Such sets are called enumerable. Cantor's surprising result was that some infinite sets are not enumerable.

4.2 Enumerable Sets

Definition 4.1 (Enumeration). Informally, an enumeration of a set X is a list (possibly infinite) such that every element of X appears some finite number of places into the list. If X has an enumeration, then X is said to be enumerable. If X is enumerable and infinite, we say X is denumerable.

A couple of points about enumerations:

1. The order of elements of X in the enumeration does not matter, as long as every element appears: $4,1,25,16,9$ enumerates the (set of the) first five square numbers just as well as $1,4,9,16,25$ does.
2. Redundant enumerations are still enumerations: $1,1,2,2,3,3, \ldots$ enumerates the same set as $1,2,3, \ldots$ does.

4.2. ENUMERABLE SETS

3. Order and redundancy do matter when we specify an enumeration: we can enumerate the natural numbers beginning with $1,2,3,1, \ldots$, but the pattern is easier to see when enumerated in the standard way as $1,2,3$, 4, ...
4. Enumerations must have a beginning: ..., 3, 2, 1 is not an enumeration of the natural numbers because it has no first element. To see how this follows from the informal definition, ask yourself, "at what place in the list does the number 76 appear?"
5. The following is not an enumeration of the natural numbers: $1,3,5, \ldots$, $2,4,6, \ldots$ The problem is that the even numbers occur at places $\infty+1$, $\infty+2, \infty+3$, rather than at finite positions.
6. Lists may be gappy: $2,-, 4,-, 6,-, \ldots$ enumerates the even natural numbers.
7. The empty set is enumerable: it is enumerated by the empty list!

The following provides a more formal definition of an enumeration:
Definition 4.2 (Enumeration). An enumeration of a set X is any surjective function $f: \mathbb{N} \rightarrow X$.

Let's convince ourselves that the formal definition and the informal definition using a possibly gappy, possibly infinite list are equivalent. A surjective function (partial or total) from \mathbb{N} to a set X enumerates X. Such a function determines an enumeration as defined informally above. Then an enumeration for X is the list $f(0), f(1), f(2), \ldots$ Since f is surjective, every element of X is guaranteed to be the value of $f(n)$ for some $n \in \mathbb{N}$. Hence, every element of X appears at some finite place in the list. Since the function may be partial or not injective, the list may be gappy or redundant, but that is acceptable (as noted above). On the other hand, given a list that enumerates all elements of X, we can define a surjective function $f: \mathbb{N} \rightarrow X$ by letting $f(n)$ be the $(n+1)$ st member of the list, or undefined if the list has a gap in the $(n+1)$ st spot.

Example 4.3. A function enumerating the natural numbers (\mathbb{N}) is simply the identity function given by $f(n)=n$.

Example 4.4. The functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
\begin{align*}
& f(n)=2 n \text { and } \tag{4.1}\\
& g(n)=2 n+1 \tag{4.2}
\end{align*}
$$

enumerate the even natural numbers and the odd natural numbers, respectively. However, neither function is an enumeration of \mathbb{N}, since neither is surjective.

Example 4.5. The function $f(n)=\left\lceil\frac{(-1)^{n} n}{2}\right\rceil$ (where $\lceil x\rceil$ denotes the ceiling function, which rounds x up to the nearest integer) enumerates the set of integers \mathbb{Z}. Notice how f generates the values of \mathbb{Z} by "hopping" back and forth between positive and negative integers:

$$
\begin{array}{ccccccc}
f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & \ldots \\
\left\lceil-\frac{1}{2}\right\rceil & \left\lceil\frac{2}{2}\right\rceil & \left\lceil-\frac{3}{2}\right\rceil & \left\lceil\frac{4}{2}\right\rceil & \left\lceil-\frac{5}{2}\right\rceil & \left\lceil\frac{6}{2}\right\rceil & \ldots \\
0 & 1 & -1 & 2 & -2 & 3 & \ldots
\end{array}
$$

That is fine for "easy" sets. What about the set of, say, pairs of natural numbers?

$$
\mathbb{N}^{2}=\mathbb{N} \times \mathbb{N}=\{\langle n, m\rangle: n, m \in \mathbb{N}\}
$$

Another method we can use to enumerate sets is to organize them in an array, such as the following:

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	\ldots
$\mathbf{1}$	$\langle 1,1\rangle$	$\langle 1,2\rangle$	$\langle 1,3\rangle$	$\langle 1,4\rangle$	\ldots
$\mathbf{2}$	$\langle 2,1\rangle$	$\langle 2,2\rangle$	$\langle 2,3\rangle$	$\langle 2,4\rangle$	\ldots
$\mathbf{3}$	$\langle 3,1\rangle$	$\langle 3,2\rangle$	$\langle 3,3\rangle$	$\langle 3,4\rangle$	\ldots
$\mathbf{4}$	$\langle 4,1\rangle$	$\langle 4,2\rangle$	$\langle 4,3\rangle$	$\langle 4,4\rangle$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Clearly, every ordered pair in \mathbb{N}^{2} will appear at least once in the array. In particular, $\langle n, m\rangle$ will appear in the nth column and m th row. But how do we organize the elements of an array into a list? The pattern in the array below demonstrates one way to do this:

	1	2	4	7	\ldots
	3	5	8	\ldots	\ldots
	6	9	\ldots	\ldots	\ldots
	10	\ldots	\ldots	\ldots	\ldots
	\vdots	\vdots	\vdots	\vdots	\ddots

This pattern is called Cantor's zig-zag method. Other patterns are perfectly permissible, as long as they "zig-zag" through every cell of the array. By Cantor's zig-zag method, the enumeration for \mathbb{N}^{2} according to this scheme would be:

$$
\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 2,2\rangle,\langle 3,1\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 3,2\rangle,\langle 4,1\rangle, \ldots
$$

What ought we do about enumerating, say, the set of ordered triples of natural numbers?

$$
\mathbb{N}^{3}=\mathbb{N} \times \mathbb{N} \times \mathbb{N}=\{\langle n, m, k\rangle: n, m, k \in \mathbb{N}\}
$$

4.3. NON-ENUMERABLE SETS

We can think of \mathbb{N}^{3} as the Cartesian product of \mathbb{N}^{2} and \mathbb{N}, that is,

$$
\mathbb{N}^{3}=\mathbb{N}^{2} \times \mathbb{N}=\left\{\langle\langle n, m\rangle, k\rangle:\langle n, m\rangle \in \mathbb{N}^{2}, k \in \mathbb{N}\right\}
$$

and thus we can enumerate \mathbb{N}^{3} with an array by labelling one axis with the enumeration of \mathbb{N}, and the other axis with the enumeration of \mathbb{N}^{2} :

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	\ldots
$\langle\mathbf{1}, \mathbf{1}\rangle$	$\langle 1,1,1\rangle$	$\langle 1,1,2\rangle$	$\langle 1,1,3\rangle$	$\langle 1,1,4\rangle$	\ldots
$\langle\mathbf{1}, \mathbf{2}\rangle$	$\langle 1,2,1\rangle$	$\langle 1,2,2\rangle$	$\langle 1,2,3\rangle$	$\langle 1,2,4\rangle$	\ldots
$\langle\mathbf{2}, \mathbf{1}\rangle$	$\langle 2,1,1\rangle$	$\langle 2,1,2\rangle$	$\langle 2,1,3\rangle$	$\langle 2,1,4\rangle$	\ldots
$\langle\mathbf{1}, \mathbf{3}\rangle$	$\langle 1,3,1\rangle$	$\langle 1,3,2\rangle$	$\langle 1,3,3\rangle$	$\langle 1,3,4\rangle$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Thus, by using a method like Cantor's zig-zag method, we may similarly obtain an enumeration of \mathbb{N}^{3}.

4.3 Non-enumerable Sets

Some sets, such as the set \mathbb{N} of natural numbers, are infinite. So far we've seen examples of infinite sets which were all enumerable. However, there are also infinite sets which do not have this property. Such sets are called nonenumerable.

First of all, it is perhaps already surprising that there are non-enumerable sets. For any enumerable set X there is a surjective function $f: \mathbb{N} \rightarrow X$. If a set is non-enumerable there is no such function. That is, no function mapping the infinitely many elements of \mathbb{N} to X can exhaust all of X. So there are "more" elements of X than the infinitely many natural numbers.

How would one prove that a set is non-enumerable? You have to show that no such surjective function can exist. Equivalently, you have to show that the elements of X cannot be enumerated in a one way infinite list. The only way to do this is indirectly, by supposing hypothetically that such an enumeration exists and then showing that a contradiction follows from this assumption. The best way of doing this is Cantor's diagonal method. From the assumption that the elements of X can be enumerated as, say, x_{1}, x_{2}, \ldots, we construct another element of X which, by its construction, cannot possibly be on that list-which was, by assumption, an exhaustive list of all of X, hence the contradiction.

Our first example is the set \mathbb{B}^{ω} of all infinite, non-gappy sequences of 0 's and 1's.

Theorem 4.6. \mathbb{B}^{ω} is non-enumerable.
Proof. Suppose that \mathbb{B}^{ω} is enumerable, so that there is a list $s_{1}, s_{2}, s_{3}, s_{4}, \ldots$ of all the elements of \mathbb{B}^{ω}. Each of these s_{i} is itself an infinite sequence of 0 's and 1 's. Let's call the j-th element of the i-th sequence in this list $s_{i}(j)$.

We may arrange this list, and the elements of each sequence s_{i} in it, in an array:

	1	2	3	4	\ldots
1	$\mathbf{s}_{\mathbf{1}}(\mathbf{1})$	$s_{1}(2)$	$s_{1}(3)$	$s_{1}(4)$	\ldots
2	$s_{2}(1)$	$\mathbf{s}_{\mathbf{2}}(\mathbf{2})$	$s_{2}(3)$	$s_{2}(4)$	\ldots
3	$s_{3}(1)$	$s_{3}(2)$	$\mathbf{s}_{\mathbf{3}}(\mathbf{3})$	$s_{3}(4)$	\ldots
4	$s_{4}(1)$	$s_{4}(2)$	$s_{4}(3)$	$\mathbf{s}_{\mathbf{4}}(\mathbf{4})$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

The labels down the side give the number of the sequence in the list s_{1}, s_{2}, \ldots; the numbers across the top label the elements of the individual sequences. For instance, $s_{1}(1)$ is a name for whatever number, a 0 or a 1 , is the first element in the sequence s_{1}, and so on.

Now we construct an infinite sequence, \bar{s}, of 0 's and 1's which cannot possibly be on this list. The definition of \bar{s} will depend on the list s_{1}, s_{2}, \ldots Any infinite list of infinite sequences of 0's and 1's, hypothetical or otherwise, gives rise to an infinite sequence \bar{s} which is guaranteed to not appear on the list.

To define \bar{s}, we specify what all its elements are, i.e., we specify $\bar{s}(n)$ for all $n \in \mathbb{Z}^{+}$. We do this by reading down the diagonal of the array above (hence the name "diagonal method") and then changing every 1 to a 0 and every 1 to a 0 . More abstractly, we define $\bar{s}(n)$ to be 0 or 1 according to whether the n-th element of the diagonal, $s_{n}(n)$, is 1 or 0 .

$$
\bar{s}(n)= \begin{cases}1 & \text { if } s_{n}(n)=0 \\ 0 & \text { if } s_{n}(n)=1\end{cases}
$$

If you like formulas better than definitions by cases, you could also define $\bar{s}(n)=1-s_{n}(n)$.

Clearly \bar{s} is a non-gappy infinite sequence of 0 's and 1 's, since it is just the mirror sequence to the sequence of 0's and 1's that appear on the diagonal of our array. So \bar{s} is an element of \mathbb{B}^{ω}. But it cannot be on the list s_{1}, s_{2}, \ldots Why not?

It can't be the first sequence in the list, s_{1}, because it differs from s_{1} in the first element. Whatever $s_{1}(1)$ is, we defined $\bar{s}(1)$ to be the opposite. It can't be the second sequence in the list, because \bar{s} differs from s_{2} in the second element: if $s_{2}(2)$ is $0, \bar{s}(2)$ is 1 , and vice versa. And so on.

More precisely: if \bar{s} were on the list, there would be some k so that $\bar{s}=s_{k}$. Two sequences are identical iff they agree at every place, i.e., for any $n, \bar{s}(n)=$ $s_{k}(n)$. So in particular, taking $n=k$ as a special case, $\bar{s}(k)=s_{k}(k)$ would have to hold. $s_{k}(k)$ is either 0 or 1 . If it is 0 then $\bar{s}(k)$ must be 1 -that's how we defined \bar{s}. But if $s_{k}(k)=1$ then, again because of the way we defined \bar{s}, $\bar{s}(k)=0$. In either case $\bar{s}(k) \neq s_{k}(k)$.

We now have our contradiction: we started by assuming that there is a way to list all of \mathbb{B}^{ω} in a single list s_{1}, s_{2}, \ldots From this list we constructed

4.4. REDUCTION

a sequence \bar{s} which we proved cannot be on the list. But it definitely is a sequence of 0 's and 1 's if all the s_{i} are sequences of 0 's and 1 's, i.e., $\bar{s} \in \mathbb{B}^{\omega}$. This contradicts the assumption that every list in \mathbb{B}^{ω} appears on the list.

This proof method is called "diagonalization" because it uses the diagonal of the array to define \bar{s}. Diagonalization need not involve the presence of an array: we can show that sets are not enumerable by using a similar idea even when no array and no actual diagonal is involved.

Theorem 4.7. $\wp\left(\mathbb{Z}^{+}\right)$is not enumerable.
Proof. We proceed indirectly again: Suppose that $\wp\left(\mathbb{Z}^{+}\right)$is enumerable, and so it has an enumeration, i.e., a list of all subsets of \mathbb{Z}^{+}:

$$
Z_{1}, Z_{2}, Z_{3}, \ldots
$$

We now define a set \bar{Z} such that for any $n \in \mathbb{Z}^{+}, n \in \bar{Z}$ iff $n \notin Z_{n}$:

$$
\bar{Z}=\left\{n \in \mathbb{Z}^{+}: n \notin Z_{n}\right\}
$$

\bar{Z} is clearly a set of positive integers, since by assumption each Z_{n} is, and thus $\bar{Z} \in \wp\left(\mathbb{Z}^{+}\right)$. So \bar{Z} must be Z_{k} for some $k \in \mathbb{Z}^{+}$. And if that is the case, i.e., $\bar{Z}=Z_{k}$, then, for each $n \in \mathbb{Z}^{+}, n \in \bar{Z}$ iff $n \in Z_{k}$.

In particular, taking $n=k, k \in \bar{Z}$ iff $k \in Z_{k}$.
Now either $k \in Z_{k}$ or $k \notin Z_{k}$. In the first case, by the previous line, $k \in \bar{Z}$. But we've defined \bar{Z} so that it contains exactly those $i \in \mathbb{Z}^{+}$which are not elements of Z_{i}. So by that definition, we would have to also have $k \notin Z_{k}$. In the second case, $k \notin Z_{k}$. But now k satisfies the condition by which we have defined \bar{Z}, and that means that $k \in \bar{Z}$. And as $\bar{Z}=Z_{k}$, we get that $k \in Z_{k}$ after all. Either case leads to a contradiction.

4.4 Reduction

We showed $\wp\left(\mathbb{Z}^{+}\right)$to be non-enumerable by a diagonalization argument. However, with the proof that \mathbb{B}^{ω}, the set of all infinite sequences of 0 s and 1 s , is non-enumerable in place, we could have instead showed $\wp\left(\mathbb{Z}^{+}\right)$to be non-enumerable by showing that if $\wp\left(\mathbb{Z}^{+}\right)$is enumerable then \mathbb{B}^{ω} is also enumerable. This called reducing one problem to another.

Proof of Theorem 4.7 by reduction. Suppose, for reductio, that $\wp\left(\mathbb{Z}^{+}\right)$is enumerable, and thus that there is an enumeration of it $Z_{1}, Z_{2}, Z_{3}, \ldots$

Define the function $f: \wp\left(\mathbb{Z}^{+}\right) \rightarrow \mathbb{B}^{\omega}$ by letting $f(Z)$ be the sequence s_{k} such that $s_{k}(j)=1$ iff $j \in Z$.

Every sequence of 0 s and 1 s corresponds to some set of positive integers, namely the one which has as its members those integers corresponding to the places where the sequence has 1 s . In other words, this is a surjective function.

Now consider the list

$$
f\left(Z_{1}\right), f\left(Z_{2}\right), f\left(Z_{3}\right), \ldots
$$

Since f is surjective, every member of \mathbb{B}^{ω} must appear as a value of f for some argument, and so must appear on the list. So this list must enumerate \mathbb{B}^{ω}.

So if $\wp\left(\mathbb{Z}^{+}\right)$were enumerable, \mathbb{B}^{ω} would be enumerable. But \mathbb{B}^{ω} is nonenumerable (Theorem 4.6).

4.5 Equinumerous Sets

We have an intuitive notion of "size" of sets, which works fine for finite sets. But what about infinite sets? If we want to come up with a formal way of comparing the sizes of two sets of any size, it is a good idea to start with defining when sets are the same size. Let's say sets of the same size are equinumerous. We want the formal notion of equinumerosity to correspond with our intuitive notion of "same size," hence the formal notion ought to satisfy the following properties:

Reflexivity: Every set is equinumerous with itself.
Symmetry: For any sets X and Y, if X is equinumerous with Y, then Y is equinumerous with X.

Transitivity: For any sets X, Y, and Z, if X is equinumerous with Y and Y is equinumerous with Z, then X is equinumerous with Z.

In other words, we want equinumerosity to be an equivalence relation.
Definition 4.8. A set X is equinumerous with a set Y if and only if there is a total bijection f from X to Y (that is, $f: X \rightarrow Y$).

Proposition 4.9. Equinumerosity defines an equivalence relation.
Proof. Let X, Y, and Z be sets.
Reflexivity: Using the identity map $1_{X}: X \rightarrow X$, where $1_{X}(x)=x$ for all $x \in X$, we see that X is equinumerous with itself (clearly, 1_{X} is bijective).

Symmetry: Suppose that X is equinumerous with Y. Then there is a bijection $f: X \rightarrow Y$. Since f is bijective, its inverse f^{-1} is also a bijection. Since f is surjective, f^{-1} is total. Hence, $f^{-1}: Y \rightarrow X$ is a total bijection from Y to X, so Y is also equinumerous with X.

Transitivity: Suppose that X is equinumerous with Y via the total bijection f and that Y is equinumerous with Z via the total bijection g. Then the composition of $g \circ f: X \rightarrow Z$ is a total bijection, and X is thus equinumerous with Z.

4.6. COMPARING SIZES OF SETS

Therefore, equinumerosity is an equivalence relation by the given definition.

Theorem 4.10. Suppose X and Y are equinumerous. Then X is enumerable if and only if Y is.

Proof. Let X and Y be equinumerous. Suppose that X is enumerable. Then there is a possibly partial, surjective function $f: \mathbb{N} \rightarrow X$. Since X and Y are equinumerous, there is a total bijection $g: X \rightarrow Y$. Claim: $g \circ f: \mathbb{N} \rightarrow Y$ is surjective. Clearly, $g \circ f$ is a function (since functions are closed under composition). To see $g \circ f$ is surjective, let $y \in Y$. Since g is surjective, there is an $x \in X$ such that $g(x)=y$. Since f is surjective, there is an $n \in \mathbb{N}$ such that $f(n)=x$. Hence,

$$
(g \circ f)(n)=g(f(n))=g(x)=y
$$

and thus $g \circ f$ is surjective. Since $g \circ f: \mathbb{N} \rightarrow Y$ is surjective, it is an enumeration of Y, and so Y is enumerable.

4.6 Comparing Sizes of Sets

Just like we were able to make precise when two sets have the same size in a way that also accounts for the size of infinite sets, we can also compare the sizes of sets in a precise way. Our definition of "is smaller than (or equinumerous)" will require, instead of a bijection between the sets, a total injective function from the first set to the second. If such a function exists, the size of the first set is less than or equal to the size of the second. Intuitively, an injective function from one set to another guarantees that the range of the function has at least as many elements as the domain, since no two elements of the domain map to the same element of the range.

Definition 4.11. $|X| \leq|Y|$ if and only if there is an injective function $f: X \rightarrow$ Y.

Theorem 4.12 (Schröder-Bernstein). Let X and Y be sets. If $|X| \leq|Y|$ and $|Y| \leq$ $|X|$, then $|X|=|Y|$.

In other words, if there is a total injective function from X to Y, and if there is a total injective function from Y back to X, then there is a total bijection from X to Y. Sometimes, it can be difficult to think of a bijection between two equinumerous sets, so the Schröder-Bernstein theorem allows us to break the comparison down into cases so we only have to think of an injection from the first to the second, and vice-versa. The Schröder-Bernstein theorem, apart from being convenient, justifies the act of discussing the "sizes" of sets, for it tells us that set cardinalities have the familiar anti-symmetric property that numbers have.

Definition 4.13. $|X|<|Y|$ if and only if there is an injective function $f: X \rightarrow Y$ but no bijective $g: X \rightarrow Y$.

Theorem 4.14 (Cantor). For all $X,|X|<|\wp(X)|$.
Proof. The function $f: X \rightarrow \wp(X)$ that maps any $x \in X$ to its singleton $\{x\}$ is injective, since if $x \neq y$ then also $f(x)=\{x\} \neq\{y\}=f(y)$.

There cannot be a surjective function $g: X \rightarrow \wp(X)$, let alone a bijective one. For assume that a surjective $g: X \rightarrow \wp(X)$ exists. Then let $Y=\{x \in X:$ $x \notin g(x)\}$. If $g(x)$ is defined for all $x \in X$, then Y is clearly a well-defined subset of X. If g is surjective, Y must be the value of g for some $x_{0} \in X$, i.e., $Y=g\left(x_{0}\right)$. Now consider x_{0} : it cannot be an element of Y, since if $x_{0} \in Y$ then $x_{0} \in g\left(x_{0}\right)$, and the definition of Y then would have $x_{0} \notin Y$. On the other hand, it must be an element of Y, since if it were not, then $x_{0} \notin Y=g\left(x_{0}\right)$. But then x_{0} satisfies the defining condition of Y, and so $x_{0} \in Y$. In either case, we have a contradiction.

Problems

Problem 4.1. Give an enumeration of the set of all ordered pairs of positive rational numbers.

Problem 4.2. Recall from your introductory logic course that each possible truth table expresses a truth function. In other words, the truth functions are all functions from $\mathbb{B}^{k} \rightarrow \mathbb{B}$ for some k. Prove that the set of all truth functions is enumerable.

Problem 4.3. Show that the set of all finite subsets of an arbitrary infinite enumerable set is enumerable.

Problem 4.4. Show that if X and Y are enumerable, so is $X \cup Y$.
Problem 4.5. A set of positive integers is said to be cofinite iff it is the complement of a finite set of positive integers. Let I be the set that contains all the finite and cofinite sets of positive integers. Show that I is enumerable.

Problem 4.6. Show that the enumerable union of enumerable sets is enumerable. That is, whenever X_{1}, X_{2}, \ldots are sets, and each X_{i} is enumerable, then the union $\bigcup_{i=1}^{\infty} X_{i}$ of all of them is also enumerable.

Problem 4.7. Show that $\wp(\mathbb{N})$ is non-enumerable.
Problem 4.8. Show that the set of functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is non-enumerable by an explicit diagonal argument.

Problem 4.9. Show that the set of all sets of pairs of positive integers is nonenumerable.

Problem 4.10. Show that \mathbb{N}^{ω}, the set of infinite sequences of natural numbers, is non-enumerable.

Problem 4.11. Let P be the set of total functions from the set of positive integers to the set $\{0\}$, and let Q be the set of partial functions from the set of positive integers to the set $\{0\}$. Show that P is enumerable and Q is not.

Problem 4.12. Let S be the set of all total surjective functions from the set of positive integers to the set $\{0,1\}$. Show that S is non-enumerable.

Problem 4.13. Show that the set \mathbb{R} of all real numbers is non-enumerable.
Problem 4.14. Show that if X is equinumerous with U and and Y is equinumerous with V, and the intersections $X \cap Y$ and $U \cap V$ are empty, then the unions $X \cup Y$ and $U \cup V$ are equinumerous.

Problem 4.15. Given an enumeration of a set X, show that if X is not finite then it is equinumerous with the positive integers \mathbb{Z}^{+}.

Part II

First-order Logic

This part covers the metatheory of first-order logic through completeness. Currently it does not rely on a separate treatment of propositional logic. It is planned, however, to separate the propositional and quantifier material on semantics and proof theory so that propositional logic can be covered independently. This will become important especially when material on propositional modal logic will be added, since then one might not want to cover quantifiers. Currently two different proof systems are offered as alternatives, (a version of) sequent calculus and natural deduction. A third alternative treatment based on Enderton-style axiomatic deduction is available in experimental form in the branch "axiomaticdeduction". In particular, this part needs an introduction (issue \#69).

Chapter 5

Syntax and Semantics

5.1 First-Order Languages

Expressions of first-order logic are built up from a basic vocabulary containing variables, constant symbols, predicate symbols and sometimes function symbols. From them, together with logical connectives, quantifiers, and punctuation symbols such as parentheses and commas, terms and formulas are formed.

Informally, predicate symbols are names for properties and relations, constant symbols are names for individual objects, and function symbols are names for mappings. These, except for the identity predicate $=$, are the non-logical symbols and together make up a language. Any first-order language \mathcal{L} is determined by its non-logical symbols. In the most general case, \mathcal{L} contains infinitely many symbols of each kind.

In the general case, we make use of the following symbols in first-order logic:

1. Logical symbols
a) Logical connectives: \neg (negation), \wedge (conjunction), \vee (disjunction), \rightarrow (conditional), \leftrightarrow (biconditional), \forall (universal quantifier), \exists (existential quantifier).
b) The propositional constant for falsity \perp.
c) The propositional constant for truth T.
d) The two-place identity predicate $=$.
e) A denumerable set of variables: $v_{0}, v_{1}, v_{2}, \ldots$
2. Non-logical symbols, making up the standard language of first-order logic
a) A denumerable set of n-place predicate symbols for each $n>0: A_{0}^{n}$, $A_{1}^{n}, A_{2}^{n}, \ldots$
b) A denumerable set of constant symbols: $c_{0}, c_{1}, c_{2}, \ldots$

5.1. FIRST-ORDER LANGUAGES

c) A denumerable set of n-place function symbols for each $n>0: f_{0}^{n}$, $f_{1}^{n}, f_{2}^{n}, \ldots$
3. Punctuation marks: (,), and the comma.

Most of our definitions and results will be formulated for the full standard language of first-order logic. However, depending on the application, we may also restrict the language to only a few predicate symbols, constant symbols, and function symbols.

Example 5.1. The language \mathcal{L}_{A} of arithmetic contains a single two-place predicate symbol $<$, a single constant symbol 0 , one one-place function symbol /, and two two-place function symbols + and \times.

Example 5.2. The language of set theory \mathcal{L}_{Z} contains only the single two-place predicate symbol \in.

Example 5.3. The language of orders \mathcal{L}_{\leq}contains only the two-place predicate symbol \leq.

Again, these are conventions: officially, these are just aliases, e.g., $<, \in$, and \leq are aliases for A_{0}^{2}, o for c_{0}, \prime for $f_{0}^{1},+$ for f_{0}^{2}, \times for f_{1}^{2}.

You may be familiar with different terminology and symbols than the ones we use above. Logic texts (and teachers) commonly use either \sim, \neg, and ! for "negation", \wedge, \cdot, and \& for "conjunction". Commonly used symbols for the "conditional" or "implication" are \rightarrow, \Rightarrow, and \supset. Symbols for "biconditional," "bi-implication," or "(material) equivalence" are $\leftrightarrow, \Leftrightarrow$, and \equiv. The \perp symbol is variously called "falsity," "falsum,", "absurdity,", or "bottom." The T symbol is variously called "truth," "verum,", or "top."

It is conventional to use lower case letters (e.g., a, b, c) from the beginning of the Latin alphabet for constant symbols (sometimes called names), and lower case letters from the end (e.g., x, y, z) for variables. Quantifiers combine with variables, e.g., x; notational variations include $\forall x,(\forall x),(x)$, $\Pi x, \wedge_{x}$ for the universal quantifier and $\exists x,(\exists x),(E x), \Sigma x, \bigvee_{x}$ for the existential quantifier.

We might treat all the propositional operators and both quantifiers as primitive symbols of the language. We might instead choose a smaller stock of primitive symbols and treat the other logical operators as defined. "Truth functionally complete" sets of Boolean operators include $\{\neg, \vee\},\{\neg, \wedge\}$, and $\{\neg, \rightarrow\}$-these can be combined with either quantifier for an expressively complete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke | (named after Henry Sheffer), and Peirce's arrow \downarrow, also known as Quine's dagger. When given their usual readings of "nand" and "nor" (respectively), these operators are truth functionally complete by themselves.

5.2 Terms and Formulas

Once a first-order language \mathcal{L} is given, we can define expressions built up from the basic vocabulary of \mathcal{L}. These include in particular terms and formulas.

Definition 5.4 (Terms). The set of terms $\operatorname{Trm}(\mathcal{L})$ of \mathcal{L} is defined inductively by:

1. Every variable is a term.
2. Every constant symbol of \mathcal{L} is a term.
3. If f is an n-place function symbol and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
4. Nothing else is a term.

A term containing no variables is a closed term.
The constant symbols appear in our specification of the language and the terms as a separate category of symbols, but they could instead have been included as zero-place function symbols. We could then do without the second clause in the definition of terms. We just have to understand $f\left(t_{1}, \ldots, t_{n}\right)$ as just f by itself if $n=0$.

Definition 5.5 (Formula). The set of formulas $\operatorname{Frm}(\mathcal{L})$ of the language \mathcal{L} is defined inductively as follows:

1. \perp is an atomic formula.
2. \top is an atomic formula.
3. If R is an n-place predicate symbol of \mathcal{L} and t_{1}, \ldots, t_{n} are terms of \mathcal{L}, then $R\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula.
4. If t_{1} and t_{2} are terms of \mathcal{L}, then $=\left(t_{1}, t_{2}\right)$ is an atomic formula.
5. If φ is a formula, then $\neg \varphi$ is formula.
6. If φ and ψ are formulas, then $(\varphi \wedge \psi)$ is a formula.
7. If φ and ψ are formulas, then $(\varphi \vee \psi)$ is a formula.
8. If φ and ψ are formulas, then $(\varphi \rightarrow \psi)$ is a formula.
9. If φ and ψ are formulas, then $(\varphi \leftrightarrow \psi)$ is a formula.
10. If φ is a formula and x is a variable, then $\forall x \varphi$ is a formula.
11. If φ is a formula and x is a variable, then $\exists x \varphi$ is a formula.

5.3. UNIQUE READABILITY

12. Nothing else is a formula.

The definitions of the set of terms and that of formulas are inductive definitions. Essentially, we construct the set of formulas in infinitely many stages. In the initial stage, we pronounce all atomic formulas to be formulas; this corresponds to the first few cases of the definition, i.e., the cases for T, \perp, $R\left(t_{1}, \ldots, t_{n}\right)$ and $=\left(t_{1}, t_{2}\right)$. "Atomic formula" thus means any formula of this form.

The other cases of the definition give rules for constructing new formulas out of formulas already constructed. At the second stage, we can use them to construct formulas out of atomic formulas. At the third stage, we construct new formulas from the atomic formulas and those obtained in the second stage, and so on. A formula is anything that is eventually constructed at such a stage, and nothing else.

By convention, we write $=$ between its arguments and leave out the parentheses: $t_{1}=t_{2}$ is an abbreviation for $=\left(t_{1}, t_{2}\right)$. Moreover, $\neg=\left(t_{1}, t_{2}\right)$ is abbreviated as $t_{1} \neq t_{2}$. When writing a formula $(\psi * \chi)$ constructed from ψ, χ using a two-place connective $*$, we will often leave out the outermost pair of parentheses and write simply $\psi * \chi$.

Some logic texts require that the variable x must occur in φ in order for $\exists x \varphi$ and $\forall x \varphi$ to count as formulas. Nothing bad happens if you don't require this, and it makes things easier.

If we work in a language for a specific application, we will often write twoplace predicate symbols and function symbols between the respective terms, e.g., $t_{1}<t_{2}$ and ($t_{1}+t_{2}$) in the language of arithmetic and $t_{1} \in t_{2}$ in the language of set theory. The successor function in the language of arithmetic is even written conventionally after its argument: t^{\prime}. Officially, however, these are just conventional abbreviations for $A_{0}^{2}\left(t_{1}, t_{2}\right), f_{0}^{2}\left(t_{1}, t_{2}\right), A_{0}^{2}\left(t_{1}, t_{2}\right)$ and $f_{0}^{1}(t)$, respectively.
Definition 5.6 (Syntactic identity). The symbol \equiv expresses syntactic identity between strings of symbols, i.e., $\varphi \equiv \psi$ iff φ and ψ are strings of symbols of the same length and which contain the same symbol in each place.

The \equiv symbol may be flanked by strings obtained by concatenation, e.g., $\varphi \equiv(\psi \vee \chi)$ means: the string of symbols φ is the same string as the one obtained by concatenating an opening parenthesis, the string ψ, the \vee symbol, the string χ, and a closing parenthesis, in this order. If this is the case, then we know that the first symbol of φ is an opening parenthesis, φ contains ψ as a substring (starting at the second symbol), that substring is followed by \vee, etc.

5.3 Unique Readability

The way we defined formulas guarantees that every formula has a unique reading, i.e., there is essentially only one way of constructing it according to our
formation rules for formulas and only one way of "interpreting" it. If this were not so, we would have ambiguous formulas, i.e., formulas that have more than one reading or intepretation-and that is clearly something we want to avoid. But more importantly, without this property, most of the definitions and proofs we are going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we had given bad rules for forming formulas that would not guarantee unique readability. For instance, we could have forgotten the parentheses in the formation rules for connectives, e.g., we might have allowed this:

If φ and ψ are formulas, then so is $\varphi \rightarrow \psi$.
Starting from an atomic formula θ, this would allow us to form $\theta \rightarrow \theta$. From this, together with θ, we would get $\theta \rightarrow \theta \rightarrow \theta$. But there are two ways to do this:

1. We take θ to be φ and $\theta \rightarrow \theta$ to be ψ.
2. We take φ to be $\theta \rightarrow \theta$ and ψ is θ.

Correspondingly, there are two ways to "read" the formula $\theta \rightarrow \theta \rightarrow \theta$. It is of the form $\psi \rightarrow \chi$ where ψ is θ and χ is $\theta \rightarrow \theta$, but it is also of the form $\psi \rightarrow \chi$ with ψ being $\theta \rightarrow \theta$ and χ being θ.

If this happens, our definitions will not always work. For instance, when we define the main operator of a formula, we say: in a formula of the form $\psi \rightarrow \chi$, the main operator is the indicated occurrence of \rightarrow. But if we can match the formula $\theta \rightarrow \theta \rightarrow \theta$ with $\psi \rightarrow \chi$ in the two different ways mentioned above, then in one case we get the first occurrence of \rightarrow as the main operator, and in the second case the second occurrence. But we intend the main operator to be a function of the formula, i.e., every formula must have exactly one main operator occurrence.

Lemma 5.7. The number of left and right parentheses in a formula φ are equal.
Proof. We prove this by induction on the way φ is constructed. This requires two things: (a) We have to prove first that all atomic formulas have the property in question (the induction basis). (b) Then we have to prove that when we construct new formulas out of given formulas, the new formulas have the property provided the old ones do.

Let $l(\varphi)$ be the number of left parentheses, and $r(\varphi)$ the number of right parentheses in φ, and $l(t)$ and $r(t)$ similarly the number of left and right parentheses in a term t. We leave the proof that for any term $t, l(t)=r(t)$ as an exercise.

1. $\varphi \equiv \perp$: φ has 0 left and 0 right parentheses.
2. $\varphi \equiv \top: \varphi$ has 0 left and 0 right parentheses.

5.3. UNIQUE READABILITY

3. $\varphi \equiv R\left(t_{1}, \ldots, t_{n}\right): l(\varphi)=1+l\left(t_{1}\right)+\cdots+l\left(t_{n}\right)=1+r\left(t_{1}\right)+\cdots+$ $r\left(t_{n}\right)=r(\varphi)$. Here we make use of the fact, left as an exercise, that $l(t)=r(t)$ for any term t.
4. $\varphi \equiv t_{1}=t_{2}: l(\varphi)=l\left(t_{1}\right)+l\left(t_{2}\right)=r\left(t_{1}\right)+r\left(t_{2}\right)=r(\varphi)$.
5. $\varphi \equiv \neg \psi$: By induction hypothesis, $l(\psi)=r(\psi)$. Thus $l(\varphi)=l(\psi)=$ $r(\psi)=r(\varphi)$.
6. $\varphi \equiv(\psi * \chi)$: By induction hypothesis, $l(\psi)=r(\psi)$ and $l(\chi)=r(\chi)$. Thus $l(\varphi)=1+l(\psi)+l(\chi)=1+r(\psi)+r(\chi)=r(\varphi)$.
7. $\varphi \equiv \forall x \psi$: By induction hypothesis, $l(\psi)=r(\psi)$. Thus, $l(\varphi)=l(\psi)=$ $r(\psi)=r(\varphi)$.
8. $\varphi \equiv \exists x \psi$: Similarly.

Definition 5.8 (Proper prefix). A string of symbols ψ is a proper prefix of a string of symbols φ if concatenating ψ and a non-empty string of symbols yields φ.

Lemma 5.9. If φ is a formula, and ψ is a proper prefix of φ, then ψ is not a formula.
Proof. Exercise.
Proposition 5.10. If φ is an atomic formula, then it satisfes one, and only one of the following conditions.

1. $\varphi \equiv \perp$.
2. $\varphi \equiv \top$.
3. $\varphi \equiv R\left(t_{1}, \ldots, t_{n}\right)$ where R is an n-place predicate symbol, t_{1}, \ldots, t_{n} are terms, and each of R, t_{1}, \ldots, t_{n} is uniquely determined.
4. $\varphi \equiv t_{1}=t_{2}$ where t_{1} and t_{2} are uniquely determined terms.

Proof. Exercise.
Proposition 5.11 (Unique Readability). Every formula satisfies one, and only one of the following conditions.

1. φ is atomic.
2. φ is of the form $\neg \psi$.
3. φ is of the form $(\psi \wedge \chi)$.
4. φ is of the form $(\psi \vee \chi)$.
5. φ is of the form $(\psi \rightarrow \chi)$.
6. φ is of the form $(\psi \leftrightarrow \chi)$.
7. φ is of the form $\forall x \psi$.
8. φ is of the form $\exists x \psi$.

Moreover, in each case ψ, or ψ and χ, are uniquely determined. This means that, e.g., there are no different pairs ψ, χ and $\psi^{\prime}, \chi^{\prime}$ so that φ is both of the form $(\psi \rightarrow \chi)$ and $\left(\psi^{\prime} \rightarrow \chi^{\prime}\right)$.

Proof. The formation rules require that if a formula is not atomic, it must start with an opening parenthesis $(, \neg$, or with a quantifier. On the other hand, every formula that start with one of the following symbols must be atomic: a predicate symbol, a function symbol, a constant symbol, \perp, T.

So we really only have to show that if φ is of the form $(\psi * \chi)$ and also of the form $\left(\psi^{\prime} *^{\prime} \chi^{\prime}\right)$, then $\psi \equiv \psi^{\prime}, \chi \equiv \chi^{\prime}$, and $*=*^{\prime}$.

So suppose both $\varphi \equiv(\psi * \chi)$ and $\varphi \equiv\left(\psi^{\prime} *^{\prime} \chi^{\prime}\right)$. Then either $\psi \equiv \psi^{\prime}$ or not. If it is, clearly $*=*^{\prime}$ and $\chi \equiv \chi^{\prime}$, since they then are substrings of φ that begin in the same place and are of the same length. The other case is $\chi \not \equiv \chi^{\prime}$. Since χ and χ^{\prime} are both substrings of φ that begin at the same place, one must be a prefix of the other. But this is impossible by Lemma 5.9.

5.4 Main operator of a Formula

It is often useful to talk about the last operator used in constructing a formula φ. This operator is called the main operator of φ. Intuitively, it is the "outermost" operator of φ. For example, the main operator of $\neg \varphi$ is \neg, the main operator of $(\varphi \vee \psi)$ is \vee, etc.

Definition 5.12 (Main operator). The main operator of a formula φ is defined as follows:

1. φ is atomic: φ has no main operator.
2. $\varphi \equiv \neg \psi$: the main operator of φ is \neg.
3. $\varphi \equiv(\psi \wedge \chi)$: the main operator of φ is \wedge.
4. $\varphi \equiv(\psi \vee \chi)$: the main operator of φ is \vee.
5. $\varphi \equiv(\psi \rightarrow \chi)$: the main operator of φ is \rightarrow.
6. $\varphi \equiv(\psi \leftrightarrow \chi)$: the main operator of φ is \leftrightarrow.
7. $\varphi \equiv \forall x \psi$: the main operator of φ is \forall.
8. $\varphi \equiv \exists x \psi$: the main operator of φ is \exists.

5.5. SUBFORMULAS

In each case, we intend the specific indicated occurrence of the main operator in the formula. For instance, since the formula $((\theta \rightarrow \alpha) \rightarrow(\alpha \rightarrow \theta))$ is of the form $(\psi \rightarrow \chi)$ where ψ is $(\theta \rightarrow \alpha)$ and χ is $(\alpha \rightarrow \theta)$, the second occurrence of \rightarrow is the main operator.

This is a recursive definition of a function which maps all non-atomic formulas to their main operator occurrence. Because of the way formulas are defined inductively, every formula φ satisfies one of the cases in Definition 5.12. This guarantees that for each non-atomic formula φ a main operator exists. Because each formula satisfies only one of these conditions, and because the smaller formulas from which φ is constructed are uniquely determined in each case, the main operator occurrence of φ is unique, and so we have defined a function.

We call formulas by the following names depending on which symbol their main operator is:

Main operator	Type of formula	Example
none	atomic (formula)	$\perp, \top, R\left(t_{1}, \ldots, t_{n}\right), t_{1}=t_{2}$
\neg	negation	$\neg \varphi$
\wedge	conjunction	$(\varphi \wedge \psi)$
\vee	disjunction	$(\varphi \vee \psi)$
\rightarrow	conditional	$(\varphi \rightarrow \psi)$
\forall	universal (formula)	$\forall x \varphi$
\exists	existential (formula)	$\exists x \varphi$

5.5 Subformulas

It is often useful to talk about the formulas that "make up" a given formula. We call these its subformulas. Any formula counts as a subformula of itself; a subformula of φ other than φ itself is a proper subformula.

Definition 5.13 (Immediate Subformula). If φ is a formula, the immediate subformulas of φ are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.
2. $\varphi \equiv \neg \psi$: The only immediate subformula of φ is ψ.
3. $\varphi \equiv(\psi * \chi)$: The immediate subformulas of φ are ψ and $\chi(*$ is any one of the two-place connectives).
4. $\varphi \equiv \forall x \psi$: The only immediate subformula of φ is ψ.
5. $\varphi \equiv \exists x \psi$: The only immediate subformula of φ is ψ.

Definition 5.14 (Proper Subformula). If φ is a formula, the proper subformulas of φ are recursively as follows:

1. Atomic formulas have no proper subformulas.
2. $\varphi \equiv \neg \psi$: The proper subformulas of φ are ψ together with all proper subformulas of ψ.
3. $\varphi \equiv(\psi * \chi)$: The proper subformulas of φ are ψ, χ, together with all proper subformulas of ψ and those of χ.
4. $\varphi \equiv \forall x \psi$: The proper subformulas of φ are ψ together with all proper subformulas of ψ.
5. $\varphi \equiv \exists x \psi$: The proper subformulas of φ are ψ together with all proper subformulas of ψ.

Definition 5.15 (Subformula). The subformulas of φ are φ itself together with all its proper subformulas.

Note the subtle difference in how we have defined immediate subformulas and proper subformulas. In the first case, we have directly defined the immediate subformulas of a formula φ for each possible form of φ. It is an explicit definition by cases, and the cases mirror the inductive definition of the set of formulas. In the second case, we have also mirrored the way the set of all formulas is defined, but in each case we have also included the proper subformulas of the smaller formulas ψ, χ in addition to these formulas themselves. This makes the definition recursive. In general, a definition of a function on an inductively defined set (in our case, formulas) is recursive if the cases in the definition of the function make use of the function itself. To be well defined, we must make sure, however, that we only ever use the values of the function for arguments that come "before" the one we are defining-in our case, when defining "proper subformula" for $(\psi * \chi)$ we only use the proper subformulas of the "earlier" formulas ψ and χ.

5.6 Free Variables and Sentences

Definition 5.16 (Free occurrences of a variable). The free occurrences of a variable in a formula are defined inductively as follows:

1. φ is atomic: all variable occurrences in φ are free.
2. $\varphi \equiv \neg \psi$: the free variable occurrences of φ are exactly those of ψ.
3. $\varphi \equiv(\psi * \chi)$: the free variable occurrences of φ are those in ψ together with those in χ.
4. $\varphi \equiv \forall x \psi$: the free variable occurrences in φ are all of those in ψ except for occurrences of x.
5. $\varphi \equiv \exists x \psi$: the free variable occurrences in φ are all of those in ψ except for occurrences of x.

5.7. SUBSTITUTION

Definition 5.17 (Bound Variables). An occurrence of a variable in a formula φ is bound if it is not free.

Definition 5.18 (Scope). If $\forall x \psi$ is an occurrence of a subformula in a formula φ, then the corresponding occurrence of ψ in φ is called the scope of the corresponding occurrence of $\forall x$. Similarly for $\exists x$.

If ψ is the scope of a quantifier occurrence $\forall x$ or $\exists x$ in φ, then all occurrences of x which are free in ψ are said to be bound by the mentioned quantifier occurrence.

Example 5.19. Consider the following formula:

$$
\exists v_{0} \underbrace{A_{0}^{2}\left(v_{0}, v_{1}\right)}_{\psi}
$$

ψ represents the scope of $\exists v_{0}$. The quantifier binds the occurence of v_{0} in ψ, but does not bind the occurence of v_{1}. So v_{1} is a free variable in this case.

We can now see how this might work in a more complicated formula φ :

$$
\forall v_{0} \underbrace{\left(A_{0}^{1}\left(v_{0}\right) \rightarrow A_{0}^{2}\left(v_{0}, v_{1}\right)\right)}_{\psi} \rightarrow \exists v_{1} \underbrace{(A_{1}^{2}\left(v_{0}, v_{1}\right) \vee \forall v_{0} \overbrace{\left.\neg A_{1}^{1}\left(v_{0}\right)\right)}^{\theta}}_{\chi}
$$

ψ is the scope of the first $\forall v_{0}, \chi$ is the scope of $\exists v_{1}$, and θ is the scope of the second $\forall v_{0}$. The first $\forall v_{0}$ binds the occurrences of v_{0} in $\psi, \exists v_{1}$ the occurrence of v_{1} in χ, and the second $\forall v_{0}$ binds the occurrence of v_{0} in θ. The first occurrence of v_{1} and the fourth occurrence of v_{0} are free in φ. The last occurrence of v_{0} is free in θ, but bound in χ and φ.

Definition 5.20 (Sentence). A formula φ is a sentence iff it contains no free occurrences of variables.

5.7 Substitution

Definition 5.21 (Substitution in a term). We define $s[t / x]$, the result of substituting t for every occurrence of x in s, recursively:

1. $s \equiv c: s[t / x]$ is just s.
2. $s \equiv y: s[t / x]$ is also just s, provided y is a variable other than x.
3. $s \equiv x: s[t / x]$ is t.
4. $s \equiv f\left(t_{1}, \ldots, t_{n}\right): s[t / x]$ is $f\left(t_{1}[t / x], \ldots, t_{n}[t / x]\right)$.

Definition 5.22. A term t is free for x in φ if none of the free occurrences of x in φ occur in the scope of a quantifier that binds a variable in t.

Definition 5.23 (Substitution in a formula). If φ is a formula, x is a variable, and t is a term free for x in φ, then $\varphi[t / x]$ is the result of substituting t for all free occurrences of x in φ.

1. $\varphi \equiv P\left(t_{1}, \ldots, t_{n}\right): \varphi[t / x]$ is $P\left(t_{1}[t / x], \ldots, t_{n}[t / x]\right)$.
2. $\varphi \equiv t_{1}=t_{2}: \varphi[t / x]$ is $t_{1}[t / x]=t_{2}[t / x]$.
3. $\varphi \equiv \neg \psi: \varphi[t / x]$ is $\neg \psi[t / x]$.
4. $\varphi \equiv(\psi \wedge \chi): \varphi[t / x]$ is $(\psi[t / x] \wedge \chi[t / x])$.
5. $\varphi \equiv(\psi \vee \chi): \varphi[t / x]$ is $(\psi[t / x] \vee \chi[t / x])$.
6. $\varphi \equiv(\psi \rightarrow \chi): \varphi[t / x]$ is $(\psi[t / x] \rightarrow \chi[t / x])$.
7. $\varphi \equiv(\psi \leftrightarrow \chi): \varphi[t / x]$ is $(\psi[t / x] \leftrightarrow \chi[t / x])$.
8. $\varphi \equiv \forall y \psi: \quad \varphi[t / x]$ is $\forall y \psi[t / x]$, provided y is a variable other than x; otherwise $\varphi[t / x]$ is just φ.
9. $\varphi \equiv \exists y \psi: \quad \varphi[t / x]$ is $\exists y \psi[t / x]$, provided y is a variable other than x; otherwise $\varphi[t / x]$ is just φ.

Note that substitution may be vacuous: If x does not occur in φ at all, then $\varphi[t / x]$ is just φ.

The restriction that t must be free for x in φ is necessary to exclude cases like the following. If $\varphi \equiv \exists y x<y$ and $t \equiv y$, then $\varphi[t / x]$ would be $\exists y y<$ y. In this case the free variable y is "captured" by the quantifier $\exists y$ upon substitution, and that is undesirable. For instance, we would like it to be the case that whenever $\forall x \psi$ holds, so does $\psi[t / x]$. But consider $\forall x \exists y x<y$ (here ψ is $\exists y x<y$). It is sentence that is true about, e.g., the natural numbers: for every number x there is a number y greater than it. If we allowed y as a possible substitution for x, we would end up with $\psi[y / x] \equiv \exists y y<y$, which is false. We prevent this by requiring that none of the free variables in t would end up being bound by a quantifier in φ.

We often use the following convention to avoid cumbersume notation: If φ is a formula with a free variable x, we write $\varphi(x)$ to indicate this. When it is clear which φ and x we have in mind, and t is a term (assumed to be free for x in $\varphi(x)$), then we write $\varphi(t)$ as short for $\varphi(x)[t / x]$.

5.8 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols, function symbols, and predicate symbols have no specific meaning attached to them. Meanings are given by specifying a structure. It specifies the domain, i.e., the objects which the constant symbols pick out, the function symbols

5.8. STRUCTURES FOR FIRST-ORDER LANGUAGES

operate on, and the quantifiers range over. In addition, it specifies which constant symbols pick out which objects, how a function symbol maps objects to objects, and which objects the predicate symbols apply to. Structures are the basis for semantic notions in logic, e.g., the notion of consequence, validity, satisfiablity. They are variously called "structures," "interpretations," or "models" in the literature.

Definition 5.24 (Structures). A structure \mathfrak{M}, for a language \mathcal{L} of first-order logic consists of the following elements:

1. Domain: a non-empty set, $|\mathfrak{M}|$
2. Interpretation of constant symbols: for each constant symbol c of \mathcal{L}, an ele$\operatorname{ment} c^{\mathfrak{M}} \in|\mathfrak{M}|$
3. Interpretation of predicate symbols: for each n-place predicate symbol R of \mathcal{L} (other than $=$), an n-place relation $R^{\mathfrak{M}} \subseteq|\mathfrak{M}|^{n}$
4. Interpretation of function symbols: for each n-place function symbol f of \mathcal{L}, an n-place function $f^{\mathfrak{M}}:|\mathfrak{M}|^{n} \rightarrow|\mathfrak{M}|$

Example 5.25. A structure \mathfrak{M} for the language of arithmetic consists of a set, an element of $|\mathfrak{M}|, o^{\mathfrak{M}}$, as interpretation of the constant symbol o, a one-place function $\mathscr{M}^{\mathfrak{M}}:|\mathfrak{M}| \rightarrow|\mathfrak{M}|$, two two-place functions $+^{\mathfrak{M}}$ and $\times^{\mathfrak{M}}$, both $|\mathfrak{M}|^{2} \rightarrow$ $|\mathfrak{M}|$, and a two-place relation $<^{\mathfrak{M}} \subseteq|\mathfrak{M}|^{2}$.

An obvious example of such a structure is the following:

1. $|\mathfrak{N}|=\mathbb{N}$
2. $o^{\mathfrak{N}}=0$
3. $\prime^{\mathfrak{N}}(n)=n+1$ for all $n \in \mathbb{N}$
4. $+{ }^{\mathfrak{N}}(n, m)=n+m$ for all $n, m \in \mathbb{N}$
5. $\times^{\mathfrak{N}}(n, m)=n \cdot m$ for all $n, m \in \mathbb{N}$
6. $\left\langle^{\mathfrak{N}}=\{\langle n, m\rangle: n \in \mathbb{N}, m \in \mathbb{N}, n<m\}\right.$

The structure \mathfrak{N} for \mathcal{L}_{A} so defined is called the standard model of arithmetic, because it interprets the non-logical constants of \mathcal{L}_{A} exactly how you would expect.

However, there are many other possible structures for \mathcal{L}_{A}. For instance, we might take as the domain the set \mathbb{Z} of integers instead of \mathbb{N}, and define the interpretations of $0,1,+, \times,<$ accordingly. But we can also define structures for \mathcal{L}_{A} which have nothing even remotely to do with numbers.

Example 5.26. A structure \mathfrak{M} for the language \mathcal{L}_{Z} of set theory requires just a set and a single-two place relation. So technically, e.g., the set of people plus the relation " x is older than y " could be used as a structure for \mathcal{L}_{Z}, as well as \mathbb{N} together with $n \geq m$ for $n, m \in \mathbb{N}$.

A particularly interesting structure for \mathcal{L}_{Z} in which the elements of the domain are actually sets, and the interpretation of \in actually is the relation " x is an element of $y^{\prime \prime}$ is the structure $\mathfrak{H} \mathfrak{F}$ of hereditarily finite sets:

1. $|\mathfrak{H} \mathfrak{F}|=\varnothing \cup \wp(\varnothing) \cup \wp(\wp(\varnothing)) \cup \wp(\wp(\wp(\varnothing))) \cup \ldots$;
2. $\in^{\mathfrak{H} F}=\{\langle x, y\rangle: x, y \in|\mathfrak{H} \mathfrak{F}|, x \in y\}$.

Recall that a term is closed if it contains no variables.
Definition 5.27 (Value of closed terms). If t is a closed term of the langage \mathcal{L} and \mathfrak{M} is a structure for \mathcal{L}, the value $\operatorname{Val}^{\mathfrak{M}}(t)$ is defined as follows:

1. If t is just the constant symbol c, then $\operatorname{Val}^{\mathfrak{M}}(c)=c^{\mathfrak{M}}$.
2. If t is of the form $f\left(t_{1}, \ldots, t_{n}\right)$, then

$$
\operatorname{Val}^{\mathfrak{M}}(t)=f^{\mathfrak{M}}\left(\operatorname{Val}^{\mathfrak{M}}\left(t_{1}\right), \ldots, \operatorname{Val}^{\mathfrak{M}}\left(t_{n}\right)\right)
$$

Definition 5.28 (Covered structure). A structure is covered if every element of the domain is the value of some closed term.

Example 5.29. Let \mathcal{L} be the language with constant symbols zero, one, two,..., the binary predicate symbols $=$ and $<$, and the binary function symbols + and \times. Then a structure \mathfrak{M} for \mathcal{L} is the one with domain $|\mathfrak{M}|=\{0,1,2, \ldots\}$ and name assignment zero $o^{\mathfrak{M}}=0$, one $e^{\mathfrak{M}}=1, t w o^{\mathfrak{M}}=2$, and so forth. For the binary relation symbol $<$, the set $<^{\mathfrak{M}}$ is the set of all pairs $\left\langle c_{1}, c_{2}\right\rangle \in|\mathfrak{M}|^{2}$ such that the integer c_{1} is less than the integer c_{2} : for example, $\langle 1,3\rangle \in<^{\mathfrak{M}}$ but $\langle 2,2\rangle \notin<{ }^{\mathfrak{M}}$. For the binary function symbol + , define $+{ }^{\mathfrak{M}}$ in the usual wayfor example, $+{ }^{\mathfrak{M}}(2,3)$ maps to 5 , and similarly for the binary function symbol \times. Hence, the value of four is just 4, and the value of $\times($ two,$+($ three, zero $))$ (or in infix notation, two $\times($ three + zero $)$) is

$$
\begin{aligned}
& \operatorname{Val}^{\mathfrak{M}}(\times(\text { two },+(\text { three, zero }))= \\
&=x^{\mathfrak{M}}\left(\operatorname{Val}^{\mathfrak{M}}(\text { two }), \operatorname{Val}^{\mathfrak{M}}(\text { two },+(\text { three, zero }))\right) \\
&=x^{\mathfrak{M}}\left(\operatorname{Val}^{\mathfrak{M}}(\text { two }),+^{\mathfrak{M}}\left(\operatorname{Val}^{\mathfrak{M}}(\text { three }), \operatorname{Val}^{\mathfrak{M}}(\text { zero })\right)\right) \\
&=x^{\mathfrak{M}}\left(\text { two }^{\mathfrak{M}},++^{\mathfrak{M}}\left(\text { three }^{\mathfrak{M}}, \text { zero }^{\mathfrak{M}}\right)\right) \\
&=x^{\mathfrak{M}}\left(2,+{ }^{\mathfrak{M}}(3,0)\right) \\
&=x^{\mathfrak{M}}(2,3) \\
&=6
\end{aligned}
$$

5.9. SATISFACTION OF A FORMULA IN A STRUCTURE

The stipulations we make as to what counts as a structure impact our logic. For example, the choice to prevent empty domains ensures, given the usual account of satisfaction (or truth) for quantified sentences, that $\exists x(\varphi(x) \vee \neg \varphi(x))$ is valid-that is, a logical truth. And the stipulation that all constant symbols must refer to an object in the domain ensures that the existential generalization is a sound pattern of inference: $\varphi(a)$, therefore $\exists x \varphi(x)$. If we allowed names to refer outside the domain, or to not refer, then we would be on our way to a free logic, in which existential generalization requires an additional premise: $\varphi(a)$ and $\exists x x=a$, therefore $\exists x \varphi(x)$.

5.9 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and formulas, on the one hand, and structures on the other, are those of value of a term and satisfaction of a formula. Informally, the value of a term is an element of a structureif the term is just a constant, its value is the object assigned to the constant by the structure, and if it is built up using function symbols, the value is computed from the values of constants and the functions assigned to the functions in the term. A formula is satisfied in a structure if the interpretation given to the predicates makes the formula true in the domain of the structure. This notion of satisfaction is specified inductively: the specification of the structure directly states when atomic formulas are satisfied, and we define when a complex formula is satisfied depending on the main connective or quantifier and whether or not the immediate subformulas are satisfied. The case of the quantifiers here is a bit tricky, as the immediate subformula of a quantified formula has a free variable, and structures don't specify the values of variables. In order to deal with this difficulty, we also introduce variable assignments and define satisfaction not with respect to a structure alone, but with respect to a structure plus a variable assignment.

Definition 5.30 (Variable Assignment). A variable assignment s for a structure \mathfrak{M} is a function which maps each variable to an element of $|\mathfrak{M}|$, i.e., $s: \operatorname{Var} \rightarrow|\mathfrak{M}|$.

A structure assigns a value to each constant symbol, and a variable assignment to each variable. But we want to use terms built up from them to also name elements of the domain. For this we define the value of terms inductively. For constant symbols and variables the value is just as the structure or the variable assignment specifies it; for more complex terms it is computed recursively using the functions the structure assigns to the function symbols.

Definition 5.31 (Value of Terms). If t is a term of the language $\mathcal{L}, \mathfrak{M}$ is a structure for \mathcal{L}, and s is a variable assignment for \mathfrak{M}, the value $\operatorname{Val}_{s}^{\mathfrak{M}}(t)$ is defined as follows:

1. $t \equiv c: \operatorname{Val}_{s}^{\mathfrak{M}}(t)=c^{\mathfrak{M}}$.
2. $t \equiv x: \operatorname{Val}_{s}^{\mathfrak{M}}(t)=s(x)$.
3. $t \equiv f\left(t_{1}, \ldots, t_{n}\right)$:

$$
\operatorname{Val}_{s}^{\mathfrak{M}}(t)=f^{\mathfrak{M}}\left(\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{1}\right), \ldots, \operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{n}\right)\right)
$$

Definition 5.32 (x-Variant). If s is a variable assignment for a structure \mathfrak{M}, then any variable assignment s^{\prime} for \mathfrak{M} which differs from s at most in what it assigns to x is called an x-variant of s. If s^{\prime} is an x-variant of s we write $s \sim_{x} s^{\prime}$.

Note that an x-variant of an assignment s does not have to assign something different to x. In fact, every assignment counts as an x-variant of itself.

Definition 5.33 (Satisfaction). Satisfaction of a formula φ in a structure \mathfrak{M} relative to a variable assignment s, in symbols: $\mathfrak{M}, s \neq \varphi$, is defined recursively as follows. (We write $\mathfrak{M}, s \not \vDash \varphi$ to mean "not $\mathfrak{M}, s \models \varphi$. .")

1. $\varphi \equiv \perp: \operatorname{not} \mathfrak{M}, s \models \varphi$.
2. $\varphi \equiv \mathrm{T}: \mathfrak{M}, s \models \varphi$.
3. $\varphi \equiv R\left(t_{1}, \ldots, t_{n}\right): \mathfrak{M}, s \models \varphi \operatorname{iff}\left\langle\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{1}\right), \ldots, \operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{n}\right)\right\rangle \in R^{\mathfrak{M}}$.
4. $\varphi \equiv t_{1}=t_{2}: \mathfrak{M}, s \models \varphi$ iff $\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{1}\right)=\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{2}\right)$.
5. $\varphi \equiv \neg \psi: \mathfrak{M}, s \neq \varphi$ iff $\mathfrak{M}, s \not \vDash \psi$.
6. $\varphi \equiv(\psi \wedge \chi): \mathfrak{M}, s \vDash \varphi$ iff $\mathfrak{M}, s \vDash \psi$ and $\mathfrak{M}, s \vDash \chi$.
7. $\varphi \equiv(\psi \vee \chi): \mathfrak{M}, s \vDash \varphi$ iff $\mathfrak{M}, s \vDash \varphi$ or $\mathfrak{M}, s \vDash \psi$ (or both).
8. $\varphi \equiv(\psi \rightarrow \chi): \mathfrak{M}, s \neq \varphi$ iff $\mathfrak{M}, s \not \vDash \psi$ or $\mathfrak{M}, s \mid=\chi$ (or both).
9. $\varphi \equiv(\psi \leftrightarrow \chi): \mathfrak{M}, s \vDash \varphi$ iff either both $\mathfrak{M}, s \models \psi$ and $\mathfrak{M}, s \models \chi$, or neither $\mathfrak{M}, s \models \psi$ nor $\mathfrak{M}, s \models \chi$.
10. $\varphi \equiv \forall x \psi: \mathfrak{M}, s \models \varphi$ iff for every x-variant s^{\prime} of $s, \mathfrak{M}, s^{\prime} \models \psi$.
11. $\varphi \equiv \exists x \psi: \mathfrak{M}, s \vDash \varphi$ iff there is an x-variant s^{\prime} of s so that $\mathfrak{M}, s^{\prime} \models \psi$.

The variable assignments are important in the last two clauses. We cannot define satisfaction of $\forall x \psi(x)$ by "for all $a \in|\mathfrak{M}|, \mathfrak{M} \vDash \psi(a)$." We cannot define satisfaction of $\exists x \psi(x)$ by "for at least one $a \in|\mathfrak{M}|, \mathfrak{M} \mid=\psi(a)$." The reason is that a is not symbol of the language, and so $\psi(a)$ is not a formula (that is, $\psi[a / x]$ is undefined). We also cannot assume that we have constant symbols or terms available that name every element of \mathfrak{M}, since there is nothing in the definition of structures that requires it. Even in the standard language

5.9. SATISFACTION OF A FORMULA IN A STRUCTURE

the set of constant symbols is denumerable, so if $|\mathfrak{M}|$ is not enumerable there aren't even enough constant symbols to name every object.

A variable assignment s provides a value for every variable in the language. This is of course not necessary: whether or not a formula φ is satisfied in a structure with respect to s only depends on the assignments s makes to the free variables that actually occur in φ. This is the content of the next theorem. We require variable assignments to assign values to all variables simply because it makes things a lot easier.

Proposition 5.34. If x_{1}, \ldots, x_{n} are the only free variables in φ and $s\left(x_{i}\right)=s^{\prime}\left(x_{i}\right)$ for $i=1, \ldots, n$, then $\mathfrak{M}, s \models \varphi$ iff $\mathfrak{M}, s^{\prime} \models \varphi$.

Proof. We use induction on the complexity of φ. For the base case, where φ is atomic, φ can be: $T, \perp, R\left(t_{1}, \ldots, t_{k}\right)$ for a k-place predicate R and terms t_{1}, \ldots, t_{k}, or $t_{1}=t_{2}$ for terms t_{1} and t_{2}.

1. $\varphi \equiv \mathrm{T}$: both $\mathfrak{M}, s \models \varphi$ and $\mathfrak{M}, s^{\prime} \models \varphi$.
2. $\varphi \equiv \perp$: both $\mathfrak{M}, s \not \vDash \varphi$ and $\mathfrak{M}, s^{\prime} \not \models \varphi$.
3. $\varphi \equiv R\left(t_{1}, \ldots, t_{k}\right)$: let $\mathfrak{M}, s \models \varphi$. Then

$$
\left\langle\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{1}\right), \ldots, \operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{k}\right)\right\rangle \in R^{\mathfrak{M}}
$$

For $i=1, \ldots, k$, if t_{i} is a constant, then $\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{i}\right)=\operatorname{Val}^{\mathfrak{M}}\left(t_{i}\right)=\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{i}\right)$. If t_{i} is a free variable, then since the mappings s and s^{\prime} agree on all free variables, $\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{i}\right)=s\left(t_{i}\right)=s^{\prime}\left(t_{i}\right)=\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{i}\right)$. Similarly, if t_{i} is of the form $f\left(t_{1}^{\prime}, \ldots, t_{j}^{\prime}\right)$, we will also get $\operatorname{Val}_{s}^{\mathfrak{M i l}}\left(t_{i}\right)=\operatorname{Val}_{s^{\prime}}^{\mathfrak{M 2}}\left(t_{i}\right)$. Hence, $\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{i}\right)=\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{i}\right)$ for any term t_{i} for $i=1, \ldots, k$, so we also have $\left\langle\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{i}\right), \ldots, \operatorname{Val}_{s^{\prime}}^{\mathfrak{M} \boldsymbol{M}}\left(t_{k}\right)\right\rangle \in R^{\mathfrak{M}}$.
4. $\varphi \equiv t_{1}=t_{2}: \quad$ if $\mathfrak{M}, s \vDash \varphi, \operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{1}\right)=\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{1}\right)=\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{2}\right)=$ $\mathrm{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{2}\right)$, so $\mathfrak{M}, s^{\prime} \models t_{1}=t_{2}$.

Now assume $\mathfrak{M}, s \models \psi$ iff $\mathfrak{M}, s^{\prime} \models \psi$ for all formulas ψ less complex than φ. The induction step proceeds by cases determined by the main operator of φ. In each case, we only demonstrate the forward direction of the biconditional; the proof of the reverse direction is symmetrical.

1. $\varphi \equiv \neg \psi$: if $\mathfrak{M}, s \models \varphi$, then $\mathfrak{M}, s \not \models \psi$, so by the induction hypothesis, $\mathfrak{M}, s^{\prime} \not \vDash \psi$, hence $\mathfrak{M}, s^{\prime} \models \varphi$.
2. $\varphi \equiv \psi \wedge \chi:$ if $\mathfrak{M}, s \vDash \varphi$, then $\mathfrak{M}, s \vDash \psi$ and $\mathfrak{M}, s \vDash \chi$, so by induction hypothesis, $\mathfrak{M}, s^{\prime} \models \psi$ and $\mathfrak{M}, s^{\prime} \models \chi$. Hence, $\mathfrak{M}, s^{\prime} \models \varphi$.
3. $\varphi \equiv \psi \vee \chi$: if $\mathfrak{M}, s \vDash \varphi$, then $\mathfrak{M}, s \vDash \psi$ or $\mathfrak{M}, s \vDash \chi$. By induction hypothesis, $\mathfrak{M}, s^{\prime} \models \psi$ or $\mathfrak{M}, s^{\prime} \models \chi$, so $\mathfrak{M}, s^{\prime} \models \varphi$.
4. $\varphi \equiv \psi \rightarrow \chi$: if $\mathfrak{M}, s \neq \varphi$, then $\mathfrak{M}, s \not \vDash \psi$ or $\mathfrak{M}, s \neq \chi$. By the induction hypothesis, $\mathfrak{M}, s^{\prime} \not \vDash \psi$ or $\mathfrak{M}, s^{\prime} \models \chi$, so $\mathfrak{M}, s^{\prime} \models \varphi$.
5. $\varphi \equiv \psi \leftrightarrow \chi$: if $\mathfrak{M}, s \vDash \varphi$, then either $\mathfrak{M}, s \vDash \psi$ and $\mathfrak{M}, s \vDash \chi$, or $\mathfrak{M}, s \not \vDash \psi$ and $\mathfrak{M}, s \not \vDash \chi$. By the induction hypothesis, either $\mathfrak{M}, s^{\prime} \vDash \psi$ and $\mathfrak{M}, s^{\prime} \models \chi$ or $\mathfrak{M}, s^{\prime} \notin \psi$ and $\mathfrak{M}, s^{\prime} \not \vDash \chi$. In either case, $\mathfrak{M}, s^{\prime} \models \varphi$.
6. $\varphi \equiv \exists x \psi$: if $\mathfrak{M}, s \models \varphi$, there is an x-variant \bar{s} of s so that $\mathfrak{M}, \bar{s} \models \psi$. Let \bar{s}^{\prime} denote the x-variant of s^{\prime} that assigns the same thing to x as does \bar{s} : then by the induction hypothesis, $\mathfrak{M}, \bar{s}^{\prime} \models \psi$. Hence, there is an x-variant of s^{\prime} that satisfies ψ, so $\mathfrak{M}, s^{\prime} \models \varphi$.
7. $\varphi \equiv \forall x \psi$: if $\mathfrak{M}, s \vDash \varphi$, then for every x-variant \bar{s} of $s, \mathfrak{M}, \bar{s} \mid=\psi$. Hence, if \bar{s}^{\prime} is the x-variant of s^{\prime} that assigns the same thing to x as does \bar{s}, then we have $\mathfrak{M}, \bar{s}^{\prime} \models \psi$. Hence, every x-variant of s^{\prime} satisfies ψ, so $\mathfrak{M}, s^{\prime} \models \varphi$

By induction, we get that $\mathfrak{M}, s \models \varphi$ iff $\mathfrak{M}, s^{\prime} \models \varphi$ whenever x_{1}, \ldots, x_{n} are the only free variables in φ and $s\left(x_{i}\right)=s^{\prime}\left(x_{i}\right)$ for $i=1, \ldots, n$.

Definition 5.35. If φ is a sentence, we say that a structure \mathfrak{M} satisfies $\varphi, \mathfrak{M} \vDash \varphi$, iff $\mathfrak{M}, s \models \varphi$ for all variable assignments s.

If $\mathfrak{M} \mid=\varphi$, we also say that φ is true in \mathfrak{M}.
Proposition 5.36. Suppose $\varphi(x)$ only contains x free, and \mathfrak{M} is a structure. Then:

1. $\mathfrak{M} \vDash \exists x \varphi(x)$ iff $\mathfrak{M}, s \vDash \varphi(x)$ for at least one variable assignment s.
2. $\mathfrak{M} \vDash \forall x \varphi(x)$ iff $\mathfrak{M}, s \vDash \varphi(x)$ for all variable assignments s.

Proof. Exercise.

5.10 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as follows: the only thing that bears upon the satisfaction of formula φ in a structure \mathfrak{M} relative to a variable assignment s, are the assignments made by \mathfrak{M} and s to the elements of the language that actually appear in φ.

One immediate consequence of extensionality is that where two structures \mathfrak{M} and \mathfrak{M}^{\prime} agree on all the elements of the language appearing in a sentence φ and have the same domain, \mathfrak{M} and \mathfrak{M}^{\prime} must also agree on φ itself.

Proposition 5.37 (Extensionality). Let φ be a sentence, and \mathfrak{M} and \mathfrak{M}^{\prime} be structures. If $c^{\mathfrak{M}}=c^{\mathfrak{M}^{\prime}}, R^{\mathfrak{M}}=R^{\mathfrak{M}^{\prime}}$, and $f^{\mathfrak{M}}=f^{\mathfrak{M}^{\prime}}$ for every constant symbol c, relation symbol R, and function symbol f occurring in φ, then $\mathfrak{M} \vDash \varphi$ iff $\mathfrak{M}^{\prime} \vDash \varphi$.

Moreover, the value of a term, and whether or not a structure satisfies a formula, only depends on the values of its subterms.

5.11. SEMANTIC NOTIONS

Proposition 5.38. Let \mathfrak{M} be a structure, t and t^{\prime} terms, and sa variable assignment. Let $s^{\prime} \sim_{x}$ s be the x-variant of s given by $s^{\prime}(x)=\operatorname{Val}_{s}^{\mathfrak{M}}\left(t^{\prime}\right)$. Then $\operatorname{Val}_{s}^{\mathfrak{M}}\left(t\left[t^{\prime} / x\right]\right)=$ $\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}(t)$.

Proof. By induction on t.

1. If t is a constant, say, $t \equiv c$, then $t\left[t^{\prime} / x\right]=c$, and $\operatorname{Val}_{s}^{\mathfrak{M}}(c)=c^{\mathfrak{M}}=$ $\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}(c)$.
2. If t is a variable other than x, say, $t \equiv y$, then $t\left[t^{\prime} / x\right]=y$, and $\operatorname{Val}_{s}^{\mathfrak{M}}(y)=$ $\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}(y)$ since $s^{\prime} \sim_{x} s$.
3. If $t \equiv x$, then $t\left[t^{\prime} / x\right]=t^{\prime}$. But $\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}(x)=\operatorname{Val}_{s}^{\mathfrak{M}}\left(t^{\prime}\right)$ by definition of s^{\prime}.
4. If $t \equiv f\left(t_{1}, \ldots, t_{n}\right)$ then we have:

$$
\begin{aligned}
& \operatorname{Val}_{s}^{\mathfrak{M}}\left(t\left[t^{\prime} / x\right]\right)= \\
& =\begin{aligned}
= & \operatorname{Val}_{s}^{\mathfrak{M}}\left(f\left(t_{1}\left[t^{\prime} / x\right], \ldots, t_{n}\left[t^{\prime} / x\right]\right)\right) \\
& \quad \text { by definition of } t\left[t^{\prime} / x\right] \\
= & f^{\mathfrak{M}}\left(\operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{1}\left[t^{\prime} / x\right]\right), \ldots, \operatorname{Val}_{s}^{\mathfrak{M}}\left(t_{n}\left[t^{\prime} / x\right]\right)\right) \\
& \quad \text { by definition of } \operatorname{Val}_{s}^{\mathfrak{M}}(f(\ldots)) \\
= & f^{\mathfrak{M}}\left(\operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{1}\right), \ldots, \operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}\left(t_{n}\right)\right) \\
& \quad \text { by induction hypothesis } \\
= & \operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}(t) \text { by definition of } \operatorname{Val}_{s^{\prime}}^{\mathfrak{M}}(f(\ldots))
\end{aligned}
\end{aligned}
$$

Proposition 5.39. Let \mathfrak{M} be a structure, φ a formula, t a term, and s a variable assignment. Let $s^{\prime} \sim_{x}$ s be the x-variant of s given by $s^{\prime}(x)=\operatorname{Val}_{s}^{\mathfrak{M}}(t)$. Then $\mathfrak{M}, s \models \varphi[t / x]$ iff $\mathfrak{M}, s^{\prime} \models \varphi$.

Proof. Exercise.

5.11 Semantic Notions

Give the definition of structures for first-order languages, we can define some basic semantic properties of and relationships between sentences. The simplest of these is the notion of validity of a sentence. A sentence is valid if it is satisfied in every structure. Valid sentences are those that are satisfied regardless of how the non-logical symbols in it are interpreted. Valid sentences are therefore also called logical truths-they are true, i.e., satisfied, in any structure and hence their truth depends only on the logical symbols occurring in them and their syntactic structure, but not on the non-logical symbols or their interpretation.

Definition 5.40 (Validity). A sentence φ is valid, $\vDash \varphi$, iff $\mathfrak{M} \vDash \varphi$ for every structure \mathfrak{M}.

Definition 5.41 (Entailment). A set of sentences Γ entails a sentence $\varphi, \Gamma \vDash \varphi$, iff for every structure \mathfrak{M} with $\mathfrak{M} \models \Gamma, \mathfrak{M} \models \varphi$.

Definition 5.42 (Satisfiability). A set of sentences Γ is satisfiable if $\mathfrak{M} \vDash \Gamma$ for some structure \mathfrak{M}. If Γ is not satisfiable it is called unsatisfiable.

Proposition 5.43. A sentence φ is valid iff $\Gamma \vDash \varphi$ for every set of sentences Γ.

Proof. For the forward direction, let φ be valid, and let Γ be a set of sentences. Let \mathfrak{M} be a structure so that $\mathfrak{M} \mid=\Gamma$. Since φ is valid, $\mathfrak{M} \vDash \varphi$, hence $\Gamma \vDash \varphi$.

For the contrapositive of the reverse direction, let φ be invalid, so there is a structure \mathfrak{M} with $\mathfrak{M} \not \equiv \varphi$. When $\Gamma=\{\top\}$, since \top is valid, $\mathfrak{M} \mid=\Gamma$. Hence, there is a structure \mathfrak{M} so that $\mathfrak{M} \vDash \Gamma$ but $\mathfrak{M} \not \vDash \varphi$, hence Γ does not entail φ.

Proposition 5.44. $\Gamma \vDash \varphi$ iff $\Gamma \cup\{\neg \varphi\}$ is unsatisfiable.
Proof. For the forward direction, suppose $\Gamma \vDash \varphi$ and suppose to the contrary that there is a structure \mathfrak{M} so that $\mathfrak{M} \vDash \Gamma \cup\{\neg \varphi\}$. Since $\mathfrak{M} \vDash \Gamma$ and $\Gamma \vDash \varphi$, $\mathfrak{M} \vDash \varphi$. Also, since $\mathfrak{M} \vDash \Gamma \cup\{\neg \varphi\}, \mathfrak{M} \vDash \neg \varphi$, so we have both $\mathfrak{M} \vDash \varphi$ and $\mathfrak{M} \not \vDash \varphi$, a contradiction. Hence, there can be no such structure \mathfrak{M}, so $\Gamma \cup\{\varphi\}$ is unsatisfiable.

For the reverse direction, suppose $\Gamma \cup\{\neg \varphi\}$ is unsatisfiable. So for every structure \mathfrak{M}, either $\mathfrak{M} \not \vDash \Gamma$ or $\mathfrak{M} \vDash \varphi$. Hence, for every structure \mathfrak{M} with $\mathfrak{M} \vDash \Gamma, \mathfrak{M} \mid=\varphi$, so $\Gamma \vDash \varphi$.

Proposition 5.45. If $\Gamma \subseteq \Gamma^{\prime}$ and $\Gamma \vDash \varphi$, then $\Gamma^{\prime} \vDash \varphi$.
Proof. Suppose that $\Gamma \subseteq \Gamma^{\prime}$ and $\Gamma \vDash \varphi$. Let \mathfrak{M} be such that $\mathfrak{M} \models \Gamma^{\prime}$; then $\mathfrak{M} \vDash \Gamma$, and since $\Gamma \vDash \varphi$, we get that $\mathfrak{M} \vDash \varphi$. Hence, whenever $\mathfrak{M} \vDash \Gamma^{\prime}$, $\mathfrak{M} \vDash \varphi$, so $\Gamma^{\prime} \vDash \varphi$.

Theorem 5.46 (Semantic Deduction Theorem). $\Gamma \cup\{\varphi\} \vDash \psi$ iff $\Gamma \vDash \varphi \rightarrow \psi$.
Proof. For the forward direction, let $\Gamma \cup\{\varphi\} \vDash \psi$ and let \mathfrak{M} be a structure so that $\mathfrak{M} \vDash \Gamma$. If $\mathfrak{M} \vDash \varphi$, then $\mathfrak{M} \vDash \Gamma \cup\{\varphi\}$, so since $\Gamma \cup\{\varphi\}$ entails ψ, we get $\mathfrak{M} \models \psi$. Therefore, $\mathfrak{M} \vDash \varphi \rightarrow \psi$, so $\Gamma \vDash \varphi \rightarrow \psi$.

For the reverse direction, let $\Gamma \vDash \varphi \rightarrow \psi$ and \mathfrak{M} be a structure so that $\mathfrak{M} \vDash \Gamma \cup\{\varphi\}$. Then $\mathfrak{M} \vDash \Gamma$, so $\mathfrak{M} \vDash \varphi \rightarrow \psi$, and since $\mathfrak{M} \models \varphi, \mathfrak{M} \vDash \psi$. Hence, whenever $\mathfrak{M}|=\Gamma \cup\{\varphi\}, \mathfrak{M}|=\psi$, so $\Gamma \cup\{\varphi\} \vDash \psi$.

5.11. SEMANTIC NOTIONS

Problems

Problem 5.1. Prove Lemma 5.9.
Problem 5.2. Prove Proposition 5.10 (Hint: Formulate and prove a version of Lemma 5.9 for terms.)

Problem 5.3. Give an inductive definition of the bound variable occurrences along the lines of Definition 5.16.

Problem 5.4. Is \mathfrak{N}, the standard model of arithmetic, covered? Explain.
Problem 5.5. Let $\mathcal{L}=\{c, f, A\}$ with one constant symbol, one one-place function symbol and one two-place predicate symbol, and let the structure \mathfrak{M} be given by

1. $|\mathfrak{M}|=\{1,2,3\}$
2. $c^{\mathfrak{M}}=3$
3. $f^{\mathfrak{M}}(1)=2, f^{\mathfrak{M}}(2)=3, f^{\mathfrak{M}}(3)=2$
4. $A^{\mathfrak{M}}=\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,3\rangle\}$
(a) Let $s(v)=1$ for all variables v. Find out whether

$$
\mathfrak{M}, s \vDash \exists x(A(f(z), c) \rightarrow \forall y(A(y, x) \vee A(f(y), x)))
$$

Explain why or why not.
(b) Give a different structure and variable assignment in which the formula is not satisfied.

Problem 5.6. Complete the proof of Proposition 5.34.
Problem 5.7. Show that if φ is a sentence, $\mathfrak{M} \vDash \varphi$ iff there is a variable assignment s so that $\mathfrak{M}, s \models \varphi$.

Problem 5.8. Prove Proposition 5.36.
Problem 5.9. Suppose \mathcal{L} is a language without function symbols. Given a structure \mathfrak{M} and $a \in|\mathfrak{M}|$, define $\mathfrak{M}[a / c]$ to be the structure that is just like \mathfrak{M}, except that $c^{\mathfrak{M}[a / c]}=a$. Define $\mathfrak{M} \|=\varphi$ for sentences φ by:

1. $\varphi \equiv \perp: \operatorname{not} \mathfrak{M} \|=\varphi$.
2. $\varphi \equiv \top: \mathfrak{M} \|=\varphi$.
3. $\varphi \equiv R\left(d_{1}, \ldots, d_{n}\right): \mathfrak{M} \|=\varphi$ iff $\left\langle d_{1}^{\mathfrak{M}}, \ldots, d_{n}^{\mathfrak{M}}\right\rangle \in R^{\mathfrak{M}}$.
4. $\varphi \equiv d_{1}=d_{2}: \mathfrak{M} \|=\varphi$ iff $d_{1}^{\mathfrak{M}}=d_{2}^{\mathfrak{M}}$.
5. $\varphi \equiv \neg \psi: \mathfrak{M} \|=\varphi$ iff not $\mathfrak{M} \|=\psi$.
6. $\varphi \equiv(\psi \wedge \chi): \mathfrak{M} \|=\varphi$ iff $\mathfrak{M} \|=\psi$ and $\mathfrak{M} \|=\chi$.
7. $\varphi \equiv(\psi \vee \chi): \mathfrak{M} \|=\varphi$ iff $\mathfrak{M} \|=\varphi$ or $\mathfrak{M} \|=\psi$ (or both).
8. $\varphi \equiv(\psi \rightarrow \chi): \mathfrak{M} \|=\varphi$ iff not $\mathfrak{M} \|=\psi$ or $\mathfrak{M} \|=\chi$ (or both).
9. $\varphi \equiv(\psi \leftrightarrow \chi): \mathfrak{M} \|=\varphi$ iff either both $\mathfrak{M} \|=\psi$ and $\mathfrak{M} \|=\chi$, or neither $\mathfrak{M} \|=\psi$ nor $\mathfrak{M} \|=\chi$.
10. $\varphi \equiv \forall x \psi: \mathfrak{M} \|=\varphi$ iff for all $a \in|\mathfrak{M}|, \mathfrak{M}[a / c] \|=\psi[c / x]$, if c does not occur in ψ.
11. $\varphi \equiv \exists x \psi: \mathfrak{M} \|=\varphi$ iff there is an $a \in|\mathfrak{M}|$ such that $\mathfrak{M}[a / c] \|=\psi[c / x]$, if c does not occur in ψ.

Let x_{1}, \ldots, x_{n} be all free variables in $\varphi, c_{1}, \ldots, c_{n}$ constant symbols not in φ, $a_{1}, \ldots, a_{n} \in|\mathfrak{M}|$, and $s\left(x_{i}\right)=a_{i}$.

Show that $\mathfrak{M}, s \models \varphi$ iff $\mathfrak{M}\left[a_{1} / c_{1}, \ldots, a_{n} / c_{n}\right] \|=\varphi\left[c_{1} / x_{1}\right] \ldots\left[c_{n} / x_{n}\right]$.
Problem 5.10. Suppose that f is a function symbol not in $\varphi(x, y)$. Show that there is a \mathfrak{M} such that $\mathfrak{M} \vDash \forall x \exists y \varphi(x, y)$ iff there is a \mathfrak{M}^{\prime} such that $\mathfrak{M}^{\prime} \models$ $\forall x \varphi(x, f(x))$.

Problem 5.11. Prove Proposition 5.39
Problem 5.12. 1. Show that $\Gamma \vDash \perp$ iff Γ is unsatisfiable.
2. Show that $\Gamma, \varphi \vDash \perp$ iff $\Gamma \vDash \neg \varphi$.
3. Suppose c does not occur in φ or Γ. Show that $\Gamma \vDash \forall x \varphi$ iff $\Gamma \vDash \varphi[c / x]$.

Chapter 6

Theories and Their Models

6.1 Introduction

The development of the axiomatic method is a significant achievement in the history of science, and is of special importance in the history of mathematics. An axiomatic development of a field involves the clarification of many questions: What is the field about? What are the most fundamental concepts? How are they related? Can all the concepts of the field be defined in terms of these fundamental concepts? What laws do, and must, these concepts obey?

The axiomatic method and logic were made for each other. Formal logic provides the tools for formulating axiomatic theories, for proving theorems from the axioms of the theory in a precisely specified way, for studying the properties of all systems satisfying the axioms in a systematic way.

Definition 6.1. A set of sentences Γ is closed iff, whenever $\Gamma \vDash \varphi$ then $\varphi \in \Gamma$. The closure of a set of sentences Γ is $\{\varphi: \Gamma \vDash \varphi\}$.

We say that Γ is axiomatized by a set of sentences Δ if Γ is the closure of Δ

We can think of an axiomatic theory as the set of sentences that is axiomatized by its set of axioms Δ. In other words, when we have a first-order language which contains non-logical symbols for the primitives of the axiomatically developed science we wish to study, together with a set of sentences that express the fundamental laws of the science, we can think of the theory as represented by all the sentences in this language that are entailed by the axioms. This ranges from simple examples with only a single primitive and simple axioms, such as the theory of partial orders, to complex theories such as Newtonian mechanics.

The important logical facts that make this formal approach to the axiomatic method so important are the following. Suppose Γ is an axiom system for a theory, i.e., a set of sentences.

1. We can state precisely when an axiom system captures an intended class of structures. That is, if we are interested in a certain class of structures, we will successfully capture that class by an axiom system Γ iff the structures are exactly those \mathfrak{M} such that $\mathfrak{M} \mid=\Gamma$.
2. We may fail in this respect because there are \mathfrak{M} such that $\mathfrak{M} \models \Gamma$, but \mathfrak{M} is not one of the structures we intend. This may lead us to add axioms which are not true in \mathfrak{M}.
3. If we are successful at least in the respect that Γ is true in all the intended structures, then a sentence φ is true in all intended structures whenever $\Gamma \vDash \varphi$. Thus we can use logical tools (such as proof methods) to show that sentences are true in all intended structures simply by showing that they are entailed by the axioms.
4. Sometimes we don't have intended structures in mind, but instead start from the axioms themselves: we begin with some primitives that we want to satisfy certain laws which we codify in an axiom system. One thing that we would like to verify right away is that the axioms do not contradict each other: if they do, there can be no concepts that obey these laws, and we have tried to set up an incoherent theory. We can verify that this doesn't happen by finding a model of Γ. And if there are models of our theory, we can use logical methods to investigate them, and we can also use logical methods to construct models.
5. The independence of the axioms is likewise an important question. It may happen that one of the axioms is actually a consequence of the others, and so is redundant. We can prove that an axiom φ in Γ is redundant by proving $\Gamma \backslash\{\varphi\} \vDash \varphi$. We can also prove that an axiom is not redundant by showing that $(\Gamma \backslash\{\varphi\}) \cup\{\neg \varphi\}$ is satisfiable. For instance, this is how it was shown that the parallel postulate is independent of the other axioms of geometry.
6. Another important question is that of definability of concepts in a theory: The choice of the language determines what the models of a theory consists of. But not every aspect of a theory must be represented separately in its models. For instance, every ordering \leq determines a corresponding strict ordering $<-$ given one, we can define the other. So it is not necessary that a model of a theory involving such an order must also contain the corresponding strict ordering. When is it the case, in general, that one relation can be defined in terms of others? When is it impossible to define a relation in terms of other (and hence must add it to the primitives of the language)?

6.2. EXPRESSING PROPERTIES OF STRUCTURES

6.2 Expressing Properties of Structures

It is often useful and important to express conditions on functions and relations, or more generally, that the functions and relations in a structure satisfy these conditions. For instance, we would like to have ways of distinguishing those structures for a language which "capture" what we want the predicate symbols to "mean" from those that do not. Of course we're completely free to specify which structures we "intend," e.g., we can specify that the interpretation of the predicate symbol \leq must be an ordering, or that we are only interested in interpretations of \mathcal{L} in which the domain consists of sets and \in is interpreted by the "is an element of" relation. But can we do this with sentences of the language? In other words, which conditions on a structure \mathfrak{M} can we express by a sentence (or perhaps a set of sentences) in the language of \mathfrak{M} ? There are some conditions that we will not be able to express. For instance, there is no sentence of \mathcal{L}_{A} which is only true in a structure \mathfrak{M} if $|\mathfrak{M}|=\mathbb{N}$. We cannot express "the domain contains only natural numbers." But there are "structural properties" of structures that we perhaps can express. Which properties of structures can we express by sentences? Or, to put it another way, which collections of structures can we describe as those making a sentence (or set of sentences) true?

Definition 6.2 (Model of a set). Let Γ be a set of sentences in a language \mathcal{L}. We say that a structure \mathfrak{M} is a model of Γ if $\mathfrak{M} \mid=\varphi$ for all $\varphi \in \Gamma$.
Example 6.3. The sentence $\forall x x \leq x$ is true in \mathfrak{M} iff $\leq^{\mathfrak{M}}$ is a reflexive relation. The sentence $\forall x \forall y((x \leq y \wedge y \leq x) \rightarrow x=y)$ is true in \mathfrak{M} iff $\leq^{\mathfrak{M}}$ is antisymmetric. The sentence $\forall x \forall y \forall z((x \leq y \wedge y \leq z) \rightarrow x \leq z)$ is true in \mathfrak{M} iff $\leq^{\mathfrak{M}}$ is transitive. Thus, the models of

$$
\begin{aligned}
\{ & \forall x x \leq x \\
& \forall x \forall y((x \leq y \wedge y \leq x) \rightarrow x=y) \\
& \forall x \forall y \forall z((x \leq y \wedge y \leq z) \rightarrow x \leq z)
\end{aligned}
$$

are exactly those structures in which $\leq^{\mathfrak{M}}$ is reflexive, anti-symmetric, and transitive, i.e., a partial order. Hence, we can take them as axioms for the first-order theory of partial orders.

6.3 Examples of First-Order Theories

Example 6.4. The theory of strict linear orders in the language $\mathcal{L}_{<}$is axiomatized by the set

$$
\begin{aligned}
& \forall x \neg x<x \\
& \forall x \forall y((x<y \vee y<x) \vee x=y) \\
& \forall x \forall y \forall z((x<y \wedge y<z) \rightarrow x<z)
\end{aligned}
$$

It completely captures the intended structures: every strict linear order is a model of this axiom system, and vice versa, if R is a linear order on a set X, then the structure \mathfrak{M} with $|\mathfrak{M}|=X$ and $<^{\mathfrak{M}}=R$ is a model of this theory.

Example 6.5. The theory of groups in the language 1 (constant symbol), • (two-place function symbol) is axiomatized by

$$
\begin{aligned}
& \forall x(x \cdot 1)=x \\
& \forall x \forall y \forall z(x \cdot(y \cdot z))=((x \cdot y) \cdot z) \\
& \forall x \exists y(x \cdot y)=1
\end{aligned}
$$

Example 6.6. The theory of Peano arithmetic is axiomatized by the following sentences in the language of arithmetic \mathcal{L}_{A}.

$$
\begin{aligned}
& \neg \exists x x^{\prime}=0 \\
& \forall x \forall y\left(x^{\prime}=y^{\prime} \rightarrow x=y\right) \\
& \forall x \forall y\left(x<y \leftrightarrow \exists z\left(x+z^{\prime}=y\right)\right) \\
& \forall x(x+0)=x \\
& \forall x \forall y\left(x+y^{\prime}\right)=(x+y)^{\prime} \\
& \forall x(x \times 0)=0 \\
& \forall x \forall y\left(x \times y^{\prime}\right)=((x \times y)+x)
\end{aligned}
$$

plus all sentences of the form

$$
\left(\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right)\right) \rightarrow \forall x \varphi(x)
$$

Since there are infinitely many sentences of the latter form, this axiom system is infinite. The latter form is called the induction schema. (Actually, the induction schema is a bit more complicated than we let on here.)

The third axiom is an explicit definition of $<$.
Example 6.7. The theory of pure sets plays an important role in the foundations (and in the philosophy) of mathematics. A set is pure if all its elements are also pure sets. The empty set counts therefore as pure, but a set that has something as an element that is not a set would not be pure. So the pure sets are those that are formed just from the empty set and no "urelements," i.e., objects that are not themselves sets.

The following might be considered as an axiom system for a theory of pure sets:

$$
\begin{aligned}
& \exists x \neg \exists y y \in x \\
& \forall x \forall y(\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y) \\
& \forall x \forall y \exists z \forall u(u \in z \leftrightarrow(u=x \vee u=y)) \\
& \forall x \exists y \forall z(z \in y \leftrightarrow \exists u(z \in u \wedge u \in x))
\end{aligned}
$$

6.3. EXAMPLES OF FIRST-ORDER THEORIES

plus all sentences of the form

$$
\exists x \forall y(y \in x \leftrightarrow \varphi(y))
$$

The first axiom says that there is a set with no elements (i.e., \varnothing exists); the second says that sets are extensional; the third that for any sets X and Y, the set $\{X, Y\}$ exists; the fourth that for any sets X and Y, the set $X \cup Y$ exists.

The sentences mentioned last are collectively called the naive comprehension scheme. It essentially says that for every $\varphi(x)$, the set $\{x: \varphi(x)\}$ exists-so at first glance a true, useful, and perhaps even necessary axiom. It is called "naive" because, as it turns out, it makes this theory unsatisfiable: if you take $\varphi(y)$ to be $\neg y \in y$, you get the sentence

$$
\exists x \forall y(y \in x \leftrightarrow \neg y \in y)
$$

and this sentence is not satisfied in any structure.
Example 6.8. In the area of mereology, the relation of parthood is a fundamental relation. Just like theories of sets, there are theories of parthood that axiomatize various conceptions (sometimes conflicting) of this relation.

The language of mereology contains a single two-place predicate symbol P, and $P(x, y)$ "means" that x is a part of y. When we have this interpretation in mind, a structure for this language is called a parthood structure. Of course, not every structure for a single two-place predicate will really deserve this name. To have a chance of capturing "parthood," P^{M} must satisfy some conditions, which we can lay down as axioms for a theory of parthood. For instance, parthood is a partial order on objects: every object is a part (albeit an improper part) of itself; no two different objects can be parts of each other; a part of a part of an object is itself part of that object. Note that in this sense "is a part of" resembles "is a subset of," but does not resemble "is an element of" which is neither reflexive nor transitive.

$$
\begin{aligned}
& \forall x P(x, x), \\
& \forall x \forall y((P(x, y) \wedge P(y, x)) \rightarrow x=y), \\
& \forall x \forall y \forall z((P(x, y) \wedge P(y, z)) \rightarrow P(x, z)),
\end{aligned}
$$

Moreover, any two objects have a mereological sum (an object that has these two objects as parts, and is minimal in this respect).

$$
\forall x \forall y \exists z \forall u(P(z, u) \leftrightarrow(P(x, u) \wedge P(y, u)))
$$

These are only some of the basic principles of parthood considered by metaphysicians. Further principles, however, quickly become hard to formulate or write down without first introducting some defined relations. For instance, most metaphysicians interested in mereology also view the following as a valid principle: whenever an object x has a proper part y, it also has a part z that has no parts in common with y, and so that the fusion of y and z is x.

6.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties and relations in a structure \mathfrak{M} in terms of the primitives of the language \mathcal{L} of \mathfrak{M}. By this we mean the following: the domain of \mathfrak{M} is a set of objects. The constant symbols, function symbols, and predicate symbols are interpreted in \mathfrak{M} by some objects in $|\mathfrak{M}|$, functions on $|\mathfrak{M}|$, and relations on $|\mathfrak{M}|$. For instance, if A_{0}^{2} is in \mathcal{L}, then \mathfrak{M} assigns to it a relation $R=A_{0}^{2 \mathfrak{M}}$. Then the formula $A_{0}^{2}\left(x_{1}, x_{2}\right)$ expresses that very relation, in the following sense: if a variable assignment s maps x_{1} to $a \in|\mathfrak{M}|$ and x_{2} to $b \in|\mathfrak{M}|$, then

$$
R a b \quad \text { iff } \quad \mathfrak{M}, s=A_{0}^{2}\left(x_{1}, x_{2}\right) .
$$

Note that we have to involve variable assignments here: we can't just say " $R a b$ iff $\mathfrak{M} \vDash A_{0}^{2}(a, b)^{\prime \prime}$ because a and b are not symbols of our language: they are elements of $|\mathfrak{M}|$.

Since we don't just have atomic formulas, but can combine them using the logical connectives and the quantifiers, more complex formulas can define other relations which aren't directly built into \mathfrak{M}. We're interested in how to do that, and specifically, which relations we can define in a structure.

Definition 6.9. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula of \mathcal{L} in which only x_{1}, \ldots, x_{n} occur free, and let \mathfrak{M} be a structure for $\mathcal{L} . \varphi\left(x_{1}, \ldots, x_{n}\right)$ expresses the relation $R \subseteq$ $|\mathfrak{M}|^{n}$ iff

$$
R a_{1} \ldots a_{n} \quad \text { iff } \quad \mathfrak{M}, s \models \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

for any variable assignment s with $s\left(x_{i}\right)=a_{i}(i=1, \ldots, n)$.
Example 6.10. In the standard model of arithmetic \mathfrak{N}, the formula $x_{1}<x_{2} \vee$ $x_{1}=x_{2}$ expresses the \leq relation on \mathbb{N}. The formula $x_{2}=x_{1}^{\prime}$ expresses the successor relation, i.e., the relation $R \subseteq \mathbb{N}^{2}$ where $R n m$ holds if m is the successor of n. The formula $x_{1}=x_{2}^{\prime}$ expresses the predecessor relation. The formulas $\exists x_{3}\left(x_{3} \neq 0 \wedge x_{2}=\left(x_{1}+x_{3}\right)\right)$ and $\exists x_{3}\left(x_{1}+x_{3}{ }^{\prime}\right)=x_{2}$ both express the $<$ relation. This means that the predicate symbol $<$ is actually superfluous in the language of arithmetic; it can be defined.

This idea is not just interesting in specific structures, but generally whenever we use a language to describe an intended model or models, i.e., when we consider theories. These theories often only contain a few predicate symbols as basic symbols, but in the domain they are used to describe often many other relations play an important role. If these other relations can be systematically expressed by the relations that interpret the basic predicate symbols of the language, we say we can define them in the language.

6.5. THE THEORY OF SETS

6.5 The Theory of Sets

Almost all of mathematics can be developed in the theory of sets. Developing mathematics in this theory involves a number of things. First, it requires a set of axioms for the relation \in. A number of different axiom systems have been developed, sometimes with conflicting properties of \in. The axiom system known as ZFC, Zermelo-Fraenkel set theory with the axiom of choice stands out: it is by far the most widely used and studied, because it turns out that its axioms suffice to prove almost all the things mathematicians expect to be able to prove. But before that can be established, it first is necessary to make clear how we can even express all the things mathematicians would like to express. For starters, the language contains no constant symbols or function symbols, so it seems at first glance unclear that we can talk about particular sets (such as \varnothing or \mathbb{N}), can talk about operations on sets (such as $X \cup Y$ and $\wp(X)$), let alone other constructions which involve things other than sets, such as relations and functions.

To begin with, "is an element of" is not the only relation we are interested in: "is a subset of" seems almost as important. But we can define "is a subset of" in terms of "is an element of." To do this, we have to find a formula $\varphi(x, y)$ in the language of set theory which is satisfied by a pair of sets $\langle X, Y\rangle$ iff $X \subseteq$ Y. But X is a subset of Y just in case all elements of X are also elements of Y. So we can define \subseteq by the formula

$$
\forall z(z \in x \rightarrow z \in y)
$$

Now, whenever we want to use the relation \subseteq in a formula, we could instead use that formula (with x and y suitably replaced, and the bound variable z renamed if necessary). For instance, extensionality of sets means that if any sets x and y are contained in each other, then x and y must be the same set. This can be expressed by $\forall x \forall y((x \subseteq y \wedge y \subseteq x) \rightarrow x=y)$, or, if we replace \subseteq by the above definition, by

$$
\forall x \forall y((\forall z(z \in x \rightarrow z \in y) \wedge \forall z(z \in y \rightarrow z \in x)) \rightarrow x=y)
$$

This is in fact one of the axioms of ZFC, the "axiom of extensionality."
There is no constant symbol for \varnothing, but we can express " x is empty" by $\neg \exists y y \in x$. Then " \varnothing exists" becomes the sentence $\exists x \neg \exists y y \in x$. This is another axiom of ZFC. (Note that the axiom of extensionality implies that there is only one empty set.) Whenever we want to talk about \varnothing in the language of set theory, we would write this as "there is a set that's empty and ..." As an example, to express the fact that \varnothing is a subset of every set, we could write

$$
\exists x(\neg \exists y y \in x \wedge \forall z x \subseteq z)
$$

where, of course, $x \subseteq z$ would in turn have to be replaced by its definition.

To talk about operations on sets, such has $X \cup Y$ and $\wp(X)$, we have to use a similar trick. There are no function symbols in the language of set theory, but we can express the functional relations $X \cup Y=Z$ and $\wp(X)=Y$ by

$$
\begin{aligned}
& \forall u((u \in x \vee u \in y) \leftrightarrow u \in z) \\
& \forall u(u \subseteq x \leftrightarrow u \in y)
\end{aligned}
$$

since the elements of $X \cup Y$ are exactly the sets that are either elements of X or elements of Y, and the elements of $\wp(X)$ are exactly the subsets of X. However, this doesn't allow us to use $x \cup y$ or $\wp(x)$ as if they were terms: we can only use the entire formulas that define the relations $X \cup Y=Z$ and $\wp(X)=Y$. In fact, we do not know that these relations are ever satisfied, i.e., we do not know that unions and power sets always exist. For instance, the sentence $\forall x \exists y \wp(x)=y$ is another axiom of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here we have to explain how we can think of ordered pairs and functions as special kinds of sets. One way to define the ordered pair $\langle x, y\rangle$ is as the set $\{\{x\},\{x, y\}\}$. But like before, we cannot introduce a function symbol that names this set; we can only define the relation $\langle x, y\rangle=z$, i.e., $\{\{x\},\{x, y\}\}=z$:

$$
\forall u(u \in z \leftrightarrow(\forall v(v \in u \leftrightarrow v=x) \vee \forall v(v \in u \leftrightarrow(v=x \vee v=y))))
$$

This says that the elements u of z are exactly those sets which either have x as its only element or have x and y as its only elements (in other words, those sets that are either identical to $\{x\}$ or identical to $\{x, y\}$). Once we have this, we can say further things, e.g., that $X \times Y=Z$:

$$
\forall z(z \in Z \leftrightarrow \exists x \exists y(x \in X \wedge y \in Y \wedge\langle x, y\rangle=z))
$$

A function $f: X \rightarrow Y$ can be thought of as the relation $f(x)=y$, i.e., as the set of pairs $\{\langle x, y\rangle: f(x)=y\}$. We can then say that a set f is a function from X to Y if (a) it is a relation $\subseteq X \times Y$, (b) it is total, i.e., for all $x \in X$ there is some $y \in Y$ such that $\langle x, y\rangle \in f$ and (c) it is functional, i.e., whenever $\langle x, y\rangle,\left\langle x, y^{\prime}\right\rangle \in f, y=y^{\prime}$ (because values of functions must be unique). So " f is a function from X to $Y^{\prime \prime}$ can be written as:

$$
\begin{aligned}
\forall u(u \in f & \rightarrow \exists x \exists y(x \in X \wedge y \in Y \wedge\langle x, y\rangle=u)) \wedge \\
\forall x(x \in X \rightarrow & (\exists y(y \in Y \wedge \operatorname{maps}(f, x, y)) \wedge \\
& \left.\left(\forall y \forall y^{\prime}\left(\left(\operatorname{maps}(f, x, y) \wedge \operatorname{maps}\left(f, x, y^{\prime}\right)\right) \rightarrow y=y^{\prime}\right)\right)\right)
\end{aligned}
$$

where $\operatorname{maps}(f, x, y)$ abbreviates $\exists v(v \in f \wedge\langle x, y\rangle=v)$ (this formula expresses " $f(x)=y$ ").

It is now also not hard to express that $f: X \rightarrow Y$ is injective, for instance:

$$
\begin{aligned}
f: X \rightarrow Y \wedge \forall x \forall x^{\prime}((x \in X & \wedge x^{\prime} \in X \wedge \\
& \left.\left.\exists y\left(\operatorname{maps}(f, x, y) \wedge \operatorname{maps}\left(f, x^{\prime}, y\right)\right)\right) \rightarrow x=x^{\prime}\right)
\end{aligned}
$$

A function $f: X \rightarrow Y$ is injective iff, whenever f maps $x, x^{\prime} \in X$ to a single y, $x=x^{\prime}$. If we abbreviate this formula as $\operatorname{inj}(f, X, Y)$, we're already in a position to state in the language of set theory something as non-trivial as Cantor's theorem: there is no injective function from $\wp(X)$ to X :

$$
\forall X \forall Y(\wp(X)=Y \rightarrow \neg \exists f \operatorname{inj}(f, Y, X))
$$

6.6 Expressing the Size of Structures

There are some properties of structures we can express even without using the non-logical symbols of a language. For instance, there are sentences which are true in a structure iff the domain of the structure has at least, at most, or exactly a certain number n of elements.

Proposition 6.11. The sentence

$$
\begin{array}{r}
\varphi_{\geq n} \equiv \exists x_{1} \exists x_{2} \ldots \exists x_{n} \quad\left(x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4} \wedge \cdots \wedge x_{1} \neq x_{n} \wedge\right. \\
x_{2} \neq x_{3} \wedge x_{2} \neq x_{4} \wedge \cdots \wedge x_{2} \neq x_{n} \wedge \\
\vdots \\
\left.x_{n-1} \neq x_{n}\right)
\end{array}
$$

is true in a structure \mathfrak{M} iff $|\mathfrak{M}|$ contains at least n elements. Consequently, $\mathfrak{M} \vDash$ $\neg \varphi \geq n+1$ iff $|\mathfrak{M}|$ contains at most n elements.

Proposition 6.12. The sentence

$$
\begin{array}{r}
\varphi=n \equiv \exists x_{1} \exists x_{2} \ldots \exists x_{n} \quad\left(x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4} \wedge \cdots \wedge x_{1} \neq x_{n} \wedge\right. \\
x_{2} \neq x_{3} \wedge x_{2} \neq x_{4} \wedge \cdots \wedge x_{2} \neq x_{n} \wedge \\
\vdots \\
x_{n-1} \neq x_{n} \wedge \\
\left.\left.\forall y\left(y=x_{1} \vee \ldots y=x_{n}\right) \ldots\right)\right)
\end{array}
$$

is true in a structure \mathfrak{M} iff $|\mathfrak{M}|$ contains exactly n elements.
Proposition 6.13. A structure is infinite iff it is a model of

$$
\{\varphi \geq 1, \varphi \geq 2, \varphi \geq 3, \ldots\}
$$

There is no single purely logical sentence which is true in \mathfrak{M} iff $|\mathfrak{M}|$ is infinite. However, one can give sentences with non-logical predicate symbols which only have infinite models (although not every infinite structure is a model of them). The property of being a finite structure, and the property of being a non-enumerable structure cannot even be expressed with an infinite set of sentences. These facts follow from the compactness and LöwenheimSkolem theorems.

Problems

Problem 6.1. Find formulas in \mathcal{L}_{A} which define the following relations:

1. n is between i and j;
2. n evenly divides m (i.e., m is a multiple of n);
3. n is a prime number (i.e., no number other than 1 and n evenly divides n).

Problem 6.2. Suppose the formula $\varphi\left(x_{1}, x_{2}\right)$ expresses the relation $R \subseteq|\mathfrak{M}|^{2}$ in a structure \mathfrak{M}. Find formulas that express the following relations:

1. the inverse R^{-1} of R;
2. the relative product $R \mid R$;

Can you find a way to express R^{+}, the transitive closure of R ?
Problem 6.3. Let \mathcal{L} be the language containing a 2-place predicate symbol $<$ only (no other constant symbols, function symbols or predicate symbolsexcept of course $=$). Let \mathfrak{N} be the structure such that $|\mathfrak{N}|=\mathbb{N}$, and $<\mathfrak{N}=$ $\{\langle n, m\rangle: n<m\}$. Prove the following:

1. $\{0\}$ is definable in \mathfrak{N};
2. $\{1\}$ is definable in \mathfrak{N};
3. $\{2\}$ is definable in \mathfrak{N};
4. for each $n \in \mathbb{N}$, the set $\{n\}$ is definable in \mathfrak{N};
5. every finite subset of $|\mathfrak{N}|$ is definable in \mathfrak{N};
6. every co-finite subset of $|\mathfrak{N}|$ is definable in \mathfrak{N} (where $X \subseteq \mathbb{N}$ is co-finite iff $\mathbb{N} \backslash X$ is finite).

Chapter 7

The Sequent Calculus

This chapter presents a sequent calculus (using sets of formulas instead of sequences) for first-order logic. It will mainly be useful for instructors transitioning from Boolos, Burgess \& Jeffrey, who use the same system. For a self-contained introduction to the sequent calculus, it would probably be best to use a standard presentation including structural rules.

To include or exclude material relevant to the sequent calculus as a proof system, use the "prfLK" tag.

7.1 Rules and Derivations

This section collects all the rules propositional connectives and quantifiers, but not for identity. It is planned to divide this into separate sections on connectives and quantifiers so that proofs for propositional logic can be treated separately (issue \#77).

Let \mathcal{L} be a first-order language with the usual constants, variables, logical symbols, and auxiliary symbols (parentheses and the comma).

Definition 7.1 (sequent). A sequent is an expression of the form

$$
\Gamma \Rightarrow \Delta
$$

where Γ and Δ are finite (possibly empty) sets of sentences of the language \mathcal{L}. The formulas in Γ are the antecedent formulas, while the formulae in Δ are the succedent formulas.

The intuitive idea behind a sequent is: if all of the antecedent formulas hold, then at least one of the succedent formulas holds. That is, if $\Gamma=$
$\left\{\Gamma_{1}, \ldots, \Gamma_{m}\right\}$ and $\Delta=\left\{\Delta_{1}, \ldots, \Delta_{n}\right\}$, then $\Gamma \Rightarrow \Delta$ holds iff

$$
\left(\Gamma_{1} \wedge \cdots \wedge \Gamma_{m}\right) \rightarrow\left(\Delta_{1} \vee \cdots \vee \Delta_{n}\right)
$$

holds.
When $m=0, \quad \Rightarrow \Delta$ holds iff $\Delta_{1} \vee \cdots \vee \Delta_{n}$ holds. When $n=0, \Gamma \Rightarrow$ holds iff $\Gamma_{1} \wedge \cdots \wedge \Gamma_{m}$ does not.
An empty succedent is sometimes filled with the \perp symbol. he empty sequent \Rightarrow canonically represents a contradiction.

We write $\Gamma, \varphi($ or $\varphi, \Gamma)$ for $\Gamma \cup\{\varphi\}$, and Γ, Δ for $\Gamma \cup \Delta$.
Definition 7.2 (Inference). An inference is an expression of the form

$$
\frac{S_{1}}{S} \quad \text { or } \quad \frac{S_{1} \quad S_{2}}{S}
$$

where S, S_{1}, and S_{2} are sequents. S_{1} and S_{2} are called the upper sequents and S the lower sequent of the inference.

In sequent calculus derivations, a correct inference yields a valid sequent, provided the upper sequents are valid.

For the following, let $\Gamma, \Delta, \Pi, \Lambda$ represent finite sets of sentences.
The rules for LK are divided into two main types: structural rules and logical rules. The logical rules are further divided into propositional rules (quantifierfree) and quantifier rules.

Structural rules: Weakening:

$$
\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \mathrm{WL} \quad \text { and } \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi} \mathrm{WR}
$$

where φ is called the weakening formula.
A series of weakening inferences will often be indicated by double inference lines.

Cut:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Pi \Rightarrow \Lambda}{\Gamma, \Pi \Rightarrow \Delta, \Lambda}
$$

Logical rules: The rules are named by the main operator of the principal formula of the inference (the formula containing φ and/or ψ in the lower sequent). The designations "left" and "right" indicate whether the logical symbol has been introduced in an antecedent formula or a succedent formula (to the left or to the right of the sequent symbol).

Propositional Rules:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi}{\neg \varphi, \Gamma \Rightarrow \Delta} \neg \mathrm{L} \quad \frac{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \varphi} \neg \mathrm{R}
$$

$$
\begin{gathered}
\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta} \wedge \mathrm{L} \frac{\psi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta} \wedge \mathrm{~L} \quad \frac{\Gamma \Rightarrow \Delta, \varphi \quad \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \wedge \psi} \wedge \mathrm{R} \\
\frac{\varphi, \Gamma \Rightarrow \Delta \quad \psi, \Gamma \Rightarrow \Delta}{\varphi \vee \psi, \Gamma \Rightarrow \Delta} \vee \mathrm{~L} \quad \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi} \vee \mathrm{R} \frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi} \vee \mathrm{R} \\
\frac{\Gamma \Rightarrow \Delta, \varphi \quad \psi, \Pi \Rightarrow \Lambda}{\varphi \rightarrow \psi, \Gamma, \Pi \Rightarrow \Delta, \Lambda} \rightarrow \mathrm{~L} \quad \frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi} \rightarrow \mathrm{R}
\end{gathered}
$$

Quantifier Rules:

$$
\frac{\varphi(t), \Gamma \Rightarrow \Delta}{\forall x \varphi(x), \Gamma \Rightarrow \Delta} \forall \mathrm{L} \quad \frac{\Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, \forall x \varphi(x)} \forall \mathrm{R}
$$

where t is a ground term (i.e., one without variables), and a is a constant which does not occur anywhere in the lower sequent of the $\forall \mathrm{R}$ rule. We call a the eigenvariable of the $\forall \mathrm{R}$ inference.

$$
\frac{\varphi(a), \Gamma \Rightarrow \Delta}{\exists x \varphi(x), \Gamma \Rightarrow \Delta} \exists \mathrm{L} \quad \frac{\Gamma \Rightarrow \Delta, \varphi(t)}{\Gamma \Rightarrow \Delta, \exists x \varphi(x)} \exists \mathrm{R}
$$

where t is a ground term, and a is a constant which does not occur in the lower sequent of the $\exists \mathrm{L}$ rule. We call a the eigenvariable of the $\exists \mathrm{L}$ inference.

The condition that an eigenvariable not occur in the upper sequent of the $\forall \mathrm{R}$ or $\exists \mathrm{L}$ inference is called the eigenvariable condition.

We use the term "eigenvariable" even though a in the above rules is a constant. This has historical reasons.

In $\exists \mathrm{R}$ and $\forall \mathrm{L}$ there are no restrictions, and the term t can be anything, so we do not have to worry about any conditions. However, because the t may appear elsewhere in the sequent, the values of t for which the sequent is satisfied are constrained. On the other hand, in the $\exists \mathrm{L}$ and \forall right rules, the eigenvariable condition requires that a does not occur anywhere else in the sequent. Thus, if the upper sequent is valid, the truth values of the formulas other than $\varphi(a)$ are independent of a.

Definition 7.3 (Initial Sequent). An initial sequent is a sequent of one of the following forms:

1. $\varphi \Rightarrow \varphi$
2. $\Rightarrow \top$
3. $\perp \Rightarrow$
for any sentence φ in the language.

Definition 7.4 (LK derivation). An LK-derivation of a sequent S is a tree of sequents satisfying the following conditions:

1. The topmost sequents of the tree are initial sequents.
2. Every sequent in the tree (except S) is an upper sequent of an inference whose lower sequent stands directly below that sequent in the tree.

We then say that S is the end-sequent of the derivation and that S is derivable in LK (or LK-derivable).

Definition 7.5 (LK theorem). A sentence φ is a theorem of LK if the sequent $\Rightarrow \varphi$ is LK-derivable.

7.2 Examples of Derivations

Example 7.6. Give an LK-derivation for the sequent $\varphi \wedge \psi \Rightarrow \varphi$.
We begin by writing the desired end-sequent at the bottom of the derivation.

$$
\varphi \wedge \psi \Rightarrow \varphi
$$

Next, we need to figure out what kind of inference could have a lower sequent of this form. This could be a structural rule, but it is a good idea to start by looking for a logical rule. The only logical connective occurring in a formula in the lower sequent is \wedge, so we're looking for an \wedge rule, and since the \wedge symbol occurs in the antecedent formulas, we're looking at the \wedge left rule.

$$
\overline{\varphi \wedge \psi \Rightarrow \varphi} \wedge \mathrm{L}
$$

There are two options for what could have been the upper sequent of the $\wedge \mathrm{L}$ inference: we could have an upper sequent of $\varphi \Rightarrow \varphi$, or of $\psi \Rightarrow \varphi$. Clearly, $\varphi \Rightarrow \varphi$ is an initial sequent (which is a good thing), while $\psi \Rightarrow \varphi$ is not derivable in general. We fill in the upper sequent:

$$
\frac{\varphi \Rightarrow \varphi}{\varphi \wedge \psi \Rightarrow \varphi} \wedge \mathrm{L}
$$

We now have a correct LK-derivation of the sequent $\varphi \wedge \psi \Rightarrow \varphi$.
Example 7.7. Give an LK-derivation for the sequent $\neg \varphi \vee \psi \Rightarrow \varphi \rightarrow \psi$.
Begin by writing the desired end-sequent at the bottom of the derivation.

$$
\neg \varphi \vee \psi \Rightarrow \varphi \rightarrow \psi
$$

7.2. EXAMPLES OF DERIVATIONS

To find a logical rule that could give us this end-sequent, we look at the logical connectives in the end-sequent: \neg, \vee, and \rightarrow. We only care at the moment about \vee and \rightarrow because they are main operators of sentences in the endsequent, while \neg is inside the scope of another connective, so we will take care of it later. Our options for logical rules for the final inference are therefore the $V L$ rule and the $\rightarrow R$ rule. We could pick either rule, really, but let's pick the \rightarrow right rule (if for no reason other than it allows us to put off splitting into two branches). According to the form of $\rightarrow \mathrm{R}$ inferences which can yield the lower sequent, this must look like:

$$
\frac{\varphi, \neg \varphi \vee \psi \Rightarrow \psi}{\neg \varphi \vee \psi \Rightarrow \varphi \rightarrow \psi} \rightarrow \mathrm{R}
$$

Now we can apply the $\vee L$ rule. According to the schema, this must split into two upper sequents as follows:

$$
\begin{gathered}
\frac{\varphi, \neg \varphi \Rightarrow \psi}{\varphi, \psi \Rightarrow \psi} \\
\frac{\varphi, \neg \varphi \vee \psi \Rightarrow \psi}{\neg \varphi \vee \psi \Rightarrow \varphi \rightarrow \psi}
\end{gathered}>\mathrm{R}
$$

Remember that we are trying to wind our way up to initial sequents; we seem to be pretty close! The right branch is just one weakening away from an initial sequent and then it is done:

$$
\begin{gathered}
\frac{\psi \Rightarrow \psi}{\varphi, \neg \varphi \Rightarrow \psi} \quad \mathrm{WL} \\
\frac{\varphi, \neg \varphi \vee \psi \Rightarrow \psi}{\neg \varphi \vee \psi \Rightarrow \varphi \rightarrow \psi}
\end{gathered} \frac{\mathrm{~L}}{\varphi \Rightarrow \psi}
$$

Now looking at the left branch, the only logical connective in any sentence is the \neg symbol in the antecedent sentences, so we're looking at an instance of the $\neg \mathrm{L}$ rule.

$$
\begin{gathered}
\frac{\varphi \Rightarrow \psi, \varphi}{\varphi, \neg \varphi \Rightarrow \psi} \neg \mathrm{L} \quad \frac{\psi \Rightarrow \psi}{\varphi, \psi \Rightarrow \psi} \mathrm{WL} \\
\frac{\varphi, \neg \varphi \vee \psi \Rightarrow \psi}{\neg \varphi \vee \psi \Rightarrow \varphi \rightarrow \psi} \rightarrow \mathrm{R}
\end{gathered}
$$

Similarly to how we finished off the right branch, we are just one weakening away from finishing off this left branch as well.

Example 7.8. Give an LK-derivation of the sequent $\neg \varphi \vee \neg \psi \Rightarrow \neg(\varphi \wedge \psi)$
Using the techniques from above, we start by writing the desired endsequent at the bottom.

$$
\neg \varphi \vee \neg \psi \Rightarrow \neg(\varphi \wedge \psi)
$$

The available main connectives of sentences in the end-sequent are the V symbol and the \neg symbol. It would work to apply either the $V \mathrm{~L}$ or the $\neg \mathrm{R}$ rule here, but we start with the $\neg \mathrm{R}$ rule because it avoids splitting up into two branches for a moment:

$$
\begin{aligned}
\frac{\varphi \wedge \psi, \neg \varphi \vee \neg \psi \Rightarrow}{\neg \varphi \vee \neg \psi \Rightarrow \neg(\varphi \wedge \psi)} \neg \mathrm{R}
\end{aligned}
$$

Now we have a choice of whether to look at the $\wedge \mathrm{L}$ or the $\vee \mathrm{L}$ rule. Let's see what happens when we apply the \wedge left rule: we have a choice to start with either the sequent $\varphi, \neg \varphi \vee \psi \Rightarrow$ or the sequent $\psi, \neg \varphi \vee \psi \Rightarrow$. Since the proof is symmetric with regards to φ and ψ, let's go with the former:

$$
\frac{\frac{\overline{\varphi, \neg \varphi \vee \neg \psi \Rightarrow}}{\varphi \wedge \psi, \neg \varphi \vee \neg \psi \Rightarrow}}{\frac{\mathrm{L}}{\neg \varphi \vee \neg \psi \Rightarrow \neg(\varphi \wedge \psi)} \neg \mathrm{R}, ~}
$$

Continuing to fill in the derivation, we see that we run into a problem:

The top of the right branch cannot be reduced any further, and it cannot be brought by way of structural inferences to an initial sequent, so this is not the right path to take. So clearly, it was a mistake to apply the $\wedge \mathrm{L}$ rule above. Going back to what we had before and carrying out the $\vee \mathrm{L}$ rule instead, we get

$$
\begin{gathered}
\frac{\varphi \wedge \psi, \neg \varphi \Rightarrow}{\varphi \wedge \psi, \neg \varphi \vee \neg \psi \Rightarrow} \overline{\varphi \wedge \psi, \neg \psi \Rightarrow} \\
\frac{\varphi \varphi}{} \mathrm{L} \\
\frac{\mathrm{\varphi}, ~}{} \mathrm{R}
\end{gathered}
$$

Completing each branch as we've done before, we get

7.2. EXAMPLES OF DERIVATIONS

$$
\begin{array}{r}
\frac{\varphi \Rightarrow \varphi}{\varphi \wedge \psi \Rightarrow \varphi} \wedge \mathrm{L} \\
\frac{\varphi \wedge \psi, \neg \varphi \Rightarrow}{\varphi \wedge} \neg \mathrm{~L} \quad \frac{\psi \wedge \psi \Rightarrow \psi}{\varphi \wedge \psi, \neg \psi \Rightarrow} \neg \mathrm{~L} \\
\frac{\varphi \wedge \psi, \neg \varphi \vee \neg \psi \Rightarrow}{\neg \varphi \vee \neg \psi \Rightarrow \neg(\varphi \wedge \psi)} \neg \mathrm{R}
\end{array}
$$

(We could have carried out the \wedge rules lower than the \neg rules in these steps and still obtained a correct derivation).

Example 7.9. Give an LK-derivation of the sequent $\exists x \neg \varphi(x) \Rightarrow \neg \forall x \varphi(x)$.
When dealing with quantifiers, we have to make sure not to violate the eigenvariable condition, and sometimes this requires us to play around with the order of carrying out certain inferences. In general, it helps to try and take care of rules subject to the eigenvariable condition first (they will be lower down in the finished proof). Also, it is a good idea to try and look ahead and try to guess what the initial sequent might look like. In our case, it will have to be something like $\varphi(a) \Rightarrow \varphi(a)$. That means that when we are "reversing" the quantifier rules, we will have to pick the same term-what we will call a-for both the \forall and the \exists rule. If we picked different terms for each rule, we would end up with something like $\varphi(a) \Rightarrow \varphi(b)$, which, of course, is not derivable.

Starting as usual, we write

$$
\exists x \neg \varphi(x) \Rightarrow \neg \forall x \varphi(x)
$$

We could either carry out the $\exists \mathrm{L}$ rule or the $\neg \mathrm{R}$ rule. Since the $\exists \mathrm{L}$ rule is subject to the eigenvariable condition, it's a good idea to take care of it sooner rather than later, so we'll do that one first.

Applying the $\neg \mathrm{L}$ and right rules to eliminate the \neg signs, we get

$$
\begin{aligned}
\begin{aligned}
& \forall x \varphi(x) \Rightarrow \varphi(a) \\
& \Rightarrow \neg \forall x \varphi(x), \varphi(a) \\
& \\
& \mathrm{R} \\
& \neg \neg \varphi(a) \Rightarrow \neg \forall x \varphi(x) \\
& \Rightarrow \mathrm{L} \\
& \exists x \neg \varphi(x) \Rightarrow \neg \forall x \varphi(x)
\end{aligned},=\text {. }
\end{aligned}
$$

At this point, our only option is to carry out the $\forall \mathrm{L}$ rule. Since this rule is not subject to the eigenvariable restriction, we're in the clear. Remember, we want to try and obtain an initial sequent (of the form $\varphi(a) \Rightarrow \varphi(a)$), so we should choose a as our argument for φ when we apply the rule.

$$
\begin{aligned}
& \varphi(a) \Rightarrow \varphi(a) \\
& \hline \forall x \varphi(x) \Rightarrow \varphi(a) \\
& \Rightarrow \neg \forall x \varphi(x), \varphi(a) \\
& \Rightarrow \mathrm{R} \\
& \frac{\mathrm{~L}}{} \quad \Rightarrow \varphi(a) \Rightarrow \neg \forall x \varphi(x) \\
& \mathrm{L}
\end{aligned}
$$

It is important, especially when dealing with quantifiers, to double check at this point that the eigenvariable condition has not been violated. Since the only rule we applied that is subject to the eigenvariable condition was $\exists \mathrm{L}$, and the eigenvariable a does not occur in its lower sequent (the end-sequent), this is a correct derivation.

This section collects the properties of the provability relation required for the completeness theorem. If you find the location unmotivated, include it instead in the chapter on completeness.

7.3 Proof-Theoretic Notions

Just as we've defined a number of important semantic notions (validity, entailment, satisfiabilty), we now define corresponding proof-theoretic notions. These are not defined by appeal to satisfaction of sentences in structures, but by appeal to the derivability or non-derivability of certain sequents. It was an important discovery, due to Gödel, that these notions coincide. That they do is the content of the completeness theorem.

Definition 7.10 (Theorems). A sentence φ is a theorem if there is a derivation in $\mathbf{L K}$ of the sequent $\Rightarrow \varphi$. We write $\vdash_{\mathbf{L K}} \varphi$ if φ is a theorem and $\nvdash \mathbf{L K} \varphi$ if it is not.

Definition 7.11 (Derivability). A sentence φ is derivable from a set of sentences Γ, $\Gamma \vdash_{\mathbf{L K}} \varphi$, if there is a finite subset $\Gamma_{0} \subseteq \Gamma$ such that LK derives $\Gamma_{0} \Rightarrow \varphi$. If φ is not derivable from Γ we write $\Gamma \nvdash_{\mathbf{L K}} \varphi$.

Definition 7.12 (Consistency). A set of sentences Γ is consistent iff $\Gamma \nvdash_{\mathbf{L K}} \perp$. If Γ is not consistent, i.e., if $\Gamma \vdash_{\mathbf{L K}} \perp$, we say it is inconsistent.

Proposition 7.13. $\Gamma \vdash_{\text {LK }} \varphi$ iff $\Gamma \cup\{\neg \varphi\}$ is inconsistent.
Proof. Exercise.
Proposition 7.14. Γ is inconsistent iff $\Gamma \vdash_{\text {LK }} \varphi$ for every sentence φ.
Proof. Exercise.
Proposition 7.15. $\Gamma \vdash_{\text {LK }} \varphi$ iff for some finite $\Gamma_{0} \subseteq \Gamma, \Gamma_{0} \vdash_{\mathrm{LK}} \varphi$.

7.4. PROPERTIES OF DERIVABILITY

Proof. Follows immediately from the definion of $\vdash_{\text {LK }}$.

7.4 Properties of Derivability

We will now establish a number of properties of the derivability relation. They are independently interesting, but each will play a role in the proof of the completeness theorem.

Proposition 7.16 (Monotony). If $\Gamma \subseteq \Delta$ and $\Gamma \vdash_{\mathbf{L K}} \varphi$, then $\Delta \vdash_{\mathbf{L K}} \varphi$.
Proof. Any finite $\Gamma_{0} \subseteq \Gamma$ is also a finite subset of Δ, so a derivation of $\Gamma_{0} \Rightarrow \varphi$ also shows $\Delta \vdash_{\text {LK }} \varphi$.

Proposition 7.17. If $\Gamma \vdash_{\mathbf{L K}} \varphi$ and $\Gamma \cup\{\varphi\} \vdash_{\mathbf{L K}} \perp$, then Γ is inconsistent.
Proof. There are finite Γ_{0} and $\Gamma_{1} \subseteq \Gamma$ such that LK derives $\Gamma_{0} \Rightarrow \varphi$ and $\Gamma_{1}, \varphi \Rightarrow$ \perp. Let the LK-derivation of $\Gamma_{0} \Rightarrow \varphi$ be Π_{0} and the LK-derivation of $\Gamma_{1}, \varphi \Rightarrow \perp$ be Π_{1}. We can then derive

$$
\begin{array}{cc}
\vdots & \vdots \\
\frac{\Pi_{0}}{} & \vdots \\
\frac{\Gamma_{0} \Rightarrow \varphi}{\overline{\Gamma_{0}, \Gamma_{1} \Rightarrow \varphi}} \frac{\Gamma_{1}, \varphi \Rightarrow \perp}{\overline{\Gamma_{0}, \Gamma_{1}, \varphi \Rightarrow \perp}} \\
\Gamma_{0}, \Gamma_{1} \Rightarrow \perp &
\end{array}
$$

(Recall that double inference lines indicate several weakening inferences.)
Since $\Gamma_{0} \subseteq \Gamma$ and $\Gamma_{1} \subseteq \Gamma, \Gamma_{0} \cup \Gamma_{1} \subseteq \Gamma$, hence $\Gamma \vdash_{\text {LK }} \perp$.
Proposition 7.18. If $\Gamma \cup\{\varphi\} \vdash_{\mathbf{L K}} \perp$, then $\Gamma \vdash_{\mathbf{L K}} \neg \varphi$.
Proof. Suppose that $\Gamma \cup\{\varphi\} \vdash_{\mathbf{L K}} \perp$. Then there is a finite set $\Gamma_{0} \subseteq \Gamma$ such that LK derives $\Gamma_{0}, \varphi \Rightarrow \perp$. Let Π_{0} be an LK-derivation of $\Gamma_{0}, \varphi \Rightarrow \perp$, and consider

$$
\begin{gathered}
\vdots \\
\vdots \\
\Pi_{0} \\
\Gamma_{0}, \varphi \Rightarrow \perp \\
\hline \Gamma_{0} \Rightarrow \neg \varphi
\end{gathered} \mathrm{R}
$$

Proposition 7.19. If $\Gamma \cup\{\varphi\} \vdash_{\mathbf{L K}} \perp$ and $\Gamma \cup\{\neg \varphi\} \vdash_{\mathbf{L K}} \perp$, then $\Gamma \vdash_{\mathbf{L K}} \perp$.
Proof. There are finite sets $\Gamma_{0} \subseteq \Gamma$ and $\Gamma_{1} \subseteq \Gamma$ and LK-derivations Π_{0} and Π_{1} of $\Gamma_{0}, \varphi \Rightarrow \perp$ and $\Gamma_{1}, \neg \varphi \Rightarrow \perp$, respectively. We can then derive

$$
\begin{array}{cc}
\vdots & \\
\vdots & \vdots \\
\frac{\Gamma_{0}, \varphi \Rightarrow \perp}{\Gamma_{0}} \downarrow \mathrm{R} & \vdots \\
\frac{\Gamma_{0} \Rightarrow \neg \varphi}{\Gamma_{1}} & \Gamma_{1}, \neg \varphi \Rightarrow \perp \\
\Gamma_{0}, \Gamma_{1} \Rightarrow \perp & \mathrm{cut}
\end{array}
$$

Since $\Gamma_{0} \subseteq \Gamma$ and $\Gamma_{1} \subseteq \Gamma, \Gamma_{0} \cup \Gamma_{1} \subseteq \Gamma$. Hence $\Gamma \vdash_{\text {LK }} \perp$.
Proposition 7.20. If $\Gamma \cup\{\varphi\} \vdash_{\mathbf{L K}} \perp$ and $\Gamma \cup\{\psi\} \vdash_{\mathbf{L K}} \perp$, then $\Gamma \cup\{\varphi \vee \psi\} \vdash_{\mathbf{L K}}$ \perp.

Proof. There are finite sets $\Gamma_{0}, \Gamma_{1} \subseteq \Gamma$ and LK-derivations Π_{0} and Π_{1} such that

$$
\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \Pi_{1} \\
\frac{\Gamma_{0}, \varphi \Rightarrow \perp}{\Rightarrow} & \Gamma_{1}, \psi \Rightarrow \perp \\
\frac{\Gamma_{0}, \Gamma_{1}, \varphi \Rightarrow \perp}{\Gamma_{0}, \Gamma_{1}, \psi \Rightarrow \perp} \\
\Gamma_{0}, \Gamma_{1}, \varphi \vee \psi \Rightarrow \perp
\end{array} \mathrm{~L}
$$

Since $\Gamma_{0}, \Gamma_{1} \subseteq \Gamma$ and $\Gamma \cup\{\varphi \vee \psi\} \vdash_{\text {LK }} \perp$.
Proposition 7.21. If $\Gamma \vdash_{\mathbf{L K}} \varphi$ or $\Gamma \vdash_{\mathbf{L K}} \psi$, then $\Gamma \vdash_{\mathbf{L K}} \varphi \vee \psi$.
Proof. There is an LK-derivation Π_{0} and a finite set $\Gamma_{0} \subseteq \Gamma$ such that we can derive

$$
\begin{gathered}
\vdots \\
\vdots \\
\frac{\Pi_{0}}{\Gamma_{0} \Rightarrow} \varphi \\
\Gamma_{0} \Rightarrow \varphi \vee \psi \\
\end{gathered}
$$

Therefore $\Gamma \vdash_{\mathbf{L K}} \varphi \vee \psi$. The proof for when $\Gamma \vdash_{\mathbf{L K}} \psi$ is similar.
Proposition 7.22. If $\Gamma \vdash_{\mathbf{L K}} \varphi \wedge \psi$ then $\Gamma \vdash_{\mathbf{L K}} \varphi$ and $\Gamma \vdash_{\mathbf{L K}} \psi$.
Proof. If $\Gamma \vdash_{\mathbf{L K}} \varphi \wedge \psi$, there is a finite set $\Gamma_{0} \subseteq \Gamma$ and an LK-derivation Π_{0} of $\Gamma_{0} \Rightarrow \varphi \wedge \psi$. Consider

$$
\frac{\vdots}{\vdots} \begin{gathered}
\Pi_{0} \\
\Gamma_{0}, \Rightarrow \varphi \wedge \psi
\end{gathered} \frac{\varphi \Rightarrow \varphi}{\varphi \wedge \psi \Rightarrow \varphi} \wedge \mathrm{~L}
$$

Hence, $\Gamma \vdash_{\mathbf{L K}} \varphi$. A similar derivation starting with $\psi \Rightarrow \psi$ on the right side shows that $\Gamma \vdash_{\text {LK }} \psi$.

7.4. PROPERTIES OF DERIVABILITY

Proposition 7.23. If $\Gamma \vdash_{\mathbf{L K}} \varphi$ and $\Gamma \vdash_{\mathbf{L K}} \psi$, then $\Gamma \vdash_{\mathbf{L K}} \varphi \wedge \psi$.
Proof. If $\Gamma \vdash_{\mathbf{L K}} \varphi$ as well as $\Gamma \vdash_{\mathbf{L K}} \psi$, there are finite sets $\Gamma_{0}, \Gamma_{1} \subseteq \Gamma$ and an LK-derivations Π_{0} of $\Gamma_{0} \Rightarrow \varphi$ and Π_{1} of $\Gamma_{1} \Rightarrow \varphi$. Consider

$$
\begin{array}{cc}
\vdots & \vdots \\
\vdots & \vdots \Pi_{1} \\
\frac{\Gamma_{0}, \Rightarrow \varphi}{\Gamma_{0}, \Gamma_{1} \Rightarrow \varphi \wedge \psi}
\end{array}
$$

Since $\Gamma_{0} \cup \Gamma_{1} \subseteq \Gamma$, we have $\Gamma \vdash_{\text {LK }} \varphi \wedge \psi$.
Proposition 7.24. If $\Gamma \vdash_{\mathbf{L K}} \varphi$ and $\Gamma \vdash_{\mathbf{L K}} \varphi \rightarrow \psi$, then $\Gamma \vdash_{\mathbf{L K}} \psi$.
Proof. Suppose that $\Gamma \vdash_{\mathbf{L K}} \varphi$ and $\Gamma \vdash_{\mathbf{L K}} \varphi \rightarrow \psi$. There are finite sets $\Gamma_{0}, \Gamma_{1} \subseteq$ Γ such that there are LK-derivations Π_{0} of $\Gamma_{0} \Rightarrow \varphi$ and Π_{1} of $\Gamma_{1} \Rightarrow \varphi \rightarrow \psi$. Consider:

$$
\begin{array}{ccc}
\vdots \Pi_{0} & \vdots \\
\frac{\Gamma_{1} \Rightarrow \varphi \rightarrow \psi}{\Gamma_{1}} & \vdots & \psi \Rightarrow \psi \\
\frac{\Gamma_{0}, \Gamma_{1}, \Gamma_{2} \Rightarrow \varphi \rightarrow \psi}{\Gamma_{0}, \Gamma_{1} \Rightarrow \psi} & \frac{\Gamma_{0}, \varphi \rightarrow \psi \Rightarrow \psi}{\Gamma_{0}, \psi \Rightarrow \psi} \\
\text { cut }
\end{array} \mathrm{L}
$$

Since $\Gamma_{0} \cup \Gamma_{1} \subseteq \Gamma$, this means that $\Gamma \vdash_{\mathbf{L K}} \psi$.
Proposition 7.25. If $\Gamma \vdash_{\mathbf{L K}} \neg \varphi$ or $\Gamma \vdash_{\mathbf{L K}} \psi$, then $\Gamma \vdash_{\mathbf{L K}} \varphi \rightarrow \psi$.
Proof. First suppose $\Gamma \vdash_{\mathbf{L K}} \neg \varphi$. Then for some finite $\Gamma_{0} \subseteq \Gamma$ there is a LKderivation of $\Gamma_{0} \Rightarrow \neg \varphi$. The following derivation shows that $\Gamma \vdash_{\mathbf{L K}} \varphi \rightarrow \psi$:

$$
\begin{array}{cl}
\vdots & \frac{\varphi \Rightarrow \varphi}{\neg \varphi, \varphi \Rightarrow} \neg \mathrm{R} \\
\vdots & \frac{\Pi_{0}}{\varphi, \neg \varphi \Rightarrow \psi} \\
\Gamma_{0} \Rightarrow \neg \varphi & \frac{\neg \varphi \Rightarrow \varphi \rightarrow \psi}{\rho_{0}} \rightarrow \mathrm{R} \\
\Gamma_{0} \Rightarrow \varphi \rightarrow \psi
\end{array}
$$

Now suppose $\Gamma \vdash_{\mathbf{L K}} \psi$. Then for some finite $\Gamma_{0} \subseteq \Gamma$ there is a LKderivation of $\Gamma_{0} \Rightarrow \psi$. The following derivation shows that $\Gamma \vdash_{\mathbf{L K}} \varphi \rightarrow \psi$:

$$
\begin{array}{cl}
\vdots & \begin{array}{c}
\psi \Rightarrow \psi \\
\Pi_{0} \\
\Gamma_{0} \Rightarrow \psi
\end{array} \frac{\varphi, \psi \Rightarrow \psi}{\psi \Rightarrow \varphi \rightarrow \psi} \\
& \text { cut } \mathrm{R} \\
\Gamma_{0} \Rightarrow \varphi \rightarrow \psi
\end{array}
$$

Theorem 7.26. If c is a constant not occurring in Γ or $\varphi(x)$ and $\Gamma \vdash_{\mathbf{L K}} \varphi(c)$, then $\Gamma \vdash{ }_{\mathbf{L K}} \forall x \varphi(x)$.

Proof. Let Π_{0} be an LK-derivation of $\Gamma_{0} \Rightarrow \varphi(c)$ for some finite $\Gamma_{0} \subseteq \Gamma$. By adding a \forall right inference, we obtain a proof of $\Gamma \Rightarrow \forall x \varphi(x)$, since c does not occur in Γ or $\varphi(x)$ and thus the eigenvariable condition is satisfied.

Theorem 7.27. 1. If $\Gamma \vdash_{\mathbf{L K}} \varphi(t)$ then $\Gamma \vdash \exists x \varphi(x)$.
2. If $\Gamma \vdash_{\mathbf{L K}} \forall x \varphi(x)$ then $\Gamma \vdash \varphi(t)$.

Proof. 1. Suppose $\Gamma \vdash_{\mathbf{L K}} \varphi(t)$. Then for some finite $\Gamma_{0} \subseteq \Gamma$, LK derives $\Gamma_{0} \Rightarrow \varphi(t)$. Add an $\exists \mathrm{R}$ inference to get a derivation of $\Gamma_{0} \Rightarrow \exists x \varphi(x)$.
2. Suppose $\Gamma \vdash_{\mathbf{L K}} \neg \varphi(t)$. Then there is a finite $\Gamma_{0} \subseteq \Gamma$ and an LK-derivation Π of $\Gamma_{0} \Rightarrow \forall x \varphi(x)$. Then

$$
\begin{gathered}
\begin{array}{c}
\vdots \\
\vdots \\
\Gamma_{0} \Rightarrow \forall x \varphi(x) \quad \frac{\varphi(t) \Rightarrow \varphi(t)}{\forall x \varphi(x) \Rightarrow \varphi(t)} \\
\Gamma_{0} \Rightarrow \varphi(t)
\end{array} \mathrm{L} \mathrm{~L} \mathrm{~L}
\end{gathered}
$$

shows that $\Gamma_{0} \vdash_{\text {LK }} \varphi(t)$.

7.5 Soundness

A derivation system, such as the sequent calculus, is sound if it cannot derive things that do not actually hold. Soundness is thus a kind of guaranteed safety property for derivation systems. Depending on which proof theoretic property is in question, we would like to know for instance, that

1. every derivable sentence is valid;
2. if a sentence is derivable from some others, it is also a consequence of them;
3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do not hold, the derivation system is deficient-it would derive too much. Consequently, establishing the soundness of a derivation system is of the utmost importance.

Because all these proof-theoretic properties are defined via derivability in the sequent calculus of certain sequents, proving (1)-(3) above requires proving something about the semantic properties of derivable sequents. We will first define what it means for a sequent to be valid, and then show that every derivable sequent is valid. (1)-(3) then follow as corollaries from this result.

7.5. SOUNDNESS

Definition 7.28. A structure \mathfrak{M} satisfies a sequent $\Gamma \Rightarrow \Delta$ iff either $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma$ or $\mathfrak{M} \models \alpha$ for some $\alpha \in \Delta$.

A sequent is valid iff every structure \mathfrak{M} satisfies it.
Theorem 7.29 (Soundness). If $\mathbf{L K}$ derives $\Gamma \Rightarrow \Delta$, then $\Gamma \Rightarrow \Delta$ is valid.
Proof. Let Π be a derivation of $\Gamma \Rightarrow \Delta$. We proceed by induction on the number of inferences in Π.

If the number of inferences is 0 , then Π consists only of an initial sequent. Every initial sequent $\varphi \Rightarrow \varphi$ is obviously valid, since for every \mathfrak{M}, either $\mathfrak{M} \not \vDash$ φ or $\mathfrak{M} \models \varphi$.

If the number of inferences is greater than 0 , we distinguish cases according to the type of the lowermost inference. By induction hypothesis, we can assume that the premises of that inference are valid.

First, we consider the possible inferences with only one premise $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$.

1. The last inference is a weakening. Then $\Gamma^{\prime} \subseteq \Gamma$ and $\Delta=\Delta^{\prime}$ if it's a weakening on the left, or $\Gamma=\Gamma^{\prime}$ and $\Delta^{\prime} \subseteq \Delta$ if it's a weaking on the right. In either case, $\Delta^{\prime} \subseteq \Delta$ and $\Gamma^{\prime} \subseteq \Gamma$. If $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma^{\prime}$, then, since $\Gamma^{\prime} \subseteq \Gamma, \alpha \in \Gamma$ as well, and so $\mathfrak{M} \not \vDash \alpha$ for the same $\alpha \in \Gamma$. Similarly, if $\mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta^{\prime}$, as $\alpha \in \Delta, \mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta$. Since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, one of these cases obtains for every \mathfrak{M}. Consequently, $\Gamma \Rightarrow \Delta$ is valid.
2. The last inference is \neg left: Then for some $\varphi \in \Delta^{\prime}, \neg \varphi \in \Gamma$. Also, $\Gamma^{\prime} \subseteq \Gamma$, and $\Delta^{\prime} \backslash\{\varphi\} \subseteq \Delta$.
If $\mathfrak{M} \mid=\varphi$, then $\mathfrak{M} \not \vDash \neg \varphi$, and since $\neg \varphi \in \Gamma, \mathfrak{M}$ satisfies $\Gamma \Rightarrow \Delta$. Since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, if $\mathfrak{M} \not \models \varphi$, then either $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma^{\prime}$ or $\mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta^{\prime}$ different from φ. Consequently, $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma$ (since $\Gamma^{\prime} \subseteq \Gamma$) or $\mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta^{\prime}$ different from φ (since $\Delta^{\prime} \backslash\{\varphi\} \subseteq \Delta$).
3. The last inference is \neg right: Exercise.
4. The last inference is \wedge left: There are two variants: $\varphi \wedge \psi$ may be inferred on the left from φ or from ψ on the left side of the premise. In the first case, $\varphi \in \Gamma^{\prime}$. Consider a structure \mathfrak{M}. Since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, (a) $\mathfrak{M} \not \vDash \varphi$, (b) $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma^{\prime} \backslash\{\varphi\}$, or (c) $\mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta^{\prime}$. In case (a), $\mathfrak{M} \not \vDash \varphi \wedge \psi$. In case (b), there is an $\alpha \in \Gamma \backslash\{\varphi \wedge \psi\}$ such that $\mathfrak{M} \not \vDash \alpha$, since $\Gamma^{\prime} \backslash\{\varphi\} \subseteq \Gamma \backslash\{\varphi \wedge \psi\}$. In case (c), there is a $\alpha \in \Delta$ such that $\mathfrak{M} \vDash \alpha$, as $\Delta=\Delta^{\prime}$. So in each case, \mathfrak{M} satisfies $\varphi \wedge \psi, \Gamma \Rightarrow \Delta$. Since \mathfrak{M} was arbitrary, $\Gamma \Rightarrow \Delta$ is valid. The case where $\varphi \wedge \psi$ is inferred from ψ is handled the same, changing φ to ψ.
5. The last inference is \vee right: There are two variants: $\varphi \vee \psi$ may be inferred on the right from φ or from ψ on the right side of the premise. In
the first case, $\varphi \in \Delta^{\prime}$. Consider a structure \mathfrak{M}. Since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, (a) $\mathfrak{M} \mid=\varphi$, (b) $\mathfrak{M} \mid \neq \alpha$ for some $\alpha \in \Gamma^{\prime}$, or (c) $\mathfrak{M} \mid=\alpha$ for some $\alpha \in \Delta^{\prime} \backslash\{\varphi\}$. In case (a), $\mathfrak{M} \mid=\varphi \vee \psi$. In case (b), there is $\alpha \in \Gamma$ such that $\mathfrak{M} \not \vDash \alpha$, as $\Gamma=\Gamma^{\prime}$. In case (c), there is an $\alpha \in \Delta$ such that $\mathfrak{M} \vDash \alpha$, since $\Delta^{\prime} \backslash\{\varphi\} \subseteq \Delta$. So in each case, \mathfrak{M} satisfies $\varphi \wedge \psi, \Gamma \Rightarrow \Delta$. Since \mathfrak{M} was arbitrary, $\Gamma \Rightarrow \Delta$ is valid. The case where $\varphi \vee \psi$ is inferred from ψ is handled the same, changing φ to ψ.
6. The last inference is \rightarrow right: Then $\varphi \in \Gamma^{\prime}, \psi \in \Delta^{\prime}, \Gamma^{\prime} \backslash\{\varphi\} \subseteq \Gamma$ and $\Delta^{\prime} \backslash\{\psi\} \subseteq \Delta$. Since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, for any structure \mathfrak{M}, (a) $\mathfrak{M} \not \vDash \varphi$, (b) $\mathfrak{M} \vDash \psi$, (c) $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma^{\prime} \backslash\{\varphi\}$, or $\mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta^{\prime} \backslash\{\psi\}$. In cases (a) and (b), $\mathfrak{M} \vDash \varphi \rightarrow \psi$. In case (c), for some $\alpha \in \Gamma, \mathfrak{M} \not \vDash \alpha$. In case (d), for some $\alpha \in \Delta, \mathfrak{M} \vDash \alpha$. In each case, \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$. Since \mathfrak{M} was arbitrary, $\Gamma \Rightarrow \Delta$ is valid.
7. The last inference is \forall left: Then there is a formula $\varphi(x)$ and a ground term t such that $\varphi(t) \in \Gamma^{\prime}, \forall x \varphi(x) \in \Gamma$, and $\Gamma^{\prime} \backslash\{\varphi(t)\} \subseteq \Gamma$. Consider a structure \mathfrak{M}. Since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, (a) $\mathfrak{M} \not \vDash \varphi(t)$, (b) $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma^{\prime} \backslash\{\varphi(t)\}$, or (c) $\mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta^{\prime}$. In case (a), $\mathfrak{M} \not \vDash \forall x \varphi(x)$. In case (b), there is an $\alpha \in \Gamma \backslash\{\varphi(t)\}$ such that $\mathfrak{M} \not \vDash \alpha$. In case (c), there is a $\alpha \in \Delta$ such that $\mathfrak{M} \models \alpha$, as $\Delta=\Delta^{\prime}$. So in each case, \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$. Since \mathfrak{M} was arbitrary, $\Gamma \Rightarrow \Delta$ is valid.
8. The last inference is \exists right: Exercise.
9. The last inference is \forall right: Then there is a formula $\varphi(x)$ and a constant symbol a such that $\varphi(a) \in \Delta^{\prime}, \forall x \varphi(x) \in \Delta$, and $\Delta^{\prime} \backslash\{\varphi(a)\} \subseteq \Delta$. Furthermore, $a \notin \Gamma \cup \Delta$. Consider a structure \mathfrak{M}. Since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, (a) $\mathfrak{M} \vDash \varphi(a)$, (b) $\mathfrak{M} \not \vDash \alpha$ for some $\alpha \in \Gamma^{\prime}$, or (c) $\mathfrak{M} \vDash \alpha$ for some $\alpha \in \Delta^{\prime} \backslash\{\varphi(a)\}$.
First, suppose (a) is the case but neither (b) nor (c), i.e., $\mathfrak{M} \vDash \alpha$ for all $\alpha \in \Gamma^{\prime}$ and $\mathfrak{M} \not \vDash \alpha$ for all $\alpha \in \Delta^{\prime} \backslash\{\varphi(a)\}$. In other words, assume $\mathfrak{M} \mid=\varphi(a)$ and that \mathfrak{M} does not satisfy $\Gamma^{\prime} \Rightarrow \Delta^{\prime} \backslash\{\varphi(a)\}$. Since $a \notin \Gamma \cup \Delta$, also $a \notin \Gamma^{\prime} \cup\left(\Delta^{\prime} \backslash\{\varphi(a)\}\right)$. Thus, if \mathfrak{M}^{\prime} is like \mathfrak{M} except that $a^{\mathfrak{M}} \neq a^{\mathfrak{M}^{\prime}}$, \mathfrak{M}^{\prime} also does not satisfy $\Gamma^{\prime} \Rightarrow \Delta^{\prime} \backslash\{\varphi(a)\}$ by extensionality. But since $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, we must have $\mathfrak{M}^{\prime} \models \varphi(a)$.
We now show that $\mathfrak{M} \vDash \forall x \varphi(x)$. To do this, we have to show that for every variable assignment $s, \mathfrak{M}, s \neq \forall x \varphi(x)$. This in turn means that for every x-variant s^{\prime} of s, we must have $\mathfrak{M}, s^{\prime} \models \varphi(x)$. So consider any variable assignment s and let s^{\prime} be an x-variant of s. Since Γ^{\prime} and Δ^{\prime} consist entirely of sentences, $\mathfrak{M}, s \neq \alpha$ iff $\mathfrak{M}, s^{\prime} \vDash \alpha$ iff $\mathfrak{M} \vDash \alpha$ for all $\alpha \in \Gamma^{\prime} \cup \Delta^{\prime}$. Let \mathfrak{M}^{\prime} be like \mathfrak{M} except that $a^{\mathfrak{M}^{\prime}}=s^{\prime}(x)$. Then $\mathfrak{M}, s^{\prime} \vDash$ $\varphi(x)$ iff $\mathfrak{M}^{\prime} \vDash \varphi(a)$ (as $\varphi(x)$ does not contain a). Since we've already established that $\mathfrak{M}^{\prime} \models \varphi(a)$ for all \mathfrak{M}^{\prime} which differ from \mathfrak{M} at most in

7.5. SOUNDNESS

what they assign to a, this means that $\mathfrak{M}, s^{\prime} \models \varphi(x)$. Thus weve shown that $\mathfrak{M}, s=\forall x \varphi(x)$. Since s is an arbitrary variable assignment and $\forall x \varphi(x)$ is a sentence, then $\mathfrak{M} \vDash \forall x \varphi(x)$.
If (b) is the case, there is a $\alpha \in \Gamma$ such that $\mathfrak{M} \not \vDash \alpha$, as $\Gamma=\Gamma^{\prime}$. If (c) is the case, there is an $\alpha \in \Delta^{\prime} \backslash\{\varphi(a)\}$ such that $\mathfrak{M} \vDash \alpha$. So in each case, \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$. Since \mathfrak{M} was arbitrary, $\Gamma \Rightarrow \Delta$ is valid.
10. The last inference is \exists left: Exercise.

Now let's consider the possible inferences with two premises: cut, \vee left, \wedge right, and \rightarrow left.

1. The last inference is a cut: Suppose the premises are $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ and $\Pi^{\prime} \Rightarrow$ Λ^{\prime} and the cut formula φ is in both Δ^{\prime} and Π^{\prime}. Since each is valid, every structure \mathfrak{M} satisfies both premises. We distinguish two cases: (a) $\mathfrak{M} \not \vDash$ φ and (b) $\mathfrak{M} \vDash \varphi$. In case (a), in order for \mathfrak{M} to satisfy the left premise, it must satisfy $\Gamma^{\prime} \Rightarrow \Delta^{\prime} \backslash\{\varphi\}$. But $\Gamma^{\prime} \subseteq \Gamma$ and $\Delta^{\prime} \backslash\{\varphi\} \subseteq \Delta$, so \mathfrak{M} also satisfies $\Gamma \Rightarrow \Delta$. In case (b), in order for \mathfrak{M} to satisfy the right premise, it must satisfy $\Pi^{\prime} \backslash\{\varphi\} \Rightarrow \Lambda^{\prime}$. But $\Pi^{\prime} \backslash\{\varphi\} \subseteq \Gamma$ and $\Lambda^{\prime} \subseteq \Delta$, so \mathfrak{M} also satisfies $\Gamma \Rightarrow \Delta$.
2. The last inference is \wedge right. The premises are $\Gamma \Rightarrow \Delta^{\prime}$ and $\Gamma \Rightarrow \Delta^{\prime \prime}$, where $\varphi \in \Delta^{\prime}$ an $\psi \in \Delta^{\prime \prime}$. By induction hypothesis, both are valid. Consider a structure \mathfrak{M}. We have two cases: (a) $\mathfrak{M} \not \vDash \varphi \wedge \psi$ or (b) $\mathfrak{M} \vDash \varphi \wedge \psi$. In case (a), either $\mathfrak{M} \not \vDash \varphi$ or $\mathfrak{M} \not \vDash \psi$. In the former case, in order for \mathfrak{M} to satisfy $\Gamma \Rightarrow \Delta^{\prime}$, it must already satisfy $\Gamma \Rightarrow \Delta^{\prime} \backslash\{\varphi\}$. In the latter case, it must satisfy $\Gamma \Rightarrow \Delta^{\prime \prime} \backslash\{\psi\}$. But since both $\Delta^{\prime} \backslash\{\varphi\} \subseteq \Delta$ and $\Delta^{\prime \prime} \backslash\{\psi\} \subseteq \Delta$, that means \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$. In case (b), \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$ since $\varphi \wedge \psi \in \Delta$.
3. The last inference is \vee left: Exercise.
4. The last inference is \rightarrow left. The premises are $\Gamma \Rightarrow \Delta^{\prime}$ and $\Gamma^{\prime} \Rightarrow \Delta$, where $\varphi \in \Delta^{\prime}$ and $\psi \in \Gamma^{\prime}$. By induction hypothesis, both are valid. Consider a structure \mathfrak{M}. We have two cases: (a) $\mathfrak{M} \vDash \varphi \rightarrow \psi$ or (b) $\mathfrak{M} \not \vDash \varphi \rightarrow \psi$. In case (a), either $\mathfrak{M} \not \vDash \varphi$ or $\mathfrak{M} \models \psi$. In the former case, in order for \mathfrak{M} to satisfy $\Gamma \Rightarrow \Delta^{\prime}$, it must already satisfy $\Gamma \Rightarrow \Delta^{\prime} \backslash\{\varphi\}$. In the latter case, it must satisfy $\Gamma^{\prime} \backslash\{\psi\} \Rightarrow \Delta$. But since both $\Delta^{\prime} \backslash\{\varphi\} \subseteq \Delta$ and $\Gamma^{\prime} \backslash\{\psi\} \subseteq \Gamma$, that means \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$. In case (b), \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$ since $\varphi \rightarrow \psi \in \Gamma$.

Corollary 7.30. If $\vdash_{\text {LK }} \varphi$ then φ is valid.
Corollary 7.31. If $\Gamma \vdash_{\text {LK }} \varphi$ then $\Gamma \vDash \varphi$.

Proof. If $\Gamma \vdash_{\text {LK }} \varphi$ then for some finite subset $\Gamma_{0} \subseteq \Gamma$, there is a derivation of $\Gamma_{0} \Rightarrow \varphi$. By Theorem 7.29, every structure \mathfrak{M} either makes some $\psi \in \Gamma_{0}$ false or makes φ true. Hence, if $\mathfrak{M} \vDash \Gamma_{0}$ then also $\mathfrak{M} \vDash \varphi$.

Corollary 7.32. If Γ is satisfiable, then it is consistent.
Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then $\Gamma \vdash_{\text {LK }} \perp$, i.e., there is a finite $\Gamma_{0} \subseteq \Gamma$ and a derivation of $\Gamma_{0} \Rightarrow \perp$. By Theorem 7.29, $\Gamma_{0} \Rightarrow \perp$ is valid. Since $\mathfrak{M} \not \vDash \perp$ for every structure \mathfrak{M}, for \mathfrak{M} to satisfy $\Gamma_{0} \Rightarrow \perp$ there must be an $\alpha \in \Gamma_{0}$ so that $\mathfrak{M} \not \vDash \alpha$, and since $\Gamma_{0} \subseteq \Gamma$, that α is also in Γ. In other words, no \mathfrak{M} satisfies Γ, i.e., Γ is not satisfiable.

7.6 Derivations with Identity predicate

Derivations with the identity predicate require additional inference rules.

Initial sequents for $=$: If t is a closed term, then $\Rightarrow t=t$ is an initial sequent.

Rules for $=$:

$$
\frac{\Gamma, t_{1}=t_{2} \Rightarrow \Delta, \varphi\left(t_{1}\right)}{\Gamma, t_{1}=t_{2} \Rightarrow \Delta, \varphi\left(t_{2}\right)}=\quad \text { and } \quad \frac{\Gamma, t_{1}=t_{2} \Rightarrow \Delta, \varphi\left(t_{2}\right)}{\Gamma, t_{1}=t_{2} \Rightarrow \Delta, \varphi\left(t_{1}\right)}=
$$

where t_{1} and t_{2} are closed terms.
Example 7.33. If s and t are ground terms, then $\varphi(s), s=t \vdash_{\mathbf{L K}} \varphi(t)$:

$$
\frac{\varphi(s) \Rightarrow \varphi(s)}{\frac{\varphi(s), s=t \Rightarrow \varphi(s)}{\varphi(s), s=t \Rightarrow \varphi(t)}}=
$$

This may be familiar as the principle of substitutability of identicals, or Leibniz' Law.

LK proves that $=$ is symmetric and transitive:

$$
\begin{aligned}
& \Rightarrow t_{1}=t_{1} \\
& \frac{t_{1}=t_{2} \Rightarrow t_{1}=t_{1}}{t_{1}=t_{2} \Rightarrow t_{2}=t_{1}}= \\
& \hline \text { weak }
\end{aligned} \quad \frac{t_{1}=t_{2} \Rightarrow t_{1}=t_{2}}{t_{1}=t_{2}, t_{2}=t_{3} \Rightarrow t_{1}=t_{2}} \text { weak }
$$

In the proof on the left, the formula $x=t_{1}$ is our $\varphi(x)$, and correspondingly, $\varphi\left(t_{2}\right) \equiv x\left[t_{2} / x\right]=t_{1}$. On the right, we take $\varphi(x)$ to be $t_{1}=x$.

Proposition 7.34. LK with initial sequents and rules for identity is sound.

7.6. DERIVATIONS WITH IDENTITY PREDICATE

Proof. Initial sequents of the form $\Rightarrow t=t$ are valid, since for every structure $\mathfrak{M}, \mathfrak{M} \equiv t=t$. (Note that we assume the term t to be ground, i.e., it contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is $=$. Then the premise $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ contains $t_{1}=t_{2}$ on the left and $\varphi\left(t_{1}\right)$ on the right, and the conclusion is $\Gamma \Rightarrow \Delta$ where $\Gamma=\Gamma^{\prime}$ and $\Delta=\left(\Delta^{\prime} \backslash\left\{\varphi\left(t_{1}\right)\right\}\right) \cup\left\{\varphi\left(t_{2}\right)\right\}$. Consider a structure \mathfrak{M}. Since, by induction hypothesis, the premise $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ is valid, either (a) for some $\alpha \in \Gamma^{\prime}, \mathfrak{M} \not \vDash \alpha$, (b) for some $\alpha \in \Delta^{\prime} \backslash\{\varphi(s)\}, \mathfrak{M} \vDash \alpha$, or (c) $\mathfrak{M} \vDash$ $\varphi\left(t_{1}\right)$. In both cases cases (a) and (b), since $\Gamma=\Gamma^{\prime}$, and $\Delta^{\prime} \backslash\{\varphi(s)\} \subseteq \Delta$, \mathfrak{M} satisfies $\Gamma \Rightarrow \Delta$. So assume cases (a) and (b) do not apply, but case (c) does. If (a) does not apply, $\mathfrak{M} \models \alpha$ for all $\alpha \in \Gamma^{\prime}$, in particular, $\mathfrak{M} \equiv t_{1}=t_{2}$. Therefore, $\operatorname{Val}^{\mathfrak{M}}\left(t_{1}\right)=\operatorname{Val}^{\mathfrak{M}}\left(t_{2}\right)$. Let s be any variable assignment, and s^{\prime} be the x-variant given by $s^{\prime}(x)=\operatorname{Val}^{\mathfrak{M}}\left(t_{1}\right)=\operatorname{Val}^{\mathfrak{M}}\left(t_{2}\right)$. By Proposition 5.39, $\mathfrak{M}, s \vDash \varphi\left(t_{2}\right)$ iff $\mathfrak{M}, s^{\prime} \models \varphi(x)$ iff $\mathfrak{M}, s \models \varphi\left(t_{1}\right)$. Since $\mathfrak{M} \models \varphi\left(t_{1}\right)$ therefore $\mathfrak{M} \equiv \varphi\left(t_{2}\right)$.

Problems

Problem 7.1. Give derivations of the following sequents:

1. $\Rightarrow \neg(\varphi \rightarrow \psi) \rightarrow(\varphi \wedge \neg \psi)$
2. $\forall x(\varphi(x) \rightarrow \psi) \Rightarrow(\exists y \varphi(y) \rightarrow \psi)$

Problem 7.2. Prove Proposition 7.13
Problem 7.3. Prove Proposition 7.14
Problem 7.4. Prove Proposition 7.20.
Problem 7.5. Prove Proposition 7.21.
Problem 7.6. Prove Proposition 7.22.
Problem 7.7. Prove Proposition 7.23.
Problem 7.8. Prove Proposition 7.24.
Problem 7.9. Prove Proposition 7.25.
Problem 7.10. Complete the proof of Theorem 7.29.
Problem 7.11. Give derivations of the following sequents:

1. $\Rightarrow \forall x \forall y((x=y \wedge \varphi(x)) \rightarrow \varphi(y))$
2. $\exists x \varphi(x) \wedge \forall y \forall z((\varphi(y) \wedge \varphi(z)) \rightarrow y=z) \Rightarrow$ $\exists x(\varphi(x) \wedge \forall y(\varphi(y) \rightarrow y=x))$

Chapter 8

Natural Deduction

To include or exclude material relevant to the sequent calculus as a proof system, use the "prfLK" tag.

8.1 Rules and Derivations

This section collects all the rules propositional connectives and quantifiers, but not for identity. It is planned to divide this into separate sections on connectives and quantifiers so that proofs for propositional logic can be treated separately (issue \#77).

Let \mathcal{L} be a first-order language with the usual constant symbols, variables, logical symbols, and auxiliary symbols (parentheses and the comma).

Definition 8.1 (Inference). An inference is an expression of the form

$$
\frac{\varphi}{\chi} \quad \text { or } \quad \frac{\varphi \quad \psi}{\chi}
$$

where φ, ψ, and χ are formulas. φ and ψ are called the upper formulas or premises and χ the lower formulas or conclusion of the inference.

The rules for natural deduction are divided into two main types: propositional rules (quantifier-free) and quantifier rules. The rules come in pairs, an introduction and an elimination rule for each logical operator. They introduced a logical operator in the conclusion or remove a logical operator from a premise of the rule. Some of the rules allow an assumption of a certain type

8.1. RULES AND DERIVATIONS

to be discharged. To indicate which assumption is discharged by which inference, we also assign labels to both the assumption and the inference. This is indicated by writing the assumption formula as " $[\varphi]^{n "}$.

It is customary to consider rules for all logical operators, even for those (if any) that we consider as defined.

Propositional Rules

Rules for \perp

$$
\frac{\varphi \quad \neg \varphi}{\perp} \perp \text { Intro } \quad \frac{\perp}{\varphi} \perp \text { Elim }
$$

Rules for \wedge

$$
\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge \operatorname{Intro} \frac{\varphi \wedge \psi}{\varphi} \wedge \operatorname{Elim} \frac{\varphi \wedge \psi}{\psi} \wedge \operatorname{Elim}
$$

Rules for \vee

Rules for \neg

$$
\begin{array}{cl}
{[\varphi]^{n}} & \\
\vdots & \frac{\neg \neg \varphi}{\varphi} \neg \text { Elim } \\
\vdots & \frac{\perp}{\neg \varphi} \neg \text { Intro }
\end{array}
$$

Rules for \rightarrow

$$
\begin{gathered}
{[\varphi]^{n}} \\
\vdots \\
\vdots \frac{\psi}{\varphi \rightarrow \psi} \rightarrow \text { Intro }
\end{gathered} \frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \rightarrow \text { Elim }
$$

Quantifier Rules

Rules for \forall

$$
\frac{\varphi(a)}{\forall x \varphi(x)} \forall \text { Intro } \quad \frac{\forall x \varphi(x)}{\varphi(t)} \forall \text { Elim }
$$

where t is a ground term (a term that does not contain any variables), and a is a constant symbol which does not occur in φ, or in any assumption which is undischarged in the derivation ending with the premise φ. We call a the eigenvariable of the \forall Intro inference.

Rules for \exists

$$
\begin{array}{ccc}
& & {[\varphi(a)]^{n}} \\
\exists x \varphi(x) \\
\\
\text { Intro } & & \vdots \\
& \exists \frac{\exists x \varphi(x)}{\chi} & \dot{\chi} \\
& \text { Elim }
\end{array}
$$

where t is a ground term, and a is a constant which does not occur in the premise $\exists x \varphi(x)$, in χ, or any assumption which is undischarged in the derivations ending with the two premises χ (other than the assumptions $\varphi(a)$). We call a the eigenvariable of the \exists Elim inference.

The condition that an eigenvariable not occur in the upper sequent of the \forall intro or \exists elim inference is called the eigenvariable condition.

We use the term "eigenvariable" even though a in the above rules is a constant. This has historical reasons.

In \exists Intro and \forall Elim there are no restrictions, and the term t can be anything, so we do not have to worry about any conditions. However, because the t may appear elsewhere in the derivation, the values of t for which the formula is satisfied are constrained. On the other hand, in the \exists Elim and \forall intro rules, the eigenvariable condition requires that a does not occur anywhere else in the formula. Thus, if the upper formula is valid, the truth values of the formulas other than $\varphi(a)$ are independent of a.

Natural deduction systems are meant to closely parallel the informal reasoning used in mathematical proof (hence it is somewhat "natural"). Natural deduction proofs begin with assumptions. Inference rules are then applied. Assumptions are "discharged" by the \neg Intro, \rightarrow Intro, VElim and \exists Elim inference rules, and the label of the discharged assumption is placed beside the inference for clarity.

Definition 8.2 (Initial Formula). An initial formula or assumption is any formula in the topmost position of any branch.

Definition 8.3 (Derivation). A derivation of a formula φ from assumptions Γ is a tree of formulas satisfying the following conditions:

1. The topmost formulas of the tree are either in Γ or are discharged by an inference in the tree.
2. Every formula in the tree is an upper formula of an inference whose lower formula stands directly below that formula in the tree.

8.2. EXAMPLES OF DERIVATIONS

We then say that φ is the end-formula of the derivation and that φ is derivable from Γ.

8.2 Examples of Derivations

Example 8.4. Let's give a derivation of the formula $(\varphi \wedge \psi) \rightarrow \varphi$.
We begin by writing the desired end-formula at the bottom of the derivation.

$$
\overline{(\varphi \wedge \psi) \rightarrow \varphi}
$$

Next, we need to figure out what kind of inference could result in a formula of this form. The main operator of the end-formula is \rightarrow, so we'll try to arrive at the end-formula using the \rightarrow Intro rule. It is best to write down the assumptions involved and label the inference rules as you progress, so it is easy to see whether all assumptions have been discharged at the end of the proof.

$$
\begin{gathered}
{[\varphi \wedge \psi]^{1}} \\
\vdots \\
\frac{\dot{\varphi}}{(\varphi \wedge \psi) \rightarrow \varphi} \rightarrow \text { Intro }
\end{gathered}
$$

We now need to fill in the steps from the assumption $\varphi \wedge \psi$ to φ. Since we only have one connective to deal with, \wedge, we must use the \wedge elim rule. This gives us the following proof:

$$
1 \frac{\frac{[\varphi \wedge \psi]^{1}}{\varphi} \wedge \text { Elim }}{(\varphi \wedge \psi) \rightarrow \varphi} \rightarrow \text { Intro }
$$

We now have a correct derivation of the formula $(\varphi \wedge \psi) \rightarrow \varphi$.
Example 8.5. Now let's give a derivation of the formula $(\neg \varphi \vee \psi) \rightarrow(\varphi \rightarrow \psi)$.
We begin by writing the desired end-formula at the bottom of the derivation.

$$
\overline{(\neg \varphi \vee \psi) \rightarrow(\varphi \rightarrow \psi)}
$$

To find a logical rule that could give us this end-formula, we look at the logical connectives in the end-formula: \neg, \vee, and \rightarrow. We only care at the moment about the first occurence of \rightarrow because it is the main operator of the sentence in the end-sequent, while \neg, \vee and the second occurence of \rightarrow are inside the scope of another connective, so we will take care of those later. We therefore
start with the \rightarrow Intro rule. A correct application must look as follows:

This leaves us with two possibilities to continue. Either we can keep working from the bottom up and look for another application of the \rightarrow Intro rule, or we can work from the top down and apply a V Elim rule. Let us apply the latter. We will use the assumption $\neg \varphi \vee \psi$ as the leftmost premise of \vee Elim. For a valid application of \vee Elim, the other two premises must be identical to the conclusion $\varphi \rightarrow \psi$, but each may be derived in turn from another assumption, namely the two disjuncts of $\neg \varphi \vee \psi$. So our derivation will look like this:

$$
\begin{gathered}
{[\neg \varphi]^{2}} \\
\vdots \vdots \\
2 \frac{[\psi]^{2}}{[\neg \varphi \vee \psi]^{1}} \begin{array}{c}
\vdots \rightarrow \\
1 \frac{\varphi \rightarrow \psi}{(\neg \varphi \vee \psi) \rightarrow(\varphi \rightarrow \psi)} \rightarrow \text { Intro }
\end{array}
\end{gathered}
$$

In each of the two branches on the right, we want to derive $\varphi \rightarrow \psi$, which is best done using \rightarrow Intro.

$$
\begin{array}{cc}
{[\neg \varphi]^{2},[\varphi]^{3}} & {[\psi]^{2},[\varphi]^{4}} \\
\vdots & \vdots \\
2 \frac{[\neg \varphi \vee \psi]^{1}}{} \frac{3 \frac{\psi}{\varphi \rightarrow \psi} \rightarrow \text { Intro }}{1 \frac{\varphi}{(\neg \varphi \vee \psi) \rightarrow(\varphi \rightarrow \psi)} \rightarrow \text { Intro }} 4 \frac{\psi}{\varphi \rightarrow \psi} \rightarrow \text { Intro }
\end{array}
$$

For the two missing parts of the derivation, we need derivations of ψ from $\neg \varphi$ and φ in the middle, and from φ and ψ on the left. Let's take the former first. $\neg \varphi$ and φ are the two premises of \perp Intro:

8.2. EXAMPLES OF DERIVATIONS

By using \perp Elim, we can obtain ψ as a conclusion and complete the branch.

$$
\begin{array}{ccc}
& \frac{[\neg \varphi]^{2} \quad[\varphi]^{3}}{\perp} \perp \text { Intro } & \vdots \\
2 \frac{[\neg \varphi]^{2},[\varphi]^{4}}{} & \vdots \text { Elim } & \vdots \frac{\psi}{\varphi} \rightarrow \psi
\end{array} \rightarrow \text { Intro }
$$

Let's now look at the rightmost branch. Here it's important to realize that the definition of derivation allows assumptions to be discharged but does not require them to be. In other words, if we can derive ψ from one of the assumptions φ and ψ without using the other, that's ok. And to derive ψ from ψ is trivial: ψ by itself is such a derivation, and no inferences are needed. So we can simply delete the assumtion φ.

$$
2 \frac{\begin{array}{c}
{[\neg \varphi]^{2} \quad[\varphi]^{3}} \\
\frac{\perp}{\psi} \perp \text { Elim } \\
\text { Intro } \\
3 \frac{[\neg \varphi \vee \psi]^{1}}{\varphi \rightarrow \psi} \rightarrow \text { Intro } \quad \frac{[\psi]^{2}}{\varphi \rightarrow \psi}
\end{array} \text { Intro }}{1 \frac{\varphi \rightarrow \psi}{(\neg \varphi \vee \psi) \rightarrow(\varphi \rightarrow \psi)} \rightarrow \text { Intro }}
$$

Note that in the finished derivation, the rightmost \rightarrow Intro inference does not actually discharge any assumptions.

Example 8.6. When dealing with quantifiers, we have to make sure not to violate the eigenvariable condition, and sometimes this requires us to play around with the order of carrying out certain inferences. In general, it helps to try and take care of rules subject to the eigenvariable condition first (they will be lower down in the finished proof).

Let's see how we'd give a derivation of the formula $\exists x \neg \varphi(x) \rightarrow \neg \forall x \varphi(x)$. Starting as usual, we write

$$
\exists x \neg \varphi(x) \rightarrow \neg \forall x \varphi(x)
$$

We start by writing down what it would take to justify that last step using the \rightarrow Intro rule.

$$
\begin{gathered}
{[\exists x \neg \varphi(x)]^{1}} \\
\vdots \\
\neg \forall x \varphi(x) \\
\exists x \neg \varphi(x) \rightarrow \neg \forall x \varphi(x)
\end{gathered} \text { Intro }
$$

Since there is no obvious rule to apply to $\neg \forall x \varphi(x)$, we will proceed by setting up the derivation so we can use the \exists Elim rule. Here we must pay attention to the eigenvariable condition, and choose a constant that does not appear in $\exists x \varphi(x)$ or any assumptions that it depends on. (Since no constant symbols appear, however, any choice will do fine.)

$$
\begin{gathered}
{[\neg \varphi(a)]^{2}} \\
\vdots \\
2 \frac{[\exists x \neg \varphi(x)]^{1} \quad \neg \forall x \varphi(x)}{\neg \forall x \varphi(x)} \exists \text { Elim } \\
\exists x \neg \varphi(x) \rightarrow \neg \forall x \varphi(x)
\end{gathered} \text { Intro }
$$

In order to derive $\neg \forall x \varphi(x)$, we will attempt to use the \neg Intro rule: this requires that we derive a contradiction, possibly using $\forall x \varphi(x)$ as an additional assumption. Of coursem, this contradiction may involve the assumption $\neg \varphi(a)$ which will be discharged by the \rightarrow Intro inference. We can set it up as follows:

$$
\begin{gathered}
{[\neg \varphi(a)]^{2},[\forall x \varphi(x)]^{3}} \\
\vdots \\
2 \frac{[\exists x \neg \varphi(x)]^{1}}{\neg \forall x \varphi(x)} \frac{\perp}{\neg \forall x \varphi(x)} \neg \text { Intro } \\
\frac{\text { Elim }}{\exists x \neg \varphi(x) \rightarrow \neg \forall x \varphi(x)} \rightarrow \text { Intro }
\end{gathered}
$$

It looks like we are close to getting a contradiction. The easiest rule to apply is the \forall Elim, which has no eigenvariable conditions. Since we can use any term we want to replace the universally quantified x, it makes the most sense to continue using a so we can reach a contradiction.

$$
\begin{gathered}
2 \frac{[\neg \varphi(a)]^{2} \quad \frac{[\forall x \varphi(x)]^{3}}{\varphi(a)}}{3 \frac{\perp}{\neg \forall x \varphi(x)} \neg \text { Intro }} \nexists \text { Elim } \\
\exists \mathrm{Elim} \\
\exists x \neg \varphi(x)]^{1} \frac{\neg \forall x \varphi(x)}{\exists x \neg \varphi(x) \rightarrow \neg \forall x \varphi(x)} \rightarrow \text { Intro }
\end{gathered}
$$

It is important, especially when dealing with quantifiers, to double check at this point that the eigenvariable condition has not been violated. Since the only rule we applied that is subject to the eigenvariable condition was \exists Elim, and the eigenvariable a does not occur in any assumptions it depends on, this is a correct derivation.

8.2. EXAMPLES OF DERIVATIONS

Example 8.7. Sometimes we may derive a formula from other formulas. In these cases, we may have undischarged assumptions. It is important to keep track of our assumptions as well as the end goal.

Let's see how we'd give a derivation of the formula $\exists x \chi(x, b)$ from the assumptions $\exists x(\varphi(x) \wedge \psi(x))$ and $\forall x(\psi(x) \rightarrow \chi(x, b)$. Starting as usual, we write the end-formula at the bottom.

$$
\exists x \chi(x, b)
$$

We have two premises to work with. To use the first, i.e., try to find a derivation of $\exists x \chi(x, b)$ from $\exists x(\varphi(x) \wedge \psi(x))$ we would use the \exists Elim rule. Since it has an eigenvariable condition, we will apply that rule first. We get the following:

$$
\begin{gathered}
{[\varphi(a) \wedge \psi(a)]^{1}} \\
\vdots \\
1 \frac{\exists x(\varphi(x) \wedge \psi(x))}{\exists x \chi(x, b)} \exists x \chi(x, b) \\
\exists \operatorname{Elim}
\end{gathered}
$$

The two assumptions we are working with share ψ. It may be useful at this point to apply \wedge Elim to separate out $\psi(a)$.

$$
\left.\begin{array}{c}
\frac{[\varphi(a) \wedge \psi(a)]^{1}}{\psi(a)} \wedge \operatorname{Elim} \\
\vdots \\
1 \frac{\exists x(\varphi(x) \wedge \psi(x))}{\exists x \chi(x, b)} \exists x \chi(x, b) \\
\end{array}\right] \operatorname{Elim}
$$

The second assumption we have to work with is $\forall x(\psi(x) \rightarrow \chi(x, b)$. Since there is no eigenvariable condition we can instantiate x with the constant symbol a using \forall Elim to get $\psi(a) \rightarrow \chi(a, b)$. We now have $\psi(a)$ and $\psi(a) \rightarrow \chi(a, b)$. Our next move should be a straightforward application of the \rightarrow Elim rule.

| | $\frac{[\varphi(a) \wedge \psi(a)]^{1}}{\psi(a)} \wedge \mathrm{Elim} \quad \frac{\forall x(\psi(x) \rightarrow \chi(x, b))}{\psi(a) \rightarrow \chi(a, b)}$ |
| :---: | :---: |$\forall \mathrm{Elim}$

We are so close! One application of \exists Intro and we have reached our goal.
$\begin{array}{ll} & \frac{[\varphi(a) \wedge \psi(a)]^{1}}{\psi(a)} \wedge \operatorname{Elim} \frac{\forall x(\psi(x) \rightarrow \chi(x, b))}{\psi(a) \rightarrow \chi(a, b)} \\ \exists & \exists \mathrm{Elim} \\ \exists x(\varphi(x) \wedge \psi(x)) & \frac{\chi(a, b)}{\exists x \chi(x, b)} \exists \text { Intro } \\ \exists \mathrm{Elim}\end{array}$
Since we ensured at each step that the eigenvariable conditions were not violated, we can be confident that this is a correct derivation.

Example 8.8. Give a derivation of the formula $\neg \forall x \varphi(x)$ from the assumptions $\forall x \varphi(x) \rightarrow \exists y \psi(y)$ and $\neg \exists y \psi(y)$. Starting as usual, we write the target formula at the bottom.

$$
\overline{\neg \forall x \varphi(x)}
$$

The last line of the derivation is a negation, so let's try using \neg Intro. This will require that we figure out how to derive a contradiction.

So far so good. We can use \forall Elim but it's not obvious if that will help us get to our goal. Instead, let's use one of our assumptions. $\forall x \varphi(x) \rightarrow \exists y \psi(y)$ together with $\forall x \varphi(x)$ will allow us to use the \rightarrow Elim rule.

$$
\begin{gathered}
{[\forall x \varphi(x)]^{1} \quad \forall x \varphi(x) \rightarrow \exists y \psi(y)} \\
\exists y \psi(y) \\
\vdots \\
1 \frac{\mathrm{Elim}}{\neg \forall x \varphi(x)} \neg \text { Intro }
\end{gathered}
$$

We now have one final assumption to work with, and it looks like this will help us reach a contradiction by using \perp Intro.

$$
\frac{[\forall x \varphi(x)]^{1} \quad \forall x \varphi(x) \rightarrow \exists y \psi(y)}{\frac{\exists y \psi(y)}{1 \frac{\perp}{\neg \forall x \varphi(x)}} \neg \text { Intro }} \perp \neg \exists y \psi(y) \text { Ilim } \quad \perp \text { Intro }
$$

8.2. EXAMPLES OF DERIVATIONS

Example 8.9. Give a derivation of the formula $\varphi(x) \vee \neg \varphi(x)$.

$$
\varphi(x) \vee \neg \varphi(x)
$$

The main connective of the formula is a disjunction. Since we have no assumptions to work from, we can't use VIntro. Since we don't want any undischarged assumptions in our proof, our best bet is to use \neg Intro with the assumption $\neg(\varphi(x) \vee \neg \varphi(x))$. This will allow us to discharge the assumption at the end.

$$
\begin{gathered}
{[\neg(\varphi(x) \vee \neg \varphi(x))]^{1}} \\
\vdots \\
1 \frac{\perp}{\frac{\neg \neg(\varphi(x) \vee \neg \varphi(x))}{\varphi(x) \vee \neg \varphi(x)} \neg \text { Intro }} \neg \text { Elim }
\end{gathered}
$$

Note that a straightforward application of the \neg Intro rule leaves us with two negations. We can remove them with the \neg Elim rule.

We appear to be stuck again, since the assumption we introduced has a negation as the main operator. So let's try to derive another contradiction! Let's assume $\varphi(x)$ for another \neg Intro. From there we can derive $\varphi(x) \vee \neg \varphi(x)$ and get our first contradiction.

$$
\begin{gathered}
{[\neg(\varphi(x) \vee \neg \varphi(x))]^{1} \frac{[\varphi(x)]^{2}}{\varphi(x) \vee \neg \varphi(x)}} \\
2 \frac{\perp}{\neg \varphi(x)} \neg \text { Intro } \\
\vdots \text { Intro } \\
\vdots \\
1 \frac{\perp}{\frac{\neg \neg(\varphi(x) \vee \neg \varphi(x))}{\varphi(x) \vee \neg \varphi(x)}} \neg \text { Intro } \\
\text { Elim }
\end{gathered}
$$

Our second assumption is now discharged. We only need to derive one more contradiction in order to discharge our first assumption. Now we have something to work with $-\neg \varphi(x)$. We can use the same strategy as last time (VIntro) to derive a contradiction with our first assumption.

$$
\begin{aligned}
& {[\neg(\varphi(x) \vee \neg \varphi(x))]^{1} \frac{[\varphi(x)]^{2}}{\varphi(x) \vee \neg \varphi(x)} \vee \text { Intro }} \\
& 2 \frac{\perp}{2 \frac{\perp \varphi(x)}{\neg \text { Intro }} \neg} \begin{array}{l}
\frac{\text { Intro }}{\varphi(x) \vee \neg \varphi(x)} \vee \text { Intro } \\
\frac{\neg \neg(\varphi(x) \vee \neg \varphi(x))}{\varphi(x) \vee \neg \varphi(x)} \neg \operatorname{Elim}
\end{array} \text { Intro }
\end{aligned}
$$

And the proof is done!

8.3 Proof-Theoretic Notions

This section collects the properties of the provability relation required for the completeness theorem. If you find the location unmotivated, include it instead in the chapter on completeness.

Just as we've defined a number of important semantic notions (validity, entailment, satisfiabilty), we now define corresponding proof-theoretic notions. These are not defined by appeal to satisfaction of sentences in structures, but by appeal to the derivability or non-derivability of certain formulas. It was an important discovery, due to Gödel, that these notions coincide. That they do is the content of the completeness theorem.

Definition 8.10 (Derivability). A formula φ is derivable from a set of formulas $\Gamma, \Gamma \vdash \varphi$, if there is a derivation with end-formula φ and in which every assumption is either discharged or is in Γ. If φ is not derivable from Γ we write $\Gamma \nvdash \varphi$.

Definition 8.11 (Theorems). A formula φ is a theorem if there is a derivation of φ from the empty set, i.e., a derivation with end-formula φ in which all assumptions are discharged. We write $\vdash \varphi$ if φ is a theorem and $\nvdash \varphi$ if it is not.

Definition 8.12 (Consistency). A set of sentences Γ is consistent iff $\Gamma \nvdash \perp$. If Γ is not consistent, i.e., if $\Gamma \vdash \perp$, we say it is inconsistent.

Proposition 8.13. $\Gamma \vdash \varphi$ iff $\Gamma \cup\{\neg \varphi\}$ is inconsistent.

Proof. Exercise.
Proposition 8.14. Γ is inconsistent iff $\Gamma \vdash \varphi$ for every sentence φ.
Proof. Exercise.
Proposition 8.15. If $\Gamma \vdash \varphi$ iff for some finite $\Gamma_{0} \subseteq \Gamma, \Gamma_{0} \vdash \varphi$.
Proof. Any derivation of φ from Γ can only contain finitely many undischarged assumtions. If all these undischarged assumptions are in Γ, then the set of them is a finite subset of Γ. The other direction is trivial, since a derivation from a subset of Γ is also a derivation from Γ.

8.4. PROPERTIES OF DERIVABILITY

8.4 Properties of Derivability

We will now establish a number of properties of the derivability relation. They are independently interesting, but each will play a role in the proof of the completeness theorem.

Proposition 8.16 (Monotony). If $\Gamma \subseteq \Delta$ and $\Gamma \vdash \varphi$, then $\Delta \vdash \varphi$.
Proof. Any derivation of φ from Γ is also a derivation of φ from Δ.
Proposition 8.17. If $\Gamma \vdash \varphi$ and $\Gamma \cup\{\varphi\} \vdash \perp$, then Γ is inconsistent.
Proof. Let the derivation of φ from Γ be δ_{1} and the derivation of \perp from $\Gamma \cup$ $\{\varphi\}$ be δ_{2}. We can then derive:

In the new derivation, the assumption φ is discharged, so it is a derivation from Γ.

Proposition 8.18. If $\Gamma \cup\{\varphi\} \vdash \perp$, then $\Gamma \vdash \neg \varphi$.
Proof. Suppose that $\Gamma \cup\{\varphi\} \vdash \perp$. Then there is a derivation of \perp from $\Gamma \cup$ $\{\varphi\}$. Let δ be the derivation of \perp, and consider

Proposition 8.19. If $\Gamma \cup\{\varphi\} \vdash \perp$ and $\Gamma \cup\{\neg \varphi\} \vdash \perp$, then $\Gamma \vdash \perp$.
Proof. There are derivations δ_{1} and δ_{2} of \perp from $\Gamma \cup,\{\varphi\}$ and \perp from $\Gamma \cup$ $\{\neg \varphi\}$, respectively. We can then derive

Since the assumptions φ and $\neg \varphi$ are discharged, this is a derivation from Γ alone. Hence $\Gamma \vdash \perp$.

Proposition 8.20. If $\Gamma \cup\{\varphi\} \vdash \perp$ and $\Gamma \cup\{\psi\} \vdash \perp$, then $\Gamma \cup\{\varphi \vee \psi\} \vdash \perp$.

Proof. Exercise.

Proposition 8.21. If $\Gamma \vdash \varphi$ or $\Gamma \vdash \psi$, then $\Gamma \vdash \varphi \vee \psi$.

Proof. Suppose $\Gamma \vdash \varphi$. There is a derivation δ of φ from Γ. We can derive

$$
\begin{gathered}
\vdots \\
\vdots \\
\frac{\varphi}{\varphi \vee \psi} \vee \text { Intro }
\end{gathered}
$$

Therefore $\Gamma \vdash \varphi \vee \psi$. The proof for when $\Gamma \vdash \psi$ is similar.

Proposition 8.22. If $\Gamma \vdash \varphi \wedge \psi$ then $\Gamma \vdash \varphi$ and $\Gamma \vdash \psi$.

Proof. If $\Gamma \vdash \varphi \wedge \psi$, there is a derivation δ of $\varphi \wedge \psi$ from Γ. Consider

$$
\begin{gathered}
\vdots \\
\vdots \\
\frac{\varphi \wedge \psi}{\varphi} \wedge \operatorname{Elim}
\end{gathered}
$$

Hence, $\Gamma \vdash \varphi$. A similar derivation shows that $\Gamma \vdash \psi$.

Proposition 8.23. If $\Gamma \vdash \varphi$ and $\Gamma \vdash \psi$, then $\Gamma \vdash \varphi \wedge \psi$.
Proof. If $\Gamma \vdash \varphi$ as well as $\Gamma \vdash \psi$, there are derivations δ_{1} of φ and δ_{2} of ψ from Γ. Consider

The undischarged assumptions of the new derivation are all in Γ, so we have $\Gamma \vdash \varphi \wedge \psi$.

Proposition 8.24. If $\Gamma \vdash \varphi$ and $\Gamma \vdash \varphi \rightarrow \psi$, then $\Gamma \vdash \psi$.

8.4. PROPERTIES OF DERIVABILITY

Proof. Suppose that $\Gamma \vdash \varphi$ and $\Gamma \vdash \varphi \rightarrow \psi$. There are derivations δ_{1} of φ from Γ and δ_{2} of $\varphi \rightarrow \psi$ from Γ. Consider:

This means that $\Gamma \vdash \psi$.

Proposition 8.25. If $\Gamma \vdash \neg \varphi$ or $\Gamma \vdash \psi$, then $\Gamma \vdash \varphi \rightarrow \psi$.

Proof. First suppose $\Gamma \vdash \neg \varphi$. Then there is a derivation of $\neg \varphi$ from γ. The following derivation shows that $\Gamma \vdash \varphi \rightarrow \psi$:

Now suppose $\Gamma \vdash \psi$. Then there is a derivation δ of ψ from Γ. The following derivation shows that $\Gamma \vdash \varphi \rightarrow \psi$:

$$
\begin{aligned}
& \vdots \\
& \frac{\vdots \delta}{\vdots} \quad[\varphi]^{1} \\
& \frac{\varphi \cdot \psi}{\psi} \wedge \text { Intro } \\
& \varphi \rightarrow \psi
\end{aligned} \text { Elim Intro }
$$

Theorem 8.26. If c is a constant not occurring in Γ or $\varphi(x)$ and $\Gamma \vdash \varphi(c)$, then $\Gamma \vdash \forall x \varphi(c)$.

Proof. Let δ be an derivation of $\varphi(c)$ from Γ. By adding a \forall Intro inference, we obtain a proof of $\forall x \varphi(x)$. Since c does not occur in Γ or $\varphi(x)$, the eigenvariable condition is satisfied.

Theorem 8.27. 1. If $\Gamma \vdash \varphi(t)$ then $\Gamma \vdash \exists x \varphi(x)$.
2. If $\Gamma \vdash \forall x \varphi(x)$ then $\Gamma \vdash \varphi(t)$.

Proof. 1. Suppose $\Gamma \vdash \varphi(t)$. Then there is a derivation δ of $\varphi(t)$ from Γ. The derivation

$$
\begin{gathered}
\vdots \\
\vdots \\
\frac{\varphi(t)}{\exists x \varphi(x)} \exists \text { Intro }
\end{gathered}
$$

shows that $\Gamma \vdash \exists x \varphi(x)$.
2. Suppose $\Gamma \vdash \forall x \varphi(x)$. Then there is a derivation δ of $\forall x \varphi(x)$ from Γ. The derivation

$$
\begin{gathered}
\vdots \\
\vdots \\
\frac{\forall x \varphi(x)}{\varphi(t)} \forall \text { Elim }
\end{gathered}
$$

shows that $\Gamma \vdash \varphi(t)$.

8.5 Soundness

A derivation system, such as natural deduction, is sound if it cannot derive things that do not actually follow. Soundness is thus a kind of guaranteed safety property for derivation systems. Depending on which proof theoretic property is in question, we would like to know for instance, that

1. every derivable sentence is valid;
2. if a sentence is derivable from some others, it is also a consequence of them;
3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do not hold, the derivation system is deficient-it would derive too much. Consequently, establishing the soundness of a derivation system is of the utmost importance.

Theorem 8.28 (Soundness). If φ is derivable from the undischarged assumptions Γ, then $\Gamma \vDash \varphi$.

Proof. Inductive Hypothesis: The premises of an inference rule follow from the undischarged assumptions of the subproofs ending in those premises.

Inductive Step: Show that φ follows from the undischarged assumptions of the entire proof.

8.5. SOUNDNESS

Let δ be a derivation of φ. We proceed by induction on the number of inferences in δ.

If the number of inferences is 0 , then δ consists only of an initial formula. Every initial formula φ is an undischarged assumption, and as such, any structure \mathfrak{M} that satisfies all of the undischarged assumptions of the proof also satisfies φ.

If the number of inferences is greater than 0 , we distinguish cases according to the type of the lowermost inference. By induction hypothesis, we can assume that the premises of that inference follow from the undischarged assumptions of the sub-derivations ending in those premises, respectively.

First, we consider the possible inferences with only one premise.

1. Suppose that the last inference is \neg Intro: By inductive hypothesis, \perp follows from the undischarged assumptions $\Gamma \cup\{\varphi\}$. Consider a structure \mathfrak{M}. We need to show that, if $\mathfrak{M} \mid=\Gamma$, then $\mathfrak{M} \mid=\neg \varphi$. Suppose for reductio that $\mathfrak{M} \vDash \Gamma$, but $\mathfrak{M} \not \vDash \neg \varphi$, i.e., $\mathfrak{M} \vDash \varphi$. This would mean that $\mathfrak{M} \vDash \Gamma \cup\{\varphi\}$. This is contrary to our inductive hypothesis. So, $\mathfrak{M} \mid=\neg \varphi$.
2. The last inference is \neg Elim: Exercise.
3. The last inference is \wedge Elim: There are two variants: φ or ψ may be inferred from the premise $\varphi \wedge \psi$. Consider the first case. By inductive hypothesis, $\varphi \wedge \psi$ follows from the undischarged assumptions Γ. Consider a structure \mathfrak{M}. We need to show that, if $\mathfrak{M} \models \Gamma$, then $\mathfrak{M} \models \varphi$. By our inductive hypothesis, we know that $\mathfrak{M} \vDash \varphi \wedge \psi$. So, $\mathfrak{M} \models \varphi$. The case where ψ is inferred from $\varphi \wedge \psi$ is handled similarly.
4. The last inference is \vee Intro: There are two variants: $\varphi \vee \psi$ may be inferred from the premise φ or the premise ψ. Consider the first case. By inductive hypothesis, φ follows from the undischarged assumptions Γ. Consider a structure \mathfrak{M}. We need to show that, if $\mathfrak{M} \vDash \Gamma$, then $\mathfrak{M} \vDash$ $\varphi \vee \psi$. Since $\mathfrak{M} \vDash \Gamma$, it must be the case that $\mathfrak{M} \vDash \varphi$, by inductive hypothesis. So it must also be the case that $\mathfrak{M} \vDash \varphi \vee \psi$. The case where $\varphi \vee \psi$ is inferred from ψ is handled similarly.
5. The last inference is \rightarrow Intro: $\varphi \rightarrow \psi$ is inferred from a subproof with assumption φ and conclusion ψ. By inductive hypothesis, ψ follows from the undischarged assumptions Γ and φ. Consider a structure \mathfrak{M}. We need to show that, if $\Gamma \vDash \varphi \rightarrow \psi$. For reductio, suppose that for some structure $\mathfrak{M}, \mathfrak{M} \vDash \Gamma$ but $\mathfrak{M} \not \vDash \varphi \rightarrow \psi$. So, $\mathfrak{M} \vDash \varphi$ and $\mathfrak{M} \not \vDash \psi$. But by hypothesis, ψ is a consequence of $\Gamma \cup\{\varphi\}$. So, $\mathfrak{M} \vDash \varphi \rightarrow \psi$.
6. The last inference is \forall Intro: The premise $\varphi(a)$ is a consequence of the undischarged assumptions Γ by induction hypothesis. Consider some
structure, \mathfrak{M}, such that $\mathfrak{M} \vDash \Gamma$. Let \mathfrak{M}^{\prime} be exactly like \mathfrak{M} except that $a^{\mathfrak{M}} \neq a^{\mathfrak{M}^{\prime}}$. We must have $\mathfrak{M}^{\prime} \models \varphi(a)$.
We now show that $\mathfrak{M} \mid=\forall x \varphi(x)$. Since $\forall x \varphi(x)$ is a sentence, this means we have to show that for every variable assignment $s, \mathfrak{M}, s=\varphi(x)$. Since Γ consists entirely of sentences, $\mathfrak{M}, s \neq \psi$ for all $\psi \in \Gamma$. Let \mathfrak{M}^{\prime} be like \mathfrak{M} except that $a^{\mathfrak{M}^{\prime}}=s(x)$. Then $\mathfrak{M}, s \vDash \varphi(x)$ iff $\mathfrak{M}^{\prime} \models \varphi(a)$ (as $\varphi(x)$ does not contain a). Since a also does not occur in $\Gamma, \mathfrak{M}^{\prime} \vDash \Gamma$. Since $\Gamma \vDash \varphi(a), \mathfrak{M}^{\prime} \models \varphi(a)$. This means that $\mathfrak{M}, s \vDash \varphi(x)$. Since s is an arbitrary variable assignment, $\mathfrak{M} \models \forall x \varphi(x)$.
7. The last inference is \exists Intro: Exercise.
8. The last inference is \forall Elim: Exercise.

Now let's consider the possible inferences with several premises: VElim, \wedge Intro, \rightarrow Elim, and \exists Elim.

1. The last inference is \wedge Intro. $\varphi \wedge \psi$ is inferred from the premises φ and ψ. By induction hypothesis, φ follows from the undischarged assumptions Γ and ψ follows from the undischarged assumptions Δ. We have to show that $\Gamma \cup \Delta \vDash \varphi \wedge \psi$. Consider a structure \mathfrak{M} with $\mathfrak{M} \vDash \Gamma \cup \Delta$. Since $\mathfrak{M} \vDash \Gamma$, it must be the case that $\mathfrak{M} \vDash \varphi$, and since $\mathfrak{M} \vDash \Delta, \mathfrak{M} \models \psi$, by inductive hypothesis. Together, $\mathfrak{M} \models \varphi \wedge \psi$.
2. The last inference is \vee Elim: Exercise.
3. The last inference is \rightarrow Elim. ψ is inferred from the premises $\varphi \rightarrow \psi$ and φ. By induction hypothesis, $\varphi \rightarrow \psi$ follows from the undischarged assumptions Γ and φ follows from the undischarged assumptions Δ. Consider a structure \mathfrak{M}. We need to show that, if $\mathfrak{M} \models \Gamma \cup \Delta$, then $\mathfrak{M} \models \psi$. It must be the case that $\mathfrak{M}=\varphi \rightarrow \psi$, and $\mathfrak{M} \vDash \varphi$, by inductive hypothesis. Thus it must be the case that $\mathfrak{M} \models \psi$.
4. The last inference is \exists Elim: Exercise.

Corollary 8.29. If $\vdash \varphi$, then φ is valid.
Corollary 8.30. If Γ is satisfiable, then it is consistent.
Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then $\Gamma \vdash \perp$, i.e., there is a derivation of \perp from undischarged assumptions in Γ. By Theorem 8.28 , any structure \mathfrak{M} that satisfies Γ must satisfy \perp. Since $\mathfrak{M} \not \vDash \perp$ for every structure \mathfrak{M}, no \mathfrak{M} can satisfy Γ, i.e., Γ is not satisfiable.

8.6. DERIVATIONS WITH IDENTITY PREDICATE

8.6 Derivations with Identity predicate

Derivations with the identity predicate require additional inference rules.

Rules for $=:$

$$
\overline{t=t}=\text { Intro }
$$

$$
\frac{t_{1}=t_{2} \varphi\left(t_{1}\right)}{\varphi\left(t_{2}\right)}=\mathrm{Elim} \quad \text { and } \quad \frac{t_{1}=t_{2} \quad \varphi\left(t_{2}\right)}{\varphi\left(t_{1}\right)}=\operatorname{Elim}
$$

where t_{1} and t_{2} are closed terms. The $=$ Intro rule allows us to derive any identity statement of teh form $t=t$ outright.

Example 8.31. If s and t are closed terms, then $\varphi(s), s=t \vdash \varphi(t)$:

$$
\frac{\varphi(s) \quad s=t}{\varphi(t)}=\mathrm{Elim}
$$

This may be familiar as the "principle of substitutability of identicals," or Leibniz' Law.

Proposition 8.32. Natural deduction with rules for identity is sound.
Proof. Any formula of the form $t=t$ is valid, since for every structure \mathfrak{M}, $\mathfrak{M} \vDash t=t$. (Note that we assume the term t to be ground, i.e., it contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is = Elim. Then the premises are $t_{1}=t_{2}$ and $\varphi\left(t_{1}\right)$; they are derived from undischarged assumptions Γ and Δ, respectively. We want to show that $\varphi(s)$ follows from $\Gamma \cup \Delta$. Consider a structure \mathfrak{M} with $\mathfrak{M} \vDash \Gamma \cup \Delta$. By induction hypothesis, \mathfrak{M} satisfies the two premises by induction hypothesis. So, $\mathfrak{M} \vDash t_{1}=t_{2}$. Therefore, $\operatorname{Val}^{\mathfrak{M}}\left(t_{1}\right)=$ $\mathrm{Val}^{\mathfrak{M}}\left(t_{2}\right)$. Let s be any variable assignment, and s^{\prime} be the x-variant given by $s^{\prime}(x)=\operatorname{Val}^{\mathfrak{M}}\left(t_{1}\right)=\operatorname{Val}^{\mathfrak{M}}\left(t_{2}\right)$. By Proposition 5.39, $\mathfrak{M}, s \vDash \varphi\left(t_{2}\right)$ iff $\mathfrak{M}, s^{\prime} \models$ $\varphi(x)$ iff $\mathfrak{M}, s \vDash \varphi\left(t_{1}\right)$. Since $\mathfrak{M} \vDash \varphi\left(t_{1}\right)$ therefore $\mathfrak{M} \vDash \varphi\left(t_{2}\right)$.

Problems

Problem 8.1. Give derivations of the following formulas:

1. $\neg(\varphi \rightarrow \psi) \rightarrow(\varphi \wedge \neg \psi)$
2. $\forall x(\varphi(x) \rightarrow \psi) \rightarrow(\exists y \varphi(y) \rightarrow \psi)$

Problem 8.2. Prove Proposition 8.13
Problem 8.3. Prove Proposition 8.14

Problem 8.4. Prove Proposition 8.20
Problem 8.5. Prove Proposition 8.21.
Problem 8.6. Prove Proposition 8.22.
Problem 8.7. Prove Proposition 8.23.
Problem 8.8. Prove Proposition 8.24.
Problem 8.9. Prove Proposition 8.25.
Problem 8.10. Complete the proof of Theorem 8.28.
Problem 8.11. Prove that $=$ is both symmetric and transitive, i.e., give derivations of $\forall x \forall y(x=y \rightarrow y=x)$ and $\forall x \forall y \forall z((x=y \wedge y=z) \rightarrow x=z)$

Problem 8.12. Give derivations of the following formulas:

1. $\forall x \forall y((x=y \wedge \varphi(x)) \rightarrow \varphi(y))$
2. $\exists x \varphi(x) \wedge \forall y \forall z((\varphi(y) \wedge \varphi(z)) \rightarrow y=z) \rightarrow \exists x(\varphi(x) \wedge \forall y(\varphi(y) \rightarrow y=$ $x)$)

Chapter 9

The Completeness Theorem

9.1 Introduction

The completeness theorem is one of the most fundamental results about logic. It comes in two formulations, the equivalence of which we'll prove. In its first formulation it says something fundamental about the relationship between semantic consequence and our proof system: if a sentence φ follows from some sentences Γ, then there is also a derivation that establishes $\Gamma \vdash \varphi$. Thus, the proof system is as strong as it can possibly be without proving things that don't actually follow. In its second formulation, it can be stated as a model existence result: every consistent set of sentences is satisfiable.

These aren't the only reasons the completeness theorem-or rather, its proof-is important. It has a number of important consequences, some of which we'll discuss separately. For instance, since any derivation that shows $\Gamma \vdash \varphi$ is finite and so can only use finitely many of the sentences in Γ, it follows by the completeness theorem that if φ is a consequence of Γ, it is already a consequence of a finite subset of Γ. This is called compactness. Equivalently, if every finite subset of Γ is consistent, then Γ itself must be consistent. It also follows from the proof of the completeness theorem that any satisfiable set of sentences has a finite or denumerable model. This result is called the Löwenheim-Skolem theorem.

9.2 Outline of the Proof

The proof of the completeness theorem is a bit complex, and upon first reading it, it is easy to get lost. So let us outline the proof. The first step is a shift of perspective, that allows us to see a route to a proof. When completeness is thought of as "whenever $\Gamma \vDash \varphi$ then $\Gamma \vdash \varphi$," it may be hard to even come up with an idea: for to show that $\Gamma \vdash \varphi$ we have to find a derivation, and it does not look like the hypothesis that $\Gamma \vDash \varphi$ helps us for this in any way. For some proof systems it is possible to directly construct a derivation, but we will take
a slightly different tack. The shift in perspective required is this: completeness can also be formulated as: "if Γ is consistent, it has a model." Perhaps we can use the information in Γ together with the hypothesis that it is consistent to construct a model. After all, we know what kind of model we are looking for: one that is as Γ describes it!

If Γ contains only atomic sentences, it is easy to construct a model for it: for atomic sentences are all of the form $P\left(a_{1}, \ldots, a_{n}\right)$ where the a_{i} are constant symbols. So all we have to do is come up with a domain $|\mathfrak{M}|$ and an interpretation for P so that $\mathfrak{M} \models P\left(a_{1}, \ldots, a_{n}\right)$. But nothing's easier than that: put $|\mathfrak{M}|=\mathbb{N}, c_{i}^{\mathfrak{M}}=i$, and for every $P\left(a_{1}, \ldots, a_{n}\right) \in \Gamma$, put the tuple $\left\langle k_{1}, \ldots, k_{n}\right\rangle$ into $P^{\mathfrak{M}}$, where k_{i} is the index of the constant symbol a_{i} (i.e., $a_{i} \equiv c_{k_{i}}$).

Now suppose Γ contains some sentence $\neg \psi$, with ψ atomic. We might worry that the construction of \mathfrak{M} interferes with the possibility of making $\neg \psi$ true. But here's where the consistency of Γ comes in: if $\neg \psi \in \Gamma$, then $\psi \notin \Gamma$, or else Γ would be inconsistent. And if $\psi \notin \Gamma$, then according to our construction of $\mathfrak{M}, \mathfrak{M} \not \vDash \psi$, so $\mathfrak{M} \vDash \neg \psi$. So far so good.

Now what if Γ contains complex, non-atomic formulas? Say, it contains $\varphi \wedge \psi$. Then we should proceed as if both φ and ψ were in Γ. And if $\varphi \vee \psi \in \Gamma$, then we will have to make at least one of them true, i.e., proceed as if one of them was in Γ.

This suggests the following idea: we add additional sentences to Γ so as to (a) keep the resulting set consistent and (b) make sure that for every possible atomic sentence φ, either φ is in the resulting set, or $\neg \varphi$, and (c) such that, whenever $\varphi \wedge \psi$ is in the set, so are both φ and ψ, if $\varphi \vee \psi$ is in the set, at least one of φ or ψ is also, etc. We keep doing this (potentially forever). Call the set of all sentences so added Γ^{*}. Then our construction above would provide us with a structure for which we could prove, by induction, that all sentences in Γ^{*} are true in \mathfrak{M}, and hence also all sentence in Γ since $\Gamma \subseteq \Gamma^{*}$.

There is one wrinkle in this plan: if $\exists x \varphi(x) \in \Gamma$ we would hope to be able to pick some constant symbol c and add $\varphi(c)$ in this process. But how do we know we can always do that? Perhaps we only have a few constant symbols in our language, and for each one of them we have $\neg \psi(c) \in \Gamma$. We can't also add $\psi(c)$, since this would make the set inconsistent, and we wouldn't know whether \mathfrak{M} has to make $\psi(c)$ or $\neg \psi(c)$ true. Moreover, it might happen that Γ contains only sentences in a language that has no constant symbols at all (e.g., the language of set theory).

The solution to this problem is to simply add infinitely many constants at the beginning, plus sentences that connect them with the quantifiers in the right way. (Of course, we have to verify that this cannot introduce an inconsistency.)

Our original construction works well if we only have constant symbols in the atomic sentences. But the language might also contain function symbols. In that case, it might be tricky to find the right functions on \mathbb{N} to assign to

9.3. MAXIMALLY CONSISTENT SETS OF SENTENCES

these function symbols to make everything work. So here's another trick: instead of using i to interpret c_{i}, just take the set of constant symbols itself as the domain. Then \mathfrak{M} can assign every constant symbol to itself: $c_{i}^{\mathfrak{M}}=c_{i}$. But why not go all the way: let $|\mathfrak{M}|$ be all terms of the language! If we do this, there is an obvious assignment of functions (that take terms as arguments and have terms as values) to function symbols: we assign to the function symbol f_{i}^{n} the function which, given n terms t_{1}, \ldots, t_{n} as input, produces the term $f_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$ as value.

The last piece of the puzzle is what to do with $=$. The predicate symbol $=$ has a fixed interpretation: $\mathfrak{M} \equiv t=t^{\prime}$ iff $\operatorname{Val}^{\mathfrak{M}}(t)=\operatorname{Val}^{\mathfrak{M} t}\left(t^{\prime}\right)$. Now if we set things up so that the value of a term t is t itself, then this structure will make no sentence of the form $t=t^{\prime}$ true unless t and t^{\prime} are one and the same term. And of course this is a problem, since basically every interesting theory in a language with function symbols will have as theorems sentences $t=t^{\prime}$ where t and t^{\prime} are not the same term (e.g., in theories of arithmetic: $\left.(0+0)=0\right)$. To solve this problem, we change the domain of \mathfrak{M} : instead of using terms as the objects in $|\mathfrak{M}|$, we use sets of terms, and each set is so that it contains all those terms which the sentences in Γ require to be equal. So, e.g., if Γ is a theory of arithmetic, one of these sets will contain: $0,(0+0),(0 \times 0)$, etc. This will be the set we assign to 0 , and it will turn out that this set is also the value of all the terms in it, e.g., also of $(0+0)$. Therefore, the sentence $(0+0)=0$ will be true in this revised structure.

9.3 Maximally Consistent Sets of Sentences

Definition 9.1 (Maximally consistent set). A set Γ of sentences is maximally consistent iff

1. Γ is consistent, and
2. if $\Gamma \subsetneq \Gamma^{\prime}$, then Γ^{\prime} is inconsistent.

An alternate definition equivalent to the above is: a set Γ of sentences is maximally consistent iff

1. Γ is consistent, and
2. If $\Gamma \cup\{\varphi\}$ is consistent, then $\varphi \in \Gamma$.

In other words, one cannot add sentences not already in Γ to a maximally consistent set Γ without making the resulting larger set inconsistent.

Maximally consistent sets are important in the completeness proof since we can guarantee that every consistent set of sentences Γ is contained in a maximally consistent set Γ^{*}, and a maximally consistent set contains, for each sentence φ, either φ or its negation $\neg \varphi$. This is true in particular for atomic sentences, so from a maximally consistent set in a language suitably expanded
by constant symbols, we can construct a structure where the interpretation of predicate symbols is defined according to which atomic sentences are in Γ^{*}. This structure can then be shown to make all sentences in Γ^{*} (and hence also in Γ) true. The proof of this latter fact requires that $\neg \varphi \in \Gamma^{*}$ iff $\varphi \notin \Gamma^{*}$, $(\varphi \vee \psi) \in \Gamma^{*}$ iff $\varphi \in \Gamma^{*}$ or $\psi \in \Gamma^{*}$, etc.

Proposition 9.2. Suppose Γ is maximally consistent. Then:

1. If $\Gamma \vdash \varphi$, then $\varphi \in \Gamma$.
2. For any φ, either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$.
3. $(\varphi \wedge \psi) \in \Gamma$ iff both $\varphi \in \Gamma$ and $\psi \in \Gamma$.
4. $(\varphi \vee \psi) \in \Gamma$ iff either $\varphi \in \Gamma$ or $\psi \in \Gamma$.
5. $(\varphi \rightarrow \psi) \in \Gamma$ iff either $\varphi \notin \Gamma$ or $\psi \in \Gamma$.

Proof. Let us suppose for all of the following that Γ is maximally consistent.

1. If $\Gamma \vdash \varphi$, then $\varphi \in \Gamma$.

Suppose that $\Gamma \vdash \varphi$. Suppose to the contrary that $\varphi \notin \Gamma$: then since Γ is maximally consistent, $\Gamma \cup\{\varphi\}$ is inconsistent, hence $\Gamma \cup\{\varphi\} \vdash \perp$. By Propositions 7.17 and $8.17, \Gamma$ is inconsistent. This contradicts the assumption that Γ is consistent. Hence, it cannot be the case that $\varphi \notin \Gamma$, so $\varphi \in \Gamma$.
2. For any φ, either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$.

Suppose to the contrary that for some φ both $\varphi \notin \Gamma$ and $\neg \varphi \notin \Gamma$. Since Γ is maximally consistent, $\Gamma \cup\{\varphi\}$ and $\Gamma \cup\{\neg \varphi\}$ are both inconsistent, so $\Gamma \cup\{\varphi\} \vdash \perp$ and $\Gamma \cup\{\neg \varphi\} \vdash \perp$. By Propositions 7.19 and $8.19, \Gamma$ is inconsistent, a contradiction. Hence there cannot be such a sentence φ and, for every $\varphi, \varphi \in \Gamma$ or $\neg \varphi \in \Gamma$.
3. $(\varphi \wedge \psi) \in \Gamma$ iff both $\varphi \in \Gamma$ and $\psi \in \Gamma$:

For the forward direction, suppose $(\varphi \wedge \psi) \in \Gamma$. Then $\Gamma \vdash \varphi \wedge \psi$. By Propositions 7.22 and 8.22, $\Gamma \vdash \varphi$ and $\Gamma \vdash \psi$. By (1), $\varphi \in \Gamma$ and $\psi \in \Gamma$, as required.
For the reverse direction, let $\varphi \in \Gamma$ and $\psi \in \Gamma$. Then $\Gamma \vdash \varphi$ and $\Gamma \vdash \psi$. By Propositions 7.23 and 8.23, $\Gamma \vdash \varphi \wedge \psi$. By (1), $(\varphi \wedge \psi) \in \Gamma$.
4. $(\varphi \vee \psi) \in \Gamma$ iff either $\varphi \in \Gamma$ or $\psi \in \Gamma$.

For the contrapositive of the forward direction, suppose that $\varphi \notin \Gamma$ and $\psi \notin \Gamma$. We want to show that $(\varphi \vee \psi) \notin \Gamma$. Since Γ is maximally consistent, $\Gamma \cup\{\varphi\} \vdash \perp$ and $\Gamma \cup\{\psi\} \vdash \perp$. By Propositions 7.20 and 8.20, $\Gamma \cup\{(\varphi \vee \psi)\}$ is inconsistent. Hence, $(\varphi \vee \psi) \notin \Gamma$, as required.

9.4. HENKIN EXPANSION

For the reverse direction, suppose that $\varphi \in \Gamma$ or $\psi \in \Gamma$. Then $\Gamma \vdash \varphi$ or $\Gamma \vdash \psi$. By Propositions 7.21 and $8.21, \Gamma \vdash \varphi \vee \psi$. By (1), $(\varphi \vee \psi) \in \Gamma$, as required.
5. $(\varphi \rightarrow \psi) \in \Gamma$ iff either $\varphi \notin \Gamma$ or $\psi \in \Gamma$:

For the forward direction, let $(\varphi \rightarrow \psi) \in \Gamma$, and suppose to the contrary that $\varphi \in \Gamma$ and $\psi \notin \Gamma$. On these assumptions, $\Gamma \vdash \varphi \rightarrow \psi$ and $\Gamma \vdash \varphi$. By Propositions 7.24 and $8.24, \Gamma \vdash \psi$. But then by (1), $\psi \in \Gamma$, contradicting the assumption that $\psi \notin \Gamma$.
For the reverse direction, first consider the case where $\varphi \notin \Gamma$. By (2), $\neg \varphi \in \Gamma$ and hence $\Gamma \vdash \neg \varphi$. By Propositions 7.25 and $8.25, \Gamma \vdash \varphi \rightarrow \psi$. Again by (1), we get that $(\varphi \rightarrow \psi) \in \Gamma$, as required.
Now consider the case where $\psi \in \Gamma$. Then $\Gamma \vdash \psi$ and by Propositions 7.25 and $8.25, \Gamma \vdash \varphi \rightarrow \psi$. By $(1),(\varphi \rightarrow \psi) \in \Gamma$.

9.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that the model we construct from a maximally consistent set Γ must make all the quantified formulas in Γ true. In order to guarantee this, we use a trick due to Leon Henkin. In essence, the trick consists in expanding the language by infinitely many constants and adding, for each formula with one free variable $\varphi(x)$ a formula of the form $\exists x \varphi \rightarrow \varphi(c)$, where c is one of the new constant symbols. When we construct the structure satisfying Γ, this will guarantee that each true existential sentence has a witness among the new constants.

Lemma 9.3. If Γ is consistent in \mathcal{L} and \mathcal{L}^{\prime} is obtained from \mathcal{L} by adding a denumerable set of new constant symbols d_{1}, d_{2}, \ldots, then Γ is consistent in \mathcal{L}^{\prime}.

Definition 9.4 (Saturated set). A set Γ of formulas of a language \mathcal{L} is saturated if and only if for each formula $\varphi \in \operatorname{Frm}(\mathcal{L})$ and variable x there is a constant symbol c such that $\exists x \varphi \rightarrow \varphi(c) \in \Gamma$.

The following definition will be used in the proof of the next theorem.
Definition 9.5. Let \mathcal{L}^{\prime} be as in Lemma 9.3. Fix an enumeration $\left\langle\varphi_{1}, x_{1}\right\rangle,\left\langle\varphi_{2}, x_{2}\right\rangle$, \ldots of all formula-variable pairs of \mathcal{L}^{\prime}. We define the sentences θ_{n} by recursion on n. Assuming that $\theta_{1}, \ldots, \theta_{n}$ have already been defined, let c_{n+1} be the first new constant symbol among the d_{i} that does not occur in $\theta_{1}, \ldots, \theta_{n}$, and let θ_{n+1} be the formula $\exists x_{n+1} \varphi_{n+1}\left(x_{n+1}\right) \rightarrow \varphi_{n+1}\left(c_{n+1}\right)$. This includes the case where $n=0$ and the list of previous $\theta_{i}{ }^{\prime}$ s is empty, i.e., θ_{1} is $\exists x_{1} \varphi_{1} \rightarrow \varphi_{1}\left(c_{1}\right)$.

Theorem 9.6. Every consistent set Γ can be extended to a saturated consistent set Γ^{\prime}.

Proof. Given a consistent set of sentences Γ in a language \mathcal{L}, expand the language by adding a denumerable set of new constant symbols to form \mathcal{L}^{\prime}. By the previous Lemma, Γ is still consistent in the richer language. Further, let θ_{i} be as in the previous definition: then $\Gamma \cup\left\{\theta_{1}, \theta_{2}, \ldots\right\}$ is saturated by construction. Let

$$
\begin{aligned}
\Gamma_{0} & =\Gamma \\
\Gamma_{n+1} & =\Gamma_{n} \cup\left\{\theta_{n+1}\right\}
\end{aligned}
$$

i.e., $\Gamma_{n}=\Gamma \cup\left\{\theta_{1}, \ldots, \theta_{n}\right\}$, and let $\Gamma^{\prime}=\bigcup_{n} \Gamma_{n}$. To show that Γ^{\prime} is consistent it suffices to show, by induction on n, that each set Γ_{n} is consistent.

The induction basis is simply the claim that $\Gamma_{0}=\Gamma$ is consistent, which is the hypothesis of the theorem. For the induction step, suppose that Γ_{n-1} is consistent but $\Gamma_{n}=\Gamma_{n-1} \cup\left\{\theta_{n}\right\}$ is inconsistent. Recall that θ_{n} is $\exists x_{n} \varphi_{n}\left(x_{n}\right) \rightarrow$ $\varphi_{n}\left(c_{n}\right)$. where $\varphi(x)$ is a formula of \mathcal{L}^{\prime} with only the variable x_{n} free and not containing any constant symbols c_{i} where $i \geq n$.

If $\Gamma_{n-1} \cup\left\{\theta_{n}\right\}$ is inconsistent, then $\Gamma_{n-1} \vdash \neg \theta_{n}$, and hence both of the following hold:

$$
\Gamma_{n-1} \vdash \exists x_{n} \varphi_{n}\left(x_{n}\right) \quad \Gamma_{n-1} \vdash \neg \varphi_{n}\left(c_{n}\right)
$$

Here c_{n} does not occur in Γ_{n-1} or $\varphi_{n}\left(x_{n}\right)$ (remember, it was added only with θ_{n}). By Theorems 7.26 and 8.26 , from $\Gamma \vdash \neg \varphi_{n}\left(c_{n}\right)$, we obtain $\Gamma \vdash \forall x_{n} \neg \varphi_{n}\left(x_{n}\right)$. Thus we have that both $\Gamma_{n-1} \vdash \exists x_{n} \varphi_{n}$ and $\Gamma_{n-1} \vdash \forall x_{n} \neg \varphi_{n}\left(x_{n}\right)$, so Γ itself is inconsistent. (Note that $\forall x_{n} \neg \varphi_{n}\left(x_{n}\right) \vdash \neg \exists x_{n} \varphi_{n}\left(x_{n}\right)$.) Contradiction: Γ_{n-1} was supposed to be consistent. Hence $\Gamma_{n} \cup\left\{\theta_{n}\right\}$ is consistent.

9.5 Lindenbaum's Lemma

Lemma 9.7 (Lindenbaum's Lemma). Every consistent set Γ can be extended to a maximally consistent saturated set Γ^{*}.

Proof. Let Γ be consistent, and let Γ^{\prime} be as in the proof of Theorem 9.6: we proved there that $\Gamma \cup \Gamma^{\prime}$ is a consistent saturated set in the richer language \mathcal{L}^{\prime} (with the denumerable set of new constants). Let $\varphi_{0}, \varphi_{1}, \ldots$ be an enumeration of all the formulas of \mathcal{L}^{\prime}. Define $\Gamma_{0}=\Gamma \cup \Gamma^{\prime}$, and

$$
\Gamma_{n+1}= \begin{cases}\Gamma_{n} \cup\left\{\varphi_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{\varphi_{n}\right\} \text { is consistent; } \\ \Gamma_{n} \cup\left\{\neg \varphi_{n}\right\} & \text { otherwise }\end{cases}
$$

Let $\Gamma^{*}=\bigcup_{n \geq 0} \Gamma_{n}$. Since $\Gamma^{\prime} \subseteq \Gamma^{*}$, for each formula φ, Γ^{*} contains a formula of the form $\exists x \varphi \rightarrow \varphi(c)$ and thus is saturated.

Each Γ_{n} is consistent: Γ_{0} is consistent by definition. If $\Gamma_{n+1}=\Gamma_{n} \cup\{\varphi\}$, this is because the latter is consistent. If it isn't, $\Gamma_{n+1}=\Gamma_{n} \cup\{\neg \varphi\}$, which must be consistent. If it weren't, i.e., both $\Gamma_{n} \cup\{\varphi\}$ and $\Gamma_{n} \cup\{\neg \varphi\}$ are inconsistent,

9.6. CONSTRUCTION OF A MODEL

then $\Gamma_{n} \vdash \neg \varphi$ and $\Gamma_{n} \vdash \varphi$, so Γ_{n} would be inconsistent contrary to induction hypothesis.

Every formula of $\operatorname{Frm}\left(\mathcal{L}^{\prime}\right)$ appears on the list used to define Γ^{*}. If $\varphi_{n} \notin \Gamma^{*}$, then that is because $\Gamma_{n} \cup\left\{\varphi_{n}\right\}$ was inconsistent. But that means that Γ^{*} is maximally consistent.

9.6 Construction of a Model

We will begin by showing how to construct a structure which satisfies a maximally consistent, saturated set of sentences in a language \mathcal{L} without $=$.

Definition 9.8 (Term model). Let Γ^{*} be a maximally consistent, saturated set of sentences in a language \mathcal{L}. The term model $\mathfrak{M}\left(\Gamma^{*}\right)$ of Γ^{*} is the structure defined as follows:

1. The domain $\left|\mathfrak{M}\left(\Gamma^{*}\right)\right|$ is the set of all closed terms of \mathcal{L}.
2. The interpretation of a constant symbol c is c itself: $c^{\mathfrak{M}\left(\Gamma^{*}\right)}=c$.
3. The function symbol f is assigned the function

$$
f^{\mathfrak{M}\left(\Gamma^{*}\right)}\left(t_{1}, \ldots, t_{n}\right)=f\left(\operatorname{Val}^{\mathfrak{M}\left(\Gamma^{*}\right)}\left(t_{1}\right), \ldots, \operatorname{Val}^{\mathfrak{M}\left(\Gamma^{*}\right)}\left(t_{1}\right)\right)
$$

4. If R is an n-place predicate symbol, then $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in R^{\mathfrak{M}\left(\Gamma^{*}\right)}$ iff $R\left(t_{1}, \ldots, t_{n}\right) \in$ Γ^{*}.

Lemma 9.9 (Truth Lemma). Suppose φ does not contain $=$. Then $\mathfrak{M}\left(\Gamma^{*}\right) \models \varphi$ iff $\varphi \in \Gamma^{*}$.

Proof. We prove both directions simultaneously, and by induction on φ.

1. $\varphi \equiv R\left(t_{1}, \ldots, t_{n}\right): \mathfrak{M}\left(\Gamma^{*}\right) \vDash R\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in R^{\mathfrak{M}\left(\Gamma^{*}\right)}$ (by the definition of satisfaction) iff $R\left(t_{1}, \ldots, t_{n}\right) \in \Gamma^{*}$ (the construction of $\mathfrak{M}\left(\Gamma^{*}\right)$.
2. $\varphi \equiv \neg \psi: \quad \mathfrak{M}\left(\Gamma^{*}\right) \models \varphi$ iff $\mathfrak{M}\left(\Gamma^{*}\right) \not \vDash \psi$ (by definition of satisfaction). By induction hypothesis, $\mathfrak{M}\left(\Gamma^{*}\right) \not \vDash \psi$ iff $\psi \notin \Gamma^{*}$. By Proposition 9.2(2), $\neg \psi \in \Gamma^{*}$ if $\psi \notin \Gamma^{*}$; and $\neg \psi \notin \Gamma^{*}$ if $\psi \in \Gamma^{*}$ since Γ^{*} is consistent.
3. $\varphi \equiv \psi \wedge \chi: \mathfrak{M}\left(\Gamma^{*}\right) \models \varphi$ iff we have both $\mathfrak{M}\left(\Gamma^{*}\right) \models \psi$ and $\mathfrak{M}\left(\Gamma^{*}\right) \models$ χ (by definition of satisfaction) iff both $\psi \in \Gamma^{*}$ and $\chi \in \Gamma^{*}$ (by the induction hypothesis). By Proposition 9.2(3), this is the case iff $(\psi \wedge \chi) \in$ Γ^{*}.
4. $\varphi \equiv \psi \vee \chi: \mathfrak{M}\left(\Gamma^{*}\right) \vDash \varphi$ iff at $\mathfrak{M}\left(\Gamma^{*}\right) \models \psi$ or $\mathfrak{M}\left(\Gamma^{*}\right) \vDash \chi$ (by definition of satisfaction) iff $\psi \in \Gamma^{*}$ or $\chi \in \Gamma^{*}$ (by induction hypothesis). This is the case iff $(\psi \vee \chi) \in \Gamma^{*}$ (by Proposition 9.2(4)).
5. $\varphi \equiv \psi \rightarrow \chi: \mathfrak{M}\left(\Gamma^{*}\right) \mid=\varphi$ iff $\mathfrak{M}\left(\Gamma^{*} \mid \vDash \psi\right.$ or $\mathfrak{M}\left(\Gamma^{*}\right) \vDash \chi$ (by definition of satisfaction) iff $\psi \notin \Gamma^{*}$ or $\chi \in \Gamma^{*}$ (by induction hypothesis). This is the case iff $(\psi \rightarrow \chi) \in \Gamma^{*}$ (by Proposition 9.2(5)).
6. $\varphi \equiv \forall x \psi(x)$: Suppose that $\mathfrak{M}\left(\Gamma^{*}\right) \models \varphi$, then for every variable assignment $s, \mathfrak{M}\left(\Gamma^{*}\right), s \vDash \psi(x)$. Suppose to the contrary that $\forall x \psi(x) \notin \Gamma^{*}$: Then by Proposition 9.2(2), $\neg \forall x \psi(x) \in \Gamma^{*}$. By saturation, $(\exists x \neg \psi(x) \rightarrow$ $\neg \psi(c)) \in \Gamma^{*}$ for some c, so by Proposition 9.2(1), $\neg \psi(c) \in \Gamma^{*}$. Since Γ^{*} is consistent, $\psi(c) \notin \Gamma^{*}$. By induction hypothesis, $\mathfrak{M}\left(\Gamma^{*}\right) \notin \psi(c)$. Therefore, if s^{\prime} is the variable assignment such that $s(x)=c$, then $\mathfrak{M}\left(\Gamma^{*}\right), s^{\prime} \not \vDash$ $\psi(x)$, contradicting the earlier result that $\mathfrak{M}\left(\Gamma^{*}\right), s \models \psi(x)$ for all s. Thus, we have $\varphi \in \Gamma^{*}$.
Conversely, suppose that $\forall x \psi(x) \in \Gamma^{*}$. By Theorems 7.27 and 8.27 together with Proposition 9.2(1), $\psi(t) \in \Gamma^{*}$ for every term $t \in\left|\mathfrak{M}\left(\Gamma^{*}\right)\right|$. By inductive hypothesis, $\mathfrak{M}\left(\Gamma^{*}\right) \models \psi(t)$ for every term $t \in\left|\mathfrak{M}\left(\Gamma^{*}\right)\right|$. Let s be the variable assigment with $s(x)=t$. Then $\mathfrak{M}\left(\Gamma^{*}\right), s \vDash \psi(x)$ for any such s, hence $\mathfrak{M}\left(\Gamma^{*}\right)=\varphi$.
7. $\varphi \equiv \exists x \psi(x)$: First suppose that $\mathfrak{M}\left(\Gamma^{*}\right) \models \varphi$. By the definition of satisfaction, for some variable assignment $s, \mathfrak{M}\left(\Gamma^{*}\right), s \models \psi(x)$. The value $s(x)$ is some term $t \in\left|\mathfrak{M}\left(\Gamma^{*}\right)\right|$. Thus, $\mathfrak{M}\left(\Gamma^{*}\right) \models \psi(t)$, and by our induction hypothesis, $\psi(t) \in \Gamma^{*}$. By Theorems 7.27 and 8.27 we have $\Gamma^{*} \vdash \exists x \psi(x)$. Then, by Proposition 9.2(1), we can conclude that $\varphi \in \Gamma^{*}$. Conversely, suppose that $\exists x \psi(x) \in \Gamma^{*}$. Because Γ^{*} is saturated, $(\exists x \psi(x) \rightarrow$ $\psi(c)) \in \Gamma^{*}$. By Propositions 7.24 and 8.24 together with Proposition 9.2(1), $\psi(c) \in \Gamma^{*}$. By inductive hypothesis, $\mathfrak{M}\left(\Gamma^{*}\right) \mid=\psi(c)$. Now consider the variable assignment with $s(x)=c^{\mathfrak{M}\left(\Gamma^{*}\right)}$. Then $\mathfrak{M}\left(\Gamma^{*}\right), s \models \psi(x)$. By definition of satisfaction, $\mathfrak{M}\left(\Gamma^{*}\right) \vDash \exists x \psi(x)$.

9.7 Identity

The construction of the term model given in the preceding section is enough to establish completeness for first-order logic for sets Γ that do not contain $=$. The term model satisfies every $\varphi \in \Gamma^{*}$ which does not contain $=$ (and hence all $\varphi \in \Gamma$). It does not work, however, if $=$ is present. The reason is that Γ^{*} then may contain a sentence $t=t^{\prime}$, but in the term model the value of any term is that term itself. Hence, if t and t^{\prime} are different terms, their values in the term model-i.e., t and t^{\prime}, respectively-are different, and so $t=t^{\prime}$ is false. We can fix this, however, using a construction known as "factoring."
Definition 9.10. Let Γ^{*} be a maximally consistent set of sentences in \mathcal{L}. We define the relation \approx on the set of closed terms of \mathcal{L} by

$$
t \approx t^{\prime} \quad \text { iff } \quad t=t^{\prime} \in \Gamma^{*}
$$

9.7. IDENTITY

Proposition 9.11. The relation \approx has the following properties:

1. \approx is reflexive.
2. \approx is symmetric.
3. \approx is transitive.
4. If $t \approx t^{\prime}, f$ is a function symbol, and $t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}$ are terms, then

$$
f\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_{n}\right) \approx f\left(t_{1}, \ldots, t_{i-1}, t^{\prime}, t_{i+1}, \ldots, t_{n}\right)
$$

5. If $t \approx t^{\prime}, R$ is a function symbol, and $t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}$ are terms, then

$$
\begin{aligned}
R\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_{n}\right) \in \Gamma^{*} & \text { iff } \\
& \quad R\left(t_{1}, \ldots, t_{i-1}, t^{\prime}, t_{i+1}, \ldots, t_{n}\right) \in \Gamma^{*} .
\end{aligned}
$$

Proof. Since Γ^{*} is maximally consistent, $t=t^{\prime} \in \Gamma^{*}$ iff $\Gamma^{*} \vdash t=t^{\prime}$. Thus it is enough to show the following:

1. $\Gamma^{*} \vdash t=t$ for all terms t.
2. If $\Gamma^{*} \vdash t=t^{\prime}$ then $\Gamma^{*} \vdash t^{\prime}=t$.
3. If $\Gamma^{*} \vdash t=t^{\prime}$ and $\Gamma^{*} \vdash t^{\prime}=t^{\prime \prime}$, then $\Gamma^{*} \vdash t=t^{\prime \prime}$.
4. If $\Gamma^{*} \vdash t=t^{\prime}$, then

$$
\Gamma^{*} \vdash f\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{i-1}, t^{\prime}, t_{i+1}, \ldots, t_{n}\right)
$$

for every n-place function symbol f and terms $t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}$.
5. If $\Gamma^{*} \vdash t=t^{\prime}$ and $\Gamma^{*} \vdash R\left(t_{1}, \ldots, t_{i-1}, t, t_{i+1}, \ldots, t_{n}\right)$, then $\Gamma^{*} \vdash R\left(t_{1}, \ldots, t_{i-1}, t^{\prime}, t_{i+1}, \ldots, t_{n}\right)$ for every n-place predicate symbol R and terms $t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}$.

Definition 9.12. Suppose Γ^{*} is a maximally consistent set in a language \mathcal{L}, t is a term, and \approx as in the previous definition. Then:

$$
[t]_{\approx=\left\{t^{\prime}: t^{\prime} \in \operatorname{Trm}(\mathcal{L}), t \approx t^{\prime}\right\}, ~}^{\text {and }}
$$

and $\operatorname{Trm}(\mathcal{L}) / \approx=\{[t] \approx: t \in \operatorname{Trm}(\mathcal{L})\}$.
Definition 9.13. Let $\mathfrak{M}=\mathfrak{M}\left(\Gamma^{*}\right)$ be the term model for Γ^{*}. Then \mathfrak{M} / \approx is the following structure:

1. $|\mathfrak{M} / \approx|=\operatorname{Trm}(\mathcal{L}) / \approx$.
2. $c^{\mathfrak{M} / \approx=[c] \approx}$

3. $\left\langle\left[t_{1}\right]_{\approx}, \ldots,\left[t_{n}\right]_{\approx}\right\rangle \in R^{\mathfrak{M} / \approx \operatorname{iff} \mathfrak{M}}=R\left(t_{1}, \ldots, t_{n}\right)$.
 referring to them as $[t]_{\approx}$, i.e., via representatives $t \in[t]_{\approx}$. We have to make sure that these definitions do not depend on the choice of these representatives, i.e., that for some other choices t^{\prime} which determine the same equivalence classes $\left([t]_{\left.\approx=\left[t^{\prime}\right] \approx\right) \text {, the definitions yield the same result. For instance, if } R \text { is a one- }}^{\text {a }}\right.$ place predicate symbol, the last clause of the definition says that $[t] \approx \in R^{\mathfrak{M} / \approx}$ iff $\mathfrak{M} \vDash R(t)$. If for some other term t^{\prime} with $t \approx t^{\prime}, \mathfrak{M} \not \equiv R(t)$, then the

 guarantees that this cannot happen.

Proposition 9.14. \mathfrak{M} / \approx is well defined, i.e., if $t_{1}, \ldots, t_{n}, t_{1}^{\prime}, \ldots, t_{n}^{\prime}$ are terms, and $t_{i} \approx t_{i}^{\prime}$ then

1. $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]_{\approx}=\left[f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)\right]_{\approx \text {, i.e., }} f\left(t_{1}, \ldots, t_{n}\right) \approx f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ and
2. $\mathfrak{M} \mid=R\left(t_{1}, \ldots, t_{n}\right)$ iff $\mathfrak{M} \mid=R\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$, i.e., $R\left(t_{1}, \ldots, t_{n}\right) \in \Gamma^{*}$ iff $R\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right) \in$ Γ^{*} 。

Proof. Follows from Proposition 9.11.

Lemma 9.15. $\mathfrak{M} / \approx \models \varphi$ iff $\varphi \in \Gamma^{*}$ for all sentences φ.

Proof. By induction on φ, just as in the proof of Lemma 9.9. The only case that needs additional attention is when $\varphi \equiv t=t^{\prime}$.

$$
\begin{aligned}
\mathfrak{M} / \approx \vDash t=t^{\prime} & \text { iff }[t]_{\approx=\left[t^{\prime}\right]} \quad \begin{array}{l}
\text { (by definition of } \mathfrak{M} / \approx) \\
\\
\\
\text { iff } t \approx t^{\prime}(\text { by definition of }[t] \approx) \\
\\
\\
\text { iff } t
\end{array}=t^{\prime} \in \Gamma^{*}(\text { by definition of } \approx) .
\end{aligned}
$$

Note that while $\mathfrak{M}\left(\Gamma^{*}\right)$ is always enumerable and infinite, \mathfrak{M} / \approx may be finite, since it may turn out that there are only finitely many classes $[t] \approx$. This is to be expected, since Γ may contain sentences which require any structure in which they are true to be finite. For instance, $\forall x \forall y x=y$ is a consistent sentence, but is satisfied only in structures with a domain that contains exactly one element.

9.8. THE COMPLETENESS THEOREM

9.8 The Completeness Theorem

Theorem 9.16 (Completeness Theorem). Let Γ be a set of sentences. If Γ is consistent, it is satisfiable.

Proof. Suppose Γ is consistent. By Lemma 9.7, there is a $\Gamma^{*} \supseteq \Gamma$ which is maximally consistent and saturated. If Γ does not contain $=$, then by Lemma 9.9, $\mathfrak{M}\left(\Gamma^{*}\right) \vDash \varphi$ iff $\varphi \in \Gamma^{*}$. From this it follows in particular that for all $\varphi \in \Gamma$, $\mathfrak{M}\left(\Gamma^{*}\right) \vDash \varphi$, so Γ is satisfiable. If Γ does contain $=$, then by Lemma 9.15, $\mathfrak{M} / \approx \vDash \varphi$ iff $\varphi \in \Gamma^{*}$ for all sentences φ. In particular, $\mathfrak{M} / \approx \vDash \varphi$ for all $\varphi \in \Gamma$, so Γ is satisfiable.

Corollary 9.17 (Completeness Theorem, Second Version). For all Γ and φ sentences: if $\Gamma \vDash \varphi$ then $\Gamma \vdash \varphi$.

Proof. Note that the Γ^{\prime} 's in Corollary 9.17 and Theorem 9.16 are universally quantified. To make sure we do not confuse ourselves, let us restate Theorem 9.16 using a different variable: for any set of sentences Δ, if Δ is consistent, it is satisfiable. By contraposition, if Δ is not satisfiable, then Δ is inconsistent. We will use this to prove the corollary.

Suppose that $\Gamma \vDash \varphi$. Then $\Gamma \cup\{\neg \varphi\}$ is unsatisfiable by Proposition 5.44. Taking $\Gamma \cup\{\neg \varphi\}$ as our Δ, the previous version of Theorem 9.16 gives us that $\Gamma \cup\{\neg \varphi\}$ is inconsistent. By Propositions 7.13 and $8.13, \Gamma \vdash \varphi$.

9.9 The Compactness Theorem

Definition 9.18. A set Γ of formulas is finitely satisfiable if and only if every finite $\Gamma_{0} \subseteq \Gamma$ is satisfiable.

Theorem 9.19 (Compactness Theorem). The following hold for any sentences Γ and φ :

1. $\Gamma \vDash \varphi$ iff there is a finite $\Gamma_{0} \subseteq \Gamma$ such that $\Gamma_{0} \vDash \varphi$.
2. Γ is satisfiable if and only if it is finitely satisfiable.

Proof. We prove (2). If Γ is satisfiable, then there is a structure \mathfrak{M} such that $\mathfrak{M} \vDash \varphi$ for all $\varphi \in \Gamma$. Of course, this \mathfrak{M} also satisfies every finite subset of Γ, so Γ is finitely satisfiable.

Now suppose that Γ is finitely satisfiable. Then every finite subset $\Gamma_{0} \subseteq \Gamma$ is satisfiable. By soundness, every finite subset is consistent. Then Γ itself must be consistent. For assume it is not, i.e., $\Gamma \vdash \perp$. But derivations are finite, and so already some finite subset $\Gamma_{0} \subseteq \Gamma$ must be inconsistent (cf. Propositions 7.15 and 8.15). But we just showed they are all consistent, a contradiction. Now by completeness, since Γ is consistent, it is satisfiable.

9.10 The Löwenheim-Skolem Theorem

Theorem 9.20. If Γ is consistent then it has a denumerable model, i.e., it is satisfiable in a structure whose domain is either finite or infinite but enumerable.

Proof. If Γ is consistent, the structure \mathfrak{M} delivered by the proof of the completeness theorem has a domain $|\mathfrak{M}|$ whose cardinality is bounded by that of the set of the terms of the language $\mathcal{L} . S$ o \mathfrak{M} is at most denumerable.

Theorem 9.21. If Γ is consistent set of sentences in the language of first-order logic without identity, then it has a denumerable model, i.e., it is satisfiable in a structure whose domain is infinite and enumerable.

Proof. If Γ is consistent and contains no sentences in which identity appears, then the structure \mathfrak{M} delivered by the proof of the completness theorem has a domain $|\mathfrak{M}|$ whose cardinality is identical to that of the set of the terms of the language \mathcal{L}. So \mathfrak{M} is denumerably infinite.

Problems

Problem 9.1. Complete the proof of Proposition 9.2.
Problem 9.2. Complete the proof of Lemma 9.9.
Problem 9.3. Complete the proof of Proposition 9.11.
Problem 9.4. Use Corollary 9.17 to prove Theorem 9.16, thus showing that the two formulations of the completeness theorem are equivalent.

Problem 9.5. In order for a derivation system to be complete, its rules must be strong enough to prove every unsatisfiable set inconsistent. Which of the rules of LK were necessary to prove completeness? Are any of these rules not used anywhere in the proof? In order to answer these questions, make a list or diagram that shows which of the rules of LK were used in which results that lead up to the proof of Theorem 9.16. Be sure to note any tacit uses of rules in these proofs.

Problem 9.6. Prove (1) of Theorem 9.19.

Chapter 10

Beyond First-order Logic

This chapter, adapted from Jeremy Avigad's logic notes, gives the briefest of glimpses into which other logical systems there are. It is intended as a chapter suggesting further topics for study in a course that does not cover them. Each one of the topics mentioned here will-hopefully-eventually receive its own part-level treatment in the Open Logic Project.

10.1 Overview

First-order logic is not the only system of logic of interest: there are many extensions and variations of first-order logic. A logic typically consists of the formal specification of a language, usually, but not always, a deductive system, and usually, but not always, an intended semantics. But the technical use of the term raises an obvious question: what do logics that are not first-order logic have to do with the word "logic," used in the intuitive or philosophical sense? All of the systems described below are designed to model reasoning of some form or another; can we say what makes them logical?

No easy answers are forthcoming. The word "logic" is used in different ways and in different contexts, and the notion, like that of "truth," has been analyzed from numerous philosophical stances. For example, one might take the goal of logical reasoning to be the determination of which statements are necessarily true, true a priori, true independent of the interpretation of the nonlogical terms, true by virtue of their form, or true by linguistic convention; and each of these conceptions requires a good deal of clarification. Even if one restricts one's attention to the kind of logic used in mathematical, there is little agreement as to its scope. For example, in the Principia Mathematica, Russell and Whitehead tried to develop mathematics on the basis of logic, in the logicist tradition begun by Frege. Their system of logic was a form of higher-type
logic similar to the one described below. In the end they were forced to introduce axioms which, by most standards, do not seem purely logical (notably, the axiom of infinity, and the axiom of reducibility), but one might nonetheless hold that some forms of higher-order reasoning should be accepted as logical. In contrast, Quine, whose ontology does not admit "propositions" as legitimate objects of discourse, argues that second-order and higher-order logic are really manifestations of set theory in sheep's clothing; in other words, systems involving quantification over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy day, and simply think of the systems below as formal idealizations of various kinds of reasoning, logical or otherwise.

10.2 Many-Sorted Logic

In first-order logic, variables and quantifiers range over a single domain. But it is often useful to have multiple (disjoint) domains: for example, you might want to have a domain of numbers, a domain of geometric objects, a domain of functions from numbers to numbers, a domain of abelian groups, and so on.

Many-sorted logic provides this kind of framework. One starts with a list of "sorts"-the "sort" of an object indicates the "domain" it is supposed to inhabit. One then has variables and quantifiers for each sort, and (usually) an identity predicate for each sort. Functions and relations are also "typed" by the sorts of objects they can take as arguments. Otherwise, one keeps the usual rules of first-order logic, with versions of the quantifier-rules repeated for each sort.

For example, to study international relations we might choose a language with two sorts of objects, French citizens and German citizens. We might have a unary relation, "drinks wine," for objects of the first sort; another unary relation, "eats wurst," for objects of the second sort; and a binary relation, "forms a multinational married couple," which takes two arguments, where the first argument is of the first sort and the second argument is of the second sort. If we use variables a, b, c to range over French citizens and x, y, z to range over German citizens, then

$$
\forall a \forall x[(\text { MarriedTo }(a, x) \rightarrow(\text { DrinksWine }(a) \vee \neg \text { EatsWurst }(x))]]
$$

asserts that if any French person is married to a German, either the French person drinks wine or the German doesn't eat wurst.

Many-sorted logic can be embedded in first-order logic in a natural way, by lumping all the objects of the many-sorted domains together into one firstorder domain, using unary predicate symbols to keep track of the sorts, and relativizing quantifiers. For example, the first-order language corresponding to the example above would have unary predicate symbolss "German" and

10.3. SECOND-ORDER LOGIC

"French," in addition to the other relations described, with the sort requirements erased. A sorted quantifier $\forall x \varphi$, where x is a variable of the German sort, translates to

$$
\forall x(\operatorname{German}(x) \rightarrow \varphi)
$$

We need to add axioms that insure that the sorts are separate-e.g., $\forall x \neg(\operatorname{German}(x) \wedge$ French (x))—as well as axioms that guarantee that "drinks wine" only holds of objects satisfying the predicate French (x), etc. With these conventions and axioms, it is not difficult to show that many-sorted sentences translate to firstorder sentences, and many-sorted derivations translate to first-order derivations. Also, many-sorted structures "translate" to corresponding first-order structures and vice-versa, so we also have a completeness theorem for manysorted logic.

10.3 Second-Order logic

The language of second-order logic allows one to quantify not just over a domain of individuals, but over relations on that domain as well. Given a firstorder language \mathcal{L}, for each k one adds variables R which range over k-ary relations, and allows quantification over those variables. If R is a variable for a k-ary relation, and t_{1}, \ldots, t_{k} are ordinary (first-order) terms, $R\left(t_{1}, \ldots, t_{k}\right)$ is an atomic formula. Otherwise, the set of formulas is defined just as in the case of first-order logic, with additional clauses for second-order quantification. Note that we only have the identity predicate for first-order terms: if R and S are relation variables of the same arity k, we can define $R=S$ to be an abbreviation for

$$
\forall x_{1} \ldots \forall x_{k}\left(R\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow S\left(x_{1}, \ldots, x_{k}\right)\right)
$$

The rules for second-order logic simply extend the quantifier rules to the new second order variables. Here, however, one has to be a little bit careful to explain how these variables interact with the predicate symbols of \mathcal{L}, and with formulas of \mathcal{L} more generally. At the bare minimum, relation variables count as terms, so one has inferences of the form

$$
\varphi(R) \vdash \exists R \varphi(R)
$$

But if \mathcal{L} is the language of arithmetic with a constant relation symbol $<$, one would also expect the following inference to be valid:

$$
x<y \vdash \exists R R(x, y)
$$

or for a given formula φ,

$$
\varphi\left(x_{1}, \ldots, x_{k}\right) \vdash \exists R R\left(x_{1}, \ldots, x_{k}\right)
$$

More generally, we might want to allow inferences of the form

$$
\varphi[\lambda \vec{x} \cdot \psi(\vec{x}) / R] \vdash \exists R \varphi
$$

where $\varphi[\lambda \vec{x} \cdot \psi(\vec{x}) / R]$ denotes the result of replacing every atomic formula of the form $R t_{1}, \ldots, t_{k}$ in φ by $\psi\left(t_{1}, \ldots, t_{k}\right)$. This last rule is equivalent to having a comprehension schema, i.e., an axiom of the form

$$
\exists R \forall x_{1}, \ldots, x_{k}\left(\varphi\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow R\left(x_{1}, \ldots, x_{k}\right)\right),
$$

one for each formula φ in the second-order language, in which R is not a free variable. (Exercise: show that if R is allowed to occur in φ, this schema is inconsistent!)

When logicians refer to the "axioms of second-order logic" they usually mean the minimal extension of first-order logic by second-order quantifier rules together with the comprehension schema. But it is often interesting to study weaker subsystems of these axioms and rules. For example, note that in its full generality the axiom schema of comprehension is impredicative: it allows one to assert the existence of a relation $R\left(x_{1}, \ldots, x_{k}\right)$ that is "defined" by a formula with second-order quantifiers; and these quantifiers range over the set of all such relations-a set which includes R itself! Around the turn of the twentieth century, a common reaction to Russell's paradox was to lay the blame on such definitions, and to avoid them in developing the foundations of mathematics. If one prohibits the use of second-order quantifiers in the formula φ, one has a predicative form of comprehension, which is somewhat weaker.

From the semantic point of view, one can think of a second-order structure as consisting of a first-order structure for the language, coupled with a set of relations on the domain over which the second-order quantifiers range (more precisely, for each k there is a set of relations of arity k). Of course, if comprehension is included in the proof system, then we have the added requirement that there are enough relations in the "second-order part" to satisfy the comprehension axioms-otherwise the proof system is not sound! One easy way to insure that there are enough relations around is to take the second-order part to consist of all the relations on the first-order part. Such a structure is called full, and, in a sense, is really the "intended structure" for the language. If we restrict our attention to full structures we have what is known as the full second-order semantics. In that case, specifying a structure boils down to specifying the first-order part, since the contents of the second-order part follow from that implicitly.

To summarize, there is some ambiguity when talking about second-order logic. In terms of the proof system, one might have in mind either

1. A "minimal" second-order proof system, together with some comprehension axioms.
2. The "standard" second-order proof system, with full comprehension.

In terms of the semantics, one might be interested in either

1. The "weak" semantics, where a structure consists of a first-order part, together with a second-order part big enough to satisfy the comprehension axioms.
2. The "standard" second-order semantics, in which one considers full structures only.

When logicians do not specify the proof system or the semantics they have in mind, they are usually refering to the second item on each list. The advantage to using this semantics is that, as we will see, it gives us categorical descriptions of many natural mathematical structures; at the same time, the proof system is quite strong, and sound for this semantics. The drawback is that the proof system is not complete for the semantics; in fact, no effectively given proof system is complete for the full second-order semantics. On the other hand, we will see that the proof system is complete for the weakened semantics; this implies that if a sentence is not provable, then there is some structure, not necessarily the full one, in which it is false.

The language of second-order logic is quite rich. One can identify unary relations with subsets of the domain, and so in particular you can quantify over these sets; for example, one can express induction for the natural numbers with a single axiom

$$
\forall R\left(\left(R(\mathrm{o}) \wedge \forall x\left(R(x) \rightarrow R\left(x^{\prime}\right)\right)\right) \rightarrow \forall x R(x)\right)
$$

If one takes the language of arithmetic to have symbols $0,1,+, \times$ and $<$, one can add the following axioms to describe their behavior:

1. $\forall x \neg x^{\prime}=0$
2. $\forall x \forall y(s(x)=s(y) \rightarrow x=y)$
3. $\forall x(x+0)=x$
4. $\forall x \forall y\left(x+y^{\prime}\right)=(x+y)^{\prime}$
5. $\forall x(x \times 0)=0$
6. $\forall x \forall y\left(x \times y^{\prime}\right)=((x \times y)+x)$
7. $\forall x \forall y\left(x<y \leftrightarrow \exists z y=\left(x+z^{\prime}\right)\right)$

It is not difficult to show that these axioms, together with the axiom of induction above, provide a categorical description of the structure \mathfrak{N}, the standard model of arithmetic, provided we are using the full second-order semantics. Given any structure \mathfrak{A} in which these axioms are true, define a function f from
\mathbb{N} to the domain of \mathfrak{A} using ordinary recursion on \mathbb{N}, so that $f(0)=o^{\mathfrak{A}}$ and $f(x+1)=/^{\mathfrak{A}}(f(x))$. Using ordinary induction on \mathbb{N} and the fact that axioms (1) and (2) hold in \mathfrak{A}, we see that f is injective. To see that f is surjective, let P be the set of elements of $|\mathfrak{A}|$ that are in the range of f. Since \mathfrak{A} is full, P is in the second-order domain. By the construction of f, we know that $o^{\mathfrak{A}}$ is in P, and that P is closed under $\boldsymbol{I}^{\mathfrak{A}}$. The fact that the induction axiom holds in \mathfrak{A} (in particular, for P) guarantees that P is equal to the entire first-order domain of \mathfrak{A}. This shows that f is a bijection. Showing that f is a homomorphism is no more difficult, using ordinary induction on \mathbb{N} repeatedly.

In set-theoretic terms, a function is just a special kind of relation; for example, a unary function f can be identified with a binary relation R satisfying $\forall x \exists y R(x, y)$. As a result, one can quantify over functions too. Using the full semantics, one can then define the class of infinite structures to be the class of structures \mathfrak{A} for which there is an injective function from the domain of \mathfrak{A} to a proper subset of itself:

$$
\exists f(\forall x \forall y(f(x)=f(y) \rightarrow x=y) \wedge \exists y \forall x f(x) \neq y)
$$

The negation of this sentence then defines the class of finite structures.
In addition, one can define the class of well-orderings, by adding the following to the definition of a linear ordering:

$$
\forall P(\exists x P(x) \rightarrow \exists x(P(x) \wedge \forall y(y<x \rightarrow \neg P(y))))
$$

This asserts that every nonempty set has a least element, modulo the identification of "set" with "one-place relation". For another example, one can express the notion of connectedness for graphs, by saying that there is no nontrivial separation of the vertices into disconnected parts:

$$
\neg \exists A(\exists x A(x) \wedge \exists y \neg A(y) \wedge \forall w \forall z((A(w) \wedge \neg A(z)) \rightarrow \neg R(w, z)))
$$

For yet another example, you might try as an exercise to define the class of finite structures whose domain has even size. More strikingly, one can provide a categorical description of the real numbers as a complete ordered field containing the rationals.

In short, second-order logic is much more expressive than first-order logic. That's the good news; now for the bad. We have already mentioned that there is no effective proof system that is complete for the full second-order semantics. For better or for worse, many of the properties of first-order logic are absent, including compactness and the Löwenheim-Skolem theorems.

On the other hand, if one is willing to give up the full second-order semantics in terms of the weaker one, then the minimal second-order proof system is complete for this semantics. In other words, if we read \vdash as "proves in the minimal system" and \vDash as "logically implies in the weaker semantics", we can show that whenever $\Gamma \vDash \varphi$ then $\Gamma \vdash \varphi$. If one wants to include specific
comprehension axioms in the proof system, one has to restrict the semantics to second-order structures that satisfy these axioms: for example, if Δ consists of a set of comprehension axioms (possibly all of them), we have that if $\Gamma \cup \Delta \vDash \varphi$, then $\Gamma \cup \Delta \vdash \varphi$. In particular, if φ is not provable using the comprehension axioms we are considering, then there is a model of $\neg \varphi$ in which these comprehension axioms nonetheless hold.

The easiest way to see that the completeness theorem holds for the weaker semantics is to think of second-order logic as a many-sorted logic, as follows. One sort is interpreted as the ordinary "first-order" domain, and then for each k we have a domain of "relations of arity k." We take the language to have built-in relation symbols " $\operatorname{true} e_{k}\left(R, x_{1}, \ldots, x_{k}\right)$ " which is meant to assert that R holds of x_{1}, \ldots, x_{k}, where R is a variable of the sort " k-ary relation" and x_{1}, \ldots, x_{k} are objects of the first-order sort.

With this identification, the weak second-order semantics is essentially the usual semantics for many-sorted logic; and we have already observed that many-sorted logic can be embedded in first-order logic. Modulo the translations back and forth, then, the weaker conception of second-order logic is really a form of first-order logic in disguise, where the domain contains both "objects" and "relations" governed by the appropriate axioms.

10.4 Higher-Order logic

Passing from first-order logic to second-order logic enabled us to talk about sets of objects in the first-order domain, within the formal language. Why stop there? For example, third-order logic should enable us to deal with sets of sets of objects, or perhaps even sets which contain both objects and sets of objects. And fourth-order logic will let us talk about sets of objects of that kind. As you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often formulated in terms of functions instead of relations. (Modulo the natural identifications, this difference is inessential.) Given some basic "sorts" A, B, C, \ldots (which we will now call "types"), we can create new one by stipulating

If σ and τ are finite types then so is $\sigma \rightarrow \tau$.
Think of types as syntactic "labels," which classify the objects we want in our domain; $\sigma \rightarrow \tau$ describes those objects that are functions which take objects of type σ to objects of type τ. For example, we might want to have a type Ω of truth values, "true" and "false," and a type \mathbb{N} of natural numbers. In that case, you can think of objects of type $\mathbb{N} \rightarrow \Omega$ as unary relations, or subsets of \mathbb{N}; objects of type $\mathbb{N} \rightarrow \mathbb{N}$ are functions from natural numers to natural numbers; and objects of type $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ are "functionals," that is, higher-type functions that take functions to numbers.

As in the case of second-order logic, one can think of higher-order logic as a kind of many-sorted logic, where there is a sort for each type of object we want to consider. But it is usually clearer just to define the syntax of highertype logic from the ground up. For example, we can define a set of finite types inductively, as follows:

1. \mathbb{N} is a finite type.
2. If σ and τ are finite types, then so is $\sigma \rightarrow \tau$.
3. If σ and τ are finite types, so is $\sigma \times \tau$.

Intuitively, \mathbb{N} denotes the type of the natural numbers, $\sigma \rightarrow \tau$ denotes the type of functions from σ to τ, and $\sigma \times \tau$ denotes the type of pairs of objects, one from σ and one from τ. We can then define a set of terms inductively, as follows:

1. For each type σ, there is a stock of variables x, y, z, \ldots of type σ
2. o is a term of type \mathbb{N}
3. S (successor) is a term of type $\mathbb{N} \rightarrow \mathbb{N}$
4. If s is a term of type σ, and t is a term of type $\mathbb{N} \rightarrow(\sigma \rightarrow \sigma)$, then $R_{s t}$ is a term of type $\mathbb{N} \rightarrow \sigma$
5. If s is a term of type $\tau \rightarrow \sigma$ and t is a term of type τ, then $s(t)$ is a term of type σ
6. If s is a term of type σ and x is a variable of type τ, then λx.s is a term of type $\tau \rightarrow \sigma$.
7. If s is a term of type σ and t is a term of type τ, then $\langle s, t\rangle$ is a term of type $\sigma \times \tau$.
8. If s is a term of type $\sigma \times \tau$ then $p_{1}(s)$ is a term of type σ and $p_{2}(s)$ is a term of type τ.

Intuitively, $R_{s t}$ denotes the function defined recursively by

$$
\begin{aligned}
R_{s t}(0) & =s \\
R_{s t}(x+1) & =t\left(x, R_{s t}(x)\right),
\end{aligned}
$$

$\langle s, t\rangle$ denotes the pair whose first component is s and whose second component is t, and $p_{1}(s)$ and $p_{2}(s)$ denote the first and second elements ("projections") of s. Finally, λx. s denotes the function f defined by

$$
f(x)=s
$$

10.5. INTUITIONISTIC LOGIC

for any x of type σ; so item (6) gives us a form of comprehension, enabling us to define functions using terms. Formulas are built up from identity predicate statements $s=t$ between terms of the same type, the usual propositional connectives, and higher-type quantification. One can then take the axioms of the system to be the basic equations governing the terms defined above, together with the usual rules of logic with quantifiers and identity predicate.

If one augments the finite type system with a type Ω of truth values, one has to include axioms which govern its use as well. In fact, if one is clever, one can get rid of complex formulas entirely, replacing them with terms of type Ω ! The proof system can then be modified accordingly. The result is essentially the simple theory of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different versions of highertype semantics that one might want to use. In the full version, variables of type $\sigma \rightarrow \tau$ range over the set of all functions from the objects of type σ to objects of type τ. As you might expect, this semantics is too strong to admit a complete, effective proof system. But one can consider a weaker semantics, in which a structure consists of sets of elements T_{τ} for each type τ, together with appropriate operations for application, projection, etc. If the details are carried out correctly, one can obtain completeness theorems for the kinds of proof systems described above.

Higher-type logic is attractive because it provides a framework in which we can embed a good deal of mathematics in a natural way: starting with \mathbb{N}, one can define real numbers, continuous functions, and so on. It is also particularly attractive in the context of intuitionistic logic, since the types have clear "constructive" intepretations. In fact, one can develop constructive versions of higher-type semantics (based on intuitionistic, rather than classical logic) that clarify these constructive interpretations quite nicely, and are, in many ways, more interesting than the classical counterparts.

10.5 Intuitionistic logic

In constrast to second-order and higher-order logic, intuitionistic first-order logic represents a restriction of the classical version, intended to model a more "constructive" kind of reasoning. The following examples may serve to illustrate some of the underlying motivations.

Suppose someone came up to you one day and announced that they had determined a natural number x, with the property that if x is prime, the Riemann hypothesis is true, and if x is composite, the Riemann hypothesis is false. Great news! Whether the Riemann hypothesis is true or not is one of the big open questions of mathematics, and here they seem to have reduced the problem to one of calculation, that is, to the determination of whether a specific number is prime or not.

What is the magic value of x ? They describe it as follows: x is the natural number that is equal to 7 if the Riemann hypothesis is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point of view, the description above does in fact determine a unique value of x; but what you really want is a value of x that is given explicitly.

To take another, perhaps less contrived example, consider the following question. We know that it is possible to raise an irrational number to a rational power, and get a rational result. For example, $\sqrt{2}^{2}=2$. What is less clear is whether or not it is possible to raise an irrational number to an irrational power, and get a rational result. The following theorem answers this in the affirmative:

Theorem 10.1. There are irrational numbers a and b such that a^{b} is rational.
Proof. Consider $\sqrt{2}^{\sqrt{2}}$. If this is rational, we are done: we can let $a=b=\sqrt{2}$. Otherwise, it is irrational. Then we have

$$
\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} \cdot \sqrt{2}}=\sqrt{2}^{2}=2
$$

which is certainly rational. So, in this case, let a be $\sqrt{2}^{\sqrt{2}}$, and let b be $\sqrt{2}$.
Does this constitute a valid proof? Most mathematicians feel that it does. But again, there is something a little bit unsatisfying here: we have proved the existence of a pair of real numbers with a certain property, without being able to say which pair of numbers it is. It is possible to prove the same result, but in such a way that the pair a, b is given in the proof: take $a=\sqrt{3}$ and $b=\log _{3} 4$. Then

$$
a^{b}=\sqrt{3}^{\log _{3} 4}=3^{1 / 2 \cdot \log _{3} 4}=\left(3^{\log _{3} 4}\right)^{1 / 2}=4^{1 / 2}=2
$$

since $3^{\log _{3} x}=x$.
Intuitionistic logic is designed to model a kind of reasoning where moves like the one in the first proof are disallowed. Proving the existence of an x satisfying $\varphi(x)$ means that you have to give a specific x, and a proof that it satisfies φ, like in the second proof. Proving that φ or ψ holds requires that you can prove one or the other.

Formally speaking, intuitionistic first-order logic is what you get if you omit restrict a proof system for first-order logic in a certain way. Similarly, there are intuitionistic versions of second-order or higher-order logic. From the mathematical point of view, these are just formal deductive systems, but, as already noted, they are intended to model a kind of mathematical reasoning. One can take this to be the kind of reasoning that is justified on a certain philosophical view of mathematics (such as Brouwer's intuitionism); one can take it to be a kind of mathematical reasoning which is more "concrete" and satisfying (along the lines of Bishop's constructivism); and one can argue

10.5. INTUITIONISTIC LOGIC

about whether or not the formal description captures the informal motivation. But whatever philosophical positions we may hold, we can study intuitionistic logic as a formally presented logic; and for whatever reasons, many mathematical logicians find it interesting to do so.

There is an informal constructive interpretation of the intuitionist connectives, usually known as the Brouwer-Heyting-Kolmogorov interpretation. It runs as follows: a proof of $\varphi \wedge \psi$ consists of a proof of φ paired with a proof of ψ; a proof of $\varphi \vee \psi$ consists of either a proof of φ, or a proof of ψ, where we have explicit information as to which is the case; a proof of $\varphi \rightarrow \psi$ consists of a procedure, which transforms a proof of φ to a proof of ψ; a proof of $\forall x \varphi(x)$ consists of a procedure which returns a proof of $\varphi(x)$ for any value of x; and a proof of $\exists x \varphi(x)$ consists of a value of x, together with a proof that this value satisfies φ. One can describe the interpretation in computational terms known as the "Curry-Howard isomorphism" or the "formulas-as-types paradigm": think of a formula as specifying a certain kind of data type, and proofs as computational objects of these data types that enable us to see that the corresponding formula is true.

Intuitionistic logic is often thought of as being classical logic "minus" the law of the excluded middle. This following theorem makes this more precise.

Theorem 10.2. Intuitionistically, the following axiom schemata are equivalent:

1. $(\varphi \rightarrow \perp) \rightarrow \neg \varphi$.
2. $\varphi \vee \neg \varphi$
3. $\neg \neg \varphi \rightarrow \varphi$

Obtaining instances of one schema from either of the others is a good exercise in intuitionistic logic.

The first deductive systems for intuitionistic propositional logic, put forth as formalizations of Brouwer's intuitionism, are due, independently, to Kolmogorov, Glivenko, and Heyting. The first formalization of intuitionistic firstorder logic (and parts of intuitionist mathematics) is due to Heyting. Though a number of classically valid schemata are not intuitionistically valid, many are.

The double-negation translation describes an important relationship between classical and intuitionist logic. It is defined inductively follows (think of φ^{N}
as the "intuitionist" translation of the classical formula φ):

$$
\begin{aligned}
\varphi^{N} & \equiv \neg \neg \varphi \quad \text { for atomic formulas } \varphi \\
(\varphi \wedge \psi)^{N} & \equiv\left(\varphi^{N} \wedge \psi^{N}\right) \\
(\varphi \vee \psi)^{N} & \equiv \neg \neg\left(\varphi^{N} \vee \psi^{N}\right) \\
(\varphi \rightarrow \psi)^{N} & \equiv\left(\varphi^{N} \rightarrow \psi^{N}\right) \\
(\forall x \varphi)^{N} & \equiv \forall x \varphi^{N} \\
(\exists x \varphi)^{N} & \equiv \neg \neg \exists x \varphi^{N}
\end{aligned}
$$

Kolmogorov and Glivenko had versions of this translation for propositional logic; for predicate logic, it is due to Gödel and Gentzen, independently. We have

Theorem 10.3. 1. $\varphi \leftrightarrow \varphi^{N}$ is provable classically
2. If φ is provable classically, then φ^{N} is provable intuitionistically.

We can now envision the following dialogue. Classical mathematician: "I've proved φ !" Intuitionist mathematician: "Your proof isn't valid. What you've really proved is φ^{N}." Classical mathematician: "Fine by me!" As far as the classical mathematician is concerned, the intuitionist is just splitting hairs, since the two are equivalent. But the intuitionist insists there is a difference.

Note that the above translation concerns pure logic only; it does not address the question as to what the appropriate nonlogical axioms are for classical and intuitionistic mathematics, or what the relationship is between them. But the following slight extension of the theorem above provides some useful information:

Theorem 10.4. If Γ proves φ classically, Γ^{N} proves φ^{N} intuitionistically.
In other words, if φ is provable from some hypotheses classically, then φ^{N} is provable from their double-negation translations.

To show that a sentence or propositional formula is intuitionistically valid, all you have to do is provide a proof. But how can you show that it is not valid? For that purpose, we need a semantics that is sound, and preferrably complete. A semantics due to Kripke nicely fits the bill.

We can play the same game we did for classical logic: define the semantics, and prove soundness and completeness. It is worthwhile, however, to note the following distinction. In the case of classical logic, the semantics was the "obvious" one, in a sense implicit in the meaning of the connectives. Though one can provide some intuitive motivation for Kripke semantics, the latter does not offer the same feeling of inevitability. In addition, the notion of a classical structure is a natural mathematical one, so we can either take the notion of a structure to be a tool for studying classical first-order logic, or take
classical first-order logic to be a tool for studying mathematical structures. In contrast, Kripke structures can only be viewed as a logical construct; they don't seem to have independent mathematical interest.

A Kripke structure for a propositional langauge consists of a partial order $\operatorname{Mod}(P)$ with a least element, and an "monotone" assignment of propositional variables to the elements of $\operatorname{Mod}(P)$. The intuition is that the elements of $\operatorname{Mod}(P)$ represent "worlds," or "states of knowledge"; an element $p \geq q$ represents a "possible future state" of q; and the propositional variables assigned to p are the propositions that are known to be true in state p. The forcing relation $\mathfrak{P}, p \Vdash \varphi$ then extends this relationship to arbitrary formulas in the language; read $\mathfrak{P}, p \Vdash \varphi$ as " φ is true in state p. . The relationship is defined inductively, as follows:

1. $\mathfrak{P}, p \Vdash p_{i}$ iff p_{i} is one of the propositional variables assigned to p.
2. $\mathfrak{P}, p \nVdash \perp$.
3. $\mathfrak{P}, p \Vdash(\varphi \wedge \psi)$ iff $\mathfrak{P}, p \Vdash \varphi$ and $\mathfrak{P}, p \Vdash \psi$.
4. $\mathfrak{P}, p \Vdash(\varphi \vee \psi)$ iff $\mathfrak{P}, p \Vdash \varphi$ or $\mathfrak{P}, p \Vdash \psi$.
5. $\mathfrak{P}, p \Vdash(\varphi \rightarrow \psi)$ iff, whenever $q \geq p$ and $\mathfrak{P}, q \Vdash \varphi$, then $\mathfrak{P}, q \Vdash \psi$.

It is a good exercise to try to show that $\neg(p \wedge q) \rightarrow(\neg p \vee \neg q)$ is not intuitionistically valid, by cooking up a Kripke structure that provides a counterexample.

10.6 Modal Logics

Consider the following example of a conditional sentence:
If Jeremy is alone in that room, then he is drunk and naked and dancing on the chairs.

This is an example of a conditional assertion that may be materially true but nonetheless misleading, since it seems to suggest that there is a stronger link between the antecedent and conclusion other than simply that either the antecedent is false or the consequent true. That is, the wording suggests that the claim is not only true in this particular world (where it may be trivially true, because Jeremy is not alone in the room), but that, moreover, the conclusion would have been true had the antecedent been true. In other words, one can take the assertion to mean that the claim is true not just in this world, but in any "possible" world; or that it is necessarily true, as opposed to just true in this particular world.

Modal logic was designed to make sense of this kind of necessity. One obtains modal propositional logic from ordinary propositional logic by adding a
box operator; which is to say, if φ is a formula, so is $\square \varphi$. Intuitively, $\square \varphi$ asserts that φ is necessarily true, or true in any possible world. $\diamond \varphi$ is usually taken to be an abbreviation for $\neg \square \neg \varphi$, and can be read as asserting that φ is possibly true. Of course, modality can be added to predicate logic as well.

Kripke structures can be used to provide a semantics for modal logic; in fact, Kripke first designed this semantics with modal logic in mind. Rather than restricting to partial orders, more generally one has a set of "possible worlds," P, and a binary "accessibility" relation $R(x, y)$ between worlds. Intuitively, $R(p, q)$ asserts that the world q is compatible with p; i.e., if we are "in" world p, we have to entertain the possibility that the world could have been like q.

Modal logic is sometimes called an "intensional" logic, as opposed to an "extensional" one. The intended semantics for an extensional logic, like classical logic, will only refer to a single world, the "actual" one; while the semantics for an "intensional" logic relies on a more elaborate ontology. In addition to structureing necessity, one can use modality to structure other linguistic constructions, reinterpreting \square and \diamond according to the application. For example:

1. In provability logic, $\square \varphi$ is read " φ is provable" and $\diamond \varphi$ is read " φ is consistent."
2. In epistemic logic, one might read $\square \varphi$ as "I know φ " or "I believe φ."
3. In temporal logic, one can read $\square \varphi$ as " φ is always true" and $\diamond \varphi$ as " φ is sometimes true."

One would like to augment logic with rules and axioms dealing with modality. For example, the system S4 consists of the ordinary axioms and rules of propositional logic, together with the following axioms:

$$
\begin{aligned}
& \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \\
& \square \varphi \rightarrow \varphi \\
& \square \varphi \rightarrow \square \square \varphi
\end{aligned}
$$

as well as a rule, "from φ conclude $\square \varphi$. . $\mathbf{S} 5$ adds the following axiom:

$$
\diamond \varphi \rightarrow \square \diamond \varphi
$$

Variations of these axioms may be suitable for different applications; for example, S 5 is usually taken to characterize the notion of logical necessity. And the nice thing is that one can usually find a semantics for which the proof system is sound and complete by restricting the accessibility relation in the Kripke structures in natural ways. For example, $\mathbf{S} 4$ corresponds to the class of Kripke structures in which the accessibility relation is reflexive and transitive. S5 corresponds to the class of Kripke structures in which the accessibility
relation is universal, which is to say that every world is accessible from every other; so $\square \varphi$ holds if and only if φ holds in every world.

10.7 Other Logics

As you may have gathered by now, it is not hard to design a new logic. You too can create your own a syntax, make up a deductive system, and fashion a semantics to go with it. You might have to be a bit clever if you want the proof system to be complete for the semantics, and it might take some effort to convince the world at large that your logic is truly interesting. But, in return, you can enjoy hours of good, clean fun, exploring your logic's mathematical and computational properties.

Recent decades have witnessed a veritable explosion of formal logics. Fuzzy logic is designed to model reasoning about vague properties. Probabilistic logic is designed to model reasoning about uncertainty. Default logics and nonmonotonic logics are designed to model defeasible forms of reasoning, which is to say, "reasonable" inferences that can later be overturned in the face of new information. There are epistemic logics, designed to model reasoning about knowledge; causal logics, designed to model reasoning about causal relationships; and even "deontic" logics, which are designed to model reasoning about moral and ethical obligations. Depending on whether the primary motivation for introducing these systems is philosophical, mathematical, or computational, you may find such creatures studies under the rubric of mathematical logic, philosophical logic, artificial intelligence, cognitive science, or elsewhere.

The list goes on and on, and the possibilities seem endless. We may never attain Leibniz' dream of reducing all of human reason to calculation-but that can't stop us from trying.

Problems

Part III

Model Theory

Material on model theory is incomplete and experimental. It is currently simply an adaptation of Aldo Antonelli's notes on model theory, less those topics covered in the part on first-order logic (theories, completeness, compactness). It requires much more introduction, motivation, and explanation, as well as exercises, to be useful for a textbook. Andy Arana is at planning to work on this part specifically (issue \#65).

Chapter 11

Basics of Model Theory

11.1 Reducts and Expansions

Often it is useful or necessary to compare languages which have symbols in common, as well as structures for these languages. The most comon case is when all the symbols in a language \mathcal{L} are also part of a language \mathcal{L}^{\prime}, i.e., $\mathcal{L} \subseteq \mathcal{L}^{\prime}$. An \mathcal{L}-structure \mathfrak{M} can then always be expanded to an \mathcal{L}^{\prime}-structure by adding interpretations of the additional symbols while leaving the interpretations of the common symbols the same. On the other hand, from an \mathcal{L}^{\prime}-structure \mathfrak{M}^{\prime} we can obtain an \mathcal{L}-structure simpy by "forgetting" the interpretations of the symbols that do not occur in \mathcal{L}.

Definition 11.1. Suppose $\mathcal{L} \subseteq \mathcal{L}^{\prime}, \mathfrak{M}$ is an \mathcal{L}-structure and \mathfrak{M}^{\prime} is an \mathcal{L}^{\prime} structure. \mathfrak{M} is the reduct of \mathfrak{M}^{\prime} to \mathcal{L}, and \mathfrak{M}^{\prime} is an expansion of \mathfrak{M} to \mathcal{L}^{\prime} iff

1. $|\mathfrak{M}|=\left|\mathfrak{M}^{\prime}\right|$
2. For every constant symbol $c \in \mathcal{L}, c^{\mathfrak{M}}=c^{\mathfrak{M}^{\prime}}$.
3. For every function symbol $f \in \mathcal{L}, f^{\mathfrak{M}}=f^{\mathfrak{M}^{\prime}}$.
4. For every predicate symbol $P \in \mathcal{L}, P^{\mathfrak{M}}=P^{\mathfrak{M}^{\prime}}$.

Proposition 11.2. If an \mathcal{L}-structure \mathfrak{M} is a reduct of an \mathcal{L}^{\prime}-structure \mathfrak{M}^{\prime}, then for all \mathcal{L}-sentences φ,

$$
\mathfrak{M} \equiv \varphi \text { iff } \mathfrak{M}^{\prime} \models \varphi .
$$

Proof. Exercise.
Definition 11.3. When we have an \mathcal{L}-structure \mathfrak{M}, and $\mathcal{L}^{\prime}=\mathcal{L} \cup\{P\}$ is the expansion of \mathcal{L} obtained by adding a single n-place predicate symbol P, and $R \subseteq|\mathfrak{M}|^{n}$ is an n-place relation, then we write (\mathfrak{M}, R) for the expansion \mathfrak{M}^{\prime} of \mathfrak{M} with $P^{\mathfrak{M}^{\prime}}=R$.

11.2. SUBSTRUCTURES

11.2 Substructures

The domain of a structure \mathfrak{M} may be a subset of another \mathfrak{M}^{\prime}. But we should obviously only consider \mathfrak{M} a "part" of \mathfrak{M}^{\prime} if not only $|\mathfrak{M}| \subseteq\left|\mathfrak{M}^{\prime}\right|$, but \mathfrak{M} and \mathfrak{M}^{\prime} "agree" in how they interpret the symbols of the language at least on the shared part $|\mathfrak{M}|$.

Definition 11.4. Given structures \mathfrak{M} and \mathfrak{M}^{\prime} for the same language \mathcal{L}, we say that \mathfrak{M} is a substructure of \mathfrak{M}^{\prime}, and \mathfrak{M}^{\prime} an extension of \mathfrak{M}, written $\mathfrak{M} \subseteq \mathfrak{M}^{\prime}$, iff

1. $|\mathfrak{M}| \subseteq\left|\mathfrak{M}^{\prime}\right|$,
2. For each constant $c \in \mathcal{L}, c^{\mathfrak{M}}=c^{\mathfrak{M}^{\prime}}$;
3. For each n-place predicate symbol $f \in \mathcal{L} f^{\mathfrak{M}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathfrak{M}^{\prime}}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in|\mathfrak{M}|$.
4. For each n-place predicate symbol $R \in \mathcal{L},\left\langle a_{1}, \ldots, a_{n}\right\rangle \in R^{\mathfrak{M}}$ iff $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in$ $R^{\mathfrak{M}^{\prime}}$ for all $a_{1}, \ldots, a_{n} \in|\mathfrak{M}|$.

Remark 1. If the language contains no constant or function symbols, then any $N \subseteq|\mathfrak{M}|$ determines a substructure \mathfrak{N} of \mathfrak{M} with domain $|\mathfrak{N}|=N$ by putting $R^{\mathfrak{N}}=R^{\mathfrak{M}} \cap N^{n}$.

11.3 Overspill

Theorem 11.5. If a set Γ of sentences has arbitrarily large finite models, then it has an infinite model.

Proof. Expand the language of Γ by adding countably many new constants \mathcal{c}_{0}, c_{1}, \ldots and consider the set $\Gamma \cup\left\{c_{i} \neq c_{j}: i \neq j\right\}$. To say that Γ has arbitrarily large finite models means that for every $m>0$ there is $n \geq m$ such that Γ has a model of cardinality n. This implies that $\Gamma \cup\left\{c_{i} \neq c_{j}: i \neq j\right\}$ is finitely satisfiable. By compactness, $\Gamma \cup\left\{c_{i} \neq c_{j}: i \neq j\right\}$ has a model \mathfrak{M} whose domain must be infinite, since it satisfies all inequalities $c_{i} \neq c_{j}$.

Proposition 11.6. There is no sentence φ of any first-order language that is true in a structure \mathfrak{M} if and only if the domain $|\mathfrak{M}|$ of the structure is infinite.

Proof. If there were such a φ, its negation $\neg \varphi$ would be true in all and only the finite structures, and it would therefore have arbitrarily large finite models but it would lack an infinite model, contradicting Theorem 11.5.

11.4 Isomorphic Structures

Definition 11.7. Given two structures \mathfrak{M} and \mathfrak{M}^{\prime} for the same language \mathcal{L}, we say that \mathfrak{M} is elementarily equivalent to \mathfrak{M}^{\prime}, written $\mathfrak{M} \equiv \mathfrak{M}^{\prime}$, if and only if for every sentence φ of $\mathcal{L}, \mathfrak{M} \vDash \varphi$ iff $\mathfrak{M}^{\prime} \models \varphi$.

Definition 11.8. Given two structures \mathfrak{M} and \mathfrak{M}^{\prime} for the same language \mathcal{L}, we say that \mathfrak{M} is isomorphic to \mathfrak{M}^{\prime}, written $\mathfrak{M} \simeq \mathfrak{M}^{\prime}$, if and only if there is a function $h:|\mathfrak{M}| \rightarrow\left|\mathfrak{M}^{\prime}\right|$ such that:

1. h is injective: if $h(x)=h(y)$ then $x=y$;
2. h is surjective: for every $y \in\left|\mathfrak{M}^{\prime}\right|$ there is $x \in|\mathfrak{M}|$ such that $h(x)=y$;
3. for every constant $c: h\left(c^{\mathfrak{M}}\right)=c^{\mathfrak{M}^{\prime}}$;
4. for every n-place predicate symbol $P:\left\langle a_{1}, \ldots, a_{n}\right\rangle \in P^{\mathfrak{M}}$ if and only if $\left\langle h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right\rangle \in P^{\mathfrak{M}^{\prime}} ;$
5. for every n-place function symbol f :

$$
h\left(f^{\mathfrak{M}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathfrak{M}^{\prime}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)
$$

Theorem 11.9. If $\mathfrak{M} \simeq \mathfrak{M}^{\prime}$ then $\mathfrak{M} \equiv \mathfrak{M}^{\prime}$.
Proof. Let h be an isomorphism of \mathfrak{M} onto \mathfrak{M}^{\prime}. For any assignment $s, h \circ s$ is the composition of h and s, i.e., the assignment in \mathfrak{M}^{\prime} such that $(h \circ s)(x)=$ $h(s(x))$. By induction on t and φ one can prove the stronger claims:

$$
\begin{aligned}
& h\left(\operatorname{Val}_{s}^{\mathfrak{M}}(t)\right)=\operatorname{Val}_{h \circ s}^{\mathfrak{M}^{\prime}}(t) ; \\
& \mathfrak{M}, s \models \varphi \text { if and only if } \mathfrak{M}^{\prime}, h \circ s \models \varphi .
\end{aligned}
$$

Definition 11.10. An automorphism of a structure \mathfrak{M} is an isomorphism of \mathfrak{M} onto itself.

11.5 The Theory of a Structure

Definition 11.11. Given a structure \mathfrak{M}, the theory of \mathfrak{M} is the set $\operatorname{Th}(\mathfrak{M})$ of sentences that are true in \mathfrak{M}, i.e., $\operatorname{Th}(\mathfrak{M})=\{\varphi: \mathfrak{M} \vDash \varphi\}$.

We also use the term "theory" informally to refer to sets of sentences having an intended interpretation, whether deductively closed or not.

Proposition 11.12. For any $\mathfrak{M}, \operatorname{Th}(\mathfrak{M})$ is maximally consistent. Hence, if $\mathfrak{N} \vDash \varphi$ for every $\varphi \in \operatorname{Th}(\mathfrak{M})$, then $\mathfrak{M} \equiv \mathfrak{N}$.

Proof. $\operatorname{Th}(\mathfrak{M})$ is consistent because satisfiable (by definition). It is maximal since for any sentence φ either φ is true in \mathfrak{M} or its negation is. It immediately follows that $\operatorname{Th}(\mathfrak{M}) \subseteq \operatorname{Th}(\mathfrak{N})$ and $\operatorname{Th}(\mathfrak{N}) \subseteq \operatorname{Th}(\mathfrak{M})$, whence $\mathfrak{M} \equiv \mathfrak{N}$.

Remark 2. Consider $\mathfrak{R}=\langle\mathbb{R},\langle \rangle$, the structure whose domain is the set \mathbb{R} of the real numbers, in the language comprising only a 2-place predicate symbol interpreted as the $<$ relation over the reals. Clearly \mathfrak{R} is non-enumerable; however, since $\operatorname{Th}(\Re)$ is obviously consistent, by the Löwenheim-Skolem theorem it has an enumerable model, say \mathfrak{S}, and by Proposition $11.12, \mathfrak{R} \equiv \mathfrak{S}$. Moreover, since \mathfrak{R} and \mathfrak{S} are not isomorphic, this shows that the converse of Theorem 11.9 fails in general.

11.6 Partial Isomorphisms

Definition 11.13. Given two structures \mathfrak{M} and \mathfrak{N}, a partial isomorphism from \mathfrak{M} to \mathfrak{N} is a finite partial function p taking arguments in $|\mathfrak{M}|$ and returning values in $|\mathfrak{N}|$, which satisfies the isomorphism conditions from Definition 11.8 on its domain:

1. p is injective;
2. for every constant symbol c : if $p\left(c^{\mathfrak{M}}\right)$ is defined, then $p\left(c^{\mathfrak{M}}\right)=c^{\mathfrak{N}}$;
3. for every n-place predicate symbol P : if a_{1}, \ldots, a_{n} are in the domain of p, then $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in P^{\mathfrak{M}}$ if and only if $\left\langle p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right\rangle \in P^{\mathfrak{N}}$;
4. for every n-place function symbol f : if a_{1}, \ldots, a_{n} are in the domain of p, then $p\left(f^{\mathfrak{M}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathfrak{N}}\left(p\left(a_{1}\right)\right.$, dots, $\left.p\left(a_{n}\right)\right)$.
That p is finite means that $\operatorname{dom}(p)$ is finite.
Notice that the empty function \varnothing is always a partial isomorphism between any two structures.
Definition 11.14. Two structures \mathfrak{M} and \mathfrak{N}, are partially isomorphic, written $\mathfrak{M} \simeq_{p} \mathfrak{N}$, if and only if there is a non-empty set I of partial isomorphisms between \mathfrak{M} and \mathfrak{N} satisfying the back-and-forth property:
5. (Forth) For every $p \in I$ and $a \in|\mathfrak{M}|$ there is $q \in I$ such that $p \subseteq q$ and a is in the domain of q;
6. (Back) For every $p \in I$ and $b \in|\mathfrak{N}|$ there is $q \in I$ such that $p \subseteq q$ and b is in the range of q.

Theorem 11.15. If $\mathfrak{M} \simeq_{p} \mathfrak{N}$ and \mathfrak{M} and \mathfrak{N} are enumerable, then $\mathfrak{M} \simeq \mathfrak{N}$.
Proof. Since \mathfrak{M} and \mathfrak{N} are enumerable, let $|\mathfrak{M}|=\left\{a_{0}, a_{1}, \ldots\right\}$ and $|\mathfrak{N}|=\left\{b_{0}, b_{1}, \ldots\right\}$. Starting with an arbitrary $p_{0} \in I$, we define an increasing sequence of partial isomorphisms $p_{0} \subseteq p_{1} \subseteq p_{2} \subseteq \cdots$ as follows:

1. if $n+1$ is odd, say $n=2 r$, then using the Forth property find a $p_{n+1} \in I$ such that $p_{n} \subseteq p_{n+1}$ and a_{r} is in the domain of p_{n+1};
2. if $n+1$ is even, say $n+1=2 r$, then using the Back property find a $p_{n+1} \in I$ such that $p_{n} \subseteq p_{n+1}$ and b_{r} is in the range of p_{n+1}.

If we now put:

$$
p=\bigcup_{n \geq 0} p_{n}
$$

we have that p is a an isomorphism between \mathfrak{M} and \mathfrak{N}.
Theorem 11.16. Suppose \mathfrak{M} and \mathfrak{N} are structures for a purely relational language (a language containing only predicate symbols, and no function symbols or constants). Then if $\mathfrak{M} \simeq_{p} \mathfrak{N}$, also $\mathfrak{M} \equiv \mathfrak{N}$.

Proof. By induction on formulas, one shows that if a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are such that there is a partial isomorphism p mapping each a_{i} to b_{i} and $s_{1}\left(x_{i}\right)=a_{i}$ and $s_{2}\left(x_{i}\right)=b_{i}$ (for $i=1, \ldots, n$), then $\mathfrak{M}, s_{1} \models \varphi$ if and only if $\mathfrak{N}, s_{2} \models \varphi$. The case for $n=0$ gives $\mathfrak{M} \equiv \mathfrak{N}$.

Remark 3. If function symbols are present, the previous result is still true, but one needs to consider the isomorphism induced by p between the substructure of \mathfrak{M} generated by a_{1}, \ldots, a_{n} and the substructure of \mathfrak{N} generated by b_{1}, \ldots, b_{n}.

The previous result can be "broken down" into stages by establishing a connection between the number of nested quantifiers in a formula and how many times the relevant partial isomorphisms can be extended.

Definition 11.17. For any formula φ, the quantifier rank of φ, denoted by $\operatorname{qr}(\varphi) \in$ \mathbb{N}, is recursively defined as the highest number of nested quantifiers in φ. Two structures \mathfrak{M} and \mathfrak{N} are n-equivalent, written $\mathfrak{M} \equiv_{n} \mathfrak{N}$, if they agree on all sentences of quantifier rank less than or equal to n.

Proposition 11.18. Let \mathcal{L} be a finite purely relational language, i.e., a language containing finitely many predicate symbols and constant symbols, and no function symbols. Then for each $n \in \mathbb{N}$ there are only finitely many first-order sentences in the language \mathcal{L} that have quantifier rank no greater than n, up to logical equivalence.

Proof. By induction on n.
Definition 11.19. Given a structure \mathfrak{M}, let $|\mathfrak{M}|^{<\omega}$ be the set of all finite sequences over $|\mathfrak{M}|$. We use $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$ to range over finite sequences of elements. If $\mathbf{a} \in|\mathfrak{M}|^{<\omega}$ and $a \in|\mathfrak{M}|$, then a a represents the concatenation of a with a.

Definition 11.20. Given structures \mathfrak{M} and \mathfrak{N}, we define relations $I_{n} \subseteq|\mathfrak{M}|^{<\omega} \times$ $|\mathfrak{N}|^{<\omega}$ between sequences of equal length, by recursion on n as follows:

11.7. DENSE LINEAR ORDERS

1. $I_{0}(\mathbf{a}, \mathbf{b})$ if and only if \mathbf{a} and \mathbf{b} satisfy the same atomic formulas in \mathfrak{M} and \mathfrak{N}; i.e., if $s_{1}\left(x_{i}\right)=a_{i}$ and $s_{2}\left(x_{i}\right)=b_{i}$ and φ is atomic with all variables among x_{1}, \ldots, x_{n}, then $\mathfrak{M}, s_{1}=\varphi$ if and only if $\mathfrak{N}, s_{2} \models \varphi$.
2. $I_{n+1}(\mathbf{a}, \mathbf{b})$ if and only if for every $a \in A$ there is a $b \in B$ such that $I_{n}(\mathbf{a} a, \mathbf{b} b)$, and vice-versa.

Definition 11.21. Write $\mathfrak{M} \approx_{n} \mathfrak{N}$ if $I_{n}(\varnothing, \varnothing)$ holds of \mathfrak{M} and \mathfrak{N} (where \varnothing is the empty sequence).

Theorem 11.22. Let \mathcal{L} be a purely relational language. Then $I_{n}(\mathbf{a}, \mathbf{b})$ implies that for every φ such that $\operatorname{qr}(\varphi) \leq n$, we have $\mathfrak{M}, \mathbf{a}=\varphi$ if and only if $\mathfrak{N}, \mathbf{b} \models \varphi$ (where again a satisfies φ if any s such that $s\left(x_{i}\right)=a_{i}$ satisfies φ). Moreover, if \mathcal{L} is finite, the converse also holds.

Proof. The proof that $I_{n}(\mathbf{a}, \mathbf{b})$ implies that \mathbf{a} and \mathbf{b} satisfy the same formulas of quantifier rank no greater than n is by an easy induction on φ. For the converse we proceed by induction on n, using Proposition 11.18 , which ensures that for each n there are at most finitely many non-equivalent formulas of that quantifier rank.

For $n=0$ the hypothesis that \mathbf{a} and \mathbf{b} satisfy the same quantifier-free formulas gives that they satisfy the same atomic ones, so that $I_{0}(\mathbf{a}, \mathbf{b})$.

For the $n+1$ case, suppose that \mathbf{a} and \mathbf{b} satisfy the same formulas of quantifier rank no greater than $n+1$; in order to show that $I_{n+1}(\mathbf{a}, \mathbf{b})$ suffices to show that for each $a \in|\mathfrak{M}|$ there is a $b \in|\mathfrak{N}|$ such that $I_{n}(\mathbf{a} a, \mathbf{b} b)$, and by the inductive hypothesis again suffices to show that for each $a \in|\mathfrak{M}|$ there is a $b \in|\mathfrak{N}|$ such that $\mathbf{a} a$ and $\mathbf{b} b$ satisfy the same formulas of quantifier rank no greater than n.

Given $a \in|\mathfrak{M}|$, let τ_{n}^{a} be set of formulas $\psi(x, \mathbf{y})$ of rank no greater than n satisfied by a a in \mathfrak{M}; τ_{n}^{a} is finite, so we can assume it is a single first-order formula. It follows that a satisfies $\exists x \tau_{n}^{a}(x, y)$, which has quantifier rank no greater than $n+1$. By hypothesis \mathbf{b} satisfies the same formula in \mathfrak{N}, so that there is a $b \in|\mathfrak{N}|$ such that $\mathbf{b} b$ satisfies τ_{n}^{a}; in particular, $\mathbf{b} b$ satisfies the same formulas of quantifier rank no greater than n as $\mathbf{a} a$. Similarly one shows that for every $b \in|\mathfrak{N}|$ there is $a \in|\mathfrak{M}|$ such that $\mathbf{a} a$ and $\mathbf{b} b$ satisfy the same formulas of quantifier rank no greater than n, which completes the proof.

Corollary 11.23. If \mathfrak{M} and \mathfrak{N} are purely relational structures in a finite language, then $\mathfrak{M} \approx_{n} \mathfrak{N}$ if and only if $\mathfrak{M} \equiv_{n} \mathfrak{N}$. In particular $\mathfrak{M} \equiv \mathfrak{N}$ if and only if for each n, $\mathfrak{M} \approx_{n} \mathfrak{N}$.

11.7 Dense Linear Orders

Definition 11.24. A dense linear ordering without endpoints is a structure \mathfrak{M} for the language containg a single 2-place predicate symbol $<$ satisfying the following sentences:

1. $\forall x x<x$;
2. $\forall x \forall y \forall z(x<y \rightarrow(y<z \rightarrow x<z))$;
3. $\forall x \forall y(x<y \vee x=y \vee y<x)$;
4. $\forall x \exists y x<y$;
5. $\forall x \exists y y<x$;
6. $\forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))$.

Theorem 11.25. Any two enumerable dense linear orderings without endpoints are isomorphic.

Proof. Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be enumerable dense linear orderings without endpoints, with $<_{1}=<^{\mathfrak{M}_{1}}$ and $<_{2}=<^{\mathfrak{M}_{2}}$, and let \mathcal{I} be the set of all partial isomorphisms between them. \mathcal{I} is not empty since at least $\varnothing \in \mathcal{I}$. We show that \mathcal{I} satisfies the Back-and-Forth property. Then $\mathfrak{M}_{1} \simeq_{p} \mathfrak{M}_{2}$, and the theorem follows by Theorem 11.15.

To show \mathcal{I} satisifes the Forth property, let $p \in \mathcal{I}$ and let $p\left(a_{i}\right)=b_{i}$ for $i=1$, \ldots, n, and without loss of generality suppose $a_{1}<_{1} a_{2}<_{1} \cdots<_{1} a_{n}$. Given $a \in\left|\mathfrak{M}_{1}\right|$, find $b \in\left|\mathfrak{M}_{2}\right|$ as follows:

1. if $a<2 a_{1}$ let $b \in\left|\mathfrak{M}_{2}\right|$ be such that $b<_{2} b_{1}$;
2. if $a_{n}<_{1} a$ let $b \in\left|\mathfrak{M}_{2}\right|$ be such that $b_{n}<_{2} b$;
3. if $a_{i}<_{1} a<_{1} a_{i+1}$ for some i, then let $b \in\left|\mathfrak{M}_{2}\right|$ be such that $b_{i}<_{2} b<_{2}$ b_{i+1}.

It is always possible to find a b with the desired property since \mathfrak{M}_{2} is a dense linear ordering without endpoints. Define $q=p \cup\{\langle a, b\rangle\}$ so that $q \in \mathcal{I}$ is the desired extension of p. This establishes the Forth property. The Back property is similar. So $\mathfrak{M}_{1} \simeq_{p} \mathfrak{M}_{2}$; by Theorem 11.15, $\mathfrak{M}_{1} \simeq \mathfrak{M}_{2}$.

Remark 4. Let \mathfrak{S} be any enumerable dense linear ordering without endpoints. Then (by Theorem 11.25) $\mathfrak{S} \simeq \mathfrak{Q}$, where $\mathfrak{Q}=(\mathbb{Q},<)$ is the enumerable dense linear ordering having the set \mathbb{Q} of the rational numbers as its domain. Now consider again the structure $\Re=(\mathbb{R},<)$ from Remark 2 . We saw that there is an enumerable structure \mathfrak{S} such that $\mathfrak{R} \equiv \mathfrak{S}$. But \mathfrak{S} is an enumerable dense linear ordering without endpoints, and so it is isomorphic (and hence elementarily equivalent) to the structure \mathfrak{Q}. By transitivity of elementary equivalence, $\mathfrak{R} \equiv \mathfrak{Q}$. (We could have shown this directly by establishing $\mathfrak{R} \simeq_{p} \mathfrak{Q}$ by the same back-and-forth argument.)

11.8 Non-standard Models of Arithmetic

Definition 11.26. Let \mathcal{L}_{N} be the language of arithmetic, comprising a constant symbol o, a 2-place predicate symbol <, a 1-place function symbol 1 , and 2place function symbols + and \times.

1. The standard model of arithmetic is the structure \mathfrak{N} for \mathcal{L}_{N} having $\mathbb{N}=$ $\{0,1,2, \ldots\}$ and interpreting o as $0,<$ as the less-than relation over \mathbb{N}, and $1,+$ and \times as successor, addition, and multiplication over \mathbb{N}, respectively.
2. True arithmetic is the theory $\operatorname{Th}(\mathfrak{N})$.

When working in \mathcal{L}_{N} we abbreviate each term of the form $o^{\prime \ldots \prime}$, with n applications of the successor function to 0 , as \bar{n}.

Definition 11.27. A structure \mathfrak{M} for \mathcal{L}_{N} is standard if and only $\mathfrak{N} \simeq \mathfrak{M}$.
Theorem 11.28. There are non-standard enumerable models of true arithmetic.
Proof. Expand \mathcal{L}_{N} by introducing a new constant symbol c, and consider the theory

$$
\operatorname{Th}(\mathfrak{N}) \cup\{\bar{n}<c: n \in \mathbb{N}\}
$$

The theory is finitely satisfiable, so by compactness it has a model \mathfrak{M}, which can be taken to be enumerable by the Downward Löwenheim-Skolem theorem. Where $|\mathfrak{M}|$ is the domain of \mathfrak{M}, let \mathfrak{M} interpret the non-logical constants of \mathcal{L} as $\mathbf{z}=o^{\mathfrak{M}} \in|\mathfrak{M}|, \prec=<^{\mathfrak{M}} \subseteq M^{2}, *=\mathfrak{M}^{\mathfrak{M}}:|\mathfrak{M}| \rightarrow|\mathfrak{M}|$, and $\oplus=+\mathfrak{M}, \otimes=x^{\mathfrak{M}}:|\mathfrak{M}|^{2} \rightarrow|\mathfrak{M}|$. For each $x \in|\mathfrak{M}|$, we write x^{*} for the element of $|\mathfrak{M}|$ obtained from x by application of $*$.

Now, if h were an isomorphism of \mathfrak{N} and \mathfrak{M}, there would be $n \in \mathbb{N}$ such that $h(n)=c^{\mathfrak{M}}$. So let s be any assignment in \mathfrak{N} such that $s(x)=n$. Then $\mathfrak{N}, s \models \bar{n}=x$; by the proof of Theorem 11.9, also $\mathfrak{M}, h \circ s \models \bar{n}=x$, so that $c^{\mathfrak{M}}=\mathbf{z}^{* \cdots *}$ (with $*$ iterated n times). But this is impossible since by assumption $\mathfrak{M} \models \bar{n}<c$ and \prec is irreflexive. So \mathfrak{M} is non-standard.

Since the non-standard model \mathfrak{M} from Theorem 11.28 is elementarily equivalent to the standard one, a number of properties of \mathfrak{M} can be derived. The rest of this section is devoted to such a task, which will allow us to obtain a precise characterization of enumerable non-standard models of $\operatorname{Th}(\mathfrak{N})$.

1. No member of $|\mathfrak{M}|$ is \prec-less than itself: the sentence $\forall x \neg x<x$ is true in \mathfrak{N} and therefore in \mathfrak{M}.
2. By a similar reasoning we obtain that \prec is a linear ordering of $|\mathfrak{M}|$, i.e., a total, irreflexive, transitive relation on $|\mathfrak{M}|$.
3. The element \mathbf{z} is the \prec-least element of $|\mathfrak{M}|$.
4. Any member of $|\mathfrak{M}|$ is \prec-less than its $*$-successor and x^{*} is the \prec-least member of $|\mathfrak{M}|$ greater than x.
5. \mathfrak{M} contains an initial segment (of \prec) isomorphic to $\mathbb{N}: \mathbf{z}, \mathbf{z}^{*}, \mathbf{z}^{* *}, \ldots$, which we call the standard part of $|\mathfrak{M}|$. Any other member of $|\mathfrak{M}|$ is non-standard. There must be non-standard members of $|\mathfrak{M}|$, or else the function h from the proof of Theorem 11.28 is an isomorphism. We use n, m, \ldots as variables ranging on this standard part of \mathfrak{M}.
6. Every non-standard element is greater than any standard one; this is because for every $n \in \mathbb{N}$,

$$
\mathfrak{N} \vDash \forall z(\neg(z=0 \vee \cdots \vee z=\bar{n}) \rightarrow \bar{n}<z)
$$

so if $z \in|\mathfrak{M}|$ is different from all the standard elements, it must be greater than all of them.
7. Any member of $|\mathfrak{M}|$ other than \mathbf{z} is the $*$-successor of some unique element of $|\mathfrak{M}|$, denoted by ${ }^{*} x$. If $x=y^{*}$ then both x and y are standard if one of them is (and both non-standard if one of them is).
8. Define an equivalence relation \approx over $|\mathfrak{M}|$ by saying that $x \approx y$ if and only if for some standard n, either $x \oplus n=y$ or $y \oplus n=x$. In other words, $x \approx y$ if and only if x and y are a finite distance apart. If n and m are standard then $n \approx m$. Define the block of x to be the equivalence class $[x]=\{y: x \approx y\}$.
9. Suppose that $x \prec y$ where $x \not \approx y$. Since $\mathfrak{N} \vDash \forall x \forall y\left(x<y \rightarrow\left(x^{\prime}<\right.\right.$ $y \vee x^{\prime}=y$)), either $x^{*} \prec y$ or $x^{*}=y$. The latter is impossible because it implies $x \approx y$, so $x \prec y$. Similarly, if $x \prec y$ and $x \not \approx y$, then $x \prec{ }^{*} y$. Therefore if $x \prec y$ and $x \not \approx y$, then every $w \approx x$ is \prec-less than every $v \approx y$. Accordingly, each block $[x]$ forms a doubly infinite chain

$$
\cdots \prec{ }^{* *} x \prec{ }^{*} x \prec x \prec x^{*} \prec x^{* *} \prec \cdots
$$

which is referred to as a Z-chain because it has the order type of the integers.
10. The \prec ordering can be lifted up to the blocks: if $x \prec y$ then the block of x is less than the block of y. A block is non-standard if it contains a non-standard element. The standard block is the least block.
11. There is no least non-standard block: if y is non-standard then there is a $x \prec y$ where x is also non-standard and $x \not \approx y$. Proof: in the standard model \mathfrak{N}, every number is divisible by two, possibly with remainder one, i.e., $\mathfrak{N} \mid=\forall y \forall x\left(y=x+x \vee y=x+x+o^{\prime}\right)$. By elementary equivalence, for every $y \in|\mathfrak{M}|$ there is $x \in|\mathfrak{M}|$ such that either $x \oplus x=y$
or $x \oplus x \oplus \mathbf{z}^{*}=y$. If x were standard, then so would be y; so x is nonstandard. Furthermore, x and y belong to different blocks, i.e, $x \not \approx y$. To see this, assume they did belong to the same block, i.e., $x \oplus n=y$ for some standard n. If $y=x \oplus x$, then $x \oplus n=x \oplus x$, whence $x=n$ by the cancellation law for addition (which holds in \mathfrak{N} and therefore in \mathfrak{M} as well), and x would be standard after all. Similarly if $y=x \oplus x \oplus \mathbf{z}^{*}$.
12. By a similar argument, there is no greatest block.
13. The ordering of the blocks is dense: if $[x]$ is less than $[y]$ (where $x \not \approx y$), then there is a block $[z]$ distinct from both that is between them. Suppose $x \prec y$. As before, $x \oplus y$ is divisible by two (possibly with remainder) so there is a $u \in|\mathfrak{M}|$ such that either $x \oplus y=u \oplus u$ or $x \oplus y=u \oplus u \oplus \mathbf{z}^{*}$. The element u is the average of x and y, and so is between them. Assume $x \oplus y=u \oplus u$ (the other case being similar): if $u \approx x$ then for some standard n :

$$
x \oplus y=x \oplus n \oplus x \oplus n
$$

so $y=x \oplus n \oplus n$ and we would have $x \approx y$, against assumption. We conclude that $u \not \approx x$. A similar argument gives $u \not \approx y$.

The non-standard blocks are therefore ordered like the rationals: they form an enumerable linear ordering without endpoints. It follows that for any two enumerable non-standard models \mathfrak{M}_{1} and \mathfrak{M}_{2} of true arithmetic, their reducts to the language containing $<$ and $=$ only are isomorphic. Indeed, an isomorphism h can be defined as follows: the standard parts of \mathfrak{M}_{1} and \mathfrak{M}_{2} are isomorphic to the standard model \mathfrak{N} and hence to each other. The blocks making up the non-standard part are themselves ordered like the rationals and therefore by Theorem 11.25 are isomorphic; an isomorphism of the blocks can be extended to an isomorphism within the blocks by matching up arbitrary elements in each, and then taking the image of the successor of x in \mathfrak{M}_{1} to be the successor of the image of x in \mathfrak{M}_{2}. Note that it does not follow that \mathfrak{M}_{1} and \mathfrak{M}_{2} are isomorphic in the full language of arithmetic (indeed, isomorphism is always relative to a signature), as there are non-isomorphic ways to define addition and multiplication over $\left|\mathfrak{M}_{1}\right|$ and $\left|\mathfrak{M}_{2}\right|$. (This also follows from a famous theorem due to Vaught that the number of countable models of a complete theory cannot be 2.)

Problems

Problem 11.1. Prove Proposition 11.2.
Problem 11.2. Carry out the proof of Theorem 11.9 in detail. Make sure to take note at each step of how each of the five properties characterizing isomorphisms is used.

Problem 11.3. Show that for any structure \mathfrak{M}, if X is a definable subset of \mathfrak{M}, and h is an automorphism of \mathfrak{M}, then $X=\{h(x): x \in X\}$ (i.e., X is fixed under h).

Problem 11.4. Show in detail that p as defined in Theorem 11.15 is in fact an isomorphism.

Problem 11.5. Complete the proof of Theorem 11.25 by verifying that \mathcal{I} satisfies the Back property.

Problem 11.6. A relation R over a set X is well-founded if and only if there are no infinite descending chains in R, i.e., if there are no $x_{0}, x_{1}, x_{2}, \ldots$ in X such that $\ldots x_{2} R x_{1} R x_{0}$. Assuming Zermelo-Fraenkel set theory $Z F$ is consistent, show that there are non-well-founded models of $Z F$, i.e., models \mathfrak{M} such that $\ldots x_{2} \in x_{1} \in x_{0}$.

Problem 11.7. Show that there can be no greatest block in a non-standard model of arithmetic.

Problem 11.8. Let \mathcal{L} be the first-order language containing $<$ as its only predicate symbol (besides $=$), and let $\mathfrak{N}=(\mathbb{N},<)$. All the finite or cofinite subsets of \mathfrak{N} are definable. Show that these are the only definable subsets of \mathfrak{N}.
(Hint: First, let $\operatorname{prc}(x, y)$ be the \mathcal{L}-formula abbreviating " x is the immediate predecessor of y :"

$$
x<y \wedge \neg \exists z(x<z \wedge z<y)
$$

Now, to any definable subset of \mathfrak{N} there corresponds a formula $\varphi(x)$ in \mathcal{L}. For any such φ, consider the sentence θ :

$$
\exists x \forall y \forall z((x<y \wedge x<z \wedge \operatorname{prc}(y, z) \wedge \varphi(y)) \rightarrow \varphi(z))
$$

Show that $\mathfrak{N} \models \theta$ if and only if the subset of \mathfrak{N} defined by φ is either finite or cofinite.

Now, let \mathfrak{M} be a non-standard model elementarily equivalent to \mathfrak{N}. If $a \in$ $|\mathfrak{M}|$ is non-standard, let $b, c \in|\mathfrak{M}|$ be greater than a, and let b be the immediate predecessor of c. Then there is an automorphism h of $|\mathfrak{M}|$ such that $h(b)=c$ (why?). Therefore, if b satisfies φ, so does c (why?). It follows that θ is true in \mathfrak{M}, and hence also in \mathfrak{N}. But this implies that the subset of \mathfrak{N} defined by φ is either finite or co-finite.

Chapter 12

The Interpolation Theorem

12.1 Introduction

The interpolation theorem is the following result: Suppose $\vDash \varphi \rightarrow \psi$. Then there is a sentence χ such that $\vDash \varphi \rightarrow \chi$ and $\vDash \chi \rightarrow \psi$. Moreover, every constant symbol, function symbol, and predicate symbol (other than $=$) in χ occurs both in φ and ψ. The sentence χ is called an interpolant of φ and ψ.

The interpolation theorem is interesting in its own right, but its main importance lies in the fact that it can be used to prove results about definability in a theory, and the conditions under which combining two consistent theories results in a consistent theory. The first result is known as the Beth definability theorem; the second, Robinson's joint consistency theorem.

12.2 Separation of Sentences

A bit of groundwork is needed before we can proceed with the proof of the interpolation theorem. An interpolant for φ and ψ is a sentence χ such that $\varphi \vDash \chi$ and $\chi \vDash \psi$. By contraposition, the latter is true iff $\neg \psi \vDash \neg \chi$. A sentence χ with this property is said to separate φ and $\neg \psi$. So finding an interpolant for φ and ψ amounts to finding a sentence that separates φ and $\neg \psi$. As so often, it will be useful to consider a generalization: a sentence that separates two sets of sentences.

Definition 12.1. A sentence χ separates sets of sentences Γ and Δ if and only if $\Gamma \vDash \chi$ and $\Delta \vDash \neg \chi$. If no such sentence exists, then Γ and Δ are inseparable.

The inclusion relations between the classes of models of Γ, Δ and χ are represented below:

Lemma 12.2. Suppose \mathcal{L}_{0} is the language containing every constant symbol, function symbol and predicate symbol (other than \doteq) that occurs in both Γ and Δ, and let

Figure 12.1: χ separates Γ and Δ
\mathcal{L}_{0}^{\prime} be obtained by the addition of infinitely many new constant symbols c_{n} for $n \geq 0$. Then if Γ and Δ are inseparable in \mathcal{L}_{0}, they are also inseparable in \mathcal{L}_{0}^{\prime}.

Proof. We proceed indirectly: suppose by way of contradiction that Γ and Δ are separated in \mathcal{L}_{0}^{\prime}. Then $\Gamma \vDash \chi[c / x]$ and $\Delta \vDash \neg \chi[c / x]$ for some $\chi \in \mathcal{L}_{0}$ (where c is a new constant symbol-the case where χ contains more than one such new constant symbol is similar). By compactness, there are finite subsets Γ_{0} of Γ and Δ_{0} of Δ such that $\Gamma_{0} \vDash \chi[c / x]$ and $\Delta_{0} \vDash \neg \chi[c / x]$. Let γ be the conjunction of all formulas in Γ_{0} and δ the conjunction of all formulas in Δ_{0}. Then

$$
\gamma \vDash \chi[c / x], \quad \delta \vDash \neg \chi[c / x] .
$$

From the former, by Generalization, we have $\gamma \vDash \forall x \chi$, and from the latter by contraposition, $\chi[c / x] \vDash \neg \delta$, whence also $\forall x \chi \vDash \neg \delta$. Contraposition again gives $\delta \vDash \neg \forall x \chi$. By monotony,

$$
\Gamma \vDash \forall x \chi, \quad \Delta \vDash \neg \forall x \chi,
$$

so that $\forall x \chi$ separates Γ and Δ in \mathcal{L}_{0}.
Lemma 12.3. Suppose that $\Gamma \cup\{\exists x \sigma\}$ and Δ are inseparable, and c is a new constant symbol not in Γ, Δ, or σ. Then $\Gamma \cup\{\exists x \sigma, \sigma[c / x]\}$ and Δ are also inseparable.

Proof. Suppose for contradiction that χ separates $\Gamma \cup\{\exists x \sigma, \sigma[c / x]\}$ and Δ, while at the same time $\Gamma \cup\{\exists x \sigma\}$ and Δ are inseparable. We distinguish two cases:

1. c does not occur in χ : in this case $\Gamma \cup\{\exists x \sigma, \neg \chi\}$ is satisfiable (otherwise χ separates $\Gamma \cup\{\exists x \sigma\}$ and Δ). It remains so if $\sigma[c / x]$ is added, so χ does not separate $\Gamma \cup\{\exists x \sigma, \sigma[c / x]\}$ and Δ after all.
2. c does occur in χ so that χ has the form $\chi[c / x]$. Then we have that

$$
\Gamma \cup\{\exists x \sigma, \sigma[c / x]\} \vDash \chi[c / x]
$$

12.3. CRAIG'S INTERPOLATION THEOREM

whence $\Gamma, \exists x \sigma \vDash \forall x(\sigma \rightarrow \chi)$ by the Deduction Theorem and Generalization, and finally $\Gamma \cup\{\exists x \sigma\} \vDash \exists x \chi$. On the other hand, $\Delta \vDash \neg \chi[c / x]$ and hence by Generalization $\Delta \vDash \neg \exists x \chi$. So $\Gamma \cup\{\exists x \sigma\}$ and Δ are separable, a contradiction.

12.3 Craig's Interpolation Theorem

Theorem 12.4 (Craig's Interpolation Theorem). If $\vDash \varphi \rightarrow \psi$, then there is a sentence χ such that $\vDash \varphi \rightarrow \chi$ and $\vDash \chi \rightarrow \psi$, and every constant symbol, function symbol, and predicate symbol (other than $=$) in χ occurs both in φ and ψ. The sentence χ is called an interpolant of φ and ψ.

Proof. Suppose \mathcal{L}_{1} is the language of φ and \mathcal{L}_{2} is the language of ψ. Let $\mathcal{L}_{0}=$ $\mathcal{L}_{1} \cap \mathcal{L}_{2}$. For each $i \in\{0,1,2\}$, let \mathcal{L}_{i}^{\prime} be obtained from \mathcal{L}_{i} by adding the infinitely many new constant symbols $c_{0}, c_{1}, c_{2}, \ldots$.

If φ is unsatisfiable, $\exists x x \neq x$ is an interpolant. If $\neg \psi$ is unsatisfiable (and hence ψ is valid), $\exists x x=x$ is an interpolant. So we may assume also that both φ and $\neg \psi$ are satisfiable.

In order to prove the contrapositive of the Interpolation Theorem, assume that there is no interpolant for φ and ψ. In other words, assume that $\{\varphi\}$ and $\{\neg \psi\}$ are inseparable in \mathcal{L}_{0}.

Our goal is to extend the pair $(\{\varphi\},\{\neg \psi\})$ to a maximally inseparable pair $\left(\Gamma^{*}, \Delta^{*}\right)$. Let $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$ enumerate the sentences of \mathcal{L}_{1}, and $\psi_{0}, \psi_{1}, \psi_{2}$, ...enumerate the sentences of \mathcal{L}_{2}. We define two increasing sequences of sets of sentences $\left(\Gamma_{n}, \Delta_{n}\right)$, for $n \geq 0$, as follows. Put $\Gamma_{0}=\{\varphi\}$ and $\Delta_{0}=\{\neg \psi\}$. Assuming $\left(\Gamma_{n}, \Delta_{n}\right)$ are already defined, define Γ_{n+1} and Δ_{n+1} by:

1. If $\Gamma_{n} \cup\left\{\varphi_{n}\right\}$ and Δ_{n} are inseparable in \mathcal{L}_{0}^{\prime}, put φ_{n} in Γ_{n+1}. Moreover, if φ_{n} is an existential formula $\exists x \sigma$ then pick a new constant symbol c not occurring in $\Gamma_{n}, \Delta_{n}, \varphi_{n}$ or ψ_{n}, and put $\sigma[c / x]$ in Γ_{n+1}.
2. If Γ_{n+1} and $\Delta_{n} \cup\left\{\psi_{n}\right\}$ are inseparable in \mathcal{L}_{0}^{\prime}, put ψ_{n} in Δ_{n+1}. Moreover, if ψ_{n} is an existential formula $\exists x \sigma$, then pick a new constant symbol c not occurring in $\Gamma_{n+1}, \Delta_{n}, \varphi_{n}$ or ψ_{n}, and put $\sigma[c / x]$ in Δ_{n+1}.

Finally, define:

$$
\Gamma^{*}=\bigcup_{n \geq 0} \Gamma_{n}, \quad \Delta^{*}=\bigcup_{n \geq 0} \Delta_{n} .
$$

By simultaneous induction on n we can now prove:

1. Γ_{n} and Δ_{n} are inseparable in \mathcal{L}_{0}^{\prime};
2. Γ_{n+1} and Δ_{n} are inseparable in \mathcal{L}_{0}^{\prime}.

The basis for (1) is given by Lemma 12.2. For part (2), we need to distinguish three cases:

1. If $\Gamma_{0} \cup\left\{\varphi_{0}\right\}$ and Δ_{0} are separable, then $\Gamma_{1}=\Gamma_{0}$ and (2) is just (1);
2. If $\Gamma_{1}=\Gamma_{0} \cup\left\{\varphi_{0}\right\}$, then Γ_{1} and Δ_{0} are inseparable by construction.
3. It remains to consider the case where φ_{0} is existential, so that $\Gamma_{1}=\Gamma_{0} \cup$ $\{\exists x \sigma, \sigma[c / x]\}$. By construction, $\Gamma_{0} \cup\{\exists x \sigma\}$ and Δ_{0} are inseparable, so that by Lemma 12.3 also $\Gamma_{0} \cup\{\exists x \sigma, \sigma[c / x]\}$ and Δ_{0} are inseparable.

This completes the basis of the induction for (1) and (2) above. Now for the inductive step. For (1), if $\Delta_{n+1}=\Delta_{n} \cup\left\{\psi_{n}\right\}$ then Γ_{n+1} and Δ_{n+1} are inseparable by construction (even when ψ_{n} is existential, by Lemma 12.3); if $\Delta_{n+1}=\Delta_{n}$ (because Γ_{n+1} and $\Delta_{n} \cup\left\{\psi_{n}\right\}$ are separable), then we use the induction hypothesis on (2). For the inductive step for (2), if $\Gamma_{n+2}=\Gamma_{n+1} \cup\left\{\varphi_{n+1}\right\}$ then Γ_{n+2} and Δ_{n+1} are inseparable by construction (even when φ_{n+1} is existential, by Lemma 12.3); and if $\Gamma_{n+2}=\Gamma_{n+1}$ then we use the inductive case for (1) just proved. This concludes the induction on (1) and (2).

It follows that Γ^{*} and Δ^{*} are inseparable; if not, by compactness, there is $n \geq 0$ that separates Γ_{n} and Δ_{n}, against (1). In particular, Γ^{*} and Δ^{*} are consistent: for if the former or the latter is inconsistent, then they are separated by $\exists x x \neq x$ or $\forall x x=x$, respectively.

We now show that Γ^{*} is maximally consistent in \mathcal{L}_{1}^{\prime} and likewise Δ^{*} in \mathcal{L}_{2}^{\prime}. For the former, suppose that $\varphi_{n} \notin \Gamma^{*}$ and $\neg \varphi_{n} \notin \Gamma^{*}$, for some $n \geq 0$. If $\varphi_{n} \notin \Gamma^{*}$ then $\Gamma_{n} \cup\left\{\varphi_{n}\right\}$ is separable from Δ_{n}, and so there is $\chi \in \mathcal{L}_{0}^{\prime}$ such that both:

$$
\Gamma^{*} \vDash \varphi_{n} \rightarrow \chi, \quad \Delta^{*} \vDash \neg \chi
$$

Likewise, if $\neg \varphi_{n} \notin \Gamma^{*}$, there is $\chi^{\prime} \in \mathcal{L}_{0}^{\prime}$ such that both:

$$
\Gamma^{*} \vDash \neg \varphi_{n} \rightarrow \chi^{\prime}, \quad \Delta^{*} \vDash \neg \chi^{\prime}
$$

By propositional logic, $\Gamma^{*} \vDash \chi \vee \chi^{\prime}$ and $\Delta^{*} \vDash \neg\left(\chi \vee \chi^{\prime}\right)$, so $\chi \vee \chi^{\prime}$ separates Γ^{*} and Δ^{*}. A similar argument establishes that Δ^{*} is maximal.

Finally, we show that $\Gamma^{*} \cap \Delta^{*}$ is maximally consistent in \mathcal{L}_{0}^{\prime}. It is obviously consistent, since it is the intersection of consistent sets. To show maximality, let $\sigma \in \mathcal{L}_{0}^{\prime}$. Now, Γ^{*} is maximal in $\mathcal{L}_{1}^{\prime} \supseteq \mathcal{L}_{0}^{\prime}$, and similarly Δ^{*} is maximal in $\mathcal{L}_{2}^{\prime} \supseteq \mathcal{L}_{0}^{\prime}$. It follows that either $\sigma \in \Gamma^{*}$ or $\neg \sigma \in \Gamma^{*}$, and either $\sigma \in \Delta^{*}$ or $\neg \sigma \in \Delta^{*}$. If $\sigma \in \Gamma^{*}$ and $\neg \sigma \in \Delta^{*}$ then σ would separate Γ^{*} and Δ^{*}; and if $\neg \sigma \in \Gamma^{*}$ and $\sigma \in \Delta^{*}$ then Γ^{*} and Δ^{*} would be separated by $\neg \sigma$. Hence, either $\sigma \in \Gamma^{*} \cap \Delta^{*}$ or $\neg \sigma \in \Gamma^{*} \cap \Delta^{*}$, and $\Gamma^{*} \cap \Delta^{*}$ is maximal.

Since Γ^{*} is maximally consistent, it has a model $\mathfrak{M}_{1}^{\prime}$ whose domain $\left|\mathfrak{M}_{1}^{\prime}\right|$ comprises all and only the elements $c^{\mathfrak{M}_{1}^{\prime}}$ interpreting the constant symbolsjust like in the proof of the completeness theorem (Theorem 9.16). Similarly,
Δ^{*} has a model $\mathfrak{M}_{2}^{\prime}$ whose domain $\left|\mathfrak{M}_{2}^{\prime}\right|$ is given by the interpretations $c^{\mathfrak{M}_{2}^{\prime}}$ of the constant symbols.

Let \mathfrak{M}_{1} be obtained from $\mathfrak{M}_{1}^{\prime}$ by dropping interpretations for constant symbols, function symbols, and predicate symbols in $\mathcal{L}_{1}^{\prime} \backslash \mathcal{L}_{0}^{\prime}$, and similarly for \mathfrak{M}_{2}. Then the map $h: M_{1} \rightarrow M_{2}$ defined by $h\left(c^{\mathfrak{M}_{1}^{\prime}}\right)=c^{\mathfrak{M}_{2}^{\prime}}$ is an isomorphism in \mathcal{L}_{0}^{\prime}, because $\Gamma^{*} \cap \Delta^{*}$ is maximally consistent in \mathcal{L}_{0}^{\prime}, as shown. This follows because any \mathcal{L}_{0}^{\prime}-sentence either belongs to both Γ^{*} and Δ^{*}, or to neither: so $c^{\mathfrak{M}_{1}^{\prime}} \in P^{\mathfrak{M}_{1}^{\prime}}$ if and only if $P(c) \in \Gamma^{*}$ if and only if $P(c) \in \Delta^{*}$ if and only if $c^{\mathfrak{M}_{2}^{\prime}} \in P^{\mathfrak{M}_{2}^{\prime}}$. The other conditions satisfied by isomorphisms can be established similarly.

Let us now define a model \mathfrak{M} for the language $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ as follows:

1. The domain $|\mathfrak{M}|$ is just $\left|\mathfrak{M}_{2}\right|$, i.e., the set of all elements $c^{\mathfrak{M}_{2}^{\prime}}$;
2. If a predicate symbol P is in $\mathcal{L}_{2} \backslash \mathcal{L}_{1}$ then $P^{\mathfrak{M}}=P^{\mathfrak{M}_{2}^{\prime}}$;
3. If a predicate P is in $\mathcal{L}_{1} \backslash \mathcal{L}_{2}$ then $P^{\mathfrak{M}}=h\left(P^{\mathfrak{M}_{2}^{\prime}}\right)$, i.e., $\left\langle c_{1}^{\mathfrak{M}_{2}^{\prime}}, \ldots, c_{n}^{\mathfrak{M}_{2}^{\prime}}\right\rangle \in$ $P^{\mathfrak{M}}$ if and only if $\left\langle c_{1}^{\mathfrak{M}_{1}^{\prime}}, \ldots, c_{n}^{\mathfrak{M}_{1}^{\prime}}\right\rangle \in P^{\mathfrak{M}_{1}^{\prime}}$.
4. If a predicate symbol P is in \mathcal{L}_{0} then $P^{\mathfrak{M}}=P^{\mathfrak{M}_{2}^{\prime}}=h\left(P^{\mathfrak{M}_{1}^{\prime}}\right)$.
5. Function symbols of $\mathcal{L}_{1} \cup \mathcal{L}_{2}$, including constant symbols, are handled similarly.
Finally, one shows by induction on formulas that \mathfrak{M} agrees with $\mathfrak{M}_{1}^{\prime}$ on all formulas of \mathcal{L}_{1}^{\prime} and with $\mathfrak{M}_{2}^{\prime}$ on all formulas of \mathcal{L}_{2}^{\prime}. In particular, $\mathfrak{M} \vDash \Gamma^{*} \cup \Delta^{*}$, whence $\mathfrak{M} \vDash \varphi$ and $\mathfrak{M} \vDash \neg \psi$, and $\not \forall \varphi \rightarrow \psi$. This concludes the proof of Craig's Interpolation Theorem.

12.4 The Definability Theorem

One important application of the interpolation theorem is Beth's definability theorem. To define an n-place relation R we can give a formula χ with n free variables which does not involve R. This would be an explicit definition of R in terms of χ. We can then say also that a theory $\Sigma(P)$ in a language containing the n-place predicate symbol P explicitly defines P if it contains (or at least entails) a formalized explicit definition, i.e.,

$$
\Sigma(P) \vDash \forall x_{1} \ldots \forall x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \chi\left(x_{1}, \ldots, x_{n}\right)\right)
$$

But an explicit definition is only one way of defining-in the sense of determining completely-a relation. A theory may also be such that the interpretation of P is fixed by the interpretation of the rest of the language in any model. The definability theorem states that whenever a theory fixes the interpretation of P in this way-whenever it implicitly defines P-then it also explicitly defines it.

Definition 12.5. Suppose \mathcal{L} is a language not containing the predicate symbol P. A set $\Sigma(P)$ of sentences of $\mathcal{L} \cup\{P\}$ explicitly defines P if and only if there is a formula $\chi\left(x_{1}, \ldots, x_{n}\right)$ of \mathcal{L} such that

$$
\Sigma(P) \vDash \forall x_{1} \ldots \forall x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \chi\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Definition 12.6. Suppose \mathcal{L} is a language not containing the predicate symbols P and P^{\prime}. A set $\Sigma(P)$ of sentences of $\mathcal{L} \cup\{P\}$ implicitly defines P if and only if

$$
\Sigma(P) \cup \Sigma\left(P^{\prime}\right) \vDash \forall x_{1} \ldots \forall x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow P^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where $\Sigma\left(P^{\prime}\right)$ is the result of uniformly replacing P with P^{\prime} in $\Sigma(P)$.
In other words, for any model \mathfrak{M} and $R, R^{\prime} \subseteq|\mathfrak{M}|^{n}$, if both $(\mathfrak{M}, R) \vDash \Sigma(P)$ and $\left(\mathfrak{M}, R^{\prime}\right) \vDash \Sigma\left(P^{\prime}\right)$, then $R=R^{\prime}$; where (\mathfrak{M}, R) is the structure \mathfrak{M}^{\prime} for the expansion of \mathcal{L} to $\mathcal{L} \cup\{P\}$ such that $P^{\mathfrak{M}^{\prime}}=R$, and similarly for $\left(\mathfrak{M}, R^{\prime}\right)$.

Theorem 12.7 (Beth Definability Theorem). A set $\Sigma(P)$ of $\mathcal{L} \cup\{P\}$-formulas implicitly defines P if and only $\Sigma(P)$ explicitly defines P.

Proof. If $\Sigma(P)$ explicitly defines P then both

$$
\begin{aligned}
\Sigma(P) & \forall x_{1} \ldots \forall x_{n}\left[\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \chi\left(x_{1}, \ldots, x_{n}\right)\right)\right] \\
\Sigma\left(P^{\prime}\right) \vDash & \forall x_{1} \ldots \forall x_{n}\left[\left(P^{\prime}\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \chi\left(x_{1}, \ldots, x_{n}\right)\right)\right]
\end{aligned}
$$

and the conclusion follows. For the converse: assume that $\Sigma(P)$ implicitly defines P. First, we add constant symbols c_{1}, \ldots, c_{n} to \mathcal{L}. Then

$$
\Sigma(P) \cup \Sigma\left(P^{\prime}\right) \vDash P\left(c_{1}, \ldots, c_{n}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right) .
$$

By compactness, there are finite sets $\Delta_{0} \subseteq \Sigma(P)$ and $\Delta_{1} \subseteq \Sigma\left(P^{\prime}\right)$ such that

$$
\Delta_{0} \cup \Delta_{1} \vDash P\left(c_{1}, \ldots, c_{n}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

Let $\theta(P)$ be the conjunction of all sentences $\varphi(P)$ such that either $\varphi(P) \in \Delta_{0}$ or $\varphi\left(P^{\prime}\right) \in \Delta_{1}$ and let $\theta\left(P^{\prime}\right)$ be the conjunction of all sentences $\varphi\left(P^{\prime}\right)$ such that either $\varphi(P) \in \Delta_{0}$ or $\varphi\left(P^{\prime}\right) \in \Delta_{1}$. Then $\theta(P) \wedge \theta\left(P^{\prime}\right) \vDash P\left(c_{1}, \ldots, c_{n}\right) \rightarrow$ $P^{\prime} c_{1} \ldots c_{n}$. We can re-arrange this so that each predicate symbol occurs on one side of \vDash :

$$
\theta(P) \wedge P\left(c_{1}, \ldots, c_{n}\right) \vDash \theta\left(P^{\prime}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

By Craig's Interpolation Theorem there is a sentence $\chi\left(c_{1}, \ldots, c_{n}\right)$ not containing P or P^{\prime} such that:

$$
\theta(P) \wedge P\left(c_{1}, \ldots, c_{n}\right) \vDash \chi\left(c_{1}, \ldots, c_{n}\right) ; \quad \chi\left(c_{1}, \ldots, c_{n}\right) \vDash \theta\left(P^{\prime}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

From the former of these two entailments we have: $\theta(P) \vDash P\left(c_{1}, \ldots, c_{n}\right) \rightarrow$ $\chi\left(c_{1}, \ldots, c_{n}\right)$. And from the latter, since an $\mathcal{L} \cup\{P\}$-model $(\mathfrak{M}, R) \vDash \varphi(P)$

12.4. THE DEFINABILITY THEOREM

if and only if the corresponding $\mathcal{L} \cup\left\{P^{\prime}\right\}$-model $(\mathfrak{M}, R) \vDash \varphi\left(P^{\prime}\right)$, we have $\chi\left(c_{1}, \ldots, c_{n}\right) \vDash \theta(P) \rightarrow P\left(c_{1}, \ldots, c_{n}\right)$, from which:

$$
\theta(P) \vDash \chi\left(c_{1}, \ldots, c_{n}\right) \rightarrow P\left(c_{1}, \ldots, c_{n}\right) .
$$

Putting the two together, $\theta(P) \vDash P\left(c_{1}, \ldots, c_{n}\right) \leftrightarrow \chi\left(c_{1}, \ldots, c_{n}\right)$, and by monotony and generalization also

$$
\Sigma(P) \vDash \forall x_{1} \ldots \forall x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \chi\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Problems

Chapter 13

Lindström's Theorem

13.1 Introduction

In this chapter we aim to prove Lindström's characterization of first-order logic as the maximal logic for which (given certain further constraints) the Compactness and the Downward Löwenheim-Skolem theorems hold (Theorem 9.19 and Theorem 9.20). First, we need a more general characterization of the general class of logics to which the theorem applies. We will restrict ourselves to relational languages, i.e., languages which only contain predicate symbols and individual constants, but no function symbols.

13.2 Abstract Logics

Definition 13.1. An abstract logic is a pair $\left\langle L, \models_{L}\right\rangle$, where L is a function that assigns to each language \mathcal{L} a set $L(\mathcal{L})$ of sentences, and \models_{L} is a relation between structures for the language \mathcal{L} and elements of $L(\mathcal{L})$. In particular, $\langle F, \mid=\rangle$ is ordinary first-order logic, i.e., F is the function assigning to the language \mathcal{L} the set of first-order sentences built from the constants in \mathcal{L}, and $=$ is the satisfaction relation of first-order logic.

Notice that we are still employing the same notion of structure for a given language as for first-order logic, but we do not presuppose that sentences are build up from the basic symbols in \mathcal{L} in the usual way, nor that the relation \models_{L} is recursively defined in the same way as for first-order logic. So for instance the definition, being completely general, is intended to capture the case where sentences in $\left\langle L, \models_{L}\right\rangle$ contain infinitely long conjunctions or disjunction, or quantifiers other than \exists and \forall (e.g., "there are infinitely many x such that ..."), or perhaps infinitely long quantifier prefixes. To emphasize that "sentences" in $L(\mathcal{L})$ need not be ordinary sentences of first-order logic, in this chapter we use variables α, β, \ldots to range over them, and reserve φ, ψ, \ldots for ordinary first-order formulas.

13.2. ABSTRACT LOGICS

Definition 13.2. Let $\operatorname{Mod}_{L}(\alpha)$ denote the class $\left\{\mathfrak{M}: \mathfrak{M} \models_{L} \alpha\right\}$. If the language needs to be made explicit, we write $\operatorname{Mod}_{L}^{\mathcal{L}}(\alpha)$. Two structures \mathfrak{M} and \mathfrak{N} for \mathcal{L} are elementarily equivalent in $\left\langle L, \models_{L}\right\rangle$, written $\mathfrak{M} \equiv_{L} \mathfrak{N}$, if the same sentences from $L(\mathcal{L})$ are true in each.

Definition 13.3. An abstract logic $\left\langle L, \mid=_{L}\right\rangle$ for the language \mathcal{L} is normal if it satisfies the following properties:

1. (L-Monotony) For languages \mathcal{L} and \mathcal{L}^{\prime}, if $\mathcal{L} \subseteq \mathcal{L}^{\prime}$, then $L(\mathcal{L}) \subseteq L\left(\mathcal{L}^{\prime}\right)$.
2. (Expansion Property) For each $\alpha \in L(\mathcal{L})$ there is a finite subset \mathcal{L}^{\prime} of \mathcal{L} such that the relation $\mathfrak{M} \models_{L} \alpha$ depends only on the reduct of \mathfrak{M} to \mathcal{L}^{\prime}; i.e., if \mathfrak{M} and \mathfrak{N} have the same reduct to \mathcal{L}^{\prime} then $\mathfrak{M} \models_{L} \alpha$ if and only if $\mathfrak{N}=_{L} \alpha$.
3. (Isomorphism Property) If $\mathfrak{M}=_{L} \alpha$ and $\mathfrak{M} \simeq \mathfrak{N}$ then also $\mathfrak{N} \models_{L} \alpha$.
4. (Renaming Property) The relation $=_{L}$ is preserved under renaming: if the language \mathcal{L}^{\prime} is obtained from \mathcal{L} by replacing each symbol P by a symbol P^{\prime} of the same arity and each constant c by a distinct constant c^{\prime}, then for each structure \mathfrak{M} and sentence $\alpha, \mathfrak{M} \models_{L} \alpha$ if and only if $\mathfrak{M}^{\prime} \models_{L} \alpha^{\prime}$, where \mathfrak{M}^{\prime} is the \mathcal{L}^{\prime}-structure corresponding to \mathcal{L} and $\alpha^{\prime} \in L\left(\mathcal{L}^{\prime}\right)$.
5. (Boolean Property) The abstract logic $\left\langle L,=_{L}\right\rangle$ is closed under the Boolean connectives in the sense that for each $\alpha \in L(\mathcal{L})$ there is a $\beta \in L(\mathcal{L})$ such that $\mathfrak{M} \not \models_{L} \beta$ if and only if $\mathfrak{M} \not \models_{L} \alpha$, and for each α and β there is a γ such that $\operatorname{Mod}_{L}(\gamma)=\operatorname{Mod}_{L}(\alpha) \cap \operatorname{Mod}_{L}(\beta)$. Similarly for atomic formulas and the other connectives.
6. (Quantifier Property) For each constant c in \mathcal{L} and $\alpha \in L(\mathcal{L})$ there is a $\beta \in L(\mathcal{L})$ such that

$$
\left.\operatorname{Mod}_{L}^{\mathcal{L}^{\prime}}(\beta)=\{\mathfrak{M}:(\mathfrak{M}, a)\} \in \operatorname{Mod}_{L}^{\mathcal{L}}(\alpha) \text { for some } a \in|\mathfrak{M}|\right\}
$$

where $\mathcal{L}^{\prime}=\mathcal{L} \backslash\{c\}$ and (\mathfrak{M}, a) is the expansion of \mathfrak{M} to \mathcal{L} assigning a to c.
7. (Relativization Property) Given a sentence $\alpha \in L(\mathcal{L})$ and symbols R, c_{1}, \ldots, c_{n} not in \mathcal{L}, there is a sentence $\beta \in L\left(\mathcal{L} \cup\left\{R, c_{1}, \ldots, c_{n}\right\}\right)$ called the relativization of α to $R\left(x, c_{1}, \ldots c_{n}\right)$, such that for each structure \mathfrak{M} :

$$
\left.\left(\mathfrak{M}, X, b_{1}, \ldots, b_{n}\right) \mid=_{L} \beta\right) \text { if and only if } \mathfrak{N} \models_{L} \alpha,
$$

where \mathfrak{N} is the substructure of \mathfrak{M} with domain $|\mathfrak{N}|=\{a \in|\mathfrak{M}|$: $\left.R^{\mathfrak{M}}\left(a, b_{1}, \ldots, b_{n}\right)\right\}$ (see Remark 1), and $\left(\mathfrak{M}, X, b_{1}, \ldots, b_{n}\right)$ is the expansion of \mathfrak{M} interpreting R, c_{1}, \ldots, c_{n} by X, b_{1}, \ldots, b_{n}, respectively (with $\left.X \subseteq M^{n+1}\right)$.

Definition 13.4. Given two abstract logics $\left\langle L_{1}, \models_{L_{1}}\right\rangle$ and $\left\langle L_{2}, \models_{L_{2}}\right\rangle$ we say that the latter is at least as expressive as the former, written $\left\langle L_{1}, \models_{L_{1}}\right\rangle \leq\left\langle L_{2}, \models_{L_{2}}\right.$), if for each language \mathcal{L} and sentence $\alpha \in L_{1}(\mathcal{L})$ there is a sentence $\beta \in$ $L_{2}(\mathcal{L})$ such that $\operatorname{Mod}_{L_{1}}^{\mathcal{L}}(\alpha)=\operatorname{Mod}_{L_{2}}^{\mathcal{L}}(\beta)$. The logics $\left\langle L_{1}, \models_{L_{1}}\right\rangle$ and $\left\langle L_{2}, \models_{L_{2}}\right\rangle$ are equivalent if $\left\langle L_{1},=_{L_{1}}\right\rangle \leq\left\langle L_{2},=_{L_{2}}\right\rangle$ and $\left\langle L_{2},=_{L_{2}}\right\rangle \leq\left\langle L_{1}, \models_{L_{1}}\right\rangle$.

Remark 5. First-order logic, i.e., the abstract logic $\langle F, \models\rangle$, is normal. In fact, the above properties are mostly straightforward for first-order logic. We just remark that the expansion property comes down to extensionality, and that the relativization of a sentence α to $R\left(x, c_{1}, \ldots, c_{n}\right)$ is obtained by replacing each subformula $\forall x \beta$ by $\forall x\left(R\left(x, c_{1}, \ldots, c_{n}\right) \rightarrow \beta\right)$. Moreover, if $\left\langle L, \models_{L}\right\rangle$ is normal, then $\langle F, \models\rangle \leq\left\langle L, \models_{L}\right\rangle$, as can be can shown by induction on firstorder formulas. Accordingly, with no loss in generality, we can assume that every first-order sentence belongs to every normal logic.

13.3 Compactness and Löwenheim-Skolem Properties

We now give the obvious extensions of compactness and Löwenheim-Skolem to the case of abstract logics.

Definition 13.5. An abstract logic $\left\langle L, \models_{L}\right\rangle$ has the Compactness Property if each set Γ of $L(\mathcal{L})$-sentences is satisfiable whenever each finite $\Gamma_{0} \subseteq \Gamma$ is satisfiable.

Definition 13.6. $\left\langle L,\left.\right|_{L}\right\rangle$ has the Downward Löweenheim-Skolem property if any satisfiable Γ has an enumerable model.

The notion of partial isomorphism from Definition 11.14 is purely "algebraic" (i.e., given without reference to the sentences of the language but only to the constants provided by the language \mathcal{L} of the structures), and hence it applies to the case of abstract logics. In case of first-order logic, we know from Theorem 11.16 that if two structures are partially isomorphic then they are elementarily equivalent. That proof does not carry over to abstract logics, for induction on formulas need not be available for arbitrary $\alpha \in L(\mathcal{L})$, but the theorem is true nonetheless, provided the Löwenheim-Skolem property holds.

Theorem 13.7. Suppose $\left\langle L,=_{L}\right\rangle$ is a normal logic with the Löwenheim-Skolem property. Then any two structures that are partially isomorphic are elementarily equivalent in $\left\langle L,=_{L}\right\rangle$.

Proof. Suppose $\mathfrak{M} \simeq_{p} \mathfrak{N}$, but for some α also $\mathfrak{M} \models_{L} \alpha$ while $\mathfrak{N} \mid \models_{L} \alpha$. By the Isomorphism Property we can assume that $|\mathfrak{M}|$ and $|\mathfrak{N}|$ are disjoint, and by the Expansion Property we can assume that $\alpha \in L(\mathcal{L})$ for a finite language \mathcal{L}. Let \mathcal{I} be a set of partial isomorphisms between \mathfrak{M} and \mathfrak{N}, and with no loss of generality also assume that if $p \in \mathcal{I}$ and $q \subseteq p$ then also $q \in \mathcal{I}$.

13.4. LINDSTRÖM'S THEOREM

$|\mathfrak{M}|^{<\omega}$ is the set of finite sequences of elements of $|\mathfrak{M}|$. Let S be the ternary relation over $|\mathfrak{M}|^{<\omega}$ representing concatenation, i.e., if $\mathbf{a}, \mathbf{b}, \mathbf{c} \in|\mathfrak{M}|^{<\omega}$ then $S(\mathbf{a}, \mathbf{b}, \mathbf{c})$ holds if and only if \mathbf{c} is the concatenation of \mathbf{a} and \mathbf{b}; and let T be the ternary relation such that $T(\mathbf{a}, b, \mathbf{c})$ holds for $b \in M$ and $\mathbf{a}, \mathbf{c} \in|\mathfrak{M}|^{<\omega}$ if and only if $\mathbf{a}=a_{1}, \ldots a_{n}$ and $\mathbf{c}=a_{1}, \ldots a_{n}, b$. Pick new 3-place predicate symbols P and Q and form the structure \mathfrak{M}^{*} having the universe $|\mathfrak{M}| \cup|\mathfrak{M}|^{<\omega}$, having \mathfrak{M} as a substructure, and interpreting P and Q by the concatenation relations S and T (so \mathfrak{M}^{*} is in the language $\mathcal{L} \cup\{P, Q\}$).

Define $|\mathfrak{N}|^{<\omega}, S^{\prime}, T^{\prime}, P^{\prime}, Q^{\prime}$ and \mathfrak{N}^{*} analogously. Since by hypothesis $\mathfrak{M} \simeq_{p}$ \mathfrak{N}, there is a relation I between $|\mathfrak{M}|^{<\omega}$ and $|\mathfrak{N}|^{<\omega}$ such that $I(\mathbf{a}, \mathbf{b})$ holds if and only if \mathbf{a} and \mathbf{b} are isomorphic and satisfy the back-and-forth condition of Definition 11.14. Now, let \mathfrak{M} be the structure whose domain is the union of the domains of \mathfrak{M}^{*} and \mathfrak{N}^{*}, having \mathfrak{M}^{*} and \mathfrak{N}^{*} as substructures, in the language with one extra binary predicate symbol R interpreted by the relation I and predicate symbols denoting the domains $|\mathfrak{M}|^{*}$ and $|\mathfrak{N}| *$.

Figure 13.1: The structure \mathfrak{M} with the internal partial isomorphism.
The crucial observation is that in the language of the structure \mathfrak{M} there is a first-order sentence θ_{1} true in \mathfrak{M} saying that $\mathfrak{M} \not \models_{L} \alpha$ and $\mathfrak{N} \not \models_{L} \alpha$ (this requires the Relativization Property), as well as a first-order sentence θ_{2} true in \mathfrak{M} saying that $\mathfrak{M} \simeq_{p} \mathfrak{N}$ via the partial isomorphism I. By the LöwenheimSkolem Property, θ_{1} and θ_{2} are jointly true in an enumerable model \mathfrak{M}_{0} containing partially isomorphic substructures \mathfrak{M}_{0} and \mathfrak{N}_{0} such that $\mathfrak{M}_{0} \models_{L} \alpha$ and $\mathfrak{N}_{0} \not \vDash_{L} \alpha$. But enumerable partially isomorphic structures are in fact isomorphic by Theorem 11.15, contradicting the Isomorphism Property of normal abstract logics.

13.4 Lindström's Theorem

Lemma 13.8. Suppose $\alpha \in L(\mathcal{L})$, with \mathcal{L} finite, and assume also that there is an $n \in \mathbb{N}$ such that for any two structures \mathfrak{M} and \mathfrak{N}, if $\mathfrak{M} \equiv_{n} \mathfrak{N}$ and $\mathfrak{M}=_{L} \alpha$ then also $\mathfrak{N} \neq=_{L} \alpha$. Then α is equivalent to a first-order sentence, i.e., there is a first-order θ such that $\operatorname{Mod}_{L}(\alpha)=\operatorname{Mod}_{L}(\theta)$.

Proof. Let n be such that any two n-equivalent structures \mathfrak{M} and \mathfrak{N} agree on the value assigned to α. Recall Proposition 11.18: there are only finitely many first-order sentences in a finite language that have quantifier rank no greater than n, up to logical equivalence. Now, for each fixed structure \mathfrak{M} let $\theta_{\mathfrak{M}}$ be the conjunction of all first-order sentences α true in \mathfrak{M} with $\operatorname{qr}(\alpha) \leq n$ (this conjunction is finite), so that $\mathfrak{N} \equiv \theta_{\mathfrak{M}}$ if and only if $\mathfrak{N} \equiv_{n} \mathfrak{M}$. Then put $\theta=$ $\bigvee\left\{\theta_{\mathfrak{M}}:\left.\mathfrak{M}\right|_{L} \alpha\right\}$; this disjunction is also finite (up to logical equivalence).

The conclusion $\operatorname{Mod}_{L}(\alpha)=\operatorname{Mod}_{L}(\theta)$ follows. In fact, if $\mathfrak{N}=_{L} \theta$ then for some $\mathfrak{M} \vDash=_{L} \alpha$ we have $\mathfrak{N} \vDash \theta_{\mathfrak{M}}$, whence also $\mathfrak{N} \models_{L} \alpha$ (by the hypothesis of the lemma). Conversely, if $\mathfrak{N} \models_{L} \alpha$ then $\theta_{\mathfrak{N}}$ is a disjunct in θ, and since $\mathfrak{N} \mid=\theta_{\mathfrak{N}}$, also $\mathfrak{N} \mid={ }_{L} \theta$.

Theorem 13.9 (Lindström's Theorem). Suppose $\left\langle L, \mid=_{L}\right\rangle$ has the Compactness and the Löwenheim-Skolem Properties. Then $\left\langle L, \mid==_{L}\right\rangle \leq\langle F, \models\rangle$ (so $\left\langle L,=_{L}\right\rangle$ is equivalent to first-order logic).

Proof. By Lemma 13.8, it suffices to show that for any $\alpha \in L(\mathcal{L})$, with \mathcal{L} finite, there is $n \in \mathbb{N}$ such that for any two structures \mathfrak{M} and \mathfrak{N} : if $\mathfrak{M} \equiv_{n} \mathfrak{N}$ then \mathfrak{M} and \mathfrak{N} agree on α. For then α is equivalent to a first-order sentence, from which $\left\langle L, \mid=_{L}\right\rangle \leq\langle F, \mid=\rangle$ follows. Since we are working in a finite, purely relational language, by Theorem 11.22 we can replace the statement that $\mathfrak{M} \equiv_{n} \mathfrak{N}$ by the corresponding algebraic statement that $I_{n}(\varnothing, \varnothing)$.

Given α, suppose towards a contradiction that for each n there are structures \mathfrak{M}_{n} and \mathfrak{N}_{n} such that $I_{n}(\varnothing, \varnothing)$, but (say) $\mathfrak{M}_{n} \neq_{L} \alpha$ whereas $\mathfrak{N}_{n} \not \vDash_{L} \alpha$. By the Isomorphism Property we can assume that all the \mathfrak{M}_{n} 's interpret the constants of the language by the same objects; furthermore, since there are only finitely many atomic sentences in the language, we may also assume that they satisfy the same atomic sentences (we can take a subsequence of the \mathfrak{M}^{\prime} s otherwise). Let \mathfrak{M} be the union of all the \mathfrak{M}_{n} 's, i.e., the unique minimal structure having each \mathfrak{M}_{n} as a substructure. As in the proof of Theorem 13.7, let \mathfrak{M}^{*} be the extension of \mathfrak{M} with domain $|\mathfrak{M}| \cup|\mathfrak{M}|^{<\omega}$, in the expanded language comprising the concatenation predicates P and Q.

Similarly, define $\mathfrak{N}_{n}, \mathfrak{N}$ and \mathfrak{N}^{*}. Now let \mathfrak{M} be the structure whose domain comprises the domains of \mathfrak{M}^{*} and \mathfrak{N}^{*} as well as the natural numbers \mathbb{N} along with their natural ordering \leq, in the language with extra predicates representing the domains $|\mathfrak{M}|,|\mathfrak{N}|,|\mathfrak{M}|^{<\omega}$ and $|\mathfrak{N}|^{<\omega}$ as well as predicates coding the domains of \mathfrak{M}_{n} and \mathfrak{N}_{n} in the sense that:

$$
\begin{aligned}
\left|\mathfrak{M}_{n}\right| & =\{a \in|\mathfrak{M}|: R(a, n)\} ; & \left|\mathfrak{N}_{n}\right| & =\{a \in|\mathfrak{N}|: S(a, n)\} ; \\
|\mathfrak{M}|_{n}^{<\omega} & =\left\{a \in|\mathfrak{M}|^{<\omega}: R(a, n)\right\} ; & |\mathfrak{N}|_{n}^{<\omega} & =\left\{a \in|\mathfrak{N}|^{<\omega}: S(a, n)\right\}
\end{aligned}
$$

The structure \mathfrak{M} also has a ternary relation J such that $J(n, \mathbf{a}, \mathbf{b})$ holds if and only if $I_{n}(\mathbf{a}, \mathbf{b})$.

Now there is a sentence θ in the language \mathcal{L} augmented by R, S, J, etc., saying that \leq is a discrete linear ordering with first but no last element and

13.4. LINDSTRÖM'S THEOREM

such that $\mathfrak{M}_{n} \vDash \alpha, \mathfrak{N}_{n} \not \models \alpha$, and for each n in the ordering, $J(n, \mathbf{a}, \mathbf{b})$ holds if and only if $I_{n}(\mathbf{a}, \mathbf{b})$.

Using the Compactness Property, we can find a model \mathfrak{M}^{*} of θ in which the ordering contains a non-standard element n^{*}. In particular then \mathfrak{M}^{*} will contain substructures $\mathfrak{M}_{n^{*}}$ and $\mathfrak{N}_{n^{*}}$ such that $\mathfrak{M}_{n^{*}} \mid=_{L} \alpha$ and $\mathfrak{N}_{n^{*}} \not \vDash_{L} \alpha$. But now we can define a set \mathcal{I} of pairs of k-tuples from $\left|\mathfrak{M}_{n^{*}}\right|$ and $\left|\mathfrak{N}_{n^{*}}\right|$ by putting $\langle\mathbf{a}, \mathbf{b}\rangle \in \mathcal{I}$ if and only if $J\left(n^{*}-k, \mathbf{a}, \mathbf{b}\right)$, where k is the length of \mathbf{a} and \mathbf{b}. Since n^{*} is non-standard, for each standard k we have that $n^{*}-k>0$, and the set \mathcal{I} witnesses the fact that $\mathfrak{M}_{n^{*}} \simeq{ }_{p} \mathfrak{N}_{n^{*}}$. But by Theorem 13.7, $\mathfrak{M}_{n^{*}}$ is L-equivalent to $\mathfrak{N}_{n^{*}}$, a contradiction.

Problems

Part IV

Computability

This part is based on Jeremy Avigad's notes on computability theory. Only the chapter on recursive functions contains exercises yet, and everything could stand to be expanded with motivation, examples, details, and exercises.

Chapter 14

Recursive Functions

These are Jeremy Avigad's notes on recursive functions, revised and expanded by Richard Zach. This chapter does contain some exercises, and can be included independently to provide the basis for a discussion of arithmetization of syntax.

14.1 Introduction

In order to develop a mathematical theory of computability, one has to first of all develop a model of computability. We now think of computability as the kind of thing that computers do, and computers work with symbols. But at the beginning of the development of theories of computability, the paradigmatic example of computation was numerical computation. Mathematicians were always interested in number-theoretic functions, i.e., functions $f: \mathbb{N}^{n} \rightarrow$ \mathbb{N} that can be computed. So it is not surprising that at the beginning of the theory of computability, it was such functions that were studied. The most familiar examples of computable numerical functions, such as addition, multiplication, exponentiation (of natural numbers) share an interesting feature: they can be defined recursively. It is thus quite natural to attempt a general definition of computable function on the basis of recursive definitions. Among the many possible ways to define number-theoretic functions recursively, one particulalry simple pattern of definition here becomes central: so-called primitive recursion.

In addition to computable functions, we might be interested in computable sets and relations. A set is computable if we can compute the answer to whether or not a given number is an element of the set, and a relation is computable iff we can compute whether or not a tuple $\left\langle n_{1}, \ldots, n_{k}\right\rangle$ is an element of the relation. By considering the characteristic function of a set or relation, discussion of computable sets and relations can be subsumed under that of

14.2. PRIMITIVE RECURSION

computable functions. Thus we can define primitive recursive relations as well, e.g., the relation " n evenly divides m " is a primitive recursive relation.

Primitive recursive functions-those that can be defined using just primitive recursion-are not, however, the only computable number-theoretic functions. Many generalizations of primitive recursion have been considered, but the most powerful and widely-accepted additional way of computing functions is by unbounded search. This leads to the definition of partial recursive functions, and a related definition to general recursive functions. General recursive functions are computable and total, and the definition characterizes exactly the partial recursive functions that happen to be total. Recursive functions can simulate every other model of computation (Turing machines, lambda calculus, etc.) and so represent one of the many accepted models of computation.

14.2 Primitive Recursion

Suppose we specify that a certain function l from \mathbb{N} to \mathbb{N} satisfies the following two clauses:

$$
\begin{aligned}
l(0) & =1 \\
l(x+1) & =2 \cdot l(x) .
\end{aligned}
$$

It is pretty clear that there is only one function, l, that meets these two criteria. This is an instance of a definition by primitive recursion. We can define even more fundamental functions like addition and multiplication by

$$
\begin{aligned}
f(x, 0) & =x \\
f(x, y+1) & =f(x, y)+1
\end{aligned}
$$

and

$$
\begin{aligned}
g(x, 0) & =0 \\
g(x, y+1) & =f(g(x, y), x) .
\end{aligned}
$$

Exponentiation can also be defined recursively, by

$$
\begin{aligned}
h(x, 0) & =1 \\
h(x, y+1) & =g(h(x, y), x) .
\end{aligned}
$$

We can also compose functions to build more complex ones; for example,

$$
\begin{aligned}
k(x) & =x^{x}+(x+3) \cdot x \\
& =f(h(x, x), g(f(x, 3), x))
\end{aligned}
$$

Remember that the arity of a function is the number of arguments. For convenience, we will consider a constant, like 7 , to be a 0 -ary function. (Send
it zero arguments, and it returns 7.) The set of primitive recursive functions is the set of functions from \mathbb{N} to \mathbb{N} that you get if you start with 0 and the successor function, $S(x)=x+1$, and iterate the two operations above, primitive recursion and composition. The idea is that primitive recursive functions are defined in a straightforward and explicit way, so that it is intuitively clear that each one can be computed using finite means.

Definition 14.1. If f is a k-ary function and g_{0}, \ldots, g_{k-1} are l-ary functions on the natural numbers, the composition of f with g_{0}, \ldots, g_{k-1} is the l-ary function h defined by

$$
h\left(x_{0}, \ldots, x_{l-1}\right)=f\left(g_{0}\left(x_{0}, \ldots, x_{l-1}\right), \ldots, g_{k-1}\left(x_{0}, \ldots, x_{l-1}\right)\right)
$$

Definition 14.2. If $f\left(z_{0}, \ldots, z_{k-1}\right)$ is a k-ary function and $g\left(x, y, z_{0}, \ldots, z_{k-1}\right)$ is a $k+2$-ary function, then the function defined by primitive recursion from f and g is the $k+1$-ary function h, defined by the equations

$$
\begin{aligned}
h\left(0, z_{0}, \ldots, z_{k-1}\right) & =f\left(z_{0}, \ldots, z_{k-1}\right) \\
h\left(x+1, z_{0}, \ldots, z_{k-1}\right) & =g\left(x, h\left(x, z_{0}, \ldots, z_{k-1}\right), z_{0}, \ldots, z_{k-1}\right)
\end{aligned}
$$

In addition to the constant, 0 , and the successor function, $S(x)$, we will include among primitive recursive functions the projection functions,

$$
P_{i}^{n}\left(x_{0}, \ldots, x_{n-1}\right)=x_{i}
$$

for each natural number n and $i<n$. In the end, we have the following:
Definition 14.3. The set of primitive recursive functions is the set of functions of various arities from the set of natural numbers to the set of natural numbers, defined inductively by the following clauses:

1. The constant, 0 , is primitive recursive.
2. The successor function, S, is primitive recursive.
3. Each projection function P_{i}^{n} is primitive recursive.
4. If f is a k-ary primitive recursive function and g_{0}, \ldots, g_{k-1} are l-ary primitive recursive functions, then the composition of f with g_{0}, \ldots, g_{k-1} is primitive recursive.
5. If f is a k-ary primitive recursive function and g is a $k+2$-ary primitive recursive function, then the function defined by primitive recursion from f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest set containing the constant 0 , the successor function, and projection functions, and closed under composition and primitive recursion.

14.2. PRIMITIVE RECURSION

Another way of describing the set of primitive recursive functions keeps track of the "stage" at which a function enters the set. Let S_{0} denote the set of starting functions: zero, successor, and the projections. Once S_{i} has been defined, let S_{i+1} be the set of all functions you get by applying a single instance of composition or primitive recursion to functions in S_{i}. Then

$$
S=\bigcup_{i \in \mathbb{N}} S_{i}
$$

is the set of primitive recursive functions
Our definition of composition may seem too rigid, since g_{0}, \ldots, g_{k-1} are all required to have the same arity, l. But adding the projection functions provides the desired flexibility. For example, suppose f and g are ternary functions and h is the binary function defined by

$$
h(x, y)=f(x, g(x, x, y), y)
$$

Then the definition of h can be rewritten with the projection functions, as

$$
h(x, y)=f\left(P_{0}^{2}(x, y), g\left(P_{0}^{2}(x, y), P_{0}^{2}(x, y), P_{1}^{2}(x, y)\right), P_{1}^{2}(x, y)\right)
$$

Then h is the composition of f with P_{0}^{2}, l, P_{1}^{2}, where

$$
l(x, y)=g\left(P_{0}^{2}(x, y), P_{0}^{2}(x, y), P_{1}^{2}(x, y)\right)
$$

i.e., l is the composition of g with $P_{0}^{2}, P_{0}^{2}, P_{1}^{2}$.

For another example, let us consider one of the informal examples given above, namely, addition. This is described recursively by the following two equations:

$$
\begin{aligned}
x+0 & =x \\
x+(y+1) & =S(x+y)
\end{aligned}
$$

In other words, addition is the function g defined recursively by the equations

$$
\begin{aligned}
g(0, x) & =x \\
g(y+1, x) & =S(g(y, x))
\end{aligned}
$$

But even this is not a strict primitive recursive definition; we need to put it in the form

$$
\begin{aligned}
g(0, x) & =k(x) \\
g(y+1, x) & =h(y, g(y, x), x)
\end{aligned}
$$

for some 1-ary primitive recursive function k and some 3-ary primitive recursive function h. We can take k to be P_{0}^{1}, and we can define h using composition,

$$
h(y, w, x)=S\left(P_{1}^{3}(y, w, x)\right)
$$

The function h, being the composition of basic primitive recursive functions, is primitive recursive; and hence so is g. (Note that, strictly speaking, we have defined the function $g(y, x)$ meeting the recursive specification of $x+$ y; in other words, the variables are in a different order. Luckily, addition is commutative, so here the difference is not important; otherwise, we could define the function g^{\prime} by

$$
\left.g^{\prime}(x, y)=g\left(P_{1}^{2}(y, x)\right), P_{0}^{2}(y, x)\right)=g(y, x)
$$

using composition.)
One advantage to having the precise description of the primitive recursive functions is that we can be systematic in describing them. For example, we can assign a "notation" to each such function, as follows. Use symbols $0, S$, and P_{i}^{n} for zero, successor, and the projections. Now suppose f is defined by composition from a k-ary function h and l-ary functions g_{0}, \ldots, g_{k-1}, and we have assigned notations $H, G_{0}, \ldots, G_{k-1}$ to the latter functions. Then, using a new symbol $\operatorname{Comp}_{k, l}$, we can denote the function f by $\operatorname{Comp}_{k, l}\left[H, G_{0}, \ldots, G_{k-1}\right]$. For the functions defined by primitive recursion, we can use analogous notations of the form $\operatorname{Rec}_{k}[G, H]$, where k denotes that arity of the function being defined. With this setup, we can denote the addition function by

$$
\operatorname{Rec}_{2}\left[P_{0}^{1}, \operatorname{Comp}_{1,3}\left[S, P_{1}^{3}\right]\right]
$$

Having these notations sometimes proves useful.

14.3 Primitive Recursive Functions are Computable

Suppose a function h is defined by primitive recursion

$$
\begin{aligned}
h(0, \vec{z}) & =f(\vec{z}) \\
h(x+1, \vec{z}) & =g(x, h(x, \vec{z}), \vec{z})
\end{aligned}
$$

and suppose the functions f and g are computable. Then $h(0, \vec{z})$ can obviously be computed, since it is just $f(\vec{z})$ which we assume is computable. $h(1, \vec{z})$ can then also be computed, since $1=0+1$ and so $h(1, \vec{z})$ is just

$$
g(0, h(0, \vec{z}), \vec{z})=g(0, f(\vec{z}), \vec{z})
$$

We can go on in this way and compute

$$
\begin{aligned}
& h(2, \vec{z})=g(1, g(0, f(\vec{z}), \vec{z}), \vec{z}) \\
& h(3, \vec{z})=g(2, g(1, g(0, f(\vec{z}), \vec{z}), \vec{z}), \vec{z}) \\
& h(4, \vec{z})=g(3, g(2, g(1, g(0, f(\vec{z}), \vec{z}), \vec{z}), \vec{z}), \vec{z})
\end{aligned}
$$

14.4. EXAMPLES OF PRIMITIVE RECURSIVE FUNCTIONS

Thus, to compute $h(x, \vec{z})$ in general, successively compute $h(0, \vec{z}), h(1, \vec{z}), \ldots$, until we reach $h(x, \vec{z})$.

Thus, primitive recursion yields a new computable function if the functions f and g are computable. Composition of functions also results in a computable function if the functions f and g_{i} are computable.

Since the basic functions $0, S$, and P_{i}^{n} are computable, and composition and primitive recursion yield computable functions from computable functions, his means that every primitive recursive function is computable.

14.4 Examples of Primitive Recursive Functions

Here are some examples of primitive recursive functions:

1. Constants: for each natural number n, n is a 0 -ary primitive recursive function, since it is equal to $S(S(\ldots S(0)))$.
2. The identity function: $\operatorname{id}(x)=x$, i.e. P_{0}^{1}
3. Addition, $x+y$
4. Multiplication, $x \cdot y$
5. Exponentiation, x^{y} (with 0^{0} defined to be 1)
6. Factorial, x !
7. The predecessor function, $\operatorname{pred}(x)$, defined by

$$
\operatorname{pred}(0)=0, \quad \operatorname{pred}(x+1)=x
$$

8. Truncated subtraction, $x-y$, defined by

$$
x \doteq 0=x, \quad x \doteq(y+1)=\operatorname{pred}(x \dot{-} y)
$$

9. Maximum, $\max (x, y)$, defined by

$$
\max (x, y)=x+(y \dot{-})
$$

10. Minimum, $\min (x, y)$
11. Distance between x and $y,|x-y|$

The set of primitive recursive functions is further closed under the following two operations:

1. Finite sums: if $f(x, \vec{z})$ is primitive recursive, then so is the function

$$
g(y, \vec{z})=\sum_{x=0}^{y} f(x, \vec{z})
$$

2. Finite products: if $f(x, \vec{z})$ is primitive recursive, then so is the function

$$
h(y, \vec{z})=\prod_{x=0}^{y} f(x, \vec{z})
$$

For example, finite sums are defined recursively by the equations

$$
g(0, \vec{z})=f(0, \vec{z}), \quad g(y+1, \vec{z})=g(y, \vec{z})+f(y+1, \vec{z})
$$

We can also define boolean operations, where 1 stands for true, and 0 for false:

1. Negation, $\operatorname{not}(x)=1-x$
2. Conjunction, and $(x, y)=x \cdot y$

Other classical boolean operations like or (x, y) and ifthen (x, y) can be defined from these in the usual way.

14.5 Primitive Recursive Relations

Definition 14.4. A relation $R(\vec{x})$ is said to be primitive recursive if its characteristic function,

$$
\chi_{R}(\vec{x})= \begin{cases}1 & \text { if } R(\vec{x}) \\ 0 & \text { otherwise }\end{cases}
$$

is primitive recursive.
In other words, when one speaks of a primitive recursive relation $R(\vec{x})$, one is referring to a relation of the form $\chi_{R}(\vec{x})=1$, where χ_{R} is a primitive recursive function which, on any input, returns either 1 or 0 . For example, the relation $\operatorname{Zero}(x)$, which holds if and only if $x=0$, corresponds to the function $\chi_{\text {Zero }}$, defined using primitive recursion by

$$
\chi_{\text {Zero }}(0)=1, \quad \chi_{\text {Zero }}(x+1)=0
$$

It should be clear that one can compose relations with other primitive recursive functions. So the following are also primitive recursive:

1. The equality relation, $x=y$, defined by $\operatorname{Zero}(|x-y|)$
2. The less-than relation, $x \leq y$, defined by $\operatorname{Zero}(x-y)$

Furthermore, the set of primitive recursive relations is closed under boolean operations:

1. Negation, $\neg P$
2. Conjunction, $P \wedge Q$

14.5. PRIMITIVE RECURSIVE RELATIONS

3. Disjunction, $P \vee Q$
4. Implication, $P \rightarrow Q$
are all primitive recursive, if P and Q are.
One can also define relations using bounded quantification:
5. Bounded universal quantification: if $R(x, \vec{z})$ is a primitive recursive relation, then so is the relation

$$
\forall x<y R(x, \vec{z})
$$

which holds if and only if $R(x, \vec{z})$ holds for every x less than y.
2. Bounded existential quantification: if $R(x, \vec{z})$ is a primitive recursive relation, then so is

$$
\exists x<y R(x, \vec{z})
$$

By convention, we take expressions of the form $\forall x<0 R(x, \vec{z})$ to be true (for the trivial reason that there are no x less than 0) and $\exists x<0 R(x, \vec{z})$ to be false. A universal quantifier functions just like a finite product; it can also be defined directly by

$$
g(0, \vec{z})=1, \quad g(y+1, \vec{z})=\chi_{\text {and }}\left(g(y, \vec{z}), \chi_{R}(y, \vec{z})\right)
$$

Bounded existential quantification can similarly be defined using or. Alternatively, it can be defined from bounded universal quantification, using the equivalence, $\exists x<y \varphi(x) \leftrightarrow \neg \forall x<y \neg \varphi(x)$. Note that, for example, a bounded quantifier of the form $\exists x \leq y$ is equivalent to $\exists x<y+1$.

Another useful primitive recursive function is:

1. The conditional function, cond (x, y, z), defined by

$$
\operatorname{cond}(x, y, z)= \begin{cases}y & \text { if } x=0 \\ z & \text { otherwise }\end{cases}
$$

This is defined recursively by

$$
\operatorname{cond}(0, y, z)=y, \quad \operatorname{cond}(x+1, y, z)=z
$$

One can use this to justify:

1. Definition by cases: if $g_{0}(\vec{x}), \ldots, g_{m}(\vec{x})$ are functions, and $R_{1}(\vec{x}), \ldots, R_{m-1}(\vec{x})$ are relations, then the function f defined by

$$
f(\vec{x})= \begin{cases}g_{0}(\vec{x}) & \text { if } R_{0}(\vec{x}) \\ g_{1}(\vec{x}) & \text { if } R_{1}(\vec{x}) \text { and not } R_{0}(\vec{x}) \\ \vdots & \\ g_{m-1}(\vec{x}) & \text { if } R_{m-1}(\vec{x}) \text { and none of the previous hold } \\ g_{m}(\vec{x}) & \text { otherwise }\end{cases}
$$

is also primitive recursive.

When $m=1$, this is just the function defined by

$$
f(\vec{x})=\operatorname{cond}\left(\chi_{\neg R_{0}}(\vec{x}), g_{0}(\vec{x}), g_{1}(\vec{x})\right)
$$

For m greater than 1, one can just compose definitions of this form.

14.6 Bounded Minimization

Proposition 14.5. If $R(x, \vec{z})$ is primitive recursive, so is the function $m_{R}(y, \vec{z})$ which returns the least x less than y such that $R(x, \vec{z})$ holds, if there is one, and 0 otherwise. We will write the function m_{R} as

$$
\min x<y R(x, \vec{z})
$$

Proof. Note than there can be no $x<0$ such that $R(x, \vec{z})$ since there is no $x<0$ at all. So $m_{R}(x, 0)=0$.

In case the bound is $y+1$ we have three cases: (a) There is an $x<y$ such that $R(x, \vec{z})$, in which case $m_{R}(y+1, \vec{z})=m_{R}(y, \vec{z})$. (b) There is no such x but $R(y, \vec{z})$ holds, then $m_{R}(y+1, \vec{z})=y$. (c) There is no $x<y+1$ such that $R(x, \vec{z})$, then $m_{R}(y+1, \vec{z})=0$. So,

$$
\begin{aligned}
m_{R}(0, \vec{z}) & =0 \\
m_{R}(y+1, \vec{z}) & = \begin{cases}m_{R}(y, \vec{z}) & \text { if } \exists x<y R(x, \vec{z}) \\
y & \text { otherwise, provided } R(y, \vec{z}) \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

The choice of " 0 otherwise" is somewhat arbitrary. It is in fact even easier to recursively define the function m_{R}^{\prime} which returns the least x less than y such that $R(x, \vec{z})$ holds, and $y+1$ otherwise. When we use min, however, we will always know that the least x such that $R(x, \vec{z})$ exists and is less than y. Thus, in practice, we will not have to worry about the possibility that if $\min x<$ y $R(x, \vec{z})=0$ we do not know if that value indicates that $R(0, \vec{z})$ or that for no $x<y, R(x, \vec{z})$. As with bounded quantification, $\min x \leq y \ldots$ can be understood as min $x<y+1 \ldots$

All this provides us with a good deal of machinery to show that natural functions and relations are primitive recursive. For example, the following are all primitive recursive:

1. The relation " x divides y ", written $x \mid y$, defined by

$$
x \mid y \Leftrightarrow \exists z \leq y(x \cdot z)=y .
$$

2. The relation $\operatorname{Prime}(x)$, which holds iff x is prime, defined by

$$
\operatorname{Prime}(x) \Leftrightarrow(x \geq 2 \wedge \forall y \leq x(y \mid x \rightarrow y=1 \vee y=x))
$$

3. The function nextPrime (x), which returns the first prime number larger than x, defined by

$$
\operatorname{nextPrime}(x)=\min y \leq x!+1(y>x \wedge \operatorname{Prime}(y))
$$

Here we are relying on Euclid's proof of the fact that there is always a prime number between x and $x!+1$.
4. The function $p(x)$, returning the x th prime, defined by $p(0)=2, p(x+$ $1)=\operatorname{next} \operatorname{Prime}(p(x))$. For convenience we will write this as p_{x} (starting with 0 ; i.e. $p_{0}=2$).

14.7 Sequences

The set of primitive recursive functions is remarkably robust. But we will be able to do even more once we have developed an adequate means of handling sequences. We will identify finite sequences of natural numbers with natural numbers in the following way: the sequence $\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ corresponds to the number

$$
p_{0}^{a_{0}+1} \cdot p_{1}^{a_{1}+1} \cdot p_{2}^{a_{2}+1} \cdots \cdots p_{k}^{a_{k}+1}
$$

We add one to the exponents to guarantee that, for example, the sequences $\langle 2,7,3\rangle$ and $\langle 2,7,3,0,0\rangle$ have distinct numeric codes. We will take both 0 and 1 to code the empty sequence; for concreteness, let \varnothing denote 0 .

Let us define the following functions:

1. len (s), which returns the length of the sequence s :

$$
\operatorname{len}(s)= \begin{cases}0 & \text { if } s=0 \text { or } s=1 \\ \min i<s\left(p_{i} \mid s \wedge \forall j<s\left(j>i \rightarrow p_{j} \vee s\right)\right)+1 & \text { otherwise }\end{cases}
$$

Note that we need to bound the search on i; clearly s provides an acceptable bound.
2. append (s, a), which returns the result of appending a to the sequence s :

$$
\operatorname{append}(s, a)= \begin{cases}2^{a+1} & \text { if } s=0 \text { or } s=1 \\ s \cdot p_{\operatorname{len}(s)}^{a+1} & \text { otherwise }\end{cases}
$$

3. element (s, i), which returns the i th element of s (where the initial element is called the 0 th), or 0 if i is greater than or equal to the length of s :

$$
\operatorname{element}(s, i)= \begin{cases}0 & \text { if } i \geq \operatorname{len}(s) \\ \min j<s\left(p_{i}^{j+2} \not \nless s\right)-1 & \text { otherwise }\end{cases}
$$

Instead of using the official names for the functions defined above, we introduce a more compact notation. We will use $(s)_{i}$ instead of element (s, i), and $\left\langle s_{0}, \ldots, s_{k}\right\rangle$ to abbreviate append (append (... append $\left.\left.\left(\varnothing, s_{0}\right) \ldots\right), s_{k}\right)$. Note that if s has length k, the elements of s are $(s)_{0}, \ldots,(s)_{k-1}$.

It will be useful for us to be able to bound the numeric code of a sequence in terms of its length and its largest element. Suppose s is a sequence of length k, each element of which is less than equal to some number x. Then s has at most k prime factors, each at most p_{k-1}, and each raised to at most $x+1$ in the prime factorization of s. In other words, if we define

$$
\text { sequenceBound }(x, k)=p_{k-1}^{k \cdot(x+1)}
$$

then the numeric code of the sequence s described above is at most sequenceBound (x, k).
Having such a bound on sequences gives us a way of defining new functions using bounded search. For example, suppose we want to define the function concat (s, t), which concatenates two sequences. One first option is to define a "helper" function hconcat (s, t, n) which concatenates the first n symbols of t to s. This function can be defined by primitive recursion, as follows:

1. hconcat $(s, t, 0)=s$
2. hconcat $(s, t, n+1)=\operatorname{append}\left(\operatorname{hconcat}(s, t, n),(t)_{n}\right)$

Then we can define concat by

$$
\operatorname{concat}(s, t)=\operatorname{hconcat}(s, t, \operatorname{len}(t))
$$

But using bounded search, we can be lazy. All we need to do is write down a primitive recursive specification of the object (number) we are looking for, and a bound on how far to look. The following works:

$$
\begin{aligned}
& \operatorname{concat}(s, t)=\min v< \operatorname{sequenceBound}(s+t, \operatorname{len}(s)+\operatorname{len}(t)) \\
&(\operatorname{len}(v)=\operatorname{len}(s)+\operatorname{len}(t) \wedge \\
&\left.\forall i<\operatorname{len}(s)\left((v)_{i}=(s)_{i}\right) \wedge \forall j<\operatorname{len}(t)\left((v)_{\operatorname{len}(s)+j}=(t)_{j}\right)\right)
\end{aligned}
$$

We will write $s \frown t$ instead of concat (s, t).

14.8 Other Recursions

Using pairing and sequencing, we can justify more exotic (and useful) forms of primitive recursion. For example, it is often useful to define two functions simultaneously, such as in the following definition:

$$
\begin{aligned}
f_{0}(0, \vec{z}) & =k_{0}(\vec{z}) \\
f_{1}(0, \vec{z}) & =k_{1}(\vec{z}) \\
f_{0}(x+1, \vec{z}) & =h_{0}\left(x, f_{0}(x, \vec{z}), f_{1}(x, \vec{z}), \vec{z}\right) \\
f_{1}(x+1, \vec{z}) & =h_{1}\left(x, f_{0}(x, \vec{z}), f_{1}(x, \vec{z}), \vec{z}\right)
\end{aligned}
$$

14.8. OTHER RECURSIONS

This is an instance of simultaneous recursion. Another useful way of defining functions is to give the value of $f(x+1, \vec{z})$ in terms of all the values $f(0, \vec{z})$, $\ldots, f(x, \vec{z})$, as in the following definition:

$$
\begin{aligned}
f(0, \vec{z}) & =g(\vec{z}) \\
f(x+1, \vec{z}) & =h(x,\langle f(0, \vec{z}), \ldots, f(x, \vec{z})\rangle, \vec{z})
\end{aligned}
$$

The following schema captures this idea more succinctly:

$$
f(x, \vec{z})=h(x,\langle f(0, \vec{z}), \ldots, f(x-1, \vec{z})\rangle)
$$

with the understanding that the second argument to h is just the empty sequence when x is 0 . In either formulation, the idea is that in computing the "successor step," the function f can make use of the entire sequence of values computed so far. This is known as a course-of-values recursion. For a particular example, it can be used to justify the following type of definition:

$$
f(x, \vec{z})= \begin{cases}h(x, f(k(x, \vec{z}), \vec{z}), \vec{z}) & \text { if } k(x, \vec{z})<x \\ g(x, \vec{z}) & \text { otherwise }\end{cases}
$$

In other words, the value of f at x can be computed in terms of the value of f at any previous value, given by k.

You should think about how to obtain these functions using ordinary primitive recursion. One final version of primitive recursion is more flexible in that one is allowed to change the parameters (side values) along the way:

$$
\begin{aligned}
f(0, \vec{z}) & =g(\vec{z}) \\
f(x+1, \vec{z}) & =h(x, f(x, k(\vec{z})), \vec{z})
\end{aligned}
$$

This, too, can be simulated with ordinary primitive recursion. (Doing so is tricky. For a hint, try unwinding the computation by hand.)

Finally, notice that we can always extend our "universe" by defining additional objects in terms of the natural numbers, and defining primitive recursive functions that operate on them. For example, we can take an integer to be given by a pair $\langle m, n\rangle$ of natural numbers, which, intuitively, represents the integer $m-n$. In other words, we say

$$
\text { Integer }(x) \Leftrightarrow \text { length }(x)=2
$$

and then we define the following:

1. iequal (x, y)
2. iplus (x, y)
3. iminus (x, y)
4. itimes (x, y)

Similarly, we can define a rational number to be a pair $\langle x, y\rangle$ of integers with $y \neq 0$, representing the value x / y. And we can define qequal, qplus, qminus, qtimes, qdivides, and so on.

14.9 Non-Primitive Recursive Functions

The primitive recursive functions do not exhaust the intuitively computable functions. It should be intuitively clear that we can make a list of all the unary primitive recursive functions, $f_{0}, f_{1}, f_{2}, \ldots$ such that we can effectively compute the value of f_{x} on input y; in other words, the function $g(x, y)$, defined by

$$
g(x, y)=f_{x}(y)
$$

is computable. But then so is the function

$$
\begin{aligned}
h(x) & =g(x, x)+1 \\
& =f_{x}(x)+1
\end{aligned}
$$

For each primitive recursive function f_{i}, the value of h and f_{i} differ at i. So h is computable, but not primitive recursive; and one can say the same about g. This is a an "effective" version of Cantor's diagonalization argument.

One can provide more explicit examples of computable functions that are not primitive recursive. For example, let the notation $g^{n}(x)$ denote $g(g(\ldots g(x)))$, with $n g^{\prime}$ s in all; and define a sequence g_{0}, g_{1}, \ldots of functions by

$$
\begin{aligned}
g_{0}(x) & =x+1 \\
g_{n+1}(x) & =g_{n}^{x}(x)
\end{aligned}
$$

You can confirm that each function g_{n} is primitive recursive. Each successive function grows much faster than the one before; $g_{1}(x)$ is equal to $2 x, g_{2}(x)$ is equal to $2^{x} \cdot x$, and $g_{3}(x)$ grows roughly like an exponential stack of $x 2^{\prime}$ s. Ackermann's function is essentially the function $G(x)=g_{x}(x)$, and one can show that this grows faster than any primitive recursive function.

Let us return to the issue of enumerating the primitive recursive functions. Remember that we have assigned symbolic notations to each primitive recursive function; so it suffices to enumerate notations. We can assign a natural number $\#(F)$ to each notation F, recursively, as follows:

$$
\begin{aligned}
\#(0) & =\langle 0\rangle \\
\#(S) & =\langle 1\rangle \\
\#\left(P_{i}^{n}\right) & =\langle 2, n, i\rangle \\
\#\left(\operatorname{Comp}_{k, l}\left[H, G_{0}, \ldots, G_{k-1}\right]\right) & =\left\langle 3, k, l, \#(H), \#\left(G_{0}\right), \ldots, \#\left(G_{k-1}\right)\right\rangle \\
\#\left(\operatorname{Rec}_{l}[G, H]\right) & =\langle 4, l, \#(G), \#(H)\rangle
\end{aligned}
$$

Here I am using the fact that every sequence of numbers can be viewed as a natural number, using the codes from the last section. The upshot is that every code is assigned a natural number. Of course, some sequences (and hence some numbers) do not correspond to notations; but we can let f_{i} be the unary primitive recursive function with notation coded as i, if i codes such a
notation; and the constant 0 function otherwise. The net result is that we have an explicit way of enumerating the unary primitive recursive functions.
(In fact, some functions, like the constant zero function, will appear more than once on the list. This is not just an artifact of our coding, but also a result of the fact that the constant zero function has more than one notation. We will later see that one can not computably avoid these repetitions; for example, there is no computable function that decides whether or not a given notation represents the constant zero function.)

We can now take the function $g(x, y)$ to be given by $f_{x}(y)$, where f_{x} refers to the enumeration we have just described. How do we know that $g(x, y)$ is computable? Intuitively, this is clear: to compute $g(x, y)$, first "unpack" x, and see if it a notation for a unary function; if it is, compute the value of that function on input y.

You may already be convinced that (with some work!) one can write a program (say, in Java or C++) that does this; and now we can appeal to the Church-Turing thesis, which says that anything that, intuitively, is computable can be computed by a Turing machine.

Of course, a more direct way to show that $g(x, y)$ is computable is to describe a Turing machine that computes it, explicitly. This would, in particular, avoid the Church-Turing thesis and appeals to intuition. But, as noted above, working with Turing machines directly is unpleasant. Soon we will have built up enough machinery to show that $g(x, y)$ is computable, appealing to a model of computation that can be simulated on a Turing machine: namely, the recursive functions.

14.10 Partial Recursive Functions

To motivate the definition of the recursive functions, note that our proof that there are computable functions that are not primitive recursive actually establishes much more. The argument was simple: all we used was the fact was that it is possible to enumerate functions f_{0}, f_{1}, \ldots such that, as a function of x and $y, f_{x}(y)$ is computable. So the argument applies to any class of functions that can be enumerated in such a way. This puts us in a bind: we would like to describe the computable functions explicitly; but any explicit description of a collection of computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see that it is possible to enumerate the partial computable functions. In fact, we already pretty much know that this is the case, since it is possible to enumerate Turing machines in a systematic way. We will come back to our diagonal argument later, and explore why it does not go through when partial functions are included.

The question is now this: what do we need to add to the primitive recursive functions to obtain all the partial recursive functions? We need to do two
things:

1. Modify our definition of the primitive recursive functions to allow for partial functions as well.
2. Add something to the definition, so that some new partial functions are included.

The first is easy. As before, we will start with zero, successor, and projections, and close under composition and primitive recursion. The only difference is that we have to modify the definitions of composition and primitive recursion to allow for the possibility that some of the terms in the definition are not defined. If f and g are partial functions, we will write $f(x) \downarrow$ to mean that f is defined at x, i.e., x is in the domain of f; and $f(x) \uparrow$ to mean the opposite, i.e., that f is not defined at x. We will use $f(x) \simeq g(x)$ to mean that either $f(x)$ and $g(x)$ are both undefined, or they are both defined and equal. We will use these notations for more complicated terms as well. We will adopt the convention that if h and g_{0}, \ldots, g_{k} all are partial functions, then

$$
h\left(g_{0}(\vec{x}), \ldots, g_{k}(\vec{x})\right)
$$

is defined if and only if each g_{i} is defined at \vec{x}, and h is defined at $g_{0}(\vec{x})$, $\ldots, g_{k}(\vec{x})$. With this understanding, the definitions of composition and primitive recursion for partial functions is just as above, except that we have to replace " $=$ " by " \simeq ".

What we will add to the definition of the primitive recursive functions to obtain partial functions is the unbounded search operator. If $f(x, \vec{z})$ is any partial function on the natural numbers, define $\mu x f(x, \vec{z})$ to be
the least x such that $f(0, \vec{z}), f(1, \vec{z}), \ldots, f(x, \vec{z})$ are all defined, and $f(x, \vec{z})=0$, if such an x exists
with the understanding that $\mu x f(x, \vec{z})$ is undefined otherwise. This defines $\mu x f(x, \vec{z})$ uniquely.

Note that our definition makes no reference to Turing machines, or algorithms, or any specific computational model. But like composition and primitive recursion, there is an operational, computational intuition behind unbounded search. When it comes to the computability of a partial function, arguments where the function is undefined correspond to inputs for which the computation does not halt. The procedure for computing $\mu x f(x, \vec{z})$ will amount to this: compute $f(0, \vec{z}), f(1, \vec{z}), f(2, \vec{z})$ until a value of 0 is returned. If any of the intermediate computations do not halt, however, neither does the computation of $\mu x f(x, \vec{z})$.

If $R(x, \vec{z})$ is any relation, $\mu x R(x, \vec{z})$ is defined to be $\mu x\left(1-\chi_{R}(x, \vec{z})\right)$. In other words, $\mu x R(x, \vec{z})$ returns the least value of x such that $R(x, \vec{z})$ holds. So, if $f(x, \vec{z})$ is a total function, $\mu x f(x, \vec{z})$ is the same as $\mu x(f(x, \vec{z})=0)$. But note

14.11. THE NORMAL FORM THEOREM

that our original definition is more general, since it allows for the possibility that $f(x, \vec{z})$ is not everywhere defined (whereas, in contrast, the characteristic function of a relation is always total).

Definition 14.6. The set of partial recursive functions is the smallest set of partial functions from the natural numbers to the natural numbers (of various arities) containing zero, successor, and projections, and closed under composition, primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total, i.e., defined for every argument.

Definition 14.7. The set of recursive functions is the set of partial recursive functions that are total.

A recursive function is sometimes called "total recursive" to emphasize that it is defined everywhere.

14.11 The Normal Form Theorem

Theorem 14.8 (Kleene's Normal Form Theorem). There is a primitive recursive relation $T(e, x, s)$ and a primitive recursive function $U(s)$, with the following property: if f is any partial recursive function, then for some e,

$$
f(x) \simeq U(\mu s T(e, x, s))
$$

for every x.
The proof of the normal form theorem is involved, but the basic idea is simple. Every partial recursive function has an index e, intuitively, a number coding its program or definition. If $f(x) \downarrow$, the computation can be recorded systematically and coded by some number s, and that s codes the computation of f on input x can be checked primitive recursively using only x and the definition e. This means that T is primitive recursive. Given the full record of the computation s, the "upshot" of s is the value of $f(x)$, and it can be obtained from s primitive recursively as well.

The normal form theorem shows that only a single unbounded search is required for the definition of any partial recursive function. We can use the numbers e as "names" of partial recursive functions, and write φ_{e} for the function f defined by the equation in the theorem. Note that any partial recursive function can have more than one index-in fact, every partial recursive function has infinitely many indices.

14.12 The Halting Problem

The halting problem in general is the problem of deciding, given the specification e (e.g., program) of a computable function and a number n, whether the computation of the function on input n halts, i.e., produces a result. Famously, Alan Turing proved that this problem itself cannot be solved by a computable function, i.e., the function

$$
h(e, n)= \begin{cases}1 & \text { if computation } e \text { halts on input } n \\ 0 & \text { otherwise }\end{cases}
$$

is not computable.
In the context of partial recursive functions, the role of the specification of a program may be played by the index e given in Kleene's normal form theorem. If f is a partial recursive function, any e for which the equation in the normal form theorem holds, is an index of f. Given a number e, the normal form theorem states that

$$
\varphi_{e}(x) \simeq U(\mu s T(e, x, s))
$$

is partial recursive, and for every partial recursive $f: \mathbb{N} \rightarrow \mathbb{N}$, there is an $e \in \mathbb{N}$ such that $\varphi_{e}(x) \simeq f(x)$ for all $x \in \mathbb{N}$. In fact, for each such f there is not just one, but infinitely many such e. The halting function h is defined by

$$
h(e, x)= \begin{cases}1 & \text { if } \varphi_{e}(x) \downarrow \\ 0 & \text { otherwise }\end{cases}
$$

Note that $h(e, x)=0$ if $\varphi_{e}(x) \uparrow$, but also when e is not the index of a partial recursive function at all.

Theorem 14.9. The halting function h is not partial recursive.
Proof. If h were partial recursive, we could define

$$
d(y)= \begin{cases}1 & \text { if } h(y, y)=0 \\ \mu x x \neq x & \text { otherwise }\end{cases}
$$

From this definition it follows that

1. $d(y) \downarrow$ iff $\varphi_{y}(y) \uparrow$ or y is not the index of a partial recursive function.
2. $d(y) \uparrow \operatorname{iff} \varphi_{y}(y) \downarrow$.

If h were partial recursive, then d would be partial recursive as well. Thus, by the Kleene normal form theorem, it has an index e_{d}. Consider the value of $h\left(e_{d}, e_{d}\right)$. There are two possible cases, 0 and 1.

1. If $h\left(e_{d}, e_{d}\right)=1$ then $\varphi_{e_{d}}\left(e_{d}\right) \downarrow$. But $\varphi_{e_{d}} \simeq d$, and $d\left(e_{d}\right)$ is defined iff $h\left(e_{d}, e_{d}\right)=0$. So $h\left(e_{d}, e_{d}\right) \neq 1$.
2. If $h\left(e_{d}, e_{d}\right)=0$ then either e_{d} is not the index of a partial recursive function, or it is and $\varphi_{e_{d}}\left(e_{d}\right) \uparrow$. But again, $\varphi_{e_{d}} \simeq d$, and $d\left(e_{d}\right)$ is undefined iff $\varphi_{e_{d}}\left(e_{d}\right) \downarrow$.

The upshot is that e_{d} cannot, after all, be the index of a partial recursive function. But if h were partial recursive, d would be too, and so our definition of e_{d} as an index of it would be admissible. We must conclude that h cannot be partial recursive.

14.13 General Recursive Functions

There is another way to obtain a set of total functions. Say a total function $f(x, \vec{z})$ is regular if for every sequence of natural numbers \vec{z}, there is an x such that $f(x, \vec{z})=0$. In other words, the regular functions are exactly those functions to which one can apply unbounded search, and end up with a total function. One can, conservatively, restrict unbounded search to regular functions:

Definition 14.10. The set of general recursive functions is the smallest set of functions from the natural numbers to the natural numbers (of various arities) containing zero, successor, and projections, and closed under composition, primitive recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. The difference between Definition 14.10 and Definition 14.7 is that in the latter one is allowed to use partial recursive functions along the way; the only requirement is that the function you end up with at the end is total. So the word "general," a historic relic, is a misnomer; on the surface, Definition 14.10 is less general than Definition 14.7. But, fortunately, the difference is illusory; though the definitions are different, the set of general recursive functions and the set of recursive functions are one and the same.

Problems

Problem 14.1. Show that

$$
\left.f(x, y)=2^{2 \cdot 2^{2^{x}}}\right\} y 2^{\prime} \mathrm{s}
$$

is primitive recursive.
Problem 14.2. Show that $d(x, y)=\lfloor x / y\rfloor$ (i.e., division, where you disregard everything after the decimal point) is primitive recursive. When $y=0$, we stipulate $d(x, y)=0$. Give an explicit definifion of d using primitive recursion
and composition. You will have detour through an axiliary function-you cannot use recursion on the arguments x or y themselves.

Problem 14.3. Define integer division $d(x, y)$ using bounded minimization.
Problem 14.4. Show that there is a primitive recursive function sconcat(s) whith the property that

$$
\operatorname{sconcat}\left(\left\langle s_{0}, \ldots, s_{k}\right\rangle\right)=s_{0} \frown \ldots \ldots \frown s_{k} .
$$

Chapter 15

The Lambda Calculus

This chapter needs to be expanded (issue \#66).

15.1 Introduction

The lambda calculus was originally designed by Alonzo Church in the early 1930s as a basis for constructive logic, and not as a model of the computable functions. But soon after the Turing computable functions, the recursive functions, and the general recursive functions were shown to be equivalent, lambda computability was added to the list. The fact that this initially came as a small surprise makes the characterization all the more interesting.

Lambda notation is a convenient way of referring to a function directly by a symbolic expression which defines it, instead of defining a name for it. Instead of saying "let f be the function defined by $f(x)=x+3$, " one can say, "let f be the function $\lambda x .(x+3)$." In other words, $\lambda x .(x+3)$ is just a name for the function that adds three to its argument. In this expression, x is a dummy variable, or a placeholder: the same function can just as well be denoted by $\lambda y .(y+3)$. The notation works even with other parameters around. For example, suppose $g(x, y)$ is a function of two variables, and k is a natural number. Then $\lambda x . g(x, k)$ is the function which maps any x to $g(x, k)$.

This way of defining a function from a symbolic expression is known as lambda abstraction. The flip side of lambda abstraction is application: assuming one has a function f (say, defined on the natural numbers), one can apply it to any value, like 2 . In conventional notation, of course, we write $f(2)$ for the result.

What happens when you combine lambda abstraction with application? Then the resulting expression can be simplified, by "plugging" the applicand in for the abstracted variable. For example,

$$
(\lambda x \cdot(x+3))(2)
$$

can be simplified to $2+3$.
Up to this point, we have done nothing but introduce new notations for conventional notions. The lambda calculus, however, represents a more radical departure from the set-theoretic viewpoint. In this framework:

1. Everything denotes a function.
2. Functions can be defined using lambda abstraction.
3. Anything can be applied to anything else.

For example, if F is a term in the lambda calculus, $F(F)$ is always assumed to be meaningful. This liberal framework is known as the untyped lambda calculus, where "untyped" means "no restriction on what can be applied to what."

There is also a typed lambda calculus, which is an important variation on the untyped version. Although in many ways the typed lambda calculus is similar to the untyped one, it is much easier to reconcile with a classical settheoretic framework, and has some very different properties.

Research on the lambda calculus has proved to be central in theoretical computer science, and in the design of programming languages. LISP, designed by John McCarthy in the 1950s, is an early example of a language that was influenced by these ideas.

15.2 The Syntax of the Lambda Calculus

One starts with a sequence of variables x, y, z, \ldots and some constant symbols a, b, c, \ldots. The set of terms is defined inductively, as follows:

1. Each variable is a term.
2. Each constant is a term.
3. If M and N are terms, so is $(M N)$.
4. If M is a term and x is a variable, then $(\lambda x . M)$ is a term.

The system without any constants at all is called the pure lambda calculus.
We will follow a few notational conventions:

1. When parentheses are left out, application takes place from left to right. For example, if M, N, P, and Q are terms, then $M N P Q$ abbreviates (((MN)P)Q).
2. Again, when parentheses are left out, lambda abstraction is to be given the widest scope possible. From example, $\lambda x . M N P$ is read λx. (MNP).

15.3. REDUCTION OF LAMBDA TERMS

3. A lambda can be used to abstract multiple variables. For example, $\lambda x y z . M$ is short for $\lambda x . \lambda y . \lambda z . M$.

For example,

$$
\lambda x y \cdot x x y x \lambda z \cdot x z
$$

abbreviates

$$
\lambda x \cdot \lambda y \cdot((((x x) y) x) \lambda z \cdot(x z))
$$

You should memorize these conventions. They will drive you crazy at first, but you will get used to them, and after a while they will drive you less crazy than having to deal with a morass of parentheses.

Two terms that differ only in the names of the bound variables are called α equivalent; for example, $\lambda x . x$ and $\lambda y . y$. It will be convenient to think of these as being the "same" term; in other words, when we say that M and N are the same, we also mean "up to renamings of the bound variables." Variables that are in the scope of a λ are called "bound", while others are called "free." There are no free variables in the previous example; but in

$$
(\lambda z \cdot y z) x
$$

y and x are free, and z is bound.

15.3 Reduction of Lambda Terms

What can one do with lambda terms? Simplify them. If M and N are any lambda terms and x is any variable, we can use $M[N / x]$ to denote the result of substituting N for x in M, after renaming any bound variables of M that would interfere with the free variables of N after the substitution. For example,

$$
(\lambda w \cdot x x w)[y y z / x]=\lambda w \cdot(y y z)(y y z) w .
$$

Alternative notations for substitution are $[N / x] M, M[N / x]$, and also $M[x / N]$. Beware!

Intuitively, $(\lambda x . M) N$ and $M[N / x]$ have the same meaning; the act of replacing the first term by the second is called β-conversion. More generally, if it is possible convert a term P to P^{\prime} by β-conversion of some subterm, one says $P \beta$-reduces to P^{\prime} in one step. If P can be converted to P^{\prime} with any number of one-step reductions (possibly none), then $P \beta$-reduces to P^{\prime}. A term that cannot be β-reduced any further is called β-irreducible, or β-normal. I will say "reduces" instead of " β-reduces," etc., when the context is clear.

Let us consider some examples.

1. We have

$$
\begin{aligned}
(\lambda x . x x y) \lambda z . z & \triangleright_{1}(\lambda z . z)(\lambda z . z) y \\
& \triangleright_{1}(\lambda z . z) y \\
& \triangleright_{1} y
\end{aligned}
$$

2. "Simplifying" a term can make it more complex:

$$
\begin{aligned}
(\lambda x . x x y)(\lambda x . x x y) & \triangleright_{1}(\lambda x . x x y)(\lambda x . x x y) y \\
& \triangleright_{1}(\lambda x . x x y)(\lambda x . x x y) y y \\
& \triangleright_{1} \cdots
\end{aligned}
$$

3. It can also leave a term unchanged:

$$
(\lambda x . x x)(\lambda x, x x) \triangleright_{1}(\lambda x, x x)(\lambda x, x x)
$$

4. Also, some terms can be reduced in more than one way; for example,

$$
(\lambda x \cdot(\lambda y \cdot y x) z) v \triangleright_{1}(\lambda y \cdot y v) z
$$

by contracting the outermost application; and

$$
(\lambda x \cdot(\lambda y \cdot y x) z) v \triangleright_{1}(\lambda x \cdot z x) v
$$

by contracting the innermost one. Note, in this case, however, that both terms further reduce to the same term, $z v$.

The final outcome in the last example is not a coincidence, but rather illustrates a deep and important property of the lambda calculus, known as the "Church-Rosser property."

15.4 The Church-Rosser Property

Theorem 15.1. Let M, N_{1}, and N_{2} be terms, such that $M \triangleright N_{1}$ and $M \triangleright N_{2}$. Then there is a term P such that $N_{1} \triangleright P$ and $N_{2} \triangleright P$.

Corollary 15.2. Suppose M can be reduced to normal form. Then this normal form is unique.

Proof. If $M \triangleright N_{1}$ and $M \triangleright N_{2}$, by the previous theorem there is a term P such that N_{1} and N_{2} both reduce to P. If N_{1} and N_{2} are both in normal form, this can only happen if $N_{1}=P=N_{2}$.

Finally, we will say that two terms M and N are β-equivalent, or just equivalent, if they reduce to a common term; in other words, if there is some P such that $M \triangleright P$ and $N \triangleright P$. This is written $M \equiv N$. Using Theorem 15.1, you can check that \equiv is an equivalence relation, with the additional property that for every M and N, if $M \triangleright N$ or $N \triangleright M$, then $M \equiv N$. (In fact, one can show that \equiv is the smallest equivalence relation having this property.)

15.5 Representability by Lambda Terms

How can the lambda calculus serve as a model of computation? At first, it is not even clear how to make sense of this statement. To talk about computability on the natural numbers, we need to find a suitable representation for such numbers. Here is one that works surprisingly well.

Definition 15.3. For each natural number n, define the numeral \bar{n} to be the lambda term λx. λy. $(x(x(x(\ldots x(y)))))$, where there are $n x^{\prime}$ s in all.

The terms \bar{n} are "iterators": on input f, \bar{n} returns the function mapping y to $f^{n}(y)$. Note that each numeral is normal. We can now say what it means for a lambda term to "compute" a function on the natural numbers.

Definition 15.4. Let $f\left(x_{0}, \ldots, x_{n-1}\right)$ be an n-ary partial function from \mathbb{N} to \mathbb{N}. We say a lambda term X represents f if for every sequence of natural numbers m_{0}, \ldots, m_{n-1},

$$
X \overline{m_{0} m_{1}} \ldots \overline{m_{n-1}} \triangleright \overline{f\left(m_{0}, m_{1}, \ldots, m_{n-1}\right)}
$$

if $f\left(m_{0}, \ldots, m_{n-1}\right)$ is defined, and $X \overline{m_{0} m_{1}} \ldots \overline{m_{n-1}}$ has no normal form otherwise.

Theorem 15.5. A function f is a partial computable function if and only if it is represented by a lambda term.

This theorem is somewhat striking. As a model of computation, the lambda calculus is a rather simple calculus; the only operations are lambda abstraction and application! From these meager resources, however, it is possible to implement any computational procedure.

15.6 Lambda Representable Functions are Computable

Theorem 15.6. If a partial function f is represented by a lambda term, it is computable.

Proof. Suppose a function f, is represented by a lambda term X. Let us describe an informal procedure to compute f. On input m_{0}, \ldots, m_{n-1}, write down the term $X \bar{m}_{0} \ldots \bar{m}_{n-1}$. Build a tree, first writing down all the one-step reductions of the original term; below that, write all the one-step reductions of those (i.e., the two-step reductions of the original term); and keep going. If you ever reach a numeral, return that as the answer; otherwise, the function is undefined.

An appeal to Church's thesis tells us that this function is computable. A better way to prove the theorem would be to give a recursive description of this search procedure. For example, one could define a sequence primitive recursive functions and relations, "IsASubterm," "Substitute," "ReducesToInOneStep,"
"ReductionSequence," "Numeral," etc. The partial recursive procedure for computing $f\left(m_{0}, \ldots, m_{n-1}\right)$ is then to search for a sequence of one-step reductions starting with $X \overline{m_{0}} \ldots \overline{m_{n-1}}$ and ending with a numeral, and return the number corresponding to that numeral. The details are long and tedious but otherwise routine.

15.7 Computable Functions are Lambda Representable

Theorem 15.7. Every computable partial function if representable by a lambda term.

Proof. Wwe need to show that every partial computable function f is represented by a lambda term \bar{f}. By Kleene's normal form theorem, it suffices to show that every primitive recursive function is represented by a lambda term, and then that the functions so represented are closed under suitable compositions and unbounded search. To show that every primitive recursive function is represented by a lambda term, it suffices to show that the initial functions are represented, and that the partial functions that are represented by lambda terms are closed under composition, primitive recursion, and unbounded search.

We will use a more conventional notation to make the rest of the proof more readable. For example, we will write $M(x, y, z)$ instead of $M x y z$. While this is suggestive, you should remember that terms in the untyped lambda calculus do not have associated arities; so, for the same term M, it makes just as much sense to write $M(x, y)$ and $M(x, y, z, w)$. But using this notation indicates that we are treating M as a function of three variables, and helps make the intentions behind the definitions clearer. In a similar way, we will say "define M by $M(x, y, z)=\ldots$ " instead of "define M by $M=\lambda x . \lambda y . \lambda z \ldots . .$. "

15.8 The Basic Primitive Recursive Functions are Lambda Representable

Lemma 15.8. The functions $0, S$, and P_{i}^{n} are lambda representable.
Proof. Zero, $\overline{0}$, is just $\lambda x . \lambda y . y$.
The successor function \bar{S}, is defined by $\bar{S}(u)=\lambda x$. λy. $x(u x y)$. You should think about why this works; for each numeral \bar{n}, thought of as an iterator, and each function $f, S(\bar{n}, f)$ is a function that, on input y, applies $f n$ times starting with y, and then applies it once more.

There is nothing to say about projections: $\overline{P_{i}^{n}}\left(x_{0}, \ldots, x_{n-1}\right)=x_{i}$. In other words, by our conventions, $\overline{P_{i}^{n}}$ is the lambda term $\lambda x_{0} \ldots \lambda x_{n-1} \cdot x_{i}$.

15.9 Lambda Representable Functions Closed under Composition

Lemma 15.9. The lambda representable functions are closed under composition.
Proof. Suppose f is defined by composition from $h, g_{0}, \ldots, g_{k-1}$. Assuming h, g_{0}, \ldots, g_{k-1} are represented by $\bar{h}, \overline{g_{0}}, \ldots, \overline{g_{k-1}}$, respectively, we need to find a term \bar{f} representing f. But we can simply define \bar{f} by

$$
\bar{f}\left(x_{0}, \ldots, x_{l-1}\right)=\bar{h}\left(\overline{g_{0}}\left(x_{0}, \ldots, x_{l-1}\right), \ldots, \overline{g_{k-1}}\left(x_{0}, \ldots, x_{l-1}\right)\right)
$$

In other words, the language of the lambda calculus is well suited to represent composition.

15.10 Lambda Representable Functions Closed under Primitive Recursion

When it comes to primitive recursion, we finally need to do some work. We will have to proceed in stages. As before, on the assumption that we already have terms \bar{g} and \bar{h} representing functions g and h, respectively, we want a term \bar{f} representing the function f defined by

$$
\begin{aligned}
f(0, \vec{z}) & =g(\vec{z}) \\
f(x+1, \vec{z}) & =h(z, f(x, \vec{z}), \vec{z})
\end{aligned}
$$

So, in general, given lambda terms G^{\prime} and H^{\prime}, it suffices to find a term F such that

$$
\begin{aligned}
F(\overline{0}, \vec{z}) & \equiv G^{\prime}(\vec{z}) \\
F(\overline{n+1}, \vec{z}) & \equiv H^{\prime}(\bar{n}, F(\bar{n}, \vec{z}), \vec{z})
\end{aligned}
$$

for every natural number n; the fact that G^{\prime} and H^{\prime} represent g and h means that whenever we plug in numerals $\overline{\vec{m}}$ for $\vec{z}, F(\overline{n+1}, \vec{m})$ will normalize to the right answer.

But for this, it suffices to find a term F satisfying

$$
\begin{aligned}
F(\overline{0}) & \equiv G \\
F(\overline{n+1}) & \equiv H(\bar{n}, F(\bar{n}))
\end{aligned}
$$

for every natural number n, where

$$
\begin{aligned}
G & =\lambda \vec{z} \cdot G^{\prime}(\vec{z}) \text { and } \\
H(u, v) & =\lambda \vec{z} \cdot H^{\prime}(u, v(u, \vec{z}), \vec{z}) .
\end{aligned}
$$

In other words, with lambda trickery, we can avoid having to worry about the extra parameters \vec{z}-they just get absorbed in the lambda notation.

Before we define the term F, we need a mechanism for handling ordered pairs. This is provided by the next lemma.

Lemma 15.10. There is a lambda term D such that for each pair of lambda terms M and $N, D(M, N)(\overline{0}) \triangleright M$ and $D(M, N)(\overline{1}) \triangleright N$.

Proof. First, define the lambda term K by

$$
K(y)=\lambda x . y
$$

In other words, K is the term $\lambda y . \lambda x . y$. Looking at it differently, for every M, $K(M)$ is a constant function that returns M on any input.

Now define $D(x, y, z)$ by $D(x, y, z)=z(K(y)) x$. Then we have

$$
\begin{aligned}
& D(M, N, \overline{0}) \triangleright \overline{0}(K(N)) M \triangleright M \text { and } \\
& D(M, N, \overline{1}) \triangleright \overline{1}(K(N)) M \triangleright K(N) M \triangleright N
\end{aligned}
$$

as required.
The idea is that $D(M, N)$ represents the pair $\langle M, N\rangle$, and if P is assumed to represent such a pair, $P(\overline{0})$ and $P(\overline{1})$ represent the left and right projections, $(P)_{0}$ and $(P)_{1}$. We will use the latter notations.

Lemma 15.11. The lambda representable functions are closed under primitive recursion.

Proof. We need to show that given any terms, G and H, we can find a term F such that

$$
\begin{aligned}
F(\overline{0}) & \equiv G \\
F(\overline{n+1}) & \equiv H(\bar{n}, F(\bar{n}))
\end{aligned}
$$

for every natural number n. The idea is roughly to compute sequences of pairs

$$
\langle\overline{0}, F(\overline{0})\rangle,\langle\overline{1}, F(\overline{1})\rangle, \ldots,
$$

using numerals as iterators. Notice that the first pair is just $\langle\overline{0}, G\rangle$. Given a pair $\langle\bar{n}, F(\bar{n})\rangle$, the next pair, $\langle\overline{n+1}, F(\overline{n+1})\rangle$ is supposed to be equivalent to $\langle\overline{n+1}, H(\bar{n}, F(\bar{n}))\rangle$. We will design a lambda term T that makes this one-step transition.

The details are as follows. Define $T(u)$ by

$$
T(u)=\left\langle S\left((u)_{0}\right), H\left((u)_{0},(u)_{1}\right)\right\rangle .
$$

Now it is easy to verify that for any number n,

$$
T(\langle\bar{n}, M\rangle) \triangleright\langle\overline{n+1}, H(\bar{n}, M)\rangle
$$

15.11. FIXED-POINT COMBINATORS

As suggested above, given G and H, define $F(u)$ by

$$
F(u)=(u(T,\langle\overline{0}, G\rangle))_{1} .
$$

In other words, on input \bar{n}, F iterates $T n$ times on $\langle\overline{0}, G\rangle$, and then returns the second component. To start with, we have

1. $\overline{0}(T,\langle\overline{0}, G\rangle) \equiv\langle\overline{0}, G\rangle$
2. $F(\overline{0}) \equiv G$

By induction on n, we can show that for each natural number one has the following:

1. $\overline{n+1}(T,\langle\overline{0}, G\rangle) \equiv\langle\overline{n+1}, F(\overline{n+1})\rangle$
2. $F(\overline{n+1}) \equiv H(\bar{n}, F(\bar{n}))$

For the second clause, we have

$$
\begin{aligned}
F(\overline{n+1}) & \triangleright(\overline{n+1}(T,\langle\overline{0}, G\rangle))_{1} \\
& \equiv(T(\bar{n}(T,\langle\overline{0}, G\rangle)))_{1} \\
& \equiv(T(\langle\bar{n}, F(\bar{n})\rangle))_{1} \\
& \equiv(\langle\overline{n+1}, H(\bar{n}, F(\bar{n}))\rangle)_{1} \\
& \equiv H(\bar{n}, F(\bar{n}))
\end{aligned}
$$

Here we have used the induction hypothesis on the second-to-last line. For the first clause, we have

$$
\begin{aligned}
\overline{n+1}(T,\langle\overline{0}, G\rangle) & \equiv T(\bar{n}(T,\langle\overline{0}, G\rangle)) \\
& \equiv T(\langle\bar{n}, F(\bar{n})\rangle) \\
& \equiv\langle\overline{n+1}, H(\bar{n}, F(\bar{n}))\rangle \\
& \equiv\langle\overline{n+1}, F(\overline{n+1})\rangle
\end{aligned}
$$

Here we have used the second clause in the last line. So we have shown $F(\overline{0}) \equiv G$ and, for every $n, F(\overline{n+1}) \equiv H(\bar{n}, F(\bar{n}))$, which is exactly what we needed.

15.11 Fixed-Point Combinators

Suppose you have a lambda term g, and you want another term k with the property that k is β-equivalent to $g k$. Define terms

$$
\operatorname{diag}(x)=x x
$$

and

$$
l(x)=g(\operatorname{diag}(x))
$$

using our notational conventions; in other words, l is the term $\lambda x . g(x x)$. Let k be the term $l l$. Then we have

$$
\begin{aligned}
k & =(\lambda x \cdot g(x x))(\lambda x \cdot g(x x)) \\
& \triangleright g((\lambda x \cdot g(x x))(\lambda x \cdot g(x x))) \\
& =g k .
\end{aligned}
$$

If one takes

$$
Y=\lambda g \cdot((\lambda x \cdot g(x x))(\lambda x \cdot g(x x)))
$$

then $Y g$ and $g(Y g)$ reduce to a common term; so $Y g \equiv_{\beta} g(Y g)$. This is known as "Curry's combinator." If instead one takes

$$
Y=(\lambda x g \cdot g(x x g))(\lambda x g \cdot g(x x g))
$$

then in fact $Y g$ reduces to $g(Y g)$, which is a stronger statement. This latter version of Y is known as "Turing's combinator."

15.12 Lambda Representable Functions Closed under Minimization

Lemma 15.12. Suppose $f(x, y)$ is primitive recursive. Let g be defined by

$$
g(x) \simeq \mu y f(x, y) .
$$

Then g is represented by a lambda term.
Proof. The idea is roughly as follows. Given x, we will use the fixed-point lambda term Y to define a function $h_{x}(n)$ which searches for a y starting at n; then $g(x)$ is just $h_{x}(0)$. The function h_{x} can be expressed as the solution of a fixed-point equation:

$$
h_{x}(n) \simeq \begin{cases}n & \text { if } f(x, n)=0 \\ h_{x}(n+1) & \text { otherwise }\end{cases}
$$

Here are the details. Since f is primitive recursive, it is represented by some term F. Remember that we also have a lambda term D, such that $D(M, N, \overline{0}) \triangleright$ M and $D(M, N, \overline{1}) \triangleright N$. Fixing x for the moment, to represent h_{x} we want to find a term H (depending on x) satisfying

$$
H(\bar{n}) \equiv D(\bar{n}, H(S(\bar{n})), F(x, \bar{n})) .
$$

We can do this using the fixed-point term Y. First, let U be the term

$$
\lambda h \cdot \lambda z \cdot D(z,(h(S z)), F(x, z)),
$$

15.12. LAMBDA REPRESENTABLE FUNCTIONS CLOSED UNDER MINIMIZATION

and then let H be the term $Y U$. Notice that the only free variable in H is x. Let us show that H satisfies the equation above.

By the definition of Y, we have

$$
H=Y U \equiv U(Y U)=U(H)
$$

In particular, for each natural number n, we have

$$
\begin{aligned}
H(\bar{n}) & \equiv U(H, \bar{n}) \\
& \triangleright D(\bar{n}, H(S(\bar{n})), F(x, \bar{n})),
\end{aligned}
$$

as required. Notice that if you substitute a numeral \bar{m} for x in the last line, the expression reduces to \bar{n} if $F(\bar{m}, \bar{n})$ reduces to $\overline{0}$, and it reduces to $H(S(\bar{n}))$ if $F(\bar{m}, \bar{n})$ reduces to any other numeral.

To finish off the proof, let G be $\lambda x . H(\overline{0})$. Then G represents g; in other words, for every $m, G(\bar{m})$ reduces to reduces to $\overline{g(m)}$, if $g(m)$ is defined, and has no normal form otherwise.

Problems

Chapter 16

Computability Theory

Material in this chapter should be reviewed and expanded. In paticular, there are no exercises yet.

16.1 Introduction

The branch of logic known as Computability Theory deals with issues having to do with the computability, or relative computability, of functions and sets. It is a evidence of Kleene's influence that the subject used to be known as Recursion Theory, and today, both names are commonly used.

Let us call a function $f: \mathbb{N} \rightarrow \mathbb{N}$ partial computable if it can be computed in some model of computation. If f is total we will simply say that f is computable. A relation R with computable characteristic function χ_{R} is also called computable. If f and g are partial functions, we will write $f(x) \downarrow$ to mean that f is defined at x, i.e., x is in the domain of f; and $f(x) \uparrow$ to mean the opposite, i.e., that f is not defined at x. We will use $f(x) \simeq g(x)$ to mean that either $f(x)$ and $g(x)$ are both undefined, or they are both defined and equal.

One can explore the subject without having to refer to a specific model of computation. To do this, one shows that there is a universal partial computable function, $\mathrm{Un}(k, x)$. This allows us to enumerate the partial computable functions. We will adopt the notation φ_{k} to denote the k-th unary partial computable function, defined by $\varphi_{k}(x) \simeq \operatorname{Un}(k, x)$. (Kleene used $\{k\}$ for this purpose, but this notation has not been used as much recently.) Slightly more generally, we can uniformly enumerate the partial computable functions of arbitrary arities, and we will use φ_{k}^{n} to denote the k-th n-ary partial recursive function.

Recall that if $f(\vec{x}, y)$ is a total or partial function, then $\mu y f(\vec{x}, y)$ is the function of \vec{x} that returns the least y such that $f(\vec{x}, y)=0$, assuming that all of $f(\vec{x}, 0), \ldots, f(\vec{x}, y-1)$ are defined; if there is no such $y, \mu y f(\vec{x}, y)$ is undefined.

16.2. CODING COMPUTATIONS

If $R(\vec{x}, y)$ is a relation, $\mu y R(\vec{x}, y)$ is defined to be the least y such that $R(\vec{x}, y)$ is true; in other words, the least y such that one minus the characteristic function of R is equal to zero at \vec{x}, y.

To show that a function is computable, there are two ways one can proceed:

1. Rigorously: describe a Turing machine or partial recursive function explicitly, and show that it computes the function you have in mind;
2. Informally: describe an algorithm that computes it, and appeal to Church's thesis.

There is no fine line between the two; a detailed description of an algorithm should provide enough information so that it is relatively clear how one could, in principle, design the right Turing machine or sequence of partial recursive definitions. Fully rigorous definitions are unlikely to be informative, and we will try to find a happy medium between these two approaches; in short, we will try to find intuitive yet rigorous proofs that the precise definitions could be obtained.

16.2 Coding Computations

In every model of computation, it is possible to do the following:

1. Describe the definitions of computable functions in a systematic way. For instance, you can think of Turing machine specifications, recursive definitions, or programs in a programming language as providing these definitions.
2. Describe the complete record of the computation of a function given by some definition for a given input. For instance, a Turing machine computation can be described by the sequence of configurations (state of the machine, contents of the tape) for each step of computation.
3. Test whether a putative record of a computation is in fact the record of how a computable function with a given definition would be computed for a given input.
4. Extract from such a description of the complete record of a computation the value of the function for a given input. For instance, the contents of the tape in the very last step of a halting Turing machine computation is the value.

Using coding, it is possible to assign to each description of a computable function a numerical index in such a way that the instructions can be recovered from the index in a computable way. Similarly, the complete record of a computation can be coded by a single number as well. The resulting arithmetical
relation " s codes the record of computation of the function with index e for input x " and the function "output of computation sequence with code s " are then computable; in fact, they are primitive recursive.

This fundamental fact is very powerful, and allows us to prove a number of striking and important results about computability, independently of the model of computation chosen.

16.3 The Normal Form Theorem

Theorem 16.1 (Kleene's Normal Form Theorem). There are a primitive recursive relation $T(k, x, s)$ and a primitive recursive function $U(s)$, with the following property: if f is any partial computable function, then for some k,

$$
f(x) \simeq U(\mu s T(k, x, s))
$$

for every x.
Proof Sketch. For any model of computation one can rigorously define a description of the computable function f and code such description using a natural number k. One can also rigorously define a notion of "computation sequence" which records the process of computing the function with index k for input x. These computation sequences can likewise be coded as numbers s. This can be done in such a way that (a) it is decidable whether a number s codes the computation sequence of the function with index k on input x and (b) what the end result of the computation sequence coded by s is. In fact, the relation in (a) and the function in (b) are primitive recursive.

In order to give a rigorous proof of the Normal Form Theorem, we would have to fix a model of computation and carry out the coding of descriptions of computable functions and of computation sequences in detail, and verify that the relation T and function U are primitive recursive. For most applications, it suffices that T and U are computable and that U is total.

It is probably best to remember the proof of the normal form theorem in slogan form: $\mu s T(k, x, s)$ searches for a computation sequence of the function with index k on input x, and U returns the output of the computation sequence if one can be found.
T and U can be used to define the enumeration $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$. From now on, we will assume that we have fixed a suitable choice of T and U, and take the equation

$$
\varphi_{e}(x) \simeq U(\mu s T(e, x, s))
$$

to be the definition of φ_{e}.
Here is another useful fact:
Theorem 16.2. Every partial computable function has infinitely many indices.

16.4. THE s-m-n THEOREM

Again, this is intuitively clear. Given any (description of) a computable function, one can come up with a different description which computes the same function (input-output pair) but does so, e.g., by first doing something that has no effect on the computation (say, test if $0=0$, or count to 5 , etc.). The index of the altered description will always be different from the original index. Both are indices of the same function, just computed slightly differently.

16.4 The $s-m-n$ Theorem

The next theorem is known as the " $s-m-n$ theorem," for a reason that will be clear in a moment. The hard part is understanding just what the theorem says; once you understand the statement, it will seem fairly obvious.

Theorem 16.3. For each pair of natural numbers n and m, there is a primitive recursive function s_{n}^{m} such that for every sequence $x, a_{0}, \ldots, a_{m-1}, y_{0}, \ldots, y_{n-1}$, we have

$$
\varphi_{s_{n}^{m}\left(x, a_{0}, \ldots, a_{m-1}\right)}^{n}\left(y_{0}, \ldots, y_{n-1}\right) \simeq \varphi_{x}^{m+n}\left(a_{0}, \ldots, a_{m-1}, y_{0}, \ldots, y_{n-1}\right)
$$

It is helpful to think of s_{n}^{m} as acting on programs. That is, s_{n}^{m} takes a program, x, for an $(m+n)$-ary function, as well as fixed inputs a_{0}, \ldots, a_{m-1}; and it returns a program, $s_{n}^{m}\left(x, a_{0}, \ldots, a_{m-1}\right)$, for the n-ary function of the remaining arguments. It you think of x as the description of a Turing machine, then $s_{n}^{m}\left(x, a_{0}, \ldots, a_{m-1}\right)$ is the Turing machine that, on input y_{0}, \ldots, y_{n-1}, prepends a_{0}, \ldots, a_{m-1} to the input string, and runs x. Each s_{n}^{m} is then just a primitive recursive function that finds a code for the appropriate Turing machine.

16.5 The Universal Partial Computable Function

Theorem 16.4. There is a universal partial computable function $\operatorname{Un}(k, x)$. In other words, there is a function $\operatorname{Un}(k, x)$ such that:

1. $\mathrm{Un}(k, x)$ is partial computable.
2. If $f(x)$ is any partial computable function, then there is a natural number k such that $f(x) \simeq \operatorname{Un}(k, x)$ for every x.

Proof. Let $\operatorname{Un}(k, x) \simeq U(\mu s T(k, x, s))$ in Kleene's normal form theorem.
This is just a precise way of saying that we have an effective enumeration of the partial computable functions; the idea is that if we write f_{k} for the function defined by $f_{k}(x)=\operatorname{Un}(k, x)$, then the sequence $f_{0}, f_{1}, f_{2}, \ldots$ includes all the partial computable functions, with the property that $f_{k}(x)$ can be computed "uniformly" in k and x. For simplicity, we am using a binary function that is universal for unary functions, but by coding sequences of numbers we can easily generalize this to more arguments. For example, note that
if $f(x, y, z)$ is a 3-place partial recursive function, then the function $g(x) \simeq$ $f\left((x)_{0},(x)_{1},(x)_{2}\right)$ is a unary recursive function.

16.6 No Universal Computable Function

Theorem 16.5. There is no universal computable function. In other words, the universal function $\mathrm{Un}^{\prime}(k, x)=\varphi_{k}(x)$ is not computable.

Proof. This theorem says that there is no total computable function that is universal for the total computable functions. The proof is a simple diagonalization: if $\mathrm{Un}^{\prime}(k, x)$ were total and computable, then

$$
d(x)=\mathrm{Un}^{\prime}(x, x)+1
$$

would also be total and computable. However, for every $k, d(k)$ is not equal to $\mathrm{Un}^{\prime}(k, k)$.

Theorem Theorem 16.4 above shows that we can get around this diagonalization argument, but only at the expense of allowing partial functions. It is worth trying to understand what goes wrong with the diagonalization argument, when we try to apply it in the partial case. In particular, the function $h(x)=\operatorname{Un}(x, x)+1$ is partial recursive. Suppose h is the k-th function in the enumeration; what can we say about $h(k)$?

16.7 The Halting Problem

Since, in our construction, $\operatorname{Un}(k, x)$ is defined if and only if the computation of the function coded by k produces a value for input x, it is natural to ask if we can decide whether this is the case. And in fact, it is not. For the Turing machine model of computation, this means that whether a given Turing machine halts on a given input is computationally undecidable. The following theorem is therefore known as the "undecidability of the halting problem." I will provide two proofs below. The first continues the thread of our previous discussion, while the second is more direct.

Theorem 16.6. Let

$$
h(k, x)= \begin{cases}1 & \text { if } \operatorname{Un}(k, x) \text { is defined } \\ 0 & \text { otherwise }\end{cases}
$$

Then h is not computable.
Proof. If h were computable, we would have a universal computable function, as follows. Suppose h is computable, and define

$$
\operatorname{Un}^{\prime}(k, x)= \begin{cases}\operatorname{fnUn}(k, x) & \text { if } h(k, x)=1 \\ 0 & \text { otherwise }\end{cases}
$$

16.8. COMPARISON WITH RUSSELL'S PARADOX

But now $\operatorname{Un}^{\prime}(k, x)$ is a total function, and is computable if h is. For instance, we could define g using primitive recursion, by

$$
\begin{aligned}
g(0, k, x) & \simeq 0 \\
g(y+1, k, x) & \simeq \operatorname{Un}(k, x)
\end{aligned}
$$

then

$$
\mathrm{Un}^{\prime}(k, x) \simeq g(h(k, x), k, x)
$$

And since $\mathrm{Un}^{\prime}(k, x)$ agrees with $\mathrm{Un}(k, x)$ wherever the latter is defined, Un^{\prime} is universal for those partial computable functions that happen to be total. But this contradicts Theorem 16.5.

Proof. Suppose $h(k, x)$ were computable. Define the function g by

$$
g(x)= \begin{cases}0 & \text { if } h(x, x)=0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

The function g is partial computable; for example, one can define it as $\mu y h(x, x)=$ 0 . So, for some $k, g(x) \simeq \operatorname{Un}(k, x)$ for every x. Is g defined at k ? If it is, then, by the definition of $g, h(k, k)=0$. By the definition of f, this means that $\operatorname{Un}(k, k)$ is undefined; but by our assumption that $g(k) \simeq \operatorname{Un}(k, x)$ for every x, this means that $g(k)$ is undefined, a contradiction. On the other hand, if $g(k)$ is undefined, then $h(k, k) \neq 0$, and so $h(k, k)=1$. But this means that $\operatorname{Un}(k, k)$ is defined, i.e., that $g(k)$ is defined.

We can describe this argument in terms of Turing machines. Suppose there were a Turing machine H that took as input a description of a Turing machine K and an input x, and decided whether or not K halts on input x. Then we could build another Turing machine G which takes a single input x, calls H to decide if machine x halts on input x, and does the opposite. In other words, if H reports that x halts on input x, G goes into an infinite loop, and if H reports that x doesn't halt on input x, then G just halts. Does G halt on input G ? The argument above shows that it does if and only if it doesn't-a contradiction. So our supposition that there is a such Turing machine H, is false.

16.8 Comparison with Russell's Paradox

It is instructive to compare and contrast the arguments in this section with Russell's paradox:

1. Russell's paradox: let $S=\{x: x \notin x\}$. Then $x \in S$ if and only if $x \notin S$, a contradiction.
Conclusion: There is no such set S. Assuming the existence of a "set of all sets" is inconsistent with the other axioms of set theory.
2. A modification of Russell's paradox: let F be the "function" from the set of all functions to $\{0,1\}$, defined by

$$
F(f)= \begin{cases}1 & \text { if } f \text { is in the domain of } f, \text { and } f(f)=0 \\ 0 & \text { otherwise }\end{cases}
$$

A similar argument shows that $F(F)=0$ if and only if $F(F)=1$, a contradiction.

Conclusion: F is not a function. The "set of all functions" is too big to be the domain of a function.
3. The diagonalization argument: let f_{0}, f_{1}, \ldots be the enumeration of the partial computable functions, and let $G: \mathbb{N} \rightarrow\{0,1\}$ be defined by

$$
G(x)= \begin{cases}1 & \text { if } f_{x}(x) \downarrow=0 \\ 0 & \text { otherwise }\end{cases}
$$

If G is computable, then it is the function f_{k} for some k. But then $G(k)=$ 1 if and only if $G(k)=0$, a contradiction.
Conclusion: G is not computable. Note that according to the axioms of set theory, G is still a function; there is no paradox here, just a clarification.

That talk of partial functions, computable functions, partial computable functions, and so on can be confusing. The set of all partial functions from \mathbb{N} to \mathbb{N} is a big collection of objects. Some of them are total, some of them are computable, some are both total and computable, and some are neither. Keep in mind that when we say "function," by default, we mean a total function. Thus we have:

1. computable functions
2. partial computable functions that are not total
3. functions that are not computable
4. partial functions that are neither total nor computable

To sort this out, it might help to draw a big square representing all the partial functions from \mathbb{N} to \mathbb{N}, and then mark off two overlapping regions, corresponding to the total functions and the computable partial functions, respectively. It is a good exercise to see if you can describe an object in each of the resulting regions in the diagram.

16.9 Computable Sets

We can extend the notion of computability from computable functions to computable sets:
Definition 16.7. Let S be a set of natural numbers. Then S is computable iff its characteristic function is. In other words, S is computable iff the function

$$
\chi_{S}(x)= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

is computable. Similarly, a relation $R\left(x_{0}, \ldots, x_{k-1}\right)$ is computable if and only if its characteristic function is.

Computable sets are also called decidable.
Notice that we now have a number of notions of computability: for partial functions, for functions, and for sets. Do not get them confused! The Turing machine computing a partial function returns the output of the function, for input values at which the function is defined; the Turing machine computing a set returns either 1 or 0 , after deciding whether or not the input value is in the set or not.

16.10 Computably Enumerable Sets

Definition 16.8. A set is computably enumerable if it is empty or the range of a computable function.

Historical Remarks Computably enumarable sets are also called recursively enumerable instead. This is the original terminology, and today both are commonly used, as well as the abbreviations "c.e." and "r.e."

You should think about what the definition means, and why the terminology is appropriate. The idea is that if S is the range of the computable function f, then

$$
S=\{f(0), f(1), f(2), \ldots\}
$$

and so f can be seen as "enumerating" the elements of S. Note that according to the definition, f need not be an increasing function, i.e., the enumeration need not be in increasing order. In fact, f need not even be injective, so that the constant function $f(x)=0$ enumerates the set $\{0\}$.

Any computable set is computably enumerable. To see this, suppose S is computable. If S is empty, then by definition it is computably enumerable. Otherwise, let a be any element of S. Define f by

$$
f(x)= \begin{cases}x & \text { if } \chi_{S}(x)=1 \\ a & \text { otherwise }\end{cases}
$$

Then f is a computable function, and S is the range of f.

16.11 Equivalent Defininitions of Computably Enumerable Sets

The following gives a number of important equivalent statements of what it means to be computably enumerable.

Theorem 16.9. Let S be a set of natural numbers. Then the following are equivalent:

1. S is computably enumerable.
2. S is the range of a partial computable function.
3. S is empty or the range of a primitive recursive function.
4. S is the domain of a partial computable function.

The first three clauses say that we can equivalently take any nonempty computably enumerable set to be enumerated by either a computable function, a partial computable function, or a primitive recursive function. The fourth clause tells us that if S is computably enumerable, then for some index e,

$$
S=\left\{x: \varphi_{e}(x) \downarrow\right\}
$$

In other words, S is the set of inputs on for which the computation of φ_{e} halts. For that reason, computably enumerable sets are sometimes called semidecidable: if a number is in the set, you eventually get a "yes," but if it isn't, you never get a "no"!

Proof. Since every primitive recursive function is computable and every computable function is partial computable, (3) implies (1) and (1) implies (2). (Note that if S is empty, S is the range of the partial computable function that is nowhere defined.) If we show that (2) implies (3), we will have shown the first three clauses equivalent.

So, suppose S is the range of the partial computable function φ_{e}. If S is empty, we are done. Otherwise, let a be any element of S. By Kleene's normal form theorem, we can write

$$
\varphi_{e}(x)=U(\mu s T(e, x, s))
$$

In particular, $\varphi_{e}(x) \downarrow$ and $=y$ if and only if there is an s such that $T(e, x, s)$ and $U(s)=y$. Define $f(z)$ by

$$
f(z)= \begin{cases}U\left((z)_{1}\right) & \text { if } T\left(e,(z)_{0},(z)_{1}\right) \\ a & \text { otherwise }\end{cases}
$$

Then f is primitive recursive, because T and U are. Expressed in terms of Turing machines, if z codes a pair $\left\langle(z)_{0},(z)_{1}\right\rangle$ such that $(z)_{1}$ is a halting computation of machine e on input $(z)_{0}$, then f returns the output of the computation;

16.11. DEFINITIONS OF C. E. SETS

otherwise, it returns a. We need to show that S is the range of f, i.e., for any natural number $y, y \in S$ if and only if it is in the range of f. In the forwards direction, suppose $y \in S$. Then y is in the range of φ_{e}, so for some x and s, $T(e, x, s)$ and $U(s)=y$; but then $y=f(\langle x, s\rangle)$. Conversely, suppose y is in the range of f. Then either $y=a$, or for some $z, T\left(e,(z)_{0},(z)_{1}\right)$ and $U\left((z)_{1}\right)=y$. Since, in the latter case, $\varphi_{e}(x) \downarrow=y$, either way, y is in S.
(The notation $\varphi_{e}(x) \downarrow=y$ means " $\varphi_{e}(x)$ is defined and equal to y." We could just as well use $\varphi_{e}(x)=y$, but the extra arrow is sometimes helpful in reminding us that we are dealing with a partial function.)

To finish up the proof of Theorem 16.9, it suffices to show that (1) and (4) are equivalent. First, let us show that (1) implies (4). Suppose S is the range of a computable function f, i.e.,

$$
S=\{y: \text { for some } x, f(x)=y\} .
$$

Let

$$
g(y)=\mu x f(x)=y .
$$

Then g is a partial computable function, and $g(y)$ is defined if and only if for some $x, f(x)=y$. In other words, the domain of g is the range of f. Expressed in terms of Turing machines: given a Turing machine F that enumerates the elements of S, let G be the Turing machine that semi-decides S by searching through the outputs of F to see if a given element is in the set.

Finally, to show (4) implies (1), suppose that S is the domain of the partial computable function φ_{e}, i.e.,

$$
S=\left\{x: \varphi_{e}(x) \downarrow\right\} .
$$

If S is empty, we are done; otherwise, let a be any element of S. Define f by

$$
f(z)= \begin{cases}(z)_{0} & \text { if } T\left(e,(z)_{0},(z)_{1}\right) \\ a & \text { otherwise }\end{cases}
$$

Then, as above, a number x is in the range of f if and only if $\varphi_{e}(x) \downarrow$, i.e., if and only if $x \in S$. Expressed in terms of Turing machines: given a machine M_{e} that semi-decides S, enumerate the elements of S by running through all possible Turing machine computations, and returning the inputs that correspond to halting computations.

The fourth clause of Theorem 16.9 provides us with a convenient way of enumerating the computably enumerable sets: for each e, let W_{e} denote the domain of φ_{e}. Then if A is any computably enumerable set, $A=W_{e}$, for some e.

The following provides yet another characterization of the computably enumerable sets.

Theorem 16.10. A set S is computably enumerable if and only if there is a computable relation $R(x, y)$ such that

$$
S=\{x: \exists y R(x, y)\}
$$

Proof. In the forward direction, suppose S is computably enumerable. Then for some $e, S=W_{e}$. For this value of e we can write S as

$$
S=\{x: \exists y T(e, x, y)\}
$$

In the reverse direction, suppose $S=\{x: \exists y R(x, y)\}$. Define f by

$$
f(x) \simeq \mu y \text { Atom } R x, y
$$

Then f is partial computable, and S is the domain of f.

16.12 Computably Enumerable Sets are Closed under Union and Intersection

The following theorem gives some closure properties on the set of computably enumerable sets.

Theorem 16.11. Suppose A and B are computably enumerable. Then so are $A \cap B$ and $A \cup B$.

Proof. Theorem 16.9 allows us to use various characterizations of the computably enumerable sets. By way of illustration, we will provide a few different proofs.

For the first proof, suppose A is enumerated by a computable function f, and B is enumerated by a computable function g. Let

$$
\begin{aligned}
h(x) & =\mu y(f(y)=x \vee g(y)=x) \text { and } \\
j(x) & =\mu y\left(f\left((y)_{0}\right)=x \wedge g\left((y)_{1}\right)=x\right) .
\end{aligned}
$$

Then $A \cup B$ is the domain of h, and $A \cap B$ is the domain of j.
Here is what is going on, in computational terms: given procedures that enumerate A and B, we can semi-decide if an element x is in $A \cup B$ by looking for x in either enumeration; and we can semi-decide if an element x is in $A \cap B$ for looking for x in both enumerations at the same time.

For the second proof, suppose again that A is enumerated by f and B is enumerated by g. Let

$$
k(x)= \begin{cases}f(x / 2) & \text { if } x \text { is even } \\ g((x-1) / 2) & \text { if } x \text { is odd }\end{cases}
$$

Then k enumerates $A \cup B$; the idea is that k just alternates between the enumerations offered by f and g. Enumerating $A \cap B$ is tricker. If $A \cap B$ is empty, it

16.13. COMPUTABLY ENUMERABLE SETS NOT CLOSED UNDER

 COMPLEMENTis trivially computably enumerable. Otherwise, let c be any element of $A \cap B$, and define l by

$$
l(x)= \begin{cases}f\left((x)_{0}\right) & \text { if } f\left((x)_{0}\right)=g\left((x)_{1}\right) \\ c & \text { otherwise }\end{cases}
$$

In computational terms, l runs through pairs of elements in the enumerations of f and g, and outputs every match it finds; otherwise, it just stalls by outputting c.

For the last proof, suppose A is the domain of the partial function $m(x)$ and B is the domain of the partial function $n(x)$. Then $A \cap B$ is the domain of the partial function $m(x)+n(x)$.

In computational terms, if A is the set of values for which m halts and B is the set of values for which n halts, $A \cap B$ is the set of values for which both procedures halt.

Expressing $A \cup B$ as a set of halting values is more difficult, because one has to simulate m and n in parallel. Let d be an index for m and let e be an index for n; in other words, $m=\varphi_{d}$ and $n=\varphi_{e}$. Then $A \cup B$ is the domain of the function

$$
p(x)=\mu y(T(d, x, y) \vee T(e, x, y))
$$

In computational terms, on input x, p searches for either a halting computation for m or a halting computation for n, and halts if it finds either one.

16.13 Computably Enumerable Sets not Closed under Complement

Suppose A is computably enumerable. Is the complement of $A, \bar{A}=\mathbb{N} \backslash$ A, necessarily computably enumerable as well? The following theorem and corollary show that the answer is "no."

Theorem 16.12. Let A be any set of natural numbers. Then A is computable if and only if both A and \bar{A} are computably enumerable.

Proof. The forwards direction is easy: if A is computable, then \bar{A} is computable as well $\left(\chi_{A}=1-\chi_{\bar{A}}\right)$, and so both are computably enumerable.

In the other direction, suppose A and \bar{A} are both computably enumerable. Let A be the domain of φ_{d}, and let \bar{A} be the domain of φ_{e}. Define h by

$$
h(x)=\mu s(T(d, x, s) \vee T(e, x, s))
$$

In other words, on input x, h searches for either a halting computation of φ_{d} or a halting computation of φ_{e}. Now, if $x \in A$, it will succeed in the first case, and if $x \in \bar{A}$, it will succeed in the second case. So, h is a total computable
function. But now we have that for every $x, x \in A$ if and only if $T(e, x, h(x))$, i.e., if φ_{e} is the one that is defined. Since $T(e, x, h(x))$ is a computable relation, A is computable.

It is easier to understand what is going on in informal computational terms: to decide A, on input x search for halting computations of φ_{e} and φ_{f}. One of them is bound to halt; if it is φ_{e}, then x is in A, and otherwise, x is in \bar{A}.

Corollary 16.13. $\overline{K_{0}}$ is not computably enumerable.

Proof. We know that K_{0} is computably enumerable, but not computable. If $\overline{K_{0}}$ were computably enumerable, then K_{0} would be computable by Theorem 16.12.

16.14 Reducibility

We now know that there is at least one set, K_{0}, that is computably enumerable but not computable. It should be clear that there are others. The method of reducibility provides a powerful method of showing that other sets have these properties, without constantly having to return to first principles.

Generally speaking, a "reduction" of a set A to a set B is a method of transforming answers to whether or not elements are in B into answers as to whether or not elements are in A. We will focus on a notion called "manyone reducibility," but there are many other notions of reducibility available, with varying properties. Notions of reducibility are also central to the study of computational complexity, where efficiency issues have to be considered as well. For example, a set is said to be "NP-complete" if it is in NP and every NP problem can be reduced to it, using a notion of reduction that is similar to the one described below, only with the added requirement that the reduction can be computed in polynomial time.

We have already used this notion implicitly. Define the set K by

$$
K=\left\{x: \varphi_{x}(x) \downarrow\right\},
$$

i.e., $K=\left\{x: x \in W_{x}\right\}$. Our proof that the halting problem in unsolvable, Theorem 16.6, shows most directly that K is not computable. Recall that K_{0} is the set

$$
K_{0}=\left\{\langle e, x\rangle: \varphi_{e}(x) \downarrow\right\} .
$$

i.e. $K_{0}=\left\{\langle x, e\rangle: x \in W_{e}\right\}$. It is easy to extend any proof of the uncomputability of K to the uncomputability of K_{0} : if K_{0} were computable, we could decide whether or not an element x is in K simply by asking whether or not the pair $\langle x, x\rangle$ is in K_{0}. The function f which maps x to $\langle x, x\rangle$ is an example of a reduction of K to K_{0}.

16.15. PROPERTIES OF REDUCIBILITY

Definition 16.14. Let A and B be sets. Then A is said to be many-one reducible to B, written $A \leq_{m} B$, if there is a computable function f such that for every natural number x,

$$
x \in A \quad \text { if and only if } \quad f(x) \in B
$$

If A is many-one reducible to B and vice-versa, then A and B are said to be many-one equivalent, written $A \equiv_{m} B$.

If the function f in the definition above happens to be injective, A is said to be one-one reducible to B. Most of the reductions described below meet this stronger requirement, but we will not use this fact.

It is true, but by no means obvious, that one-one reducibility really is a stronger requirement than many-one reducibility. In other words, there are infinite sets A and B such that A is many-one reducible to B but not one-one reducible to B.

16.15 Properties of Reducibility

The intuition behind writing $A \leq_{m} B$ is that A is "no harder than" B. The following two propositions support this intuition.

Proposition 16.15. If $A \leq_{m} B$ and $B \leq_{m} C$, then $A \leq_{m} C$.
Proof. Composing a reduction of A to B with a reduction of B to C yields a reduction of A to C. (You should check the details!)

Proposition 16.16. Let A and B be any sets, and suppose A is many-one reducible to B.

1. If B is computably enumerable, so is A.
2. If B is computable, so is A.

Proof. Let f be a many-one reduction from A to B. For the first claim, just check that if B is the domain of a partial function g, then A is the domain of $g \circ f$:

$$
\begin{aligned}
& x \in A \text { iff } f(x) \in B \\
& \quad \text { iff } g(f(x)) \downarrow .
\end{aligned}
$$

For the second claim, remember that if B is computable then B and \bar{B} are computably enumerable. It is not hard to check that f is also a many-one reduction of \bar{A} to \bar{B}, so, by the first part of this proof, A and \bar{A} are computably enumerable. So A is computable as well. (Alternatively, you can check that $\chi_{A}=\chi_{B} \circ f$; so if χ_{B} is computable, then so is χ_{A}.)

A more general notion of reducibility called Turing reducibility is useful in other contexts, especially for proving undecidability results. Note that by Corollary 16.13 , the complement of K_{0} is not reducible to K_{0}, since it is not computably enumerable. But, intuitively, if you knew the answers to questions about K_{0}, you would know the answer to questions about its complement as well. A set A is said to be Turing reducible to B if one can determine answers to questions in A using a computable procedure that can ask questions about B. This is more liberal than many-one reducibility, in which (1) you are only allowed to ask one question about B, and (2) a "yes" answer has to translate to a "yes" answer to the question about A, and similarly for "no." It is still the case that if A is Turing reducible to B and B is computable then A is computable as well (though, as we have seen, the analogous statement does not hold for computable enumerability).

You should think about the various notions of reducibility we have discussed, and understand the distinctions between them. We will, however, only deal with many-one reducibility in this chapter. Incidentally, both types of reducibility discussed in the last paragraph have analogues in computational complexity, with the added requirement that the Turing machines run in polynomial time: the complexity version of many-one reducibility is known as Karp reducibility, while the complexity version of Turing reducibility is known as Cook reducibility.

16.16 Complete Computably Enumerable Sets

Definition 16.17. A set A is a complete computably enumerable set (under manyone reducibility) if

1. A is computably enumerable, and
2. for any other computably enumerable set $B, B \leq_{m} A$.

In other words, complete computably enumerable sets are the "hardest" computably enumerable sets possible; they allow one to answer questions about any computably enumerable set.

Theorem 16.18. K, K_{0}, and K_{1} are all complete computably enumerable sets.
Proof. To see that K_{0} is complete, let B be any computably enumerable set. Then for some index e,

$$
B=W_{e}=\left\{x: \varphi_{e}(x) \downarrow\right\}
$$

Let f be the function $f(x)=\langle e, x\rangle$. Then for every natural number $x, x \in B$ if and only if $f(x) \in K_{0}$. In other words, f reduces B to K_{0}.

To see that K_{1} is complete, note that in the proof of Proposition 16.19 we reduced K_{0} to it. So, by Proposition 16.15 , any computably enumerable set can be reduced to K_{1} as well.
K can be reduced to K_{0} in much the same way.

So, it turns out that all the examples of computably enumerable sets that we have considered so far are either computable, or complete. This should seem strange! Are there any examples of computably enumerable sets that are neither computable nor complete? The answer is yes, but it wasn't until the middle of the 1950s that this was established by Friedberg and Muchnik, independently.

16.17 An Example of Reducibility

Let us consider an application of Proposition 16.16.
Proposition 16.19. Let

$$
K_{1}=\left\{e: \varphi_{e}(0) \downarrow\right\}
$$

Then K_{1} is computably enumerable but not computable.

Proof. Since $K_{1}=\{e: \exists s T(e, 0, s)\}, K_{1}$ is computably enumerable by Theorem 16.10.

To show that K_{1} is not computable, let us show that K_{0} is reducible to it.
This is a little bit tricky, since using K_{1} we can only ask questions about computations that start with a particular input, 0 . Suppose you have a smart friend who can answer questions of this type (friends like this are known as "oracles"). Then suppose someone comes up to you and asks you whether or not $\langle e, x\rangle$ is in K_{0}, that is, whether or not machine e halts on input x. One thing you can do is build another machine, e_{x}, that, for any input, ignores that input and instead runs e on input x. Then clearly the question as to whether machine e halts on input x is equivalent to the question as to whether machine e_{x} halts on input 0 (or any other input). So, then you ask your friend whether this new machine, e_{x}, halts on input 0 ; your friend's answer to the modified question provides the answer to the original one. This provides the desired reduction of K_{0} to K_{1}.

Using the universal partial computable function, let f be the 3-ary function defined by

$$
f(x, y, z) \simeq \varphi_{x}(y)
$$

Note that f ignores its third input entirely. Pick an index e such that $f=\varphi_{e}^{3}$; so we have

$$
\varphi_{e}^{3}(x, y, z) \simeq \varphi_{x}(y)
$$

By the $s-m-n$ theorem, there is a function $s(e, x, y)$ such that, for every z,

$$
\begin{aligned}
\varphi_{s(e, x, y)}(z) & \simeq \varphi_{e}^{3}(x, y, z) \\
& \simeq \varphi_{x}(y) .
\end{aligned}
$$

In terms of the informal argument above, $s(e, x, y)$ is an index for the machine that, for any input z, ignores that input and computes $\varphi_{x}(y)$.

In particular, we have

$$
\varphi_{s(e, x, y)}(0) \downarrow \quad \text { if and only if } \quad \varphi_{x}(y) \downarrow .
$$

In other words, $\langle x, y\rangle \in K_{0}$ if and only if $s(e, x, y) \in K_{1}$. So the function g defined by

$$
g(w)=s\left(e,(w)_{0},(w)_{1}\right)
$$

is a reduction of K_{0} to K_{1}.

16.18 Totality is Undecidable

Let us consider one more example of using the $s-m-n$ theorem to show that something is noncomputable. Let Tot be the set of indices of total computable functions, i.e.

$$
\operatorname{Tot}=\left\{x: \text { for every } y, \varphi_{x}(y) \downarrow\right\} .
$$

Proposition 16.20. Tot is not computable.
Proof. To see that Tot is not computable, it suffices to show that K is reducible to it. Let $h(x, y)$ be defined by

$$
h(x, y) \simeq \begin{cases}0 & \text { if } x \in K \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Note that $h(x, y)$ does not depend on y at all. It should not be hard to see that h is partial computable: on input x, y, the we compute h by first simulating the function φ_{x} on input x; if this computation halts, $h(x, y)$ outputs 0 and halts. So $h(x, y)$ is just $Z(\mu s T(x, x, s)$), where Z is the constant zero function.

Using the $s-m-n$ theorem, there is a primitive recursive function $k(x)$ such that for every x and y,

$$
\varphi_{k(x)}(y)= \begin{cases}0 & \text { if } x \in K \\ \text { undefined } & \text { otherwise }\end{cases}
$$

So $\varphi_{k(x)}$ is total if $x \in K$, and undefined otherwise. Thus, k is a reduction of K to Tot.

It turns out that Tot is not even computably enumerable-its complexity lies further up on the "arithmetic hierarchy." But we will not worry about this strengthening here.

16.19 Rice's Theorem

If you think about it, you will see that the specifics of Tot do not play into the proof of Proposition 16.20. We designed $h(x, y)$ to act like the constant function $j(y)=0$ exactly when x is in K; but we could just as well have made it act like any other partial computable function under those circumstances. This observation lets us state a more general theorem, which says, roughly, that no nontrivial property of computable functions is decidable.

Keep in mind that $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$ is our standard enumeration of the partial computable functions.

Theorem 16.21 (Rice's Theorem). Let C be any set of partial computable functions, and let $A=\left\{n: \varphi_{n} \in C\right\}$. If A is computable, then either C is \varnothing or C is the set of all the partial computable functions.

An index set is a set A with the property that if n and m are indices which "compute" the same function, then either both n and m are in A, or neither is. It is not hard to see that the set A in the theorem has this property. Conversely, if A is an index set and C is the set of functions computed by these indices, then $A=\left\{n: \varphi_{n} \in C\right\}$.

With this terminology, Rice's theorem is equivalent to saying that no nontrivial index set is decidable. To understand what the theorem says, it is helpful to emphasize the distinction between programs (say, in your favorite programming language) and the functions they compute. There are certainly questions about programs (indices), which are syntactic objects, that are computable: does this program have more than 150 symbols? Does it have more than 22 lines? Does it have a "while" statement? Does the string "hello world" every appear in the argument to a "print" statement? Rice's theorem says that no nontrivial question about the program's behavior is computable. This includes questions like these: does the program halt on input 0? Does it ever halt? Does it ever output an even number?

Proof of Rice's theorem. Suppose C is neither \varnothing nor the set of all the partial computable functions, and let A be the set of indices of functions in C. We will show that if A were computable, we could solve the halting problem; so A is not computable.

Without loss of generality, we can assume that the function f which is nowhere defined is not in C (otherwise, switch C and its complement in the argument below). Let g be any function in C. The idea is that if we could decide A, we could tell the difference between indices computing f, and indices computing g; and then we could use that capability to solve the halting problem.

Here's how. Using the universal computation predicate, we can define a function

$$
h(x, y) \simeq \begin{cases}\text { undefined } & \text { if } \varphi_{x}(x) \uparrow \\ g(y) & \text { otherwise }\end{cases}
$$

To compute h, first we try to compute $\varphi_{x}(x)$; if that computation halts, we go on to compute $g(y)$; and if that computation halts, we return the output. More formally, we can write

$$
h(x, y) \simeq P_{0}^{2}(g(y), \operatorname{Un}(x, x))
$$

where $P_{0}^{2}\left(z_{0}, z_{1}\right)=z_{0}$ is the 2-place projection function returning the 0 -th argument, which is computable.

Then h is a composition of partial computable functions, and the right side is defined and equal to $g(y)$ just when $\operatorname{Un}(x, x)$ and $g(y)$ are both defined.

Notice that for a fixed x, if $\varphi_{x}(x)$ is undefined, then $h(x, y)$ is undefined for every y; and if $\varphi_{x}(x)$ is defined, then $h(x, y) \simeq g(y)$. So, for any fixed value of x, either $h(x, y)$ acts just like f or it acts just like g, and deciding whether or not $\varphi_{x}(x)$ is defined amounts to deciding which of these two cases holds. But this amounts to deciding whether or not $h_{x}(y) \simeq h(x, y)$ is in C or not, and if A were computable, we could do just that.

More formally, since h is partial computable, it is equal to the function φ_{k} for some index k. By the $s-m-n$ theorem there is a primitive recursive function s such that for each $x, \varphi_{s(k, x)}(y)=h_{x}(y)$. Now we have that for each x, if $\varphi_{x}(x) \downarrow$, then $\varphi_{s(k, x)}$ is the same function as g, and so $s(k, x)$ is in A. On the other hand, if $\varphi_{x}(x) \uparrow$, then $\varphi_{s(k, x)}$ is the same function as f, and so $s(k, x)$ is not in A. In other words we have that for every $x, x \in K$ if and only if $s(k, x) \in A$. If A were computable, K would be also, which is a contradiction. So A is not computable.

Rice's theorem is very powerful. The following immediate corollary shows some sample applications.

Corollary 16.22. The following sets are undecidable.

1. $\left\{x: 17\right.$ is in the range of $\left.\varphi_{x}\right\}$
2. $\left\{x: \varphi_{x}\right.$ is constant $\}$
3. $\left\{x: \varphi_{x}\right.$ is total $\}$
4. $\left\{x:\right.$ whenever $y<y^{\prime}, \varphi_{x}(y) \downarrow$, and if $\varphi_{x}\left(y^{\prime}\right) \downarrow$, then $\left.\varphi_{x}(y)<\varphi_{x}\left(y^{\prime}\right)\right\}$

Proof. These are all nontrivial index sets.

16.20. THE FIXED-POINT THEOREM

16.20 The Fixed-Point Theorem

Let's consider the halting problem again. As temporary notation, let us write $\left\ulcorner\varphi_{x}(y)\right\urcorner$ for $\langle x, y\rangle$; think of this as representing a "name" for the value $\varphi_{x}(y)$. With this notation, we can reword one of our proofs that the halting problem is undecidable.

Question: is there a computable function h, with the following property? For every x and y,

$$
h\left(\left\ulcorner\varphi_{x}(y)\right\urcorner\right)= \begin{cases}1 & \text { if } \varphi_{x}(y) \downarrow \\ 0 & \text { otherwise } .\end{cases}
$$

Answer: No; otherwise, the partial function

$$
g(x) \simeq \begin{cases}0 & \text { if } h\left(\left\ulcorner\varphi_{x}(x)\right\urcorner\right)=0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

would be computable, and so have some index e. But then we have

$$
\varphi_{e}(e) \simeq \begin{cases}0 & \text { if } h\left(\left\ulcorner\varphi_{e}(e)\right\urcorner\right)=0 \\ \text { undefined } & \text { otherwise, }\end{cases}
$$

in which case $\varphi_{e}(e)$ is defined if and only if it isn't, a contradiction.
Now, take a look at the equation with φ_{e}. There is an instance of selfreference there, in a sense: we have arranged for the value of $\varphi_{e}(e)$ to depend on $\left\ulcorner\varphi_{e}(e)\right\urcorner$, in a certain way. The fixed-point theorem says that we can do this, in general-not just for the sake of proving contradictions.

Lemma 16.23 gives two equivalent ways of stating the fixed-point theorem. Logically speaking, the fact that the statements are equivalent follows from the fact that they are both true; but what we really mean is that each one follows straightforwardly from the other, so that they can be taken as alternative statements of the same theorem.

Lemma 16.23. The following statements are equivalent:

1. For every partial computable function $g(x, y)$, there is an index e such that for every y,

$$
\varphi_{e}(y) \simeq g(e, y)
$$

2. For every computable function $f(x)$, there is an index e such that for every y,

$$
\varphi_{e}(y) \simeq \varphi_{f(e)}(y)
$$

Proof. (1) $\Rightarrow(2)$: Given f, define g by $g(x, y) \simeq \operatorname{Un}(f(x), y)$. Use (1) to get an index e such that for every y,

$$
\begin{aligned}
\varphi_{e}(y) & =\operatorname{Un}(f(e), y) \\
& =\varphi_{f(e)}(y)
\end{aligned}
$$

$(2) \Rightarrow(1)$: Given g, use the $s-m-n$ theorem to get f such that for every x and $y, \varphi_{f(x)}(y) \simeq g(x, y)$. Use (2) to get an index e such that

$$
\begin{aligned}
\varphi_{e}(y) & =\varphi_{f(e)}(y) \\
& =g(e, y)
\end{aligned}
$$

This concludes the proof.
Before showing that statement (1) is true (and hence (2) as well), consider how bizarre it is. Think of e as being a computer program; statement (1) says that given any partial computable $g(x, y)$, you can find a computer program e that computes $g_{e}(y) \simeq g(e, y)$. In other words, you can find a computer program that computes a function that references the program itself.

Theorem 16.24. The two statements in Lemma 16.23 are true. Specifically, for every partial computable function $g(x, y)$, there is an index e such that for every y,

$$
\varphi_{e}(y) \simeq g(e, y)
$$

Proof. The ingredients are already implicit in the discussion of the halting problem above. Let $\operatorname{diag}(x)$ be a computable function which for each x returns an index for the function $f_{x}(y) \simeq \varphi_{x}(x, y)$, i.e.

$$
\varphi_{\operatorname{diag}(x)}(y) \simeq \varphi_{x}(x, y)
$$

Think of diag as a function that transforms a program for a 2-ary function into a program for a 1-ary function, obtained by fixing the original program as its first argument. The function diag can be defined formally as follows: first define s by

$$
s(x, y) \simeq \operatorname{Un}^{2}(x, x, y)
$$

where Un^{2} is a 3-ary function that is universal for partial computable 2-ary functions. Then, by the $s-m-n$ theorem, we can find a primitive recursive function diag satisfying

$$
\varphi_{\operatorname{diag}(x)}(y) \simeq s(x, y)
$$

Now, define the function l by

$$
l(x, y) \simeq g(\operatorname{diag}(x), y)
$$

and let $\ulcorner l\urcorner$ be an index for l. Finally, let $e=\operatorname{diag}(\ulcorner l\urcorner)$. Then for every y, we have

$$
\begin{aligned}
\varphi_{e}(y) & \simeq \varphi_{\operatorname{diag}(\ulcorner l\urcorner)}(y) \\
& \simeq \varphi_{\ulcorner l\urcorner(\ulcorner l\urcorner, y)} \\
& \simeq l(\ulcorner l\urcorner, y) \\
& \simeq g(\operatorname{diag}(\ulcorner l\urcorner), y) \\
& \simeq g(e, y),
\end{aligned}
$$

as required.

16.20. THE FIXED-POINT THEOREM

What's going on? Suppose you are given the task of writing a computer program that prints itself out. Suppose further, however, that you are working with a programming language with a rich and bizarre library of string functions. In particular, suppose your programming language has a function diag which works as follows: given an input string s, diag locates each instance of the symbol ' x ' occuring in s, and replaces it by a quoted version of the original string. For example, given the string

```
hello x world
```

as input, the function returns

```
hello 'hello x world' world
```

as output. In that case, it is easy to write the desired program; you can check that

```
print(diag('print(diag(x))'))
```

does the trick. For more common programming languages like C++ and Java, the same idea (with a more involved implementation) still works.

We are only a couple of steps away from the proof of the fixed-point theorem. Suppose a variant of the print function $\operatorname{print}(x, y)$ accepts a string x and another numeric argument y, and prints the string x repeatedly, y times. Then the "program"

```
getinput(y); print(diag('getinput(y); print(diag(x), y)'), y)
```

prints itself out y times, on input y. Replacing the getinput-print-diag skeleton by an arbitrary funtion $g(x, y)$ yields

```
g(diag('g(diag(x), y)'), y)
```

which is a program that, on input y, runs g on the program itself and y. Thinking of "quoting" with "using an index for," we have the proof above.

For now, it is o.k. if you want to think of the proof as formal trickery, or black magic. But you should be able to reconstruct the details of the argument given above. When we prove the incompleteness theorems (and the related "fixed-point theorem") we will discuss other ways of understanding why it works.

The same idea can be used to get a "fixed point" combinator. Suppose you have a lambda term g, and you want another term k with the property that k is β-equivalent to $g k$. Define terms

$$
\operatorname{diag}(x)=x x
$$

and

$$
l(x)=g(\operatorname{diag}(x))
$$

using our notational conventions; in other words, l is the term $\lambda x . g(x x)$. Let k be the term $l l$. Then we have

$$
\begin{aligned}
& k=(\lambda x \cdot g(x x))(\lambda x \cdot g(x x)) \\
& \quad \triangleright g((\lambda x \cdot g(x x))(\lambda x \cdot g(x x))) \\
& \quad=g k .
\end{aligned}
$$

If one takes

$$
Y=\lambda g \cdot((\lambda x \cdot g(x x))(\lambda x \cdot g(x x)))
$$

then $Y g$ and $g(Y g)$ reduce to a common term; so $Y g \equiv_{\beta} g(Y g)$. This is known as "Curry's combinator." If instead one takes

$$
Y=(\lambda x g \cdot g(x x g))(\lambda x g \cdot g(x x g))
$$

then in fact $Y g$ reduces to $g(Y g)$, which is a stronger statement. This latter version of Y is known as "Turing's combinator."

16.21 Applying the Fixed-Point Theorem

The fixed-point theorem essentially lets us define partial computable functions in terms of their indices. For example, we can find an index e such that for every y,

$$
\varphi_{e}(y)=e+y
$$

As another example, one can use the proof of the fixed-point theorem to design a program in Java or $\mathrm{C}++$ that prints itself out.

Remember that if for each e, we let W_{e} be the domain of φ_{e}, then the sequence $W_{0}, W_{1}, W_{2}, \ldots$ enumerates the computably enumerable sets. Some of these sets are computable. One can ask if there is an algorithm which takes as input a value x, and, if W_{x} happens to be computable, returns an index for its characteristic function. The answer is "no," there is no such algorithm:

Theorem 16.25. There is no partial computable function f with the following property: whenever W_{e} is computable, then $f(e)$ is defined and $\varphi_{f(e)}$ is its characteristic function.

Proof. Let f be any computable function; we will construct an e such that W_{e} is computable, but $\varphi_{f(e)}$ is not its characteristic function. Using the fixed point theorem, we can find an index e such that

$$
\varphi_{e}(y) \simeq \begin{cases}0 & \text { if } y=0 \text { and } \varphi_{f(e)}(0) \downarrow=0 \\ \text { undefined } & \text { otherwise } .\end{cases}
$$

That is, e is obtained by applying the fixed-point theorem to the function defined by

$$
g(x, y) \simeq \begin{cases}0 & \text { if } y=0 \text { and } \varphi_{f(x)}(0) \downarrow=0 \\ \text { undefined } & \text { otherwise. }\end{cases}
$$

16.22. DEFINING FUNCTIONS USING SELF-REFERENCE

Informally, we can see that g is partial computable, as follows: on input x and y, the algorithm first checks to see if y is equal to 0 . If it is, the algorithm computes $f(x)$, and then uses the universal machine to compute $\varphi_{f(x)}(0)$. If this last computation halts and returns 0 , the algorithm returns 0 ; otherwise, the algorithm doesn't halt.

But now notice that if $\varphi_{f(e)}(0)$ is defined and equal to 0 , then $\varphi_{e}(y)$ is defined exactly when y is equal to 0 , so $W_{e}=\{0\}$. If $\varphi_{f(e)}(0)$ is not defined, or is defined but not equal to 0 , then $W_{e}=\varnothing$. Either way, $\varphi_{f(e)}$ is not the characteristic function of W_{e}, since it gives the wrong answer on input 0 .

16.22 Defining Functions using Self-Reference

It is generally useful to be able to define functions in terms of themselves. For example, given computable functions k, l, and m, the fixed-point lemma tells us that there is a partial computable function f satisfying the following equation for every y :

$$
f(y) \simeq \begin{cases}k(y) & \text { if } l(y)=0 \\ f(m(y)) & \text { otherwise }\end{cases}
$$

Again, more specifically, f is obtained by letting

$$
g(x, y) \simeq \begin{cases}k(y) & \text { if } l(y)=0 \\ \varphi_{x}(m(y)) & \text { otherwise }\end{cases}
$$

and then using the fixed-point lemma to find an index e such that $\varphi_{e}(y)=$ $g(e, y)$.

For a concrete example, the "greatest common divisor" function gcd (u, v) can be defined by

$$
\operatorname{gcd}(u, v) \simeq \begin{cases}v & \text { if } 0=0 \\ \operatorname{gcd}(\bmod (v, u), u) & \text { otherwise }\end{cases}
$$

where $\bmod (v, u)$ denotes the remainder of dividing v by u. An appeal to the fixed-point lemma shows that gcd is partial computable. (In fact, this can be put in the format above, letting y code the pair $\langle u, v\rangle$.) A subsequent induction on u then shows that, in fact, gcd is total.

Of course, one can cook up self-referential definitions that are much fancier than the examples just discussed. Most programming languages support definitions of functions in terms of themselves, one way or another. Note that this is a little bit less dramatic than being able to define a function in terms of an index for an algorithm computing the functions, which is what, in full generality, the fixed-point theorem lets you do.

16.23 Minimization with Lambda Terms

When it comes to the lambda calculus, we've shown the following:

1. Every primitive recursive function is represented by a lambda term.
2. There is a lambda term Y such that for any lambda term $G, Y G \triangleright G(Y G)$.

To show that every partial computable function is represented by some lambda term, we only need to show the following.
Lemma 16.26. Suppose $f(x, y)$ is primitive recursive. Let g be defined by

$$
g(x) \simeq \mu y f(x, y)=0
$$

Then g is represented by a lambda term.
Proof. The idea is roughly as follows. Given x, we will use the fixed-point lambda term Y to define a function $h_{x}(n)$ which searches for a y starting at n; then $g(x)$ is just $h_{x}(0)$. The function h_{x} can be expressed as the solution of a fixed-point equation:

$$
h_{x}(n) \simeq \begin{cases}n & \text { if } f(x, n)=0 \\ h_{x}(n+1) & \text { otherwise }\end{cases}
$$

Here are the details. Since f is primitive recursive, it is represented by some term F. Remember that we also have a lambda term D such that $D(M, N, \overline{0}) \triangleright$ M and $D(M, N, \overline{1}) \triangleright N$. Fixing x for the moment, to represent h_{x} we want to find a term H (depending on x) satisfying

$$
H(\bar{n}) \equiv D(\bar{n}, H(S(\bar{n})), F(x, \bar{n}))
$$

We can do this using the fixed-point term Y. First, let U be the term

$$
\lambda h \cdot \lambda z \cdot D(z,(h(S z)), F(x, z))
$$

and then let H be the term $Y U$. Notice that the only free variable in H is x. Let us show that H satisfies the equation above.

By the definition of Y, we have

$$
H=Y U \equiv U(Y U)=U(H)
$$

In particular, for each natural number n, we have

$$
\begin{aligned}
H(\bar{n}) & \equiv U(H, \bar{n}) \\
& \triangleright D(\bar{n}, H(S(\bar{n})), F(x, \bar{n}))
\end{aligned}
$$

as required. Notice that if you substitute a numeral \bar{m} for x in the last line, the expression reduces to \bar{n} if $F(\bar{m}, \bar{n})$ reduces to $\overline{0}$, and it reduces to $H(S(\bar{n}))$ if $F(\bar{m}, \bar{n})$ reduces to any other numeral.

To finish off the proof, let G be $\lambda x . H(\overline{0})$. Then G represents g; in other words, for every $m, G(\bar{m})$ reduces to reduces to $\overline{g(m)}$, if $g(m)$ is defined, and has no normal form otherwise.

Problems

Problem 16.1. Give a reduction of K to K_{0}.

Part V

Turing Machines

The material in this part is a basic and informal introduction to Turing machines. It needs more examples and exercises, and perhaps information on available Turing machine simulators. The proof of the unsolvability of the decision problem uses a successor function, hence all models are infinite. One could strengthen the result by using a successor relation instead. There probably are subtle oversights; use these as checks on students' attention (but also file issues!).

Chapter 17

Turing Machine Computations

17.1 Introduction

What does it mean for a function, say, from \mathbb{N} to \mathbb{N} to be computable? Among the first answers, and the most well known one, is that a function is computable if it can be computed by a Turing machine. This notion was set out by Alan Turing in 1936. Turing machines are an example of a model of compu-tation-they are a mathematically precise way of defining the idea of a "computational procedure." What exactly that means is debated, but it is widely agreed that Turing machines are one way of specifying computational procedures. Even though the term "Turing machine" evokes the image of a physical machine with moving parts, strictly speaking a Turing machine is a purely mathematical construct, and as such it idealizes the idea of a computational procedure. For instance, we place no restriction on either the time or memory requirements of a Turing machine: Turing machines can compute something even if the computation would require more storage space or more steps than there are atoms in the universe.

It is perhaps best to think of a Turing machine as a program for a special kind of imaginary mechanism. This mechanism consists of a tape and a read-write head. In our version of Turing machines, the tape is infinite in one direction (to the right), and it is divided into squares, each of which may contain a symbol from a finite alphabet. Such alphabets can contain any number of different symbols, but we will mainly make do with three: $\triangleright, 0$, and 1 . When the mechanism is started, the tape is empty (i.e., each square contains the symbol 0) except for the leftmost square, which contains \triangleright, and a finite number of squares which contain the input. At any time, the mechanism is in one of a finite number of states. At the outset, the head scans the leftmost square and in a specified initial state. At each step of the mechanism's run, the content of the square currently scanned together with the state the mechanism is in and the Turing machine program determine what happens next. The Turing machine program is given by a partial function which takes as input a state q

17.1. INTRODUCTION

and a symbol σ and outputs a triple $\left\langle q^{\prime}, \sigma^{\prime}, D\right\rangle$. Whenever the mechanism is in state q and reads symbol σ, it replaces the symbol on the current square with σ^{\prime}, the head moves left, right, or stays put according to whether D is L, R, or N, and the mechanism goes into state q^{\prime}.

For instance, consider the situation below:

The tape of the Turing machine contains the end-of-tape symbol \triangleright on the leftmost square, followed by three 1 's, a 0 , four more 1 's, and the rest of the tape is filled with 0 's. The head is reading the third square from the left, which contains a 1 , and is in state q_{1} —we say "the machine is reading a 1 in state q_{1}." If the program of the Turing machine returns, for input $\left\langle q_{1}, 1\right\rangle$, the triple $\left\langle q_{5}, 0, R\right\rangle$, we would now replace the 1 on the third square with a 0 , move right to the fourth square, and change the state of the machine to q_{5}.

We say that the machine halts when it encounters some state, q_{n}, and symbol, σ such that there is no instruction for $\left\langle q_{n}, \sigma\right\rangle$, i.e., the transition function for input $\left\langle q_{n}, \sigma\right\rangle$ is undefined. In other words, the machine has no instruction to carry out, and at that point, it ceases operation. Halting is sometimes represented by a specific halt state h. This will be demonstrated in more detail later on.

The beauty of Turing's paper, "On computable numbers," is that he presents not only a formal definition, but also an argument that the definition captures the intuitive notion of computability. From the definition, it should be clear that any function computable by a Turing machine is computable in the intuitive sense. Turing offers three types of argument that the converse is true, i.e., that any function that we would naturally regard as computable is computable by such a machine. They are (in Turing's words):

1. A direct appeal to intuition.
2. A proof of the equivalence of two definitions (in case the new definition has a greater intuitive appeal).
3. Giving examples of large classes of numbers which are computable.

Our goal is to try to define the notion of computability "in principle," i.e., without taking into account practical limitations of time and space. Of course, with the broadest definition of computability in place, one can then go on to consider computation with bounded resources; this forms the heart of the subject known as "computational complexity."

Historical Remarks Alan Turing invented Turing machines in 1936. While his interest at the time was the decidability of first-order logic, the paper has been described as a definitive paper on the foundations of computer design. In the paper, Turing focuses on computable real numbers, i.e., real numbers whose decimal expansions are computable; but he notes that it is not hard to adapt his notions to computable functions on the natural numbers, and so on. Notice that this was a full five years before the first working general purpose computer was built in 1941 (by the German Konrad Zuse in his parents living room), seven years before Turing and his colleagues at Bletchley Park built the code-breaking Colossus (1943), nine years before the American ENIAC (1945), twelve years before the first British general purpose computer the Manchester Mark I was built in Manchester (1948) and thirteen years before the Americans first tested the BINAC (1949). The Manchester Mark I has the distinction of being the first stored-program computer-previous machines had to be rewired by hand for each new task.

17.2 Representing Turing Machines

Turing machines can be represented visually by state diagrams. The diagrams are composed of state cells connected by arrows. Unsurprisingly, each state cell represents a state of the machine. Each arrow represents an instruction that can be carried out from that state, with the specifics of the instruction written above or below the appropriate arrow. Consider the following machine, which has only two internal states, q_{0} and q_{1}, and one instruction:

Recall that the Turing machine has a read/write head and a tape with the input written on it. The instruction can be read as if reading a blank in state q_{0}, write a stroke, move right, and move to state q_{1}. This is equivalent to the transition function mapping $\left\langle q_{0}, 0\right\rangle$ to $\left\langle q_{1}, 1, R\right\rangle$.

Example 17.1. Even Machine: The following Turing machine halts if, and only if, there are an even number of strokes on the tape.

17.2. REPRESENTING TURING MACHINES

The state diagram corresponds to the following transition function:

$$
\begin{aligned}
\delta\left(q_{0}, 1\right) & =\left\langle q_{1}, 1, R\right\rangle \\
\delta\left(q_{1}, 1\right) & =\left\langle q_{0}, 1, R\right\rangle \\
\delta\left(q_{1}, 0\right) & =\left\langle q_{1}, 0, R\right\rangle
\end{aligned}
$$

The above machine halts only when the input is an even number of strokes. Otherwise, the machine (theoretically) continues to operate indefinitely. For any machine and input, it is possible to trace through the configurations of the machine in order to determine the output. We will give a formal definition of configurations later. For now, we can intuitively think of configurations as a series of diagrams showing the state of the machine at any point in time during operation. Configurations show the content of the tape, the state of the machine and the location of the read/write head.

Let us trace through the configurations of the even machine if it is started with an input of 41 s . In this case, we expect that the machine will halt. We will then run the machine on an input of 31 s, where the machine will run forever.

The machine starts in state q_{0}, scanning the leftmost 1 . We can represent the initial state of the machine as follows:

$$
\triangleright 1_{0} 1110 \ldots
$$

The above configuration is straightforward. As can be seen, the machine starts in state one, scanning the leftmost 1 . This is represented by a subscript of the state name on the first 1 . The applicable instruction at this point is $\delta\left(q_{0}, 1\right)=$ $\left\langle q_{1}, 1, R\right\rangle$, and so the machine moves right on the tape and changes to state q_{1}.

$$
\triangleright 11_{1} 110 \ldots
$$

Since the machine is now in state q_{1} scanning a stroke, we have to "follow" the instruction $\delta\left(q_{1}, 1\right)=\left\langle q_{0}, 1, R\right\rangle$. This results in the configuration

$$
\triangleright 111_{0} 10 \ldots
$$

As the machine continues, the rules are applied again in the same order, resulting in the following two configurations:

$$
\begin{aligned}
& \triangleright 1111_{1} 0 \ldots \\
& \triangleright 11110_{0} \ldots
\end{aligned}
$$

The machine is now in state q_{0} scanning a blank. Based on the transition diagram, we can easily see that there is no instruction to be carried out, and thus the machine has halted. This means that the input has been accepted.

Suppose next we start the machine with an input of three strokes. The first few configurations are similar, as the same instructions are carried out, with only a small difference of the tape input:

$$
\begin{aligned}
& \triangleright 1_{0} 110 \ldots \\
& \triangleright 11_{1} 10 \ldots \\
& \triangleright 111_{0} 0 \ldots \\
& \triangleright 1110_{1} \ldots
\end{aligned}
$$

The machine has now traversed past all the strokes, and is reading a blank in state q_{1}. As shown in the diagram, there is an instruction of the form $\delta\left(q_{1}, 0\right)=\left\langle q_{1}, 0, R\right\rangle$. Since the tape is infinitely blank to the right, the machine will continue to execute this instruction forever, staying in state q_{1} and moving ever further to the right. The machine will never halt, and does not accept the input.

It is important to note that not all machines will halt. If halting means that the machine runs out of instructions to execute, then we can create a machine that never halts simply by ensuring that there is an outgoing arrow for each symbol at each state. The even machine can be modified to run infinitely by adding an instruction for scanning a blank at q_{0}.

Example 17.2.

Machine tables are another way of representing Turing machines. Machine tables have the tape alphabet displayed on the x-axis, and the set of machine states across the y-axis. Inside the table, at the intersection of each state and symbol, is written the rest of the instruction-the new state, new symbol, and direction of movement. Machine tables make it easy to determine in what state, and for what symbol, the machine halts. Whenever there is a gap in the table is a possible point for the machine to halt. Unlike state diagrams and instruction sets, where the points at which the machine halts are not always immediately obvious, any halting points are quickly identified by finding the gaps in the machine table.

Example 17.3. The machine table for the even machine is:

	0	1
q_{0}		$1, q_{1}, R$
q_{1}	$0, q_{1}, 0$	$1, q_{0}, R$

17.3. TURING MACHINES

As we can see, the machine halts when scanning a blank in state q_{0}.
So far we have only considered machines that read and accept input. However, Turing machines have the capacity to both read and write. An example of such a machine (although there are many, many examples) is a doubler. A doubler, when started with a block of n strokes on the tape, outputs a block of $2 n$ strokes.

Example 17.4. Before building a doubler machine, it is important to come up with a strategy for solving the problem. Since the machine (as we have formulated it) cannot remember how many strokes it has read, we need to come up with a way to keep track of all the strokes on the tape. One such way is to separate the output from the input with a blank. The machine can then erase the first stroke from the input, traverse over the rest of the input, leave a blank, and write two new strokes. The machine will then go back and find the second stroke in the input, and double that one as well. For each one stroke of input, it will write two strokes of output. By erasing the input as the machine goes, we can guarantee that no stroke is missed or doubled twice. When the entire input is erased, there will be $2 n$ strokes left on the tape.

17.3 Turing Machines

The formal definition of what constitutes a Turing machine looks abstract, but is actually simple: it merely packs into one mathematical structure all the information needed to specify the workings of a Turing machine. This includes (1) which states the machine can be in, (2) which symbols are allowed to be on the tape, (3) which state the machine should start in, and (4) what the instruction set of the machine is.

Definition 17.5 (Turing machine). A Turing machine $T=\left\langle Q, \Sigma, q_{0}, \delta\right\rangle$ consists of

1. a finite set of states Q,
2. a finite alphabet Σ which includes \triangleright and 0 ,
3. an initial state $q_{0} \in Q$,
4. a finite instruction set $\delta: Q \times \Sigma \rightarrow Q \times \Sigma \times\{L, R, N\}$.

The function δ is also called the transition function of T.
We assume that the tape is infinite in one direction only. For this reason it is useful to designate a special symbol \triangleright as a marker for the left end of the tape. This makes it easier for Turing machine programs to tell when they're "in danger" of running off the tape.

Example 17.6. Even Machine: The even machine is formally the quadruple $\left\langle Q, \Sigma, q_{0}, \delta\right\rangle$ where

$$
\begin{aligned}
Q & =\left\{q_{0}, q_{1}\right\} \\
\Sigma & =\{\triangleright, 0,1\}, \\
\delta\left(q_{0}, 1\right) & =\left\langle q_{1}, 1, R\right\rangle, \\
\delta\left(q_{1}, 1\right) & =\left\langle q_{0}, 1, R\right\rangle, \\
\delta\left(q_{1}, 0\right) & =\left\langle q_{1}, 0, R\right\rangle .
\end{aligned}
$$

17.4 Configurations and Computations

Recall tracing through the configurations of the even machine earlier. The imaginary mechanism consisting of tape, read/write head, and Turing machine program is really just in intuitive way of visualizing what a Turing machine computation is. Formally, we can define the computation of a Turing machine on a given input as a sequence of configurations-and a configuration in turn is a sequence of symbols (corresponding to the contents of the tape at a given point in the computation), a number indicating the position of the read/write head, and a state. Using these, we can define what the Turing machine M computes on a given input.

Definition 17.7 (Configuration). A configuration of Turing machine $M=\left\langle Q, \Sigma, q_{0}, \delta\right\rangle$ is a triple $\langle C, n, q\rangle$ where

1. $C \in \Sigma^{*}$ is a finite sequence of symbols from Σ,
2. $n \in \mathbb{N}$ is a number $<\operatorname{len}(C)$, and
3. $q \in Q$

17.4.

Intuitively, the sequence C is the content of the tape (symbols of all squares from the leftmost square to the last non-blank or previously visited square), n is the number of the square the read/write head is scanning (beginning with 0 being the number of the leftmost square), and q is the current state of the machine.

The potential input for a Turing machine is a sequence of symbols, usually a sequence that encodes a number in some form. The initial configuration of the Turing machine is that configuration in which we start the Turing machine to work on that input: the tape contains the tape end marker immediately followed by the input written on the squares to the right, the read/write head is scanning the leftmost square of the input (i.e., the square to the right of the left end marker), and the mechanism is in the designated start state q_{0}.

Definition 17.8 (Initial configuration). The initial configuration of M for input $I \in \Sigma^{*}$ is

$$
\left\langle\triangleright \frown I, 1, q_{0}\right\rangle
$$

The \frown symbol is for concatenation-we want to ensure that there are no blanks between the left end marker and the beginning of the input.
Definition 17.9. We say that a configuration $\langle C, n, q\rangle$ yields $\left\langle C^{\prime}, n^{\prime}, q^{\prime}\right\rangle$ in one step (according to M), iff

1. the n-th symbol of C is σ,
2. the instruction set of M specifies $\delta(q, \sigma)=\left\langle q^{\prime}, \sigma^{\prime}, D\right\rangle$,
3. the n-th symbol of C^{\prime} is σ^{\prime}, and
4. a) $D=L$ and $n^{\prime}=n-1$, or
b) $D=R$ and $n^{\prime}=n+1$, or
c) $D=N$ and $n^{\prime}=n$,
5. if $n^{\prime}>\operatorname{len}(C)$, then len $\left(C^{\prime}\right)=\operatorname{len}(C)+1$ and the n^{\prime}-th symbol of C^{\prime} is 0 .
6. for all i such that $i<\operatorname{len}\left(C^{\prime}\right)$ and $i \neq n, C^{\prime}(i)=C(i)$,

Definition 17.10. A run of M on input I is a sequence C_{i} of configurations of M, where C_{0} is the initial configuration of M for input I, and each C_{i} yields C_{i+1} in one step.

We say that M halts on input I after k steps if $C_{k}=\langle C, n, q\rangle$, the nth symbol of C is σ, and $\delta(q, \sigma)$ is undefined. In that case, the output of M for input I is O, where O is a string of symbols not beginning or ending in 0 such that $C=\triangleright \frown 0^{i} \frown O \frown 0^{j}$ for some $i, j \in \mathbb{N}$.

According to this definition, the output O of M always begins and ends in a symbol other than 0 , or, if at time k the entire tape is filled with 0 (except for the leftmost $\triangleright), O$ is the empty string.

17.5 Unary Representation of Numbers

Turing machines work on sequences of symbols written on their tape. Depending on the alphabet a Turing machine uses, these sequences of symbols can represent various inputs and outputs. Of particular interest, of course, are Turing machines which compute arithmetical functions, i.e., functions of natural numbers. A simple way to represent positive integers is by coding them as sequences of a single symbol 1 . If $n \in \mathbb{N}$, let 1^{n} be the empty sequence if $n=0$, and otherwise the sequence consisting of exactly $n 1$'s.

Definition 17.11 (Computation). A Turing machine M computes the function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ iff M halts on input

$$
1^{k_{1}} 01^{k_{2}} 0 \ldots 01^{k_{n}}
$$

with output $1^{f\left(k_{1}, \ldots, k_{n}\right)}$.
Example 17.12. Addition: Build a machine that, when given an input of two non-empty strings of 1 's of length n and m, computes the function $f(n, m)=$ $n+m$.

We want to come up with a machine that starts with two blocks of strokes on the tape and halts with one block of strokes. We first need a method to carry out. The input strokes are separated by a blank, so one method would be to write a stroke on the square containing the blank, and erase the first (or last) stroke. This would result in a block of $n+m 1$'s. Alternatively, we could proceed in a similar way to the doubler machine, by erasing a stroke from the first block, and adding one to the second block of strokes until the first block has been removed completely. We will proceed with the former example.

17.6 Halting States

Although we have defined our machines to halt only when there is no instruction to carry out, common representations of Turing machines have a dedicated halting state, h, such that $h \in Q$.

The idea behind a halting state is simple: when the machine has finished operation (it is ready to accept input, or has finished writing the output), it goes into a state h where it halts. Some machines have two halting states, one that accepts input and one that rejects input.

17.7. COMBINING TURING MACHINES

Example 17.13. Halting States. To elucidate this concept, let us begin with an alteration of the even machine. Instead of having the machine halt in state q_{0} if the input is even, we can add an instruction to send the machine into a halt state.

Let us further expand the example. When the machine determines that the input is odd, it never halts. We can alter the machine to include a reject state by replacing the looping instruction with an instruction to go to a reject state r.

Adding a dedicated halting state can be advantageous in cases like this, where it makes explicit when the machine accepts/rejects certain inputs. However, it is important to note that no computing power is gained by adding a dedicated halting state. Similarly, a less formal notion of halting has its own advantages. The definition of halting used so far in this chapter makes the proof of the Halting Problem intuitive and easy to demonstrate. For this reason, we continue with our original definition.

17.7 Combining Turing Machines

The examples of Turing machines we have seen so far have been fairly simple in nature. But in fact, any problem that can be solved with any modern programming language can als o be solved with Turing machines. To build more complex Turing machines, it is important to convince ourselves that we
can combine them, so we can build machines to solve more complex problems by breaking the procedure into simpler parts. If we can find a natural way to break a complex problem down into constituent parts, we can tackle the problem in several stages, creating several simple Turing machines and combining then into one machine that can solve the problem. This point is especially important when tackling the Halting Problem in the next section.

Example 17.14. Combining Machines: Design a machine that computes the function $f(m, n)=2(m+n)$.

In order to build this machine, we can combine two machines we are already familiar with: the addition machine, and the doubler. We begin by drawing a state diagram for the addition machine.

Instead of halting at state q_{2}, we want to continue operation in order to double the output. Recall that the doubler machine erases the first stroke in the input and writes two strokes in a separate output. Let's add an instruction to make sure the tape head is reading the first stroke of the output of the addition machine.

It is now easy to double the input-all we have to do is connect the doubler machine onto state q_{4}. This requires renaming the states of the doubler machine so that they start at q_{4} instead of q_{0}-this way we don't end up with two
starting states. The final diagram should look like:

17.8 Variants of Turing Machines

There are in fact many possible ways to define Turing machines, of which ours is only one. We allow arbitrary finite alphabets, a more restricted definition might allow only two tape symbols, 1 and 0 . We allow the machine to write a symbol to the tape and move at the same time, other definitions allow either writing or moving. We allow the possibility of writing without moving the tape head, other definitions leave out the N "instruction." Our definition assumes that the tape is infinite in one direction only, other definitions allow the tape to be infinite both to the left and the right. In fact, we might even allow any number of separate tapes, or even an infinite grid of squares. We represent the instruction set of the Turing machine by a transition function; other definitions use a transition relation.

This last relaxation of the definition is particularly interesting. In our definition, when the machine is in state q reading symbol $\sigma, \delta(q, \sigma)$ determines
what the new symbol, state, and tape head position is. But if we allow the instruction set to be a relation between current state-symbol pairs $\langle q, \sigma\rangle$ and new state-symbol-direction triples $\left\langle q^{\prime}, \sigma^{\prime}, D\right\rangle$, the action of the Turing machine may not be uniquely determined-the instruction relation may contain both $\left\langle q, \sigma, q^{\prime}, \sigma^{\prime}, D\right\rangle$ and $\left\langle q, \sigma, q^{\prime \prime}, \sigma^{\prime \prime}, D^{\prime}\right\rangle$. In this case we have a non-deterministic Turing machine. These play an important role in computational complexity theory.

There are also different conventions for when a Turing machine halts: we say it halts when the transition function is undefined, other definitions require the machine to be in a special designated halting state. And there are differnt ways of representing numbers: we use unary representation, but you can also use binary representation (this requires two symbols in addition to 0).

Now here is an interesting fact: none of these variations matters as to which functions are Turing computable. If a function is Turing computable according to one definition, it is Turing computable according to all of them.

17.9 The Church-Turing Thesis

Turing machines are supposed to be a precise replacement for the concept of an effective procedure. Turing took it that anyone who grasped the concept of an effective procedure and the concept of a Turing machine would have the intuition that anything that could be done via an effective procedure could be done by Turing machine. This claim is given support by the fact that all the other proposed precise replacements for the concept of an effective procedure turn out to be extensionally equivalent to the concept of a Turing machinethat is, they can compute exactly the same set of functions. This claim is called the Church-Turing thesis.

Definition 17.15 (Church-Turing thesis). The Church-Turing Thesis states that anything computable via an effective procedure is Turing computable.

The Church-Turing thesis is appealed to in two ways. The first kind of use of the Church-Turing thesis is an excuse for laziness. Suppose we have a description of an effective procedure to compute something, say, in "pseudocode." Then we can invoke the Church-Turing thesis to justify the claim that the same function is computed by some Turing machine, eve if we have not in fact constructed it.

The other use of the Church-Turing thesis is more philosophically interesting. It can be shown that there are functions whch cannot be computed by a Turing machines. From this, using the Church-Turing thesis, one can conclude that it cannot be effectively computed, using any procedure whatsoever. For if there were such a procedure, by the Church-Turing thesis, it would follow that there would be a Turing machine. So if we can prove that there is no Turing machine that computes it, there also can't be an effective procedure.

In particular, the Church-Turing thesis is invoked to claim that the so-called halting problem not only cannot be solved by Turing machines, it cannot be effectively solved at all.

Problems

Problem 17.1. Choose an arbitary input and trace through the configurations of the doubler machine in Example 17.4.

Problem 17.2. The double machine in Example 17.4 writes its output to the right of the input. Come up with a new method for solving the doubler problem which generates its output immediately to the right of the end-of-tape marker. Build a machine that executes your method. Check that your machine works by tracing through the configurations.

Problem 17.3. Design a Turing-machine with alphabet $\{0, A, B\}$ that accepts any string of $A \mathrm{~s}$ and $B \mathrm{~s}$ where the number of $A \mathrm{~s}$ is the same as the number of B s and all the A s precede all the B s, and rejects any string where the number of $A \mathrm{~s}$ is not equal to the number of $B \mathrm{~s}$ or the $A \mathrm{~s}$ do not precede all the $B \mathrm{~s}$. (E.g., the machine should accept $A A B B$, and $A A A B B B$, but reject both $A A B$ and $A A B B A A B B$.)

Problem 17.4. Design a Turing-machine with alphabet $\{0, A, B\}$ that takes as input any string α of A s and B s and duplicates them to produce an output of the form $\alpha \alpha$. (E.g. input $A B B A$ should result in output $A B B A A B B A$).

Problem 17.5. Alphabetical?: Design a Turing-machine with alphabet $\{0, A, B\}$ that when given as input a finite sequence of As and Bs checks to see if all the As appear left of all the Bs or not. The machine should leave the input string on the tape, and output either halt if the string is "alphabetical", or loop forever if the string is not.

Problem 17.6. Alphabetizer: Design a Turing-machine with alphabet $\{0, A, B\}$ that takes as input a finite sequence of A s and B s rearranges them so that all the A s are to the left of all the B s. (e.g., the sequence $B A B A A$ should become the sequence $A A A B B$, and the sequence $A B B A B B$ should become the sequence $A A B B B B$).

Problem 17.7. Trace through the configurations of the machine for input $\langle 3,5\rangle$.
Problem 17.8. Subtraction: Design a Turing machine that when given an input of two non-empty strings of strokes of length n and m, where $n>m$, computes the function $f(n, m)=n-m$.

Problem 17.9. Equality: Design a Turing machine to compute the following function:

$$
\text { equality }(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

where x and y are integers greater than 0 .
Problem 17.10. Design a Turing machine to compute the function $\min (x, y)$ where x and y are positive integers represented on the tape by strings of 1 's separated by a 0 . You may use additional symbols in the alphabet of the machine.

The function \min selects the smallest value from its arguments, so $\min (3,5)=$ $3, \min (20,16)=16$, and $\min (4,4)=4$, and so on.

Chapter 18

Undecidability

18.1 Introduction

It might seem obvious that not every function, even every arithmetical function, can be computable. There are just too many, whose behavior is too complicated. Functions defined from the decay of radioactive particles, for instance, or other chaotic or random behavior. Suppose we start counting 1second intervals from a given time, and define the function $f(n)$ as the number of particles in the universe that decay in the n-th 1 -second interval after that initial moment. This seems like a candidate for a function we cannot ever hope to compute.

But it is one thing to not be able to imagine how one would compute such functions, and quite another to actually prove that they are uncomputable. In fact, even functions that seem hopelessly complicated may, in an abstract sense, be computable. For instance, suppose the universe is finite in timesome day, in the very distant future the universe will contract into a single point, as some cosmological theories predict. Then there is only a finite (but incredibly large) number of seconds from that initial moment for which $f(n)$ is defined. And any function which is defined for only finitely many inputs is computable: we could list the outputs in one big table, or code it in one very big Turing machine state transition diagram.

We are often interested in special cases of functions whose values give the answers to yes/no questions. For instance, the question "is n a prime number?" is associated with the function

$$
\operatorname{isprime}(n)= \begin{cases}1 & \text { if } n \text { is prime } \\ 0 & \text { otherwise }\end{cases}
$$

We say that a yes/no question can be effectively decided, if the associated 1/0valued function is effectively computable.

To prove mathematically that there are functions which cannot be effectively computed, or problems that cannot effectively decided, it is essential to
fix a specific model of computation, and show about it that there are functions it cannot compute or problems it cannot decide. We can show, for instance, that not every function can be computed by Turing machines, and not every problem can be decided by Turing machines. We can then appeal to the Church-Turing thesis to conclude that not only are Turing machines not powerful enough to compute every function, but no effective procedure can.

The key to proving such negative results is the fact that we can assign numbers to Turing machines themselves. The easiest way to do this is to enumerate them, perhaps by fixing a specific way to write down Turing machines and their programs, and then listing them in a systematic fashion. Once we see that this can be done, then the existence of Turing-uncomputable functions follows by simple cardinality considerations: there functions from \mathbb{N} to \mathbb{N} (in fact, even just from \mathbb{N} to $\{0,1\}$) are non-enumerable, but since we can enumerate all the Turing machines, the Turing-computable functions are only denumerable.

We can also define specific functions and problems which we can prove to be uncomputable and undecidable, respectively. One such problem is the so-called Halting Problem. Turing machines can be finitely described by listing their instructions. Such a description of a Turing machine, i.e., a Turing machine program, can of course be used as input to another Turing machine. So we can consider Turing machines that decide questions about other Turing machines. One particularly interesting question is this: "Does the given Turing machine eventually halt when started on input n ?" It would be nice if there were a Turing machine that could decide this question: think of it as a quality-control Turing machine which ensures that Turing machines don't get caught in infinite loops and such. The interestign fact, which Turing proved, is that there cannot be such a Turing machine. There cannot be a single Turing machine which, when started on input consisting of a description of a Turing machine M and some number n, will always halt with either output 1 or 0 according to whether M machine would have halted when started on input n or not.

Once we have examples of specific undecidable problems we can use them to show that other problems are undecidable, too. For instance, one celebrated undecidable problem is the question, "Is the first-order formula φ valid?". There is no Turing machine which, given as input a first-order formula φ, is guaranteed to halt with output 1 or 0 according to whether φ is valid or not. Historically, the question of finding a procedure to effectively solve this problem was called simply "the" decision problem; and so we say that the decision problem is unsolvable. Turing and Church proved this result independently at around the same time, so it is also called the Church-Turing Theorem.

18.2. ENUMERATING TURING MACHINES

18.2 Enumerating Turing Machines

We can show that the set of all Turing-machines is enumerable. This follows from the fact that each Turing machine can be finitely described. The set of states and the tape vocabulary are finite sets. The transition function is a partial function from $Q \times \Sigma$ to $Q \times \Sigma \times\{L, R, N\}$, and so likewise can be specified by listing its values for the finitely many argument pairs for which it is defined. Of course, strictly speaking, the states and vocabulary can be anything; but the behavior of the Turing machine is independent of which objects serve as states and vocabulary. So we may assume, for instance, that the states and vocabulary symbols are natural numbers, or that the states and vocabulary are all strings of letters and digits.

Suppose we fix a denumerable vocabulary for specifying Turing machines: $\sigma_{0}=\triangleright, \sigma_{1}=0, \sigma_{2}=1, \sigma_{3}, \ldots, R, L, N, q_{0}, q_{1}, \ldots$ Then any Turing machine can be specified by some finite string of symbols from this alphabet (though not every finite string of symbols specifies a Turing machine). For instance, suppose we have a Turing machine $M=\langle Q, \Sigma, q, \delta\rangle$ where

$$
\begin{aligned}
& Q=\left\{q_{q}^{\prime}, \ldots, q_{n}^{\prime}\right\} \subseteq\left\{q_{0}, q_{1}, \ldots\right\} \text { and } \\
& \Sigma=\left\{\triangleright, \sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \ldots, \sigma_{m}^{\prime}\right\} \subseteq\left\{\sigma_{0}, \sigma_{1}, \ldots\right\} .
\end{aligned}
$$

We could specify it by the string

$$
q_{0}^{\prime} q_{1}^{\prime} \ldots q_{n}^{\prime} \triangleright \sigma_{1}^{\prime} \ldots \sigma_{m}^{\prime} \triangleright q \triangleright S\left(\sigma_{0}^{\prime}, q_{0}^{\prime}\right) \triangleright \ldots \triangleright S\left(\sigma_{m}^{\prime}, q_{n}^{\prime}\right)
$$

where $S\left(\sigma_{i}^{\prime}, q_{j}^{\prime}\right)$ is the string $\sigma_{i}^{\prime} q_{j}^{\prime} \delta\left(\sigma_{i}^{\prime}, q_{j}^{\prime}\right)$ if $\delta\left(\sigma_{i}^{\prime}, q_{j}^{\prime}\right)$ is defined, and $\sigma_{i}^{\prime} q_{j}^{\prime}$ otherwise.
Theorem 18.1. There are functions from \mathbb{N} to \mathbb{N} which are not Turing computable.
Proof. We know that the set of finite strings of symbols from a denumerable alphabet is enumerable. This gives us that the set of descriptions of Turing machines, as a subset of the finite strings from the enumerable vocabulary $\left\{q_{0}, q_{1}, \ldots, \triangleright, \sigma_{1}, \sigma_{2}, \ldots\right\}$, is itself enumerable. Since every Turing computable function is computed by some (in fact, many) Turing machines, this means that the set of all Turing computable functions from \mathbb{N} to \mathbb{N} is also enumerable.

On the other hand, the set of all functions from \mathbb{N} to \mathbb{N} is not enumerable. This follows immediately from the fact that not even the set of all functions of one argument from \mathbb{N} to the set $\{0,1\}$ is enumerable. If all functions were computable by some Turing machine we could enumerate the set of all functions. So there are some functions that are not Turing-computable.

18.3 The Halting Problem

Assume we have fixed some finite descriptions of Turing machines. Using these, we can enumerate Turing machines via their descriptions, say, ordered
by the lexicographic ordering. Each Turing machine thus receives an index: its place in the enumeration $M_{1}, M_{2}, M_{3}, \ldots$ of Turing machine descriptions.

We know that there must be non-Turing-computable functions: the set of Turing machine descriptions-and hence the set of Turing machines-is enumerable, but the set of all functions from \mathbb{N} to \mathbb{N} is not. But we can find specific examples of non-computable function as well. One such function is the halting function.

Definition 18.2 (Halting function). The halting function h is defined as

$$
h(e, n)= \begin{cases}0 & \text { if machine } M_{e} \text { does not halt for input } n \\ 1 & \text { if machine } M_{e} \text { halts for input } n\end{cases}
$$

Definition 18.3 (Halting problem). The Halting Problem is the problem of determining (for any m, w) whether the Turing machine M_{e} halts for an input of n strokes.

We show that h is not Turing-computable by showing that a related function, s, is not Turing-computable. This proof relies on the fact that anything that can be computed by a Turing machine can be computed using just two symbols: 0 and 1 , and the fact that two Turing machines can be hooked together to create a single machine.

Definition 18.4. The function s is defined as

$$
s(e)= \begin{cases}0 & \text { if machine } M_{e} \text { does not halt for input } e \\ 1 & \text { if machine } M_{e} \text { halts for input } e\end{cases}
$$

Lemma 18.5. The functions is not Turing computable.
Proof. We suppose, for contradiction, that the function s is Turing-computable. Then there would be a Turing machine S that computes s. We may assume, without loss of generality, that when S halts, it does so while scanning the first square. This machine can be "hooked up" to another machine J, which halts if it is started on a blank tape (i.e., if it reads 0 in the initial state while scanning the square to the right of the end-of-tape symbol), and otherwise wanders off to the right, never halting. $S \frown J$, the machine created by hooking S to J, is a Turing machine, so it is M_{e} for some e (i.e., it appears somewhere in the enumeration). Start M_{e} on an input of $e 1 \mathrm{~s}$. There are two possibilities: either M_{e} halts or it does not halt.

1. Suppose M_{e} halts for an input of $e 1 \mathrm{~s}$. Then $s(e)=1$. So S, when started on e, halts with a single 1 as output on the tape. Then J starts with a 1 on the tape. In that case J does not halt. But M_{e} is the machine $S \frown J$, so it should do exactly what S followed by J would do. So M_{e} cannot halt for an input of $e 1^{\prime}$'s.

18.4. THE DECISION PROBLEM

2. Now suppose M_{e} does not halt for an input of $e 1 \mathrm{~s}$. Then $s(e)=0$, and S, when started on input e, halts with a blank tape. J, when started on a blank tape, immediately halts. Again, M_{e} does what S followed by J would do, so M_{e} must halt for an input of $e 1$'s.

This shows there cannot be a Turing machine $S: s$ is not Turing computable.

Theorem 18.6 (Unsolvability of the Halting Problem). The halting problem is unsolvable, i.e., the function h is not Turing computable.

Proof. Suppose h were Turing computable, say, by a Turing machine H. We could use H to build a Turing machine that computes s : First, make a copy of the input (separated by a blank). Then move back to the beginning, and run H. We can clearly make a machine that does the former, and if H existed, we would be able to "hook it up" to such a modified doubling machine to get a new machine which would determine if M_{e} halts on input e, i.e., computes s. But we've already shown that no such machine can exist. Hence, h is also not Turing computable.

18.4 The Decision Problem

We say that first-order logic is decidable iff there is an effective method for determining whether or not a given sentence is valid. AS it turns out, there is no such method: the problem of deciding validity of first-order sentences is unsolvable.

In order to establish this important negative result, we prove that the decision problem cannot be solved by a Turing machine. That is, we show that there is no Turing machine which, whenever it is started on a tape that contains a first-order sentence, eventually halts and outputs either 1 or 0 depending on whether the sentence is valid or not. By the Church-Turing thesis, every function which is computable is Turing computable. So if if this "validity function" were effectively computable at all, it would be Turing computable. If it isn't Turing computable, then, it also cannot be effectively computable.

Our strategy for proving that the decision problem is unsolvable is to reduce the halting problem to it. This means the following: We have proved that the function $h(e, w)$ that halts with output 1 if the Turing-machine described by e halts on input w and outputs 0 otherwise, is not Turing-computable. We will show that if there were a Turing machine that decides validity of firstorder sentences, then there is also Turing machine that computes h. Since h cannot be computed by a Turing machine, there cannot be a Turing machine that decides validity either.

The first step in this strategy is to show that for every input w and a Turing machine M, we can effectively describe a sentence τ representing M and w and a sentence α expressing " M eventually halts" such that:
$\vDash \tau \rightarrow \alpha$ iff M halts for input w.
The bulk of our proof will consist in describing these sentences $\tau(M, w)$ and $\alpha(M, w)$ and verifying that $\tau(M, w) \rightarrow \alpha(M, w)$ is valid iff M halts on input w.

18.5 Representing Turing Machines

In order to represent Turing machines and their behavior by a sentence of first-order logic, we have to define a suitable language. The language consists of two parts: predicate symbols for describing configurations of the machine, and expressions for counting execution steps ("moments") and positions on the tape. The latter require an initial moment, 0 , a "successor" function which is traditionally written as a postfix 1 , and an ordering $x<y$ of "before."

Definition 18.7. Given a Turing machine $M=\left\langle Q, \Sigma, q_{0}, \delta\right\rangle$, the language \mathcal{L}_{M} consists of:

1. A two-place predicate symbol $Q_{q}(x, y)$ for every state $q \in Q$. Intuitively, $Q_{q}(\bar{n}, \bar{m})$ expresses "after m steps, M is in state q scanning the nth square."
2. A two-place predicate symbol $S_{\sigma}(x, y)$ for every symbol $\sigma \in \Sigma$. Intuitively, $S_{\sigma}(\bar{n}, \bar{m})$ expresses "after m steps, the nth square contains symbol σ."
3. A constant o
4. A one-place function /
5. A two-place predicate $<$

For each number n there is a canonical term \bar{n}, the numeral for n, which represents it in $\mathcal{L}_{M} \cdot \overline{0}$ is $0, \overline{1}$ is $o^{\prime}, \overline{2}$ is $o^{\prime \prime}$, and so on. More formally:

$$
\begin{aligned}
\overline{0} & =0 \\
\overline{n+1} & =\bar{n}^{\prime}
\end{aligned}
$$

The sentences describing the operation of the Turing machine M on input $w=\sigma_{i_{1}} \ldots \sigma_{i_{n}}$ are the following:

1. Axioms describing numbers:
a) A sentence that says that the successor function is injective:

$$
\forall x \forall y\left(x^{\prime}=y^{\prime} \rightarrow x=y\right)
$$

b) A sentence that says that every number is less than its successor:

$$
\forall x\left(x<x^{\prime}\right)
$$

18.5. REPRESENTING TURING MACHINES

c) A sentence that ensures that < is transitive:

$$
\forall x \forall y \forall z((x<y \wedge y<z) \rightarrow x<z)
$$

d) A sentence that connects $<$ and $=$:

$$
\forall x \forall y(x<y \rightarrow x \neq y)
$$

2. Axioms describing the input configuration:
a) M is in the inital state q_{0} at time 0 , scanning square 1 :

$$
Q_{q_{0}}(\overline{1}, \overline{0})
$$

b) The first $n+1$ squares contain the symbols $\triangleright, \sigma_{i_{1}}, \ldots, \sigma_{i_{n}}$:

$$
S_{\triangleright}(\overline{0}, \overline{0}) \wedge S_{\sigma_{i_{1}}}(\overline{1}, \overline{0}) \wedge \cdots \wedge S_{\sigma_{i_{n}}}(\bar{n}, \overline{0})
$$

c) Otherwise, the tape is empty:

$$
\forall x\left(\bar{n}<x \rightarrow S_{0}(x, \overline{0})\right)
$$

3. Axioms describing the transition from one configuration to the next:

For the following, let $\varphi(x, y)$ be the conjunction of all sentences of the form

$$
\forall z\left(\left((z<x \vee x<z) \wedge S_{\sigma}(z, y)\right) \rightarrow S_{\sigma}\left(z, y^{\prime}\right)\right)
$$

where $\sigma \in \Sigma$. We use $\varphi(\bar{n}, \bar{m})$ to express "other than at square n, the tape after $m+1$ steps is the same as after m steps."
a) For every instruction $\delta\left(q_{i}, \sigma\right)=\left\langle q_{j}, \sigma^{\prime}, R\right\rangle$, the sentence:

$$
\begin{aligned}
\forall x \forall y\left(\left(Q_{q_{i}}(x, y) \wedge S_{\sigma}(x, y)\right)\right. & \rightarrow \\
& \left.\left(Q_{q_{j}}\left(x^{\prime}, y^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(x, y^{\prime}\right) \wedge \varphi(x, y)\right)\right)
\end{aligned}
$$

This says that if, after y steps, the machine is in state q_{i} scanning square x which contains symbol σ, then after $y+1$ steps it is scanning square $x+1$, is in state q_{j}, square x now contains σ^{\prime}, and every square other than x contains the same symbol as it did after y steps.
b) For every instruction $\delta\left(q_{i}, \sigma\right)=\left\langle q_{j}, \sigma^{\prime}, L\right\rangle$, the sentence:

$$
\begin{aligned}
\forall x \forall y\left(\left(Q_{q_{i}}\left(x^{\prime}, y\right) \wedge S_{\sigma}\left(x^{\prime}, y\right)\right)\right. & \rightarrow \\
& \left.\left(Q_{q_{j}}\left(x, y^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(x^{\prime}, y^{\prime}\right) \wedge \varphi(x, y)\right)\right)
\end{aligned}
$$

Take a moment to think about how this works: now we don't start with "if scanning square $x \ldots$ " but: "if scanning square $x+1 \ldots$ " A move to the left means that in the next step the machine is scanning square x. But the square that is written on is $x+1$. We do it this way since we don't have subtraction or a predecessor function.
c) For every instruction $\delta\left(q_{i}, \sigma\right)=\left\langle q_{j}, \sigma^{\prime}, N\right\rangle$, the sentence:

$$
\begin{aligned}
\forall x \forall y\left(\left(Q_{q_{i}}(x, y) \wedge S_{\sigma}(x, y)\right)\right. & \rightarrow \\
& \left.\left(Q_{q_{j}}\left(x, y^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(x, y^{\prime}\right) \wedge \varphi(x, y)\right)\right)
\end{aligned}
$$

Let $\tau(M, w)$ be the conjunction of all the above sentences for Turing machine M and input w

In order to express that M eventually halts, we have to find a sentence that says "after some number of steps, the transition function will be undefined." Let X be the set of all pairs $\langle q, \sigma\rangle$ such that $\delta(q, \sigma)$ is undefined. Let $\alpha(M, w)$ then be the sentence

$$
\exists x \exists y\left(\bigvee_{\langle q, \sigma\rangle \in X}\left(Q_{q}(x, y) \wedge S_{\sigma}(x, y)\right)\right)
$$

If we use a Turing machine with a designated halting state h, it is even easier: then the sentence $\alpha(M, w)$

$$
\exists x \exists y Q_{h}(x, y)
$$

expresses that the machine eventually halts.

18.6 Verifying the Representation

In order to verify that our representation works, we first have to make sure that if M halts on input w, then $\tau(M, w) \rightarrow \alpha(M, w)$ is valid. We can do this simply by proving that $\tau(M, w)$ implies a description of the configuration of M for each step of the execution of M on input w. If M halts on input w, then for some n, M will be in a halting configuration at step n (and be scanning square m, for some m). Hence, $\tau(M, w)$ implies $Q_{q}(\bar{m}, \bar{n}) \wedge S_{\sigma}(\bar{m}, \bar{n})$ for some q and σ such that $\delta(q, \sigma)$ is undefined.

Definition 18.8. Let $\chi(M, w, n)$ be the sentence

$$
Q_{q}(\bar{m}, \bar{n}) \wedge S_{\sigma_{0}}(\overline{0}, \bar{n}) \wedge \cdots \wedge S_{\sigma_{k}}(\bar{k}, \bar{n}) \wedge \forall x\left(\bar{k}<x \rightarrow S_{0}(x, \bar{n})\right)
$$

where q is the state of M at time n, M is scanning square m at time n, square i contains symbol σ_{i} at time n for $0 \leq i \leq k$ and k is the right-most non-blank square of the tape at time m.

Suppose that M does halt for input w. Then there is some time n, state q, square m, and symbol σ such that:

1. At time n the machine is in state q scanning square m on which σ appears.
2. There transition function $\delta(q, \sigma)$ is undefined.

18.6. VERIFYING THE REPRESENTATION

$\chi(M, w, n)$ will be the description of this time and will include the clauses $Q_{q}(\bar{m}, \bar{n})$ and $S_{\sigma}(\bar{m}, \bar{n})$. These clauses together imply $\alpha(M, w)$:

$$
\exists x \exists y\left(\bigvee_{\langle q, \sigma\rangle \in X}\left(Q_{q}(x, y) \wedge S_{\sigma}(x, y)\right)\right)
$$

since $Q_{q^{\prime}}(\bar{m}, \bar{n}) \wedge S_{\sigma^{\prime}}(\bar{m}, \bar{n}) \vDash \bigvee_{\langle q, \sigma\rangle \in X}\left(Q_{q}(\bar{m}, \bar{n}) \wedge S_{\sigma}(\bar{m}, \bar{n})\right.$, as $\left\langle q^{\prime}, \sigma^{\prime}\right\rangle \in X$.
So if M halts for input w, then there is some time n such that $\chi(M, w, n) \vDash$ $\alpha(M, w)$

Since consequence is transitive, it is sufficient to show that for any time n, $\tau(M, w) \vDash \chi(M, w, n)$.

Lemma 18.9. For each $n, \tau(M, w) \vDash \chi(M, w, n)$.
Proof. Inductive basis: If $n=0$, then the conjuncts of $\chi(M, w, 0)$ are also conjuncts of $\tau(M, w)$, so entailed by it.

Inductive hypothesis: If M has not halted before the nth step, then $\tau(M, w) \vDash$ $\chi(M, w, n)$.

Suppose $n>0$ and after n steps, M started on w is in state q scanning square m.

Suppose that M has not just halted, i.e., it has not halted before the $(n+$ 1) st step. If $\tau(M, n)$ is true in a structure \mathfrak{M}, the inductive hypothesis tells us that $\chi(M, w, n)$ is true in \mathfrak{M} also. In particular, $Q_{q}(\bar{m}, \bar{n})$ and $S_{\sigma}(\bar{m}, \bar{n})$ are true in \mathfrak{M}.

Since M does not halt after n steps, there must be an instruction of one of the following three forms in the program of M :

1. $\delta(q, \sigma)=\left\langle q^{\prime}, \sigma^{\prime}, R\right\rangle$
2. $\delta(q, \sigma)=\left\langle q^{\prime}, \sigma^{\prime}, L\right\rangle$
3. $\delta(q, \sigma)=\left\langle q^{\prime}, \sigma^{\prime}, N\right\rangle$

We will consider each of these three cases in turn. First, assume that $m \leq k$.

1. Suppose there is an instruction of the form (1). By Definition 18.7, (3a), this means that

$$
\forall x \forall y\left(\left(Q_{q}(x, y) \wedge S_{\sigma}(x, y)\right) \rightarrow \quad\left(Q_{q^{\prime}}\left(x^{\prime}, y^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(x, y^{\prime}\right) \wedge \varphi(x, y)\right)\right)
$$

is a conjunct of $\tau(M, w)$. This entails the following sentence, through universal instantiation:

$$
\left(Q_{q}(\bar{m}, \bar{n}) \wedge S_{\sigma}(\bar{m}, \bar{n})\right) \rightarrow\left(Q_{q^{\prime}}\left(\bar{m}^{\prime}, \bar{n}^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(\bar{m}, \bar{n}^{\prime}\right) \wedge \varphi(\bar{m}, \bar{n})\right)
$$

This in turn entails,

$$
\begin{aligned}
Q_{q^{\prime}}\left(\bar{m}^{\prime}, \bar{n}^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(\bar{m}, \bar{n}^{\prime}\right) \wedge & \\
S_{\sigma_{0}}\left(\overline{0}, \bar{n}^{\prime}\right) \wedge \cdots \wedge S_{\sigma_{k}}\left(\bar{k}, \bar{n}^{\prime}\right) \wedge & \\
& \forall x\left(\bar{k}<x \rightarrow S_{0}\left(x, \bar{n}^{\prime}\right)\right)
\end{aligned}
$$

The first line comes directly from the consequent of the preceding conditional. Each conjunct in the middle line-which excludes $S_{\sigma_{m}}\left(\bar{m}, \bar{n}^{\prime}\right)$ follows from the corresponding conjunct in $\chi(M, w, n)$ together with $\varphi(\bar{m}, \bar{n})$. The last line follows from the corresponding conjunct in $C(M, w, n)$, $\bar{m}<x \rightarrow \bar{k}<x$, and $\varphi(\bar{m}, \bar{n})$. Together, this just is $\chi(M, w, n+1)$.
2. Suppose there is an instruction of the form (2). Then, by Definition 18.7, (3b),

$$
\forall x \forall y\left(\left(Q_{q}\left(x^{\prime}, y\right) \wedge S_{\sigma}\left(x^{\prime}, y\right)\right) \rightarrow \quad\left(Q_{q^{\prime}}\left(x, y^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(x^{\prime}, y^{\prime}\right) \wedge \varphi(x, y)\right)\right)
$$

is a conjunct of $\tau(M, w)$, which entails the following sentence:

$$
\left(Q_{q}\left(\bar{m}^{\prime}, \bar{n}\right) \wedge S_{\sigma}\left(\bar{m}^{\prime}, \bar{n}\right)\right) \rightarrow\left(Q_{q^{\prime}}\left(\bar{m}, \bar{n}^{\prime}\right) \wedge S_{\sigma^{\prime}}\left(\bar{m}^{\prime}, \bar{n}^{\prime}\right) \wedge \varphi(\bar{m}, \bar{n})\right)
$$

which in turn implies

$$
\begin{aligned}
Q_{q^{\prime}}\left(\bar{m}, \bar{n}^{\prime}\right) \wedge S_{\sigma_{m}^{\prime}}\left(\bar{m}, \bar{n}^{\prime}\right) \wedge & \\
S_{\sigma_{0}}\left(\overline{0}, \bar{n}^{\prime}\right) \cdots \wedge S_{\sigma_{k}}\left(\bar{k}, \bar{n}^{\prime}\right) & \\
& \forall \\
& \forall x\left(\bar{k}<x \rightarrow S_{0}\left(x, \bar{n}^{\prime}\right)\right)
\end{aligned}
$$

as before. But this just is $\chi(M, w, n+1)$.
3. Case (3) is left as an exercise.

If $m>k$ and $\sigma^{\prime} \neq 0$, the last instruction has written a non-blank symbol to the right of the right-most non-blank square k at time n. In this case, $\chi(M, w, n+$ 1) has the form

$$
\begin{aligned}
& Q_{q^{\prime}}\left(\bar{m}^{\prime}, \bar{n}^{\prime}\right) \wedge \\
& \begin{aligned}
& S_{\sigma_{0}}\left(\overline{0}, \bar{n}^{\prime}\right) \wedge \cdots \wedge S_{\sigma_{k}}\left(\bar{k}, \bar{n}^{\prime}\right) \wedge \\
& S_{0}\left(\overline{k+1}, \bar{n}^{\prime}\right) \wedge \cdots \wedge S_{0}\left(\overline{m-1}, \bar{n}^{\prime}\right) \wedge \\
& S_{\sigma^{\prime}}\left(\bar{m}, \bar{n}^{\prime}\right) \wedge \\
& \forall x\left(\bar{m}<x \rightarrow S_{0}\left(x, \bar{n}^{\prime}\right)\right)
\end{aligned}
\end{aligned}
$$

For $k<i<m, S_{0}(\bar{i}, \bar{n})$ follows from the conjunct $\forall x\left(\bar{k}<x \rightarrow S_{0}(x, \bar{n})\right)$ of $\chi(M, w, n)$ and the fact that $\tau(M, w) \vDash \bar{k}<\bar{i}$ if $k<i . S_{0}\left(\bar{i}, \bar{n}^{\prime}\right)$ then follows

18.7. THE DECISION PROBLEM IS UNSOLVABLE

from $A(m, n)$ and $\bar{i}<\bar{m}$. From $\forall x\left(\bar{k}<x \rightarrow S_{0}(x, \bar{n})\right)$ we get $\forall x(\bar{m}<x \rightarrow$ $\left.S_{0}(x, \bar{n})\right)$ since $\bar{k}<\bar{m}$ and $<$ is transitive. From that plus $\varphi(\bar{m}, \bar{n})$ we get $\forall x\left(\bar{m}<x \rightarrow S_{0}\left(x, \bar{n}^{\prime}\right)\right)$. Similarly for cases (2) and (3).

We have shown that for any $n, \tau(M, w) \vDash \chi(M, w, n)$.
Lemma 18.10. If M halts on input w, then $\tau(M, w) \rightarrow \alpha(M, w)$ is valid.
Proof. By Lemma 18.9, we know that, for any time n, the description $\chi(M, w, n)$ of the configuration of M at time n is a consequence of $\tau(M, w)$. Suppose M halts after k steps. It will be scanning square m, say. Then $\chi(M, w, k)$ contains as conjuncts both $Q_{q}(\bar{m}, \bar{k})$ and $S_{\sigma}(\bar{m}, \bar{k})$ with $\delta(q, \sigma)$ undefined. Thus, $\chi(M, w, k) \vDash \alpha(M, w)$. But then $\tau(M, w) \vDash \alpha(M, w)$ and therefore $\tau(M, w) \rightarrow$ $\alpha(M, w)$ is valid.

To complete the verification of our claim, we also have to establish the reverse direction: if $\tau(M, w) \rightarrow \alpha(M, w)$ is valid, then M does in fact halt when started on input m.

Lemma 18.11. I $f \vDash \tau(M, w) \rightarrow \alpha(M, w)$, then M halts on input w.
Proof. Consider the \mathcal{L}_{M}-structure \mathfrak{M} with domain \mathbb{N} which interprets o as 0 , $'$ as the successor function, and $<$ as the less-than relation, and the predicates Q_{q} and S_{σ} as follows:

$$
\begin{aligned}
& Q_{q}^{\mathfrak{M}}=\left\{\langle m, n\rangle: \begin{array}{l}
\text { started on } w, \text { after } n \text { steps, } \\
M \text { is in state } q \text { scanning square } m
\end{array}\right\} \\
& S_{\sigma}^{\mathfrak{M}}=\left\{\langle m, n\rangle: \begin{array}{l}
\text { started on } w, \text { after } n \text { steps, } \\
\text { square } m \text { of } M \text { contains symbol } \sigma
\end{array}\right\}
\end{aligned}
$$

In other words, we construct the structure \mathfrak{M} so that it describes what M started on input w actually does, step by step. Clearly, $\mathfrak{M} \vDash \tau(M, w)$. If $\vDash \tau(M, w) \rightarrow \alpha(M, w)$, then also $\mathfrak{M} \vDash \alpha(M, w)$, i.e.,

$$
\mathfrak{M} \vDash \exists x \exists y\left(\bigvee_{\langle q, \sigma\rangle \in X}\left(Q_{q}(x, y) \wedge S_{\sigma}(x, y)\right)\right)
$$

As $|\mathfrak{M}|=\mathbb{N}$, there must be $m, n \in \mathbb{N}$ so that $\mathfrak{M} \vDash Q_{q}(\bar{m}, \bar{n}) \wedge S_{\sigma}(\bar{m}, \bar{n})$ for some q and σ such that $\delta(q, \sigma)$ is undefined. By the definition of \mathfrak{M}, this means that M started on input w after n steps is in state q and reading symbol σ, and the transition function is undefined, i.e., M has halted.

18.7 The Decision Problem is Unsolvable

Theorem 18.12. The decision problem is unsolvable.

Proof. Suppose the decision problem were solvable, i.e., suppose there were a Turing machine D of the following sort. Whenever D is started on a tape that contains a sentence ψ of first-order logic as input, D eventually halts, and outputs 1 iff ψ is valid and 0 otherwise. Then we could solve the halting problem as follows. We construct a Turing machine E that, given as input the number e of Turing machine M_{e} and input w, computes the corresponding sentence $\tau\left(M_{e}, w\right) \rightarrow \alpha\left(M_{e}, w\right)$ and halts, scanning the leftmost square on the tape. The machine $E \frown D$ would then, given input e and w, first compute $\tau\left(M_{e}, w\right) \rightarrow \alpha\left(M_{e}, w\right)$ and then run the decision problem machine D on that input. D halts with output 1 iff $\tau\left(M_{e}, w\right) \rightarrow \alpha\left(M_{e}, w\right)$ is valid and outputs 0 otherwise. By Lemma 18.11 and Lemma 18.10, $\tau\left(M_{e}, w\right) \rightarrow \alpha\left(M_{e}, w\right)$ is valid iff M_{e} halts on input w. Thus, $E \frown D$, given input e and w halts with output 1 iff M_{e} halts on input w and halts with output 0 otherwise. In other words, $E \frown D$ would solve the halting problem. But we know, by Theorem 18.6, that no such Turing machine can exist.

Problems

Problem 18.1. The Three Halting (3-Halt) problem is the problem of giving a decision procedure to determine whether or not an arbitrarily chosen Turing Machine halts for an input of three strokes on an otherwise blank tape. Prove that the 3-Halt problem is unsolvable.

Problem 18.2. Show that if the halting problem is solvable for Turing machine and input pairs M_{e} and n where $e \neq n$, then it is also solvable for the cases where $e=n$.

Problem 18.3. We proved that the halting problem is unsolvable if the input is a number e, which identifies a Turing machine M_{e} via an enumaration of all Turing machines. What if we allow the description of Turing machines from section 18.2 directly as input? (This would require a larger alphabet of course.) Can there be a Turing machine which decides the halting problem but takes as input descriptions of Turing machines rather than indices? Explain why or why not.

Problem 18.4. Complete case (3) of the proof of Lemma 18.9.

Part VI

Incompleteness

Material in this part covers the incompleteness theorems. It depends on material in the parts on first-order logic (esp., the proof system), the material on recursive functions (in the computability part). It is based on Jeremy Avigad's notes with revisions by Richard Zach.

Chapter 19

Arithmetization of Syntax

19.1 Introduction

This introduction should be expanded to include more motivation (issue \#67).

In order to connect computability and logic, we need a way to talk about the objects of logic (symbols, terms, formulas, derivations), operations on them, and their properties and relations, in a way amenable to computational treatment. We can do this directly, by considering computable functions and relations on symbols, sequences of symbols, and other objects built from them. Since the objects of logical syntax are all finite and built from an enumerable sets of symbols, this is possible for some models of computation. But other models of computation are restricted to numbers, their relations and functions. Moreover, ultimately we also want to deal with syntax in certain theories, specifically, in theories formulated in the language of arithmetic. In these cases it is necessary to arithmetize syntax, i.e., to represent syntactic objects, operations, and relations as numbers, arithmetical functions, and arithmetical relations, respectively. This is done by assigning numbers to symbols as their "codes." Since we can deal with sequences of numbers purely arithmetically by the powers-of-primes coding, we can extend this coding of individual symbols to coding of sequences of symbols (such as terms and formulas) and also arrangements of such sequences (such as derivations). This extended coding is called "Gödel numbering." Because the sequences of interest (terms, formulas, derivations) are inductively defined, and the operations and relations on them are computable, the corresponding sets, operations, and relations are in fact all computable, and almost all of them are in fact primitive recursive.

19.2 Coding Symbols

The basic language \mathcal{L} of first order logic makes use of the symbols

$$
\neg, \vee, \wedge, \rightarrow, \forall, \exists,=,(,)
$$

together with enumerable sets of variables and constant symbols, and enumerable sets of function symbols and predicate symbols of arbitrary arity. We can assign codes to each of these symbols in such a way that every symbol is assigned a unique number as its code, and no two different symbols are assigned the same number. We know that this is possible since the set of all symbols is enumerable and so there is a bijection between it and the set of natural numbers. But we want to make sure that we can recover the symbol (as well as some information about it, e.g., the arity of a function symbol) from its code in a computable way. There are many possible ways of doing this, of course. Here is one such way, which uses primitive recursive functions. (Recall that $\left\langle n_{0}, \ldots, n_{k}\right\rangle$ is the number coding the sequence of numbers n_{0}, \ldots, n_{k}.)

Definition 19.1. If s is a symbol of \mathcal{L}, let the symbol code $c(s)$ be defined as follows:

1. If s is among the logical symbols, $\mathrm{c}(s)$ is given by the following table:

$$
\begin{array}{ccccccccc}
\neg & \vee & \wedge & \rightarrow & \forall & \exists & = & (&) \\
\langle 0,0\rangle & \langle 0,1\rangle & \langle 0,2\rangle & \langle 0,3\rangle & \langle 0,4\rangle & \langle 0,5\rangle & \langle 0,6\rangle & \langle 0,7\rangle & \langle 0,8\rangle
\end{array}
$$

2. If s is the i-th variable x_{i}, then $\mathrm{c}(s)=\langle 1, i\rangle$.
3. If s is the i-th constant symbol c_{i}^{n}, then $\mathrm{c}(s)=\langle 2, i\rangle$.
4. If s is the i-th n-ary function symbol f_{i}^{n}, then $\mathrm{c}(s)=\langle 3, n, i\rangle$.
5. If s is the i-th n-ary predicate symbol P_{i}^{n}, then $\mathrm{c}(s)=\langle 4, n, i\rangle$.

Proposition 19.2. The following relations are primitive recursive:

1. $\operatorname{Fn}(x, n)$ iff x is the code of f_{i}^{n} for some i, i.e., x is the code of an n-ary function symbol.
2. Pred (x, n) iff x is the code of P_{i}^{n} for some i or x is the code of $=$ and $n=2$, i.e., x is the code of an n-ary predicate symbol.

Definition 19.3. If s_{0}, \ldots, s_{n} is a sequence of symbols, its Gödel number is $\left\langle\mathrm{c}\left(s_{0}\right), \ldots, \mathrm{c}\left(s_{n}\right)\right\rangle$.

19.3. CODING TERMS

19.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up inductively from constants and variables according to the formation rules for terms. Since sequences of symbols can be coded as numbers-using a coding scheme for the symbols plus a way to code sequences of numbers-assigning Gödel numbers to terms is not difficult. The challenge is rather to show that the property a number has if it is the Gödel number of a correctly formed term is computable, or in fact primitive recursive.

Proposition 19.4. The relation $\operatorname{Term}(x)$ which holds iff x is the Gödel number of a term, is primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence $s_{0}, \ldots, s_{k-1}=s$ of terms which records how the term s was formed from constant symbols and variables according to the formation rules for terms. To express that such a putative formation sequence follows the formation rules it has to be the case that, for each $i<k$, either

1. s_{i} is a variable v_{j}, or
2. s_{i} is a constant symbol c_{j}, or
3. s_{i} is built from n terms t_{1}, \ldots, t_{n} occurring prior to place i using an n place function symbol f_{j}^{n}.

To show that the corresponding relation on Gödel numbers is primitive recursive, we have to express this condition primitive recursively, i.e., using primitive recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s_{0}, \ldots, s_{k-1}, i.e., $y=$ $\left\langle \#\left(s_{0}\right), \ldots, \#\left(s_{k}\right)\right\rangle$. It codes a formation sequence for the term with Gödel number x iff for all $i<k$:

1. there is a j such that $(y)_{i}=\#\left(v_{j}\right)$, or
2. there is a j such that $(y)_{i}=\#\left(c_{j}\right)$, or
3. there is an n and a number $z=\left\langle z_{1}, \ldots, z_{n}\right\rangle$ such that each z_{l} is equal to some $(y)_{i^{\prime}}$ for $i^{\prime}<i$ and

$$
(y)_{i}=\#\left(f_{j}^{n}() \frown \operatorname{flatten}(z) \frown \#()\right),
$$

and moreover $(y)_{k-1}=x$. The function flatten (z) turns the sequence $\left\langle \#\left(t_{1}\right), \ldots, \#\left(t_{n}\right)\right\rangle$ into $\#\left(t_{1}, \ldots, t_{n}\right)$ and is primitive recursive.

The indices j, n, the Gödel numbers z_{l} of the terms t_{l}, and the code z of the sequence $\left\langle z_{1}, \ldots, z_{n}\right\rangle$, in (3) are all less than y. We can replace k above with len (y). Hence we can express " y is the code of a formation sequence of the
term with Gödel number $x^{\prime \prime}$ in a way that shows that this relation is primitive recursive.

We now just have to convince ourselves that there is a primitive recursive bound on y. But if x is the Gödel number of a term, it must have a formation sequence with at most len (x) terms (since every term in the formation sequence of s must start at some place in s, and no two subterms can start at the same place). The Gödel number of each subterm of s is of course $\leq x$. Hence, there always is a formation sequence with code $\leq x^{\operatorname{len}(x)}$.

19.4 Coding Formulas

Proposition 19.5. The relation $\operatorname{Atom}(x)$ which holds iff x is the Gödel number of an atomic formula, is primitive recursive.

Proof. The number x is the Gödel number of an atomic formula iff one of the following holds:

1. There are $n, j<x$, and $z<x$ such that for each $i<n, \operatorname{Term}\left((z)_{i}\right)$ and

$$
x=\#\left(P_{j}^{n}() \frown \text { flatten }(z) \frown \#()\right)
$$

2. There are $z_{1}, z_{2}<x$ such that $\operatorname{Term}\left(z_{1}\right), \operatorname{Term}\left(z_{2}\right)$, and

$$
x=z_{1} \frown \#(=) \frown z_{2} .
$$

3. $x=\#(\perp)$.
4. $x=\#(\top)$.

Proposition 19.6. The relation $\operatorname{Frm}(x)$ which holds iff x is the Gödel number of a formula is primitive recursive.

Proof. A sequence of symbols s is a formula iff there is formation sequence s_{0}, $\ldots, s_{k-1}=s$ of formula which records how s was formed from atomic formulas according to the formation rules. The code for each s_{i} (and indeed of the code of the sequence $\left\langle s_{0}, \ldots, s_{k-1}\right\rangle$ is less than the code x of s.

19.5 Substitution

Proposition 19.7. There is a primitive recursive function $\operatorname{Subst}(x, y, z)$ with the property that

$$
\operatorname{Subst}(\#(\varphi), \#(t), \#(x))=\#(\varphi[t / x])
$$

Proof. Let us suppose that the predicate $\operatorname{FreeOcc}(x, z, i)$, which holds if the i th symbols of the formula with Gödel number x is a free occurrence of the variable with Gödel number z, is primitive recursive. We can then define a function Subst ${ }^{\prime}$ by primitive recursion as follows:

$$
\begin{aligned}
\operatorname{Subst}^{\prime}(0, x, y, z) & =\varnothing \\
\operatorname{Subst}^{\prime}(i+1, x, y, z) & = \begin{cases}\operatorname{Subst}^{\prime}(i, x, y, z) \frown y & \text { if FreeOcc }(x, z, i+1) \\
\operatorname{append}\left(\operatorname{Subst}^{\prime}(i, x, y, z),(x)_{i+1}\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

$\operatorname{Subst}(x, y, z)$ can now be defined as $\operatorname{Subst}^{\prime}(\operatorname{len}(x), x, y, z)$.

19.6 Derivations in LK

In order to arithmetize derivations, we must represent derivations as numbers. Since derivations are trees of sequents where each inference carries also a label, a recursive representation is the most obvious approach: we represent a derivation as a tuple, the components of which are the end-sequent, the label, and the representations of the sub-derivations leading to the premises of the last inference.

Definition 19.8. If Γ is a finite set of sentences, $\Gamma=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, then $\#(\Gamma)=$ $\left\langle \#\left(\varphi_{1}\right), \ldots, \#\left(\varphi_{n}\right)\right\rangle$.

If $\Gamma \Rightarrow \Delta$ is a sequent, then a Gödel number of $\Gamma \Rightarrow \Delta$ is

$$
\#(\Gamma \Rightarrow \Delta)=\langle \#(\Gamma), \#(\Delta)\rangle
$$

If π is a derivation in LK, then $\#(\pi)$ is

1. $\langle 0, \#(\Gamma \Rightarrow \Delta)\rangle$ if π consists only of the initial sequent $\Gamma \Rightarrow \Delta$.
2. $\left\langle 1, \#(\Gamma \Rightarrow \Delta), k, \#\left(\pi^{\prime}\right)\right\rangle$ if π ends in an inference with one premise, k is given by the following table according to which rule was used in the last inference, and π^{\prime} is the immediate subproof ending in the premise of the last inference.

Rule:	Contr	\neg left	\neg right	\wedge left	\vee right	\rightarrow right
$k:$	1	2	3	4	5	6
Rule:	\forall left	\forall right	\exists left	\exists right	$=$	
$k:$	7	8	9	10	11	

3. $\left\langle 2, \#(\Gamma \Rightarrow \Delta), k, \#\left(\pi^{\prime}\right), \#\left(\pi^{\prime \prime}\right)\right\rangle$ if π ends in an inference with two premises, k is given by the following table according to which rule was used in the last inference, and $\pi^{\prime}, \pi^{\prime \prime}$ are the immediate subproof ending in the left and right premise of the last inference, respectively.

$$
\begin{array}{lcccc}
\text { Rule: } & \text { Cut } & \wedge \text { right } & \vee \text { left } & \rightarrow \text { left } \\
k: & 1 & 2 & 3 & 4
\end{array}
$$

Having settled on a representation of derivations, we must also show that we can manipulate such derivations primite recursively, and express their essential properties and relations so. Some operations are simple: e.g., given a Gödel number d of a derivation, $(s)_{1}$ gives us the Gödel number of its endsequent. Some are much harder. We'll at least sketch how to do this. The goal is to show that the relation " π is a derivation of φ from Γ " is primitive recursive on the Gödel numbers of π and φ.

Proposition 19.9. The following relations are primitive recursive:

1. $\varphi \in \Gamma$.
2. $\Gamma \subseteq \Delta$.
3. $\Gamma \Rightarrow \Delta$ is an initial sequent.
4. $\Gamma \Rightarrow \Delta$ follows from $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ (and $\Gamma^{\prime \prime} \Rightarrow \Delta^{\prime \prime}$) by a rule of $\mathbf{L K}$.
5. π is a correct LK-derivation.

Proof. We have to show that the corresponding relations between Gödel numbers of formulas, sequences of Gödel numbers of formulas (which code sets of formulas), and Gödel numbers of sequents, are primitive recursive.

1. $\varphi \in \Gamma$ iff $\#(\varphi)$ occurs in the sequence $\#(\Gamma)$, i.e, $\operatorname{IsIn}(x, g) \Leftrightarrow \exists i<$ $\operatorname{len}(g)(g)_{i}=x$. We'll abbreviate this as $x \in g$.
2. $\Gamma \subseteq \Delta$ iff every element of $\#(\Gamma)$ is also an an element of $\#(\Delta)$, i.e., $\operatorname{SubSet}(g, d) \Leftrightarrow \forall i<\operatorname{len}(g)(g)_{i} \in d$. We'll abbreviate this as $g \subseteq d$.
3. $\Gamma \Rightarrow \Delta$ is an initial sequent if either there is a sentence φ such that $\Gamma \Rightarrow \Delta$ is $\varphi \Rightarrow \varphi$, or there is a term t such that $\Gamma \Rightarrow \Delta$ is $\varnothing \Rightarrow t=t$. In terms of Gödel numbers,

$$
\left.\begin{array}{rl}
\operatorname{InitSeq}(s) \Leftrightarrow & \exists x<s(\operatorname{Sent}(x) \wedge s
\end{array}\right)\langle\langle\langle x\rangle,\langle x\rangle\rangle) \vee \bar{~} \exists t<s(\operatorname{Term}(t) \wedge s=\langle 0, t \frown \#(=) \frown t\rangle) .
$$

4. Here we have to show that for each rule of inference R the relation FollowsBy ${ }_{R}\left(s, s^{\prime}\right)$ which holds if s and s^{\prime} are the Gödel numbers of conclusion and premise of a correct application of R is primitive recursive. If R has two premises, FollowsBy ${ }_{R}$ of course has three arguments.
For instance, $\Gamma \Rightarrow \Delta$ follows correctly from $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ by \exists right iff $\Gamma=$ Γ^{\prime} and there is a formula φ, a variable x and a closed term t such that $\varphi[t / x] \in \Delta^{\prime}$ and $\exists x \varphi \in \Delta$, for every $\psi \in \Delta$, either $\psi=\exists x \varphi$ or $\psi \in \Delta^{\prime}$, and for every $\psi \in \Delta^{\prime}, \psi=\varphi[t / x]$ or $\psi \in \Delta$. We just have to translate this
into Gödel numbers. If $s=\#(\Gamma \Rightarrow \Delta)$ then $(s)_{0}=\#(\Gamma)$ and $(s)_{1}=\#(\Delta)$. So:

$$
\begin{aligned}
\text { FollowsBy }_{\exists \operatorname{right}}\left(s, s^{\prime}\right) \Leftrightarrow & (s)_{0} \subseteq\left(s^{\prime}\right)_{0} \wedge\left(s^{\prime}\right)_{0} \subseteq(s)_{0} \wedge \\
& \exists f<s \exists x<s \exists t<s^{\prime}(\operatorname{Frm}(f) \wedge \operatorname{Var}(x) \wedge \operatorname{Term}(t) \wedge \\
& \operatorname{Subst}(f, t, x) \in\left(s^{\prime}\right)_{1} \wedge \#(\exists) \frown x \frown f \in(s)_{1} \wedge \\
& \forall i<\operatorname{len}\left((s)_{1}\right)\left(\left((s)_{1}\right)_{i}=\#(\exists) \frown x \frown f \vee\left((s)_{1}\right)_{i} \in\left(s^{\prime}\right)_{1}\right) \wedge \\
& \left.\forall i<\operatorname{len}\left(\left(s^{\prime}\right)_{1}\right)\left(\left((s)_{1}^{\prime}\right)_{i}=\operatorname{Subst}(f, t, x) \vee\left(\left(s^{\prime}\right)_{1}\right)_{i} \in(s)_{1}\right)\right)
\end{aligned}
$$

The individual lines express, respectively, " $\Gamma \subseteq \Gamma^{\prime} \wedge \Gamma^{\prime} \subseteq \Gamma$," "there is a formula with Gödel number f, a variable with Gödel number x, and a
 either $\psi=\exists x \varphi$ or $\psi \in \Delta^{\prime}$," "for all $\psi \in \Delta^{\prime}$, either $\psi=\varphi[t / x]$ or $\psi \in \Delta$. Note that in the last two lines, we quantify over the elements ψ of Δ and Δ^{\prime} not directly, but via their place i in the Gödel numbers of Δ and Δ^{\prime}. (Remember that $\#(\Delta)$ is the number of a sequence of Gödel numbers of formulas in Δ.)
5. We first define a helper relation $h \operatorname{Deriv}(s, n)$ which holds if s codes a correct derivation at least to n inferences up from the end sequent. If $n=0$ we let the relation be satisfied by default. Otherwise, $h \operatorname{Deriv}(s, n+1)$ iff either s consists just of an initial sequent, or it ends in a correct inference and the codes of the immediate subderivations satisfy $\operatorname{hDeriv}(s, n)$.

$$
\begin{aligned}
& \operatorname{hDeriv}(s, 0) \Leftrightarrow 1 \\
& \operatorname{hDeriv}(s, n+1) \Leftrightarrow\left((s)_{0}=0 \wedge \operatorname{InitialSeq}\left((s)_{1}\right)\right) \vee \\
&\left((s)_{0}=1 \wedge\right. \\
&\left((s)_{2}=1 \wedge \text { FollowsBy }_{\text {Contr }}\left((s)_{1},\left((s)_{3}\right)_{1}\right)\right) \vee \\
& \vdots \\
&\left((s)_{2}=11 \wedge \text { FollowsBy }_{=}\left((s)_{1},\left((s)_{3}\right)_{1}\right)\right) \wedge \\
&\left.h \operatorname{Deriv}\left((s)_{3}, n\right)\right) \vee \\
&\left((s)_{0}=2 \wedge\right. \\
&\left.\left((s)_{2}=1 \wedge \text { FollowsBy }_{\text {Cut }}\left((s)_{1},\left((s)_{3}\right)_{1}\right),\left((s)_{4}\right)_{1}\right)\right) \vee \\
& \vdots \\
&\left.\left((s)_{2}=4 \wedge \text { FollowsBy }_{\rightarrow \text { left }}\left((s)_{1},\left((s)_{3}\right)_{1}\right),\left((s)_{4}\right)_{1}\right)\right) \wedge \\
&\left.h \operatorname{Deriv}\left((s)_{3}, n\right) \wedge \text { hDeriv }\left((s)_{4}, n\right)\right)
\end{aligned}
$$

This is a primitive recursive definition. If the number n is large enough, e.g., larger than the maximum number of inferences between an initial sequent and the end sequent in s, it holds of s iff s is the Gödel number
of a correct derivation. The number s itself is larger than that maximum number of inferences. So we can now define $\operatorname{Deriv}(s)$ by hDeriv (s, s).

Proposition 19.10. Suppose Γ is a primitive recursive set of sentences. Then the relation $\operatorname{Pr}_{\Gamma}(x, y)$ expressing " x is the code of a derivation π of $\Gamma_{0} \Rightarrow \varphi$ for some finite $\Gamma_{0} \subseteq \Gamma$ and x is the Gödel number of φ " is primitive recursive.

Proof. Suppose " $y \in \Gamma^{\prime}$ " is given by the primitive recursive predicate $R_{\Gamma}(y)$. We have to show that $\operatorname{Pr}_{\Gamma}(x, y)$ which holds iff y is the Gödel number of a sentence φ and x is the code of an LK-derivation with end sequent $\Gamma_{0} \Rightarrow \varphi$ is primitive recursive.

By the previous proposition, the property Deriv() which holds iff x is the code of a correct derivation π in LK is primitive recursive. If x is such a code, then $(x)_{1}$ is the code of the end sequent of π, and so $\left((x)_{1}\right)_{0}$ is the code of the left side of the end sequent and $\left((x)_{1}\right)_{1}$ the right side. So we can express "the right side of the end sequent of π is $\varphi^{\prime \prime}$ as len $\left(\left((x)_{1}\right)_{1}\right)=1 \wedge\left(\left((x)_{1}\right)_{1}\right)_{0}=x$. The left side of the end sequent of π is of course automatically finite, we just have to express that every sentence in it is in Γ. Thus we can define $\operatorname{Pr}_{\Gamma}(x, y)$ by

$$
\begin{aligned}
\operatorname{Pr}_{\Gamma}(x, y) \Leftrightarrow & \operatorname{Sent}(y) \wedge \operatorname{Deriv}(x) \wedge \\
& \forall i<\operatorname{len}\left(\left((x)_{1}\right)_{0}\right)\left(\left((x)_{1}\right)_{0}\right)_{i} \in \Gamma \wedge \\
& \operatorname{len}\left(\left((x)_{1}\right)_{1}\right)=1 \wedge\left(\left((x)_{1}\right)_{1}\right)_{0}=x
\end{aligned}
$$

19.7 Derivations in Natural Deduction

In order to arithmetize derivations, we must represent derivations as numbers. Since derivations are trees of formula where each inference carries one or two labels, a recursive representation is the most obvious approach: we represent a derivation as a tuple, the components of which are the end-formula, the labels, and the representations of the sub-derivations leading to the premises of the last inference.

Definition 19.11. If Γ is a finite set of sentences, $\Gamma=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, then $\#(\Gamma)=$ $\left\langle \#\left(\varphi_{1}\right), \ldots, \#\left(\varphi_{n}\right)\right\rangle$.

If δ is a derivation in natural deduction, then $\#(\delta)$ is

1. $\langle 0, \#(\varphi), n\rangle$ if δ consists only of the initial formula φ. The number n is 0 if it is an undischarged assumption, and the numerical label otherwise.

19.7. DERIVATIONS IN NATURAL DEDUCTION

2. $\left\langle 1, \#(\varphi), n, k, \#\left(\delta^{\prime}\right)\right\rangle$ if δ ends in an inference with one premise, k is given by the following table according to which rule was used in the last inference, and δ^{\prime} is the immediate subproof ending in the premise of the last inference. n is the label of the inference, or 0 if the inference does not discharge any assumptions.

Rule:	\perp Elim	\neg Intro	\neg Elim	\wedge Elim	VIntro	\rightarrow Intro
k :	1	2	3	4	5	6
Rule:	\forall Intro	\forall Elim	\exists Intro	$=$ Intro		
$k:$	7	8	9	10		

3. $\left\langle 2, \#(\varphi), n, k, \#\left(\delta^{\prime}\right), \#\left(\delta^{\prime \prime}\right)\right\rangle$ if δ ends in an inference with two premises, k is given by the following table according to which rule was used in the last inference, and $\delta^{\prime}, \delta^{\prime \prime}$ are the immediate subderivations ending in the left and right premise of the last inference, respectively. n is the label of the inference, or 0 if the inference does not discharge any assumptions.

Rule:	\perp Intro	\wedge Intro	\rightarrow Elim
$k:$	1	2	3

4. $\left\langle 3, \#(\varphi), n, \#\left(\delta^{\prime}\right), \#\left(\delta^{\prime \prime}\right), \#\left(\delta^{\prime \prime \prime}\right)\right\rangle$ if δ ends in an VElim inference. $\delta^{\prime}, \delta^{\prime \prime}, \delta^{\prime \prime \prime}$ are the immediate subderivations ending in the left, middle, and right premise of the last inference, respectively, and n is the label of the inference.

Having settled on a representation of derivations, we must also show that we can manipulate such derivations primite recursively, and express their essential properties and relations so. Some operations are simple: e.g., given a Gödel number d of a derivation, $(d)_{1}$ gives us the Gödel number of its endformula. Some are much harder. We'll at least sketch how to do this. The goal is to show that the relation " δ is a derivation of φ from Γ " is primitive recursive on the Gödel numbers of δ and φ.

Proposition 19.12. The following relations are primitive recursive:

1. φ is an initial formula in δ with label n.
2. φ is an undischarged assumption of δ.
3. An inference with conclusion φ and upper derivations δ (and $\delta^{\prime}, \delta^{\prime \prime}$) labelled n is correct.
4. δ is a correct natural deduction derivation.

Proof. We have to show that the corresponding relations between Gödel numbers of formulas, sequences of Gödel numbers of formulas (which code sets of formulas), and Gödel numbers of derivations are primitive recursive.

1. For this we need a helper relation $\operatorname{hInitFrm}(x, d, n, i)$ which holds if the formula φ with Gödel number x occurs as an initial formula with label n in the derivation with Gödel number d within i inferences up from the end-formula.

$$
\begin{aligned}
& \operatorname{hInitFrm}(x, d, n, 0) \Leftrightarrow 1 \\
& \operatorname{hInitFrm}(x, d, n, i+1) \Leftrightarrow \\
& d=\langle 0, \#(\varphi), n\rangle \vee \\
&\left((d)_{0}\right.\left.=1 \wedge \operatorname{hInitFrm}\left(x,(d)_{4}, n, i\right)\right) \vee \\
&\left((d)_{0}\right.=2 \wedge\left(\operatorname{hInitFrm}\left(x,(d)_{4}, n, i\right) \vee\right. \\
&\left.\left.\operatorname{hinitFrm}\left(x,(d)_{5}, n, i\right)\right)\right) \vee \\
&\left((d)_{0}\right.=3 \wedge\left(\operatorname{hInitFrm}\left(x,(d)_{3}, n, i\right) \vee\right. \\
&\left.\left.\operatorname{hInitFrm}\left(x,(d)_{2}, n, i\right)\right) \vee \operatorname{hinitFrm}\left(x,(d)_{3}, n, i\right)\right)
\end{aligned}
$$

If the number i is large enough, e.g., larger than the maximum number of inferences between an initial formula and the end-formula of δ, it holds of x, d, n, and i iff φ is an initial formula in δ labelled n. The number d itself is larger than that maximum number of inferences. So we can define $\operatorname{InitFrm}(x, d, n)$ as $\operatorname{InitFrm}(x, d, n, d)$.
2. For this we proceed similarly: Define the helper relation hOpenAssum (x, d, n, i) as

$$
\begin{aligned}
& \text { hOpenAssum }(x, d, n, 0) \Leftrightarrow 1 \\
& \text { hOpenAssum }(x, d, n, i+1) \Leftrightarrow \\
& \begin{array}{l}
d=\langle 0, \#(\varphi), n\rangle \vee \\
\left((d)_{2} \neq n \wedge\right. \\
\quad\left((d)_{0}=1 \wedge \operatorname{hOpenAssum}\left(x,(d)_{4}, n, i\right)\right) \vee \\
\left((d)_{0}=2 \wedge\left(\operatorname{hOpenAssum}\left(x,(d)_{4}, n, i\right) \vee\right.\right. \\
\left.\left.\operatorname{hOpenAssum}\left(x,(d)_{5}, n, i\right)\right)\right) \vee
\end{array} \\
& \left((d)_{0}=3 \wedge\left(\operatorname{hOpenAssum}\left(x,(d)_{3}, n, i\right) \vee\right.\right. \\
& \left.\left.\operatorname{hOpenAssum}\left(x,(d)_{2}, n, i\right)\right) \vee \operatorname{hOpenAssum}\left(x,(d)_{3}, n, i\right)\right)
\end{aligned}
$$

Here the main difference is that an assumption is undischarged not only if it is undischarged in one of the immediate subderivations, but it must also not be discharged by the last inference, i.e., the label must be different from the label of the inference, $(d)_{3}$. We can then define $\operatorname{OpenAssum}(x, d)$ as $\forall n<d \operatorname{InitFrm}(x, d, n, d)$.
3. Here we have to show that for each rule of inference R the relation FollowsBy ${ }_{R}(x, d, n)$ which holds if x is the Gödel number of the conclusion and d is the Gödel number of a derivation ending in the premise
of a correct application of R with label n is primitive recursive, and similarly for rules with two or three premises.

The simplest case is that of the $=$ Intro rule. Here there is no premise, i.e., $d=0$. However, φ must be of the form $t=t$, for a closed term t. Here, a primitive recursive definition is

$$
\exists t<x(\operatorname{Term}(t) \wedge x=t \frown \#(=) \frown t) \wedge d=0)
$$

For a more complicated example, FollowsBy ${ }_{\rightarrow \text { Intro }}(x, d, n)$ holds iff φ is of the form $\psi \rightarrow \chi$, the end-formula of δ is χ, and any initial formula in δ labelled n is of the form ψ. We can express this primitive recursively by

$$
\begin{gathered}
\exists y<x \exists z<x\left(x=\#(() \frown y \frown \#(\rightarrow) \frown z \frown \#()) \wedge(d)_{1}=z \wedge\right. \\
\forall u<d((\operatorname{Sent}(u) \wedge \operatorname{InitFrm}(u, d, n)) \rightarrow u=y)
\end{gathered}
$$

For another example, consider \exists Intro. Here, φ is the conclusion of a correct inference with one upper derivation iff there is a formula ψ, a closed term t and a variable x such that $\psi[t / x]$ is the end-formula of the upper derivation and $\exists x \psi$ is the conclusion φ, i.e., the formula with Gödel number x.

$$
\begin{aligned}
& \text { FollowsBy }_{\exists \operatorname{Intro}}(x, d, n) \Leftrightarrow \\
& \begin{aligned}
\exists y<x \exists v<x \exists t & <d(\operatorname{Frm}(y) \wedge \operatorname{Term}(t) \wedge \operatorname{Var}(v) \wedge \\
& \left.\operatorname{Subst}(y, t, v)=(d)_{1} \wedge \#(\exists) \frown v \frown z=x\right)
\end{aligned}
\end{aligned}
$$

4. We first define a helper relation $h \operatorname{Deriv}(d, i)$ which holds if d codes a correct derivation at least to i inferences up from the end sequent. $\operatorname{hDeriv}(d, 0)$ holds always. Otherwise, hDeriv $(d, i+1)$ iff either d just codes an initial formula or d it ends in a correct inference with label n and the codes of
the immediate sub-derivations satisfy $h \operatorname{Deriv}\left(d^{\prime}, i\right)$.

$$
\begin{aligned}
& \operatorname{hDeriv}(d, 0) \Leftrightarrow 1 \\
& \operatorname{hDeriv}(d, i+1) \Leftrightarrow \\
& \exists x<d \exists n<d(\operatorname{Frm}(x) \wedge d=\langle 0, x, n\rangle) \vee \\
& \left((d)_{0}=1 \wedge\right. \\
& \left((s)_{3}=1 \wedge \text { FollowsBy }_{\perp \text { Elim }}\left((d)_{1},(d)_{4},(d)_{2}\right) \vee\right. \\
& \vdots \\
& \left((s)_{3}=10 \wedge \text { FollowsBy }_{=\text {Intro }}\left((d)_{1},(d)_{4},(d)_{2}\right)\right) \wedge \\
& \left.\operatorname{nDeriv}\left((d)_{4}, i\right)\right) \vee \\
& \left((s)_{0}=2 \wedge\right. \\
& \left((s)_{3}=1 \wedge \text { FollowsBy }_{\perp \text { Intro }}\left((d)_{1},(d)_{4},(d)_{5},(d)_{2}\right)\right) \vee \\
& \vdots \\
& \left((s)_{3}=3 \wedge \text { FollowsBy }_{\rightarrow \operatorname{Elim}}\left((d)_{1},(d)_{4},(d)_{5,}(d)_{2}\right)\right) \wedge \\
& \left.h \operatorname{Deriv}\left((d)_{4}, i\right) \wedge h \operatorname{Deriv}\left((d)_{5}, i\right)\right) \vee \\
& \left((s)_{0}=3 \wedge\right. \\
& \text { FollowsBy }{ }_{\text {VElim }}\left((d)_{1},(d)_{3},(d)_{4},(d)_{5},(d)_{2}\right) \wedge \\
& \left.\mathrm{hDeriv}\left((d)_{3}, i\right) \wedge \mathrm{hDeriv}\left((d)_{4}, i\right)\right) \wedge \mathrm{hDeriv}\left((d)_{5}, i\right)
\end{aligned}
$$

This is a primitive recursive definition. Again we can define $\operatorname{Deriv}(d)$ as $h \operatorname{Deriv}(d, d)$.

Proposition 19.13. Suppose Γ is a primitive recursive set of sentences. Then the relation $\operatorname{Pr}_{\Gamma}(x, y)$ expressing " x is the code of a derivation δ of φ from undischarged assumptions in Γ and y is the Gödel number of φ " is primitive recursive.

Proof. Suppose " $y \in \Gamma^{\prime}$ " is given by the primitive recursive predicate $R_{\Gamma}(y)$. We have to show that $\operatorname{Pr}_{\Gamma}(x, y)$ which holds iff y is the Gödel number of a sentence φ and x is the code of a natural deduction derivation with end formula φ and all undischarged assumptions in Γ is primitive recursive.

By the previous proposition, the property $\operatorname{Deriv}(x)$ which holds iff x is the code of a correct derivation δ in natural deduction is primitive recursive. If x is such a code, then $(x)_{1}$ is the code of the end formula of δ. Thus we can define $\operatorname{Pr}_{\Gamma}(x, y)$ by

$$
\begin{aligned}
\operatorname{Pr}_{\Gamma}(x, y) \Leftrightarrow & \operatorname{Sent}(y) \wedge \operatorname{Deriv}(x) \wedge(x)_{1}=y \wedge \\
& \forall z<x\left((\operatorname{Sent}(z) \wedge \text { OpenAssum }(z, x)) \rightarrow R_{\Gamma}(z)\right)
\end{aligned}
$$

Problems

Problem 19.1. Show that the relation $\operatorname{FreeOcc}(x, z, i)$, which holds if the i th symbols of the formula with Gödel number x is a free occurrence of the variable with Gödel number z, is primitive recursive.

Problem 19.2. Show that FreeFor (x, y, z), which holds iff the term with Gödel number y is free for the variable with Gödel number z in the formula with Gödel number x, is primitive recursive.

Problem 19.3. Define the following relations as in Proposition 19.9:

1. FollowsBy ${ }_{\wedge \text { right }}\left(s, s^{\prime}, s^{\prime \prime}\right)$,
2. FollowsBy $=\left(s, s^{\prime}\right)$,
3. FollowsBy $\forall_{\forall \text { right }}\left(s, s^{\prime}\right)$.

Problem 19.4. Define the following relations as in Proposition 19.12:

1. FollowsBy $\operatorname{EElim}\left(x, d^{\prime}, d^{\prime \prime}, n\right)$,
2. FollowsBy $=\operatorname{Elim}\left(x, d, d^{\prime}, n\right)$,
3. FollowsBy ${ }_{V E l i m}\left(x, d, d^{\prime}, d^{\prime \prime}, n\right)$,
4. FollowsBy ${ }_{\forall \text { Intro }}(x, d, n)$.

Chapter 20

Representability in \mathbf{Q}

20.1 Introduction

We will describe a very minimal such theory called "Q" (or, sometimes, "Robinson's Q," after Raphael Robinson). We will say what it means for a function to be representable in \mathbf{Q}, and then we will prove the following:

A function is representable in \mathbf{Q} if and only if it is computable.
For one thing, this provides us with another model of computability. But we will also use it to show that the set $\{\varphi: \mathbf{Q} \vdash \varphi\}$ is not decidable, by reducing the halting problem to it. By the time we are done, we will have proved much stronger things than this.

The language of \mathbf{Q} is the language of arithmetic; \mathbf{Q} consists of the following axioms (to be used in conjunction with the other axioms and rules of first-order logic with identity predicate):

1. $\forall x \forall y x^{\prime}=y^{\prime} \rightarrow x=y$
2. $\forall x 0 \neq x^{\prime}$
3. $\forall x x \neq 0 \rightarrow \exists y x=y^{\prime}$
4. $\forall x(x+0)=x$
5. $\forall x \forall y\left(x+y^{\prime}\right)=(x+y)^{\prime}$
6. $\forall x(x \times 0)=0$
7. $\forall x \forall y\left(x \times y^{\prime}\right)=((x \times y)+x)$
8. $\forall x \forall y x<y \leftrightarrow \exists z\left(z^{\prime}+x\right)=y$

20.2. FUNCTIONS REPRESENTABLE IN Q ARE COMPUTABLE

For each natural number n, define the numeral \bar{n} to be the term $0^{\prime \prime} \ldots{ }^{\prime}$ where there are n tick marks in all.

As a theory of arithmetic, Q is extremely weak; for example, you can't even prove very simple facts like $\forall x x \neq x^{\prime}$ or $\forall x \forall y(x+y)=(y+x)$. But we will see that much of the reason that Q is so interesting is because it is so weak, in fact, just barely strong enough for the incompleteness theorem to hold; and also because it has a finite set of axioms.

A stronger theory than \mathbf{Q} called Peano arithmetic PA, is obtained by adding a schema of induction to \mathbf{Q} :

$$
\left(\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right)\right) \rightarrow \forall x \varphi(x)
$$

where $\varphi(x)$ is any formula, possibly with free variables other than x. Using induction, one can do much better; in fact, it takes a good deal of work to find "natural" statements about the natural numbers that can't be proved in Peano arithmetic!

Definition 20.1. A function $f\left(x_{0}, \ldots, x_{k}\right)$ from the natural numbers to the natural numbers is said to be representable in \mathbf{Q} if there is a formula $\varphi_{f}\left(x_{0}, \ldots, x_{k}, y\right)$ such that whenever $f\left(n_{0}, \ldots, n_{k}\right)=m, \mathbf{Q}$ proves

1. $\varphi_{f}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}, \bar{m}\right)$
2. $\forall y\left(\varphi_{f}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}, y\right) \rightarrow \bar{m}=y\right)$.

There are other ways of stating the definition; for example, we could equivalently require that \mathbf{Q} proves $\forall y\left(\varphi_{f}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}, y\right) \leftrightarrow \bar{m}=y\right)$.

Theorem 20.2. A function is representable in \mathbf{Q} if and only if it is computable.
There are two directions to proving the theorem. One of them is fairly straightforward once arithmetization of syntax is in place. The other direction requires more work.

20.2 Functions Representable in Q are Computable

Lemma 20.3. Every function that is representable in \mathbf{Q} is computable.
Proof. All we need to know is that we can code terms, formulas, and proofs in such a way that the relation " d is a proof of φ in the theory \mathbf{Q} " is computable, as well as the function $\operatorname{SubNumeral}(\varphi, n, v)$ which returns (a numerical code of) the result of substituting the numeral corresponding to n for the variable (coded by) v in the formula (coded by) φ. Assuming this, suppose the function f is represented by $\varphi_{f}\left(x_{0}, \ldots, x_{k}, y\right)$. Then the algorithm for computing f is as follows: on input n_{0}, \ldots, n_{k}, search for a number m and a proof of the formula $\varphi_{f}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}, \bar{m}\right)$; when you find one, output m. In other words,

$$
f\left(n_{0}, \ldots, n_{k}\right)=\left(\mu s\left("(s)_{0} \text { is a proof of } \varphi\left(\bar{n}_{0}, \ldots, \bar{n}_{k},\left(\bar{s}_{1}\right) \text { in } \mathbf{Q}^{\prime \prime}\right)\right)_{1}\right.
$$

This completes the proof, modulo the (involved but routine) details of coding and defining the function and relation above.

20.3 Computable Functions are Representable in Q

Lemma 20.4. Every computable function is representable in \mathbf{Q}.

1. We will define a set of (total) functions, C.
2. We will show that C is the set of computable functions, i.e. our definition provides another characterization of computability.
3. Then we will show that every function in C can be represented in \mathbf{Q}.

20.4 The Functions C

Let C be the smallest set of functions containing

1. 0 ,
2. successor,
3. addition,
4. multiplication,
5. projections, and
6. the characteristic function for equality, $\chi=$;
and closed under
7. composition, and
8. unbounded search, applied to regular functions.

Remember this last restriction means simply that you can only use the μ operation when the result is total. Compare this to the definition of the general recursive functions: here we have added plus, times, and $\chi_{=}$, but we have dropped primitive recursion.

Clearly everything in C is recursive, since plus, times, and $\chi=$ are. We will show that the converse is also true; this amounts to saying that with the other stuff in C we can carry out primitive recursion.

20.5. THE BETA FUNCTION LEMMA

20.5 The Beta Function Lemma

In order to show that C can carry out primitive recursion, we need to develop functions that handle sequences. (If we had exponentiation as well, our task would be easier.) When we had primitive recursion, we could define things like the " nth prime," and pick a fairly straightforward coding. But here we do not have primitive recursion, so we need to be more clever.

Lemma 20.5. There is a function $\beta(d, i)$ in C such that for every sequence a_{0}, \ldots, a_{n} there is a number d, such that for every i less than or equal to $n, \beta(d, i)=a_{i}$.

Think of d as coding the sequence $\left\langle a_{0}, \ldots, a_{n}\right\rangle$, and $\beta(d, i)$ returning the i th element. The lemma is fairly minimal; it doesn't say we can concatenate sequences or append elements with functions in C, or even that we can compute d from a_{0}, \ldots, a_{n} using functions in C. All it says is that there is a "decoding" function such that every sequence is "coded."

The use of the notation β is Gödel's. To repeat, the hard part of proving the lemma is defining a suitable β using the seemingly restricted resources in the definition of C. There are various ways to prove this lemma, but one of the cleanest is still Gödel's original method, which used a number-theoretic fact called the Chinese Remainder theorem.

Definition 20.6. Two natural numbers a and b are relatively prime if their greatest common divisor is 1 ; in other words, they have no other divisors in common.

Definition 20.7. $a \equiv b \bmod c$ means $c \mid(a-b)$, i.e. a and b have the same remainder when divided by c.

Here is the Chinese Remainder theorem:
Theorem 20.8. Suppose x_{0}, \ldots, x_{n} are (pairwise) relatively prime. Let y_{0}, \ldots, y_{n} be any numbers. Then there is a number z such that

$$
\begin{array}{rlll}
z & \equiv & y_{0} & \bmod x_{0} \\
z & \equiv y_{1} & \bmod x_{1} \\
& \vdots & & \\
z & \equiv y_{n} & \bmod x_{n} .
\end{array}
$$

Here is how we will use the Chinese Remainder theorem: if x_{0}, \ldots, x_{n} are bigger than y_{0}, \ldots, y_{n} respectively, then we can take z to code the sequence $\left\langle y_{0}, \ldots, y_{n}\right\rangle$. To recover y_{i}, we need only divide z by x_{i} and take the remainder. To use this coding, we will need to find suitable values for x_{0}, \ldots, x_{n}.

A couple of observations will help us in this regard. Given y_{0}, \ldots, y_{n}, let

$$
j=\max \left(n, y_{0}, \ldots, y_{n}\right)+1
$$

and let

$$
\begin{aligned}
x_{0} & =1+j! \\
x_{1} & =1+2 \cdot j! \\
x_{2} & =1+3 \cdot j! \\
& \vdots \\
x_{n} & =1+(n+1) \cdot j!
\end{aligned}
$$

Then two things are true:

1. x_{0}, \ldots, x_{n} are relatively prime.
2. For each $i, y_{i}<x_{i}$.

To see that clause 1 is true, note that if p is a prime number and $p \mid x_{i}$ and $p \mid x_{k}$, then $p \mid 1+(i+1) j$! and $p \mid 1+(k+1) j!$. But then p divides their difference,

$$
(1+(i+1) j!)-(1+(k+1) j!)=(i-k) j!.
$$

Since p divides $1+(1+1) j$!, it can't divide j ! as well (otherwise, the first division would leave a remainder of 1). So p divides $i-k$. But $|i-k|$ is at most n, and we have chosen $j>n$, so this implies that $p \mid j$!, again a contradiction. So there is no prime number dividing both x_{i} and x_{k}. Clause 2 is easy: we have $y_{i}<j<j!<x_{i}$.

Now let us prove the β function lemma. Remember that C is the smallest set containing 0 , successor, plus, times, $\chi=$, projections, and closed under composition and μ applied to regular functions. As usual, say a relation is in C if its characteristic function is. As before we can show that the relations in C are closed under boolean combinations and bounded quantification; for example:

1. $\operatorname{not}(x)=\chi=(x, 0)$
2. $\mu x \leq z R(x, y)=\mu x(R(x, y) \vee x=z)$
3. $\exists x \leq z R(x, y) \Leftrightarrow R(\mu x \leq z R(x, y), y)$

We can then show that all of the following are in C :

1. The pairing function, $J(x, y)=\frac{1}{2}[(x+y)(x+y+1)]+x$
2. Projections

$$
K(z)=\mu x \leq q(\exists y \leq z[z=J(x, y)])
$$

and

$$
L(z)=\mu y \leq q(\exists x \leq z[z=J(x, y)])
$$

3. $x<y$
4. $x \mid y$
5. The function rem (x, y) which returns the remainder when y is divided by x

Now define

$$
\beta^{*}\left(d_{0}, d_{1}, i\right)=\operatorname{rem}\left(1+(i+1) d_{1}, d_{0}\right)
$$

and

$$
\beta(d, i)=\beta^{*}(K(d), L(d), i)
$$

This is the function we need. Given a_{0}, \ldots, a_{n}, as above, let

$$
j=\max \left(n, a_{0}, \ldots, a_{n}\right)+1
$$

and let $d_{1}=j$!. By the observations above, we know that $1+d_{1}, 1+2 d_{1}, \ldots, 1+$ $(n+1) d_{1}$ are relatively prime and all are bigger than a_{0}, \ldots, a_{n}. By the Chinese Remainder theorem there is a value d_{0} such that for each i,

$$
d_{0} \equiv a_{i} \quad \bmod \left(1+(i+1) d_{1}\right)
$$

and so (because d_{1} is greater than a_{i}),

$$
a_{i}=\operatorname{rem}\left(1+(i+1) d_{1}, d_{0}\right)
$$

Let $d=J\left(d_{0}, d_{1}\right)$. Then for each i from 0 to n, we have

$$
\begin{aligned}
\beta(d, i) & =\beta^{*}\left(d_{0}, d_{1}, i\right) \\
& =\operatorname{rem}\left(1+(i+1) d_{1}, d_{0}\right) \\
& =a_{i}
\end{aligned}
$$

which is what we need. This completes the proof of the β-function lemma.

20.6 Primitive Recursion in C

Now we can show that C is closed under primitive recursion. Suppose $f(\vec{z})$ and $g(u, v, \vec{z})$ are both in C. Let $h(x, \vec{z})$ be the function defined by

$$
\begin{aligned}
h(0, \vec{z}) & =f(\vec{z}) \\
h(x+1, \vec{z}) & =g(x, h(x, \vec{z}), \vec{z})
\end{aligned}
$$

We need to show that h is in C.
First, define an auxiliary function $\hat{h}(x, \vec{z})$ which returns the least number d such that d codes a sequence satisfying

1. $(d)_{0}=f(\vec{z})$, and
2. for each $i<x,(d)_{i+1}=g\left(i,(d)_{i}, \vec{z}\right)$,
where now $(d)_{i}$ is short for $\beta(d, i)$. In other words, \hat{h} returns a sequence that begins $\langle h(0, \vec{z}), h(1, \vec{z}), \ldots, h(x, \vec{z})\rangle . \hat{h}$ is in C, because we can write it as

$$
\hat{h}(x, z)=\mu d(\beta(d, 0)=f(\vec{z}) \wedge \forall i<x \beta(d, i+1)=g(i, \beta(d, i), \vec{z})) .
$$

But then we have

$$
h(x, \vec{z})=\beta(\hat{h}(x, \vec{z}), x),
$$

so h is in C as well.

20.7 Functions in C are Representable in Q

We have to show that every function in C is representable in \mathbf{Q}. In the end, we need to show how to assign to each k-ary function $f\left(x_{0}, \ldots, x_{k-1}\right)$ in C a formula $\varphi_{f}\left(x_{0}, \ldots, x_{k-1}, y\right)$ that represents it.

Lemma 20.9. Given natural numbers n and m, if $n \neq m$, then $Q \vdash \bar{n} \neq \bar{m}$.
Proof. Use induction on n to show that for every m, if $n \neq m$, then $Q \vdash \bar{n} \neq \bar{m}$.
In the base case, $n=0$. If m is not equal to 0 , then $m=k+1$ for some natural number k. We have an axiom that says $\forall x 0 \neq x^{\prime}$. By a quantifier axiom, replacing x by \bar{k}, we can conclude $0 \neq \bar{k}^{\prime}$. But \bar{k}^{\prime} is just \bar{m}.

In the induction step, we can assume the claim is true for n, and consider $n+1$. Let m be any natural number. There are two possibilities: either $m=0$ or for some k we have $m=k+1$. The first case is handled as above. In the second case, suppose $n+1 \neq k+1$. Then $n \neq k$. By the induction hypothesis for n we have $\mathbf{Q} \vdash \bar{n} \neq \bar{k}$. We have an axiom that says $\forall x \forall y x^{\prime}=y^{\prime} \rightarrow x=y$. Using a quantifier axiom, we have $\bar{n}^{\prime}=\bar{k}^{\prime} \rightarrow \bar{n}=\bar{k}$. Using propositional logic, we can conclude, in $\mathbf{Q}, \bar{n} \neq \bar{k} \rightarrow \bar{n}^{\prime} \neq \bar{k}^{\prime}$. Using modus ponens, we can conclude $\bar{n}^{\prime} \neq \bar{k}^{\prime}$, which is what we want, since \bar{k}^{\prime} is \bar{m}.

Note that the lemma does not say much: in essence it says that \mathbf{Q} can prove that different numerals denote different objects. For example, \mathbf{Q} proves $0^{\prime \prime} \neq 0^{\prime \prime \prime}$. But showing that this holds in general requires some care. Note also that although we are using induction, it is induction outside of \mathbf{Q}.

We will be able to represent zero, successor, plus, times, the characteristic function for equality, and projections. In each case, the appropriate representing function is entirely straightforward; for example, zero is represented by the formula

$$
y=0,
$$

successor is represented by the formula

$$
x_{0}^{\prime}=y,
$$

20.7. FUNCTIONS IN C ARE REPRESENTABLE IN Q

and plus is represented by the formula

$$
x_{0}+x_{1}=y .
$$

The work involves showing that \mathbf{Q} can prove the relevant statements; for example, saying that plus is represented by the formula above involves showing that for every pair of natural numbers m and n, \mathbf{Q} proves

$$
\bar{n}+\bar{m}=\overline{n+m}
$$

and

$$
\forall y((\bar{n}+\bar{m})=y \rightarrow y=\overline{n+m}) .
$$

What about composition? Suppose h is defined by

$$
h\left(x_{0}, \ldots, x_{l-1}\right)=f\left(g_{0}\left(x_{0}, \ldots, x_{l-1}\right), \ldots, g_{k-1}\left(x_{0}, \ldots, x_{l-1}\right)\right) .
$$

where we have already found formulas $\varphi_{f}, \varphi_{g_{0}}, \ldots, \varphi_{g_{k-1}}$ representing the functions $f, g_{0}, \ldots, g_{k-1}$, respectively. Then we can define a formula φ_{h} representing h, by defining $\varphi_{h}\left(x_{0}, \ldots, x_{l-1}, y\right)$ to be

$$
\begin{array}{r}
\exists z_{0}, \ldots \exists z_{k-1}\left(\varphi_{g_{0}}\left(x_{0}, \ldots, x_{l-1}, z_{0}\right) \wedge \cdots \wedge \varphi_{g_{k-1}}\left(x_{0}, \ldots, x_{l-1}, z_{k-1}\right) \wedge\right. \\
\left.\varphi_{f}\left(z_{0}, \ldots, z_{k-1}, y\right)\right) .
\end{array}
$$

Finally, let us consider unbounded search. Suppose $g(x, \vec{z})$ is regular and representable in \mathbf{Q}, say by the formula $\varphi_{g}(x, \vec{z}, y)$. Let f be defined by $f(\vec{z})=$ $\mu x g(x, \vec{z})$. We would like to find a formula $\varphi_{f}(\vec{z}, y)$ representing f. Here is a natural choice:

$$
\varphi_{f}(\vec{z}, y) \equiv \varphi_{g}(y, \vec{z}, 0) \wedge \forall w\left(w<y \rightarrow \neg \varphi_{g}(w, \vec{z}, 0)\right) .
$$

It can be shown that this works using some additional lemmas, e.g.,
Lemma 20.10. For every variable x and every natural number n, \mathbf{Q} proves $\left(x^{\prime}+\right.$ $\bar{n})=(x+\bar{n})^{\prime}$.

It is again worth mentioning that this is weaker than saying that \mathbf{Q} proves $\forall x \forall y\left(x^{\prime}+y\right)=(x+y)^{\prime}$ (which is false).

Proof. The proof is, as usual, by induction on n. In the base case, $n=0$, we need to show that \mathbf{Q} proves $\left(x^{\prime}+0\right)=(x+0)^{\prime}$. But we have:

$$
\begin{aligned}
& \left(x^{\prime}+0\right)=x^{\prime} \quad \text { from axiom } 4 \\
& (x+0)=x \quad \text { from axiom } 4 \\
& (x+0)^{\prime}=x^{\prime} \quad \text { by line } 2 \\
& \left(x^{\prime}+0\right)=(x+0)^{\prime} \quad \text { lines } 1 \text { and } 3
\end{aligned}
$$

In the induction step, we can assume that we have derived $\left(x^{\prime}+\bar{n}\right)=(x+\bar{n})^{\prime}$ in \mathbf{Q}. Since $\overline{n+1}$ is \bar{n}^{\prime}, we need to show that \mathbf{Q} proves $\left(x^{\prime}+\bar{n}^{\prime}\right)=\left(x+\bar{n}^{\prime}\right)^{\prime}$. The following chain of equalities can be derived in \mathbf{Q} :

$$
\begin{aligned}
\left(x^{\prime}+\bar{n}^{\prime}\right) & =\left(x^{\prime}+\bar{n}\right)^{\prime} \quad \text { axiom } 5 \\
& =\left(x+\bar{n}^{\prime}\right)^{\prime} \quad \text { from the inductive hypothesis }
\end{aligned}
$$

Lemma 20.11. 1. \mathbf{Q} proves $\neg(x<\overline{0})$.
2. For every natural number n, \mathbf{Q} proves

$$
x<\overline{n+1} \rightarrow(x=\overline{0} \vee \cdots \vee x=\bar{n}) .
$$

Proof. Let us do 1 and part of 2, informally (i.e., only giving hints as to how to construct the formal derivation).

For part 1, by the definition of $<$, we need to prove $\neg \exists y\left(y^{\prime}+x\right)=0$ in \mathbf{Q}, which is equivalent (using the axioms and rules of first-order logic) to $\forall y\left(y^{\prime}+x\right) \neq 0$. Here is the idea: suppose $\left(y^{\prime}+x\right)=0$. If x is 0 , we have $\left(y^{\prime}+0\right)=0$. But by axiom 4 of \mathbf{Q}, we have $\left(y^{\prime}+0\right)=y^{\prime}$, and by axiom 2 we have $y^{\prime} \neq 0$, a contradiction. So $\forall y\left(y^{\prime}+x\right) \neq 0$. If x is not 0 , by axiom 3 there is a z such that $x=z^{\prime}$. But then we have $\left(y^{\prime}+z^{\prime}\right)=0$. By axiom 5 , we have $\left(y^{\prime}+z\right)^{\prime}=0$, again contradicting axiom 2 .

For part 2, use induction on n. Let us consider the base case, when $n=0$. In that case, we need to show $x<\overline{1} \rightarrow x=\overline{0}$. Suppose $x<\overline{1}$. Then by the defining axiom for $<$, we have $\exists y\left(y^{\prime}+x\right)=0^{\prime}$. Suppose y has that property; so we have $y^{\prime}+x=0^{\prime}$.

We need to show $x=0$. By axiom 3, if x is not 0 , it is equal to z^{\prime} for some z. Then we have $\left(y^{\prime}+z^{\prime}\right)=0^{\prime}$. By axiom 5 of \mathbf{Q}, we have $\left(y^{\prime}+z\right)^{\prime}=0^{\prime}$. By axiom 1 , we have $\left(y^{\prime}+z\right)=0$. But this means, by definition, $z<0$, contradicting part 1.

We have shown that the set of computable functions can be characterized as the set of functions representable in \mathbf{Q}. In fact, the proof is more general. From the definition of representability, it is not hard to see that any theory extending \mathbf{Q} (or in which one can interpret \mathbf{Q}) can represent the computable functions; but, conversely, in any proof system in which the notion of proof is computable, every representable function is computable. So, for example, the set of computable functions can be characterized as the set of functions represented in Peano arithmetic, or even Zermelo Fraenkel set theory. As Gödel noted, this is somewhat surprising. We will see that when it comes to provability, questions are very sensitive to which theory you consider; roughly, the stronger the axioms, the more you can prove. But across a wide range of axiomatic theories, the representable functions are exactly the computable ones.

20.8. REPRESENTING RELATIONS

20.8 Representing Relations

Let us say what it means for a relation to be representable.
Definition 20.12. A relation $R\left(x_{0}, \ldots, x_{k}\right)$ on the natural numbers is representable in \mathbf{Q} if there is a formula $\varphi_{R}\left(x_{0}, \ldots, x_{k}\right)$ such that whenever $R\left(n_{0}, \ldots, n_{k}\right)$ is true, \mathbf{Q} proves $\varphi_{R}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}\right)$, and whenever $R\left(n_{0}, \ldots, n_{k}\right)$ is false, \mathbf{Q} proves $\neg \varphi_{R}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}\right)$.

Theorem 20.13. A relation is representable in \mathbf{Q} if and only if it is computable.
Proof. For the forwards direction, suppose $R\left(x_{0}, \ldots, x_{k}\right)$ is represented by the formula $\varphi_{R}\left(x_{0}, \ldots, x_{k}\right)$. Here is an algorithm for computing R : on input n_{0}, \ldots, n_{k}, simultaneously search for a proof of $\varphi_{R}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}\right)$ and a proof of $\neg \varphi_{R}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}\right)$. By our hypothesis, the search is bound to find one of the other; if it is the first, report "yes," and otherwise, report "no."

In the other direction, suppose $R\left(x_{0}, \ldots, x_{k}\right)$ is computable. By definition, this means that the function $\chi_{R}\left(x_{0}, \ldots, x_{k}\right)$ is computable. By Theorem 20.2, χ_{R} is represented by a formula, say $\varphi_{\chi_{R}}\left(x_{0}, \ldots, x_{k}, y\right)$. Let $\varphi_{R}\left(x_{0}, \ldots, x_{k}\right)$ be the formula $\varphi_{\chi_{R}}\left(x_{0}, \ldots, x_{k}, \overline{1}\right)$. Then for any n_{0}, \ldots, n_{k}, if $R\left(n_{0}, \ldots, n_{k}\right)$ is true, then $\chi_{R}\left(n_{0}, \ldots, n_{k}\right)=1$, in which case \mathbf{Q} proves $\varphi_{\chi_{R}}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}, \overline{1}\right)$, and so \mathbf{Q} proves $\varphi_{R}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}\right)$. On the other hand if $R\left(n_{0}, \ldots, n_{k}\right)$ is false, then $\chi_{R}\left(n_{0}, \ldots, n_{k}\right)=0$. This means that \mathbf{Q} proves $\varphi_{\chi_{R}}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}, y\right) \rightarrow y=\overline{0}$. Since \mathbf{Q} proves $\neg(\overline{0}=\overline{1})$, \mathbf{Q} proves $\neg \varphi_{\chi_{R}}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}, \overline{1}\right)$, and so it proves $\neg \varphi_{R}\left(\bar{n}_{0}, \ldots, \bar{n}_{k}\right)$.

20.9 Undecidability

We call a theory \mathbf{T} undecidable if there is no computational procedure which, after finitely many steps and unfailingly, provides a correct answer to the question "does T prove φ ?" for any sentence φ in the language of \mathbf{T}. So \mathbf{Q} would be decidable iff there were a computational procedure which decides, given a sentence φ in the language of arithmetic, whether $\mathbf{Q} \vdash \varphi$ or not. We can make this more precise by asking: Is the relation $\operatorname{Prov}_{\mathbf{Q}}(y)$, which holds of y iff y is the Gödel number of a sentence provable in \mathbf{Q}, recursive? The answer is: no.

Theorem 20.14. \mathbf{Q} is undecidable, i.e., the relation

$$
\operatorname{Prov}_{\mathbf{Q}}(y) \Leftrightarrow \operatorname{Sent}(y) \wedge \exists x \operatorname{Pr}_{\mathbf{Q}}(x, y)
$$

is not recursive.
Proof. Suppose it were. Then we could solve the halting problem as follows: Given e and n, we know that $\varphi_{e}(n) \downarrow$ iff there is an s such that $T(e, n, s)$, where T is Kleene's predicate from Theorem 14.8. Since T is primitive recursive it is representable in \mathbf{Q} by a formula ψ_{T}, that is, $\mathbf{Q} \vdash \psi_{T}(\bar{e}, \bar{n}, \bar{s})$ iff $T(e, n, s)$. If
$\mathbf{Q} \vdash \psi_{T}(\bar{e}, \bar{n}, \bar{s})$ then also $\mathbf{Q} \vdash \exists y \psi_{T}(\bar{e}, \bar{n}, y)$. If no such s exists, then $\mathbf{Q} \vdash$ $\neg \psi_{T}(\bar{e}, \bar{n}, \bar{s})$ for every s. But \mathbf{Q} is ω-consistent, i.e., if $\mathbf{Q} \vdash \neg \varphi(\bar{n})$ for every $n \in$ \mathbb{N}, then $\mathbf{Q} \nvdash \exists y \varphi(y)$. We know this because the axioms of \mathbf{Q} are true in the standard model \mathfrak{N}. So, $\mathbf{Q} \nvdash \exists y \psi_{T}(\bar{e}, \bar{n}, y)$. In other words, $\mathbf{Q} \vdash \exists y \psi_{T}(\bar{e}, \bar{n}, y)$ iff there is an s such that $T(e, n, s)$, i.e., iff $\varphi_{e}(n) \downarrow$. From e and n we can compute $\#\left(\exists y \psi_{T}(\bar{e}, \bar{n}, y)\right)$, let $g(e, n)$ be the primitive recursive function which does that. So

$$
h(e, n)= \begin{cases}1 & \text { if } \operatorname{Pr}_{\mathbf{Q}}(g(e, n)) \\ 0 & \text { otherwise }\end{cases}
$$

This would show that h is recursive if $\operatorname{Pr}_{\mathbf{Q}}$ is. But h is not recursive, by Theorem 14.9, so $\operatorname{Pr}_{\mathbf{Q}}$ cannot be either.

Corollary 20.15. First-order logic is undecidable.
Proof. If first-order logic were decidable, provability in \mathbf{Q} would be as well, since $\mathbf{Q} \vdash \varphi$ iff $\vdash \omega \rightarrow \varphi$, where ω is the conjunction of the axioms of \mathbf{Q}.

Problems

This chapter depends on material in the chapter on computability theory, but can be left out if that hasn't been covered. It's currently a basic conversion of Jeremy Avigad's notes, has not been revised, and is missing exercises.

Chapter 21

Theories and Computability

21.1 Introduction

We have the following:

1. A definition of what it means for a function to be representable in \mathbf{Q} (Definition 20.1)
2. a definition of what it means for a relation to be representable in \mathbf{Q} (Definition 20.12)
3. a theorem asserting that the representable functions of \mathbf{Q} are exactly the computable ones (Theorem 20.2)
4. a theorem asserting that the representable relations of \mathbf{Q} are exactly the computable ones Theorem 20.13)

A theory is a set of sentences that is deductively closed, that is, with the property that whenever T proves φ then φ is in T. It is probably best to think of a theory as being a collection of sentences, together with all the things that these sentences imply. From now on, I will use \mathbf{Q} to refer to the theory consisting of the set of sentences derivable from the eight axioms in section 20.1. Remember that we can code formula of \mathbf{Q} as numbers; if φ is such a formula, let \# (φ) denote the number coding φ. Modulo this coding, we can now ask whether various sets of formulas are computable or not.

21.2 Q is c.e.-complete

Theorem 21.1. \mathbf{Q} is c.e. but not decidable. In fact, it is a complete c.e. set.
Proof. It is not hard to see that \mathbf{Q} is c.e., since it is the set of (codes for) sentences y such that there is a proof x of y in \mathbf{Q} :

$$
Q=\left\{y: \exists x \operatorname{Pr}_{\mathbf{Q}}(x, y)\right\} .
$$

But we know that $\operatorname{Pr}_{\mathbf{Q}}(x, y)$ is computable (in fact, primitive recursive), and any set that can be written in the above form is c.e.

Saying that it is a complete c.e. set is equivalent to saying that $K \leq_{m} Q$, where $K=\left\{x: \varphi_{x}(x) \downarrow\right\}$. So let us show that K is reducible to \mathbf{Q}. Since Kleene's predicate $T(e, x, s)$ is primitive recursive, it is representable in \mathbf{Q}, say, by φ_{T}. Then for every x, we have

$$
\begin{aligned}
x \in K & \rightarrow \exists s T(x, x, s) \\
& \rightarrow \exists s\left(\mathbf{Q} \vdash \varphi_{T}(\bar{x}, \bar{x}, \bar{s})\right) \\
& \rightarrow \mathbf{Q} \vdash \exists s \varphi_{T}(\bar{x}, \bar{x}, s) .
\end{aligned}
$$

Conversely, if $\mathbf{Q} \vdash \exists s \varphi_{T}(\bar{x}, \bar{x}, s)$, then, in fact, for some natural number n the formula $\varphi_{T}(\bar{x}, \bar{x}, \bar{n})$ must be true. Now, if $T(x, x, n)$ were false, \mathbf{Q} would prove $\neg \varphi_{T}(\bar{x}, \bar{x}, \bar{n})$, since φ_{T} represents T. But then \mathbf{Q} proves a false formula, which is a contradiction. So $T(x, x, n)$ must be true, which implies $\varphi_{x}(x) \downarrow$.

In short, we have that for every x, x is in K if and only if \mathbf{Q} proves $\exists s T(\bar{x}, \bar{x}, s)$. So the function f which takes x to (a code for) the sentence $\exists s T(\bar{x}, \bar{x}, s)$ is a reduction of K to \mathbf{Q}.

21.3ω-Consistent Extensions of Q are Undecidable

The proof that \mathbf{Q} is c.e.-complete relied on the fact that any sentence provable in \mathbf{Q} is "true" of the natural numbers. The next definition and theorem strengthen this theorem, by pinpointing just those aspects of "truth" that were needed in the proof above. Don't dwell on this theorem too long, though, because we will soon strengthen it even further. We include it mainly for historical purposes: Gödel's original paper used the notion of ω-consistency, but his result was strengthened by replacing ω-consistency with ordinary consistency soon after.

Definition 21.2. A theory \mathbf{T} is ω-consistent if the following holds: if $\exists x \varphi(x)$ is any sentence and T proves $\neg \varphi(\overline{0}), \neg \varphi(\overline{1}), \neg \varphi(\overline{2}), \ldots$ then \mathbf{T} does not prove $\exists x \varphi(x)$.

Theorem 21.3. Let \mathbf{T} be any ω-consistent theory that includes \mathbf{Q}. Then \mathbf{T} is not decidable.

Proof. If \mathbf{T} includes \mathbf{Q}, then \mathbf{T} represents the computable functions and relations. We need only modify the previous proof. As above, if $x \in K$, then T proves $\exists s \varphi_{T}(\bar{x}, \bar{x}, s)$. Conversely, suppose T proves $\exists s \varphi_{T}(\bar{x}, \bar{x}, s)$. Then x must be in K : otherwise, there is no halting computation of machine x on input x; since φ_{T} represents Kleene's T relation, \mathbf{T} proves $\neg \varphi_{T}(\bar{x}, \bar{x}, \overline{0}), \neg \varphi_{T}(\bar{x}, \bar{x}, \overline{1})$, \ldots, making $\mathbf{T} \omega$-inconsistent.

21.4. CONSISTENT EXTENSIONS OF Q ARE UNDECIDABLE

21.4 Consistent Extensions of \mathbf{Q} are Undecidable

Remember that a theory is consistent if it does not prove φ and $\neg \varphi$ for any formula φ. Since anything follows from a contradiction, an inconsistent theory is trivial: every sentence is provable. Clearly, if a theory if ω-consistent, then it is consistent. But being consistent is a weaker requirement (i.e., there are theories that are consistent but not ω-consistent - we will see an example soon). We can weaken the assumption in Definition 21.2 to simple consistency to obatin a stronger theorem.

Lemma 21.4. There is no "universal computable relation." That is, there is no binary computable relation $R(x, y)$, with the following property: whenever $S(y)$ is a unary computable relation, there is some k such that for every $y, S(y)$ is true if and only if $R(k, y)$ is true.

Proof. Suppose $R(x, y)$ is a universal computable relation. Let $S(y)$ be the relation $\neg R(y, y)$. Since $S(y)$ is computable, for some $k, S(y)$ is equivalent to $R(k, y)$. But then we have that $S(k)$ is equivalent to both $R(k, k)$ and $\neg R(k, k)$, which is a contradiction.

Theorem 21.5. Let \mathbf{T} be any consistent theory that includes \mathbf{Q}. Then \mathbf{T} is not decidable.

Proof. Suppose \mathbf{T} is a consistent, decidable extension of \mathbf{Q}. We will obtain a contradiction by using \mathbf{T} to define a universal computable relation.

Let $R(x, y)$ hold if and only if
x codes a formula $\theta(u)$, and \mathbf{T} proves $\theta(\bar{y})$.
Since we are assuming that \mathbf{T} is decidable, R is computable. Let us show that R is universal. If $S(y)$ is any computable relation, then it is representable in \mathbf{Q} (and hence T) by a formula $\theta_{S}(u)$. Then for every n, we have

$$
\begin{aligned}
S(\bar{n}) & \rightarrow T \vdash \theta_{S}(\bar{n}) \\
& \rightarrow R\left(\#\left(\theta_{S}(u)\right), n\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\neg S(\bar{n}) & \rightarrow T \vdash \neg \theta_{S}(\bar{n}) \\
& \rightarrow T \nvdash \theta_{S}(\bar{n}) \quad \text { (since } \mathbf{T} \text { is consistent) } \\
& \rightarrow \neg R\left(\#\left(\theta_{S}(u)\right), n\right) .
\end{aligned}
$$

That is, for every $y, S(y)$ is true if and only if $R\left(\#\left(\theta_{S}(u)\right), y\right)$ is. So R is universal, and we have the contradiction we were looking for.

Let "true arithmetic" be the theory $\{\varphi: \mathbb{N} \models \varphi\}$, that is, the set of sentences in the language of arithmetic that are true in the standard interpretation.

Corollary 21.6. True arithmetic is not decidable.

21.5 Computably Axiomatizable Theories

A theory \mathbf{T} is said to be computably axiomatizable if it has a computable set of axioms A. (Saying that A is a set of axioms for \mathbf{T} means $T=\{\varphi: A \vdash$ $\varphi\}$.) Any "reasonable" axiomatization of the natural numbers will have this property. In particular, any theory with a finite set of axioms is computably axiomatizable. The phrase "effectively axiomatizable" is also commonly used.
Lemma 21.7. Suppose \mathbf{T} is computably axiomatizable. Then \mathbf{T} is computably enumerable.

Proof. Suppose A is a computable set of axioms for \mathbf{T}. To determine if $\varphi \in T$, just search for a proof of φ from the axioms.

Put slightly differently, φ is in \mathbf{T} if and only if there is a finite list of axioms $\psi_{1}, \ldots, \psi_{k}$ in A and a proof of $\left(\psi_{1} \wedge \cdots \wedge \psi_{k}\right) \rightarrow \varphi$ in first-order logic. But we already know that any set with a definition of the form "there exists ...such that ..." is c.e., provided the second "..." is computable.

21.6 Computably Axiomatizable Complete Theories are Decidable

A theory is said to be complete if for every sentence φ, either φ or $\neg \varphi$ is provable.

Lemma 21.8. Suppose a theory \mathbf{T} is complete and computably axiomatizable. Then \mathbf{T} is decidable.

Proof. Suppose \mathbf{T} is complete and A is a computable set of axioms. If \mathbf{T} is inconsistent, it is clearly computable. (Algorithm: "just say yes.") So we can assume that \mathbf{T} is also consistent.

To decide whether or not a sentence φ is in \mathbf{T}, simultaneously search for a proof of φ from A and a proof of $\neg \varphi$. Since \mathbf{T} is complete, you are bound to find one or another; and since T is consistent, if you find a proof of $\neg \varphi$, there is no proof of φ.

Put in different terms, we already know that \mathbf{T} is c.e.; so by a theorem we proved before, it suffices to show that the complement of \mathbf{T} is c.e. But a formula φ is in \bar{T} if and only if $\neg \varphi$ is in \mathbf{T}; so $\bar{T} \leq_{m} T$.

21.7 Q has no Complete, Consistent, Computably Axiomatized Extensions

Theorem 21.9. There is no complete, consistent, computably axiomatized extension of \mathbf{Q}.

21.8. SENTENCES PROVABLE AND REFUTABLE IN Q ARE COMPUTABLY INSEPARABLE

Proof. We already know that there is no consistent, decidable extension of \mathbf{Q}. But if \mathbf{T} is complete and computably axiomatized, then it is decidable.

This theorems is not that far from Gödel's original 1931 formulation of the First Incompleteness Theorem. Aside from the more modern terminology, the key differences are this: Gödel has " ω-consistent" instead of "consistent"; and he could not say "computably axiomatized" in full generality, since the formal notion of computability was not in place yet. (The formal models of computability were developed over the following decade, in large part by Gödel, and in large part to be able to characterize the kinds of theories that are susceptible to the Gödel phenomenon.)

The theorem says you can't have it all, namely, completeness, consistency, and computable axiomatizability. If you give up any one of these, though, you can have the other two: \mathbf{Q} is consistent and computably axiomatized, but not complete; the inconsistent theory is complete, and computably axiomatized (say, by $\{0 \neq 0\}$), but not consistent; and the set of true sentence of arithmetic is complete and consistent, but it is not computably axiomatized.

21.8 Sentences Provable and Refutable in Q are Computably Inseparable

Let $\overline{\mathbf{Q}}$ be the set of sentences whose negations are provable in \mathbf{Q}, i.e., $\overline{\mathbf{Q}}=\{\varphi$: $\mathbf{Q} \vdash \neg \varphi\}$. Remember that disjoint sets A and B are said to be computably inseparable if there is no computable set C such that $A \subseteq C$ and $B \subseteq \bar{C}$.

Lemma 21.10. \mathbf{Q} and $\overline{\mathbf{Q}}$ are computably inseparable.
Proof. Suppose C is a computable set such that $\mathbf{Q} \subseteq C$ and $\overline{\mathbf{Q}} \subseteq \bar{C}$. Let $R(x, y)$ be the relation
x codes a formula $\theta(u)$ and $\theta(\bar{y})$ is in C.
We will show that $R(x, y)$ is a universal computable relation, yielding a contradiction.

Suppose $S(y)$ is computable, represented by $\theta_{S}(u)$ in \mathbf{Q}. Then

$$
\begin{aligned}
S(\bar{n}) & \rightarrow \mathbf{Q} \vdash \theta_{S}(\bar{n}) \\
& \rightarrow \theta_{S}(\bar{n}) \in C
\end{aligned}
$$

and

$$
\begin{aligned}
\neg S(\bar{n}) & \rightarrow \mathbf{Q} \vdash \neg \theta_{S}(\bar{n}) \\
& \rightarrow \theta_{S}(\bar{n}) \in \overline{\mathbf{Q}} \\
& \rightarrow \theta_{S}(\bar{n}) \notin \mathbb{C}
\end{aligned}
$$

So $S(y)$ is equivalent to $R\left(\#\left(\theta_{S}(\bar{u})\right), y\right)$.

21.9 Theories Consistent with Q are Undecidable

The following theorem says that not only is \mathbf{Q} undecidable, but, in fact, any theory that does not disagree with \mathbf{Q} is undecidable.

Theorem 21.11. Let \mathbf{T} be any theory in the language of arithmetic that is consistent with \mathbf{Q} (i.e., $\mathbf{T} \cup \mathbf{Q}$ is consistent). Then \mathbf{T} is undecidable.

Proof. Remember that \mathbf{Q} has a finite set of axioms, $\varphi_{1}, \ldots, \varphi_{8}$. We can even replace these by a single axiom, $\alpha=\varphi_{1} \wedge \cdots \wedge \varphi_{8}$.

Suppose \mathbf{T} is a decidable theory consistent with \mathbf{Q}. Let

$$
C=\{\varphi: \mathbf{T} \vdash \alpha \rightarrow \varphi\} .
$$

We show that C would be a computable separation of \mathbf{Q} and $\overline{\mathbf{Q}}$, a contradiction. First, if φ is in \mathbf{Q}, then φ is provable from the axioms of \mathbf{Q}; by the deduction theorem, there is a proof of $\alpha \rightarrow \varphi$ in first-order logic. So φ is in C.

On the other hand, if φ is in $\overline{\mathbf{Q}}$, then there is a proof of $\alpha \rightarrow \neg \varphi$ in firstorder logic. If \mathbf{T} also proves $\alpha \rightarrow \varphi$, then \mathbf{T} proves $\neg \alpha$, in which case $\mathbf{T} \cup \mathbf{Q}$ is inconsistent. But we are assuming $\mathbf{T} \cup \mathbf{Q}$ is consistent, so \mathbf{T} does not prove $\alpha \rightarrow \varphi$, and so φ is not in C.

We've shown that if φ is in \mathbf{Q}, then it is in C, and if φ is in Q^{\prime}, then it is in \bar{C}. So C is a computable separation, which is the contradiction we were looking for.

This theorem is very powerful. For example, it implies:
Corollary 21.12. First-order logic for the language of arithmetic (that is, the set $\{\varphi: \varphi$ is provable in first-order logic $\}$) is undecidable.

Proof. First-order logic is the set of consequences of \varnothing, which is consistent with \mathbf{Q}.

21.10 Theories In Which Q is Intepretable are Undecidable

We can strengthen these results even more. Informally, an interpretation of a language \mathcal{L}_{1} in another language \mathcal{L}_{2} involves defining the universe, relation symbols, and function symbols of \mathcal{L}_{1} with formulas in \mathcal{L}_{2}. Though we won't take the time to do this, one can make this definition precise.

Theorem 21.13. Suppose \mathbf{T} is a theory in a language in which one can interpret the language of arithmetic, in such a way that \mathbf{T} is consistent with the interpretation of \mathbf{Q}. Then \mathbf{T} is undecidable. If \mathbf{T} proves the interpretation of the axioms of \mathbf{Q}, then no consistent extension of \mathbf{T} is decidable.

21.10. THEORIES IN WHICH Q IS INTEPRETABLE ARE UNDECIDABLE

The proof is just a small modification of the proof of the last theorem; one could use a counterexample to get a separation of \mathbf{Q} and $\overline{\mathbf{Q}}$. One can take ZFC, Zermelo Fraenkel set theory with the axiom of choice, to be an axiomatic foundation that is powerful enough to carry out a good deal of ordinary mathematics. In ZFC one can define the natural numbers, and via this interpretation, the axioms of \mathbf{Q} are true. So we have

Corollary 21.14. There is no decidable extension of ZFC.
Corollary 21.15. There is no complete, consistent, computably axiomatized extension of ZFC.

The language of ZFC has only a single binary relation, ϵ. (In fact, you don't even need equality.) So we have

Corollary 21.16. First-order logic for any language with a binary relation symbol is undecidable.

This result extends to any language with two unary function symbols, since one can use these to simulate a binary relation symbol. The results just cited are tight: it turns out that first-order logic for a language with only unary relation symbols and at most one unary function symbol is decidable.

One more bit of trivia. We know that the set of sentences in the language $0, S,+, \times,<$ true in the standard model is undecidable. In fact, one can define $<$ in terms of the other symbols, and then one can define + in terms of \times and S. So the set of true sentences in the language $0, S, \times$ is undecidable. On the other hand, Presburger has shown that the set of sentences in the language $0, S,+$ true in the language of arithmetic is decidable. The procedure is computationally infeasible, however.

Problems

Chapter 22

Incompleteness and Provability

22.1 Introduction

Hilbert thought that a system of axioms for a mathematical structure, such as the natural numbers, is inadequate unless it allows one to derive all true statements about the structure. Combined with his later interest in formal systems of deduction, this suggests that one should try to guarantee that, say, the formal system one is using to reason about the natural numbers is not only consistent, but also complete, i.e., every statement is either provable or refutable. Gödel's first incompleteness theorem shows that no such system of axioms exists: there is no complete, consistent, effectively axiomatized formal system for arithmetic. In fact, no "sufficiently strong," consistent, effectively axiomatized mathematical theory is complete.

A more important goal of Hilbert's, the centerpiece of his program for the justification of modern ("classical") mathematics, was to find finitary consistency proofs for formal systems representing classical reasoning. With regard to Hilbert's program, then, Gödel's second incompleteness theorem was a much bigger blow.

The second incompleteness theorem can be stated in vague terms, like the first incompleteness theorem. Roughly speaking, then, it says that no sufficiently strong theory of arithmetic can prove its own consistency. We will have to take "sufficiently strong" to include a little bit more than \mathbf{Q}.

The idea behind Gödel's original proof of the incompleteness theorem can be found in the Epimenides paradox. Epimenides, a Cretin, asserted that all Cretans are liars; a more direct form of the paradox is the assertion "this sentence is false." Essentially, by replacing truth with provability, Gödel was able to formalize a sentence which, in essence, asserts "this sentence is not provable." Assuming ω-consistency-a property stronger than consistencyGödel was able to show that this sentence is neither provable nor refutable from the system of axioms he was considering.

The first challenge is to understand how one can construct a sentence that

22.2. THE FIXED-POINT LEMMA

refers to itself. For every formula φ in the language of \mathbf{Q}, let $\ulcorner\varphi\urcorner$ denote the numeral corresponding to $\#(\varphi)$. Think about what this means: φ is a formula in the language of $\mathbf{Q}, \#(\varphi)$ is a natural number, and $\ulcorner\varphi\urcorner$ is a term in the language of \mathbf{Q}. So every formula φ in the language of \mathbf{Q} has a name, $\ulcorner\varphi\urcorner$, which is a term in the language of \mathbf{Q}; this provides us with a conceptual framework in which formulas in the language of \mathbf{Q} can "say" things about other formulas. The following lemma is known as Gödel's fixed-point lemma.

Lemma 22.1. Let \mathbf{T} be any theory extending \mathbf{Q}, and let $\psi(x)$ be any formula with free variable x. Then there is a sentence φ such that \mathbf{T} proves $\varphi \leftrightarrow \psi(\ulcorner\varphi\urcorner)$.

The lemma asserts that given any property $\psi(x)$, there is a sentence φ that asserts " $\psi(x)$ is true of me."

How can we construct such a sentence? Consider the following version of the Epimenides paradox, due to Quine:
"Yields falsehood when preceded by its quotation" yields falsehood when preceded by its quotation.

This sentence is not directly self-referential. It simply makes an assertion about the syntactic objects between quotes, and, in doing so, it is on par with sentences like

1. "Robert" is a nice name.
2. "I ran." is a short sentence.
3. "Has three words" has three words.

But what happens when one takes the phrase "yields falsehood when preceded by its quotation," and precedes it with a quoted version of itself? Then one has the original sentence! In short, the sentence asserts that it is false.

22.2 The Fixed-Point Lemma

Let $\operatorname{diag}(y)$ be the computable (in fact, primitive recursive) function that does the following: if y is the Gödel number of a formula $\psi(x), \operatorname{diag}(y)$ returns the Gödel number of $\psi(\ulcorner\psi(x)\urcorner)$. $(\ulcorner\psi(x)\urcorner$ is the standard numeral of the Gödel number of $\psi(x)$, i.e., $\overline{\#(\psi(x))})$. If diag were a function symbol in \mathbf{T} representing the function diag, we could take φ to be the formula $\psi(\operatorname{diag}(\ulcorner\psi(\operatorname{diag}(x))\urcorner))$. Notice that

$$
\begin{aligned}
\operatorname{diag}(\#(\psi(\operatorname{diag}(x)))) & =\#(\psi(\operatorname{diag}(\ulcorner\psi(\operatorname{diag}(x))\urcorner)) \\
& =\#(\varphi) .
\end{aligned}
$$

Assuming T can prove

$$
\operatorname{diag}(\ulcorner\psi(\operatorname{diag}(x))\urcorner)=\ulcorner\varphi\urcorner,
$$

it can prove $\psi(\operatorname{diag}(\ulcorner\psi(\operatorname{diag}(x))\urcorner)) \leftrightarrow \psi(\ulcorner\varphi\urcorner)$. But the left hand side is, by definition, φ.

In general, diag will not be a function symbol of \mathbf{T}. But since \mathbf{T} extends \mathbf{Q}, the function diag will be represented in \mathbf{T} by some formula $\theta_{\text {diag }}(x, y)$. So instead of writing $\psi(\operatorname{diag}(x))$ we will have to write $\exists y\left(\theta_{\operatorname{diag}}(x, y) \wedge \psi(y)\right)$. Otherwise, the proof sketched above goes through.

Lemma 22.2. Let \mathbf{T} be any theory extending \mathbf{Q}, and let $\psi(x)$ be any formula with free variable x. Then there is a sentence φ such that \mathbf{T} proves $\varphi \leftrightarrow \psi(\ulcorner\varphi\urcorner)$.

Proof. Given $\psi(x)$, let $\alpha(x)$ be the formula $\exists y\left(\theta_{\text {diag }}(x, y) \wedge \psi(y)\right)$ and let φ be the formula $\alpha(\ulcorner\alpha(x)\urcorner)$.

Since $\theta_{\text {diag }}$ represents diag, \mathbf{T} can prove

$$
\forall y\left(\theta_{\text {diag }}(\ulcorner\alpha(x)\urcorner, y) \leftrightarrow y=\overline{\operatorname{diag}(\ulcorner\alpha(x)\urcorner)}\right) .
$$

But by definition, $\operatorname{diag}(\#(\alpha(x)))=\#(\alpha(\ulcorner\alpha(x)\urcorner))=\#(\varphi)$, so \mathbf{T} can prove

$$
\forall y\left(\theta_{\text {diag }}(\ulcorner\alpha(x)\urcorner, y) \leftrightarrow y=\ulcorner\varphi\urcorner\right)
$$

Going back to the definition of $\alpha(x)$, we see $\alpha(\ulcorner\alpha(x)\urcorner)$ is just the formula

$$
\exists y\left(\theta_{\text {diag }}(\ulcorner\alpha(x)\urcorner, y) \wedge \psi(y)\right) .
$$

Using the last two sentences and ordinary first-order logic, one can then prove

$$
\alpha(\ulcorner\alpha(x)\urcorner) \leftrightarrow \psi(\ulcorner\varphi\urcorner) .
$$

But the left-hand side is just φ.
You should compare this to the proof of the fixed-point lemma in computability theory. The difference is that here we want to define a statement in terms of itself, whereas there we wanted to define a function in terms of itself; this difference aside, it is really the same idea.

22.3 The First Incompleteness Theorem

We can now describe Gödel's original proof of the first incompleteness theorem. Let \mathbf{T} be any computably axiomatized theory in a language extending the language of arithmetic, such that \mathbf{T} includes the axioms of \mathbf{Q}. This means that, in particular, \mathbf{T} represents computable functions and relations.

We have argued that, given a reasonable coding of formulas and proofs as numbers, the relation $\operatorname{Pr}_{T}(x, y)$ is computable, where $\operatorname{Pr}_{T}(x, y)$ holds if and only if x is a proof of formula y in \mathbf{T}. In fact, for the particular theory that Gödel had in mind, Gödel was able to show that this relation is primitive recursive, using the list of 45 functions and relations in his paper. The 45th

22.3. THE FIRST INCOMPLETENESS THEOREM

relation, $x B y$, is just $\operatorname{Pr}_{\mathbf{T}}(x, y)$ for his particular choice of T . Remember that where Gödel uses the word "recursive" in his paper, we would now use the phrase "primitive recursive."

Since $\operatorname{Pr}_{\mathbf{T}}(x, y)$ is computable, it is representable in \mathbf{T}. We will use $\operatorname{Pr}_{\mathbf{T}}(x, y)$ to refer to the formula that represents it. Let $\operatorname{Prov}_{\mathbf{T}}(y)$ be the formula $\exists x \operatorname{Pr}_{\mathbf{T}}(x, y)$. This describes the 46th relation, Bew (y), on Gödel's list. As Gödel notes, this is the only relation that "cannot be asserted to be recursive." What he probably meant is this: from the definition, it is not clear that it is computable; and later developments, in fact, show that it isn't.

Definition 22.3. A theory \mathbf{T} is ω-consistent if the following holds: if $\exists x \varphi(x)$ is any sentence and T proves $\neg \varphi(\overline{0}), \neg \varphi(\overline{1}), \neg \varphi(\overline{2}), \ldots$ then \mathbf{T} does not prove $\exists x \varphi(x)$.

We can now prove the following.
Theorem 22.4. Let \mathbf{T} be any ω-consistent, computably axiomatized theory extending Q. Then \mathbf{T} is not complete.

Proof. Let T be any computably axiomatized theory containing \mathbf{Q}, and let $\operatorname{Prov}_{\mathbf{T}}(y)$ be the formula we described above. By the fixed-point lemma, there is a formula $\gamma_{\mathbf{T}}$ such that \mathbf{T} proves

$$
\begin{equation*}
\gamma_{\mathbf{T}} \leftrightarrow \neg \operatorname{Prov}_{\mathbf{T}}\left(\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right) . \tag{22.1}
\end{equation*}
$$

Note that φ says, in essence, "I am not provable."
We claim that

1. If \mathbf{T} is consistent, \mathbf{T} doesn't prove $\gamma_{\mathbf{T}}$
2. If \mathbf{T} is ω-consistent, \mathbf{T} doesn't prove $\neg \gamma_{\mathbf{T}}$.

This means that if \mathbf{T} is ω-consistent, it is incomplete, since it proves neither $\gamma_{\mathbf{T}}$ nor $\neg \gamma_{\mathbf{T}}$. Let us take each claim in turn.

Suppose T proves $\gamma_{\mathbf{T}}$. Then there is a proof, and so, for some number m, the relation $\operatorname{Pr}_{\mathbf{T}}\left(m, \#\left(\gamma_{\mathbf{T}}\right)\right)$ holds. But then \mathbf{T} proves the sentence $\operatorname{Pr}_{\mathbf{T}}\left(\bar{m},\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right)$. So T proves $\exists x \operatorname{Pr}_{\mathbf{T}}\left(x,\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right)$, which is, by definition, $\operatorname{Prov}_{\mathbf{T}}\left(\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right)$. By eq. (22.1), \mathbf{T} proves $\neg \gamma_{\mathbf{T}}$. We have shown that if \mathbf{T} proves $\gamma_{\mathbf{T}}$, then it also proves $\neg \gamma_{\mathbf{T}}$, and hence it is inconsistent.

For the second claim, let us show that if \mathbf{T} proves $\neg \gamma_{\mathbf{T}}$, then it is ω-inconsistent. Suppose \mathbf{T} proves $\neg \gamma_{\mathbf{T}}$. If \mathbf{T} is inconsistent, it is ω-inconsistent, and we are done. Otherwise, \mathbf{T} is consistent, so it does not prove $\gamma_{\mathbf{T}}$. Since there is no proof of $\gamma_{\mathbf{T}}$ in \mathbf{T}, \mathbf{T} proves

$$
\neg \operatorname{Pr}_{\mathbf{T}}\left(\overline{0},\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right), \neg \operatorname{Pr}_{\mathbf{T}}\left(\overline{1},\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right), \neg \operatorname{Pr}_{\mathbf{T}}\left(\overline{2},\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right), \ldots
$$

On the other hand, by eq. (22.1), $\neg \gamma_{\mathbf{T}}$ is equivalent to $\exists x \operatorname{Pr}_{\mathbf{T}}\left(x,\left\ulcorner\gamma_{\mathbf{T}}\right\urcorner\right)$. So \mathbf{T} is ω-inconsistent.

22.4 Rosser's Theorem

Can we modify Gödel's proof to get a stronger result, replacing " ω-consistent" with simply "consistent"? The answer is "yes," using a trick discovered by Rosser. Let $\operatorname{not}(x)$ be the primitive recursive function which does the following: if x is the code of a formula $\varphi, \operatorname{not}(x)$ is a code of $\neg \varphi$. To simplify matters, assume \mathbf{T} has a function symbol not such that for any formula φ, \mathbf{T} proves $\operatorname{not}(\ulcorner\varphi\urcorner)=\ulcorner\neg \varphi\urcorner$. This is not a major assumption; since $\operatorname{not}(x)$ is computable, it is represented in \mathbf{T} by some formula $\theta_{\text {not }}(x, y)$, and we could eliminate the reference to the function symbol in the same way that we avoided using a function symbol diag in the proof of the fixed-point lemma.

Rosser's trick is to use a "modified" provability predicate $\operatorname{RProv}_{T}(y)$, defined to be

$$
\exists x\left(\operatorname{Pr}_{\mathbf{T}}(x, y) \wedge \forall z\left(z<x \rightarrow \neg \operatorname{Pr}_{\mathbf{T}}(z, n o t(y))\right)\right) .
$$

Roughly, $\operatorname{RProv}_{\mathbf{T}}(y)$ says "there is a proof of y in \mathbf{T}, and there is no shorter proof of the negation of y. ." (You might find it convenient to read $\operatorname{RProv}_{\mathbf{T}}(y)$ as " y is shmovable.") Assuming \mathbf{T} is consistent, $\operatorname{RProv}_{\mathbf{T}}(y)$ is true of the same numbers as $\operatorname{Prov}_{\mathbf{T}}(y)$; but from the point of view of provability in \mathbf{T} (and we now know that there is a difference between truth and provability!) the two have different properties.

By the fixed-point lemma, there is a formula $\rho_{\mathbf{T}}$ such that \mathbf{T} proves

$$
\rho_{\mathbf{T}} \leftrightarrow \neg \operatorname{RProv}_{\mathbf{T}}\left(\left\ulcorner\rho_{\mathbf{T}}\right\urcorner\right) .
$$

In contrast to the proof above, here we claim that if \mathbf{T} is consistent, \mathbf{T} doesn't prove $\rho_{\mathbf{T}}$, and \mathbf{T} also doesn't prove $\neg \rho_{\mathbf{T}}$. (In other words, we don't need the assumption of ω-consistency.)

By comparison to the proof of Theorem 21.9, the proofs of Theorem 22.4 and its improvement by Rosser explicitly exhibit a statement φ that is independent of \mathbf{T}. In the former, you have to dig to extract it from the argument. The Gödel-Rosser methods therefore have the advantage of making the independent statement perfectly clear.

22.5 Comparison with Gödel's Original Paper

It is worthwhile to spend some time with Gödel's 1931 paper. The introduction sketches the ideas we have just discussed. Even if you just skim through the paper, it is easy to see what is going on at each stage: first Gödel describes the formal system P (syntax, axioms, proof rules); then he defines the primitive recursive functions and relations; then he shows that $x B y$ is primitive recursive, and argues that the primitive recursive functions and relations are represented in \mathbf{P}. He then goes on to prove the incompleteness theorem, as above. In section 3, he shows that one can take the unprovable assertion to be a sentence in the language of arithmetic. This is the origin of the β-lemma,
which is what we also used to handle sequences in showing that the recursive functions are representable in \mathbf{Q}. Gödel doesn't go so far to isolate a minimal set of axioms that suffice, but we now know that \mathbf{Q} will do the trick. Finally, in Section 4, he sketches a proof of the second incompleteness theorem.

22.6 The Provability Conditions for PA

Peano arithmetic, or PA, is the theory extending \mathbf{Q} with induction axioms for all formulas. In other words, one adds to \mathbf{Q} axioms of the form

$$
\left(\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right)\right) \rightarrow \forall x \varphi(x)
$$

for every formula φ. Notice that this is really a schema, which is to say, infinitely many axioms (and it turns out that PA is not finitely axiomatizable). But since one can effectively determine whether or not a string of symbols is an instance of an induction axiom, the set of axioms for PA is computable. PA is a much more robust theory than \mathbf{Q}. For example, one can easily prove that addition and multiplication are commutative, using induction in the usual way. In fact, most finitary number-theoretic and combinatorial arguments can be carried out in PA.

Since PA is computably axiomatized, the provability predicate $\operatorname{Pr}_{\mathbf{P A}}(x, y)$ is computable and hence represented in \mathbf{Q} (and so, in PA). As before, I will take $\operatorname{Pr}_{\mathbf{P A}}(x, y)$ to denote the formula representing the relation. Let $\operatorname{Prov}_{\mathbf{P A}}(y)$ be the formula $\exists x \operatorname{Pr}_{\mathbf{P A}}(x, y)$, which, intuitively says, " y is provable from the axioms of PA." The reason we need a little bit more than the axioms of \mathbf{Q} is we need to know that the theory we are using is strong enough to prove a few basic facts about this provability predicate. In fact, what we need are the following facts:

1. If $\mathbf{P A} \vdash \varphi$, then $\mathbf{P A} \vdash \operatorname{Prov}_{\mathbf{P A}}(\ulcorner\varphi\urcorner)$
2. For every formula φ and $\psi, \mathbf{P A} \vdash \operatorname{Prov}_{\mathbf{P A}}(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow\left(\operatorname{Prov}_{\mathbf{P A}}(\ulcorner\varphi\urcorner) \rightarrow\right.$ $\left.\operatorname{Prov}_{\mathbf{P A}}(\ulcorner\psi\urcorner)\right)$
3. For every formula $\varphi, \mathbf{P A} \vdash \operatorname{Prov}_{\mathbf{P A}}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\operatorname{Prov}_{\mathbf{P A}}(\ulcorner\varphi\urcorner)\right\urcorner\right)$.

The only way to verify that these three properties hold is to describe the formula $\operatorname{Prov}_{\mathbf{P A}}(y)$ carefully and use the axioms of PA to describe the relevant formal proofs. Clauses 1 and 2 are easy; it is really clause 3 that requires work. (Think about what kind of work it entails...) Carrying out the details would be tedious and uninteresting, so here we will ask you to take it on faith that PA has the three properties listed above. A reasonable choice of $\operatorname{Prov}_{\mathbf{P A}}(y)$ will also satisfy
4. If PA proves $\operatorname{Prov}_{\mathbf{P A}}(\ulcorner\varphi\urcorner)$, then PA proves φ.

But we will not need this fact.
Incidentally, Gödel was lazy in the same way we are being now. At the end of the 1931 paper, he sketches the proof of the second incompleteness theorem, and promises the details in a later paper. He never got around to it; since everyone who understood the argument believed that it could be carried out (he did not need to fill in the details.)

22.7 The Second Incompleteness Theorem

How can we express the assertion that PA doesn't prove its own consistency? Saying PA is inconsistent amounts to saying that PA proves $0=1$. So we can take $\operatorname{Con}_{\mathbf{P A}}$ to be the formula $\neg \operatorname{Prov}_{\mathbf{P A}}(\ulcorner 0=1\urcorner)$, and then the following theorem does the job:

Theorem 22.5. Assuming PA is consistent, then PA does not prove Con PA.

It is important to note that the theorem depends on the particular representation of $\operatorname{Con}_{\text {PA }}$ (i.e., the particular representation of $\left.\operatorname{Prov}_{\text {pA }}(y)\right)$. All we will use is that the representation of $\operatorname{Prov}_{\mathbf{P A}}(y)$ has the three properties above, so the theorem generalizes to any theory with a provability predicate having these properties.

It is informative to read Gödel's sketch of an argument, since the theorem follows like a good punch line. It goes like this. Let $\gamma_{\text {PA }}$ be the Gödel sentence that we constructed in the proof of Theorem 22.4. We have shown "If PA is consistent, then PA does not prove $\gamma_{\mathbf{P A}}$." If we formalize this in PA, we have a proof of

$$
\operatorname{Con}_{\mathbf{P A}} \rightarrow \neg \operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) .
$$

Now suppose PA proves $\operatorname{Con}_{\mathbf{P A}}$. Then it proves $\neg \operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right)$. But since $\gamma_{\mathbf{P A}}$ is a Gödel sentence, this is equivalent to $\gamma_{\mathbf{P A}}$. So PA proves $\gamma_{\mathbf{P A}}$.

But: we know that if PA is consistent, it doesn't prove $\gamma_{\mathbf{P A}}$! So if PA is consistent, it can't prove Con PA.

To make the argument more precise, we will let $\gamma_{\mathbf{P A}}$ be the Gödel sentence for PA and use properties $1-3$ above to show that PA proves Con PA $\rightarrow \gamma_{\text {PA }}$. This will show that PA doesn't prove Con PA. Here is a sketch of the proof,
in PA:

$$
\begin{array}{ll}
\gamma_{\mathbf{P A}} \rightarrow \neg \operatorname{Prov} \mathbf{P A}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) & \text { since } \gamma_{\mathbf{P A}} \text { is a Gödel sentence } \\
\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}} \rightarrow \neg \operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right)\right\urcorner\right) & \text { by } 1 \\
\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) \rightarrow & \text { by } 2 \\
\quad \operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\neg \operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right)\right\urcorner\right) & \\
\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) \rightarrow & \text { by } 1 \text { and } 2 \\
\quad \operatorname{Prov} \mathbf{P A}_{\mathbf{P A}}\left(\left\ulcorner\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) \rightarrow 0=1\right\urcorner\right) & \\
\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) \rightarrow & \text { by } 3 \\
\operatorname{Prov} \mathbf{P A}_{\mathbf{P A}}\left(\left\ulcorner\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right)\right\urcorner\right) & \text { using } 1 \text { and } 2 \\
\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) \rightarrow \operatorname{Prov}_{\mathbf{P A}}(\ulcorner 0=1\urcorner) & \text { by contraposition } \\
\operatorname{Con}_{\mathbf{P A}} \rightarrow \neg \operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) & \text { since } \gamma_{\mathbf{P A}} \text { is a Gödel sentence }
\end{array}
$$

The move from the third to the fourth line uses the fact that $\neg \operatorname{Prov} \mathbf{P A}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right)$ is equivalent to $\operatorname{Prov}_{\mathbf{P A}}\left(\left\ulcorner\gamma_{\mathbf{P A}}\right\urcorner\right) \rightarrow 0=1$ in PA. The more abstract version of the incompleteness theorem is as follows:

Theorem 22.6. Let \mathbf{T} be any theory extending \mathbf{Q} and let $\operatorname{Prov}_{\mathbf{T}}(y)$ be any formula satisfying 1-3 for \mathbf{T}. Then if \mathbf{T} is consistent, then \mathbf{T} does not prove $\mathrm{Con}_{\mathbf{T}}$.

The moral of the story is that no "reasonable" consistent theory for mathematics can prove its own consistency. Suppose \mathbf{T} is a theory of mathematics that includes \mathbf{Q} and Hilbert's "finitary" reasoning (whatever that may be). Then, the whole of \mathbf{T} cannot prove the consistency of \mathbf{T}, and so, a fortiori, the finitary fragment can't prove the consistency of \mathbf{T} either. In that sense, there cannot be a finitary consistency proof for "all of mathematics."

There is some leeway in interpreting the term finitary, and Gödel, in the 1931 paper, grants the possibility that something we may consider "finitary" may lie outside the kinds of mathematics Hilbert wanted to formalize. But Gödel was being charitable; today, it is hard to see how we might find something that can reasonably be called finitary but is not formalizable in, say, ZFC.

22.8 Löb's Theorem

In this section, we will consider a fun application of the fixed-point lemma. We now know that any "reasonable" theory of arithmetic is incomplete, which is to say, there are sentences φ that are neither provable nor refutable in the theory. One can ask whether, in general, a theory can prove "If I can prove φ, then it must be true." The answer is that, in general, it can't. More precisely, we have:

Theorem 22.7. Let \mathbf{T} be any theory extending \mathbf{Q}, and suppose $\operatorname{Prov}_{\mathbf{T}}(y)$ is a formula satisfying conditions $1-3$ from section 22.7. If \mathbf{T} proves $\operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner) \rightarrow \varphi$, then in fact \mathbf{T} proves φ.

Put differently, if φ is not provable in T, T can't prove $\operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner) \rightarrow \varphi$. This is known as Löb's theorem.

The heuristic for the proof of Löb's theorem is a clever proof that Santa Claus exists. (If you don't like that conclusion, you are free to substitute any other conclusion you would like.) Here it is:

1. Let X be the sentence, "If X is true, then Santa Claus exists."
2. Suppose X is true.
3. Then what it says is true; i.e., if X is true, then Santa Claus exists.
4. Since we are assuming X is true, we can conclude that Santa Claus exists.
5. So, we have shown: "If X is true, then Santa Claus exists."
6. But this is just the statement X. So we have shown that X is true.
7. But then, by the argument above, Santa Claus exists.

A formalization of this idea, replacing "is true" with "is provable," yields the proof of Löb's theorem.

Proof. Suppose φ is a sentence such that \mathbf{T} proves $\operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner) \rightarrow \varphi$. Let $\psi(y)$ be the formula $\operatorname{Prov}_{\mathbf{T}}(y) \rightarrow \varphi$, and use the fixed-point lemma to find a sentence θ such that T proves $\theta \leftrightarrow \psi(\ulcorner\theta\urcorner)$. Then each of the following is provable in \mathbf{T} :

```
\(\theta \rightarrow\left(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow \varphi\right)\)
\(\operatorname{Prov}_{\mathbf{T}}\left(\left\ulcorner\theta \rightarrow\left(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow \varphi\right)\right\urcorner\right) \quad\) by 1
\(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow \operatorname{Prov}_{\mathbf{T}}\left(\left\ulcorner\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow \varphi\right\urcorner\right) \quad\) using 2
\(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow\)
    \(\left(\operatorname{Prov}_{\mathbf{T}}\left(\left\ulcorner\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner)\right\urcorner\right) \rightarrow \operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner)\right) \quad\) using 2
\(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow \operatorname{Prov}_{\mathbf{T}}\left(\left\ulcorner\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner)\right\urcorner\right) \quad\) by 3
\(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow \operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner)\)
\(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner) \rightarrow \varphi \quad\) by assumption
\(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \rightarrow \varphi\)
\(\theta \quad \operatorname{def}\) of \(\theta\)
\(\operatorname{Prov}_{\mathbf{T}}(\ulcorner\theta\urcorner) \quad\) by 1
\(\varphi\)
```

With Löb's theorem in hand, there is a short proof of the first incompleteness theorem (for theories having a provability predicate satisfying 1-3): if a theory proves $\operatorname{Prov}_{\mathbf{T}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$, it proves $0=1$.

22.9 The Undefinability of Truth

The notion of definability depends on having a formal semantics for the language of arithmetic. We have described a set of formulas and sentences in the language of arithmetic. The "intended interpretation" is to read such sentences as making assertions about the natural numbers, and such an assertion can be true or false. Let \mathfrak{N} be the structure with domain \mathbb{N} and the standard interpretation for the symbols in the language of arithmetic. Then $\mathfrak{N} \vDash \varphi$ means " φ is true in the standard interpretation."

Definition 22.8. A relation $R\left(x_{1}, \ldots, x_{k}\right)$ of natural numbers is definable in \mathfrak{N} if and only if there is a formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in the language of arithmetic such that for every $n_{1}, \ldots, n_{k}, R\left(n_{1}, \ldots, n_{k}\right)$ if and only if $\mathfrak{N} \models \varphi\left(\bar{n}_{1}, \ldots, \bar{n}_{k}\right)$.

Put differently, a relation is definable in in \mathfrak{N} if and only if it is representable in the theory TA, where TA $=\{\varphi: \mathfrak{N} \models \varphi\}$ is the set of true sentences of arithmetic. (If this is not immediately clear to you, you should go back and check the definitions and convince yourself that this is the case.)

Lemma 22.9. Every computable relation is definable in \mathfrak{N}.
Proof. It is easy to check that the formula representing a relation in \mathbf{Q} defines the same relation in \mathfrak{N}.

Now one can ask, is the converse also true? That is, is every replation definable in \mathfrak{N} computable? The answer is no. For example:

Lemma 22.10. The halting relation is definable in \mathfrak{N}.
Proof. Let H be the halting relation, i.e.,

$$
H=\{\langle e, x\rangle: \exists s T(e, x, s)\} .
$$

Let θ_{T} define T in \mathfrak{N}. Then

$$
H=\left\{\langle e, x\rangle: \mathfrak{N} \models \exists s \theta_{T}(\bar{e}, \bar{x}, s)\right\}
$$

so $\exists s \theta_{T}(z, x, s)$ defines H in \mathfrak{N}.
What about TA itself? Is it definable in arithmetic? That is: is the set $\{\#(\varphi): \mathfrak{N} \mid=\varphi\}$ definable in arithmetic? Tarski's theorem answers this in the negative.

Theorem 22.11. The set of true statements of arithmetic is not definable in arithmetic.

Proof. Suppose $\theta(x)$ defined it. By the fixed-point lemma, there is a formula φ such that \mathbf{Q} proves $\varphi \leftrightarrow \neg \theta(\ulcorner\varphi\urcorner)$, and hence $\mathfrak{N} \vDash \varphi \leftrightarrow \neg \theta(\ulcorner\varphi\urcorner)$. But then $\mathfrak{N} \equiv \varphi$ if and only if $\mathfrak{N} \models \neg \theta(\ulcorner\varphi\urcorner)$, which contradicts the fact that $\theta(y)$ is supposed to define the set of true statements of arithmetic.

Tarski applied this analysis to a more general philosophical notion of truth. Given any language L, Tarski argued that an adequate notion of truth for L would have to satisfy, for each sentence X,
' X ' is true if and only if X.
Tarski's oft-quoted example, for English, is the sentence
'Snow is white' is true if and only if snow is white.
However, for any language strong enough to represent the diagonal function, and any linguistic predicate $T(x)$, we can construct a sentence X satisfying " X if and only if not $T\left({ }^{\prime} X^{\prime}\right)$. ." Given that we do not want a truth predicate to declare some sentences to be both true and false, Tarski concluded that one cannot specify a truth predicate for all sentences in a language without, somehow, stepping outside the bounds of the language. In other words, a the truth predicate for a language cannot be defined in the language itself.

Problems

Problem 22.1. Show that PA proves $\gamma_{\text {PA }} \rightarrow$ Con $_{\text {PA }}$.
Problem 22.2. Let \mathbf{T} be a computably axiomatized theory, and let $\operatorname{Prov}_{\mathbf{T}}$ be a provability predicate for T. Consider the following four statements:

1. If $T \vdash \varphi$, then $T \vdash \operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner)$.
2. $T \vdash \varphi \rightarrow \operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner)$.
3. If $T \vdash \operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner)$, then $T \vdash \varphi$.
4. $T \vdash \operatorname{Prov}_{\mathbf{T}}(\ulcorner\varphi\urcorner) \rightarrow \varphi$

Under what conditions are each of these statements true?
Problem 22.3. Show that $Q(n) \Leftrightarrow n \in\{\#(\varphi): \mathbf{Q} \vdash \varphi\}$ is definable in arithmetic.

Part VII

Methods

This part covers general and methodological material, especially explanations of various proof methods a non-metahmatics student may be unfamiliar with. It currently contains a chapter on induction, but chapters on how to write proofs in general, and on mathematical terminology, are also planned.

Chapter 23

Induction

23.1 Introduction

Induction is an important proof technique which is used, in different forms, in almost all areas of logic, theoretical computer science, and mathematics. It is needed to prove many of the results in logic.

Induction is often contrasted with deduction, and characterized as the inference from the particular to the general. For instance, if we observe many green emeralds, and nothing that we would call an emerald that's not green, we might conclude that all emeralds are green. This is an inductive inference, in that it proceeds from many particlar cases (this emerald is green, that emerald is green, etc.) to a general claim (all emeralds are green). Mathematical induction is also an inference that concludes a general claim, but it is of a very different kind that this "simple induction."

Very roughly, and inductive proof in mathematics concludes that all mathematical objects of a certain sort have a certain property. In the simplest case, the mathematical objects an inductive proof is concerned with are natural numbers. In that case an inductive proof is used to establish that all natural numbers have some property, and it does this by showing that (1) 0 has the property, and (2) whenever a number n has the property, so does $n+1$. Induction on natural numbers can then also often be used to prove general about mathematical objects that can be assigned numbers. For instance, finite sets each have a finite number n of elements, and if we can use induction to show that every number n has the property "all finite sets of size n are \ldots " then we will have shown something about all finite sets.

Induction can also be generalized to mathematical objects that are inductively defined. For instance, expressions of a formal language suchh as those of first-order logic are defined inductively. Structural induction is a way to prove results about all such expressions. Structural induction, in particular, is very useful-and widely used-in logic.

23.2 Induction on \mathbb{N}

In its simplest form, induction is a technique used to prove results for all natural numbers. It uses the fact that by starting from 0 and repeatedly adding 1 we eventually reach every natural number. So to prove that something is true for every number, we can (1) establish that it is true for 0 and (2) show that whenever a number has it, the next number has it too. If we abbreviate "number n has property $P^{\prime \prime}$ by $P(n)$, then a proof by induction that $P(n)$ for all $n \in \mathbb{N}$ consists of:

1. a proof of $P(0)$, and
2. a proof that, for any n, if $P(n)$ then $P(n+1)$.

To make this crystal clear, suppose we have both (1) and (2). Then (1) tells us that $P(0)$ is true. If we also have (2), we know in particular that if $P(0)$ then $P(0+1)$, i.e., $P(1)$. (This follows from the general statement "for any n, if $P(n)$ then $P(n+1)^{\prime \prime}$ by putting 0 for n. So by modus ponens, we have that $P(1)$. From (2) again, now taking 1 for n, we have: if $P(1)$ then $P(2)$. Since we've just established $P(1)$, by modus ponens, we have $P(2)$. And so on. For any number k, after doing this k steps, we eventually arrive at $P(k)$. So (1) and (2) together established $P(k)$ for any $k \in \mathbb{N}$.

Let's look at an example. Suppose we want to find out how many different sums we can throw with n dice. Although it might seem silly, let's start with 0 dice. If you have no dice there's only one possible sum you can "throw": no dots at all, which sums to 0 . So the number of different possible throws is 1 . If you have only one die, i.e., $n=1$, there are six possible values, 1 through 6. With two dice, we can throw any sum from 2 through 12, that's 11 possibilities. With three dice, we can throw any number from 3 to 18, i.e., 16 different possibilities. $1,6,11,16$: looks like a pattern: maybe the answer is $5 n+1$? Of course, $5 n+1$ is the maximum possible, because there are only $5 n+1$ numbers between n, the lowest value you can throw with n dice (all 1 's) and $6 n$, the highest you can throw (all 6's).

Theorem 23.1. With n dice one can throw all $5 n+1$ possible values between n and $6 n$.

Proof. To prove that this holds for any number of dice, we use induction: we prove, (1) that the number of different throws with 0 dice is $5 \cdot 0+1=1$, and (2) that if we can throw all $5 n+1$ values between n and $6 n$ with n dice, then with $n+1$ dice we can throw all $5(n+1)+1=5 n+6$ possible values between $n+1$ and $6(n+1)$. We've already established (1): If you have no dice, there's only one possible outcome: you throw all 0 dice, and the number of dots visible is 0 .

Now let's see how many possible total values you can throw with $n+1$ dice: we're going to show that it's all $5 n+6$ different sums between $n+1$

23.2. INDUCTION ON \mathbb{N}

and $6 n+6$, assuming that you can throw all $5 n+1$ different sums between n and $6 n$ with n dice. This assumption is called the induction hypothesis. So: assume that you can throw all $5 n+1$ different sums between n and $6 n$ with n dice

Suppose you have n dice. Each possible throw sums to some number between n (all n dice show 1's) and $6 n$ (all 6 's). Now throw another die. You get another number between 1 and 6 . If your total is less than $6 n$ you could have thrown the same total with your original n dice, by induction hypothesis. Only the possible totals $6 n+1$ through $6 n+6$ are totals you couldn't have thrown with just n dice-and these are new possible totals, which you'd get, e.g., by throwing n 6's plus whatever your new die shows. So there are 6 new possible totals. You can still throw any of the old totals, except one. With $n+1$ dice you can't roll just n. But any other value you can throw with n dice you can also throw with $n+1$ dice: just imagine one of your n dice showed one eye fewer (and at least one of them must show at least a 2) and your $(n+1)$ st die shows a 1 . With an additional die we lose only one possible total (n) and gain 6 new possible totals ($6 n+1$ through $6 n+6$). So the number of possible totals with $n+1$ dice is $5 n+1$, minus 1 , plus 6 , i.e., $5 n+6$. So we have proved that, assuming the number of totals we can throw with n dice is $5 n+1$, the number of totals we can throw with $n+1$ dice is $5 n+6=5(n+1)+1$.

Very often we use induction when we want to prove something about a series of objects (numbers, sets, etc.) that is itself defined "inductively," i.e., by defining the $(n+1)$-st object in terms of the n-th. For instance, we can define the sum s_{n} of the natural numbers up to n by

$$
\begin{aligned}
& s_{0}=0 \\
& s_{n+1}=s_{n}+(n+1)
\end{aligned}
$$

This definition gives:

$$
\begin{array}{lr}
s_{0}=0 \\
s_{1}=s_{0}+1 & =1 \\
s_{2}=s_{1}+2 & =1+2=3 \\
s_{3}=s_{s}+3 & =1+2+3=6, \text { etc. }
\end{array}
$$

Now we can prove, by induction, that $s_{n}=n(n+1) / 2$.
Proposition 23.2. $s_{n}=n(n+1) / 2$.
Proof. We have to prove (1) that $s_{0}=0 \cdot(0+1) / 2$ and (2) if $s_{n}=n(n+1) / 2$ then $s_{n+1}=(n+1)(n+2) / 2$. (1) is obvious. To prove (2), we assume the inductive hypothesis: $s_{n}=n(n+1) / 2$. Using it, we have to show that $s_{n+1}=$ $(n+1)(n+2) / 2$.

What is s_{n+1} ? By the definition, $s_{n+1}=s_{n}+(n+1)$. By inductive hypothesis, $s_{n}=n(n+1) / 2$. We can substitute this into the previous equation, and then just need a bit of arithmetic of fractions:

$$
\begin{aligned}
s_{n+1} & =\frac{n(n+1)}{2}+(n+1)= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}= \\
& =\frac{n(n+1)+2(n+1)}{2}= \\
& =\frac{(n+2)(n+1)}{2}
\end{aligned}
$$

The important lesson here is that if you're proving something about some inductively defined sequence a_{n}, induction is the obvious way to go. And even if it isn't (as in the case of the possibilities of dice throws), you can use induction if you can somehow relate the case for $n+1$ to the case for n.

23.3 Strong Induction

In the principle of induction discussed above, we prove $P(0)$ and also if $P(n)$, then $P(n+1)$. In the second part, we assume that $P(n)$ is true and use this assumption to prove $P(n+1)$. Equivalently, of course, we could assume $P(n-1)$ and use it to prove $P(n)$-the important part is that we be able to carry out the inference from any number to its successor; that we can prove the claim in question for any number under the assumption it holds for its predecessor.

There is a variant of the principle of induction in which we don't just assume that the claim holds for the predecessor $n-1$ of n, but for all numbers smaller than n, and use this assumption to establish the claim for n. This also gives us the claim $P(k)$ for all $k \in \mathbb{N}$. For once we have established $P(0)$, we have thereby established that P holds for all numbers less than 1 . And if we know that if $P(l)$ for all $l<n$ then $P(n)$, we know this in particular for $n=1$. So we can conclude $P(2)$. With this we have proved $P(0), P(1), P(2)$, i.e., $P(l)$ for all $l<3$, and since we have also the conditional, if $P(l)$ for all $l<3$, then $P(3)$, we can conclude $P(3)$, and so on.

In fact, if we can establish the general conditional "for all n, if $P(l)$ for all $l<n$, then $P(n)$," we do not have to establish $P(0)$ anymore, since it follows from it. For remember that a general claim like "for all $l<n, P(l)$ " is true if there are no $l<n$. This is a case of vacuous quantification: "all $A \mathrm{~s}$ are $B \mathrm{~s}$ " is true if there are no $A \mathrm{~s}, \forall x(\varphi(x) \rightarrow \psi(x))$ is true if no x satisfies $\varphi(x)$. In this case, the formalized version would be " $\forall l(l<n \rightarrow P(l))$ "—and that is true if there are no $l<n$. And if $n=0$ that's exactly the case: no $l<0$, hence "for all

23.4. INDUCTIVE DEFINITIONS

$l<0, P(0)$ " is true, whatever P is. A proof of "if $P(l)$ for all $l<n$, then $P(n)$ " thus automatically establishes $P(0)$.

This variant is useful if establishing the claim for n can't be made to just rely on the claim for $n-1$ but may require the assumption that it is true for one or more $l<n$.

23.4 Inductive Definitions

In logic we very often define kinds of objects inductively, i.e., by specifying rules for what counts as an object of the kind to be defined which explain how to get new objects of that kind from old objects of that kind. For instance, we often define special kinds of sequences of symbols, such as the terms and formulas of a language, by induction. For a simpler example, consider strings of parentheses, such as " $(()($ " or " ()$(())$ ". In the second string, the parentheses "balance," in the first one, they don't. The shortest such expression is "()". Actually, the very shortest string of parentheses in which every opening parenthesis has a matching closing parenthesis is """, i.e., the empty sequence \varnothing. If we already have a parenthesis expression p, then putting matching parentheses around it makes another balanced parenthesis expression. And if p and p^{\prime} are two balanced parentheses expressions, writing one after the other, " $p p^{\prime \prime}$ is also a balanced parenthesis expression. In fact, any sequence of balanced parentheses can be generated in this way, and we might use these operations to define the set of such expressions. This is an inductive definition.

Definition 23.3 (Paraexpressions). The set of parexpressions is inductively defined as follows:

1. \varnothing is a parexpression.
2. If p is a parexpression, then so is (p).
3. If p and p^{\prime} are parexpressions $\neq \varnothing$, then so is $p p^{\prime}$.
4. Nothing else is a parexpression.
(Note that we have not yet proved that every balanced parenthesis expression is a parexpression, although it is quite clear that every parexpression is a balanced parenthesis expression.)

The key feature of inductive definitions is that if you want to prove something about all parexpressions, the definition tells you which cases you must consider. For instance, if you are told that q is a parexpression, the inductive definition tells you what q can look like: q can be \varnothing, it can be (p) for some other parexpression p, or it can be $p p^{\prime}$ for two parexpressions p and $p^{\prime} \neq \varnothing$. Because of clause (4), those are all the possibilities.

When proving claims about all of an inductively defined set, the strong form of induction becomes particularly important. For instance, suppose we
want to prove that for every parexpression of length n, the number of (in it is $n / 2$. This can be seen as a claim about all n : for every n, the number of (in any parexpression of length n is $n / 2$.

Proposition 23.4. For any n, the number of (in a parexpression of length n is $n / 2$.
Proof. To prove this result by (strong) induction, we have to show that the following conditional claim is true:

If for every $k<n$, any parexpression of length k has $k / 2$ ('s, then any parexpression of length n has $n / 2$ ('s.

To show this conditional, assume that its antecedent is true, i.e., assume that for any $k<n$, parexpressions of length k contain k ('s. We call this assumption the inductive hypothesis. We want to show the same is true for parexpressions of length n.

So suppose q is a parexpression of length n. Because parexpressions are inductively defined, we have three cases: (1) q is $\varnothing,(2) q$ is (p) for some parexpression p, or (3) q is $p p^{\prime}$ for some parexpressions p and $p^{\prime} \neq \varnothing$.

1. q is \varnothing. Then $n=0$, and the number of (in q is also 0 . Since $0=0 / 2$, the claim holds.
2. q is (p) for some parexpression p. Since q contains two more symbols than p, len $(p)=n-2$, in particular, $\operatorname{len}(p)<n$, so the inductive hypothesis applies: the number of (in p is len $(p) / 2$. The number of (in q is $1+$ the number of (in p, so $=1+\operatorname{len}(p) / 2$, and since len $(p)=n-2$, this gives $1+(n-2) / 2=n / 2$.
3. q is $p p^{\prime}$ for some parexpression p and $p^{\prime} \neq \varnothing$. Since neither p nor $p^{\prime}=\varnothing$, both len (p) and len $\left(p^{\prime}\right)<n$. Thus the inductive hypothesis applies in each case: The number of (in p is len $(p) / 2$, and the number of (in p^{\prime} is $\operatorname{len}\left(p^{\prime}\right) / 2$. On the other hand, the number of (in q is obviously the sum of the numbers of (in p and p^{\prime}, since $q=p p^{\prime}$. Hence, the number of (in q is len $(p) / 2+\operatorname{len}\left(p^{\prime}\right) / 2=\left(\operatorname{len}(p)+\operatorname{len}\left(p^{\prime}\right)\right) / 2=\operatorname{len}\left(p p^{\prime}\right) / 2=n / 2$.

In each case, we've shown that teh number of (in q is $n / 2$ (on the basis of the inductive hypothesis). By strong induction, the proposition follows.

23.5 Structural Induction

So far we have used induction to establish results about all natural numbers. But a corresponding principle can be used directly to prove results about all elements of an inductively defined set. This often called structural induction, because it depends on the structure of the inductively defined objects.

Generally, an inductive definition is given by (a) a list of "initial" elements of the set and (b) a list of operations which produce new elements of the set

23.5. STRUCTURAL INDUCTION

from old ones. In the case of parexpressions, for instance, the initial object is \varnothing and the operations are

$$
\begin{aligned}
o_{1}(p) & =(p) \\
o_{2}\left(q, q^{\prime}\right) & =q q^{\prime}
\end{aligned}
$$

You can even think of the natural numbers \mathbb{N} themselves as being given be an inductive definition: the initial object is 0 , and the operation is the successor function $x+1$.

In order to prove something about all elements of an inductively defined set, i.e., that every element of the set has a property P, we must:

1. Prove that the initial objects have P
2. Prove that for each operation o, if the arguments have P, so does the result.

For instance, in order to prove something about all parexpressions, we would prove that it is true about \varnothing, that it is true of (p) provided it is true of p, and that it is true about $q q^{\prime}$ provided it is true of q and q^{\prime} individually.

Proposition 23.5. The number of (equals the number of) in any parexpression p.
Proof. We use structural induction. Parexpressions are inductively defined, with initial object \varnothing and the operations o_{1} and o_{2}.

1. The claim is true for \varnothing, since the number of (in $\varnothing=0$ and the number of) in \varnothing also $=0$.
2. Suppose the number of (in p equals the number of) in p. We have to show that this is also true for (p), i.e., $o_{1}(p)$. But the number of $(\operatorname{in}(p)$ is $1+$ the number of (in p. And the number of) in (p) is $1+$ the number of) in p, so the claim also holds for (p).
3. Suppose the number of (in q equals the number of), and the same is true for q^{\prime}. The number of (in $o_{2}\left(p, p^{\prime}\right)$, i.e., in $p p^{\prime}$, is the sum of the number (in p and p^{\prime}. The number of) in $o_{2}\left(p, p^{\prime}\right)$, i.e., in $p p^{\prime}$, is the sum of the number of) in p and p^{\prime}. The number of (in $o_{2}\left(p, p^{\prime}\right)$ equals the number of) in $o_{2}\left(p, p^{\prime}\right)$.

The result follows by structural induction.

Problems

Part VIII

History

Chapter 24

Biographies

24.1 Georg Cantor

An early biography of Georg Cantor (GAY-org KAHN-tor) claimed that he was born and found on a ship that was sailing for Saint Petersburg, Russia, and that his parents were unknown. This, however, is not true; although he was born in Saint Petersburg in 1845.

Cantor received his doctorate in mathematics at the University of Berlin in 1867. He is known for his work in set theory, and is credited with founding set theory as a distinctive research discipline. He was the first to prove that there are infinite sets of different sizes. His theories, and especially his theory of infinities, caused much debate among mathematicians at the time, and his work was controversial.

Cantor's religious beliefs and his

Figure 24.1: Georg Cantor mathematical work were inextricably tied; he even claimed that the theory of transfinite numbers had been communicated to him directly by God. In later life, Cantor suffered from mental illness. Beginning in 1984, and more frequently towards his later years, Cantor was hospitalized. The heavy criticism of his work, including a falling out with the mathematician Leopold Kronecker, led to depression and a lack of interest in mathematics. During depressive episodes, Cantor would turn to philosophy and literature, and even published a theory that Francis Bacon was the author of Shakespeare's plays.

Cantor died on January 6, 1918, in a sanatorium in Halle.

Further Reading For full biographies of Cantor, see Dauben (1990) and GrattanGuinness (1971). Cantor's radical views are also described in the BBC Radio 4 program A Brief History of Mathematics (du Sautoy, 2014). If you'd like to hear about Cantor's theories in rap form, see Rose (2012).

24.2 Alonzo Church

Alonzo Church was born in Washington, DC on June 14, 1903. In early childhood, an air gun incident left Church blind in one eye. He finished preparatory school in Connecticut in 1920 and began his university education at Princeton that same year. He completed his doctoral studies in 1927. After a couple years abroad, Church returned to Princeton. Church was known exceedingly polite and careful. His blackboard writing was immaculate, and he would preserve important papers by carefully covering them in Duco cement. Outside of his academic

Figure 24.2: Alonzo Church pursuits, he enjoyed reading science fiction magazines and was not afraid to write to the editors if he spotted any inaccuracies in the writing.

Church's academic achievements were great. Together with his students Stephen Kleene and Barkley Rosser, he developed a theory of effective calculability, the lambda calculus, independently of Alan Turing's development of the Turing machine. The two definitions of computability are equivalent, and give rise to what is now known as the Church-Turing Thesis, that a function of the natural numbers is effectively computable if and only if it is computable via Turing machine (or lambda calculus). He also proved what is now known as Church's Theorem: The decision problem for the validity of first-order formulas is unsolvable.

Church continued his work into old age. In 1967 he left Princeton for UCLA, where he was professor until his retirement in 1990. Church passed away on August 1, 1995 at the age of 92.

Further Reading For a brief biography of Church, see Enderton (forthcoming). Church's original writings on the lambda calculus and the Entscheidungsproblem (Church's Thesis) are Church (1936a,b). Aspray (1984) records

24.3. GERHARD GENTZEN

an interview with Church about the Princeton mathematics community in the 1930s. Church wrote a series of book reviews of the Journal of Symbolic Logic from 1936 until 1979. They are all archived on John MacFarlane's website (MacFarlane, 2015).

24.3 Gerhard Gentzen

Gerhard Gentzen is known primarily as the creator of structural proof theory, and specifically the creation of the natural deduction and sequent calculus proof systems. He was born on November 24, 1909 in Greifswald, Germany. Gerhard was homeschooled for three years before attending preparatory school, where he was behind most of his classmates in terms of education. Despite this, he was a brilliant student

Figure 24.3: Gerhard Gentzen and showed a strong aptitude for mathematics. His interests were varied, and he, for instance, also write poems for his mother and plays for the school theatre.

Gentzen began his university studies at the University of Greifswald, but moved around to Göttingen, Munich, and Berlin. He received his doctorate in 1933 from the University of Göttingen under Hermann Weyl. (Paul Bernays supervised most of his work, but was dismissed from the university by the Nazis.) In 1934, Gentzen began work as an assistant to David Hilbert. That same year he developed the sequent calculus and natural deduction proof systems, in his papers Untersuchungen über das logische Schließen I-II [Investigations Into Logical Deduction I-II]. He proved the consistency of the Peano axioms in 1936.

Gentzen's relationship with the Nazis is complicated. At the same time his mentor Bernays was forced to leave Germany, Gentzen joined the university branch of the SA, the Nazi paramilitary organization. Like many Germans, he was a member of the Nazi party. During the war, he served as a telecommunications officer for the air intelligence unit. However, in 1942 he was released from duty due to a nervous breakdown. It is unclear whether or not Gentzen's loyalties lay with the Nazi party, or whether he joined the party in order to ensure academic success.

In 1943, Gentzen was offered an academic position at the Mathematical Institute of the German University of Prague, which he accepted. However, in 1945 the citizens of Prague revolted against German occupation. Soviet forces arrived in the city and arrested all the professors at the university. Because of his membership in Nazi organizations, Gentzen was taken to a forced labour
camp. He died of malnutrition while in his cell on August 4, 1945 at the age of 35 .

Further Reading For a full biography of Gentzen, see Menzler-Trott (2007). An interesting read about mathematicians under Nazi rule, which gives a brief note about Gentzen's life, is given by Segal (2014). Gentzen's papers on logical deduction are available in the original german (Gentzen, 1935a,b). English translations of Gentzen's papers have been collected in a single volume by Szabo (1969), which also includes a biographical sketch.

24.4 Kurt Gödel

Kurt Gödel (GER-dle) was born on April 28, 1906 in Brünn in the AustroHungarian empire (now Brno in the Czech Republic). Due to his inquisitive and bright nature, young Kurtele was often called "Der kleine Herr Warum" (Little Mr. Why) by his family. He excelled in academics from primary school onward, where he got less than the highest grade only in mathematics. Gödel was often absent from school due to poor health and was exempt from physical education. Gödel was diagnosed with rheumatic fever during his childhood. Throughout his life, he believed this permanently affected his heart despite medical assessment saying otherwise.

Figure 24.4: Kurt Gödel

Gödel began studying at the University of Vienna in 1920 and completed his doctoral studies in 1929. He first intended to study physics, but his interests soon moved to mathematics and especially logic, in part due to the influence of the philosopher Rudolf Carnap. His dissertation, written under the supervision of Hans Hahn, proved the completeness theorem of first-order predicate logic with identity. Only a couple years later, his most famous results were published-the first and second incompleteness theorems (Gödel, 1931). During his time in Vienna, Gödel was also involved with the Vienna Circle, a group of scientifically-minded philosophers.

In 1938, Gödel married Adele Nimbursky. His parents were not pleased: not only was she six years older than him and already divorced, but she

24.5. EMMY NOETHER

worked as a dancer in a nightclub. Social pressures did not affect Gödel, however, and they remained happily married until his death.

After Nazi Germany annexed Austria in 1938, Gödel and Adele immigrated to the United States, where he took up a position at the Institute for Advanced Study in Princeton, New Jersey. Despite his introversion and eccentric nature, Gödel's time at Princeton was collaborative and fruitful. He published essays in set theory, philosophy and physics. Notably, he struck up a particularly strong friendship with his colleague at the IAS, Albert Einstein.

In his later years, Gödel's mental health deteriorated. His wife's hospitalization in 1977 meant she was no longer able to cook his meals for him. Succumbing to both paranoia and anorexia, and deathly afraid of being poisoned, Gödel refused to eat. He died of starvation on January 14, 1978 in Princeton.

Further Reading For a complete biography of Gödel's life is available, see John Dawson (1997). For further biographical pieces, as well as essays about Gödel's contributions to logic and philosophy, see Wang (1990), Baaz et al. (2011), Takeuti et al. (2003), and Sigmund et al. (2007).

Gödel's PhD thesis is available in the original German (Gödel, 1929). The original text of the incompleteness theorems is (Gödel, 1931). All of Gödel's published and unpublished writings, as well as a selection of correspondence, are available in English in his Collected Papers Feferman et al. $(1986,1990)$.

For a detailed treatment of Gödel's incompleteness theorems, see Smith (2013). For an informal, philosophical discussion of Gödel's theorems, see Mark Linsenmayer's podcast (Linsenmayer, 2014).

The Kurt Gödel society keeps Gödel's memory alive by promoting research in logic and other areas influenced by his works Beckmann and Preining (2004).

24.5 Emmy Noether

Emmy Noether (NER-ter) was born in Erlangen, Germany, on March 23, 1882, to an upper-middle class scholarly family. Hailed as the "mother of modern algebra," Noether made groundbreaking contributions to both mathematics and physics, despite significant barriers to women's education. In Germany at the time, young girls were meant to be educated in arts and were not allowed to attend college preparatory schools. However, after auditing classes at the Universities of Göttingen and Erlangen (where her father was professor of mathematics), Noether was eventually able to enrol as a student at Erlangen in 1904, when their policy was updated to allow female students. She received her doctorate in mathematics in 1907.

Despite her qualifications, Noether experienced much resistance during her career. From 1908-1915, she taught at Erlangen without pay. During this time, she caught the attention of David Hilbert, one of the world's foremost
mathematicians of the time, who invited her to Göttingen. However, women were prohibited from obtaining professorships, and she was only able to lecture under Hilbert's name, again without pay. During this time she proved what is now known as Noether's theorem, which is still used in theoretical physics today. Noether was finally granted the right to teach in 1919. Hilbert's response to continued resistance of his university colleagues reportedly was: "Gentlemen, the faculty senate is not a bathhouse."

In the later 1920s, she concentrated on work in abstract algebra, and her contributions revolutionized the field. In her proofs she often made use of the so-called ascending chain condition, which states that there is no infinite strictly increasing chain of certain sets. For instance, certain algebraic structures now known as Noetherian rings have the property that there are no infinite sequences of ideals $I_{1} \subsetneq$ $I_{2} \subsetneq \ldots$. The condition can be generalized to any partial order (in algebra, it concerns the special case of ideals ordered by the subset relation), and we can also consider the dual descending chain condition, where every strictly decreasing sequence in a partial order eventually ends. If a partial order sat-

Figure 24.5: Emmy Noether isfies the descending chain condition, it is possible to use induction along this order in a similar way in which we can use induction along the $<$ order on \mathbb{N}. Such orders are called well-founded or Noetherian, and the corresponding proof principle Noetherian induction.

Noether was Jewish, and when the Nazis came to power in 1933, she was dismissed from her position. Luckily, Noether was able to emigrate to the United States for a temporary position at Bryn Mawr, Pennsylvania. During her time there she also lectured at Princeton, although she found the university to be unwelcoming to women (Dick, 1981, 81). In 1935, Noether underwent an operation to remove a uterine tumour. She died from an infection as a result of the surgery, and was buried at Bryn Mawr.

Further Reading For a biography of Noether, see Dick (1981). The Perimeter Institute for Theoretical Physics has their lectures on Noether's life and influence available online (Institute, 2015). If you're tired of reading, Stuff You Missed in History Class has a podcast on Noether's life and influence (Frey and Wilson, 2015). The collected works of Noether are available in the original

German (Jacobson, 1983).

24.6 Rózsa Péter

Rózsa Péter was born Rósza Politzer, in Budapest, Hungary, on February 17, 1905. She is best known for her work on recursive functions, which was essential for the creation of the field of recursion theory.

Péter was raised during harsh political times-WWI raged when she was a teenager-but was able to attend the affluent Maria Terezia Girls' School in Budapest, from where she graduated in 1922. She then studied at Pázmány Péter University (later renamed Loránd Eötvös University) in Budapest. She began studying chemistry at the insistence of her father, but later switched to mathematics, and

Figure 24.6: Rózsa Péter graduated in 1927. Although she had the credentials to teach high school mathematics, the economic situation at the time was dire as the Great Depression affected the world economy. During this time, Péter took odd jobs as a tutor and private teacher of mathematics. She eventually returned to university to take up graduate studies in mathematics. She had originally planned to work in number theory, but after finding out that her results had already been proven, she almost gave up on mathematics altogether. She was encouraged to work on Gödel's incompleteness theorems, and unknowingly proved several of his results in different ways. This restored her confidence, and Péter went on to write her first papers on recursion theory, inspired by David Hilbert's foundational program. She received her PhD in 1935, and in 1937 she became an editor for the Journal of Symbolic Logic.

Péter's early papers are widely credited as founding contributions to the field of recursive function theory. In Péter (1935a), she investigated the relationship between different kinds of recursion. In Péter (1935b), she showed that a certain recursively defined function is not primitive recursive. This simplified an earlier result due to Wilhelm Ackermann. Péter's simplified function is what's now often called the Ackermann function-and sometimes, more properly, the Ackermann-Péter function. She wrote the first book on recursive function theory (Péter, 1951).

Despite the importance and influence of her work, Péter did not obtain a full-time teaching position until 1945. During the Nazi occupation of Hungary
during World War II, Péter was not allowed to teach due to anti-Semitic laws. In 1944 the government created a Jewish ghetto in Budapest; the ghetto was cut off from the rest of the city and attended by armed guards. Péter was forced to live in the ghetto until 1945 when it was liberated. She then went on to teach at the Budapest Teachers Training College, and from 1955 onward at Eötvös Loránd University. She was the first female Hungarian mathematician to become an Academic Doctor of Mathematics, and the first woman to be elected to the Hungarian Academy of Sciences.

Péter was known as a passionate teacher of mathematics, who preferred to explore the nature and beauty of mathematical problems with her students rather than to merely lecture. As a result, she was affectionately called "Aunt Rosa" by her students. Péter died in 1977 at the age of 71.

Further Reading For more biographical reading, see (O^{\prime} Connor and Robertson, 2014) and (Andrásfai, 1986). Tamassy (1994) conducted a brief interview with Péter. For a fun read about mathematics, see Péter's book Playing With Infinity (Péter, 2010).

24.7 Julia Robinson

Julia Bowman Robinson was an American mathematician. She is known mainly for her work on decision problems, and most famously for her contributions to the solution of Hilbert's tenth problem. Robinson was born in St. Louis, Missouri on December 8, 1919. At a young age Robinson recalls being intrigued by numbers (Reid, 1986, 4). At age nine she contracted scarlet fever and suffered from several recurrent bouts of rheumatic fever. This forced her to spend much of her time in bed, putting her behind in her education. Although she was able to catch up with the help of private tutors, the physical effects of her illness had a lasting impact on her life.

Figure 24.7: Julia Robinson

Despite her childhood struggles, Robinson graduated high school with several awards in mathematics and the sciences. She started her university career at San Diego State College, and transferred to the University of California, Berkeley as a senior. There she was highly influenced by mathematician Raphael Robinson. They quickly became good friends, and married in 1941.

24.7. JULIA ROBINSON

As a spouse of a faculty member, Robinson was barred from teaching in the mathematics department at Berkeley. Although she continued to audit mathematics classes, she hoped to leave university and start a family. Not long after her wedding, however, Robinson contracted pneumonia. She was told that there was substantial scar tissue build up on her heart due to the rheumatic fever she suffered as a child. Due to the severity of the scar tissue, the doctor predicted that she would not live past forty and she was advised not to have children (Reid, 1986, 13).

Robinson was depressed for a long time, but eventually decided to continue studying mathematics. She returned to Berkeley and completed her PhD in 1948 under the supervision of Alfred Tarski. The first-order theory of the real numbers had been shown to be decidable by Tarski, and from Gödel's work it followed that the first-order theory of the natural numbers is undecidable. It was a major open problem whether the first-order theory of the rationals is decidable or not. In her thesis (1949), Robinson proved that it was not.

Interested in decision problems, Robinson next attempted to find a solution Hilbert's tenth problem. This problem was one of a famous list of 23 mathematical problems posed by David Hilbert in 1900. The tenth problem asks whether there is an algorithm that will answer, in a finite amount of time, whether or not a polynomial equation with integer coefficients, such as $3 x^{2}-2 y+3=0$, has a solution in the integers. Such questions are known as Diophantine problems. After some initial successes, Robinson joined forces with Martin Davis and Hilary Putnam, who were also working on the problem. They succeeded in showing that exponential Diophantine problems (where the unknowns may also appear as exponents) are undecidable, and showed that a certain conjecture (later called "J.R.") implies that Hilbert's tenth problem is undecidable (Davis et al., 1961). Robinson continued to work on the problem for the next decade. In 1970, the young Russian mathematician Yuri Matijasevich finally proved the J.R. hypothesis. The combined result is now called the Matijasevich-Robinson-Davis-Putnam theorem, or MDRP theorem for short. Matijasevich and Robinson became friends and collaborated on several papers. In a letter to Matijasevich, Robinson once wrote that "actually I am very pleased that working together (thousands of miles apart) we are obviously making more progress than either one of us could alone" (Matijasevich, 1992, 45).

Robinson was the first female president of the American Mathematical Society, and the first woman to be elected to the National Academy of Science. She died on July 30, 1985 at the age of 65 after being diagnosed with leukemia.

Further Reading Robinson's mathematical papers are available in her Collected Works (Robinson, 1996), which also includes a reprint of her National Academy of Sciences biographical memoir (Feferman, 1994). Robinson's older
sister Constance Reid published an "Autobiography of Julia," based on interviews (Reid, 1986), as well as a full memoir (Reid, 1996). A short documentary about Robinson and Hilbert's tenth problem was directed by George Csicsery (Csicsery, 2016). For a brief memoir about Yuri Matijasevich's collaborations with Robinson, and her influence on his work, see (Matijasevich, 1992).

24.8 Bertrand Russell

Bertrand Russell is hailed as one of the founders of modern analytic philosophy. Born May 18, 1872, Russell was not only known for his work in philosophy and logic, but wrote many popular books in various subject areas. He was also an ardent political activist throughout his life.

Russell was born in Trellech, Monmouthshire, Wales. His parents were members of the British nobility. They were free-thinkers, and even made friends with the radicals in Boston at the time. Unfortunately, Russell's parents died when he was young, and Russell was sent to live with his grandparents. There, he was given a religious upbringing (something his par-

Figure 24.8: Bertrand Russell ents had wanted to avoid at all costs). His grandmother was very strict in all matters of morality. During adolescence he was mostly homeschooled by private tutors.

Russell's influence in analytic philosophy, and especially logic, is tremendous. He studied mathematics and philosophy at Trinity College, Cambridge, where he was influenced by the mathematician and philosopher Alfred North Whitehead. In 1910, Russell and Whitehead published the first volume of Principia Mathematica, where they championed the view that mathematics is reducible to logic. He went on to publish hundreds of books, essays and political pamphlets. In 1950, he won the Nobel Prize for literature.

Russell's was deeply entrenched in politics and social activism. During World War I he was arrested and sent to prison for six months due to pacifist activities and protest. While in prison, he was able to write and read, and claims to have found the experience "quite agreeable." He remained a pacifist throughout his life, and was again incarcerated for attending a nuclear disarmament rally in 1961. He also survived a plane crash in 1948, where the only survivors were those sitting in the smoking section. As such, Russell claimed
that he owed his life to smoking. Russell was married four times, but had a reputation for carrying on extra-marital affairs. He died on February 2, 1970 at the age of 97 in Penrhyndeudraeth, Wales.

Further Reading Russell wrote an autobiography in three parts, spanning his life from 1872-1967 (Russell, 1967, 1968, 1969). The Bertrand Russell Research Centre at McMaster University is home of the Bertrand Russell archives. See their website at Duncan (2015), for information on the volumes of his collected works (including searchable indexes), and archival projects. Russell's paper On Denoting (Russell, 1905) is a classic of 20th century analytic philosophy.

The Stanford Encyclopedia of Philosophy entry on Russell (Irvine, 2015) has sound clips of Russell speaking on Desire and Political theory. Many video interviews with Russell are available online. To see him talk about smoking and being involved in a plane crash, e.g., see Russell (n.d.). Some of Russell's works, including his Introduction to Mathematical Philosophy are available as free audiobooks on LibriVox (n.d.).

24.9 Alfred Tarski

Alfred Tarski was born on January 14, 1901 in Warsaw, Poland (then part of the Russian Empire). Often described as "Napoleonic," Tarski was boisterous, talkative, and intense. His energy was often reflected in his lectures-he once set fire to a wastebasket while disposing of a cigarette during a lecture, and was forbidden from lecturing in that building again.

Tarski had a thirst for knowledge from a young age. Although later in life he would tell students that he studied logic because it was the only class in which he got a B, his high school records show that he got A's across the board-even in logic. He studied at

Figure 24.9: Alfred Tarski the University of Warsaw from 1918 to 1924. Tarski first intended to study biology, but became interested in mathematics, philosophy, and logic, as the university was the center of the Warsaw School of Logic and Philosophy. Tarski earned his doctorate in 1924 under the supervision of Stanisław Leśniewski.

Before emigrating to the United States in 1939, Tarski completed some of his most important work while working as a secondary school teacher in Warsaw. His work on logical consequence and logical truth were written during this time. In 1939, Tarski was visiting the United States for a lecture tour. During his visit, Germany invaded Poland, and because of his Jewish heritage, Tarski could not return. His wife and children remained in Poland until the end of the war, but were then able to emigrate to the United States as well. Tarski taught at Harvard, the College of the City of New York, and the Institute for Advanced Study at Princeton, and finally the University of California, Berkeley. There he founded the multidisciplinary program in Logic and the Methodology of Science. Tarski died on October 26, 1983 at the age of 82.

Further Reading For more on Tarski's life, see the biography Alfred Tarski: Life and Logic (Feferman and Feferman, 2004). Tarski's seminal works on logical consequence and truth are available in English in (Corcoran, 1983). All of Tarski's original works have been collected into a four volume series, (Tarski, 1981).

24.10 Alan Turing

Alan Turing was born in Mailda Vale, London, on June 23, 1912. He is considered the father of theoretical computer science. Turing's interest in the physical sciences and mathematics started at a young age. However, as a boy his interests were not represented well in his schools, where emphasis was placed on literature and classics. Consequently, he did poorly in school and was reprimanded by many of his teachers.

Turing attended King's College, Cambridge as an undergraduate, where he studied mathematics. In 1936 Turing developed (what is now called) the

Figure 24.10: Alan Turing Turing machine as an attempt to precisely define the notion of a computable function and to prove the undecidability of the decision problem. He was beaten to the result by Alonzo Church, who proved the result via his own lambda calculus. Turing's paper was still published with reference to Church's result. Church invited Turing to Princeton, where he spent 1936-1938, and obtained a doctorate under Church.

Despite his interest in logic, Turing's earlier interests in physical sciences remained prevalent. His practical skills were put to work during his service with the British cryptanalytic department at Bletchley Park during World War II. Turing was a central figure in cracking the cypher used by German Naval communications-the Enigma code. Turing's expertise in statistics and cryptography, together with the introduction of electronic machinery, gave the team the ability to crack the code by creating a de-crypting machine called a "bombe." His ideas also helped in the creation of the world's first programmable electronic computer, the Colossus, also used at Bletchley park to break the German Lorenz cypher.

Turing was gay. Nevertheless, in 1942 he proposed to Joan Clarke, one of his teammates at Bletchley Park, but later broke off the engagement and confessed to her that he was homosexual. He had several lovers throughout his lifetime, although homosexual acts were then criminal offences in the UK. In 1952, Turing's house was burgled by a friend of his lover at the time, and when filing a police report, Turing admitted to having a homosexual relationship, under the impression that the government was on their way to legalizing homosexual acts. This was not true, and he was charged with gross indecency. Instead of going to prison, Turing opted for a hormone treatment that reduced libido. Turing was found dead on June 8, 1954, of a cyanide overdose-most likely suicide. He was given a royal pardon by Queen Elizabeth II in 2013.

Further Reading For a comprehensive biography of Alan Turing, see Hodges (2014). Turing's life and work inspired a play, Breaking the Code, which was produced in 1996 for TV starring Derek Jacobi as Turing. The Imitation Game, an Academy Award nominated film starring Bendict Cumberbatch and Kiera Knightley, is also loosely based on Alan Turing's life and time at Bletchley Park (Tyldum, 2014).

Radiolab (2012) has several podcasts on Turing's life and work. BBC Horizon's documentary The Strange Life and Death of Dr. Turing is available to watch online (Sykes, 1992). (Theelen, 2012) is a short video of a working LEGO Turing Machine-made to honour Turing's centenary in 2012.

Turing's original paper on Turing machines and the decision problem is Turing (1937).

24.11 Ernst Zermelo

Ernst Zermelo was born on July 27, 1871 in Berlin, Germany. He had five sisters, though his family suffered from poor health and only three survived to adulthood. His parents also passed away when he was young, leaving him and his siblings orphans when he was seventeen. Zermelo had a deep interest in the arts, and especially in poetry. He was known for being sharp, witty, and critical. His most celebrated mathematical achievements include
the introduction of the axiom of choice (in 1904), and his axiomatization of set theory (in 1908).

Zermelo's interests at university were varied. He took courses in physics, mathematics, and philosophy. Under the supervision of Hermann Schwarz, Zermelo completed his dissertation Investigations in the Calculus of Variations in 1894 at the University of Berlin. In 1897, he decided to pursue more studies at the University of Göttigen, where he was heavily influenced by the foundational work of David Hilbert. In 1899 he became eligible for professorship, but did not get one until eleven years later-possibly due to his strange demeanour and "nervous haste."

Zermelo finally received a paid

Figure 24.11: Ernst Zermelo professorship at the University of Zurich in 1910, but was forced to retire in 1916 due to tuberculosis. After his recovery, he was given an honourary professorship at the University of Freiburg in 1921. During this time he worked on foundational mathematics. He became irritated with the works of Thoralf Skolem and Kurt Gödel, and publicly criticized their approaches in his papers. He was dismissed from his position at Freiburg in 1935, due to his unpopularity and his opposition to Hitler's rise to power in Germany.

The later years of Zermelo's life were marked by isolation. After his dismissal in 1935, he abandoned mathematics. He moved to the country where he lived modestly. He married in 1944, and became completely dependent on his wife as he was going blind. Zermelo lost his sight completely by 1951. He passed away in Günterstal, Germany, on May 21, 1953.

Further Reading For a full biography of Zermelo, see Ebbinghaus (2015). Zermelo's seminal 1904 and 1908 papers are available to read in the original German (Zermelo, 1904, 1908). Zermelo's collected works, including his writing on physics, are available in English translation in (Ebbinghaus et al., 2010; Ebbinghaus and Kanamori, 2013).

Problems

Photo Credits

Georg Cantor, p. 305: Portrait of Georg Cantor by Otto Zeth courtesy of the Universitätsarchiv, Martin-Luther Universität Halle-Wittenberg. UAHW Rep. 40VI, Nr. 3 Bild 102.

Alonzo Church, p. 306: Portrait of Alonzo Church, undated, photographer unknown. Alonzo Church Papers; 1924-1995, (C0948) Box 60, Folder 3. Manuscripts Division, Department of Rare Books and Special Collections, Princeton University Library. © Princeton University. The Open Logic Project has obtained permission to use this image for inclusion in non-commercial OLPderived materials. Permission from Princeton University is required for any other use.

Gerhard Gentzen, p. 307: Portrait of Gerhard Gentzen playing ping-pong courtesy of Ekhart Mentzler-Trott.

Kurt Gödel, p. 308: Portrait of Kurt Gödel, ca. 1925, photographer unknown. From the Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA, on deposit at Princeton University Library, Manuscript Division, Department of Rare Books and Special Collections, Kurt Gödel Papers, (C0282), Box 14b, \#110000. The Open Logic Project has obtained permission from the Institute's Archives Center to use this image for inclusion in non-commercial OLP-derived materials. Permission from the Archives Center is required for any other use.

Emmy Noether, p. 310: Portrait of Emmy Noether, ca. 1922, courtesy of the Abteilung für Handschriften und Seltene Drucke, Niedersächsische Staatsund Universitätsbibliothek Göttingen, Cod. Ms. D. Hilbert 754, Bl. 14 Nr. 73. Restored from an original scan by Joel Fuller.

Rózsa Péter, p. 311: Portrait of Rózsa Péter, undated, photographer unknown. Courtesy of Béla Andrásfai.

Julia Robinson, p. 312: Portrait of Julia Robinson, unknown photographer, courtesy of Neil D. Reid. The Open Logic Project has obtained permission to use this image for inclusion in non-commercial OLP-derived materials. Permission is required for any other use.

Bertrand Russell, p. 314: Portrait of Bertrand Russell, ca. 1907, courtesy of the William Ready Division of Archives and Research Collections, McMaster

University Library. Bertrand Russell Archives, Box 2, f. 4.
Alfred Tarski, p. 315: Passport photo of Alfred Tarski, 1939. Cropped and restored from a scan of Tarski's passport by Joel Fuller. Original courtesy of Bancroft Library, University of California, Berkeley. Alfred Tarski Papers, Banc MSS 84/49. The Open Logic Project has obtained permission to use this image for inclusion in non-commercial OLP-derived materials. Permission from Bancroft Library is required for any other use.

Alan Turing, p. 316: Portrait of Alan Mathison Turing by Elliott \& Fry, 29 March 1951, NPG x82217, © National Portrait Gallery, London. Used under a Creative Commons BY-NC-ND 3.0 license.

Ernst Zermelo, p. 318: Portrait of Ernst Zermelo, ca. 1922, courtesy of the Abteilung für Handschriften und Seltene Drucke, Niedersächsische Staatsund Universitätsbibliothek Göttingen, Cod. Ms. D. Hilbert 754, Bl. 6 Nr. 25.

Bibliography

Andrásfai, Béla. 1986. Rózsa (Rosa) Péter. Periodica Polytechnica Electrical Engineering 30(2-3): 139-145. URL http://www.pp.bme. hu/ee/article/ view/ 4651.

Aspray, William. 1984. The Princeton mathematics community in the 1930s: Alonzo Church. URL http://www.princeton.edu/mudd/finding_ aids/mathoral/pmc05.htm. Interview.

Baaz, Matthias, Christos H. Papadimitriou, Hilary W. Putnam, Dana S. Scott, and Charles L. Harper Jr. 2011. Kurt Gödel and the Foundations of Mathematics: Horizons of Truth. Cambridge: Cambridge University Press.

Beckmann, Arnold and Norbert Preining. 2004. Kurt Gödel Society. URL http://kgs.logic.at/index.php?id=2.

Church, Alonzo. 1936a. A note on the Entscheidungsproblem. Journal of Symbolic Logic 1: 40-41.

Church, Alonzo. 1936b. An unsolvable problem of elementary number theory. American Journal of Mathematics 58: 345-363.

Corcoran, John. 1983. Logic, Semantics, Metamathematics. Indianapolis: Hackett, 2nd ed.

Csicsery, George. 2016. Zala films: Julia Robinson and Hilbert's tenth problem. URLhttp://www.zalafilms.com/films/juliarobinson.html.

Dauben, Joseph. 1990. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton: Princeton University Press.

Davis, Martin, Hilary Putnam, and Julia Robinson. 1961. The decision problem for exponential diophantine equations. Annals of Mathematics 74(3): 425-436. URL http://www. jstor.org/stable/1970289.

Dick, Auguste. 1981. Emmy Noether 1882-1935. Boston: Birkhäuser.
du Sautoy, Marcus. 2014. A brief history of mathematics: Georg Cantor. URL http://www.bbc.co.uk/programmes/b00ss1j0. Audio Recording.

Duncan, Arlene. 2015. The Bertrand Russell Research Centre. URL http: //russell.mcmaster.ca/.

Ebbinghaus, Heinz-Dieter. 2015. Ernst Zermelo: An Approach to his Life and Work. Berlin: Springer-Verlag.

Ebbinghaus, Heinz-Dieter, Craig G. Fraser, and Akihiro Kanamori. 2010. Ernst Zermelo. Collected Works, vol. 1. Berlin: Springer-Verlag.

Ebbinghaus, Heinz-Dieter and Akihiro Kanamori. 2013. Ernst Zermelo: Collected Works, vol. 2. Berlin: Springer-Verlag.

Enderton, Herbert B. forthcoming. Alonzo Church: Life and Work. In The Collected Works of Alonzo Church. Cambridge: MIT Press.

Feferman, Anita and Solomon Feferman. 2004. Alfred Tarski: Life and Logic. Cambridge: Cambridge University Press.

Feferman, Solomon. 1994. Julia bowman robinson 1919-1985. Biographical Memoirs of the National Academy of Sciences 63: 1-28. URL http: //www.nasonline.org/publications/biographical-memoirs/ memoir-pdfs/robinson-julia.pdf.

Feferman, Solomon, John W. Dawson Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay, and Jean van Heijenoort. 1986. Kurt Gödel: Collected Works. Vol. 1: Publications 1929-1936. Oxford: Oxford University Press.

Feferman, Solomon, John W. Dawson Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay, and Jean van Heijenoort. 1990. Kurt Gödel: Collected Works. Vol. 2: Publications 1938-1974. Oxford: Oxford University Press.

Frey, Holly and Tracy V. Wilson. 2015. Stuff you missed in history class: Emmy Noether, mathematics trailblazer. URL http://www.missedinhistory.com/podcasts/ emmy-noether-mathematics-trailblazer/. Podcast audio.

Gentzen, Gerhard. 1935a. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39: 176-210. English translation in Szabo (1969), pp. 68-131.

Gentzen, Gerhard. 1935b. Untersuchungen über das logische Schließen II. Mathematische Zeitschrift 39: 176-210, 405-431. English translation in Szabo (1969), pp. 68-131.

Gödel, Kurt. 1929. Über die Vollständigkeit des Logikkalküls [on the completeness of the calculus of logic]. Dissertation, Universität Wien. Reprinted and translated in Feferman et al. (1986), pp. 60-101.

Gödel, Kurt. 1931. über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I [on formally undecidable propositions of Principia Mathematica and related systems I]. Monatshefte für Mathematik und Physik 38: 173-198. Reprinted and translated in Feferman et al. (1986), pp. 144-195.

Grattan-Guinness, Ivor. 1971. Towards a biography of Georg Cantor. Annals of Science 27(4): 345-391.

Hodges, Andrew. 2014. Alan Turing: The Enigma. London: Vintage.
Institute, Perimeter. 2015. Emmy Noether: Her life, work, and influence. URL https://www.youtube.com/watch?v=tNNyAyMRsgE. Video Lecture.

Irvine, Andrew David. 2015. Sound clips of Bertrand Russell speaking. URL http://plato.stanford.edu/entries/russell/ russell-soundclips.html.

Jacobson, Nathan. 1983. Emmy Noether: Gesammelte Abhandlungen-Collected Papers. Berlin: Springer-Verlag.

John Dawson, Jr. 1997. Logical Dilemmas: The Life and Work of Kurt Gödel. Boca Raton: CRC Press.

LibriVox. n.d. Bertrand Russell. URL https://librivox.org/author/ 1508?primary_key=1508\&search_category=author\&search_ page $=1 \&$ search_form=get_results. Collection of public domain audiobooks.

Linsenmayer, Mark. 2014. The partially examined life: Gödel on math. URL http://www.partiallyexaminedlife.com/2014/06/ 16/ep95-godel/. Podcast audio.

MacFarlane, John. 2015. Alonzo Church's JSL reviews. URL http:// johnmacfarlane.net/church.html.

Matijasevich, Yuri. 1992. My collaboration with Julia Robinson. The Mathematical Intelligencer 14(4): 38-45.

Menzler-Trott, Eckart. 2007. Logic's Lost Genius: The Life of Gerhard Gentzen. Providence: American Mathematical Society.

O'Connor, John J. and Edmund F. Robertson. 2014. Rózsa Péter. URL http://www-groups.dcs.st-and.ac.uk/~history/ Biographies/Peter.html.

Péter, Rózsa. 1935a. Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion. Mathematische Annalen 110: 612-632.

Péter, Rózsa. 1935b. Konstruktion nichtrekursiver Funktionen. Mathematische Annalen 111: 42-60.

Péter, Rózsa. 1951. Rekursive Funktionen. Budapest: Akademiai Kiado. English translation in (Péter, 1967).

Péter, Rózsa. 1967. Recursive Functions. New York: Academic Press.
Péter, Rózsa. 2010. Playing with Infinity. New York: Dover. URL https://books.google.ca/books?id=6V3wNs4uv_4C\&lpg=PP1\& ots=BkQZaHcR99\&lr\&pg=PP1\#v=onepage\&q\&f=false.

Radiolab. 2012. The Turing problem. URL http://www.radiolab.org/ story/193037-turing-problem/. Podcast audio.

Reid, Constance. 1986. The autobiography of Julia Robinson. The College Mathematics Journal 17: 3-21.

Reid, Constance. 1996. Julia: A Life in Mathematics. Cambridge: Cambridge University Press. URL https://books.google.ca/books?id= lRtSzQyHf9UC\&lpg=PP1\&pg=PP1\#v=onepage\&q\&f=false.

Robinson, Julia. 1949. Definability and decision problems in arithmetic. Journal of Symbolic Logic 14(2): 98-114. URL http://www.jstor.org/ stable/2266510.

Robinson, Julia. 1996. The Collected Works of Julia Robinson. Providence: American Mathematical Society.

Rose, Daniel. 2012. A song about Georg Cantor. URL https://www. youtube.com/watch?v=QUP 5Z4Fb5k 4. Audio Recording.

Russell, Bertrand. 1905. On denoting. Mind 14: 479-493.
Russell, Bertrand. 1967. The Autobiography of Bertrand Russell, vol. 1. London: Allen and Unwin.

Russell, Bertrand. 1968. The Autobiography of Bertrand Russell, vol. 2. London: Allen and Unwin.

Russell, Bertrand. 1969. The Autobiography of Bertrand Russell, vol. 3. London: Allen and Unwin.

Russell, Bertrand. n.d. Bertrand Russell on smoking. URL https://www. yout ube.com/watch?v=80oLTiVW_lc. Video Interview.

Segal, Sanford L. 2014. Mathematicians under the Nazis. Princeton: Princeton University Press.

Sigmund, Karl, John Dawson, Kurt Mühlberger, Hans Magnus Enzensberger, and Juliette Kennedy. 2007. Kurt Gödel: Das Album-The Album. The Mathematical Intelligencer 29(3): 73-76.

Smith, Peter. 2013. An Introduction to Gödel's Theorems. Cambridge: Cambridge University Press.

Sykes, Christopher. 1992. BBC Horizon: The strange life and death of Dr. Turing. URL https://www.youtube.com/watch?v=gyusnGbBSHE.

Szabo, Manfred E. 1969. The Collected Papers of Gerhard Gentzen. Amsterdam: North-Holland.

Takeuti, Gaisi, Nicholas Passell, and Mariko Yasugi. 2003. Memoirs of a Proof Theorist: Gödel and Other Logicians. Singapore: World Scientific.

Tamassy, Istvan. 1994. Interview with Róza Péter. Modern Logic 4(3): 277-280.
Tarski, Alfred. 1981. The Collected Works of Alfred Tarski, vol. I-IV. Basel: Birkhäuser.

Theelen, Andre. 2012. Lego turing machine. URL https://www • youtube . com/watch?v=FTSAiF9AHN4.

Turing, Alan M. 1937. On computable numbers, with an application to the "Entscheidungsproblem". Proceedings of the London Mathematical Society, 2nd Series 42: 230-265.

Tyldum, Morten. 2014. The imitation game. Motion picture.
Wang, Hao. 1990. Reflections on Kurt Gödel. Cambridge: MIT Press.
Zermelo, Ernst. 1904. Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische Annalen 59: 514-516. English translation in (Ebbinghaus et al., 2010, pp. 115-119).

Zermelo, Ernst. 1908. Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen 65(2): 261-281. English translation in (Ebbinghaus et al., 2010, pp. 189-229).

