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carry out all cases for all operators in proofs. But it is much better to leave
some of these cases as exercises. The Open Logic Project is also a work
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CONTENTS

The material in this part is a reasonably complete introduction to ba-
sic naive set theory. Unless students can be assumed to have this back-
ground, it’s probably advisable to start a course with a review of this
material, at least the part on sets, functions, and relations. This should
ensure that all students have the basic facility with mathematical nota-
tion required for any of the other logical sections. NB: This part does not
cover induction directly.

The presentation here would benefit from additional examples, espe-
cially, “real life” examples of relations of interest to the audience.

It is planned to expand this part to cover naive set theory more exten-
sively.
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Chapter 1

Sets

1.1 Basics

Sets are the most fundamental building blocks of mathematical objects. In fact,
almost every mathematical object can be seen as a set of some kind. In logic,
as in other parts of mathematics, sets and set theoretical talk is ubiquitous.
So it will be important to discuss what sets are, and introduce the notations
necessary to talk about sets and operations on sets in a standard way:.

Definition 1.1 (Set). A set is a collection of objects, considered independently
of the way it is specified, of the order of the objects in the set, or of their
multiplicity. The objects making up the set are called elements or members of
the set. If a is an element of a set X, we write a € X (otherwise, a ¢ X). The set
which has no elements is called the empty set and denoted by the symbol @.

Example 1.2. Whenever you have a bunch of objects, you can collect them
together in a set. The set of Richard’s siblings, for instance, is a set that con-
tains one person, and we could write it as S = {Ruth}. In general, when
we have some objects 4y, ..., a,, then the set consisting of exactly those ob-
jects is written {ay,...,a,}. Frequently we'll specify a set by some property
that its elements share—as we just did, for instance, by specifying S as the
set of Richard’s siblings. We'll use the following shorthand notation for that:
{x:...x...}, where the ... x ... stands for the property that x has to have in
order to be counted among the elements of the set. In our example, we could
have specified S also as

S = {x : x is a sibling of Richard }.

When we say that sets are independent of the way they are specified, we
mean that the elements of a set are all that matters. For instance, it so happens

12



1.2. SOME IMPORTANT SETS

that

{Nicole, Jacob},
{x :is a niece or nephew of Richard}, and
{x :is a child of Ruth}

are three ways of specifying one and the same set.
Saying that sets are considered independently of the order of their ele-
ments and their multiplicity is a fancy way of saying that

{Nicole, Jacob} and
{Jacob, Nicole}

are two ways of specifying the same set; and that

{Nicole, Jacob} and
{Jacob, Nicole, Nicole }

are also two ways of specifying the same set. In other words, all that matters
is which elements a set has. The elements of a set are not ordered and each el-
ement occurs only once. When we specify or describe a set, elements may occur
multiple times and in different orders, but any descriptions that only differ in
the order of elements or in how many times elements are listed describes the
same set.

Definition 1.3 (Extensionality). If X and Y are sets, then X and Y are identical,
X =Y, iff every element of X is also an element of Y, and vice versa.

Extensionality gives us a way for showing that sets are identical: to show
that X = Y, show that whenever x € X then also x € Y, and whenever y € Y
thenalsoy € X.

1.2 Some Important Sets

Example 1.4. Mostly we’ll be dealing with sets that have mathematical objects
as members. You will remember the various sets of numbers: N is the set of
natural numbers {0,1,2,3,... }; Z the set of integers,

{...,-3,-2,-1,0,1,2,3,...};

Q the set of rationals (Q = {z/n : z € Z,n € N,n # 0}); and R the set of
real numbers. These are all infinite sets, that is, they each have infinitely many
elements. As it turns out, IN, Z, Q have the same number of elements, while
R has a whole bunch more—IN, Z, Q are “enumerable and infinite” whereas
R is “non-enumerable”.

We'll sometimes also use the set of positive integers ZT = {1,2,3,... } and
the set containing just the first two natural numbers B = {0,1}.

Release : c2feada (2016-08-01) 13



CHAPTER 1. SETS

Example 1.5 (Strings). Another interesting example is the set A* of finite strings
over an alphabet A: any finite sequence of elements of A is a string over A.
We include the empty string A among the strings over A, for every alphabet A.
For instance,

B* = {A,0,1,00,01,10,11,
000, 001,010,011,100,101, 110,111, 0000, . .. }.

If x = x1...x, € A¥is a string consisting of n “letters” from A, then we say
length of the string is n and write len(x) = n.

Example 1.6 (Infinite sequences). For any set A we may also consider the
set A of infinite sequences of elements of A. An infinite sequence a1aa34ay . . .
consists of a one-way infinite list of objects, each one of which is an element
of A.

1.3 Subsets

Sets are made up of their elements, and every element of a set is a part of that
set. But there is also a sense that some of the elements of a set taken together
are a “part of” that set. For instance, the number 2 is part of the set of integers,
but the set of even numbers is also a part of the set of integers. It's important
to keep those two senses of being part of a set separate.

Definition 1.7 (Subset). If every element of a set X is also an element of Y,
then we say that X is a subset of Y, and write X C Y.

Example 1.8. First of all, every set is a subset of itself, and @ is a subset of
every set. The set of even numbers is a subset of the set of natural numbers.
Also, {a,b} C {a,b,c}.

But {4, b, e} is not a subset of {4, b, c}.

Note that a set may contain other sets, not just as subsets but as elements!
In particular, a set may happen to both be an element and a subset of another,
e.g., {0} € {0,{0}} and also {0} C {0,{0}}.

Extensionality gives a criterion of identity for sets: X = Y iff every element
of X is also an element of Y and vice versa. The definition of “subset” defines
X C Y precisely as the first half of this criterion: every element of X is also
an element of Y. Of course the definition also applies if we switch X and Y:
Y C X iff every element of Y is also an element of X. And that, in turn, is
exactly the “vice versa” part of extensionality. In other words, extensionality
amountsto: X =Y iff X CYand Y C X.

Definition 1.9 (Power Set). The set consisting of all subsets of a set X is called
the power set of X, written p(X).

p(X) = {x:x C X}

14 Release : c2feada (2016-08-01)



1.4. UNIONS AND INTERSECTIONS

Example 1.10. What are all the possible subsets of {a, b,c}? They are: @,
{a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. The set of all these subsets is
p({a,b,c}):

p({a,b,c}) = {D,{a}, {b},{c}, {a,b},{b,c},{a,c} {a,b,c}}

1.4 Unions and Intersections

Definition 1.11 (Union). The union of two sets X and Y, written X UY, is the
set of all things which are elements of X, Y, or both.

XUY={x:xeXVxeY}

Example 1.12. Since the multiplicity of elements doesn’t matter, the union of
two sets which have an element in common contains that element only once,
e.g.,{ab,c}U{a,0,1} = {a,b,c0,1}.

The union of a set and one of its subsets is just the bigger set: {a, b, c} U
{a} ={a,b,c}.

The union of a set with the empty set is identical to the set: {a,b,c} UD =
{a,b,c}.

Definition 1.13 (Intersection). The intersection of two sets X and Y, written
X NY, is the set of all things which are elements of both X and Y.

XNY={x:xeXAxeY}

Two sets are called disjoint if their intersection is empty. This means they have
no elements in common.

Example 1.14. If two sets have no elements in common, their intersection is
empty: {a,b,c} N{0,1} = Q.

If two sets do have elements in common, their intersection is the set of all
those: {a,b,c} N{a,b,d} = {a,b}.

The intersection of a set with one of its subsets is just the smaller set:
{a,b,c} Nn{a, b} = {a,b}.

The intersection of any set with the empty set is empty: {a,b,c} NQ = @.

We can also form the union or intersection of more than two sets. An
elegant way of dealing with this in general is the following: suppose you
collect all the sets you want to form the union (or intersection) of into a single
set. Then we can define the union of all our original sets as the set of all objects
which belong to at least one element of the set, and the intersection as the set
of all objects which belong to every element of the set.

Release : c2feada (2016-08-01) 15



CHAPTER 1. SETS

Definition 1.15. If C is a set of sets, then | C is the set of elements of elements
of C:

|JC = {x: x belongs to an element of C}, i..,
|JC = {x:thereisay € Csothatx € y}

Definition 1.16. If C is a set of sets, then [ C is the set of objects which all
elements of C have in common:

ﬂ C = {x : x belongs to every element of C}, i.e.,
(1C={x:forally e C,x cy}

Example 1.17. Suppose C = {{a,b},{a,d, e}, {a,d}}. Then UC = {a,b,d, e}
and N C = {a}.

We could also do the same for a sequence of sets Ay, Ay, ...

U A; = {x : x belongs to one of the A;}
;

() Ai = {x : x belongs to every A;}.

1

Definition 1.18 (Difference). The difference X \ Y is the set of all elements of X
which are not also elements of Y, i.e.,

X\Y={x:xeXandx ¢ Y}.

1.5 Proofs about Sets

Sets and the notations we’ve introduced so far provide us with convenient
shorthands for specifying sets and expressing relationships between them.
Often it will also be necessary to prove claims about such relationships. If
you're not familiar with mathematical proofs, this may be new to you. So
we’ll walk through a simple example. We'll prove that for any sets X and Y,
it’s always the case that X N (X UY) = X. How do you prove an identity be-
tween sets like this? Recall that sets are determined solely by their elements,
i.e., sets are identical iff they have the same elements. So in this case we have
to prove that (a) every element of X N (X UY) is also an element of X and,
conversely, that (b) every element of X is also an element of X N (XU Y). In
other words, we show thatboth (a) XN (XUY) C Xand (b) X C XN (XUY).

A proof of a general claim like “every element z of X N (X UY) is also an
element of X” is proved by first assuming that an arbitrary z € XN (X UY)
is given, and proving from this assumtion that z € X. You may know this
pattern as “general conditional proof.” In this proof we’ll also have to make
use of the definitions involved in the assumption and conclusion, e.g., in this
case of “N” and “U.” So case (a) would be argued as follows:
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1.6. PAIRS, TUPLES, CARTESIAN PRODUCTS

(a) We first want to show that X N (XU Y) C X, i.e., by definition
of C, thatifz € XN (XUY) thenz € X, for any z. So assume that
z € XN (XUY). Since z is an element of the intersection of two
sets iff it is an element of both sets, we can conclude that z € X and
alsoz € XU Y. In particular, z € X. But this is what we wanted to
show.

This completes the first half of the proof. Note that in the last step we used
the fact that if a conjunction (z € X and z € X U Y) follows from an assump-
tion, each conjunct follows from that same assumption. You may know this
rule as “conjunction elimination,” or AElim. Now let’s prove (b):

(b) We now prove that X C XN (X UY), i.e., by definition of C,
thatif z € X thenalsoz € XN (X UY), for any z. Assume z € X.
To show that z € XN (X UY), we have to show (by definition of
“N”) that (i) z € X and also (ii) z € X UY. Here (i) is just our
assumption, so there is nothing further to prove. For (ii), recall
that z is an element of a union of sets iff it is an element of at least
one of those sets. Since z € X, and X U Y is the union of X and Y,
this is the case here. Soz € X U Y. We’ve shown both (i) z € X and
(ii) z € X UY, hence, by definition of “N,” z € XN (X UY).

This was somewhat long-winded, but it illustrates how we reason about
sets and their relationships. We usually aren’t this explicit; in particular, we
might not repeat all the definitions. A “textbook” proof of our result would
look something like this.

Proposition 1.19 (Absorption). For all sets X, Y,
XN(XUuy)=X

Proof. (a) Supposez € XN (XUY). Thenz € X,s0 XN (XUY) C X.
(b) Now suppose z € X. Then also z € X UY, and therefore also z €
XN (XUY). Thus, X € XN (XUY). O

1.6 Pairs, Tuples, Cartesian Products

Sets have no order to their elements. We just think of them as an unordered
collection. So if we want to represent order, we use ordered pairs (x,y), or more
generally, ordered n-tuples (x1,...,%xp).

Definition 1.20 (Cartesian product). Given sets X and Y, their Cartesian prod-
uct X x Yis{(x,y) :x € Xandy € Y}.

Example 1.21. If X = {0,1}, and Y = {1, 4, b}, then their product is
X xY =4{(0,1),(0,a),(0,b),(1,1),(1,a),(1,b) }.
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Example 1.22. If X is a set, the product of X with itself, X x X, is also writ-
ten X2. It is the set of all pairs (x,y) with x,y € X. The set of all triples (x, v, z)
is X3, and so on.

Example 1.23. If X is a set, a word over X is any sequence of elements of X. A
sequence can be thought of as an n-tuple of elements of X. For instance, if X =
{a,b, c}, then the sequence “bac” can be thought of as the triple (b, 4, c). Words,
i.e., sequences of symbols, are of crucial importance in computer science, of
course. By convention, we count elements of X as sequences of length 1, and
@ as the sequence of length 0. The set of all words over X then is

X*={@0}UXUXx?uxiu...

Problems

Problem 1.1. Show that there is only one empty set, i.e., show that if X and Y
are sets without members, then X = Y.

Problem 1.2. List all subsets of {a,b,¢,d}.

Problem 1.3. Show that if X has n elements, then p(X) has 2" elements.
Problem 1.4. Prove rigorously thatif X C Y, then XUY =Y.

Problem 1.5. Prove rigorously thatif X C Y, then XNY = X.

Problem 1.6. Prove in detail that X U (X NY) = X. Then compress it into
a “textbook proof.” (Hint: for the X U (X NY) C X direction you will need
proof by cases, aka VElim.)

Problem 1.7. List all elements of {1,2,3}3.

Problem 1.8. Show that if X has 1 elements, then X¥ has n* elements.
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Chapter 2

Relations

2.1 Relations as Sets

You will no doubt remember some interesting relations between objects of
some of the sets we’ve mentioned. For instance, numbers come with an order
relation < and from the theory of whole numbers the relation of divisibility
without remainder (usually written n | m) may be familar. There is also the
relation is identical with that every object bears to itself and to no other thing.
But there are many more interesting relations that we’ll encounter, and even
more possible relations. Before we review them, we'll just point out that we
can look at relations as a special sort of set. For this, first recall what a pair is: if
a and b are two objects, we can combine them into the ordered pair (a, b). Note
that for ordered pairs the order does matter, e.g, (a,b) # (b,a), in contrast to
unordered pairs, i.e., 2-element sets, where {a,b} = {b,a}.

If X and Y are sets, then the Cartesian product X x Y of X and Y is the set of
all pairs (a,b) witha € X and b € Y. In particular, X*> = X x X is the set of all
pairs from X.

Now consider a relation on a set, e.g., the <-relation on the set N of natural
numbers, and consider the set of all pairs of numbers (n, m) where n < m, i.e.,

R={(n,m):n,me Nandn < m}.

Then there is a close connection between the number 7 being less than a num-
ber m and the corresponding pair (1, m) being a member of R, namely, n < m
if and only if (n,m) € R. In a sense we can consider the set R to be the <-
relation on the set N. In the same way we can construct a subset of IN? for
any relation between numbers. Conversely, given any set of pairs of numbers
S C IN?, there is a corresponding relation between numbers, namely, the re-
lationship n bears to m if and only if (n,m) € S. This justifies the following
definition:
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Definition 2.1 (Binary relation). A binary relation on a set X is a subset of X2.
IfRC X?isa binary relation on X and x,y € X, we write Rxy (or xRy) for
(x,y) € R.

Example 2.2. The set IN? of pairs of natural numbers can be listed in a 2-
dimensional matrix like this:

0,0 (01) (02 (03)
L0 (11) (12) (13)
2,0 (1) 22 (23
(3,00 (31) (3,2) (33)

The subset consisting of the pairs lying on the diagonal, i.e.,

{(0,0),(1,1),(2,2),...},

is the identity relation on IN. (Since the identity relation is popular, let’s define
Idx = {(x,x) : x € X} for any set X.) The subset of all pairs lying above the
diagonal, i.e.,

L=1{(0,1),(0,2),...,(1,2),(1,3),...,(2,3),(2,4),...},

is the less than relation, i.e., Lnm iff n < m. The subset of pairs below the
diagonal, i.e.,

G = {(1,0),(2,0),(2,1), (3,0), (3,1}, (3,2),...},

is the greater than relation, i.e., Gnm iff n > m. The union of Lwith I, K= LU,
is the less than or equal to relation: Knm iff n < m. Similarly, H = G U I is the
greater than or equal to relation. L, G, K, and H are special kinds of relations
called orders. L and G have the property that no number bears L or G to itself
(i.e., for all n, neither Lnn nor Gnn). Relations with this property are called
antireflexive, and, if they also happen to be orders, they are called strict orders.

Although orders and identity are important and natural relations, it should
be emphasized that according to our definition any subset of X? is a relation
on X, regardless of how unnatural or contrived it seems. In particular, @ is a
relation on any set (the empty relation, which no pair of elements bears), and
X? itself is a relation on X as well (one which every pair bears), called the
universal relation. But also something like E = {(n,m) : n > 50rm x n > 34}
counts as a relation.

2.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have been given
special names. For instance, < and C both relate their respective domains
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(say, IN in the case of < and p(X) in the case of C) in similar ways. To get
at exactly how these relations are similar, and how they differ, we categorize
them according to some special properties that relations can have. It turns out
that (combinations of) some of these special properties are especially impor-
tant: orders and equivalence relations.

Definition 2.3 (Reflexivity). A relation R C X2 is reflexive iff, for every x € X,
Rxx.

Definition 2.4 (Transitivity). A relation R C X2 is transitive iff, whenever Rxy
and Ryz, then also Rxz.

Definition 2.5 (Symmetry). A relation R C X? is symmetric iff, whenever Rxy,
then also Ryx.

Definition 2.6 (Anti-symmetry). A relation R C X? is anti-symmetric iff, when-
ever both Rxy and Ryx, then x = y (or, in other words: if x # y then either
—Rxy or =Ryx).

In a symmetric relation, Rxy and Ryx always hold together, or neither
holds. In an anti-symmetric relation, the only way for Rxy and Ryx to hold to-
gether is if x = y. Note that this does not require that Rxy and Ryx holds when
x = y, only that it isn’t ruled out. So an anti-symmetric relation can be reflex-
ive, but it is not the case that every anti-symmetric relation is reflexive. Also
note that being anti-symmetric and merely not being symmetric are different
conditions. In fact, a relation can be both symmetric and anti-symmetric at the
same time (e.g., the identity relation is).

Definition 2.7 (Connectivity). A relation R C X? is connected if for all x,y € X,
if x # y, then either Rxy or Ryx.

Definition 2.8 (Partial order). A relation R C X2 that is reflexive, transitive,
and anti-symmetric is called a partial order.

Definition 2.9 (Linear order). A partial order that is also connected is called a
linear order.

Definition 2.10 (Equivalence relation). A relation R C X2 that is reflexive,
symmetric, and transitive is called an equivalence relation.

2.3 Orders

Definition 2.11 (Preorder). A relation which is both reflexive and transitive is
called a preorder.

Definition 2.12 (Partial order). A preorder which is also anti-symmetric is
called a partial order.
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Definition 2.13 (Total order). A partial order which is also connected is called
a total order or linear order. (If we want to emphasize that the order is reflexive,
we add the adjective “weak”—see below).

Example 2.14. Every linear order is also a partial order, and every partial or-
der is also a preorder, but the converses don’t hold. For instance, the identity
relation and the full relation on X are preorders, but they are not partial or-
ders, because they are not anti-symmetric (if X has more than one element).
For a somewhat less silly example, consider the no longer than relation < on B*:
x < yiff len(x) < len(y). This is a preorder, even a linear preorder, but not a
partial order.

The relation of divisibility without remainder gives us an example of a partial
order which isn’t a linear order: for integers n, m, we say n (evenly) divides
m, in symbols: n | m, if there is some k so that m = kn. On IN, this is a partial
order, but not a linear order: for instance, 2 3 and also 3 t 2. Considered as a
relation on Z, divisibility is only a preorder since anti-symmetry fails: 1 | —1
and —1 | 1but 1 # —1. Another important partial order is the relation C on a
set of sets.

Notice that the examples L and G from Example 2.2, although we said
there that they were called “strict orders” are not linear orders even though
they are connected (they are not reflexive). But there is a close connection, as
we will see momentarily.

Definition 2.15 (Irreflexivity). A relation R on X is called irreflexive if, for all
x € X, "Rxx.

Definition 2.16 (Asymmetry). A relation R on X is called asymmetric if for no
pair x,y € X we have Rxy and Ryx.

Definition 2.17 (Strict partial order). A strict partial order is a relation which is
irreflexive, asymmetric, and transitive.

Definition 2.18 (Strict linear order). A strict partial order which is also con-
nected is called a strict linear order.

A strict partial order on X can be turned into a weak partial order by
adding the diagonal Idy, i.e., adding all the pairs (x, x). (This is called the
reflexive closure of R.) Conversely, starting from a weak partial order, one can
get a strict partial order by removing Idx.

Proposition 2.19. 1. If R is a strict partial (linear) order on X, then RT = RU
Idx is a weak partial (linear) order.

2. If R is a weak partial (linear) order on X, then R~ = R\ Idy is a strict partial
(linear) order.
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Proof. 1. Suppose R is a strict partial order, i.e., R C X2 and R is irreflexive,
asymmetric, and transitive. Let RT™ = RUIdx. We have to show that
R™ is reflexive, antisymmetric, and transitive.

R™ is clearly reflexive, since for all x € X, (x,x) € Idx C R™.

To show R™ is antisymmetric, suppose R xy and R yx, ie., (x,y) and
(y,x) € RT,and x # y. Since (x,y) € RUIdx, but (x,y) ¢ Idx, we must
have (x,y) € R, i.e., Rxy. Similarly we get that Ryx. But this contradicts
the assumption that R is asymmetric.

Now suppose that R*xy and R*yz. If both (x,y) € Rand (y,z) € R, it
follows that (x,z) € R since R is transitive. Otherwise, either (x,y) €
Idyx, i.e, x =y, or (y,z) € Idyx, i.e.,, y = z. In the first case, we have that
R*yz by assumption, x = y, hence R xz. Similarly in the second case.
In either case, Rt xz, thus, R is also transitive.

If R is linear, then for all x # y, either Rxy or Ryx, i.e., either (x,y) € R
or (y,x) € R. Since R C R™, this remains true of R*, so R™ is linear as
well.

2. Exercise.
O

Example 2.20. < is the weak linear order corresponding to the strict linear or-
der <. C is the weak partial order corresponding to the strict partial order C.

24 Graphs

A graph is a diagram in which points—called “nodes” or “vertices” (plural of
“vertex”)—are connected by edges. Graphs are a ubiquitous tool in descrete
mathematics and in computer science. They are incredibly useful for repre-
senting, and visualizing, relationships and structures, from concrete things
like networks of various kinds to abstract structures such as the possible out-
comes of decisions. There are many different kinds of graphs in the literature
which differ, e.g., according to whether the edges are directed or not, have la-
bels or not, whether there can be edges from a node to the same node, multiple
edges between the same nodes, etc. Directed graphs have a special connection
to relations.

Definition 2.21 (Directed graph). A directed graph G = (V,E) is a set of ver-
tices V and a set of edges E C V2.

According to our definition, a graph just is a set together with a relation
on that set. Of course, when talking about graphs, it’s only natural to expect
that they are graphically represented: we can draw a graph by connecting two
vertices v1 and v, by an arrow iff (v,v2) € E. The only difference between a
relation by itself and a graph is that a graph specifies the set of vertices, i.e., a
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graph may have isolated vertices. The important point, however, is that every
relation R on a set X can be seen as a directed graph (X, R), and conversely, a
directed graph (V, E) can be seen as a relation E C V2 with the set V explicitly
specified.

Example 2.22. The graph (V,E) with V = {1,2,3,4} and E = {(1,1),(1,2),
(1,3),(2,3) } looks like this:

®

This is a different graph than (V’, E) with V' = {1, 2,3}, which looks like this:

2.5 Operations on Relations

It is often useful to modify or combine relations. We’ve already used the union
of relations above (which is just the union of two relations considered as sets
of pairs). Here are some other ways:

Definition 2.23. Let R, S € X2 be relations and Y a set.
1. The inverse R~ of Ris R™1 = {{y,x) : (x,y) € R}.
2. The relative product R | S of R and S is
(R]S) = {(x,z) : for some y, Rxy and Syz}
3. The restriction R | Y of Rto Y is RN Y?
4. The application R[Y] of Rto Y is

R[Y] = {y: for some x € Y, Rxy}
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Example 2.24. Let S C Z2 be the successor relation on Z, i.e., the set of pairs
(x,y) where x +1 =y, for x,y € Z. Sxy holds iff y is the successor of x.

1. The inverse S~! of S is the predecessor relation, i.e., S~ txy iff x — 1 = v;.
2. The relative product S | S is the relation x bears to y if x +2 = y.

3. The restriction of S to IN is the successor relation on IN.

4. The application of S to a set, e.g., S[{1,2,3}] is {2,3,4}.

Definition 2.25 (Transitive closure). The transitive closure R of a relation R C
X2is Rt = U, R where R! = Rand R'*! = R" | R.
The reflexive transitive closure of R is R* = R™ U Ix.

Example 2.26. Take the successor relation S C Z2. S%xy iff x + 2 = y, S3xy iff
x +3 =y, etc. So R*xy iff for some i > 1, x + i = y. In other words, ST xy iff
x <y (and R*xy iff x < y).

Problems

Problem 2.1. List the elements of the relation C on the set p({a,b,c}).

Problem 2.2. Give examples of relations that are (a) reflexive and symmetric
but not transitive, (b) reflexive and anti-symmetric, (c) anti-symmetric, transi-
tive, but not reflexive, and (d) reflexive, symmetric, and transitive. Do not use
relations on numbers or sets.

Problem 2.3. Complete the proof of Proposition 2.19, i.e., prove that if R is a
weak partial order on X, then R~ = R\ Idy is a strict partial order.

Problem 2.4. Consider the less-than-or-equal-to relation < on the set {1,2,3,4}
as a graph and draw the corresponding diagram.

Problem 2.5. Show that the transitive closure of R is in fact transitive.
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Functions

3.1 Basics

A function is a mapping of which pairs each object of a given set with a unique
partner. For instance, the operation of adding 1 defines a function: each num-
ber n is paired with a unique number # + 1. More generally, functions may
take pairs, triples, etc., of inputs and returns some kind of output. Many func-
tions are familiar to us from basic arithmetic. For instance, addition and mul-
tiplication are functions. They take in two numbers and return a third. In this
mathematical, abstract sense, a function is a black box: what matters is only
what output is paired with what input, not the method for calculating the
output.

Definition 3.1 (Function). A function f: X — Y is a mapping of each element
of X to an element of Y. We call X the domain of f and Y the codomain of f. The
range ran(f) of f is the subset of the codomain that is actually output by f for
some input.

Example 3.2. Multiplication takes pairs of natural numbers as inputs and
maps them to natural numbers as outputs, so goes from IN x IN (the domain)
to IN (the codomain). As it turns out, the range is also IN, since every n € IN
isn x 1.

Multiplication is a function because it pairs each input—each pair of natu-
ral numbers—with a single output: x : N> — IN. By contrast, the square root
operation applied to the domain IN is not functional, since each positive inte-
ger 1 has two square roots: v/n and —y/n. We can make it functional by only
returning the positive square root: v/ : IN — RR. The relation that pairs each
student in a class with their final grade is a function—no student can get two
different final grades in the same class. The relation that pairs each student in
a class with their parents is not a function—generally each student will have
at least two parents.

26



3.2. KINDS OF FUNCTIONS

Example 3.3. Let f: N — IN be defined such that f(x) = x + 1. Thisis a
definition that specifies f as a function which takes in natural numbers and
outputs natural numbers. It tells us that, given a natural number x, f will
output its successor x + 1. In this case, the codomain IN is not the range of f,
since the natural number 0 is not the successor of any natural number. The
range of f is the set of all positive integers, Z*.

Example 3.4. Let g: IN — IN be defined such that g(x) = x +2 — 1. This tells
us that g is a function which takes in natural numbers and outputs natural
numbers. Given a natural number 71, ¢ will output the predecessor of the
successor of the successor of x, i.e., x + 1. Despite their different definitions, g
and f are the same function.

Functions f and g defined above are the same because for any natural
number x, x +2 -1 = x + 1. f and g pair each natural number with the
same output. The definitions for f and g specify the same mapping by means
of different equations, and so count as the same function.

Example 3.5. We can also define functions by cases. For instance, we could
define h: N — IN by

2 .
h(x) = 7 if x is even
% if x is odd.

Since every natural number is either even or odd, the output of this function
will always be a natural number. Just remember that if you define a function
by cases, every possible input must fall into exactly one case.

3.2 Kinds of Functions

Definition 3.6 (Surjective function). A function f: X — Y is surjective iff Y
is also the range of f, i.e., for every y € Y there is at least one x € X such

that f(x) = y.

If you want to show that a function is surjective, then you need to show
that every object in the codomain is the output of the function given some
input or other.

Definition 3.7 (Injective function). A function f: X — Y is injective iff for each
y € Y there is at most one x € X such that f(x) = y.

Any function pairs each possible input with a unique output. An injective
function has a unique input for each possible output. If you want to show
that a function f is injective, you need to show that for any element y of the
codomain, if f(x) = yand f(w) =y, then x = w.

A function which is neither injective, nor surjective, is the constant func-
tion f: N — IN where f(x) = 1.
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A function which is both injective and surjective is the identity function
f:IN — N where f(x) = x.

The successor function f: IN — IN where f(x) = x + 1 is injective, but not
surjective.

The function
if x is even

X)) =
fx) {;1 if x is odd.

is surjective, but not injective.

R NIR

Definition 3.8 (Bijection). A function f: X — Y is bijective iff it is both surjec-
tive and injective. We call such a function a bijection from X to Y (or between
X and Y).

3.3 Inverses of Functions

One obvious question about functions is whether a given mapping can be
“reversed.” For instance, the successor function f(x) = x + 1 can be reversed
in the sense that the function g(y) = y — 1 “undos” what f does. But we must
be careful: While the definition of g defines a function Z — Z, it does not
define a function N — IN (g(0) ¢ IN). So even in simple cases, it is not quite
obvious if functions can be reversed, and that it may depend on the domain
and codomain. Let’s give a precise definition.

Definition 3.9. A function g: Y — X is an inverse of a function f: X — Y if
f(gly)) =yand g(f(x)) =xforallx € Xandy € Y.

When do functions have inverses? A good candidate for an inverse of
f: X—=Yisg: Y — X “defined by”

¢(y) = “the” x such that f(x) = y.

The scare quotes around “defined by” suggest that this is not a definition. At
least, it is not in general. For in order for this definition to specify a function,
there has to be one and only one x such that f(x) = y—the output of g has to
be uniquely specified. Moreover, it has to be specified for every y € Y. If there
are x1 and x; € X with x; # x; but f(x1) = f(x2), then g(y) would not be
uniquely specified for y = f(x1) = f(x2). And if there is no x at all such that
f(x) =y, then g(y) is not specified at all. In other words, for g to be defined,
f has to be injective and surjective.

Proposition 3.10. If f: X — Y is bijective, f has a unique inverse f~1: Y — X.
Proof. Exercise. O
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3.4 Composition of Functions

We have already seen that the inverse f~! of a bijective function f is itself
a function. It is also possible to compose functions f and g to define a new
function by first applying f and then g. Of course, this is only possible if the
domains and codomains match, i.e., the codomain of f must be a subset of the
domain of g.

Definition 3.11 (Composition). Let f: X — Y and g: Y — Z. The composition
of f with g is the function (go f): X — Z, where (g o f)(x) = g(f(x)).

The function (g o f): X — Z pairs each member of X with a member of Z.
We specify which member of Z a member of X is paired with as follows—
given an input x € X, first apply the function f to x, which will output some
y € Y. Then apply the function g to y, which will output some z € Z.

Example 3.12. Consider the functions f(x) = x + 1, and g(x) = 2x. What
function do you get when you compose these two? (go f)(x) = g(f(x)). So
that means for every natural number you give this function, you first add one,
and then you multiply the result by two. So their composition is (g o f)(x) =
2(x+1).

3.5 Isomorphism

An isomorphism is a bijection that preserves the structure of the sets it re-
lates, where structure is a matter of the relationships that obtain between
the elements of the sets. Consider the following two sets X = {1,2,3} and
Y = {4,5,6}. These sets are both structured by the relations successor, less
than, and greater than. An isomorphism between the two sets is a bijection
that preserves those structures. So a bijective function f: X — Y is an isomor-
phism if, i < jiff f(i) < f(j), i > jiff f(i) > f(j), and j is the successor of i iff
f(j) is the successor of f(i).

Definition 3.13 (Isomorphism). Let U be the pair (X, R) and V be the pair
(Y, S) such that X and Y are sets and R and S are relations on X and Y re-
spectively. A bijection f from X to Y is an isomorphism from U to V iff it pre-
serves the relational structure, that is, for any x; and x; in X, (x1,xp) € R iff

{f(x1), f(x2)) € 5.
Example 3.14. Consider the following two sets X = {1,2,3} and Y = {4,5,6},
and the relations less than and greater than. The function f: X — Y where

f(x) =7 — x is an isomorphism between (X, <) and (Y, >).
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3.6 Partial Functions

It is sometimes useful to relax the definition of function so that it is not re-
quired that the output of the function is defined for all possible inputs. Such
mappings are called partial functions.

Definition 3.15. A partial function f: X + Y is a mapping which assigns to
every element of X at most one element of Y. If f assigns an element of Y to
x € X, we say f(x) is defined, and otherwise undefined. If f(x) is defined, we
write f(x) |, otherwise f(x) 1. The domain of a partial function f is the subset
of X where it is defined, i.e., dom(f) = {x: f(x) | }.

Example 3.16. Every function f: X — Y is also a partial function. Partial
functions that are defined everywhere on X—i.e., what we so far have simply
called a function—are also called total functions.

Example 3.17. The partial function f: R + R given by f(x) = 1/x is unde-
fined for x = 0, and defined everywhere else.

3.7 Functions and Relations

A function which maps elements of X to elements of Y obviously defines a
relation between X and Y, namely the relation which holds between x and
y iff f(x) = y. In fact, we might even—if we are interested in reducing the
building blocks of mathematics for instance—identify the function f with this
relation, i.e., with a set of pairs. This then raises the question: which relations
define functions in this way?

Definition 3.18 (Graph of a function). Let f: X + Y be a partial function. The
graph of f is the relation Ry C X x Y defined by

Re={{xy): f(x) =y}

Proposition 3.19. Suppose R C X X Y has the property that whenever Rxy and
Rxy’ then y = y'. Then R is the graph of the partial function f: X -» Y defined by:
if there is a y such that Rxy, then f(x) =y, otherwise f(x) 1. If R is also serial, i.e.,
foreach x € X thereisay €Y such that Rxy, then f is total.

Proof. Suppose there is a y such that Rxy. If there were another ' # y such
that Rxy/, the condition on R would be violated. Hence, if there is a y such
that Rxy, that y is unique, and so f is well-defined. Obviously, Ry = R and f
is total if R is serial. O
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Problems

Problem 3.1. Show that if f is bijective, an inverse g of f exists, i.e., define
such a g, show that it is a function, and show that it is an inverse of f, i.e.,
f(gly)) =yand g(f(x)) = xforallx € Xandy € Y.

Problem 3.2. Show thatif f: X — Y has an inverse g, then f is bijective.

Problem 3.3. Show thatif g: Y — Xand ¢’: Y — X areinversesof f: X — Y,
then g = ¢/, ie, forally € Y, g(y) = ¢'(v).

Problem 3.4. Show thatif f: X — Y and g: Y — Z are both injective, then
go f: X = Zisinjective.

Problem 3.5. Show thatif f: X — Y and g: Y — Z are both surjective, then
go f: X — Zis surjective.

Problem 3.6. Given f: X + Y, define the partial function g: Y -+ X by: for
any y € Y, if there is a unique x € X such that f(x) = y, then g(y) = x;
otherwise ¢(y) 1. Show that if f is injective, then g(f(x)) = x for all x €

dom(f), and f(g(y)) =y forall y € ran(f).

Problem 3.7. Suppose f: X — Y and g: Y — Z. Show that the graph of
(g0 f)is Rs | Rs.
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Chapter 4

The Size of Sets

4.1 Introduction

When Georg Cantor developed set theory in the 1870s, his interest was in part
to make palatable the idea of an infinite collection—an actual infinity, as the
medievals would say. Key to this rehabilitation of the notion of the infinite
was a way to assign sizes—"cardinalities”—to sets. The cardinality of a finite
set is just a natural number, e.g., @ has cardinality 0, and a set containing five
things has cardinality 5. But what about infinite sets? Do they all have the
same cardinality, co? It turns out, they do not.

The first important idea here is that of an enumeration. We can list every
finite set by listing all its elements. For some infinite sets, we can also list
all their elements if we allow the list itself to be infinite. Such sets are called
enumerable. Cantor’s surprising result was that some infinite sets are not
enumerable.

4.2 Enumerable Sets

Definition 4.1 (Enumeration). Informally, an enumeration of a set X is a list
(possibly infinite) such that every element of X appears some finite number of
places into the list. If X has an enumeration, then X is said to be enumerable. If
X is enumerable and infinite, we say X is denumerable.

A couple of points about enumerations:

1. The order of elements of X in the enumeration does not matter, as long
as every element appears: 4, 1, 25, 16, 9 enumerates the (set of the) first
five square numbers just as well as 1, 4, 9, 16, 25 does.

2. Redundant enumerations are still enumerations: 1,1, 2,2, 3, 3, ... enu-
merates the same setas 1,2, 3, ... does.
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3. Order and redundancy do matter when we specify an enumeration: we
can enumerate the natural numbers beginning with 1, 2, 3,1, ..., but the
pattern is easier to see when enumerated in the standard way as 1, 2, 3,
4,...

4. Enumerations must have a beginning: ..., 3, 2, 1 is not an enumeration
of the natural numbers because it has no first element. To see how this
follows from the informal definition, ask yourself, “at what place in the
list does the number 76 appear?”

5. The following is not an enumeration of the natural numbers: 1, 3,5, ...,
2,4,6, ... The problem is that the even numbers occur at places oo + 1,
o0 + 2, 00 + 3, rather than at finite positions.

6. Lists may be gappy: 2, —, 4, —, 6, —, ... enumerates the even natural
numbers.

7. The empty set is enumerable: it is enumerated by the empty list!
The following provides a more formal definition of an enumeration:

Definition 4.2 (Enumeration). An enumeration of a set X is any surjective func-
tion f : IN — X.

Let’s convince ourselves that the formal definition and the informal defini-
tion using a possibly gappy, possibly infinite list are equivalent. A surjective
function (partial or total) from IN to a set X enumerates X. Such a function de-
termines an enumeration as defined informally above. Then an enumeration
for X is the list f(0), f(1), f(2), .... Since f is surjective, every element of X
is guaranteed to be the value of f(n) for some n € IN. Hence, every element
of X appears at some finite place in the list. Since the function may be partial
or not injective, the list may be gappy or redundant, but that is acceptable (as
noted above). On the other hand, given a list that enumerates all elements
of X, we can define a surjective function f: N — X by letting f(n) be the
(n + 1)st member of the list, or undefined if the list has a gap in the (n + 1)st
spot.

Example 4.3. A function enumerating the natural numbers (IN) is simply the
identity function given by f(n) = n.

Example 4.4. The functions f: N — N and g: N — IN given by
f(n) =2nand (4.1)
g(n)=2n+1 (4.2)

enumerate the even natural numbers and the odd natural numbers, respec-
tively. However, neither function is an enumeration of IN, since neither is
surjective.
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Example 4.5. The function f(n) = [%1 (where [x] denotes the ceiling
function, which rounds x up to the nearest integer) enumerates the set of inte-
gers Z. Notice how f generates the values of Z by “hopping” back and forth
between positive and negative integers:

f) f2) fB) f(4) f5) f(6)

That is fine for “easy” sets. What about the set of, say, pairs of natural
numbers?
N2 =N xN = {(n,m) : n,m € N}

Another method we can use to enumerate sets is to organize them in an array,
such as the following:

1 2 3 4
1] (L,1) | (1,2) | (1,3) ] (1,4)
2 (2,1) [ (2,2) | (2,3) ] (2,4)
3| (3,1) | (3,2) | (3,3) ] (3,4)
1| (41) | (42) | (4,3) ] (4,4)

Clearly, every ordered pair in IN? will appear at least once in the array. In
particular, (n, m) will appear in the nth column and mth row. But how do we
organize the elements of an array into a list? The pattern in the array below
demonstrates one way to do this:

112 |47
3158
6|9

This pattern is called Cantor’s zig-zag method. Other patterns are perfectly per-
missible, as long as they “zig-zag” through every cell of the array. By Cantor’s
zig-zag method, the enumeration for N? according to this scheme would be:

1,1),(1,2), (2,1, (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1), ...

What ought we do about enumerating, say, the set of ordered triples of
natural numbers?

N3 =N x N x N = {(n,m,k) : n,m,k € N}
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We can think of IN? as the Cartesian product of N2 and N, that is,
N3 = N2 x N = {((n,m),k) : (n,m) € N>,k € N}

and thus we can enumerate IN® with an array by labelling one axis with the
enumeration of IN, and the other axis with the enumeration of IN?:

1 2 3 4
1,1y | (1,1,1) | (1,1,2) | (1,1,3) | (1,1,4)
1,2) [ (1,2,1) | (1,2,2) | (1,2,3) | (1,2,4)
2,1) [ 2,1,1) | 2,1,2) | (2,1,3) | (2,1,4)
(1,3) [ (1,3,1) | (1,3,2) | (1,3,3) | (1,3,4)

Thus, by using a method like Cantor’s zig-zag method, we may similarly ob-
tain an enumeration of IN3.

4.3 Non-enumerable Sets

Some sets, such as the set IN of natural numbers, are infinite. So far we’ve
seen examples of infinite sets which were all enumerable. However, there are
also infinite sets which do not have this property. Such sets are called non-
enumerable.

First of all, it is perhaps already surprising that there are non-enumerable
sets. For any enumerable set X there is a surjective function f: IN — X. If aset
is non-enumerable there is no such function. That is, no function mapping the
infinitely many elements of IN to X can exhaust all of X. So there are “more”
elements of X than the infinitely many natural numbers.

How would one prove that a set is non-enumerable? You have to show
that no such surjective function can exist. Equivalently, you have to show
that the elements of X cannot be enumerated in a one way infinite list. The
only way to do this is indirectly, by supposing hypothetically that such an
enumeration exists and then showing that a contradiction follows from this
assumption. The best way of doing this is Cantor’s diagonal method. From the
assumption that the elements of X can be enumerated as, say, x1, x, ..., we
construct another element of X which, by its construction, cannot possibly be
on that list—which was, by assumption, an exhaustive list of all of X, hence
the contradiction.

Our first example is the set B of all infinite, non-gappy sequences of 0's
and 1’s.

Theorem 4.6. B% is non-enumerable.

Proof. Suppose that B is enumerable, so that there is a list 51, 5, s3, 54, ... of
all the elements of B“. Each of these s; is itself an infinite sequence of 0’s and
1’s. Let’s call the j-th element of the i-th sequence in this list s;().
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We may arrange this list, and the elements of each sequence s; in it, in an
array:

1 2 3 4
1 81(1) S1 (2) 51(3) S1 (4)
2] 5(1) | s2(2) | 52(3) | 52(4)
3| s3(1) | 53(2) | s3(3) | s3(4)
4| s4(1) | 54(2) | 54(3) | s4(4)

The labels down the side give the number of the sequence in the list s, s, ... ;
the numbers across the top label the elements of the individual sequences. For
instance, s1(1) is a name for whatever number, a 0 or a 1, is the first element
in the sequence s1, and so on.

Now we construct an infinite sequence, 5, of 0’s and 1’s which cannot pos-
sibly be on this list. The definition of 5 will depend on the list s1, s, .... Any
infinite list of infinite sequences of 0’s and 1’s, hypothetical or otherwise, gives
rise to an infinite sequence 5 which is guaranteed to not appear on the list.

To define 5, we specify what all its elements are, i.e., we specify 5(n) for all
n € Z*. We do this by reading down the diagonal of the array above (hence
the name “diagonal method”) and then changing every 1 to a 0 and every 1 to
a 0. More abstractly, we define 5(n) to be 0 or 1 according to whether the n-th
element of the diagonal, s,(n), is 1 or 0.

)1 ifsy(n) =0
s(m) = {0 ifsy(n) =1.

If you like formulas better than definitions by cases, you could also define
s(n) =1—sy(n).

Clearly s is a non-gappy infinite sequence of 0’s and 1’s, since it is just the
mirror sequence to the sequence of 0’s and 1’s that appear on the diagonal of
our array. 5o 5 is an element of B“. But it cannot be on the list 51, s, ... Why
not?

It can’t be the first sequence in the list, s1, because it differs from s; in the
first element. Whatever s;(1) is, we defined 5(1) to be the opposite. It can’t be
the second sequence in the list, because 5 differs from s; in the second element:
if s(2) is 0, 5(2) is 1, and vice versa. And so on.

More precisely: if 5 were on the list, there would be some k so that 5 = s;.
Two sequences are identical iff they agree at every place, i.e., for any n,5(n) =
sx(n). So in particular, taking n = k as a special case, 5(k) = s(k) would
have to hold. s (k) is either 0 or 1. If it is O then 5(k) must be 1—that’s how
we defined 5. But if sg(k) = 1 then, again because of the way we defined 5,
5(k) = 0. In either case 5(k) # s (k).

We now have our contradiction: we started by assuming that there is a
way to list all of B in a single list s1, s, ... From this list we constructed
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a sequence s which we proved cannot be on the list. But it definitely is a
sequence of 0’s and 1’s if all the s; are sequences of 0’s and 1’s, i.e., 5 € B“.
This contradicts the assumption that every list in B appears on the list. [

This proof method is called “diagonalization” because it uses the diagonal
of the array to define 5. Diagonalization need not involve the presence of an
array: we can show that sets are not enumerable by using a similar idea even
when no array and no actual diagonal is involved.

Theorem 4.7. ©(Z™) is not enumerable.

Proof. We proceed indirectly again: Suppose that p(Z ") is enumerable, and
so it has an enumeration, i.e., a list of all subsets of Z*:

Zl/ ZZr ZB/ s
We now define a set Z such that forany n € Z*,n € Ziff n ¢ Zy:
Z={nezZ :n¢Z,}

Z is clearly a set of positive integers, since by assumption each Z,, is, and thus
Z € o(Z7"). So Z must be Z; for some k € Z". And if that is the case, i.e.,
Z = 7y, then, foreachn € Z*,n € Ziffn € Z;.

In particular, taking n =k, k € Z iff k € Z;.

Now either k € Z; or k ¢ Z;. In the first case, by the previous line, k € Z.
But we've defined Z so that it contains exactly those i € ZT which are not
elements of Z;. So by that definition, we would have to also have k ¢ Z. In
the second case, k ¢ Zj. But now k satisfies the condition by which we have
defined Z, and that means that k € Z. And as Z = Z;, we get that k € Z; after
all. Either case leads to a contradiction. O

44 Reduction

We showed ©(Z™) to be non-enumerable by a diagonalization argument.
However, with the proof that BY, the set of all infinite sequences of 0s and
1s, is non-enumerable in place, we could have instead showed p(Z™) to be
non-enumerable by showing that if o(Z") is enumerable then B% is also enu-
merable. This called reducing one problem to another.

Proof of Theorem 4.7 by reduction. Suppose, for reductio, that p(Z ™) is enumer-
able, and thus that there is an enumeration of it Z1, Z», Z3, ...

Define the function f: p(Z*) — B® by letting f(Z) be the sequence s
such that s;(j) = 1iff j € Z.

Every sequence of Os and 1s corresponds to some set of positive integers,
namely the one which has as its members those integers corresponding to the
places where the sequence has 1s. In other words, this is a surjective function.
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Now consider the list

f(Z1),f(22), f(Z3), -

Since f is surjective, every member of B must appear as a value of f for some
argument, and so must appear on the list. So this list must enumerate B*.

So if p(Z™) were enumerable, BY would be enumerable. But B% is non-
enumerable (Theorem 4.6). O

4.5 Equinumerous Sets

We have an intuitive notion of “size” of sets, which works fine for finite sets.
But what about infinite sets? If we want to come up with a formal way of com-
paring the sizes of two sets of any size, it is a good idea to start with defining
when sets are the same size. Let’s say sets of the same size are equinumerous.
We want the formal notion of equinumerosity to correspond with our intuitive
notion of “same size,” hence the formal notion ought to satisfy the following
properties:

Reflexivity: Every set is equinumerous with itself.

Symmetry: For any sets X and Y, if X is equinumerous with Y, then Y is
equinumerous with X.

Transitivity: For any sets X, Y, and Z, if X is equinumerous with Y and Y is
equinumerous with Z, then X is equinumerous with Z.

In other words, we want equinumerosity to be an equivalence relation.

Definition 4.8. A set X is equinumerous with a set Y if and only if there is a
total bijection f from X to Y (thatis, f: X — Y).

Proposition 4.9. Equinumerosity defines an equivalence relation.

Proof. Let X,Y, and Z be sets.

Reflexivity: Using the identity map 1x: X — X, where 1x(x) = x for all
x € X, we see that X is equinumerous with itself (clearly, 1x is bijective).

Symmetry: Suppose that X is equinumerous with Y. Then there is a bijection
f: X — Y. Since f is bijective, its inverse f~! is also a bijection. Since f
is surjective, f~! is total. Hence, f~': Y — X is a total bijection from Y
to X, so Y is also equinumerous with X.

Transitivity: Suppose that X is equinumerous with Y via the total bijection f
and that Y is equinumerous with Z via the total bijection g. Then the
composition of go f: X — Z is a total bijection, and X is thus equinu-
merous with Z.
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Therefore, equinumerosity is an equivalence relation by the given definition.
O

Theorem 4.10. Suppose X and Y are equinumerous. Then X is enumerable if and
only if Y is.

Proof. Let X and Y be equinumerous. Suppose that X is enumerable. Then
there is a possibly partial, surjective function f: N — X. Since X and Y are
equinumerous, there is a total bijection g: X — Y. Claim: go f: N — Yis
surjective. Clearly, g o f is a function (since functions are closed under com-
position). To see g o f is surjective, let y € Y. Since g is surjective, there is an
x € X such that g(x) = y. Since f is surjective, there is an n € IN such that
f(n) = x. Hence,

(gof)(n) =g(f(n)) =g(x) =y

and thus g o f is surjective. Since go f: IN — Y is surjective, it is an enumera-
tion of Y, and so Y is enumerable. O

4.6 Comparing Sizes of Sets

Just like we were able to make precise when two sets have the same size in
a way that also accounts for the size of infinite sets, we can also compare the
sizes of sets in a precise way. Our definition of “is smaller than (or equinu-
merous)” will require, instead of a bijection between the sets, a total injective
function from the first set to the second. If such a function exists, the size of the
first set is less than or equal to the size of the second. Intuitively, an injective
function from one set to another guarantees that the range of the function has
at least as many elements as the domain, since no two elements of the domain
map to the same element of the range.

Definition 4.11. |X| < |Y] if and only if there is an injective function f: X —
Y.

Theorem 4.12 (Schroder-Bernstein). Let X and Y be sets. If | X| < |Y|and |Y| <
|X|, then |X| = |Y|.

In other words, if there is a total injective function from X to Y, and if there
is a total injective function from Y back to X, then there is a total bijection
from X to Y. Sometimes, it can be difficult to think of a bijection between two
equinumerous sets, so the Schroder-Bernstein theorem allows us to break the
comparison down into cases so we only have to think of an injection from
the first to the second, and vice-versa. The Schréder-Bernstein theorem, apart
from being convenient, justifies the act of discussing the “sizes” of sets, for
it tells us that set cardinalities have the familiar anti-symmetric property that
numbers have.
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Definition 4.13. |X| < |Y|if and only if there is an injective function f: X — Y
but no bijective g: X — Y.

Theorem 4.14 (Cantor). Forall X, |X| < |p(X)].

Proof. The function f: X — p(X) that maps any x € X to its singleton {x} is
injective, since if x # y then also f(x) = {x} # {y} = f(y).

There cannot be a surjective function g: X — p(X), let alone a bijective
one. For assume that a surjective g: X — (X)) exists. ThenletY = {x € X :
x ¢ g(x)}. If g(x) is defined for all x € X, then Y is clearly a well-defined
subset of X. If ¢ is surjective, Y must be the value of g for some xy € X, ie.,
Y = g(xp). Now consider xp: it cannot be an element of Y, since if xg € Y
then xg € g(xp), and the definition of Y then would have xy ¢ Y. On the other
hand, it must be an element of Y, since if it were not, then xy ¢ Y = g(x¢). But
then x satisfies the defining condition of Y, and so xy € Y. In either case, we
have a contradiction. O

Problems

Problem 4.1. Give an enumeration of the set of all ordered pairs of positive
rational numbers.

Problem 4.2. Recall from your introductory logic course that each possible
truth table expresses a truth function. In other words, the truth functions are
all functions from B¥ — B for some k. Prove that the set of all truth functions
is enumerable.

Problem 4.3. Show that the set of all finite subsets of an arbitrary infinite
enumerable set is enumerable.

Problem 4.4. Show that if X and Y are enumerable, sois X U Y.

Problem 4.5. A set of positive integers is said to be cofinite iff it is the comple-
ment of a finite set of positive integers. Let I be the set that contains all the
finite and cofinite sets of positive integers. Show that I is enumerable.

Problem 4.6. Show that the enumerable union of enumerable sets is enumer-
able. That is, whenever X, Xy, ... are sets, and each X; is enumerable, then
the union (J; ; X; of all of them is also enumerable.

Problem 4.7. Show that p(IN) is non-enumerable.

Problem 4.8. Show that the set of functions f: Z* — Z* is non-enumerable
by an explicit diagonal argument.

Problem 4.9. Show that the set of all sets of pairs of positive integers is non-
enumerable.
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Problem 4.10. Show that IN“, the set of infinite sequences of natural numbers,
is non-enumerable.

Problem 4.11. Let P be the set of total functions from the set of positive in-
tegers to the set {0}, and let Q be the set of partial functions from the set of
positive integers to the set {0}. Show that P is enumerable and Q is not.

Problem 4.12. Let S be the set of all total surjective functions from the set of
positive integers to the set {0,1}. Show that S is non-enumerable.

Problem 4.13. Show that the set R of all real numbers is non-enumerable.

Problem 4.14. Show that if X is equinumerous with U and and Y is equinu-
merous with V, and the intersections X N Y and U NV are empty, then the
unions X UY and U U V are equinumerous.

Problem 4.15. Given an enumeration of a set X, show that if X is not finite
then it is equinumerous with the positive integers Z*.
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This part covers the metatheory of first-order logic through complete-
ness. Currently it does not rely on a separate treatment of propositional
logic. It is planned, however, to separate the propositional and quantifier
material on semantics and proof theory so that propositional logic can be
covered independently. This will become important especially when ma-
terial on propositional modal logic will be added, since then one might
not want to cover quantifiers. Currently two different proof systems are
offered as alternatives, (a version of) sequent calculus and natural deduc-
tion. A third alternative treatment based on Enderton-style axiomatic
deduction is available in experimental form in the branch “axiomatic-
deduction”. In particular, this part needs an introduction (issue #69).
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Chapter 5

Syntax and Semantics

5.1 First-Order Languages

Expressions of first-order logic are built up from a basic vocabulary containing
variables, constant symbols, predicate symbols and sometimes function symbols.
From them, together with logical connectives, quantifiers, and punctuation
symbols such as parentheses and commas, ferms and formulas are formed.

Informally, predicate symbols are names for properties and relations, con-
stant symbols are names for individual objects, and function symbols are names
for mappings. These, except for the identity predicate =, are the non-logical
symbols and together make up a language. Any first-order language £ is de-
termined by its non-logical symbols. In the most general case, £ contains
infinitely many symbols of each kind.

In the general case, we make use of the following symbols in first-order
logic:

1. Logical symbols

a) Logical connectives: — (negation), A (conjunction), V (disjunction),
— (conditional), <+ (biconditional), V (universal quantifier), 3 (ex-
istential quantifier).

b) The propositional constant for falsity L.
c) The propositional constant for truth T.
d) The two-place identity predicate =.

e) A denumerable set of variables: vy, vq, Vo, ...
2. Non-logical symbols, making up the standard language of first-order logic

a) A denumerable set of n-place predicate symbols for each n > 0: Aj,
Al AL, ..

b) A denumerable set of constant symbols: ¢y, c1, ¢, ....
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¢) A denumerable set of n-place function symbols for each n > 0: f;,
A AL

3. Punctuation marks: (, ), and the comma.

Most of our definitions and results will be formulated for the full standard
language of first-order logic. However, depending on the application, we may
also restrict the language to only a few predicate symbols, constant symbols,
and function symbols.

Example 5.1. The language £ 4 of arithmetic contains a single two-place pred-
icate symbol <, a single constant symbol o, one one-place function symbol 7/,
and two two-place function symbols + and x.

Example 5.2. The language of set theory £ contains only the single two-place
predicate symbol €.

Example 5.3. The language of orders L£< contains only the two-place predi-
cate symbol <.

Again, these are conventions: officially, these are just aliases, e.g., <, €,
and < are aliases for A3, o for ¢, / for f}', + for £, x for f2.

You may be familiar with different terminology and symbols than the ones
we use above. Logic texts (and teachers) commonly use either ~, -, and ! for
“negation”, A, -, and & for “conjunction”. Commonly used symbols for the
“conditional” or “implication” are —, =, and D. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are ¢+, <, and =. The L sym-
bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The T
symbol is variously called “truth,” “verum,”, or “top.”

It is conventional to use lower case letters (e.g., a, b, c) from the begin-
ning of the Latin alphabet for constant symbols (sometimes called names),
and lower case letters from the end (e.g., x, y, z) for variables. Quantifiers
combine with variables, e.g., x; notational variations include Vx, (Vx), (x),
ITx, \, for the universal quantifier and 3x, (3x), (Ex), Zx, \/, for the existen-
tial quantifier.

We might treat all the propositional operators and both quantifiers as prim-
itive symbols of the language. We might instead choose a smaller stock of
primitive symbols and treat the other logical operators as defined. “Truth
functionally complete” sets of Boolean operators include {—, V}, {—, A}, and
{—, = }—these can be combined with either quantifier for an expressively
complete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke |
(named after Henry Sheffer), and Peirce’s arrow |, also known as Quine’s
dagger. When given their usual readings of “nand” and “nor” (respectively),
these operators are truth functionally complete by themselves.
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5.2 Terms and Formulas

Once a first-order language L is given, we can define expressions built up
from the basic vocabulary of £. These include in particular terms and formulas.

Definition 5.4 (Terms). The set of terms Trm(L) of L is defined inductively
by:

1. Every variable is a term.
2. Every constant symbol of L is a term.

3. If f is an n-place function symbol and t1, .. ., t, are terms, then f(t1, ..., t,)
is a term.

4. Nothing else is a term.
A term containing no variables is a closed term.

The constant symbols appear in our specification of the language and the
terms as a separate category of symbols, but they could instead have been in-
cluded as zero-place function symbols. We could then do without the second
clause in the definition of terms. We just have to understand f(t4,...,t,) as
just f by itself if n = 0.

Definition 5.5 (Formula). The set of formulas Frm(L) of the language L is
defined inductively as follows:

1. 1 is an atomic formula.
2. T is an atomic formula.

3. If R is an n-place predicate symbol of £ and ty, ..., t, are terms of L,
then R(ty,...,t,) is an atomic formula.

4. If t; and t; are terms of £, then =(#1, ;) is an atomic formula.
5. If ¢ is a formula, then —¢ is formula.

6. If ¢ and ¢ are formulas, then (¢ A ¢) is a formula.

7. If ¢ and ¢ are formulas, then (¢ V ¢) is a formula.

8. If ¢ and ¢ are formulas, then (¢ — ) is a formula.

9. If ¢ and 1 are formulas, then (¢ « ¢) is a formula.

10. If @ is a formula and x is a variable, then Vx ¢ is a formula.

11. If ¢ is a formula and x is a variable, then 3x ¢ is a formula.
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12. Nothing else is a formula.

The definitions of the set of terms and that of formulas are inductive defini-
tions. Essentially, we construct the set of formulas in infinitely many stages.
In the initial stage, we pronounce all atomic formulas to be formulas; this
corresponds to the first few cases of the definition, i.e., the cases for T, L,
R(ty,...,tn) and =(t1,t2). “Atomic formula” thus means any formula of this
form.

The other cases of the definition give rules for constructing new formulas
out of formulas already constructed. At the second stage, we can use them to
construct formulas out of atomic formulas. At the third stage, we construct
new formulas from the atomic formulas and those obtained in the second
stage, and so on. A formula is anything that is eventually constructed at such
a stage, and nothing else.

By convention, we write = between its arguments and leave out the paren-
theses: t; = t; is an abbreviation for =(t1, f;). Moreover, ==(t1,t;) is abbre-
viated as t; # tp. When writing a formula (¢ * x) constructed from ¢, x
using a two-place connective *, we will often leave out the outermost pair of
parentheses and write simply ¢ * x.

Some logic texts require that the variable x must occur in ¢ in order for
Jdx ¢ and Vx ¢ to count as formulas. Nothing bad happens if you don’t require
this, and it makes things easier.

If we work in a language for a specific application, we will often write two-
place predicate symbols and function symbols between the respective terms,
e.g., t1 < tp and (#; + tp) in the language of arithmetic and t; € t; in the
language of set theory. The successor function in the language of arithmetic
is even written conventionally after its argument: ¢'. Officially, however, these
are just conventional abbreviations for A3 (t1, t2), f2(t1, t2), A3(t1, t2) and fL(t),
respectively.

Definition 5.6 (Syntactic identity). The symbol = expresses syntactic identity
between strings of symbols, i.e., ¢ = ¢ iff ¢ and i are strings of symbols of
the same length and which contain the same symbol in each place.

The = symbol may be flanked by strings obtained by concatenation, e.g.,
¢ = (¢ V x) means: the string of symbols ¢ is the same string as the one
obtained by concatenating an opening parenthesis, the string ¢, the V symbol,
the string x, and a closing parenthesis, in this order. If this is the case, then we
know that the first symbol of ¢ is an opening parenthesis, ¢ contains ¢ as a
substring (starting at the second symbol), that substring is followed by V, etc.

5.3 Unique Readability

The way we defined formulas guarantees that every formula has a unique read-
ing, i.e., there is essentially only one way of constructing it according to our
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formation rules for formulas and only one way of “interpreting” it. If this were
not so, we would have ambiguous formulas, i.e., formulas that have more
than one reading or intepretation—and that is clearly something we want to
avoid. But more importantly, without this property, most of the definitions
and proofs we are going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we
had given bad rules for forming formulas that would not guarantee unique
readability. For instance, we could have forgotten the parentheses in the for-
mation rules for connectives, e.g., we might have allowed this:

If ¢ and ¢ are formulas, then so is ¢ — .

Starting from an atomic formula 6, this would allow us to form § — 6. From
this, together with 6, we would get 6 — 6 — 6. But there are two ways to do
this:

1. We take 6 to be ¢ and 0 — 6 to be 1.
2. We take ¢ tobe 8§ — 6 and ¢ is 6.

Correspondingly, there are two ways to “read” the formula 6 — 6 — 0. It is
of the form i — x where ¢ is 6 and x is 6 — 6, but if is also of the form ¢ — x
with ¢ being 8 — 6 and x being 6.

If this happens, our definitions will not always work. For instance, when
we define the main operator of a formula, we say: in a formula of the form
1 — x, the main operator is the indicated occurrence of —. But if we can
match the formula 8 — 0 — 6 with ¢ — x in the two different ways men-
tioned above, then in one case we get the first occurrence of — as the main
operator, and in the second case the second occurrence. But we intend the
main operator to be a function of the formula, i.e., every formula must have
exactly one main operator occurrence.

Lemma 5.7. The number of left and right parentheses in a formula @ are equal.

Proof. We prove this by induction on the way ¢ is constructed. This requires
two things: (a) We have to prove first that all atomic formulas have the prop-
erty in question (the induction basis). (b) Then we have to prove that when
we construct new formulas out of given formulas, the new formulas have the
property provided the old ones do.

Let I(¢) be the number of left parentheses, and r(¢) the number of right
parentheses in ¢, and I(t) and r(t) similarly the number of left and right
parentheses in a term t. We leave the proof that for any term ¢, I(t) = r(t)
as an exercise.

1. ¢ = 1: @has0left and 0 right parentheses.
2. ¢ = T: ¢ has 0 left and 0 right parentheses.
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3.

¢ = R(ty,... tw): ) =14+1(t1) 4+ +1(ty) = 1+r(ty)+---+
r(ty) = r(¢). Here we make use of the fact, left as an exercise, that
I(t) = r(t) for any term ¢.

=1t =ty l((p) =1(t) +1(tp) =r(t1) +r(t2) = r(go)

¢ = —¢: By induction hypothesis, I(¢) = r(y). Thus I(¢) = () =
r(p) = ().

¢ = (¢ *x): By induction hypothesis, I(y) = r(¢) and I(x) = r(x)-
Thus I(¢) =1+ 1() +1(x) = 1+ r(p) +r(x) = r(¢).

¢ = Vx¢: By induction hypothesis, I(y) = r(¢). Thus, [(¢) = () =
r(p) = ().

@ = Jx: Similarly.

O

Definition 5.8 (Proper prefix). A string of symbols ¢ is a proper prefix of a
string of symbols ¢ if concatenating i and a non-empty string of symbols
yields ¢.

Lemma 5.9. If ¢ is a formula, and  is a proper prefix of ¢, then  is not a formula.

Proof. Exercise. O

Proposition 5.10. If ¢ is an atomic formula, then it satisfes one, and only one of the
following conditions.

1.
2.
3.

4.

=1
p=T.
@ = R(ty,...,ty) where R is an n-place predicate symbol, t1, ..., t, are terms,

and each of R, t1, ..., t, is uniquely determined.

¢ = t1 = tp where t1 and t, are uniquely determined terms.

Proof. Exercise. O

Proposition 5.11 (Unique Readability). Every formula satisfies one, and only one
of the following conditions.

1.
2.
3.
4.

@ is atomic.

@ is of the form —i.

@ is of the form (Y A x).
@ is of the form (¢ V x).
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5. @ is of the form (¢ — x).
6. ¢ is of the form (i <> x).
7. @ is of the form Vx .
8. @ is of the form 3x .

Moreover, in each case , or ¢ and ), are uniquely determined. This means that, e.g.,
there are no different pairs , x and ¢', x' so that ¢ is both of the form (¢ — x) and

(¥ = X).

Proof. The formation rules require that if a formula is not atomic, it must start
with an opening parenthesis (, -, or with a quantifier. On the other hand,
every formula that start with one of the following symbols must be atomic:
a predicate symbol, a function symbol, a constant symbol, L, T.

So we really only have to show that if ¢ is of the form (¢ * x) and also of
the form (¢’ «' x'), then p = ¢/, x = x/, and * = ¥

So suppose both ¢ = (¢ * x) and ¢ = (¢’ " x'). Then either ¢ = ¢’ or not.
If it is, clearly * = " and x = )/, since they then are substrings of ¢ that begin
in the same place and are of the same length. The other case is x #Z x’. Since
x and x’ are both substrings of ¢ that begin at the same place, one must be a
prefix of the other. But this is impossible by Lemma 5.9. O

5.4 Main operator of a Formula

It is often useful to talk about the last operator used in constructing a for-
mula ¢. This operator is called the main operator of ¢. Intuitively, it is the
“outermost” operator of ¢. For example, the main operator of —¢ is —, the
main operator of (¢ V ¢) is V, etc.

Definition 5.12 (Main operator). The main operator of a formula ¢ is defined
as follows:

1. ¢ is atomic: @ has no main operator.
@ = —1p: the main operator of ¢ is .
= ( A x): the main operator of ¢ is A.
= (¢ V x): the main operator of ¢ is V.
= (¢ — x): the main operator of ¢ is —.
= (

P <> x): the main operator of ¢ is <.

Vx1p: the main operator of ¢ is V.

® N o U bk W DN

'
'
'
¢
'
'

dx ¢: the main operator of ¢ is 3.
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In each case, we intend the specific indicated occurrence of the main opera-
tor in the formula. For instance, since the formula ((6 — a) — (o« — 6)) is of
the form (¢ — x) where ¢ is (0 — «) and x is (« — 6), the second occurrence
of — is the main operator.

This is a recursive definition of a function which maps all non-atomic for-
mulas to their main operator occurrence. Because of the way formulas are de-
fined inductively, every formula ¢ satisfies one of the cases in Definition 5.12.
This guarantees that for each non-atomic formula ¢ a main operator exists.
Because each formula satisfies only one of these conditions, and because the
smaller formulas from which ¢ is constructed are uniquely determined in each
case, the main operator occurrence of ¢ is unique, and so we have defined a
function.

We call formulas by the following names depending on which symbol their
main operator is:

Main operator Type of formula Example
none atomic (formula) L, T,R(t,---,tn), 1 =t
- negation )
A conjunction (e N Y)
v disjunction (p V)
— conditional (p =)
v universal (formula) Vx @
3 existential (formula) dx g

5.5 Subformulas

It is often useful to talk about the formulas that “make up” a given formula.
We call these its subformulas. Any formula counts as a subformula of itself; a
subformula of ¢ other than ¢ itself is a proper subformula.

Definition 5.13 (Immediate Subformula). If ¢ is a formula, the immediate sub-
formulas of ¢ are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.
2. ¢ = —p: The only immediate subformula of ¢ is .

3. ¢ = (¢ * x): The immediate subformulas of ¢ are ¢ and x (x is any one
of the two-place connectives).

4. ¢ =Vx1p: The only immediate subformula of ¢ is 1.
5. ¢ = dx: The only immediate subformula of ¢ is .

Definition 5.14 (Proper Subformula). If ¢ is a formula, the proper subformulas
of ¢ are recursively as follows:

1. Atomic formulas have no proper subformulas.
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2. ¢ = ~: The proper subformulas of ¢ are i together with all proper
subformulas of .

3. ¢ = (P xx): The proper subformulas of ¢ are ¥, x, together with all
proper subformulas of ¢ and those of yx.

4. ¢ = Vx¢: The proper subformulas of ¢ are ¢ together with all proper
subformulas of 9.

5. ¢ = dx¢: The proper subformulas of ¢ are ¢ together with all proper
subformulas of .

Definition 5.15 (Subformula). The subformulas of ¢ are ¢ itself together with
all its proper subformulas.

Note the subtle difference in how we have defined immediate subformulas
and proper subformulas. In the first case, we have directly defined the imme-
diate subformulas of a formula ¢ for each possible form of ¢. It is an explicit
definition by cases, and the cases mirror the inductive definition of the set of
formulas. In the second case, we have also mirrored the way the set of all
formulas is defined, but in each case we have also included the proper subfor-
mulas of the smaller formulas ¢, x in addition to these formulas themselves.
This makes the definition recursive. In general, a definition of a function on an
inductively defined set (in our case, formulas) is recursive if the cases in the
definition of the function make use of the function itself. To be well defined,
we must make sure, however, that we only ever use the values of the function
for arguments that come “before” the one we are defining—in our case, when
defining “proper subformula” for (¢ * x) we only use the proper subformulas
of the “earlier” formulas ¢ and x.

5.6 Free Variables and Sentences

Definition 5.16 (Free occurrences of a variable). The free occurrences of a vari-
able in a formula are defined inductively as follows:

1. ¢ is atomic: all variable occurrences in ¢ are free.
2. @ = —ip: the free variable occurrences of ¢ are exactly those of .

3. ¢ = (P xx): the free variable occurrences of ¢ are those in ¢ together
with those in .

4. ¢ = Vx: the free variable occurrences in ¢ are all of those in ¢ except
for occurrences of x.

5. ¢ = dx¢: the free variable occurrences in ¢ are all of those in ¢ except
for occurrences of x.
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Definition 5.17 (Bound Variables). An occurrence of a variable in a formula ¢
is bound if it is not free.

Definition 5.18 (Scope). If Vx 1 is an occurrence of a subformula in a for-
mula ¢, then the corresponding occurrence of i in ¢ is called the scope of the
corresponding occurrence of Vx. Similarly for Jx.

If ¢ is the scope of a quantifier occurrence Vx or Jx in ¢, then all occur-
rences of x which are free in 1 are said to be bound by the mentioned quantifier
occurrence.

Example 5.19. Consider the following formula:

E|V0 A%(Vo, V1)
N——r
¥
1 represents the scope of Jvy. The quantifier binds the occurence of vy in ¥,

but does not bind the occurence of v;. So v; is a free variable in this case.
We can now see how this might work in a more complicated formula ¢:
0
1 2 2 1
Vv (Ao(VO) — AO(V(), Vl)) — dv (Al(VO, Vl) V Vv —|A1(V0))

Y X

1 is the scope of the first Vv, x is the scope of v, and 8 is the scope of the
second Vv. The first Vv binds the occurrences of vy in ¢, v; the occurrence of
vy in x, and the second Vv binds the occurrence of v in 6. The first occurrence
of v; and the fourth occurrence of v are free in ¢. The last occurrence of v is
free in 6, but bound in ) and ¢.

Definition 5.20 (Sentence). A formula ¢ is a sentence iff it contains no free
occurrences of variables.

5.7 Substitution

Definition 5.21 (Substitution in a term). We define s[t/ x|, the result of substi-
tuting t for every occurrence of x in s, recursively:

1. s =c: s[t/x]isjusts.

2. s=y: s[t/x]isalsojusts, provided y is a variable other than x.
3. s=ux: s[t/x]ist.

4. s=f(ty,..., tn): s[t/x]is f(t1[t/x], ..., tu[t/x]).

Definition 5.22. A term ¢ is free for x in ¢ if none of the free occurrences of x
in ¢ occur in the scope of a quantifier that binds a variable in ¢.
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Definition 5.23 (Substitution in a formula). If ¢ is a formula, x is a variable,
and t is a term free for x in ¢, then ¢[t/x] is the result of substituting f for all
free occurrences of x in ¢.

1. ¢ =P(ty,...,tn): @[t/x]is P(1[t/x],..., ta[t/x]).
2. 9=t =ty @[t/x]isti[t/x] = [t/ x].

¢ =—p: @[t/x]is ~p[t/x].

9= (AX): olt/x]is (p[t/x] A x[t/x]).

9= (Vx): olt/xlis (p[t/x] v x[t/x]).

9= (Y —x): olt/x]is (p[t/x] — x[t/x]).

9= (& x): olt/xlis (p[t/x] < x[t/x]).

8. ¢ = Vyy: ¢[t/x]is Vyy[t/x], provided y is a variable other than x;
otherwise @[t/ x] is just ¢.

S T

N

9. ¢ = Jyy: @[t/x]is Jy[t/x], provided y is a variable other than x;
otherwise ¢[t/x] is just ¢.

Note that substitution may be vacuous: If x does not occur in ¢ at all, then
@[t/ x] isjust ¢.

The restriction that t must be free for x in ¢ is necessary to exclude cases
like the following. If ¢ = Jyx < y and t = y, then ¢[t/x] would be Jyy <
y. In this case the free variable y is “captured” by the quantifier 3y upon
substitution, and that is undesirable. For instance, we would like it to be the
case that whenever Vx ¢ holds, so does [t/ x]. But consider Vx 3y x < y (here
P is Jyx < y). It is sentence that is true about, e.g., the natural numbers:
for every number x there is a number y greater than it. If we allowed y as a
possible substitution for x, we would end up with ¢[y/x] = Jyy < y, which
is false. We prevent this by requiring that none of the free variables in ¢t would
end up being bound by a quantifier in ¢.

We often use the following convention to avoid cumbersume notation: If
¢ is a formula with a free variable x, we write ¢(x) to indicate this. When it is
clear which ¢ and x we have in mind, and f is a term (assumed to be free for
xin ¢(x)), then we write ¢(t) as short for ¢(x)[t/x].

5.8 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols,
function symbols, and predicate symbols have no specific meaning attached
to them. Meanings are given by specifying a structure. It specifies the domain,
i.e., the objects which the constant symbols pick out, the function symbols
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operate on, and the quantifiers range over. In addition, it specifies which con-
stant symbols pick out which objects, how a function symbol maps objects
to objects, and which objects the predicate symbols apply to. Structures are
the basis for semantic notions in logic, e.g., the notion of consequence, valid-

ity, satisfiablity. They are variously called “structures,” “interpretations,” or
“models” in the literature.

Definition 5.24 (Structures). A structure 9, for a language £ of first-order
logic consists of the following elements:

1. Domain: a non-empty set, ||

2. Interpretation of constant symbols: for each constant symbol c of £, an ele-
ment ¢™ € |9

3. Interpretation of predicate symbols: for each n-place predicate symbol R of
L (other than =), an n-place relation R™ C |9m|"

4. Interpretation of function symbols: for each n-place function symbol f of
L, an n-place function f™: |9|" — |9

Example 5.25. A structure 9 for the language of arithmetic consists of a set,
an element of |7, 0™, as interpretation of the constant symbol o, a one-place
function /M |9| — |9M], two two-place functions +™ and x™, both |M|? —
97|, and a two-place relation <™ C |90|>.

An obvious example of such a structure is the following:

1L M =N

2.0M=0

3. M(n)=n+1foralln € N

4. +(n,m) =n+mforalln,m € N

5. xM(n,m) =n-mforalln,m € N

6. <M= {(n,m):n€N,meN,n<m}

The structure 2 for £4 so defined is called the standard model of arithmetic,
because it interprets the non-logical constants of £4 exactly how you would
expect.

However, there are many other possible structures for £ 4. For instance,
we might take as the domain the set Z of integers instead of IN, and define the
interpretations of o, /, +, X, < accordingly. But we can also define structures
for £ 4 which have nothing even remotely to do with numbers.
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Example 5.26. A structure 91 for the language £ of set theory requires just a
set and a single-two place relation. So technically, e.g., the set of people plus
the relation “x is older than y” could be used as a structure for £z, as well as
N together with n > m for n,m € IN.

A particularly interesting structure for £ in which the elements of the
domain are actually sets, and the interpretation of € actually is the relation “x
is an element of y” is the structure $F of hereditarily finite sets:

L 93] = 20U p(@) Up(p(@)) Up(p(p(@)))U...;
2. €98 = {{x,y) : x,y € |95F|,x €y}
Recall that a term is closed if it contains no variables.

Definition 5.27 (Value of closed terms). If  is a closed term of the langage £
and 9 is a structure for £, the value Val™ (t) is defined as follows:

1. If t is just the constant symbol ¢, then Val™ (¢) = ¢™.

2. If t is of the form f(ty,...,t,), then

Val™ () = P (Val™ (1), ..., Val™ (t,)).

Definition 5.28 (Covered structure). A structure is covered if every element of
the domain is the value of some closed term.

Example 5.29. Let £ be the language with constant symbols zero, one, two, ...,
the binary predicate symbols = and <, and the binary function symbols + and
x. Then a structure 9 for £ is the one with domain [9t| = {0,1,2,...} and
name assignment zero™ =0, one™ = 1, two™ = 2, and so forth. For the
binary relation symbol <, the set <™ is the set of all pairs (c1,c2) € |£)ZR|2
such that the integer c; is less than the integer c,: for example, (1,3) €<™ but
(2,2) <™. For the binary function symbol +, define +”" in the usual way—
for example, +7(2,3) maps to 5, and similarly for the binary function symbol
x. Hence, the value of four is just 4, and the value of x (two,+(three, zero))
(or in infix notation, two X (three+ zero) )is

Val™ (x (two, +(three, zero)) =

= xM(Val™ (two), Val™ (two, +(three, zero)))

= xM(Val™ (two), +7 (Val™ (three), Val™ (zero)))
two™, +M (three™, zero™))

2,+7(3,0))
2
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The stipulations we make as to what counts as a structure impact our logic.
For example, the choice to prevent empty domains ensures, given the usual
account of satisfaction (or truth) for quantified sentences, that 3x (¢(x) V —¢(x))
is valid—that is, a logical truth. And the stipulation that all constant symbols
must refer to an object in the domain ensures that the existential generaliza-
tion is a sound pattern of inference: ¢(a), therefore 3x ¢(x). If we allowed
names to refer outside the domain, or to not refer, then we would be on our
way to a free logic, in which existential generalization requires an additional
premise: ¢(a) and 3x x = a, therefore Jx ¢(x).

5.9 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and formulas, on the
one hand, and structures on the other, are those of value of a term and satisfac-
tion of a formula. Informally, the value of a term is an element of a structure—
if the term is just a constant, its value is the object assigned to the constant
by the structure, and if it is built up using function symbols, the value is com-
puted from the values of constants and the functions assigned to the functions
in the term. A formula is satisfied in a structure if the interpretation given to
the predicates makes the formula true in the domain of the structure. This
notion of satisfaction is specified inductively: the specification of the struc-
ture directly states when atomic formulas are satisfied, and we define when a
complex formula is satisfied depending on the main connective or quantifier
and whether or not the immediate subformulas are satisfied. The case of the
quantifiers here is a bit tricky, as the immediate subformula of a quantified for-
mula has a free variable, and structures don’t specify the values of variables.
In order to deal with this difficulty, we also introduce variable assignments and
define satisfaction not with respect to a structure alone, but with respect to a
structure plus a variable assignment.

Definition 5.30 (Variable Assignment). A wvariable assignment s for a struc-
ture 9 is a function which maps each variable to an element of |90, ie.,
s: Var — |9

A structure assigns a value to each constant symbol, and a variable assign-
ment to each variable. But we want to use terms built up from them to also
name elements of the domain. For this we define the value of terms induc-
tively. For constant symbols and variables the value is just as the structure or
the variable assignment specifies it; for more complex terms it is computed
recursively using the functions the structure assigns to the function symbols.

Definition 5.31 (Value of Terms). If ¢ is a term of the language £, M is a struc-
ture for £, and s is a variable assignment for 9, the value Valém(t) is defined
as follows:
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1. t=c: Val?'(t) = ™.
2. t=x: Val?' (1) = s(x).
3.t=f(ty,... t):
Val?* (t) = ™ (ValPt (t), ..., Va2t (£,)).

Definition 5.32 (x-Variant). If s is a variable assignment for a structure 90,

then any variable assignment s’ for 9 which differs from s at most in what it

assigns to x is called an x-variant of s. If s’ is an x-variant of s we write s ~y s'.

Note that an x-variant of an assignment s does not have to assign something
different to x. In fact, every assignment counts as an x-variant of itself.

Definition 5.33 (Satisfaction). Satisfaction of a formula ¢ in a structure 9t rel-
ative to a variable assignment s, in symbols: 90, s |= ¢, is defined recursively
as follows. (We write M, s = ¢ to mean “not M, s = ¢.”)

1. ¢ = L: notM,s = ¢.
2.9=T: Ms = o.

3. 9 = R(ty, ..., tp): M,s = @iff (ValX* (t1),..., Val? (t,)) € R™.
4. g =t =ty M,s = @iff Va2l (t) = Val?* (tp).

5. ¢ = M,s = @iff M, s |~ 9.

6. 9= (PAX): Ms = @iff M,s =1 and M, s = x.
7.9=(pVx): Msl=@iff M,s = ¢ orM,s = ¢ (or both).

8. 9= (P — x): Ms = @iff M, s = orM,s = x (or both).

9. ¢ = (¢ < x): M,s = ¢ iff either both M,s = ¢ and M,s = x, or
neither M, s |= ¢ nor M, s |= x.

10. ¢ = Vx¢: M,s = ¢ iff for every x-variant s’ of s, M, s’ = .
11. ¢ =3Jxy: M,s = ¢ iff there is an x-variant s’ of s so that M, s’ = .

The variable assignments are important in the last two clauses. We cannot
define satisfaction of Vx (x) by “for all a € ||, M = ¢(a).” We cannot
define satisfaction of 3x ¢(x) by “for at least one a € ||, M |= ¥(a).” The
reason is that a is not symbol of the language, and so (a) is not a formula (that
is, [a/x] is undefined). We also cannot assume that we have constant sym-
bols or terms available that name every element of 91, since there is nothing
in the definition of structures that requires it. Even in the standard language
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the set of constant symbols is denumerable, so if |91 is not enumerable there
aren’t even enough constant symbols to name every object.

A variable assignment s provides a value for every variable in the language.
This is of course not necessary: whether or not a formula ¢ is satisfied in a
structure with respect to s only depends on the assignments s makes to the free
variables that actually occur in ¢. This is the content of the next theorem. We
require variable assignments to assign values to all variables simply because
it makes things a lot easier.

Proposition 5.34. If x1, ..., x, are the only free variables in ¢ and s(x;) = s'(x;)
fori=1,...,n then M,s = @ iff M, s’ |= ¢.

Proof. We use induction on the complexity of ¢. For the base case, where ¢
is atomic, ¢ canbe: T, L, R(ty,..., ;) for a k-place predicate R and terms t1,
..., tx, or t; = tp for terms t; and tp.

1. ¢ = T: bothM,s = g and M, s’ = ¢.
2. 9= 1: bothM,s [~ ¢ and M, s [~ ¢.
3. ¢ =R(ty,...,t): letM,s = ¢. Then
(Val?* (t1),...,ValZ (t;)) € R™.

Fori=1,...,k, if t; is a constant, then Val?* (t;) = Val™ (t;) = ValZ' (t;).
If t; is a free variable, then since the mappings s and s’ agree on all free
variables, Val?' (t;) = s(t;) = s'(t;) = Val3'(t;). Similarly, if t; is of
the form f(#],. ..,t;.), we will also get Val2'(t;) = Val¥'(t;). Hence,
Val?' (t;) = ValZ'(t;) for any term ¢t; for i = 1, ..., k, so we also have
(Val?¥ (t;),...,Val? (1)) € R™.

4.9 =t =ty ifMs = ¢, Vallt () = ValPl(t) = Valll(ty) =
Val (t,), so M, s’ |= t; = ty.

—_

Now assume M, s = P iff M, s’ |= ¢ for all formulas ¢ less complex than ¢.
The induction step proceeds by cases determined by the main operator of ¢.
In each case, we only demonstrate the forward direction of the biconditional;
the proof of the reverse direction is symmetrical.

1. ¢ = ¢ if M, s = ¢, then M, s %= P, so by the induction hypothesis,
M, s" = P, hence M, s’ |= ¢.

2. 9=¢pAx ifMs = ¢, thenM,s = 1 and M, s |= x, so by induction
hypothesis, M, s’ = p and M, s’ |= x. Hence, M, s’ |= ¢.

B.o=¢pVvyx ifMs = ¢ thenM,s = ¢ or M,s = x. By induction
hypothesis, M, s’ = or M,s’ = x, so M, s" = ¢.
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4. 9 =¢ — x: if M,s = ¢, then M, s = ¢ or M, s |= x. By the induction
hypothesis, M, s’ = ¢ or M, s’ |= x, so M, s’ = ¢.

5. ¢ = ¢ < x: if M,s = ¢, then either M,s = ¢ and M,s = yx, or
M, s = ¢ and M, s [~ x. By the induction hypothesis, either 9, s’ |= ¢
and M, s" = x or M, s' = Y and M, s’ [~ x. In either case, M, s = ¢.

6. ¢ = Jxp: if M, s |= ¢, there is an x-variant 5 of s so that M, 5 |= . Let '
denote the x-variant of s’ that assigns the same thing to x as does 5: then
by the induction hypothesis, 9,5’ |= 1. Hence, there is an x-variant of
s’ that satisfies i, so M, s’ = ¢.

7. ¢ =Vxip: if M,s = ¢, then for every x-variant 5 of s, M, 5 |= 1. Hence,
if 5 is the x-variant of s’ that assigns the same thing to x as does 3, then
we have 9,5 |= 1. Hence, every x-variant of s’ satisfies ¢, so M, s’ |= ¢

By induction, we get that 9, s |= ¢ iff M, s’ = ¢ whenever xq, ..., x,, are the
only free variables in ¢ and s(x;) = s'(x;) fori =1, ..., n. O

Definition 5.35. If ¢ is a sentence, we say that a structure 91 satisfies ¢, M = ¢,
iff M, s = ¢ for all variable assignments s.
If M |= ¢, we also say that ¢ is true in M.

Proposition 5.36. Suppose ¢(x) only contains x free, and O is a structure. Then:
1. M = Ix o(x) iff M, s = ¢(x) for at least one variable assignment s.
2. M = Vx p(x) iff M, s = ¢(x) for all variable assignments s.

Proof. Exercise. O

5.10 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as fol-
lows: the only thing that bears upon the satisfaction of formula ¢ in a struc-
ture 9 relative to a variable assignment s, are the assignments made by 9
and s to the elements of the language that actually appear in ¢.

One immediate consequence of extensionality is that where two struc-
tures M and M’ agree on all the elements of the language appearing in a
sentence ¢ and have the same domain, 9 and 9 must also agree on ¢
itself.

Proposition 5.37 (Extensionality). Let ¢ be a sentence, and 9 and ' be struc-
tures. If ™ = ¢, RM = R™ and f™ = % for every constant symbol c,
relation symbol R, and function symbol f occurring in ¢, then M |= ¢ iff M’ = ¢.

Moreover, the value of a term, and whether or not a structure satisfies a
formula, only depends on the values of its subterms.
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Proposition 5.38. Let M be a structure, t and t' terms, and s a variable assignment.
Let s’ ~y s be the x-variant of s given by s’ (x) = Val2* (/). Then Val?* (t[t'/x]) =
Val? (t).

Proof. By induction on ¢.

1. If t is a constant, say, t = ¢, then t['/x] = ¢, and Val?'(c)
Val (c).

c =

2. If t is a variable other than x, say, t = y, then t[t'/x] = y, and Val> (y) =
Val? (y) since s” ~y s.
3. If t = x, then [t/ /x] = . But Va2 (x) = Val?* (#) by definition of s'.

4. If t = f(t1,...,tn) then we have:

Valt (¢t /x]) =

=ValP (f(t1[t' /%], ..., talt' /%]))
by definition of ¢[t' /x]

= N (ValP (1 [t /x]),. .., Vall (14t /x]))
by definition of Val?* (f(...))

= A (Vald (ty),...,ValT (t,))
by induction hypothesis

= Val?* (t) by definition of Va2 (f(...))

O

Proposition 5.39. Let 9t be a structure, ¢ a formula, t a term, and s a variable
assignment. Let s' ~y s be the x-variant of s given by s'(x) = Val?'(t). Then

M,s |= o[t/x]iff M,s" = ¢.

Proof. Exercise. O

5.11 Semantic Notions

Give the definition of structures for first-order languages, we can define some
basic semantic properties of and relationships between sentences. The sim-
plest of these is the notion of validity of a sentence. A sentence is valid if it is
satisfied in every structure. Valid sentences are those that are satisfied regard-
less of how the non-logical symbols in it are interpreted. Valid sentences are
therefore also called logical truths—they are true, i.e., satisfied, in any struc-
ture and hence their truth depends only on the logical symbols occurring in
them and their syntactic structure, but not on the non-logical symbols or their
interpretation.
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Definition 5.40 (Validity). A sentence ¢ is valid, £ ¢, iff M = ¢ for every
structure 9.

Definition 5.41 (Entailment). A set of sentences I entails a sentence ¢, I' F ¢,
iff for every structure Mwith M =T, M = ¢

Definition 5.42 (Satisfiability). A set of sentences I’ is satisfiable if M |= I for
some structure M. If I is not satisfiable it is called unsatisfiable.

Proposition 5.43. A sentence ¢ is valid iff I E ¢ for every set of sentences I'.

Proof. For the forward direction, let ¢ be valid, and let I" be a set of sentences.
Let 91 be a structure so that 9 |= I'. Since ¢ is valid, M = ¢, hence I'  ¢.
For the contrapositive of the reverse direction, let ¢ be invalid, so there is
a structure M with M = ¢. When I' = {T }, since T is valid, M = I'. Hence,
there is a structure 9 so that 9 = I but M [~ ¢, hence I' does not entail
Q. O

Proposition 5.44. I ¢ iff I U {—¢} is unsatisfiable.

Proof. For the forward direction, suppose I E ¢ and suppose to the contrary
that there is a structure 9 so that M = I' U {—¢}. Since M = T'and I F ¢,
M |= ¢. Also, since M = T'U{-¢}, M | —¢, so we have both M |= ¢ and
9 = ¢, a contradiction. Hence, there can be no such structure 9, so I' U { ¢}
is unsatisfiable.

For the reverse direction, suppose I' U { ~¢} is unsatisfiable. So for every
structure M, either M (= I' or M = ¢. Hence, for every structure M with
MET,ME g s0l E g 0

Proposition 5.45. If [ C " and T & ¢, then I & ¢.

Proof. Suppose that ' C I'" and I' E ¢. Let 9 be such that M |= I; then
M = I, and since I' £ ¢, we get that M = ¢. Hence, whenever M = I7,
MEg@,s0l’ E g. O

Theorem 5.46 (Semantic Deduction Theorem). I'U{¢} F ¢ iff T E ¢ — .

Proof. For the forward direction, let I' U {¢} F ¢ and let 901 be a structure so
that M =T M = ¢, then M =T U{¢}, sosince I' U {¢} entails ¢, we get
M |= . Therefore, M = ¢ — P, s0 T F ¢ — ¢.

For the reverse direction, let I' £ ¢ — 1 and 90 be a structure so that
METU{¢p}. ThenM =T,s0M = ¢ — ¢, and since M = ¢, M |= 1,0
Hence, whenever M = T'U{¢}, M= ¢, so T U{p} E .
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Problems

Problem 5.1. Prove Lemma 5.9.

Problem 5.2. Prove Proposition 5.10 (Hint: Formulate and prove a version of
Lemma 5.9 for terms.)

Problem 5.3. Give an inductive definition of the bound variable occurrences
along the lines of Definition 5.16.

Problem 5.4. Is N, the standard model of arithmetic, covered? Explain.

Problem 5.5. Let £ = {c, f, A} with one constant symbol, one one-place func-
tion symbol and one two-place predicate symbol, and let the structure 9 be
given by

1. || = {1,2,3}

2. M =3

3. (1) =2, fM(2) =3, fM(3) =2
4. A™ = {(1,2),(2,3),(3,3)}

(a) Let s(v) = 1 for all variables v. Find out whether

M, s |=3x (A(f(z),¢) = Yy (Aly,x) V A(f(y), x)))

Explain why or why not.
(b) Give a different structure and variable assignment in which the formula
is not satisfied.

Problem 5.6. Complete the proof of Proposition 5.34.

Problem 5.7. Show that if ¢ is a sentence, 9 |= ¢ iff there is a variable assign-
ment s so that M, s |= ¢.

Problem 5.8. Prove Proposition 5.36.

Problem 5.9. Suppose L is a language without function symbols. Given a
structure M and a € |M|, define M[a/c] to be the structure that is just like 9,
except that ¢™1%/¢] = 4. Define 9 | = ¢ for sentences ¢ by:

1. p = L: notM ||~ ¢.

2.9=T: M|E= 9.

3. 9 =R(dy,...,dyn): M| @iff (d7,...,d7%) € R
4. p=dy =dy: M|E @iff dP = dF".
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¢ =—: M ||= @ iff not M [|= .

9= (pAX): M= @iff M |i= y and M |f= .

9= (pVx): M= @iff M |I= g or M |I= ¢ (or both).
= (P —x): M= @iff not M |= ¢ or M |= x (or both).

o *® N o @

@ = (P < x): M| g iff either both M ||= ¢ and M |= x, or neither
M |I= g nor M |- x.

10. ¢ = Vxy: M ||= g iff for alla € ||, M[a/c] |= ¢lc/x], if c does not
occur in .

11. ¢ = Ixy: M ||= ¢ iff there is an a € |M| such that M[a/c] ||= P[c/x],
if ¢ does not occur in .

Let x1, ..., x, be all free variables in ¢, ¢y, ..., ¢; constant symbols not in ¢,
ay, ..., ap € M|, and s(x;) = a;.
Show that M, s |= @ iff M[ay/c1,...,an/cu] |E= @lc1/x1] ... [cn/ xn].

Problem 5.10. Suppose that f is a function symbol not in ¢(x,y). Show that
there is a 9 such that M = Vx Iy ¢(x,y) iff there is a M such that M’ =

Vx g (x, f(x)).

Problem 5.11. Prove Proposition 5.39

Problem 5.12. 1. Show that I' F L iff I is unsatisfiable.
2. Show that I, p F L iff I' F —¢.

3. Suppose ¢ does not occur in ¢ or I'. Show that I' £ Vx ¢ iff I F ¢[c/x].
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Chapter 6

Theories and Their Models

6.1 Introduction

The development of the axiomatic method is a significant achievement in the
history of science, and is of special importance in the history of mathemat-
ics. An axiomatic development of a field involves the clarification of many
questions: What is the field about? What are the most fundamental concepts?
How are they related? Can all the concepts of the field be defined in terms of
these fundamental concepts? What laws do, and must, these concepts obey?

The axiomatic method and logic were made for each other. Formal logic
provides the tools for formulating axiomatic theories, for proving theorems
from the axioms of the theory in a precisely specified way, for studying the
properties of all systems satisfying the axioms in a systematic way.

Definition 6.1. A set of sentences I is closed iff, whenever I' F ¢ then ¢ € I.
The closure of a set of sentences I'is {¢ : I' F ¢}.

We say that I is axiomatized by a set of sentences Aif I is the closure of A

We can think of an axiomatic theory as the set of sentences that is axiom-
atized by its set of axioms A. In other words, when we have a first-order lan-
guage which contains non-logical symbols for the primitives of the axiomat-
ically developed science we wish to study, together with a set of sentences
that express the fundamental laws of the science, we can think of the theory
as represented by all the sentences in this language that are entailed by the
axioms. This ranges from simple examples with only a single primitive and
simple axioms, such as the theory of partial orders, to complex theories such
as Newtonian mechanics.

The important logical facts that make this formal approach to the axiomatic
method so important are the following. Suppose I is an axiom system for a
theory, i.e., a set of sentences.
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. We can state precisely when an axiom system captures an intended class

of structures. That is, if we are interested in a certain class of structures,
we will successfully capture that class by an axiom system I’ iff the struc-
tures are exactly those 9 such that M = T.

. We may fail in this respect because there are M such that M |= I', but 9

is not one of the structures we intend. This may lead us to add axioms
which are not true in 1.

. If we are successful at least in the respect that I' is true in all the intended

structures, then a sentence ¢ is true in all intended structures whenever
I' E ¢. Thus we can use logical tools (such as proof methods) to show
that sentences are true in all intended structures simply by showing that
they are entailed by the axioms.

. Sometimes we don’t have intended structures in mind, but instead start

from the axioms themselves: we begin with some primitives that we
want to satisfy certain laws which we codify in an axiom system. One
thing that we would like to verify right away is that the axioms do not
contradict each other: if they do, there can be no concepts that obey
these laws, and we have tried to set up an incoherent theory. We can
verify that this doesn’t happen by finding a model of I'. And if there are
models of our theory, we can use logical methods to investigate them,
and we can also use logical methods to construct models.

. The independence of the axioms is likewise an important question. It

may happen that one of the axioms is actually a consequence of the oth-
ers, and so is redundant. We can prove that an axiom ¢ in I" is redundant
by proving I' \ {¢} F ¢. We can also prove that an axiom is not redun-
dant by showing that (I' \ {¢}) U {—¢} is satisfiable. For instance, this is
how it was shown that the parallel postulate is independent of the other
axioms of geometry.

. Another important question is that of definability of concepts in a the-

ory: The choice of the language determines what the models of a theory
consists of. But not every aspect of a theory must be represented sep-
arately in its models. For instance, every ordering < determines a cor-
responding strict ordering <—given one, we can define the other. So it
is not necessary that a model of a theory involving such an order must
also contain the corresponding strict ordering. When is it the case, in
general, that one relation can be defined in terms of others? When is it
impossible to define a relation in terms of other (and hence must add it
to the primitives of the language)?
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6.2 Expressing Properties of Structures

It is often useful and important to express conditions on functions and rela-
tions, or more generally, that the functions and relations in a structure satisfy
these conditions. For instance, we would like to have ways of distinguishing
those structures for a language which “capture” what we want the predicate
symbols to “mean” from those that do not. Of course we're completely free
to specify which structures we “intend,” e.g., we can specify that the inter-
pretation of the predicate symbol < must be an ordering, or that we are only
interested in interpretations of £ in which the domain consists of sets and €
is interpreted by the “is an element of” relation. But can we do this with sen-
tences of the language? In other words, which conditions on a structure 9t can
we express by a sentence (or perhaps a set of sentences) in the language of 9t?
There are some conditions that we will not be able to express. For instance,
there is no sentence of £, which is only true in a structure 9t if || = IN.
We cannot express “the domain contains only natural numbers.” But there
are “structural properties” of structures that we perhaps can express. Which
properties of structures can we express by sentences? Or, to put it another
way, which collections of structures can we describe as those making a sen-
tence (or set of sentences) true?

Definition 6.2 (Model of a set). Let I' be a set of sentences in a language L.
We say that a structure 9 is a model of I' if M |= ¢ forall p € T.

Example 6.3. The sentence Vx x < x is true in 91 iff <M is a reflexive relation.
The sentence VxVy ((x < y Ay < x) — x = y) is true in M iff <™ is anti-
symmetric. The sentence VxVyVz ((x < y Ay < z) — x < z) is true in N iff
<M is transitive. Thus, the models of
{ Vxx<x,

Vavy ((x SyAy <x) = x=y),

VaVyVz(x <yAy<z)—>x<z) }
are exactly those structures in which <M i3 reflexive, anti-symmetric, and

transitive, i.e., a partial order. Hence, we can take them as axioms for the
first-order theory of partial orders.

6.3 Examples of First-Order Theories

Example 6.4. The theory of strict linear orders in the language £ is axioma-
tized by the set

Vx—x < x,
VxVy((x <yVy<x)Vx=y),
VaVyVz (x <yAy <z) —x<z)
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It completely captures the intended structures: every strict linear order is a
model of this axiom system, and vice versa, if R is a linear order on a set X,
then the structure 9t with |9?| = X and <™= R is a model of this theory.

Example 6.5. The theory of groups in the language 1 (constant symbol),
(two-place function symbol) is axiomatized by

Vx(x-1)=x
VxVyvz(x-(y-2)) = ((x-y)-2)
Vedy(x-y) =1

Example 6.6. The theory of Peano arithmetic is axiomatized by the following
sentences in the language of arithmetic £ 4.

-3xx’' =0

VaVy (x' =y = x=1y)

VaVy (x <y <+ Jz(x+2 =vy))
Vx(x+o0)=x

VxVy (x+y') = (x +y)’
Vx(xxo0)=o0

Vavy (¢ o) = (¥ X y) + )

plus all sentences of the form

(9(0) AVx (p(x) = ¢(x))) = Vx p(x)

Since there are infinitely many sentences of the latter form, this axiom sys-
tem is infinite. The latter form is called the induction schema. (Actually, the
induction schema is a bit more complicated than we let on here.)

The third axiom is an explicit definition of <.

Example 6.7. The theory of pure sets plays an important role in the founda-
tions (and in the philosophy) of mathematics. A set is pure if all its elements
are also pure sets. The empty set counts therefore as pure, but a set that has
something as an element that is not a set would not be pure. So the pure sets
are those that are formed just from the empty set and no “urelements,” i.e.,
objects that are not themselves sets.

The following might be considered as an axiom system for a theory of pure
sets:

Ix-Jyyex
VxVy(Vz(zex < z€y) 2 x=y)
VxVyIzVu(u ez (u=xVu=y))
Vx3JyVz(z€y <« Ju(z€uhu € x))
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plus all sentences of the form

IxVy (y € x < 9(y))

The first axiom says that there is a set with no elements (i.e., @ exists); the
second says that sets are extensional; the third that for any sets X and Y, the
set {X, Y} exists; the fourth that for any sets X and Y, the set X U Y exists.

The sentences mentioned last are collectively called the naive comprehension
scheme. It essentially says that for every ¢(x), the set {x : ¢(x)} exists—so
at first glance a true, useful, and perhaps even necessary axiom. It is called
“naive” because, as it turns out, it makes this theory unsatisfiable: if you take
¢(y) to be -y € y, you get the sentence

JxVy(yex < -y ey)
and this sentence is not satisfied in any structure.

Example 6.8. In the area of mereology, the relation of parthood is a fundamental
relation. Just like theories of sets, there are theories of parthood that axioma-
tize various conceptions (sometimes conflicting) of this relation.

The language of mereology contains a single two-place predicate sym-
bol P, and P(x,y) “means” that x is a part of y. When we have this inter-
pretation in mind, a structure for this language is called a parthood structure.
Of course, not every structure for a single two-place predicate will really de-
serve this name. To have a chance of capturing “parthood,” P™* must satisfy
some conditions, which we can lay down as axioms for a theory of parthood.
For instance, parthood is a partial order on objects: every object is a part (al-
beit an improper part) of itself; no two different objects can be parts of each
other; a part of a part of an object is itself part of that object. Note that in this
sense “is a part of” resembles “is a subset of,” but does not resemble “is an
element of” which is neither reflexive nor transitive.

Vx P(x,x),

Vxvy ((P(x,y) AP(y,x)) = x =y),
VaxVyVz ((P(x,y) A P(y,z)) — P(x,z)),

Moreover, any two objects have a mereological sum (an object that has these
two objects as parts, and is minimal in this respect).

VaxVy 3zVu (P(z,u) < (P(x,u) A P(y,u)))

These are only some of the basic principles of parthood considered by meta-
physicians. Further principles, however, quickly become hard to formulate or
write down without first introducting some defined relations. For instance,
most metaphysicians interested in mereology also view the following as a
valid principle: whenever an object x has a proper part y, it also has a part z
that has no parts in common with y, and so that the fusion of y and z is x.
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6.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties and relations in
a structure 91 in terms of the primitives of the language £ of M. By this we
mean the following: the domain of 9t is a set of objects. The constant symbols,
function symbols, and predicate symbols are interpreted in 9t by some objects
in|91|, functions on |9|, and relations on |9|. For instance, if A2 is in £, then

9 assigns to it a relation R = A%m. Then the formula A3(x1, x) expresses that
very relation, in the following sense: if a variable assignment s maps x; to
a € |M|and x; to b € |M|, then

Rab iff 0M,s = Ad(x1, x).

Note that we have to involve variable assighments here: we can’t just say “Rab
iff M |= A3(a,b)” because a and b are not symbols of our language: they are
elements of |9M].

Since we don’t just have atomic formulas, but can combine them using
the logical connectives and the quantifiers, more complex formulas can define
other relations which aren’t directly built into 1. We’re interested in how to
do that, and specifically, which relations we can define in a structure.

Definition 6.9. Let ¢(xi,...,X,) be a formula of £ in which only xj,..., X,
occur free, and let M be a structure for L. ¢(xq, ..., x, ) expresses the relation R C
|om|" iff

Ray...ap iff 9M,s = o(x1, ..., %)

for any variable assignment s withs(x;) = a; (i =1,...,n).

Example 6.10. In the standard model of arithmetic 91, the formula x; < xp V
x; = X expresses the < relation on IN. The formula x, = x{ expresses the suc-
cessor relation, i.e., the relation R C IN? where Rnm holds if m is the successor
of n. The formula x; = x} expresses the predecessor relation. The formulas
Ixz (x3 # 0Axp = (x1 +x3)) and Ix3 (x1 + x3') = x, both express the < re-
lation. This means that the predicate symbol < is actually superfluous in the
language of arithmetic; it can be defined.

This idea is not just interesting in specific structures, but generally when-
ever we use a language to describe an intended model or models, i.e., when
we consider theories. These theories often only contain a few predicate sym-
bols as basic symbols, but in the domain they are used to describe often many
other relations play an important role. If these other relations can be system-
atically expressed by the relations that interpret the basic predicate symbols
of the language, we say we can define them in the language.
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6.5 The Theory of Sets

Almost all of mathematics can be developed in the theory of sets. Developing
mathematics in this theory involves a number of things. First, it requires a set
of axioms for the relation €. A number of different axiom systems have been
developed, sometimes with conflicting properties of €. The axiom system
known as ZFC, Zermelo-Fraenkel set theory with the axiom of choice stands
out: it is by far the most widely used and studied, because it turns out that its
axioms suffice to prove almost all the things mathematicians expect to be able
to prove. But before that can be established, it first is necessary to make clear
how we can even express all the things mathematicians would like to express.
For starters, the language contains no constant symbols or function symbols,
so it seems at first glance unclear that we can talk about particular sets (such as
@ or IN), can talk about operations on sets (such as X U Y and p(X)), let alone
other constructions which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation we are interested
in: “is a subset of” seems almost as important. But we can define “is a subset
of” in terms of “is an element of.” To do this, we have to find a formula ¢(x, y)
in the language of set theory which is satisfied by a pair of sets (X, Y) iff X C
Y. But X is a subset of Y just in case all elements of X are also elements of Y.
So we can define C by the formula

Vz(zex —z€y)

Now, whenever we want to use the relation C in a formula, we could instead
use that formula (with x and y suitably replaced, and the bound variable z
renamed if necessary). For instance, extensionality of sets means that if any
sets x and y are contained in each other, then x and y must be the same set.
This can be expressed by Vx Vy ((x Cy Ay C x) — x = y), or, if we replace C
by the above definition, by

VaVy (Vz(z€x s z€y)AVz(z€y »z€x)) = x =y).

This is in fact one of the axioms of ZFC, the “axiom of extensionality.”

There is no constant symbol for @, but we can express “x is empty” by
—3yy € x. Then “@ exists” becomes the sentence Ix -3y y € x. This is an-
other axiom of ZFC. (Note that the axiom of extensionality implies that there
is only one empty set.) Whenever we want to talk about @ in the language of
set theory, we would write this as “there is a set that’s empty and ...” As an
example, to express the fact that @ is a subset of every set, we could write

dx (-3yy € x AVzx C z)

where, of course, x C z would in turn have to be replaced by its definition.
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To talk about operations on sets, such has X UY and p(X), we have to use
a similar trick. There are no function symbols in the language of set theory,
but we can express the functional relations X UY = Z and p(X) = Y by

Vu((u e xVuey) < ucz)
Vu(uCx<>ucy)

since the elements of X UY are exactly the sets that are either elements of X or
elements of Y, and the elements of p(X) are exactly the subsets of X. However,
this doesn’t allow us to use x Uy or p(x) as if they were terms: we can only
use the entire formulas that define the relations X UY = Z and p(X) =Y.
In fact, we do not know that these relations are ever satisfied, i.e., we do not
know that unions and power sets always exist. For instance, the sentence
Vx 3y p(x) = y is another axiom of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here we have to ex-
plain how we can think of ordered pairs and functions as special kinds of sets.
One way to define the ordered pair (x,y) is as the set {{x}, {x,y}}. But like
before, we cannot introduce a function symbol that names this set; we can
only define the relation (x,y) = z,ie., {{x}, {x, y}} =z

Vu(uez+ VWweusv=x)VVW(@weu+ (v=xVo=y))))

This says that the elements u of z are exactly those sets which either have x
as its only element or have x and y as its only elements (in other words, those
sets that are either identical to {x} or identical to {x,y}). Once we have this,
we can say further things, e.g., that X X Y = Z:

Vz(z€Z <+ IxTy(x e XAy e YA (x,y) =2))

A function f: X — Y can be thought of as the relation f(x) = y, ie., as
the set of pairs {(x,y) : f(x) = y}. We can then say that a set f is a function
from X to Y if (a) it is a relation C X x Y, (b) it is total, i.e., for all x € X
there is some y € Y such that (x,y) € f and (c) it is functional, i.e., whenever
(x,y),(x,y') € f,y =y (because values of functions must be unique). So “f
is a function from X to Y” can be written as:

Vu(ue f—IxJy(xe XAy eYA(x,y)=u))A
Vx(x € X — (Jy (v € Y Amaps(f,x,y)) A
(Vy vy’ ((maps(f, x,y) Amaps(f,x,y') =y =y)))
where maps(f,x,y) abbreviates Jv (v € f A (x,y) = v) (this formula ex-
presses “f(x) = y”).
It is now also not hard to express that f: X — Y is injective, for instance:

f: X = YAVaVY ((x € XAX € XA
Jy (maps(f, x,y) Amaps(f, ', y))) — x = x')
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A function f: X — Y is injective iff, whenever f maps x,x’ € X to a single y,
x = x. If we abbreviate this formula as inj(f, X, Y), we're already in a position
to state in the language of set theory something as non-trivial as Cantor’s
theorem: there is no injective function from p(X) to X:

VXYY (p(X) = Y — -3f inj(f, Y, X))

6.6 Expressing the Size of Structures

There are some properties of structures we can express even without using
the non-logical symbols of a language. For instance, there are sentences which
are true in a structure iff the domain of the structure has at least, at most, or
exactly a certain number n of elements.

Proposition 6.11. The sentence

P>p=Tx1Ixg ...y (X A X AX] A XZAX] FEXg N AX] FE Xy A
Xop FX3ANXp FE Xy N+ NXg # Xy N\

Xp—1 7 Xn)

is true in a structure M iff || contains at least n elements. Consequently, M =
@P>nt1 Iff || contains at most n elements.

Proposition 6.12. The sentence

P=pn=Tx13Ixy ...y, (X1 F X2 AX] FAXZAXL FXg N AX] FE Xy A
Xo FX3ANXp £ Xy N NXp #£ Xy N\

Xp—1 7 Xn A\
Yy(y=x1V...y =x4)...))
is true in a structure MM iff |9M| contains exactly n elements.

Proposition 6.13. A structure is infinite iff it is a model of

{91,902, ¢>3,...}

There is no single purely logical sentence which is true in 90t iff || is
infinite. However, one can give sentences with non-logical predicate symbols
which only have infinite models (although not every infinite structure is a
model of them). The property of being a finite structure, and the property of
being a non-enumerable structure cannot even be expressed with an infinite
set of sentences. These facts follow from the compactness and Léwenheim-
Skolem theorems.
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Problems

Problem 6.1. Find formulas in £4 which define the following relations:
1. nis betweeniand j;
2. n evenly divides m (i.e., m is a multiple of n);

3. n is a prime number (i.e., no number other than 1 and n evenly di-
vides n).

Problem 6.2. Suppose the formula ¢(x;, x2) expresses the relation R C |§))?|2
in a structure 1. Find formulas that express the following relations:

1. the inverse R~! of R;
2. the relative product R | R;
Can you find a way to express R, the transitive closure of R?

Problem 6.3. Let £ be the language containing a 2-place predicate symbol
< only (no other constant symbols, function symbols or predicate symbols—
except of course =). Let N be the structure such that |9 = N, and <™=
{(n,m) : n < m}. Prove the following:

1. {0} is definable in 9;
{1} is definable in ON;
{2} is definable in 91;
for each n € N, the set {n} is definable in 9;

every finite subset of |91] is definable in 9;

S

every co-finite subset of |91| is definable in 91 (where X C IN is co-finite
iff IN'\ X is finite).
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Chapter 7

The Sequent Calculus

This chapter presents a sequent calculus (using sets of formulas in-
stead of sequences) for first-order logic. It will mainly be useful for in-
structors transitioning from Boolos, Burgess & Jeffrey, who use the same
system. For a self-contained introduction to the sequent calculus, it would
probably be best to use a standard presentation including structural rules.

To include or exclude material relevant to the sequent calculus as a
proof system, use the “prfLK” tag.

7.1 Rules and Derivations

This section collects all the rules propositional connectives and quanti-
fiers, but not for identity. It is planned to divide this into separate sections
on connectives and quantifiers so that proofs for propositional logic can
be treated separately (issue #77).

Let £ be a first-order language with the usual constants, variables, logical
symbols, and auxiliary symbols (parentheses and the comma).

Definition 7.1 (sequent). A sequent is an expression of the form

Ir=A

where I' and A are finite (possibly empty) sets of sentences of the language L.
The formulas in I” are the antecedent formulas, while the formulae in A are the
succedent formulas.

The intuitive idea behind a sequent is: if all of the antecedent formu-
las hold, then at least one of the succedent formulas holds. That is, if I’ =
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{I,...,Tn}and A = {Aq,..., A}, then T = Aholds iff
(DA ALy) = (A V-V Ay)

holds.
Whenm =0, = Aholdsiff A;V---V A, holds. Whenn =0, =
holds iff I7 A - - - A I};; does not.

An empty succedent is sometimes filled with the L symbol. he empty sequent
= canonically represents a contradiction.

We write I', ¢ (or ¢, I') for ' U {¢}, and I', A for I' U A.
Definition 7.2 (Inference). An inference is an expression of the form

S S
where S, S1, and S; are sequents. S; and S, are called the upper sequents and S

the lower sequent of the inference.

In sequent calculus derivations, a correct inference yields a valid sequent,
provided the upper sequents are valid.

For the following, let I', A, I, A represent finite sets of sentences.

The rules for LK are divided into two main types: structural rules and logi-
cal rules. The logical rules are further divided into propositional rules (quantifier-
free) and quantifier rules.

Structural rules: Weakening:

_ =4
(p,F:AWL and I WR
where ¢ is called the weakening formula.
A series of weakening inferences will often be indicated by double infer-
ence lines.

Cut:
I'= A e, I1 = A

I Il = A A

Logical rules: The rules are named by the main operator of the principal for-
mula of the inference (the formula containing ¢ and/or ¢ in the lower se-
quent). The designations “left” and “right” indicate whether the logical sym-
bol has been introduced in an antecedent formula or a succedent formula (to
the left or to the right of the sequent symbol).

Propositional Rules:

I'= A9 oI = A R
-¢,T = A L Ir=A-¢
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o, = A Y, I = A I' = A9 I = A9y
AL N AR
AP, I = A AP, I = A I'=> ANy
= A , I = A I = A, I = A
¢ Ld \ ¢ VR Ld VR
VY, I = A I'= AeVy I'= Ae@Vy
I'=Ag¢ P,I1 = A o, I = Ay
— —R
o=y, I, Il = A A s Aep—19
Quantifier Rules:
p(t), I = A I' = A ¢(a)
Vxg(x), I = A I' = AVxge(x)

where t is a ground term (i.e., one without variables), and a is a constant which
does not occur anywhere in the lower sequent of the VR rule. We call a the
eigenvariable of the VR inference.

¢(a), I = A I' = A ¢(t)
dxex), [ = A I' = A 3xg(x)

where t is a ground term, and a is a constant which does not occur in the lower
sequent of the L rule. We call a the eigenvariable of the 3L inference.

The condition that an eigenvariable not occur in the upper sequent of the
VR or L inference is called the eigenvariable condition.

We use the term “eigenvariable” even though a in the above rules is a
constant. This has historical reasons.

In IR and VL there are no restrictions, and the term ¢ can be anything,
so we do not have to worry about any conditions. However, because the ¢
may appear elsewhere in the sequent, the values of ¢ for which the sequent is
satisfied are constrained. On the other hand, in the L and V right rules, the
eigenvariable condition requires that 2 does not occur anywhere else in the
sequent. Thus, if the upper sequent is valid, the truth values of the formulas
other than ¢(a) are independent of a.

Definition 7.3 (Initial Sequent). An initial sequent is a sequent of one of the
following forms:

1. o=9¢
2. =T
3. L=

for any sentence ¢ in the language.
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Definition 7.4 (LK derivation). An LK-derivation of a sequent S is a tree of
sequents satisfying the following conditions:

1. The topmost sequents of the tree are initial sequents.

2. Every sequent in the tree (except S) is an upper sequent of an inference
whose lower sequent stands directly below that sequent in the tree.

We then say that S is the end-sequent of the derivation and that S is derivable in
LK (or LK-derivable).

Definition 7.5 (LK theorem). A sentence ¢ is a theorem of LK if the sequent
= @ is LK-derivable.

7.2 Examples of Derivations

Example 7.6. Give an LK-derivation for the sequent ¢ A ¢ = ¢.
We begin by writing the desired end-sequent at the bottom of the deriva-
tion.

PAY =

Next, we need to figure out what kind of inference could have a lower sequent
of this form. This could be a structural rule, but it is a good idea to start by
looking for a logical rule. The only logical connective occurring in a formula in
the lower sequent is A, so we're looking for an A rule, and since the A symbol
occurs in the antecedent formulas, we’re looking at the A left rule.

————— AL

PN =@
There are two options for what could have been the upper sequent of the AL
inference: we could have an upper sequent of ¢ = ¢, or of = ¢. Clearly,
@ = ¢ is an initial sequent (which is a good thing), while ¢ = ¢ is not
derivable in general. We fill in the upper sequent:

=9
PAY =

We now have a correct LK-derivation of the sequent ¢ A ¢ = ¢.

AL

Example 7.7. Give an LK-derivation for the sequent =¢ V¢ = ¢ — 1.
Begin by writing the desired end-sequent at the bottom of the derivation.

eVY = 9y
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To find a logical rule that could give us this end-sequent, we look at the log-
ical connectives in the end-sequent: —, V, and —. We only care at the mo-
ment about V and — because they are main operators of sentences in the end-
sequent, while — is inside the scope of another connective, so we will take care
of it later. Our options for logical rules for the final inference are therefore the
VL rule and the — R rule. We could pick either rule, really, but let’s pick the
— right rule (if for no reason other than it allows us to put off splitting into
two branches). According to the form of — R inferences which can yield the
lower sequent, this must look like:

PoPVY = ¢
VY = 9=y
Now we can apply the VL rule. According to the schema, this must split into
two upper sequents as follows:

— R

poe=9 ¢Yp=1v
¢ o9VY = ¢
VY = 9y
Remember that we are trying to wind our way up to initial sequents; we seem
to be pretty close! The right branch is just one weakening away from an initial
sequent and then it is done:

VL
— R

Y =9
WL
¢, =9 Y =9 VL
¢,V = P
—R

VY = 9=y
Now looking at the left branch, the only logical connective in any sentence

is the = symbol in the antecedent sentences, so we’re looking at an instance of
the =L rule.

= 9¢ y=19
-L WL
¢oeVY = ¢
—R

VY = 9oy
Similarly to how we finished off the right branch, we are just one weakening
away from finishing off this left branch as well.

=9

———— WR

I e A
¢oeVY =

— R
VY = 9=y
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Example 7.8. Give an LK-derivation of the sequent —¢ V = = = (¢ A ¢)
Using the techniques from above, we start by writing the desired end-
sequent at the bottom.

eV = a(pAYP)

The available main connectives of sentences in the end-sequent are the V sym-
bol and the = symbol. It would work to apply either the VL or the —R rule
here, but we start with the —R rule because it avoids splitting up into two
branches for a moment:

PAY 9V P = R
eV P = (e AP)

Now we have a choice of whether to look at the AL or the VL rule. Let’s see
what happens when we apply the A left rule: we have a choice to start with
either the sequent ¢, ~¢ V¢ =  or the sequent ¢, ¢ V¢ = . Since the
proof is symmetric with regards to ¢ and ¥, let’s go with the former:

@,V Y =
PAY, VY =
eV = a(pAYP)

Continuing to fill in the derivation, we see that we run into a problem:

AL

-R

.
i 4 =9
oo = L g-p= U
9~V = VL
d AL

PAY, eV Y =
VoY = 2(eAY)

The top of the right branch cannot be reduced any further, and it cannot be
brought by way of structural inferences to an initial sequent, so this is not the
right path to take. So clearly, it was a mistake to apply the AL rule above.
Going back to what we had before and carrying out the VL rule instead, we
get

-R

PAY, e = PAY, Y =
PAY,mpV Y =
eV = 2(pAY)

Completing each branch as we’ve done before, we get

VL
-R
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=9 p =y
— AL — AL
I I X e T
oAy g = PPy =
PAY, @V P =

=R
eV Y = (e A)

(We could have carried out the A rules lower than the — rules in these steps
and still obtained a correct derivation).

Example 7.9. Give an LK-derivation of the sequent 3x ~¢(x) = —Vx ¢(x).
When dealing with quantifiers, we have to make sure not to violate the
eigenvariable condition, and sometimes this requires us to play around with
the order of carrying out certain inferences. In general, it helps to try and take
care of rules subject to the eigenvariable condition first (they will be lower
down in the finished proof). Also, it is a good idea to try and look ahead and
try to guess what the initial sequent might look like. In our case, it will have to
be something like ¢(a) = ¢(a). That means that when we are “reversing” the
quantifier rules, we will have to pick the same term—what we will call a—for
both the V and the 3 rule. If we picked different terms for each rule, we would
end up with something like ¢(a) = ¢(b), which, of course, is not derivable.
Starting as usual, we write

Ix—e(x) = —Vxp(x)

We could either carry out the JL rule or the —R rule. Since the 3L rule is
subject to the eigenvariable condition, it’s a good idea to take care of it sooner
rather than later, so we’ll do that one first.

~¢(a) = Vxo(x)
Ix—¢(x) = ~Vxe(x)

JL

Applying the —L and right rules to eliminate the — signs, we get

Vxg(x) = ¢(a)
= Vxo(x), ¢(a)
—¢(a) = ~Vxp(x)
Ix—p(x) = —Vxe(x)

-R
-L

JL

At this point, our only option is to carry out the VL rule. Since this rule is not
subject to the eigenvariable restriction, we're in the clear. Remember, we want
to try and obtain an initial sequent (of the form ¢(a) = ¢(a)), so we should
choose a as our argument for ¢ when we apply the rule.
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p(a) = @(a)
Vi) = o) U
= —Vx ¢(x), ¢(a) L

—p(a) = ~Vxg(x)

Ix—p(x) = —Vxe(x) AL

It is important, especially when dealing with quantifiers, to double check at
this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was 3L,
and the eigenvariable a does not occur in its lower sequent (the end-sequent),
this is a correct derivation.

This section collects the properties of the provability relation required
for the completeness theorem. If you find the location unmotivated, in-
clude it instead in the chapter on completeness.

7.3 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions (validity, entail-
ment, satisfiabilty), we now define corresponding proof-theoretic notions. These
are not defined by appeal to satisfaction of sentences in structures, but by ap-
peal to the derivability or non-derivability of certain sequents. It was an im-
portant discovery, due to Godel, that these notions coincide. That they do is
the content of the completeness theorem.

Definition 7.10 (Theorems). A sentence ¢ is a theorem if there is a derivation
in LK of the sequent = ¢. We write -k ¢ if ¢ is a theorem and ¥k ¢ if it
is not.

Definition 7.11 (Derivability). A sentence ¢ is derivable from a set of sentences I,
I' FLk ¢, if there is a finite subset Iy C I" such that LK derives Iy = ¢. If ¢ is
not derivable from I we write I' ¥k ¢.

Definition 7.12 (Consistency). A set of sentences I is consistent iff I' Frg L. If
I is not consistent, i.e., if I' Fyx L, we say it is inconsistent.

Proposition 7.13. I' Frx ¢ iff I U {—¢} is inconsistent.

Proof. Exercise. O
Proposition 7.14. I is inconsistent iff I' Frx @ for every sentence ¢.

Proof. Exercise. O

Proposition 7.15. I -y ¢ iff for some finite [y C I', Iy Frk ¢.
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Proof. Follows immediately from the definion of Fyk. O

7.4 Properties of Derivability

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 7.16 (Monotony). If I’ C Aand I bk ¢, then A1k ¢.

Proof. Any finite Iy C I is also a finite subset of A, so a derivation of [y = ¢
also shows A Fix ¢. O

Proposition 7.17. If I Frx @ and I U{¢} Frk L, then I is inconsistent.

Proof. There are finite [y and I7 C I such that LK derives [y = ¢ and I, ¢ =
L. Let the LK-derivation of Iy = ¢ be Il and the LK-derivationof I7, ¢ = L
be I'I;. We can then derive

- I ‘I

F() é Y Fl,qﬂ :> 1
Fo,rl = @ FO,I’l,(p = | ¢
o1 = L e

(Recall that double inference lines indicate several weakening inferences.)
Since[p CT'and I CI,IUll CTI,hencel Fik L. O

Proposition 7.18. If I' U {¢} bk L, then I Frx —¢.

Proof. Suppose that I' U {¢} Frk L. Then there is a finite set Iy C I such that

LK derives Iy, ¢ = L. Let Iy be an LK-derivation of I, ¢ = L, and consider
1T

T = L .
F0:>_'§0_‘

Proposition 7.19. If I" U {(p} Fog Land T'U {ﬁ(p} ik L, then I' g L.

Proof. There are finite sets Iy C I'and I7 C I" and LK-derivations I'ly and I'];
of Iy, ¢ = L and I7, ~¢ = L, respectively. We can then derive
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- Iy

: 1T
Fo,q) = 1

T0:>_\(p R Fl,ﬁ([):;J_
I, i = L

cut

Since[p CTandI7 CTI,IUIl7 CTI.Hencel kg L. O

Proposition 7.20. If ' U {QD} Fok Land I'U {1’0} Fix L, then T'U {QD V l/)} FLk
1.

Proof. There are finite sets Iy, [7 C I" and LK-derivations Iy and I']; such that

I ‘1L

T = L My = L
hhg=1 Thy=1
To T, oV = L v
Since I),[1 CTand I'U{¢V ¢} Fik L. O

Proposition 7.21. If I' bk ¢ or I Frx ¢, then I Frk ¢ V .

Proof. There is an LK-derivation Iy and a finite set Iy C I" such that we can
derive

g

L =
i N
Ip = oV
Therefore I' Frk ¢ V . The proof for when I' Fy i ¢ is similar. O

Proposition 7.22. If ' Frx ¢ Apthen I brx @ and I Fik 9.

Proof. If I' Frx @ A ¢, there is a finite set Iy C I' and an LK-derivation Iy of
Iop = ¢ A . Consider

EHO
: _ =9
Io, = 9N PAY = ¢
F0:>g0

AL
cut

Hence, I' 1k ¢. A similar derivation starting with i = ¢ on the right side
shows that I' Frk ¢. O
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Proposition 7.23. If I' Frg @ and I' Frx i, then T Frg @ A .

Proof. If I' Frx ¢ as well as I' i ¢, there are finite sets Iy, I7 C I’ and an
LK-derivations Iy of [y = ¢ and I1; of I1 = ¢. Consider

I ‘I
Fo,ilgo Fl/:;l,b
Io,Jn = ¢ A
Since [ UI1 C I',wehave I’ Fix ¢ A . O

AR

Proposition 7.24. If I' Frx @ and I' brx ¢ — ¢, then I bk 1.

Proof. Suppose that I' Fix ¢ and I' Frx ¢ — 3. There are finite sets Iy, I7 C
I such that there are LK-derivations Iy of [y = ¢ and I} of [T = ¢ — .
Consider:

1 Hl

In=9—=9¢ In = ¢ I,y = ¢ L
%
IooGo, I, = o—9y Ine—v =19y cut
FO/Fl = l/)
Since Iy U I C I, this means that I" Frk ¢. O

Proposition 7.25. If I' Frx ~por I Fik ¢, then I ik ¢ — .

Proof. First suppose I' -k —¢. Then for some finite Iy C I there is a LK-
derivation of Iy = —¢. The following derivation shows that I' Frx ¢ — ¥:

Q=9
EH g9 = R
. 0 _—
: ¢, =9 R
Iy = —¢ Q= @Y
cut
In = o=

Now suppose I' Frx ¢. Then for some finite Iy C I there is a LK-
derivation of Iy = . The following derivation shows that I' Fix ¢ — ¢:

mn —r="
: PP =19 R
Ip = ¢ 4J:>go%1pcut
Ih=9¢—vy
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Theorem 7.26. If c is a constant not occurring in I or ¢(x) and I’ Frx ¢(c), then
I' ik Vx o(x).

Proof. Let Iy be an LK-derivation of Iy = ¢(c) for some finite I} C I'. By
adding a V right inference, we obtain a proof of I' = Vx ¢(x), since ¢ does not
occur in I or ¢(x) and thus the eigenvariable condition is satisfied. O

Theorem 7.27. 1. If T Fyk ¢(t) then I' = 3x ¢(x).
2. If T bk Vx @(x) then I+ ¢(t).

Proof. 1. Suppose I Frk ¢(t). Then for some finite Iy C I', LK derives
Iy = ¢(t). Add an 3R inference to get a derivation of Iy = Jx ¢@(x).

2. Suppose I' Fg —¢(t). Then thereis a finite [y C I' and an LK-derivation
IT of Ty = Vx ¢(x). Then

‘11

: p(t) = o(t) L
Iy = Vx¢(x) Vx g(x) = ¢(t) cut
I = (1)

shows that Iy Frk ¢(t).

7.5 Soundness

A derivation system, such as the sequent calculus, is sound if it cannot de-
rive things that do not actually hold. Soundness is thus a kind of guaranteed
safety property for derivation systems. Depending on which proof theoretic
property is in question, we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do not
hold, the derivation system is deficient—it would derive too much. Conse-
quently, establishing the soundness of a derivation system is of the utmost
importance.

Because all these proof-theoretic properties are defined via derivability in
the sequent calculus of certain sequents, proving (1)-(3) above requires prov-
ing something about the semantic properties of derivable sequents. We will
first define what it means for a sequent to be valid, and then show that every
derivable sequent is valid. (1)-(3) then follow as corollaries from this result.
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Definition 7.28. A structure 91 satisfies a sequent I' = A iff either M [~ « for
some « € I or M |= a for some a € A.
A sequent is valid iff every structure 91 satisfies it.

Theorem 7.29 (Soundness). If LK derives I' = A, then I’ = A is valid.

Proof. Let I1 be a derivation of I' = A. We proceed by induction on the num-
ber of inferences in I1.

If the number of inferences is 0, then IT consists only of an initial sequent.
Every initial sequent ¢ = ¢ is obviously valid, since for every 9, either I (-
@ or M = ¢.

If the number of inferences is greater than 0, we distinguish cases accord-
ing to the type of the lowermost inference. By induction hypothesis, we can
assume that the premises of that inference are valid.

First, we consider the possible inferences with only one premise I’ = A'.

1. The last inference is a weakening. Then I’ C I'and A = A’ if it's a
weakening on the left, or I' = " and A’ C A if it’s a weaking on the
right. In either case, A’ C Aand I'" C I'. If M |~ a for some « € I, then,
since I” C I',« € I as well, and so M £ o for the same a € T Similarly,
if M = aforsomea € A',asa € A, M = a for some o € A. Since
I'" = A’ is valid, one of these cases obtains for every 9. Consequently,
I' = Aisvalid.

2. The last inference is — left: Then for some ¢ € A’, ~¢p € I'. Also, I" C T,
and A"\ {9} C A.

If M = ¢, then M = —¢, and since ~¢ € I', M satisfies I' = A. Since
I'" = Aisvalid, if M [~ ¢, then either M [~ «a for some a € I or
M |= a for some a € A’ different from ¢. Consequently, M F~ « for
some a € I (since I C I') or M |= a for some a € A’ different from ¢
(since A"\ {9} C A).

3. The last inference is — right: Exercise.

4. The last inference is A left: There are two variants: ¢ A i may be inferred
on the left from ¢ or from ¢ on the left side of the premise. In the first
case, ¢ € I'". Consider a structure 9. Since I'" = A’ is valid, (a) M |~ ¢,
(b) M = a for some a € '\ {p}, or (c) M = «a for some &« € A'. In
case (a), M = ¢ A . In case (b), thereisan a € I'\ {¢ A ¢} such that
M B~ a, since I\ {9} C I'\ {9 Ap}. In case (¢), there is a « € A such
that 9 |= &, as A = A'. So in each case, I satisfies ¢ A ¢, " = A. Since
9 was arbitrary, I’ = Ais valid. The case where ¢ A ¥ is inferred from
1 is handled the same, changing ¢ to .

5. The last inference is V right: There are two variants: ¢ V ¢ may be in-
ferred on the right from ¢ or from ¢ on the right side of the premise. In
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the first case, ¢ € A'. Consider a structure 9. Since I'" = A’ is valid, (a)
M = ¢, (b) M = a for some a € I, or (c) M = a for some w € A\ {¢}.
In case (a), M |= ¢ V ¢. In case (b), there is & € I such that M [~ «, as
I' =T". Incase (c), thereisana € Asuch that M = a, since A"\ {9} C A.
So in each case, M1 satisfies ¢ A P, I = A. Since 9 was arbitrary, I' = A
is valid. The case where ¢ V ¢ is inferred from ¢ is handled the same,
changing ¢ to .

. The last inference is — right: Then ¢ € I, ¢ € A/, I’ \ {¢} C I" and

A\ {y} C A. Since I'" = A is valid, for any structure 9, (a) M = ¢,
®) M = ¢, (c) M [~ a for some a € '\ {p}, or M = «a for some
a € A\ {y}. In cases (a) and (b), M = ¢ — . In case (c), for some
a € T, M £ a. In case (d), for some & € A, M = a. In each case, M
satisfies I' = A. Since 9t was arbitrary, I' = A is valid.

. The last inference is V left: Then there is a formula ¢(x) and a ground

term f such that ¢(t) € I", Vx ¢(x) € I',and I \ {¢(t)} C I'. Consider
a structure M. Since I'' = A’ is valid, (a) M [~ ¢(t), (b) M [~ a for some
a€I"\ {g(t)}, or (c) M |= a for some a € A'. In case (a), M [~ Vx ¢(x).
In case (b), thereisana € I' \ {¢(t)} such that M = a. In case (c), there
isawa € Asuch that M = a, as A = A'. So in each case, 9N satisfies
I' = A. Since 9 was arbitrary, I' = Ais valid.

. The last inference is 3 right: Exercise.

. The last inference is V right: Then there is a formula ¢(x) and a constant

symbol a such that ¢(a) € A, Vx¢(x) € A, and A\ {¢(a)} C A. Fur-
thermore, a ¢ I’ U A. Consider a structure 9. Since I’ = A’ is valid,
(@ M = ¢(a), (b) M [~ a for some a € I, or (c) M | « for some
x €A\ {p(a)}.

First, suppose (a) is the case but neither (b) nor (c), i.e., M = « for all
a € I"and M [~ aforalla € A"\ {¢(a)}. In other words, assume
9N = ¢(a) and that M does not satisfy I'' = A’ \ {¢(a)}. Sincea ¢ I'UA,
alsoa & I U (A \ {¢(a)}). Thus, if M is like M except that a™ # 4™,
I’ also does not satisfy I” = A"\ {¢(a)} by extensionality. But since
I'" = A is valid, we must have M’ = ¢(a).

We now show that 9t = Vx ¢(x). To do this, we have to show that for
every variable assignment s, M,s = Vx ¢(x). This in turn means that
for every x-variant s’ of s, we must have M, s’ = ¢(x). So consider any
variable assignment s and let s’ be an x-variant of s. Since I'" and A’
consist entirely of sentences, 9M,s = a iff M, s’ = a iff M |= a for all
x € I'"UA. Let M be like M except that ™ = s'(x). Then M,s’ =
@(x) iff M = ¢(a) (as ¢(x) does not contain 4). Since we've already
established that 9’ |= ¢(a) for all 9’ which differ from 9t at most in
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what they assign to 4, this means that 9,s" |= ¢(x). Thus weve shown
that M, s |= Vx ¢(x). Since s is an arbitrary variable assignment and
Vx ¢@(x) is a sentence, then M |= Vx ¢(x).

If (b) is the case, there isa w € I" such that M [~ o, as I' = I'"". If (¢) is the
case, there is an w € A"\ {¢(a)} such that M |= a. So in each case, M
satisfies I' = A. Since 9 was arbitrary, I' = Ais valid.

10. The last inference is 3 left: Exercise.

Now let’s consider the possible inferences with two premises: cut, V left,
A right, and — left.

1. The last inference is a cut: Suppose the premises are I” = A’ and IT' =
A" and the cut formula ¢ is in both A" and IT'. Since each is valid, every
structure M satisfies both premises. We distinguish two cases: (a) 9 -
¢ and (b) M = ¢. In case (a), in order for M to satisfy the left premise,
it must satisfy I = A’ \ {¢}. But I’ C I'and A"\ {¢} C A, so M also
satisfies I' = A. In case (b), in order for 9 to satisfy the right premise,
it must satisfy IT' \ {9} = A". ButIT'\ {¢} C I'and A’ C A, so M also
satisfies I' = A.

2. The last inference is A right. The premises are ' = A’ and I' = A”,
where ¢ € A" an ¢ € A”. By induction hypothesis, both are valid. Con-
sider a structure 9t. We have two cases: (a) M = ¢ Apor (b) M = ¢ A .
In case (a), either M (= @ or M [~ ¢. In the former case, in order for M
to satisfy I' = A’, it must already satisfy I' = A’ \ {¢}. In the latter
case, it must satisfy I' = A” \ {¢}. But since both A’ \ {¢} C A and
A"\ {y} C A, that means I satisfies I' = A. In case (b), I satisfies
I' = Asince p A € A

3. The last inference is V left: Exercise.

4. The last inference is — left. The premises are I' = A’ and I’ = A, where
¢ € A and ¢ € I'. By induction hypothesis, both are valid. Consider a
structure 1. We have two cases: (a) M = ¢ — P or (b) M £~ ¢ — .
In case (a), either M [~ ¢ or M = . In the former case, in order for
M to satisfy I' = A’, it must already satisfy I' = A\ {¢}. In the latter
case, it must satisfy I’ \ {¢} = A. But since both A"\ {¢} C A and
I'"\ {y} C T, that means 9 satisfies I' = A. In case (b), 9 satisfies
I'=> Asincegp — ¢ eI

O

Corollary 7.30. If -1k ¢ then ¢ is valid.
Corollary 7.31. If I' ik ¢ then I E ¢.
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Proof. If I' -1k ¢ then for some finite subset Iy C T, there is a derivation of
Iy = ¢. By Theorem 7.29, every structure 9 either makes some 1 € Ij false
or makes ¢ true. Hence, if M = I then also M |= ¢. O

Corollary 7.32. If I is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that I" is not consistent. Then
I' Fik L, ie, there is a finite [y C I and a derivation of Iy = L. By The-
orem 7.29, Iy = L is valid. Since M [~ L for every structure 91, for M to
satisfy Iy = L there must be an a € I} so that M (= «, and since I C T, that
a is also in I'. In other words, no 901 satisfies I', i.e., I is not satisfiable. O

7.6 Derivations with Identity predicate

Derivations with the identity predicate require additional inference rules.

Initial sequents for =: If f is a closed term, then = t = t is an initial
sequent.

Rules for =:

F,t1:t2:>A,(p(i’1) _ and F,t1:t2:>A,(p(t2) _

It =t = A,go(tz) I'tj =t = A,q)(fl)

where t; and t; are closed terms.

Example 7.33. If s and t are ground terms, then ¢(s),s =t Frk ¢(t):

9(s) = ¢(s)
ols)s=t= g(s) ™
pGs)s=1t= ¢(t)

This may be familiar as the principle of substitutability of identicals, or Leib-
niz’ Law.
LK proves that = is symmetric and transitive:

= Hh=h K =t = t1 =t K
h=h =>h=H "0 h=hth=t=>t=1 "0
=t = tHh=1H th =1ty lh =13 = t] =13

In the proof on the left, the formula x = #; is our ¢(x), and correspondingly,
¢(t2) = x[t2/x] = t1. On the right, we take ¢(x) to be t; = x.

Proposition 7.34. LK with initial sequents and rules for identity is sound.
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Proof. Initial sequents of the form = t = t are valid, since for every struc-
ture M, M |= t = t. (Note that we assume the term ¢ to be ground, i.e., it
contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is =. Then the premise I"" = A’
contains t; = t; on the left and ¢(f1) on the right, and the conclusionis I' = A
where I' = " and A = (A" \ {¢(t1)}) U{¢(t2)}. Consider a structure .
Since, by induction hypothesis, the premise I'" = A’ is valid, either (a) for
some « € I/, M (= a, (b) for some a € A\ {¢(s)}, M = a, or (c) M
¢(#1). In both cases cases (a) and (b), since I' = I/, and A"\ {¢(s)} C 4,
M satisfies ' = A. So assume cases (a) and (b) do not apply, but case (c)
does. If (a) does not apply, M = a for all « € I, in particular, M |= t; = t,.
Therefore, Val™ (t;) = Val™ (). Let s be any variable assignment, and s’ be
the x-variant given by s'(x) = Val™(t;) = Val™(t,). By Proposition 5.39,
M, s = @(tz) iff M,s" = @(x) iff M,s = ¢(t1). Since M = ¢(t1) therefore
M = ¢(t2). D

Problems

Problem 7.1. Give derivations of the following sequents:
L=(p=9) = (eA~y)

2. Vx(o(x) = 9) = By oly) = ¢)
Problem 7.2. Prove Proposition 7.13

Problem 7.3. Prove Proposition 7.14
Problem 7.4. Prove Proposition 7.20.
Problem 7.5. Prove Proposition 7.21.
Problem 7.6. Prove Proposition 7.22.
Problem 7.7. Prove Proposition 7.23.
Problem 7.8. Prove Proposition 7.24.
Problem 7.9. Prove Proposition 7.25.
Problem 7.10. Complete the proof of Theorem 7.29.

Problem 7.11. Give derivations of the following sequents:

1L =VaVy (x =y Aex)) — ¢(y))

2. Ixp(x) ANVy Yz ((e(y) Np(z)) »y=2) =
Jx (¢(x) AVy (@(y) =y =x))
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Chapter 8

Natural Deduction

To include or exclude material relevant to the sequent calculus as a
proof system, use the “prfLK” tag.

8.1 Rules and Derivations

This section collects all the rules propositional connectives and quanti-
fiers, but not for identity. It is planned to divide this into separate sections
on connectives and quantifiers so that proofs for propositional logic can
be treated separately (issue #77).

Let £ be a first-order language with the usual constant symbols, variables,
logical symbols, and auxiliary symbols (parentheses and the comma).

Definition 8.1 (Inference). An inference is an expression of the form

% ? 14

—— or
X X
where ¢,9, and x are formulas. ¢ and  are called the upper formulas or
premises and x the lower formulas or conclusion of the inference.

The rules for natural deduction are divided into two main types: proposi-
tional rules (quantifier-free) and quantifier rules. The rules come in pairs, an
introduction and an elimination rule for each logical operator. They intro-
duced a logical operator in the conclusion or remove a logical operator from
a premise of the rule. Some of the rules allow an assumption of a certain type
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to be discharged. To indicate which assumption is discharged by which infer-
ence, we also assign labels to both the assumption and the inference. This is

indicated by writing the assumption formula as “[¢]"”.

It is customary to consider rules for all logical operators, even for those (if

any) that we consider as defined.

Propositional Rules

Rules for L

% 1 Intro % 1 Elim
Rules for A

A A
% Alntro L 7 L4 AElLim (PT AElIim
Rules for Vv
[p]" [y]"
¢ P :
PV VIntro VR VIntro
VY X X .
n X VElim
Rules for —
[p]"
7 —Elim
1
¢ —Intro
Rules for —
[o]"

: —

: LA Sud & L4 — Elim

. P

n L — Intro
=9
Quantifier Rules
Rules for V @ )
p(a Vx p(x )
VIntro ———— VElim
Vx ¢(x) o(t)
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where t is a ground term (a term that does not contain any variables), and
a is a constant symbol which does not occur in ¢, or in any assumption which
is undischarged in the derivation ending with the premise ¢. We call a the
eigenvariable of the VIntro inference.

Rules for 3
[p(a)]"

Fx p(x) X .
n X JElim

where t is a ground term, and a is a constant which does not occur in the
premise Jx ¢(x), in , or any assumption which is undischarged in the deriva-
tions ending with the two premises x (other than the assumptions ¢(a)). We
call a the eigenvariable of the JElim inference.

The condition that an eigenvariable not occur in the upper sequent of the
V intro or 3 elim inference is called the eigenvariable condition.

We use the term “eigenvariable” even though a in the above rules is a
constant. This has historical reasons.

In JIntro and VElim there are no restrictions, and the term ¢ can be any-
thing, so we do not have to worry about any conditions. However, because
the t may appear elsewhere in the derivation, the values of t for which the
formula is satisfied are constrained. On the other hand, in the JElim and V in-
tro rules, the eigenvariable condition requires that a does not occur anywhere
else in the formula. Thus, if the upper formula is valid, the truth values of the
formulas other than ¢(a) are independent of a.

Natural deduction systems are meant to closely parallel the informal rea-
soning used in mathematical proof (hence it is somewhat “natural”). Natural
deduction proofs begin with assumptions. Inference rules are then applied.
Assumptions are “discharged” by the —Intro, — Intro, VElim and JElim in-
ference rules, and the label of the discharged assumption is placed beside the
inference for clarity.

Definition 8.2 (Initial Formula). An initial formula or assumption is any formula
in the topmost position of any branch.

Definition 8.3 (Derivation). A derivation of a formula ¢ from assumptions I"
is a tree of formulas satisfying the following conditions:

1. The topmost formulas of the tree are either in I" or are discharged by an
inference in the tree.

2. Every formula in the tree is an upper formula of an inference whose
lower formula stands directly below that formula in the tree.
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We then say that ¢ is the end-formula of the derivation and that ¢ is derivable
from I'.

8.2 Examples of Derivations

Example 8.4. Let’s give a derivation of the formula (¢ A ¢) — ¢.
We begin by writing the desired end-formula at the bottom of the deriva-
tion.

(pAp) =@

Next, we need to figure out what kind of inference could result in a for-
mula of this form. The main operator of the end-formula is —, so we'll try
to arrive at the end-formula using the — Intro rule. It is best to write down
the assumptions involved and label the inference rules as you progress, so it
is easy to see whether all assumptions have been discharged at the end of the
proof.

[Ml/ﬂ]l

N
(pAp) = ¢

We now need to fill in the steps from the assumption ¢ A i to ¢. Since we
only have one connective to deal with, A, we must use the A elim rule. This
gives us the following proof:

— Intro

1
M AElim

@
1——>Intr0
(pAY) =@

We now have a correct derivation of the formula (¢ A ) — ¢.

Example 8.5. Now let’s give a derivation of the formula (—¢ Vi) — (¢ — ¥).
We begin by writing the desired end-formula at the bottom of the deriva-
tion.

(meVY) = (¢ —¢)

To find a logical rule that could give us this end-formula, we look at the logical
connectives in the end-formula: —, V, and —. We only care at the moment
about the first occurence of — because it is the main operator of the sentence
in the end-sequent, while —, V and the second occurence of — are inside the
scope of another connective, so we will take care of those later. We therefore
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start with the — Intro rule. A correct application must look as follows:

F¢YM1

1 ¢y
(meVY) = (¢ —¢)

This leaves us with two possibilities to continue. Either we can keep work-
ing from the bottom up and look for another application of the — Intro rule,
or we can work from the top down and apply a VElim rule. Let us apply the
latter. We will use the assumption —¢ V ¢ as the leftmost premise of VELm.
For a valid application of VElim, the other two premises must be identical to
the conclusion ¢ — 9, but each may be derived in turn from another assump-
tion, namely the two disjuncts of =¢ V 1. So our derivation will look like this:

— Intro

e P

_ ) : :
2[¢VW =Y ¢%¢vmm

g9
1 — Intro
(moVy) = (9= ¢)
In each of the two branches on the right, we want to derive ¢ — 1, which
is best done using — Intro.

gl [gF 1 ol
b v
Loyl gy IO oy o e
Y

1 — Intro
(CeVy) = (9= ¢)

For the two missing parts of the derivation, we need derivations of ¢ from
—¢ and ¢ in the middle, and from ¢ and ¢ on the left. Let’s take the former
first. 7@ and ¢ are the two premises of _LIntro:

el 9P
1

1 Intro
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By using L Elim, we can obtain ¢ as a conclusion and complete the branch.

(9], [o]*
— )2 3 .
[ (P] T [(P} 1 Intro :
—— 1Elim y
3 L — Intro 4 L — Intro
[ Vgl Q=¥ L .
2 o ¥ VElim
— Intro

eV = (9 — )

Let’s now look at the rightmost branch. Here it’s important to realize that
the definition of derivation allows assumptions to be discharged but does not re-
quire them to be. In other words, if we can derive ¢ from one of the assump-
tions ¢ and ¢ without using the other, that’s ok. And to derive ¥ from ¢ is
trivial: i by itself is such a derivation, and no inferences are needed. So we
can simply delete the assumtion ¢.

— o2 3
[~ (9] L ntro
1 .
—— 1 Elim 2
3 L — Intro L — Intro
(o Vy]! ¢ — ¢ p—yp
2 o P VElim

— Intro

RN YD

Note that in the finished derivation, the rightmost — Intro inference does not
actually discharge any assumptions.

Example 8.6. When dealing with quantifiers, we have to make sure not to
violate the eigenvariable condition, and sometimes this requires us to play
around with the order of carrying out certain inferences. In general, it helps
to try and take care of rules subject to the eigenvariable condition first (they
will be lower down in the finished proof).

Let’s see how we’d give a derivation of the formula 3x =¢(x) — =Vx ¢(x).
Starting as usual, we write

dx —¢(x) — =Vx @(x)

We start by writing down what it would take to justify that last step using the
— Intro rule. )
[3x ~¢(x)]

—Wx}w)
dx —¢(x) — =Vx @(x)

— Intro
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Since there is no obvious rule to apply to —Vx ¢(x), we will proceed by setting
up the derivation so we can use the JElim rule. Here we must pay attention
to the eigenvariable condition, and choose a constant that does not appear in
Jdx ¢(x) or any assumptions that it depends on. (Since no constant symbols
appear, however, any choice will do fine.)

[~e(a)]?

[Fx —p(x)]! ﬁVx:q)(x) .
2 Vx 9(%) JElim

dx —¢(x) — =Vx @(x)

— Intro

In order to derive —Vx ¢(x), we will attempt to use the —Intro rule: this
requires that we derive a contradiction, possibly using Vx ¢(x) as an addi-
tional assumption. Of coursem, this contradiction may involve the assump-
tion —¢(a) which will be discharged by the — Intro inference. We can set it
up as follows:

(@), [Vx p(x)]°

3 —————— —Intro
ERO); Vrg() _ "
~Vx @(x)
— Intro

Ix —¢(x) = Vx ¢(x)

It looks like we are close to getting a contradiction. The easiest rule to apply is
the VElim, which has no eigenvariable conditions. Since we can use any term
we want to replace the universally quantified x, it makes the most sense to
continue using 2 so we can reach a contradiction.

Vxo(x)®
Co@P el O
3 S —Intro
[Bx g (x)]! “Vxg(x) _
2 ~Vx (%) JElim

dx —¢(x) = =Vx @(x)

— Intro

It is important, especially when dealing with quantifiers, to double check
at this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was JElim,
and the eigenvariable a does not occur in any assumptions it depends on, this
is a correct derivation.
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Example 8.7. Sometimes we may derive a formula from other formulas. In
these cases, we may have undischarged assumptions. It is important to keep
track of our assumptions as well as the end goal.

Let’s see how we’d give a derivation of the formula 3x x(x,b) from the
assumptions 3x (¢(x) A ¢(x)) and Vx (p(x) — x(x,b). Starting as usual, we
write the end-formula at the bottom.

Ix x(x,b)

We have two premises to work with. To use the first, i.e,, try to find a
derivation of 3x x(x,b) from 3x (¢(x) A P(x)) we would use the JElim rule.
Since it has an eigenvariable condition, we will apply that rule first. We get
the following:

l9(a) A y(@)!

(e Ap)  Fedab)
Ix x(x,b)

JElim

The two assumptions we are working with share ¢. It may be useful at this
point to apply AElim to separate out ¢ (a).

@A) Fxxlxb)
Ix x(x,b)

JElim

The second assumption we have to work with is Vx (y(x) — x(x,b).
Since there is no eigenvariable condition we can instantiate x with the con-
stant symbol a using VElim to get ¢(a) — x(a,b). We now have ¢(a) and
P(a) — x(a,b). Our next move should be a straightforward application of the
— Elim rule.

@) Ap@] Vx(px) = x(xb)
T A R %\fjlj
x(a_,b)
3x (9(x) A (x)) Sxx(x,b)
1 Elx)((x, b) JElim
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We are so close! One application of JIntro and we have reached our goal.

p@Ap@] Ve s alxb)
R S D
(a0 — Elim
| 3x(p) A 9() Seanb) o
Jx x(x,b)

Since we ensured at each step that the eigenvariable conditions were not vio-
lated, we can be confident that this is a correct derivation.

Example 8.8. Give a derivation of the formula —Vx ¢(x) from the assump-
tions Vx ¢(x) — Jy¢(y) and ~3y ¢(y). Starting as usual, we write the target
formula at the bottom.

—Vx p(x)

The last line of the derivation is a negation, so let’s try using —Intro. This will
require that we figure out how to derive a contradiction.

x p()]

1 ; —Intro

—Vx ¢(x)

So far so good. We can use VElim but it’s not obvious if that will help us get
to our goal. Instead, let’s use one of our assumptions. Vx ¢(x) — Iy ¢(y)
together with Vx ¢(x) will allow us to use the — Elim rule.

Vxp(x)]!  Vxo(x) = Jyp(y)
Hyl{J(y)

— Elim

L
—Vx ¢(x)

—Intro

We now have one final assumption to work with, and it looks like this will
help us reach a contradiction by using L Intro.

Vxo(x)]'  Vxe(x) = Jyy(y) L Elim
Jy () =3y ¢P(y)
1
11— "Il"ltrO

~Vx p(x)

1 Intro
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Example 8.9. Give a derivation of the formula ¢(x) V —¢(x).

¢(x) V —g(x)

The main connective of the formula is a disjunction. Since we have no
assumptions to work from, we can’t use VIntro. Since we don’t want any
undischarged assumptions in our proof, our best bet is to use —Intro with the
assumption —(¢(x) V —¢(x)). This will allow us to discharge the assumption

at the end.
[F(p(x) v —(x))]!

) L
~(e(x) V 29(x))
¢(x) V 2o(x)
Note that a straightforward application of the —Intro rule leaves us with two
negations. We can remove them with the —Elim rule.

We appear to be stuck again, since the assumption we introduced has a
negation as the main operator. So let’s try to derive another contradiction!
Let’s assume ¢(x) for another —Intro. From there we can derive ¢(x) V —¢(x)
and get our first contradiction.

—Intro

—Elim

B O
[~(e(x) V=)' @(x) V —g(x) ﬁnttm
2 —E= — “Intro e
~9(x)
i
'l Voe)
@(x) V =o(x)

Our second assumption is now discharged. We only need to derive one more
contradiction in order to discharge our first assumption. Now we have some-
thing to work with——¢(x). We can use the same strategy as last time (VIntro)
to derive a contradiction with our first assumption.

[p(x)]?

=
2_‘l@_‘hjﬁn’tro
(x) V =p(x) (CCINARTIC)) .
1 —Intro
—(p(x) V oe(x e
P(x) V —g(x)
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And the proof is done!

8.3 Proof-Theoretic Notions

This section collects the properties of the provability relation required
for the completeness theorem. If you find the location unmotivated, in-
clude it instead in the chapter on completeness.

Just as we’ve defined a number of important semantic notions (validity, entail-
ment, satisfiabilty), we now define corresponding proof-theoretic notions. These
are not defined by appeal to satisfaction of sentences in structures, but by ap-
peal to the derivability or non-derivability of certain formulas. It was an im-
portant discovery, due to Godel, that these notions coincide. That they do is
the content of the completeness theorem.

Definition 8.10 (Derivability). A formula ¢ is derivable from a set of formu-
las I', I' = ¢, if there is a derivation with end-formula ¢ and in which every
assumption is either discharged or is in I'. If ¢ is not derivable from I" we
write I' ¥ ¢.

Definition 8.11 (Theorems). A formula ¢ is a theorem if there is a derivation
of ¢ from the empty set, i.e., a derivation with end-formula ¢ in which all
assumptions are discharged. We write - ¢ if ¢ is a theorem and ¥ ¢ if it is not.

Definition 8.12 (Consistency). A set of sentences I is consistent iff I' ¥ 1. If I’
is not consistent, i.e., if I' - L, we say it is inconsistent.

Proposition 8.13. I' - ¢ iff I’ U {—¢} is inconsistent.

Proof. Exercise. O
Proposition 8.14. I is inconsistent iff I' - ¢ for every sentence ¢.

Proof. Exercise. O
Proposition 8.15. If I' & ¢ iff for some finite Iy C I', I = ¢.

Proof. Any derivation of ¢ from I" can only contain finitely many undischarged
assumtions. If all these undischarged assumptions are in I', then the set of
them is a finite subset of I'. The other direction is trivial, since a derivation

from a subset of I is also a derivation from I'. O
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8.4 Properties of Derivability

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 8.16 (Monotony). If I' C Aand I' = ¢, then A= ¢.
Proof. Any derivation of ¢ from I’ is also a derivation of ¢ from A. O
Proposition 8.17. If I' = @ and I’ U{¢@} - L, then I is inconsistent.

Proof. Let the derivation of ¢ from I" be 4; and the derivation of L from I' U
{¢} be 5. We can then derive:

(o)t
: )
01 :
: i —Intro
P2 7% Eim
1
In the new derivation, the assumption ¢ is discharged, so it is a derivation
from I'. O

Proposition 8.18. If ' U {¢} - L, then T - —¢.

Proof. Suppose that I' U {¢} F L. Then there is a derivation of L from I' U
{¢}. Let ¢ be the derivation of L, and consider

[(P_]l
5(5

1

1
—¢ —Intro
Proposition 8.19. If T U{¢}+ Land TU{—¢}+ L, then I L.

Proof. There are derivations J; and d, of L from I'U, {¢} and L from I' U
{—¢}, respectively. We can then derive

[o]! (ol
: 61 )
L L
1 =9 —Intro 2—= 7 —Intro

—Elim
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Since the assumptions ¢ and —¢ are discharged, this is a derivation from I
alone. Hence I' - L. O

Proposition 8.20. If T U{¢}t Land TU{y} - L, then T U{p V ¢} F L.
Proof. Exercise. O
Proposition 8.21. If ' - @or '+, then ' = @ V 1.
Proof. Suppose I' - ¢. There is a derivation ¢ of ¢ from I". We can derive
)
9
pVY

Therefore I' = ¢ V 9. The proof for when I' I- ¢ is similar. O

ViIntro

Proposition 8.22. If '@ A then I' = @ and I' = 1.

Proof. If I' = ¢ A 1, there is a derivation 6 of ¢ A ¢ from I'. Consider

&)
PAYP
7

AElim
Hence, I' F ¢. A similar derivation shows that I" - ¢. O
Proposition 8.23. If - @and I' =, then I' = @ A .

Proof. If I' = ¢ as well as I - ¢, there are derivations J; of ¢ and J, of ¥ from
I'. Consider

51 52
¢
———F Alntro
PAY
The undischarged assumptions of the new derivation are all in I', so we have
I'Eoni. O

Proposition 8.24. If ' = @and I' = @ — ¢, then I' = 1.
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Proof. Suppose that I' - ¢ and I' - ¢ — 1. There are derivations 6; of ¢ from
I' and &7 of ¢ — ¢ from I'. Consider:

£ 61 %

: X
A e
This means that I'" - 9. O

Proposition 8.25. If ' = —@or I' = ¢, then I' = ¢ — 1.

Proof. First suppose I' = —¢. Then there is a derivation of —¢ from <. The
following derivation shows that I' - ¢ — -

1

L .
ﬁ:(P —— 1Elim
1 W — Intro

Now suppose I' - . Then there is a derivation  of ¢ from I". The follow-
ing derivation shows that I' - ¢ — -

y 1
W Alntro

m AElim

1 ——— — Intro
=

O

Theorem 8.26. If c is a constant not occurring in I or ¢(x) and I' = ¢(c), then
I'FVxe(c).

Proof. Let d be an derivation of ¢(c) from I'. By adding a VIntro inference, we
obtain a proof of Vx ¢(x). Since ¢ does not occurin I' or ¢(x), the eigenvariable
condition is satisfied. O

Theorem 8.27. 1. IfI' - ¢(t) then I - Jx ¢(x).

2. If T = Vx¢(x) then I = ¢(t).
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Proof. 1. Suppose I' = ¢(t). Then there is a derivation ¢ of ¢(t) from I
The derivation

dIntro

shows that I' - 3x ¢(x).

2. Suppose I' = Vx ¢(x). Then there is a derivation ¢ of Vx ¢(x) from I
The derivation

Vxp(x)
74)0) VElim

shows that I' - ¢(t).

8.5 Soundness

A derivation system, such as natural deduction, is sound if it cannot derive
things that do not actually follow. Soundness is thus a kind of guaranteed
safety property for derivation systems. Depending on which proof theoretic
property is in question, we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do not
hold, the derivation system is deficient—it would derive too much. Conse-
quently, establishing the soundness of a derivation system is of the utmost
importance.

Theorem 8.28 (Soundness). If ¢ is derivable from the undischarged assumptions
I, then I E ¢.

Proof. Inductive Hypothesis: The premises of an inference rule follow from the
undischarged assumptions of the subproofs ending in those premises.

Inductive Step: Show that ¢ follows from the undischarged assumptions of
the entire proof.
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Let J be a derivation of ¢. We proceed by induction on the number of
inferences in 4.

If the number of inferences is 0, then § consists only of an initial formula.
Every initial formula ¢ is an undischarged assumption, and as such, any struc-
ture M that satisfies all of the undischarged assumptions of the proof also
satisfies ¢.

If the number of inferences is greater than 0, we distinguish cases accord-
ing to the type of the lowermost inference. By induction hypothesis, we can
assume that the premises of that inference follow from the undischarged as-
sumptions of the sub-derivations ending in those premises, respectively.

First, we consider the possible inferences with only one premise.

1.

Suppose that the last inference is —Intro: By inductive hypothesis, L
follows from the undischarged assumptions I' U { ¢ }. Consider a struc-
ture M. We need to show that, if M = I', then 9 = —¢. Suppose for
reductio that M = I, but M [~ —g, i.e, M = ¢. This would mean
that MM |= I' U {¢}. This is contrary to our inductive hypothesis. So,
M = —e.

. The last inference is —Elim: Exercise.

The last inference is AElim: There are two variants: ¢ or i may be in-
ferred from the premise ¢ A ¢. Consider the first case. By inductive
hypothesis, ¢ A i follows from the undischarged assumptions I'. Con-
sider a structure 1. We need to show that, if M |= I', then M = ¢. By
our inductive hypothesis, we know that 9t |= ¢ A ¢. So, M |= ¢. The
case where 1 is inferred from ¢ A 1 is handled similarly.

. The last inference is VIntro: There are two variants: ¢ V ¢ may be in-

ferred from the premise ¢ or the premise . Consider the first case. By
inductive hypothesis, ¢ follows from the undischarged assumptions I'.
Consider a structure 9. We need to show that, if 9 |= I, then M |=
@ V . Since M |= I, it must be the case that M = ¢, by inductive hy-
pothesis. So it must also be the case that MM |= ¢ V . The case where
@ V 1 is inferred from ¢ is handled similarly.

The last inference is — Intro: ¢ — ¢ is inferred from a subproof with as-
sumption ¢ and conclusion . By inductive hypothesis, ¢ follows from
the undischarged assumptions I and ¢. Consider a structure 2i. We
need to show that, if I' ¢ — ¢. For reductio, suppose that for some
structure M, M |= I’ but M = ¢ — . So, M = ¢ and M [~ ¢. But by
hypothesis, ¢ is a consequence of I' U {¢}. So, M |= ¢ — 1.

The last inference is VIntro: The premise ¢(a) is a consequence of the
undischarged assumptions I" by induction hypothesis. Consider some
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structure, 9, such that M = I'. Let M’ be exactly like 9t except that
a™ £ a™' . We must have 9 = ¢(a).

We now show that 9 |= Vx ¢(x). Since Vx ¢(x) is a sentence, this means
we have to show that for every variable assignment s, M,s = ¢(x).
Since I consists entirely of sentences, M,s = ¢ for all ¢ € I'. Let M’
be like 9 except that a™ = s(x). Then M,s = @(x) iff M = @(a)
(as ¢(x) does not contain a). Since a also does not occur in I', ' |= T
Since I' E ¢(a), M’ |= ¢(a). This means that M, s = ¢(x). Since s is an
arbitrary variable assignment, M = Vx ¢(x).

7. The last inference is JIntro: Exercise.

8. The last inference is VElim: Exercise.

Now let’s consider the possible inferences with several premises: VElim,
Alntro, — Elim, and JElim.

1. The last inference is Alntro. ¢ A 1 is inferred from the premises ¢ and
1. By induction hypothesis, ¢ follows from the undischarged assump-
tions I" and ¢ follows from the undischarged assumptions A. We have
to show that ' UA F ¢ A ¢. Consider a structure 9 with M = I' U A.
Since M = I, it must be the case that M |= ¢, and since M = A, M = ¢,
by inductive hypothesis. Together, M = ¢ A .

2. The last inference is VElim: Exercise.

3. The last inference is — Elim. ¢ is inferred from the premises ¢ — ¢ and
@. By induction hypothesis, ¢ — 1 follows from the undischarged as-
sumptions I" and ¢ follows from the undischarged assumptions A. Con-
sider a structure 9. We need to show that, if M |= I"UA, then 9 |= . It
must be the case that M = ¢ — 1, and M = ¢, by inductive hypothesis.
Thus it must be the case that M = .

4. The last inference is JElim: Exercise.

Corollary 8.29. If - ¢, then ¢ is valid.

Corollary 8.30. If I' is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that I" is not consistent. Then
I' 1,ie., thereis a derivation of | from undischarged assumptions in I". By
Theorem 8.28, any structure 91 that satisfies I' must satisfy L. Since I f= L
for every structure 91, no M can satisfy I', i.e., I' is not satisfiable. O
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8.6 Derivations with Identity predicate

Derivations with the identity predicate require additional inference rules.

Rules for =:

e Intro

th =1t @(t1)
= Elim and = Elim
@(t2) @(t)

where t; and t; are closed terms. The = Intro rule allows us to derive any
identity statement of teh form t = t outright.

Example 8.31. If s and t are closed terms, then ¢(s),s =t = ¢(f):
= Elim
This may be familiar as the “principle of substitutability of identicals,” or Leib-
niz’ Law.
Proposition 8.32. Natural deduction with rules for identity is sound.

Proof. Any formula of the form t = f is valid, since for every structure 91,
9 =t = t. (Note that we assume the term ¢t to be ground, i.e., it contains no
variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is = Elim. Then the premises
are t; = tp and ¢(t;); they are derived from undischarged assumptions I' and
A, respectively. We want to show that ¢(s) follows from I' U A. Consider a
structure 9 with M |= I' U A. By induction hypothesis, O satisfies the two
premises by induction hypothesis. So, M = t; = t,. Therefore, Val™ (t;) =
Val™ (t,). Let s be any variable assignment, and s’ be the x-variant given by
s'(x) = Val™(t;) = Val™(t,). By Proposition 5.39, M, s |= @(t,) iff M, s’ |=
@(x) iff M, s |= @(ty). Since M |= ¢(t1) therefore M = ¢(t7). O

Problems

Problem 8.1. Give derivations of the following formulas:
L =(g—=¢) = (9A-p)
2. Vx(p(x) = 9) = Cyoy) = ¢)

Problem 8.2. Prove Proposition 8.13

Problem 8.3. Prove Proposition 8.14
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Problem 8.4. Prove Proposition 8.20
Problem 8.5. Prove Proposition 8.21.
Problem 8.6. Prove Proposition 8.22.
Problem 8.7. Prove Proposition 8.23.
Problem 8.8. Prove Proposition 8.24.
Problem 8.9. Prove Proposition 8.25.
Problem 8.10. Complete the proof of Theorem 8.28.

Problem 8.11. Prove that = is both symmetric and transitive, i.e., give deriva-
tionsof VxVy (x =y -y =x)and VxVyVz((x =y Ay =2z) > x = 2)

Problem 8.12. Give derivations of the following formulas:
L VxVy ((x =y A o(x)) = ¢(y))

2. 3;6)(/)(96) AVyVz ((e(y) A e(z)) =y =2z) = Ix(@(x) AVy (p(y) =y =
X
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Chapter 9

The Completeness Theorem

9.1 Introduction

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we’ll prove. In its first
formulation it says something fundamental about the relationship between
semantic consequence and our proof system: if a sentence ¢ follows from
some sentences I, then there is also a derivation that establishes I" - ¢. Thus,
the proof system is as strong as it can possibly be without proving things that
don’t actually follow. In its second formulation, it can be stated as a model
existence result: every consistent set of sentences is satisfiable.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
I' - ¢ is finite and so can only use finitely many of the sentences in I, it fol-
lows by the completeness theorem that if ¢ is a consequence of I', it is already
a consequence of a finite subset of I'. This is called compactness. Equivalently,
if every finite subset of I" is consistent, then I itself must be consistent. It
also follows from the proof of the completeness theorem that any satisfiable
set of sentences has a finite or denumerable model. This result is called the
Lowenheim-Skolem theorem.

9.2 Qutline of the Proof

The proof of the completeness theorem is a bit complex, and upon first reading
it, it is easy to get lost. So let us outline the proof. The first step is a shift of
perspective, that allows us to see a route to a proof. When completeness is
thought of as “whenever I' = ¢ then I" - ¢,” it may be hard to even come up
with an idea: for to show that I' - ¢ we have to find a derivation, and it does
not look like the hypothesis that I" = ¢ helps us for this in any way. For some
proof systems it is possible to directly construct a derivation, but we will take
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a slightly different tack. The shift in perspective required is this: completeness
can also be formulated as: “if I' is consistent, it has a model.” Perhaps we can
use the information in I" together with the hypothesis that it is consistent to
construct a model. After all, we know what kind of model we are looking for:
one that is as I" describes it!

If I' contains only atomic sentences, it is easy to construct a model for it:
for atomic sentences are all of the form P(ay, .. .,a,) where the a; are constant
symbols. So all we have to do is come up with a domain |9%| and an inter-
pretation for P so that 9 = P(ay,...,a,). But nothing’s easier than that: put
9] = NN, C?n = i, and for every P(ay,...,a,) € T, put the tuple (kq,...,ky)
into P!, where k; is the index of the constant symbol g; (i.e., a; = ).

Now suppose I' contains some sentence -, with ¢ atomic. We might
worry that the construction of 90t interferes with the possibility of making —¢
true. But here’s where the consistency of I comes in: if =¢p € I', then ¢ & I', or
else I' would be inconsistent. And if ¢ ¢ I', then according to our construction
of M, M |~ 1, so M = —¢. So far so good.

Now what if I" contains complex, non-atomic formulas? Say, it contains
@ A . Then we should proceed as if both ¢ and ¢y werein I'. Andif oV ¢ € T,
then we will have to make at least one of them true, i.e., proceed as if one of
them wasin I'.

This suggests the following idea: we add additional sentences to I so as to
(a) keep the resulting set consistent and (b) make sure that for every possible
atomic sentence ¢, either ¢ is in the resulting set, or —¢, and (c) such that,
whenever ¢ A 1 is in the set, so are both ¢ and 1, if ¢ V ¢ is in the set, at least
one of ¢ or ¢ is also, etc. We keep doing this (potentially forever). Call the
set of all sentences so added I'*. Then our construction above would provide
us with a structure for which we could prove, by induction, that all sentences
in I'* are true in 9, and hence also all sentence in I' since I C I'*.

There is one wrinkle in this plan: if 3x ¢(x) € I we would hope to be able
to pick some constant symbol ¢ and add ¢(c) in this process. But how do we
know we can always do that? Perhaps we only have a few constant symbols
in our language, and for each one of them we have —(c) € I'. We can’t also
add ¢(c), since this would make the set inconsistent, and we wouldn’t know
whether 91 has to make ¢(c) or —p(c) true. Moreover, it might happen that I'
contains only sentences in a language that has no constant symbols at all (e.g.,
the language of set theory).

The solution to this problem is to simply add infinitely many constants at
the beginning, plus sentences that connect them with the quantifiers in the
right way. (Of course, we have to verify that this cannot introduce an incon-
sistency.)

Our original construction works well if we only have constant symbols in
the atomic sentences. But the language might also contain function symbols.
In that case, it might be tricky to find the right functions on IN to assign to
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these function symbols to make everything work. So here’s another trick: in-
stead of using i to interpret ¢;, just take the set of constant symbols itself as
the domain. Then 9% can assign every constant symbol to itself: ¢/ = ¢;. But
why not go all the way: let |2i| be all terms of the language! If we do this,
there is an obvious assignment of functions (that take terms as arguments and
have terms as values) to function symbols: we assign to the function sym-
bol £;" the function which, given n terms ¢4, ..., t, as input, produces the term
f'(ty, ..., tn) as value.

The last piece of the puzzle is what to do with =. The EH{)redlcate symbol =
has a fixed interpretation: 9 |= t = #' iff Val™ () = Val Now if we set
things up so that the value of a term t is ¢ 1tself, then this structure will make
no sentence of the form t = ' true unless t and ' are one and the same term.
And of course this is a problem, since basically every interesting theory in a
language with function symbols will have as theorems sentences t = ' where
t and t' are not the same term (e.g., in theories of arithmetic: (0 + 0) = o). To
solve this problem, we change the domain of 91: instead of using terms as the
objects in |21, we use sets of terms, and each set is so that it contains all those
terms which the sentences in I" require to be equal. So, e.g., if I' is a theory of
arithmetic, one of these sets will contain: o, (0 + 0), (0 x 0), etc. This will be
the set we assign to o, and it will turn out that this set is also the value of all
the terms in it, e.g., also of (0 + 0). Therefore, the sentence (0 + 0) = o will be
true in this revised structure.

9.3 Maximally Consistent Sets of Sentences

Definition 9.1 (Maximally consistent set). A set I" of sentences is maximally
consistent iff

1. I is consistent, and
2. if I C I/, then I is inconsistent.

An alternate definition equivalent to the above is: a set I" of sentences is
maximally consistent iff

1. I is consistent, and
2. If I'U{¢} is consistent, then ¢ € T

In other words, one cannot add sentences not already in I' to a maximally
consistent set I without making the resulting larger set inconsistent.
Maximally consistent sets are important in the completeness proof since
we can guarantee that every consistent set of sentences I' is contained in a
maximally consistent set I'*, and a maximally consistent set contains, for each
sentence ¢, either @ or its negation —¢. This is true in particular for atomic
sentences, so from a maximally consistent set in a language suitably expanded
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by constant symbols, we can construct a structure where the interpretation of
predicate symbols is defined according to which atomic sentences are in I'*.
This structure can then be shown to make all sentences in I'* (and hence also
in I') true. The proof of this latter fact requires that ~¢ € I'*iff ¢ ¢ I'",
(pVy)eTI*iff o e [*ory € T'*, etc.

Proposition 9.2. Suppose I is maximally consistent. Then:

1
2
3

HN

5

IfT'- @, then g € I

For any ¢, either p € ' or np € I
(pNY) eTiffbothg € Tand p € T.
(p V) € I iffeither p € Torp € I
(¢ — @) € Tiffeither o ¢ Torp € T.

Proof. Let us suppose for all of the following that I" is maximally consistent.

1.

114

Ik @, thengcI.

Suppose that I' - ¢. Suppose to the contrary that ¢ ¢ I': then since
I' is maximally consistent, I' U { ¢} is inconsistent, hence I' U {¢} F L.
By Propositions 7.17 and 8.17, I is inconsistent. This contradicts the
assumption that I is consistent. Hence, it cannot be the case that ¢ ¢ I,
sopel.

For any ¢, eitherp € 'or mp € I'.

Suppose to the contrary that for some ¢ both ¢ ¢ I' and —¢ ¢ I'. Since
I' is maximally consistent, I' U {¢} and I' U { ~¢} are both inconsistent,
soI'U{¢} - Land I' U{—¢} F L. By Propositions 7.19 and 8.19, I is
inconsistent, a contradiction. Hence there cannot be such a sentence ¢
and, forevery 9, p € T'or n¢p € I'.

(pAp) eTiffbothgp € T'and ¢ € I:

For the forward direction, suppose (¢ A ) € I'. Then I - ¢ Ap. By
Propositions 7.22 and 8.22, I' - pand I' - . By (1), p € 'and ¢ € I,
as required.

For the reverse direction, let ¢ € 'and ¢ € I'. ThenI' - g and I I ¢.
By Propositions 7.23 and 8.23, ' - ¢ A . By (1), (p Ay) € I
(pV ) eTiffeitherp € FTory € I

For the contrapositive of the forward direction, suppose that ¢ ¢ I" and
¢ ¢ I'. We want to show that (¢ Vi) ¢ I'. Since I' is maximally con-
sistent, TU{¢} F L and I'U {¢} - L. By Propositions 7.20 and 8.20,
I'u{(¢V)} isinconsistent. Hence, (¢ V ) ¢ I', as required.
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For the reverse direction, suppose that ¢ € I'orp € I'. ThenI' = ¢ or
I' = ¢. By Propositions 7.21 and 8.21, I' - ¢ V. By (1), (¢ V ¢) € T, as
required.

5 (¢ — ¢) e Tiffeitherp g Tor ¢ € I':

For the forward direction, let (¢ — ) € I', and suppose to the contrary
that ¢ € I'and ¢ € I'. On these assumptions, I' - ¢ — ¢ and I' - ¢. By
Propositions 7.24 and 8.24, I" - 1. But then by (1), ¢ € I, contradicting
the assumption that ¢ & I'.

For the reverse direction, first consider the case where ¢ ¢ I'. By (2),
—¢ € I’ and hence I' - —¢. By Propositions 7.25 and 8.25, I' - ¢ — .
Again by (1), we get that (¢ — ) € I, as required.

Now consider the case where iy € I'. Then I' - ¢ and by Proposi-
tions 7.25and 825, T ¢ — . By (1), (9 — ¢) € I

O

9.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that the model
we construct from a maximally consistent set I must make all the quantified
formulas in I true. In order to guarantee this, we use a trick due to Leon
Henkin. In essence, the trick consists in expanding the language by infinitely
many constants and adding, for each formula with one free variable ¢(x) a
formula of the form 3x ¢ — ¢(c), where c is one of the new constant symbols.
When we construct the structure satisfying I', this will guarantee that each
true existential sentence has a witness among the new constants.

Lemma 9.3. If I is consistent in £ and L' is obtained from L by adding a denumer-
able set of new constant symbols dy, d», ..., then I is consistent in L'.

Definition 9.4 (Saturated set). A set I" of formulas of a language L is saturated
if and only if for each formula ¢ € Frm(£) and variable x there is a constant
symbol ¢ such that Ix ¢ — ¢(c) € I'.

The following definition will be used in the proof of the next theorem.

Definition 9.5. Let £’ be as in Lemma 9.3. Fix an enumeration (@1, x1), {(¢2, X2),
...of all formula-variable pairs of L. We define the sentences 6, by recursion
on n. Assuming that 0y, ..., 8, have already been defined, let ¢, be the first
new constant symbol among the d; that does not occur in 6y, ..., 6,, and let
0,11 be the formula 3x;,11 @n11(X441) = @nr1(cpa1). This includes the case
where n = 0 and the list of previous 6;’s is empty, i.e., 07 is Ix1 ¢1 — @1(c1).

Theorem 9.6. Every consistent set I' can be extended to a saturated consistent set I".
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Proof. Given a consistent set of sentences I' in a language £, expand the lan-
guage by adding a denumerable set of new constant symbols to form £’. By
the previous Lemma, I is still consistent in the richer language. Further, let 6;
be as in the previous definition: then I' U {61, 65, .. . } is saturated by construc-
tion. Let

=T
Tip1 =L U{6u1}

ie, I, =TuU{6y,...,0,},and let I'" = |, I},. To show that I’ is consistent it
suffices to show, by induction on #, that each set I}, is consistent.

The induction basis is simply the claim that Iy = I' is consistent, which
is the hypothesis of the theorem. For the induction step, suppose that I,_; is
consistent but I, = I,_1 U {6, } is inconsistent. Recall that 6, is Ix,, ¢ (xn) —
@n(cn). where ¢(x) is a formula of £’ with only the variable x, free and not
containing any constant symbols c; where i > n.

If I, 1 U{6,} is inconsistent, then I}, 1 - —0,, and hence both of the fol-
lowing hold:

Tyt B 3xn @n(xn) L1 b —en(cn)

Here ¢, does not occurin I, or ¢, (x,) (remember, it was added only with 6,,).
By Theorems 7.26 and 8.26, from I' - —¢,(c,), we obtain I' F Vx, =@, (x,).
Thus we have that both I,y F 3x, ¢, and I},_1 = Vx, =@, (x,), so I itself
is inconsistent. (Note that Vx, =¢,(x,) F =3x, ¢n(x,).) Contradiction: I;,_q
was supposed to be consistent. Hence I, U {6, } is consistent. O

9.5 Lindenbaum’s Lemma

Lemma 9.7 (Lindenbaum’s Lemma). Every consistent set I can be extended to a
maximally consistent saturated set I'*.

Proof. Let I' be consistent, and let I'” be as in the proof of Theorem 9.6: we
proved there that I' U I is a consistent saturated set in the richer language £’
(with the denumerable set of new constants). Let ¢o, ¢1, ... be an enumera-
tion of all the formulas of £’. Define I = ' UT”, and

- LiU{en} if I, U{@u} is consistent;
e IhU{=¢,} otherwise.

LetI'™* = U,;>q - Since I C T'*, for each formula ¢, I'* contains a formula
of the form 3x ¢ — ¢(c) and thus is saturated.

Each I, is consistent: I} is consistent by definition. If I}, 1 = I}, U { ¢}, this
is because the latter is consistent. If it isn’t, I},11 = I;; U {—¢}, which must
be consistent. If it weren't, i.e., both I}, U {¢} and I}, U {—¢} are inconsistent,

116 Release : c2fea4a (2016-08-01)



9.6. CONSTRUCTION OF A MODEL

then I, = —¢ and I}, F ¢, so I}, would be inconsistent contrary to induction
hypothesis.

Every formula of Frm(L’) appears on the list used to define I'*. If ¢, & I'*,
then that is because I}, U {¢,} was inconsistent. But that means that I'* is
maximally consistent. ]

9.6 Construction of a Model

We will begin by showing how to construct a structure which satisfies a max-
imally consistent, saturated set of sentences in a language £ without =.

Definition 9.8 (Term model). Let I'* be a maximally consistent, saturated set
of sentences in a language £. The term model MM(I'*) of I'* is the structure
defined as follows:

1. The domain |[9(I'*)| is the set of all closed terms of L.
2. The interpretation of a constant symbol ¢ is c itself: ¢™") = c.

3. The function symbol f is assigned the function
) (1, ) = FVA™ ) (1), ., Val™ ) (1))

4. If Ris an n-place predicate symbol, then (t1,...,t,) € RUI™) iff R(t1,...,ty) €
I*.

Lemma 9.9 (Truth Lemma). Suppose ¢ does not contain =. Then M(I'™*) = ¢ iff
pel™

Proof. We prove both directions simultaneously, and by induction on ¢.

L g= R(tlf'”ltﬂ): m(r*) — R(tll"‘ltn) iff <t1/-~/tn> S RMI™) (by
the definition of satisfaction) iff R(¢1,...,t,) € I'* (the construction of
M(I*).

2. 9 =~y M) = @ iff M(I™) = ¢ (by definition of satisfaction).
By induction hypothesis, M (I'*) = ¢ iff i ¢ I'*. By Proposition 9.2(2),
~pel"ifyp ¢ I';and -y & I'*if p € I'* since I'* is consistent.

B o=y Ax: MI™) [ ¢ iff we have both M(I'™) = ¢ and M(I™) |=
x (by definition of satisfaction) iff both ¢y € I'* and x € I'* (by the
induction hypothesis). By Proposition 9.2(3), this is the case iff (P A x) €
r=.

4. o=y Vyx: MI*) | @iff at M(I™) = ¢ or M(I'™*) = x (by definition
of satisfaction) iff € I'* or x € I'* (by induction hypothesis). This is
the case iff (¢ VV x) € I'* (by Proposition 9.2(4)).
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5. =9 — x: M) E @iff M(I* = ¢ or M(I'™*) = x (by definition of
satisfaction) iff ¢ & I'* or x € I'* (by induction hypothesis). This is the
case iff (p — x) € I'* (by Proposition 9.2(5)).

6. ¢ = Vxy(x): Suppose that M(I'*) |= ¢, then for every variable assign-
ment s, M(I'*),s = (x). Suppose to the contrary that Vx ¢(x) ¢ I'*:
Then by Proposition 9.2(2), =Vx i(x) € I'*. By saturation, (Ix =¢(x) —
—1p(c)) € I'* for some ¢, so by Proposition 9.2(1), = (c) € I'*. Since I'* is
consistent, ¥(c) ¢ I'*. By induction hypothesis, M (I'*) = ¢(c). There-
fore, if s’ is the variable assignment such that s(x) = ¢, then M(I'*),s’ =
{(x), contradicting the earlier result that 9(I'*),s = (x) for all s.
Thus, we have ¢ € I'*.

Conversely, suppose that Vx i(x) € I'*. By Theorems 7.27 and 8.27 to-
gether with Proposition 9.2(1), ¢(t) € I'* for every term ¢t € |9(I'*)|. By
inductive hypothesis, M(I'™*) = (t) for every term t € [9M(I'™*)|. Let s
be the variable assigment with s(x) = t. Then MM(I'*),s = ¢(x) for any
such s, hence M(I'™) |= ¢.

7. ¢ = Jx(x): First suppose that M(I'™*) = ¢. By the definition of sat-
isfaction, for some variable assignment s, M(I'*),s = (x). The value
s(x) is some term t € |9M(I*)|. Thus, M(I'*) = ¢(t), and by our in-
duction hypothesis, ¢(t) € I'*. By Theorems 7.27 and 8.27 we have
I'* F 3x ¢(x). Then, by Proposition 9.2(1), we can conclude that ¢ € I'*.

Conversely, suppose that 3x ¢(x) € I'*. Because I'* is saturated, (Ix i(x) —
P(c)) € I'*. By Propositions 7.24 and 8.24 together with Proposition 9.2(1),
¢(c) € I'*. By inductive hypothesis, M(I'*) = ¢(c). Now consider the
variable assignment with s(x) = ¢™"). Then 9(I'*),s = ¢(x). By
definition of satisfaction, MM(I'™*) = Ix p(x).

O

9.7 Identity

The construction of the term model given in the preceding section is enough
to establish completeness for first-order logic for sets I" that do not contain =.
The term model satisfies every ¢ € I'* which does not contain = (and hence
all ¢ € I'). It does not work, however, if = is present. The reason is that I'*
then may contain a sentence t = t/, but in the term model the value of any
term is that term itself. Hence, if t and t' are different terms, their values in
the term model—i.e., t and t/, respectively—are different, and so t = t' is false.
We can fix this, however, using a construction known as “factoring.”

Definition 9.10. Let I'* be a maximally consistent set of sentences in £. We
define the relation ~ on the set of closed terms of £ by

tt iff t=ter*
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Proposition 9.11. The relation ~ has the following properties:

~

N

s is reflexive.
/2 is symmetric.
~ is transitive.

Ift = ', f is a function symbol, and t, ..., t; 1, tis1, ..., tn arve terms, then
fty, o tiit bttt oo tn) = f(t, ot E o ticn, oo ta).
Ift = t', R is a function symbol, and t1, ..., t; 1, ti11, ..., ty are terms, then

R(tl,...,i’ifl,t,i’ile,...,tn) er* ljff
R(ty,... ti1,t' tig1,. .., ty) € T*.

Proof. Since I'* is maximally consistent, t = ' € I'* iff ' + t = t'. Thus it is
enough to show the following:

1.

2
3.
4

I'* =t =tforall terms t.

Tt =+tthenI* ¢t =t.

IIr*Ft=tandI'*Ft =t',thenI'* Ft=1t".

I Ir*+t=+, then

F* }_f(tlf"-/tifl/t/ti+l//"~/tn) :f(tll"-/tifl/t//ti+l/"-/tn)

for every n-place function symbol f and terms t1, ..., t;_1, ti11, ..., tn.

LTkt =+tandT* - R(t,... ti1, b tig1, .. tn), thenT* E R(ty, ... 41,8, tigq, ...

for every n-place predicate symbol R and terms f1, ..., tj_1, tit1, ..., tn.

O

Definition 9.12. Suppose I'* is a maximally consistent set in a language £, ¢
is a term, and =~ as in the previous definition. Then:

e ={t :t € TTm(L),t = t'}

and T'm(L)/~ = {[t]~ : t € Trm(L)}.

Definition 9.13. Let M = M(I"™*) be the term model for I'*. Then M/ ~. is the
following structure:

1.

M/ ~| = Trm(L)/ ~.
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@
-
8
~
Q
~
=
0
=
2

) = [f(tl,-..,tn)]z

4. ([H]~ -, [tn]~) € RTV=AEM = R(ty, ..., tn).

Note that we have defined f™/~ and R™/~ for elements of Trm(L)/~ by
referring to them as [t]~, i.e., via representatives t € [t]~. We have to make sure
that these definitions do not depend on the choice of these representatives, i.e.,
that for some other choices t’ which determine the same equivalence classes
([t]~ = [F']~), the definitions yield the same result. For instance, if R is a one-
place predicate symbol, the last clause of the definition says that [t]~ € R™/~
iff M = R(t). If for some other term ' with t ~ t/, M (= R(t), then the
definition would require [t']~ ¢ R™/~. If t ~ t, then [t]~ = [t']~, but we
can’t have both [t]~ € R™/~ and [t]~ ¢ R™/~. However, Proposition 9.11
guarantees that this cannot happen.

Proposition 9.14. M/~ is well defined, i.e., if t1, ..., ty, t,, ..., t,, are terms, and
t; ~ t then

L [f(ty,.. o tn)]e = [f(t], ot de, f(t1, . tn) = f(#),...,t,) and

2. MER(ty, ... te) iff M =R, ... 1), ie, R(ty, ..., ta) € T*iffR(H, ..., t,) €

r*.
Proof. Follows from Proposition 9.11. O
Lemma 9.15. M/~ = ¢ iff ¢ € I'* for all sentences ¢.

Proof. By induction on ¢, just as in the proof of Lemma 9.9. The only case that
needs additional attention is when ¢ =t = t'.

M/~ [t =t iff [t]~ = [t']~ (by definition of M/ ~)
iff t ~ t' (by definition of [t]~)
ifft = t' € I'* (by definition of ~).

O

Note that while 9t(I'*) is always enumerable and infinite, 91/~ may be
finite, since it may turn out that there are only finitely many classes [f|~. This
is to be expected, since I may contain sentences which require any structure
in which they are true to be finite. For instance, VxVyx = y is a consistent
sentence, but is satisfied only in structures with a domain that contains exactly
one element.
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9.8 The Completeness Theorem

Theorem 9.16 (Completeness Theorem). Let I' be a set of sentences. If I' is con-
sistent, it is satisfiable.

Proof. Suppose I' is consistent. By Lemma 9.7, thereis a I'* O I" which is max-
imally consistent and saturated. If I' does not contain =, then by Lemma 9.9,
M(I'*) = ¢ iff ¢ € I'*. From this it follows in particular that for all ¢ € T,
IM(I'*) = ¢, so I is satisfiable. If I' does contain =, then by Lemma 9.15,
M/~ = @iff ¢ € I'* for all sentences ¢. In particular, M/~ |= ¢ forallp € T,
so I' is satisfiable. O

Corollary 9.17 (Completeness Theorem, Second Version). For all I and ¢ sen-
tences: if I' = ¢ then I = ¢.

Proof. Note that the I'’s in Corollary 9.17 and Theorem 9.16 are universally
quantified. To make sure we do not confuse ourselves, let us restate Theo-
rem 9.16 using a different variable: for any set of sentences A, if Ais consistent,
it is satisfiable. By contraposition, if A is not satisfiable, then A is inconsistent.
We will use this to prove the corollary.

Suppose that I' £ ¢. Then I' U {—¢} is unsatisfiable by Proposition 5.44.
Taking I' U {—¢} as our A, the previous version of Theorem 9.16 gives us that
I' U {—¢} is inconsistent. By Propositions 7.13 and 8.13, I' - ¢. O

9.9 The Compactness Theorem

Definition 9.18. A set I' of formulas is finitely satisfiable if and only if every
finite Iy C I is satisfiable.

Theorem 9.19 (Compactness Theorem). The following hold for any sentences I
and @:

1. T E ¢ iff there is a finite Iy C I such that Iy E ¢.
2. I is satisfiable if and only if it is finitely satisfiable.

Proof. We prove (2). If I is satisfiable, then there is a structure 9t such that
I = ¢ for all ¢ € I'. Of course, this M also satisfies every finite subset of I',
so I' is finitely satisfiable.

Now suppose that I' is finitely satisfiable. Then every finite subset Iy C I’
is satisfiable. By soundness, every finite subset is consistent. Then I itself
must be consistent. For assume it is not, i.e., I' = L. But derivations are finite,
and so already some finite subset Iy C I’ must be inconsistent (cf. Proposi-
tions 7.15 and 8.15). But we just showed they are all consistent, a contradic-
tion. Now by completeness, since I” is consistent, it is satisfiable. O
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9.10 The Lowenheim-Skolem Theorem

Theorem 9.20. If I' is consistent then it has a denumerable model, i.e., it is satisfiable
in a structure whose domain is either finite or infinite but enumerable.

Proof. If T is consistent, the structure 9t delivered by the proof of the com-
pleteness theorem has a domain || whose cardinality is bounded by that of
the set of the terms of the language £. So 9t is at most denumerable. O

Theorem 9.21. If I is consistent set of sentences in the language of first-order logic
without identity, then it has a denumerable model, i.e., it is satisfiable in a structure
whose domain is infinite and enumerable.

Proof. If I is consistent and contains no sentences in which identity appears,
then the structure 97 delivered by the proof of the completness theorem has a
domain |9t| whose cardinality is identical to that of the set of the terms of the
language £. So M is denumerably infinite. O

Problems

Problem 9.1. Complete the proof of Proposition 9.2.
Problem 9.2. Complete the proof of Lemma 9.9.
Problem 9.3. Complete the proof of Proposition 9.11.

Problem 9.4. Use Corollary 9.17 to prove Theorem 9.16, thus showing that the
two formulations of the completeness theorem are equivalent.

Problem 9.5. In order for a derivation system to be complete, its rules must
be strong enough to prove every unsatisfiable set inconsistent. Which of the
rules of LK were necessary to prove completeness? Are any of these rules not
used anywhere in the proof? In order to answer these questions, make a list or
diagram that shows which of the rules of LK were used in which results that
lead up to the proof of Theorem 9.16. Be sure to note any tacit uses of rules in
these proofs.

Problem 9.6. Prove (1) of Theorem 9.19.
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Chapter 10

Beyond First-order Logic

This chapter, adapted from Jeremy Avigad’s logic notes, gives the
briefest of glimpses into which other logical systems there are. It is in-
tended as a chapter suggesting further topics for study in a course that
does not cover them. Each one of the topics mentioned here will—
hopefully—eventually receive its own part-level treatment in the Open
Logic Project.

10.1 Overview

First-order logic is not the only system of logic of interest: there are many ex-
tensions and variations of first-order logic. A logic typically consists of the
formal specification of a language, usually, but not always, a deductive sys-
tem, and usually, but not always, an intended semantics. But the technical use
of the term raises an obvious question: what do logics that are not first-order
logic have to do with the word “logic,” used in the intuitive or philosophical
sense? All of the systems described below are designed to model reasoning of
some form or another; can we say what makes them logical?

No easy answers are forthcoming. The word “logic” is used in different
ways and in different contexts, and the notion, like that of “truth,” has been
analyzed from numerous philosophical stances. For example, one might take
the goal of logical reasoning to be the determination of which statements are
necessarily true, true a priori, true independent of the interpretation of the
nonlogical terms, true by virtue of their form, or true by linguistic convention;
and each of these conceptions requires a good deal of clarification. Even if one
restricts one’s attention to the kind of logic used in mathematical, there is little
agreement as to its scope. For example, in the Principia Mathematica, Russell
and Whitehead tried to develop mathematics on the basis of logic, in the logi-
cist tradition begun by Frege. Their system of logic was a form of higher-type
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logic similar to the one described below. In the end they were forced to intro-
duce axioms which, by most standards, do not seem purely logical (notably,
the axiom of infinity, and the axiom of reducibility), but one might nonetheless
hold that some forms of higher-order reasoning should be accepted as logical.
In contrast, Quine, whose ontology does not admit “propositions” as legiti-
mate objects of discourse, argues that second-order and higher-order logic are
really manifestations of set theory in sheep’s clothing; in other words, systems
involving quantification over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy day, and
simply think of the systems below as formal idealizations of various kinds of
reasoning, logical or otherwise.

10.2 Many-Sorted Logic

In first-order logic, variables and quantifiers range over a single domain. But
it is often useful to have multiple (disjoint) domains: for example, you might
want to have a domain of numbers, a domain of geometric objects, a domain
of functions from numbers to numbers, a domain of abelian groups, and so
on.

Many-sorted logic provides this kind of framework. One starts with a list
of “sorts”—the “sort” of an object indicates the “domain” it is supposed to
inhabit. One then has variables and quantifiers for each sort, and (usually)
an identity predicate for each sort. Functions and relations are also “typed”
by the sorts of objects they can take as arguments. Otherwise, one keeps the
usual rules of first-order logic, with versions of the quantifier-rules repeated
for each sort.

For example, to study international relations we might choose a language
with two sorts of objects, French citizens and German citizens. We might have
a unary relation, “drinks wine,” for objects of the first sort; another unary
relation, “eats wurst,” for objects of the second sort; and a binary relation,
“forms a multinational married couple,” which takes two arguments, where
the first argument is of the first sort and the second argument is of the second
sort. If we use variables 4, b, ¢ to range over French citizens and x, y, z to range
over German citizens, then

VaVx[(MarriedTo(a,x) — (DrinksWine(a) V =EatsWurst(x))]]

asserts that if any French person is married to a German, either the French
person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a natural way,
by lumping all the objects of the many-sorted domains together into one first-
order domain, using unary predicate symbols to keep track of the sorts, and
relativizing quantifiers. For example, the first-order language corresponding
to the example above would have unary predicate symbolss “German” and
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“French,” in addition to the other relations described, with the sort require-
ments erased. A sorted quantifier Vx ¢, where x is a variable of the German
sort, translates to

Vx (German(x) — ¢).

We need to add axioms that insure that the sorts are separate—e.g., Vx =(German(x) A
French(x))—as well as axioms that guarantee that “drinks wine” only holds

of objects satisfying the predicate French(x), etc. With these conventions and
axioms, it is not difficult to show that many-sorted sentences translate to first-

order sentences, and many-sorted derivations translate to first-order deriva-

tions. Also, many-sorted structures “translate” to corresponding first-order
structures and vice-versa, so we also have a completeness theorem for many-

sorted logic.

10.3 Second-Order logic

The language of second-order logic allows one to quantify not just over a do-
main of individuals, but over relations on that domain as well. Given a first-
order language £, for each k one adds variables R which range over k-ary
relations, and allows quantification over those variables. If R is a variable for
a k-ary relation, and t#, ..., f; are ordinary (first-order) terms, R(ty,...,t) is
an atomic formula. Otherwise, the set of formulas is defined just as in the
case of first-order logic, with additional clauses for second-order quantifica-
tion. Note that we only have the identity predicate for first-order terms: if R
and S are relation variables of the same arity k, we can define R = S to be an
abbreviation for

Vxl . ka (R(Xl,. . .,Xk) — S(Xl,. . .,xk)).

The rules for second-order logic simply extend the quantifier rules to the
new second order variables. Here, however, one has to be a little bit careful
to explain how these variables interact with the predicate symbols of £, and
with formulas of £ more generally. At the bare minimum, relation variables
count as terms, so one has inferences of the form

@(R) - 3R ¢(R)

But if £ is the language of arithmetic with a constant relation symbol <, one
would also expect the following inference to be valid:

x <yF 3RR(x,y)
or for a given formula ¢,

o(x1,...,x¢) F IRR(xq, ..., x%)
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More generally, we might want to allow inferences of the form
p[AX.p(X)/R] 3R ¢

where ¢[AX. (X)/R] denotes the result of replacing every atomic formula of
the form Rty,...,t; in ¢ by ¢(t4, ..., ;). This last rule is equivalent to having
a comprehension schema, i.e., an axiom of the form

IRVxq, .., x, (@(x1, ..., x5) <> R(xq,...,x¢)),

one for each formula ¢ in the second-order language, in which R is not a free
variable. (Exercise: show that if R is allowed to occur in ¢, this schema is
inconsistent!)

When logicians refer to the “axioms of second-order logic” they usually
mean the minimal extension of first-order logic by second-order quantifier
rules together with the comprehension schema. But it is often interesting to
study weaker subsystems of these axioms and rules. For example, note that
in its full generality the axiom schema of comprehension is impredicative: it
allows one to assert the existence of a relation R(xy, ..., x;) that is “defined”
by a formula with second-order quantifiers; and these quantifiers range over
the set of all such relations—a set which includes R itself! Around the turn of
the twentieth century, a common reaction to Russell’s paradox was to lay the
blame on such definitions, and to avoid them in developing the foundations
of mathematics. If one prohibits the use of second-order quantifiers in the
formula ¢, one has a predicative form of comprehension, which is somewhat
weaker.

From the semantic point of view, one can think of a second-order structure
as consisting of a first-order structure for the language, coupled with a set of
relations on the domain over which the second-order quantifiers range (more
precisely, for each k there is a set of relations of arity k). Of course, if compre-
hension is included in the proof system, then we have the added requirement
that there are enough relations in the “second-order part” to satisfy the com-
prehension axioms—otherwise the proof system is not sound! One easy way
to insure that there are enough relations around is to take the second-order
part to consist of all the relations on the first-order part. Such a structure is
called full, and, in a sense, is really the “intended structure” for the language.
If we restrict our attention to full structures we have what is known as the
full second-order semantics. In that case, specifying a structure boils down
to specifying the first-order part, since the contents of the second-order part
follow from that implicitly.

To summarize, there is some ambiguity when talking about second-order
logic. In terms of the proof system, one might have in mind either

1. A “minimal” second-order proof system, together with some compre-
hension axioms.
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2. The “standard” second-order proof system, with full comprehension.
In terms of the semantics, one might be interested in either

1. The “weak” semantics, where a structure consists of a first-order part,
together with a second-order part big enough to satisfy the comprehen-
sion axioms.

2. The “standard” second-order semantics, in which one considers full struc-
tures only.

When logicians do not specify the proof system or the semantics they have
in mind, they are usually refering to the second item on each list. The ad-
vantage to using this semantics is that, as we will see, it gives us categorical
descriptions of many natural mathematical structures; at the same time, the
proof system is quite strong, and sound for this semantics. The drawback is
that the proof system is not complete for the semantics; in fact, no effectively
given proof system is complete for the full second-order semantics. On the
other hand, we will see that the proof system is complete for the weakened
semantics; this implies that if a sentence is not provable, then there is some
structure, not necessarily the full one, in which it is false.

The language of second-order logic is quite rich. One can identify unary
relations with subsets of the domain, and so in particular you can quantify
over these sets; for example, one can express induction for the natural num-
bers with a single axiom

VR ((R(0) AVx (R(x) — R(x"))) — Vx R(x)).

If one takes the language of arithmetic to have symbols o,/, +, x and <, one
can add the following axioms to describe their behavior:

1. Vx—x' =0

VxVy (s(x) = s(y) = x =y)
Vx(x+o0)=x

VaVy (x+y') = (x+y)
Vx(xxo0)=o0

Vavy (x xy') = ((x xy) +x)

N o gk » D

VaVy (x <y <> Jzy= (x+2'))

It is not difficult to show that these axioms, together with the axiom of induc-
tion above, provide a categorical description of the structure 9, the standard
model of arithmetic, provided we are using the full second-order semantics.
Given any structure 2 in which these axioms are true, define a function f from
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N to the domain of 2 using ordinary recursion on N, so that f(0) = 0® and
f(x+1) = *(f(x)). Using ordinary induction on IN and the fact that axioms
(1) and (2) hold in A, we see that f is injective. To see that f is surjective, let P
be the set of elements of |2| that are in the range of f. Since 2 is full, P is in
the second-order domain. By the construction of f, we know that 0% isin P,
and that P is closed under /%. The fact that the induction axiom holds in 2 (in
particular, for P) guarantees that P is equal to the entire first-order domain of
2(. This shows that f is a bijection. Showing that f is a homomorphism is no
more difficult, using ordinary induction on IN repeatedly.

In set-theoretic terms, a function is just a special kind of relation; for ex-
ample, a unary function f can be identified with a binary relation R satisfying
Vx 3/ R(x,y). As a result, one can quantify over functions too. Using the full
semantics, one can then define the class of infinite structures to be the class of
structures 2| for which there is an injective function from the domain of 2 to a
proper subset of itself:

3f (VxVy (f(x) = f(y) = x=y) Ay Vx f(x) #y).

The negation of this sentence then defines the class of finite structures.
In addition, one can define the class of well-orderings, by adding the fol-
lowing to the definition of a linear ordering:

VP (3x P(x) — 3x (P(x) AVy (y < x — =P(y)))).

This asserts that every nonempty set has a least element, modulo the iden-
tification of “set” with “one-place relation”. For another example, one can
express the notion of connectedness for graphs, by saying that there is no non-
trivial separation of the vertices into disconnected parts:

—3A (Ix A(x) Ay —A(y) ANVwVz ((A(w) A —=A(z)) = "R(w,z))).

For yet another example, you might try as an exercise to define the class of
finite structures whose domain has even size. More strikingly, one can pro-
vide a categorical description of the real numbers as a complete ordered field
containing the rationals.

In short, second-order logic is much more expressive than first-order logic.
That’s the good news; now for the bad. We have already mentioned that there
is no effective proof system that is complete for the full second-order seman-
tics. For better or for worse, many of the properties of first-order logic are
absent, including compactness and the Léwenheim-Skolem theorems.

On the other hand, if one is willing to give up the full second-order seman-
tics in terms of the weaker one, then the minimal second-order proof system
is complete for this semantics. In other words, if we read - as “proves in the
minimal system” and F as “logically implies in the weaker semantics”, we
can show that whenever I' E ¢ then I' - ¢. If one wants to include specific
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comprehension axioms in the proof system, one has to restrict the semantics
to second-order structures that satisfy these axioms: for example, if A con-
sists of a set of comprehension axioms (possibly all of them), we have that if
TUAE ¢, thenT UA F ¢. In particular, if ¢ is not provable using the com-
prehension axioms we are considering, then there is a model of —¢ in which
these comprehension axioms nonetheless hold.

The easiest way to see that the completeness theorem holds for the weaker
semantics is to think of second-order logic as a many-sorted logic, as follows.
One sort is interpreted as the ordinary “first-order” domain, and then for each
k we have a domain of “relations of arity k.” We take the language to have
built-in relation symbols “true(R, x1,...,x;)” which is meant to assert that
Rholds of xq, ..., x;, where R is a variable of the sort “k-ary relation” and x1,
..., X are objects of the first-order sort.

With this identification, the weak second-order semantics is essentially the
usual semantics for many-sorted logic; and we have already observed that
many-sorted logic can be embedded in first-order logic. Modulo the trans-
lations back and forth, then, the weaker conception of second-order logic is
really a form of first-order logic in disguise, where the domain contains both
“objects” and “relations” governed by the appropriate axioms.

10.4 Higher-Order logic

Passing from first-order logic to second-order logic enabled us to talk about
sets of objects in the first-order domain, within the formal language. Why stop
there? For example, third-order logic should enable us to deal with sets of sets
of objects, or perhaps even sets which contain both objects and sets of objects.
And fourth-order logic will let us talk about sets of objects of that kind. As
you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often formulated in terms of functions
instead of relations. (Modulo the natural identifications, this difference is
inessential.) Given some basic “sorts” A, B, C, ...(which we will now call
“types”), we can create new ones by stipulating

If o and 7 are finite types then so is o — 7.

Think of types as syntactic “labels,” which classify the objects we want in our
domain; o — T describes those objects that are functions which take objects of
type o to objects of type 7. For example, we might want to have a type (2 of
truth values, “true” and “false,” and a type IN of natural numbers. In that case,
you can think of objects of type IN — (2 as unary relations, or subsets of IN;
objects of type N — IN are functions from natural numers to natural numbers;
and objects of type (N — IN) — IN are “functionals,” that is, higher-type
functions that take functions to numbers.
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As in the case of second-order logic, one can think of higher-order logic as
a kind of many-sorted logic, where there is a sort for each type of object we
want to consider. But it is usually clearer just to define the syntax of higher-
type logic from the ground up. For example, we can define a set of finite types
inductively, as follows:

1. N is a finite type.
2. If o and T are finite types, then sois o — T.
3. If o and 7 are finite types, sois o X T.

Intuitively, N denotes the type of the natural numbers, ¢ — T denotes the
type of functions from o to T, and ¢ x T denotes the type of pairs of objects,
one from ¢ and one from 7. We can then define a set of terms inductively, as
follows:

1. For each type o, there is a stock of variables x, y, z, ... of type o
2. ois a term of type N
3. S (successor) is a term of type N — IN

4. If s is a term of type 0, and f is a term of type N — (¢ — ), then Ry is
a term of type N — o

5. If s is a term of type T — ¢ and t is a term of type T, then s(t) is a term
of type o

6. If s is a term of type o and x is a variable of type T, then Ax.s is a term of
typet — 0.

7. If s is a term of type o and ¢ is a term of type T, then (s, t) is a term of
type o x T.

8. If s is a term of type ¢ X T then py(s) is a term of type ¢ and py(s) is a
term of type T.

Intuitively, Rst denotes the function defined recursively by

Rst(0) =s
Rst(x + 1) = t(x,Rst(-x>)/

(s,t) denotes the pair whose first component is s and whose second compo-
nent is ¢, and p1(s) and pa(s) denote the first and second elements (“projec-
tions”) of s. Finally, Ax.s denotes the function f defined by

flx)=s
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for any x of type o; so item (6) gives us a form of comprehension, enabling us
to define functions using terms. Formulas are built up from identity predicate
statements s = t between terms of the same type, the usual propositional
connectives, and higher-type quantification. One can then take the axioms
of the system to be the basic equations governing the terms defined above,
together with the usual rules of logic with quantifiers and identity predicate.

If one augments the finite type system with a type (2 of truth values, one
has to include axioms which govern its use as well. In fact, if one is clever, one
can get rid of complex formulas entirely, replacing them with terms of type (2!
The proof system can then be modified accordingly. The result is essentially
the simple theory of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different versions of higher-
type semantics that one might want to use. In the full version, variables of
type o — T range over the set of all functions from the objects of type ¢ to
objects of type T. As you might expect, this semantics is too strong to admit
a complete, effective proof system. But one can consider a weaker semantics,
in which a structure consists of sets of elements T; for each type T, together
with appropriate operations for application, projection, etc. If the details are
carried out correctly, one can obtain completeness theorems for the kinds of
proof systems described above.

Higher-type logic is attractive because it provides a framework in which
we can embed a good deal of mathematics in a natural way: starting with IN,
one can define real numbers, continuous functions, and so on. It is also partic-
ularly attractive in the context of intuitionistic logic, since the types have clear
“constructive” intepretations. In fact, one can develop constructive versions
of higher-type semantics (based on intuitionistic, rather than classical logic)
that clarify these constructive interpretations quite nicely, and are, in many
ways, more interesting than the classical counterparts.

10.5 Intuitionistic logic

In constrast to second-order and higher-order logic, intuitionistic first-order
logic represents a restriction of the classical version, intended to model a more
“constructive” kind of reasoning. The following examples may serve to illus-
trate some of the underlying motivations.

Suppose someone came up to you one day and announced that they had
determined a natural number x, with the property that if x is prime, the Rie-
mann hypothesis is true, and if x is composite, the Riemann hypothesis is
false. Great news! Whether the Riemann hypothesis is true or not is one of
the big open questions of mathematics, and here they seem to have reduced
the problem to one of calculation, that is, to the determination of whether a
specific number is prime or not.
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What is the magic value of x? They describe it as follows: x is the natural
number that is equal to 7 if the Riemann hypothesis is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point of view, the
description above does in fact determine a unique value of x; but what you
really want is a value of x that is given explicitly.

To take another, perhaps less contrived example, consider the following
question. We know that it is possible to raise an irrational number to a rational

power, and get a rational result. For example, \/52 = 2. What is less clear
is whether or not it is possible to raise an irrational number to an irrational
power, and get a rational result. The following theorem answers this in the
affirmative:

Theorem 10.1. There are irrational numbers a and b such that a® is rational.

. 2 .. .
Proof. Consider ﬁ\f If this is rational, we are done: we can leta = b = /2.
Otherwise, it is irrational. Then we have

(V22— VR =,

which is certainly rational. So, in this case, let a be \/Eﬁ, and letbbe v2. O

Does this constitute a valid proof? Most mathematicians feel that it does.
But again, there is something a little bit unsatisfying here: we have proved the
existence of a pair of real numbers with a certain property, without being able
to say which pair of numbers it is. It is possible to prove the same result, but in
such a way that the pair a, b is given in the proof: take 2 = v/3 and b = log, 4.
Then

ab _ \@10834 _ 31/2~log34 — (310g34)1/2 — 41/2 =2,

since 3183 % = x.

Intuitionistic logic is designed to model a kind of reasoning where moves
like the one in the first proof are disallowed. Proving the existence of an x
satisfying ¢(x) means that you have to give a specific x, and a proof that it
satisfies ¢, like in the second proof. Proving that ¢ or ¥ holds requires that
you can prove one or the other.

Formally speaking, intuitionistic first-order logic is what you get if you
omit restrict a proof system for first-order logic in a certain way. Similarly,
there are intuitionistic versions of second-order or higher-order logic. From
the mathematical point of view, these are just formal deductive systems, but,
as already noted, they are intended to model a kind of mathematical reason-
ing. One can take this to be the kind of reasoning that is justified on a cer-
tain philosophical view of mathematics (such as Brouwer’s intuitionism); one
can take it to be a kind of mathematical reasoning which is more “concrete”
and satisfying (along the lines of Bishop’s constructivism); and one can argue
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about whether or not the formal description captures the informal motiva-
tion. But whatever philosophical positions we may hold, we can study intu-
itionistic logic as a formally presented logic; and for whatever reasons, many
mathematical logicians find it interesting to do so.

There is an informal constructive interpretation of the intuitionist connec-
tives, usually known as the Brouwer-Heyting-Kolmogorov interpretation. It
runs as follows: a proof of ¢ A ¢ consists of a proof of ¢ paired with a proof
of ; a proof of ¢ V ¢ consists of either a proof of ¢, or a proof of {, where
we have explicit information as to which is the case; a proof of ¢ — ¥ con-
sists of a procedure, which transforms a proof of ¢ to a proof of ¥; a proof of
Vx ¢(x) consists of a procedure which returns a proof of ¢(x) for any value
of x; and a proof of Jx ¢(x) consists of a value of x, together with a proof that
this value satisfies ¢. One can describe the interpretation in computational
terms known as the “Curry-Howard isomorphism” or the “formulas-as-types
paradigm™: think of a formula as specifying a certain kind of data type, and
proofs as computational objects of these data types that enable us to see that
the corresponding formula is true.

Intuitionistic logic is often thought of as being classical logic “minus” the
law of the excluded middle. This following theorem makes this more precise.

Theorem 10.2. Intuitionistically, the following axiom schemata are equivalent:
1 (¢ = L) — —o.
2. oV g
3. g — @

Obtaining instances of one schema from either of the others is a good ex-
ercise in intuitionistic logic.

The first deductive systems for intuitionistic propositional logic, put forth
as formalizations of Brouwer’s intuitionism, are due, independently, to Kol-
mogorov, Glivenko, and Heyting. The first formalization of intuitionistic first-
order logic (and parts of intuitionist mathematics) is due to Heyting. Though
a number of classically valid schemata are not intuitionistically valid, many
are.

The double-negation translation describes an important relationship between
classical and intuitionist logic. It is defined inductively follows (think of ¢

Release : c2feada (2016-08-01) 133



CHAPTER 10. BEYOND FIRST-ORDER LOGIC

as the “intuitionist” translation of the classical formula ¢):

= ——¢ for atomic formulas ¢
N = (N Ayt
W = (oM v )
(¢ =) = (o™ — ™)
)
)
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= Vx N
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Kolmogorov and Glivenko had versions of this translation for propositional
logic; for predicate logic, it is due to Godel and Gentzen, independently. We
have

Theorem 10.3. 1. ¢ < ¢N is provable classically
2. If ¢ is provable classically, then N is provable intuitionistically.

We can now envision the following dialogue. Classical mathematician:
“I've proved ¢!” Intuitionist mathematician: “Your proof isn’t valid. What
you've really proved is ¢.” Classical mathematician: “Fine by me!” As far as
the classical mathematician is concerned, the intuitionist is just splitting hairs,
since the two are equivalent. But the intuitionist insists there is a difference.

Note that the above translation concerns pure logic only; it does not ad-
dress the question as to what the appropriate nonlogical axioms are for classi-
cal and intuitionistic mathematics, or what the relationship is between them.
But the following slight extension of the theorem above provides some useful
information:

Theorem 10.4. If I proves ¢ classically, TN proves ¢ intuitionistically.

In other words, if ¢ is provable from some hypotheses classically, then ¢
is provable from their double-negation translations.

To show that a sentence or propositional formula is intuitionistically valid,
all you have to do is provide a proof. But how can you show that it is not
valid? For that purpose, we need a semantics that is sound, and preferrably
complete. A semantics due to Kripke nicely fits the bill.

We can play the same game we did for classical logic: define the semantics,
and prove soundness and completeness. It is worthwhile, however, to note
the following distinction. In the case of classical logic, the semantics was the
“obvious” one, in a sense implicit in the meaning of the connectives. Though
one can provide some intuitive motivation for Kripke semantics, the latter
does not offer the same feeling of inevitability. In addition, the notion of a
classical structure is a natural mathematical one, so we can either take the
notion of a structure to be a tool for studying classical first-order logic, or take
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classical first-order logic to be a tool for studying mathematical structures.
In contrast, Kripke structures can only be viewed as a logical construct; they
don’t seem to have independent mathematical interest.

A Kripke structure for a propositional langauge consists of a partial order
Mod(P) with a least element, and an “monotone” assignment of propositional
variables to the elements of Mod(P). The intuition is that the elements of
Mod(P) represent “worlds,” or “states of knowledge”; an element p > g rep-
resents a “possible future state” of ¢; and the propositional variables assigned
to p are the propositions that are known to be true in state p. The forcing
relation B, p I ¢ then extends this relationship to arbitrary formulas in the
language; read B, p I+ ¢ as “¢ is true in state p.” The relationship is defined
inductively, as follows:

1. B, p I p; iff p; is one of the propositional variables assigned to p.
2. B, pH L.

3. B,pl-(pAy)iff B, pl- gand P, p IF .

4. B,plk (V) iff P,pl-porP,pl-y.

5.8, pIF (¢ — o) iff, whenever g > p and B, q IF ¢, then B, g IF ¢.

It is a good exercise to try to show that —(p A g) — (—p V —q) is not intuition-
istically valid, by cooking up a Kripke structure that provides a counterexam-

ple.

10.6 Modal Logics

Consider the following example of a conditional sentence:

If Jeremy is alone in that room, then he is drunk and naked and
dancing on the chairs.

This is an example of a conditional assertion that may be materially true but
nonetheless misleading, since it seems to suggest that there is a stronger link
between the antecedent and conclusion other than simply that either the an-
tecedent is false or the consequent true. That is, the wording suggests that the
claim is not only true in this particular world (where it may be trivially true,
because Jeremy is not alone in the room), but that, moreover, the conclusion
would have been true had the antecedent been true. In other words, one can
take the assertion to mean that the claim is true not just in this world, but in
any “possible” world; or that it is necessarily true, as opposed to just true in
this particular world.

Modal logic was designed to make sense of this kind of necessity. One ob-
tains modal propositional logic from ordinary propositional logic by adding a
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box operator; which is to say, if ¢ is a formula, so is O¢. Intuitively, ¢ asserts
that ¢ is necessarily true, or true in any possible world. ¢ ¢ is usually taken to
be an abbreviation for ~O0—¢, and can be read as asserting that ¢ is possibly
true. Of course, modality can be added to predicate logic as well.

Kripke structures can be used to provide a semantics for modal logic; in
fact, Kripke first designed this semantics with modal logic in mind. Rather
than restricting to partial orders, more generally one has a set of “possible
worlds,” P, and a binary “accessibility” relation R(x,y) between worlds. In-
tuitively, R(p, q) asserts that the world g is compatible with p; i.e., if we are
“in” world p, we have to entertain the possibility that the world could have
been like g.

Modal logic is sometimes called an “intensional” logic, as opposed to an
“extensional” one. The intended semantics for an extensional logic, like clas-
sical logic, will only refer to a single world, the “actual” one; while the seman-
tics for an “intensional” logic relies on a more elaborate ontology. In addition
to structureing necessity, one can use modality to structure other linguistic
constructions, reinterpreting [J and ¢ according to the application. For exam-

ple:
1. In provability logic, (¢ is read “¢ is provable” and Q¢ is read “¢ is
consistent.”

2. In epistemic logic, one might read [¢ as “I know ¢” or “I believe ¢.”

3. In temporal logic, one can read O¢ as “¢ is always true” and ¢¢ as “¢ is
sometimes true.”

One would like to augment logic with rules and axioms dealing with modal-
ity. For example, the system S4 consists of the ordinary axioms and rules of
propositional logic, together with the following axioms:

Dlg = ¢) — (Ue — Oyp)
e — ¢
U — Ule

as well as a rule, “from ¢ conclude Og.” S5 adds the following axiom:

Op — U0e

Variations of these axioms may be suitable for different applications; for ex-
ample, S5 is usually taken to characterize the notion of logical necessity. And
the nice thing is that one can usually find a semantics for which the proof
system is sound and complete by restricting the accessibility relation in the
Kripke structures in natural ways. For example, S4 corresponds to the class
of Kripke structures in which the accessibility relation is reflexive and transi-
tive. S5 corresponds to the class of Kripke structures in which the accessibility
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relation is universal, which is to say that every world is accessible from every
other; so O¢ holds if and only if ¢ holds in every world.

10.7 Other Logics

As you may have gathered by now, it is not hard to design a new logic. You
too can create your own a syntax, make up a deductive system, and fashion
a semantics to go with it. You might have to be a bit clever if you want the
proof system to be complete for the semantics, and it might take some effort to
convince the world at large that your logic is truly interesting. But, in return,
you can enjoy hours of good, clean fun, exploring your logic’s mathematical
and computational properties.

Recent decades have witnessed a veritable explosion of formal logics. Fuzzy
logic is designed to model reasoning about vague properties. Probabilistic
logic is designed to model reasoning about uncertainty. Default logics and
nonmonotonic logics are designed to model defeasible forms of reasoning,
which is to say, “reasonable” inferences that can later be overturned in the face
of new information. There are epistemic logics, designed to model reasoning
about knowledge; causal logics, designed to model reasoning about causal re-
lationships; and even “deontic” logics, which are designed to model reason-
ing about moral and ethical obligations. Depending on whether the primary
motivation for introducing these systems is philosophical, mathematical, or
computational, you may find such creatures studies under the rubric of math-
ematical logic, philosophical logic, artificial intelligence, cognitive science, or
elsewhere.

The list goes on and on, and the possibilities seem endless. We may never
attain Leibniz’ dream of reducing all of human reason to calculation—but that
can’t stop us from trying.

Problems

Release : c2feada (2016-08-01) 137



Part 111

Model Theory

138



10.7. OTHER LOGICS

Material on model theory is incomplete and experimental. It is cur-
rently simply an adaptation of Aldo Antonelli’s notes on model theory,
less those topics covered in the part on first-order logic (theories, com-
pleteness, compactness). It requires much more introduction, motivation,
and explanation, as well as exercises, to be useful for a textbook. Andy
Arana is at planning to work on this part specifically (issue #65).
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Chapter 11

Basics of Model Theory

11.1 Reducts and Expansions

Often it is useful or necessary to compare languages which have symbols in
common, as well as structures for these languages. The most comon case
is when all the symbols in a language £ are also part of a language £/, i.e.,
L C L. An L-structure M can then always be expanded to an £'-structure
by adding interpretations of the additional symbols while leaving the inter-
pretations of the common symbols the same. On the other hand, from an
L'-structure M’ we can obtain an L-structure simpy by “forgetting” the inter-
pretations of the symbols that do not occur in L.

Definition 11.1. Suppose £ C L/, M is an L-structure and 9’ is an L'-
structure. M is the reduct of M’ to £, and M’ is an expansion of M to L iff

L. jo0] = [onv|

2. For every constant symbol ¢ € £, ¢™ = M

3. For every function symbol f € £, f™ = f
4. For every predicate symbol P € £, P™' = P,

Proposition 11.2. If an L-structure MM is a reduct of an L'-structure M, then for
all L-sentences @,

M= @ iff M = ¢.
Proof. Exercise. O

Definition 11.3. When we have an L-structure 9, and £ = £ U {P} is the
expansion of £ obtained by adding a single n-place predicate symbol P, and
R C |90" is an n-place relation, then we write (90, R) for the expansion 9
of M with P™ = R.

140



11.2. SUBSTRUCTURES

11.2 Substructures

The domain of a structure 9 may be a subset of another M. But we should
obviously only consider M a “part” of M’ if not only |2M| C ||, but M and
9N’ “agree” in how they interpret the symbols of the language at least on the
shared part |901|.

Definition 11.4. Given structures 9t and 9 for the same language £, we say
that 90 is a substructure of M, and 9’ an extension of M, written M C M, iff

1. || C o],

2. For each constant ¢ € £, ™ = ¢™';
3. For each n-place predicate symbol f € £ f™(ay,...,a,) = ™ (ay, ..., a,)
forallay, ..., a, € |90

4. For each n-place predicate symbol R € £, (ay,...,a,) € R™iff (ay,...,a,) €
R™ forallay, ..., a, € |90

Remark 1. If the language contains no constant or function symbols, then any
N C || determines a substructure 91 of 9t with domain |9t| = N by putting
RM = RN N".

11.3 Overspill

Theorem 11.5. If a set I' of sentences has arbitrarily large finite models, then it has
an infinite model.

Proof. Expand the language of I" by adding countably many new constants cy,
c1, -.-and consider the set I' U {c; # ¢j : i # j}. To say that I' has arbitrarily
large finite models means that for every m > 0 there is n > m such that I
has a model of cardinality n. This implies that I' U {c; # ¢; : i # j} is finitely
satisfiable. By compactness, I' U {c; # c¢j : i # j} has a model M whose
domain must be infinite, since it satisfies all inequalities ¢; # c;. O

Proposition 11.6. There is no sentence ¢ of any first-order language that is true in
a structure O if and only if the domain |9M| of the structure is infinite.

Proof. If there were such a ¢, its negation —¢ would be true in all and only the
finite structures, and it would therefore have arbitrarily large finite models
but it would lack an infinite model, contradicting Theorem 11.5. O
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11.4 Isomorphic Structures

Definition 11.7. Given two structures It and M’ for the same language £, we
say that O is elementarily equivalent to 9, written M = 9, if and only if for
every sentence ¢ of £, M = ¢ iff M’ |= ¢.

Definition 11.8. Given two structures 9 and 9 for the same language L,
we say that 9 is isomorphic to M, written 9 ~ 9, if and only if there is a
function i: |9M| — |99V| such that:

1. hisinjective: if h(x) = h(y) then x = y;
2. his surjective: for every y € |9V there is x € || such that h(x) = y;
3. for every constant c: 1i(c™) = ¢™;

4. for every n-place predicate symbol P: (ay,...,a,) € P™ if and only if
(h(ay),..., h(ay)) € PP

5. for every n-place function symbol f:

W™ (ay,. .. a0)) = F (h(ar), ..., h(ay)).

Theorem 11.9. If M ~ M then M = M.

Proof. Let h be an isomorphism of 9 onto M. For any assignment s, h o s is
the composition of /1 and s, i.e., the assignment in M’ such that (hos)(x) =
h(s(x)). By induction on t and ¢ one can prove the stronger claims:

h(Val™ (1)) = ValiZ (t);
M, s = g ifand only if M, hos = ¢.
O

Definition 11.10. An automorphism of a structure 91 is an isomorphism of 9
onto itself.

11.5 The Theory of a Structure

Definition 11.11. Given a structure 9, the theory of M is the set Th(M) of
sentences that are true in M, i.e.,, Th(IM) = {p : M |= ¢}.

We also use the term “theory” informally to refer to sets of sentences hav-
ing an intended interpretation, whether deductively closed or not.

Proposition 11.12. For any 9, Th(9N) is maximally consistent. Hence, if N = ¢
for every ¢ € Th(9N), then M = N.
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Proof. Th(M) is consistent because satisfiable (by definition). It is maximal
since for any sentence ¢ either ¢ is true in 9 or its negation is. It immediately
follows that Th(91) C Th(91) and Th(9) C Th(MN), whence N = N. O

Remark 2. Consider R = (R, <), the structure whose domain is the set R of
the real numbers, in the language comprising only a 2-place predicate sym-
bol interpreted as the < relation over the reals. Clearly R is non-enumerable;
however, since Th(fR) is obviously consistent, by the Léwenheim-Skolem the-
orem it has an enumerable model, say &, and by Proposition 11.12, R = &.
Moreover, since i and & are not isomorphic, this shows that the converse of
Theorem 11.9 fails in general.

11.6 Partial Isomorphisms

Definition 11.13. Given two structures 9t and N, a partial isomorphism from 9
to 91is a finite partial function p taking arguments in || and returning values
in |91, which satisfies the isomorphism conditions from Definition 11.8 on its
domain:

1. pisinjective;

2. for every constant symbol c: if p(c™) is defined, then p(c™) = ¢™;

3. for every n-place predicate symbol P: if a4, ..., a, are in the domain of
p, then (ay,...,a,) € PP if and only if (p(ay),...,p(ay)) € P

4. for every n-place function symbol f: if a5, ..., a, are in the domain of p,
then p(f™(ay,...,an)) = f7(p(ay), dots, p(an)).

That p is finite means that dom(p) is finite.

Notice that the empty function @ is always a partial isomorphism between
any two structures.

Definition 11.14. Two structures 9t and N, are partially isomorphic, written
M ~, N, if and only if there is a non-empty set I of partial isomorphisms
between 9t and N satisfying the back-and-forth property:

1. (Forth) For every p € I and a € |9 thereis q € [ such that p C gand a
is in the domain of g;

2. (Back) For every p € I and b € || there is q € I such that p C g and b is
in the range of 4.

Theorem 11.15. If 9 ~, N and MM and N are enumerable, then M ~ N.

Proof. Since Mt and N are enumerable, let M| = {ag,a1,...} and |N| = {bp, by, ...}

Starting with an arbitrary py € I, we define an increasing sequence of partial
isomorphisms pg C p; C pp C - -+ as follows:
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1. if n 4 1is odd, say n = 2r, then using the Forth property find a p,, 41 € I
such that p, C p,+1 and 4, is in the domain of p,,y1;

2. if n 4+ 1is even, say n + 1 = 2r, then using the Back property find a
Pn+1 € I such that p, C p,11 and b, is in the range of py,41.

If we now put:

r= rn

n>0

we have that p is a an isomorphism between 9t and M. O

Theorem 11.16. Suppose 9 and N are structures for a purely relational language
(a language containing only predicate symbols, and no function symbols or con-
stants). Then if M ~, N, also M = N.

Proof. By induction on formulas, one shows thatifa;, ..., a, and by, ..., b, are
such that there is a partial isomorphism p mapping each a; to b; and s1(x;) = 4;
and sy(x;) = b; (fori =1, ..., n), then M,s; = ¢ if and only if N, s, |= ¢. The
case for n = 0 gives M = N. O

Remark 3. If function symbols are present, the previous result is still true, but

one needs to consider the isomorphism induced by p between the substruc-

ture of 91 generated by 4y, ..., a, and the substructure of 91 generated by by,
o by

The previous result can be “broken down” into stages by establishing a
connection between the number of nested quantifiers in a formula and how
many times the relevant partial isomorphisms can be extended.

Definition 11.17. For any formula ¢, the quantifier rank of ¢, denoted by qr(¢) €
N, is recursively defined as the highest number of nested quantifiers in ¢.
Two structures Mt and 91 are n-equivalent, written 9 =, N, if they agree on all
sentences of quantifier rank less than or equal to .

Proposition 11.18. Let L be a finite purely relational language, i.e., a language
containing finitely many predicate symbols and constant symbols, and no function
symbols. Then for each n € IN there are only finitely many first-order sentences in
the language L that have quantifier rank no greater than n, up to logical equivalence.

Proof. By induction on 7. O

Definition 11.19. Given a structure 0, let |9~ be the set of all finite se-
quences over |9|. We use a, b, ¢, . .. to range over finite sequences of elements.
Ifa € | and a € |9M|, then aa represents the concatenation of a with a.

Definition 11.20. Given structures 9t and 0, we define relations I, C |90t|~“ x
|91 = between sequences of equal length, by recursion on # as follows:
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1. Ip(a,b) if and only if a and b satisfy the same atomic formulas in 9t and
N; ie., if s1(x;) = a; and sp(x;) = b; and ¢ is atomic with all variables
among xi, ..., Xy, then M, s; |= ¢ if and only if N, s, |= ¢.

2. I,+1(a,b) if and only if for every a € A thereis a b € B such that
I,(aa, bb), and vice-versa.

Definition 11.21. Write M =2, N if [,(D, D) holds of M and 9 (where @ is the
empty sequence).

Theorem 11.22. Let L be a purely relational language. Then I,(a,b) implies that
for every ¢ such that qr(¢) < n, we have M, a |= ¢ if and only if N, b |= ¢ (where
again a satisfies ¢ if any s such that s(x;) = a; satisfies ¢). Moreover, if L is finite,
the converse also holds.

Proof. The proof that I,(a, b) implies that a and b satisfy the same formulas
of quantifier rank no greater than 7 is by an easy induction on ¢. For the con-
verse we proceed by induction on 7, using Proposition 11.18, which ensures
that for each n there are at most finitely many non-equivalent formulas of that
quantifier rank.

For n = 0 the hypothesis that a and b satisfy the same quantifier-free for-
mulas gives that they satisfy the same atomic ones, so that Ip(a, b).

For the n + 1 case, suppose that a and b satisfy the same formulas of quan-
tifier rank no greater than n + 1; in order to show that I, 1(a, b) suffices to
show that for each a € || thereis a b € |N| such that I,,(aa, bb), and by the
inductive hypothesis again suffices to show that for each a2 € |9t| there is a
b € M| such that aa and bb satisfy the same formulas of quantifier rank no
greater than n.

Given a € |9, let 77 be set of formulas ¢(x,y) of rank no greater than
n satisfied by aa in 9; 7;; is finite, so we can assume it is a single first-order
formula. It follows that a satisfies 3x 71 (x,y), which has quantifier rank no
greater than n 4 1. By hypothesis b satisfies the same formula in 91, so that
there is a b € |0N| such that bb satisfies 7;}; in particular, bb satisfies the same
formulas of quantifier rank no greater than n as aa. Similarly one shows that
for every b € |N| there is a € || such that aa and bb satisfy the same formu-
las of quantifier rank no greater than n, which completes the proof. O

Corollary 11.23. If 9t and 2 are purely relational structures in a finite language,
then M ~y, Nif and only if M =, N. In particular M = N if and only if for each n,
M~y N.

11.7 Dense Linear Orders

Definition 11.24. A dense linear ordering without endpoints is a structure 9t for
the language containg a single 2-place predicate symbol < satisfying the fol-
lowing sentences:
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1. Vxx < x;

2. VaVyVz(x <y — (y<z—x<2z));
3. VaVy(x <yVx=yVy<x);

4. Vxdyx <y;

5 Vxdyy < x;

6. VxVy(x <y — Jz(x <zAz<y)).

Theorem 11.25. Any two enumerable dense linear orderings without endpoints are
isomorphic.

Proof. Let My and My be enumerable dense linear orderings without end-
points, with <4 =<MM and <, =<™2, and let Z be the set of all partial iso-
morphisms between them. 7 is not empty since at least @ € Z. We show that
7 satisfies the Back-and-Forth property. Then 90t; ~;, 9, and the theorem
follows by Theorem 11.15.

To show T satisifes the Forth property, let p € Z and let p(a;) = b; fori =1,
..., n, and without loss of generality suppose a1 <1 a2 <1 -+ <1 a,. Given
a € |9y |, find b € |M;| as follows:

1. ifa <p aq let b € |9;] be such that b <, by;
2. ifa, <y aleth € |9,] be such that b, <, b;

3. ifa; <1 a <q aj; for some i, then let b € |My| be such that b; < b <
bit1.

It is always possible to find a b with the desired property since 9, is a dense
linear ordering without endpoints. Define ¢ = p U {(a,b)} so thatq € 7 is the
desired extension of p. This establishes the Forth property. The Back property
is similar. So My ~, My; by Theorem 11.15, My ~ My. O

Remark 4. Let & be any enumerable dense linear ordering without endpoints.
Then (by Theorem 11.25) & ~ 9, where Q = (Q, <) is the enumerable dense
linear ordering having the set Q of the rational numbers as its domain. Now
consider again the structure R = (R, <) from Remark 2. We saw that there is
an enumerable structure & such that /i = &. But & is an enumerable dense
linear ordering without endpoints, and so it is isomorphic (and hence elemen-
tarily equivalent) to the structure Q. By transitivity of elementary equivalence,
R = Q. (We could have shown this directly by establishing R ~, Q by the
same back-and-forth argument.)
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11.8 Non-standard Models of Arithmetic

Definition 11.26. Let £y be the language of arithmetic, comprising a constant
symbol o, a 2-place predicate symbol <, a 1-place function symbol /, and 2-
place function symbols + and x.

1. The standard model of arithmetic is the structure 0N for Ly having N =
{0,1,2,...} and interpreting o as 0, < as the less-than relation over IN,
and /, + and x as successor, addition, and multiplication over IN, re-
spectively.

2. True arithmetic is the theory Th(91).

When working in £y we abbreviate each term of the form o/, with n
applications of the successor function to o, as 7.

Definition 11.27. A structure 9t for Ly is standard if and only 91 ~ 9t.
Theorem 11.28. There are non-standard enumerable models of true arithmetic.

Proof. Expand Ly by introducing a new constant symbol ¢, and consider the
theory
Th(M)U{n <c:n e N}.

The theory is finitely satisfiable, so by compactness it has a model 9t, which
can be taken to be enumerable by the Downward Léwenheim-Skolem the-
orem. Where |91 is the domain of 9, let M1 interpret the non-logical con-
stants of L as z = o™ € | M|, < =<TC M?, x = /M M| — M|, and
® =+ @ = xM: |9M|*> — |M|. For each x € M|, we write x* for the
element of 91| obtained from x by application of .

Now, if h were an isomorphism of 9t and 9%, there would be n € IN such
that h(n) = ¢™. So let s be any assignment in 9 such that s(x) = n. Then
N,s = n = x; by the proof of Theorem 11.9, also M,hos = 7 = x, so
that ¢™ = z** (with x iterated n times). But this is impossible since by
assumption MM |= 7 < ¢ and < is irreflexive. So 9 is non-standard. O

Since the non-standard model 9t from Theorem 11.28 is elementarily equiv-
alent to the standard one, a number of properties of 9t can be derived. The
rest of this section is devoted to such a task, which will allow us to obtain a
precise characterization of enumerable non-standard models of Th(91).

1. No member of |91 is <-less than itself: the sentence Vx —x < x is true
in 91 and therefore in 9.

2. By a similar reasoning we obtain that < is a linear ordering of ||, i.e., a
total, irreflexive, transitive relation on |90|.

3. The element z is the <-least element of |91|.
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Any member of |91| is <-less than its *-successor and x* is the <-least
member of || greater than x.

2 contains an initial segment (of <) isomorphic to N: z,z*,z**,...,
which we call the standard part of |9|. Any other member of |90 is
non-standard. There must be non-standard members of |91|, or else the
function & from the proof of Theorem 11.28 is an isomorphism. We use
n,m,... as variables ranging on this standard part of 1.

Every non-standard element is greater than any standard one; this is
because for every n € IN,

NEVz(-(z=0V---Vz=7) 571 <z),

soifz € |M| is different from all the standard elements, it must be greater
than all of them.

Any member of || other than z is the *-successor of some unique ele-
ment of | M|, denoted by *x. If x = y* then both x and y are standard if
one of them is (and both non-standard if one of them is).

Define an equivalence relation ~ over |9t| by saying that x ~ y if and
only if for some standard n, either x ®n = y or y & n = x. In other words,
x ~ y if and only if x and y are a finite distance apart. If n and m are
standard then n ~ m. Define the block of x to be the equivalence class

W] = {y:x~y)

Suppose that x < y where x Z y. Since M = VaVy(x <y — (¥ <
yVx' =1y)),either x* < y or x* = y. The latter is impossible because
it implies x ~ y, so x < y. Similarly, if x < y and x % y, then x < *y.
Therefore if x < y and x # y, then every w ~ x is <-less than every
v ~ y. Accordingly, each block [x]| forms a doubly infinite chain

e < T <x <xf <<

which is referred to as a Z-chain because it has the order type of the
integers.

The < ordering can be lifted up to the blocks: if x < y then the block
of x is less than the block of y. A block is non-standard if it contains a
non-standard element. The standard block is the least block.

There is no least non-standard block: if y is non-standard then there is a
x < y where x is also non-standard and x # y. Proof: in the standard
model 7, every number is divisible by two, possibly with remainder
one, ie, N =VyVx(y = x+xVy = x+x+0). By elementary equiv-
alence, for every y € |9 there is x € |9 such that either x & x =y
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or x ®x ®z* = y. If x were standard, then so would be y; so x is non-
standard. Furthermore, x and y belong to different blocks, i.e, x % y. To
see this, assume they did belong to the same block, i.e., x ®n = y for
some standard n. If y = x @ x, then x @ n = x ® x, whence x = n by
the cancellation law for addition (which holds in 9t and therefore in 9t
as well), and x would be standard after all. Similarly if y = x @ x @ z*.

12. By a similar argument, there is no greatest block.

13. The ordering of the blocks is dense: if [x] is less than [y] (where x % y),
then there is a block [z] distinct from both that is between them. Suppose
x < y. As before, x @ y is divisible by two (possibly with remainder) so
thereis a u € || such thateitherx®dy =uGuorx Py =ududz*.
The element u is the average of x and y, and so is between them. Assume
x @y = u @ u (the other case being similar): if u ~ x then for some
standard n:

XPYy=xdndxdn,

soy = x ®n @ n and we would have x ~ y, against assumption. We
conclude that u % x. A similar argument gives u % y.

The non-standard blocks are therefore ordered like the rationals: they form
an enumerable linear ordering without endpoints. It follows that for any two
enumerable non-standard models 91, and 91, of true arithmetic, their reducts
to the language containing < and = only are isomorphic. Indeed, an isomor-
phism & can be defined as follows: the standard parts of 9t; and 9, are iso-
morphic to the standard model 91 and hence to each other. The blocks making
up the non-standard part are themselves ordered like the rationals and there-
fore by Theorem 11.25 are isomorphic; an isomorphism of the blocks can be
extended to an isomorphism within the blocks by matching up arbitrary ele-
ments in each, and then taking the image of the successor of x in 9t; to be the
successor of the image of x in M. Note that it does not follow that 91, and
M, are isomorphic in the full language of arithmetic (indeed, isomorphism
is always relative to a signature), as there are non-isomorphic ways to de-
fine addition and multiplication over |9t | and |[9;|. (This also follows from
a famous theorem due to Vaught that the number of countable models of a
complete theory cannot be 2.)

Problems
Problem 11.1. Prove Proposition 11.2.

Problem 11.2. Carry out the proof of Theorem 11.9 in detail. Make sure to
take note at each step of how each of the five properties characterizing iso-
morphisms is used.
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Problem 11.3. Show that for any structure 9, if X is a definable subset of 9t,
and & is an automorphism of 91, then X = {h(x) : x € X} (i.e., X is fixed
under h).

Problem 11.4. Show in detail that p as defined in Theorem 11.15 is in fact an
isomorphism.

Problem 11.5. Complete the proof of Theorem 11.25 by verifying that 7 satis-
fies the Back property.

Problem 11.6. A relation R over a set X is well-founded if and only if there are
no infinite descending chains in R, i.e., if there are no xq, x1, x2, ...in X such
that ... xoRx1Rxg. Assuming Zermelo-Fraenkel set theory ZF is consistent,
show that there are non-well-founded models of ZF, i.e., models 91 such that
.. X2 € X1 € Xp.

Problem 11.7. Show that there can be no greatest block in a non-standard
model of arithmetic.

Problem 11.8. Let L be the first-order language containing < as its only pred-
icate symbol (besides =), and let 91 = (IN, <). All the finite or cofinite subsets
of N are definable. Show that these are the only definable subsets of 1.
(Hint: First, let prc(x, y) be the L-formula abbreviating “x is the immediate
predecessor of y:”
x<yA-Jz(x <zAz<y).

Now, to any definable subset of 91 there corresponds a formula ¢(x) in £. For
any such ¢, consider the sentence 6:

IxVyVz (x <yAx<zAprc(y,z) Ae(y)) — ¢(z)).

Show that 9 |= 6 if and only if the subset of 91 defined by ¢ is either finite or
cofinite.

Now, let M be a non-standard model elementarily equivalent to 9. If a €
|20| is non-standard, let b, ¢ € |91 be greater than 4, and let b be the immediate
predecessor of c. Then there is an automorphism & of || such that h(b) = ¢
(why?). Therefore, if b satisfies ¢, so does c (why?). It follows that 6 is true in
M, and hence also in 91. But this implies that the subset of 91 defined by ¢ is
either finite or co-finite.
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Chapter 12

The Interpolation Theorem

12.1 Introduction

The interpolation theorem is the following result: Suppose F ¢ — 1. Then
there is a sentence ) such that ¢ — x and F x — . Moreover, every
constant symbol, function symbol, and predicate symbol (other than =) in x
occurs both in ¢ and . The sentence x is called an interpolant of ¢ and .

The interpolation theorem is interesting in its own right, but its main im-
portance lies in the fact that it can be used to prove results about definability in
a theory, and the conditions under which combining two consistent theories
results in a consistent theory. The first result is known as the Beth definability
theorem; the second, Robinson’s joint consistency theorem.

12.2 Separation of Sentences

A bit of groundwork is needed before we can proceed with the proof of the
interpolation theorem. An interpolant for ¢ and ¢ is a sentence x such that
¢ F x and x F ¢. By contraposition, the latter is true iff =1 F —x. A sentence x
with this property is said to separate ¢ and . So finding an interpolant for ¢
and ¢ amounts to finding a sentence that separates ¢ and —. As so often, it
will be useful to consider a generalization: a sentence that separates two sets
of sentences.

Definition 12.1. A sentence x separates sets of sentences I" and A if and only if
I' E x and A E —. If no such sentence exists, then I" and A are inseparable.

The inclusion relations between the classes of models of I', A and ) are
represented below:

Lemma 12.2. Suppose Ly is the language containing every constant symbol, func-
tion symbol and predicate symbol (other than =) that occurs in both I" and A, and let
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X

|\ J

Figure 12.1: x separates I and A

L{, be obtained by the addition of infinitely many new constant symbols ¢, for n > 0.
Then if I and A are inseparable in Lo, they are also inseparable in L.

Proof. We proceed indirectly: suppose by way of contradiction that I" and A
are separated in L. Then I' F x[c/x] and A F —x[c/x] for some x € Ly
(where c is a new constant symbol—the case where ) contains more than one
such new constant symbol is similar). By compactness, there are finite subsets
Iy of I'and Ag of A such that I E x[c/x] and Ay F —x[c/x]. Let v be the
conjunction of all formulas in I and 6 the conjunction of all formulas in Ay.
Then

v E x[c/x], d E —xle/x].

From the former, by Generalization, we have ¢ F Vx x, and from the latter
by contraposition, x[c/x] E =6, whence also Vx x F —d. Contraposition again
gives 6 F =Vx x. By monotony,

T'Evxy, AE =Vxy,
so that Vx x separates I and A in L. O

Lemma 12.3. Suppose that I' U {3x o} and A are inseparable, and c is a new con-
stant symbol not in I', A, or 0. Then I’ U {3x o, o[c/ x|} and A are also inseparable.

Proof. Suppose for contradiction that x separates I' U {3x 0o, 0[c/x]} and A,
while at the same time I' U {3xc} and A are inseparable. We distinguish two
cases:

1. ¢ does not occur in x: in this case I' U {Ix o, —x } is satisfiable (otherwise
X separates I' U {3x ¢} and A). It remains so if o[c/x] is added, so x does
not separate I' U {3x ¢, o[c/ x|} and A after all.

2. ¢ does occur in ) so that x has the form x[c/x]. Then we have that
T'u{3xo,olc/x]|} E xlc/x],
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whence I', 3x o E Vx (¢ — x) by the Deduction Theorem and General-
ization, and finally I' U {3x ¢} E 3x x. On the other hand, A F —x[c/x]
and hence by Generalization A £ =3x . So I' U {3x ¢} and A are sepa-
rable, a contradiction. O

12.3 Craig’s Interpolation Theorem

Theorem 12.4 (Craig’s Interpolation Theorem). If E ¢ — 1, then there is a
sentence x such that £ ¢ — x and E x — , and every constant symbol, func-
tion symbol, and predicate symbol (other than =) in x occurs both in ¢ and . The
sentence x is called an interpolant of ¢ and 1.

Proof. Suppose L; is the language of ¢ and £; is the language of . Let £y =
Ly N Ly. For eachi € {0,1,2}, let L] be obtained from £; by adding the
infinitely many new constant symbols ¢y, ¢j, &, . . ..

If ¢ is unsatisfiable, 3x x # x is an interpolant. If - is unsatisfiable (and
hence 1 is valid), 3x x = x is an interpolant. So we may assume also that both
@ and —1p are satisfiable.

In order to prove the contrapositive of the Interpolation Theorem, assume
that there is no interpolant for ¢ and ¢. In other words, assume that {¢} and
{—y} are inseparable in L.

Our goal is to extend the pair ({¢}, {—~9}) to a maximally inseparable pair
(I'*,A%). Let ¢o, @1, ¢2, ...enumerate the sentences of L1, and ¢y, 1, ¥,
...enumerate the sentences of £,. We define two increasing sequences of sets
of sentences (I3, Ay), for n > 0, as follows. Put Iy = {¢} and Ag = {—-¢}.
Assuming (I}, Ay,) are already defined, define I}, ;1 and A, ;1 by:

1. If I, U {@n} and A, are inseparable in L], put ¢, in I}, ;1. Moreover, if
@y is an existential formula Jx ¢ then pick a new constant symbol c not
occurring in I, Ay, @y or Py, and put ofc/x] in I, 4.

2. If I;;41 and A, U {9, } are inseparable in L), put i, in A, 1. Moreover,
if ¢, is an existential formula 3x 7, then pick a new constant symbol ¢
not occurring in I, 11, Apn, ¢ O Py, and put ofc/x] in Ay 1.

Finally, define:

F*ZUFn, A*:UAn-
n>0 n>0

By simultaneous induction on # we can now prove:
. I;; and A,, are inseparable in L;
1. I'yand A ble in L]

2. T;41 and A, are inseparable in Lj,.
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The basis for (1) is given by Lemma 12.2. For part (2), we need to distinguish
three cases:

1. If I U {¢o} and A are separable, then I7 = I and (2) is just (1);
2. If I = I U{gp}, then I7 and A are inseparable by construction.

3. It remains to consider the case where ¢ is existential, so that I1 = Iy U
{3x0c,0[c/x]}. By construction, Iy U {3xc} and A are inseparable, so
that by Lemma 12.3 also Iy U {3x o, o[c/x]} and A are inseparable.

This completes the basis of the induction for (1) and (2) above. Now for the in-
ductive step. For (1), if A, 41 = A U {¢} then I},11 and A, are inseparable
by construction (even when ¢, is existential, by Lemma 12.3); if A, 11 = Ay
(because I, 1 and A, U {¢,} are separable), then we use the induction hy-
pothesis on (2). For the inductive step for (2), if I};12 = I,,41 U {¢, 11} then
Ii42 and A, 1 are inseparable by construction (even when ¢, is existential,
by Lemma 12.3); and if I}, » = I}, 11 then we use the inductive case for (1) just
proved. This concludes the induction on (1) and (2).

It follows that I'* and A* are inseparable; if not, by compactness, there
is n > 0 that separates I}, and A, against (1). In particular, I'* and A* are
consistent: for if the former or the latter is inconsistent, then they are separated
by dx x # x or Vx x = x, respectively.

We now show that I'* is maximally consistent in £} and likewise A* in
L}. For the former, suppose that ¢,, ¢ I'* and —¢, ¢ I'*, for some n > 0. If
@n & I'* then I}, U { ¢, } is separable from A,, and so there is xy € £, such that
both:

I'E e, —x, A E —x.
Likewise, if ¢, ¢ I'*, there is x’ € L[, such that both:
I E =gy — X, A E =Y.

By propositional logic, I'* £ x V x’ and A* E —=(x V x’), so x V x’ separates
I'*and A*. A similar argument establishes that A* is maximal.

Finally, we show that I'* N A* is maximally consistent in L. It is obviously
consistent, since it is the intersection of consistent sets. To show maximality,
let o € L. Now, I'* is maximal in £] D L{, and similarly A* is maximal in
L, O L{. It follows that either ¢ € I'* or ¢ € I'*, and either ¢ € A* or
-0 € A". If ¢ € T'" and —¢ € A* then ¢ would separate I'* and A*; and if
-0 € I' and 0 € A* then I'* and A* would be separated by —¢. Hence, either
ceI*NA*or —o € I'"NA*, and I'* N A* is maximal.

Since I'* is maximally consistent, it has a model 90¥] whose domain |0 |
comprises all and only the elements T interpreting the constant symbols—
just like in the proof of the completeness theorem (Theorem 9.16). Similarly,
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A* has a model M, whose domain |91, is given by the interpretations M of
the constant symbols.

Let 9 be obtained from 9] by dropping interpretations for constant sym-
bols, function symbols, and predicate symbols in £) \ £, and similarly for
M,. Then the map h: M; — M, defined by h(c™1) = ¢™ is an isomor-
phism in £}, because I'* N A* is maximally consistent in Eé, as shown. This
follows because any L{-sentence either belongs to both I'* and A*, or to nei-
ther: so <™ € P™ if and only if P(c) € I'* if and only if P(c) € A* if and
only if ™2 ¢ P™3. The other conditions satisfied by isomorphisms can be
established similarly.

Let us now define a model 9 for the language £4 U £, as follows:

—_

. The domain |90] is just |9, ], i.e., the set of all elements ¢™%;

N

. If a predicate symbol P isin £; \ £; then P?' = P,

3. If a predicate P is in £; \ £; then P™ = h(PY%), ie., (cglmz,. L) €

P if and only if (cflma, . .,c,?ta) e P,
4. If a predicate symbol P is in £ then P™t = P — h(Pmll ).

5. Function symbols of £1 U £,, including constant symbols, are handled
similarly.

Finally, one shows by induction on formulas that 9t agrees with 9t} on all
formulas of £} and with 9, on all formulas of £}. In particular, 9t = I'* U A*,
whence M F ¢ and M F -9, and ¥ ¢ — 1. This concludes the proof of
Craig’s Interpolation Theorem. O

12.4 The Definability Theorem

One important application of the interpolation theorem is Beth’s definability
theorem. To define an n-place relation R we can give a formula x with n free
variables which does not involve R. This would be an explicit definition of R in
terms of x. We can then say also that a theory X(P) in a language containing
the n-place predicate symbol P explicitly defines P if it contains (or at least
entails) a formalized explicit definition, i.e.,

E(P)EVxy ... Vx, (P(xq,...,x0) & x(x1,...,%4)).

But an explicit definition is only one way of defining—in the sense of deter-
mining completely—a relation. A theory may also be such that the interpreta-
tion of P is fixed by the interpretation of the rest of the language in any model.
The definability theorem states that whenever a theory fixes the interpreta-
tion of P in this way—whenever it implicitly defines P—then it also explicitly
defines it.
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Definition 12.5. Suppose L is a language not containing the predicate sym-
bol P. A set X(P) of sentences of L U {P} explicitly defines P if and only if there
is a formula x(x1,...,x,) of L such that

E(P)EVYxy ... Vx, (P(xq,...,%0) < x(x1,...,%1)).

Definition 12.6. Suppose L is a language not containing the predicate sym-
bols P and P’. A set X(P) of sentences of L U {P} implicitly defines P if and
only if

S(P)UX(P)EVxy ...Vxy (P(x1,...,%4) < P'(x1,...,%4)),
where Z(P’) is the result of uniformly replacing P with P’ in X(P).

In other words, for any model M and R, R’ C |9m|", if both (7, R) F X(P)
and (9, R’) E X(P'), then R = R’; where (9, R) is the structure 9 for the
expansion of £ to £ U {P} such that P™ = R, and similarly for (9, R’).

Theorem 12.7 (Beth Definability Theorem). A set X(P) of £ U {P}-formulas
implicitly defines P if and only X(P) explicitly defines P.

Proof. 1f X(P) explicitly defines P then both

X(P)E Vxqy . Vxp[(P(xq, .. xn) < x(x1,-..,%0))]
(P E Vxqy oV [(P(xq, . xn) < x(x1, -0, x0))]

and the conclusion follows. For the converse: assume that X(P) implicitly
defines P. First, we add constant symbols ¢, ..., ¢; to £. Then

Z(P)UX(P')E P(cy,...,cn) = P'(c1, ..., cn)-
By compactness, there are finite sets Ag C X(P) and A; C X(P’) such that
AgUA E P(Cl,...,Cn) — P/(Cl,...,Cn).

Let 0(P) be the conjunction of all sentences ¢(P) such that either ¢(P) € Ay
or (P') € Ay and let 6(P’) be the conjunction of all sentences ¢(P’) such
that either p(P) € Ag or ¢(P') € Ay. Then (P) AO(P') E P(cy,...,cn) —
P'cy...cy. We can re-arrange this so that each predicate symbol occurs on one
side of F:

0(P) A P(cy,...,cn) EO(P) — P'(cy,...,cn).

By Craig’s Interpolation Theorem there is a sentence x(cy, . . ., c;) not contain-
ing P or P’ such that:

O(P)AP(cq,...,cn) E x(cr,---,cn); x(c1,--.,cn) EO(P) — P'(cq,...,cn).

From the former of these two entailments we have: 8(P) E P(cy,...,¢n) —
x(c1,...,¢cn). And from the latter, since an £ U {P}-model (9, R) F ¢(P)
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if and only if the corresponding £ U {P’'}-model (9, R) = ¢(P’), we have
x(c1,...,cn) EO(P) = P(cy,...,Cn), from which:

6(P) E x(c1,...,cn) = P(c1, ..., Cn).

Putting the two together, 6(P) E P(cy,...,¢n) <> x(c1,...,cn), and by monotony
and generalization also

X(P)EVxy ...V, (P(xq,...,x0) < x(x1,-..,%1)). O

Problems
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Chapter 13

Lindstrom’s Theorem

13.1 Introduction

In this chapter we aim to prove Lindstréom’s characterization of first-order
logic as the maximal logic for which (given certain further constraints) the
Compactness and the Downward Léwenheim-Skolem theorems hold (Theo-
rem 9.19 and Theorem 9.20). First, we need a more general characterization
of the general class of logics to which the theorem applies. We will restrict
ourselves to relational languages, i.e., languages which only contain predicate
symbols and individual constants, but no function symbols.

13.2 Abstract Logics

Definition 13.1. An abstract logic is a pair (L, =1 ), where L is a function that
assigns to each language £ a set L(L) of sentences, and = is a relation
between structures for the language £ and elements of L(£). In particular,
(F, =) is ordinary first-order logic, i.e., F is the function assigning to the lan-
guage L the set of first-order sentences built from the constants in £, and = is
the satisfaction relation of first-order logic.

Notice that we are still employing the same notion of structure for a given
language as for first-order logic, but we do not presuppose that sentences are
build up from the basic symbols in £ in the usual way, nor that the relation
k=1 is recursively defined in the same way as for first-order logic. So for in-
stance the definition, being completely general, is intended to capture the case
where sentences in (L, =1 ) contain infinitely long conjunctions or disjunction,
or quantifiers other than 3 and V (e.g., “there are infinitely many x such that
...”"), or perhaps infinitely long quantifier prefixes. To emphasize that “sen-
tences” in L(L£) need not be ordinary sentences of first-order logic, in this
chapter we use variables &, B, ...to range over them, and reserve ¢, ¢, ... for
ordinary first-order formulas.
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Definition 13.2. Let Mod| («) denote the class {91 : M = a}. If the language
needs to be made explicit, we write Mod# («). Two structures 9 and 91 for £
are elementarily equivalent in (L, =), written 9 =p 9, if the same sentences
from L(L) are true in each.

Definition 13.3. An abstract logic (L, =) for the language L is normal if it
satisfies the following properties:

1.

2.

(L-Monotony) For languages £ and L', if £L C £/, then L(L) C L(L).

(Expansion Property) For each a € L(L) there is a finite subset L' of L
such that the relation M =1 « depends only on the reduct of 9t to L
i.e., if M and N have the same reduct to £’ then M =] « if and only if

m':LDC.

. (Isomorphism Property) If M =1 « and M ~ 91 then also N = «.

. (Renaming Property) The relation |=, is preserved under renaming: if the

language L’ is obtained from £ by replacing each symbol P by a symbol
P’ of the same arity and each constant ¢ by a distinct constant ¢/, then
for each structure M and sentence o, M |=; « if and only if M’ =; «/,
where 9 is the £'-structure corresponding to £ and &’ € L(L').

. (Boolean Property) The abstract logic (L, |=r) is closed under the Boolean

connectives in the sense that for each « € L(L) thereisa f € L(L)
such that M = B if and only if 9 [~ «, and for each a and B there
is a y such that Mod () = Mody(«) N Mody (B). Similarly for atomic
formulas and the other connectives.

. (Quantifier Property) For each constant ¢ in £ and & € L(L) there is a

B € L(L) such that
Mod¥#' (B) = {9 : (M, a)} € Mod¥ () for some a € ||},

where £’ = £\ {c} and (9, a) is the expansion of M to L assigning a
toc.

. (Relativization Property) Given a sentence « € L(L) and symbols R, ¢q,

..., ey notin L, there is a sentence B € L(LU{R,cy,...,¢cn}) called the
relativization of a to R(x, ¢y, . . .cy), such that for each structure 9

(M, X, by,...,by) = B) ifand only if N = «a,

where 91 is the substructure of 9 with domain |91 = {a € |M]| :
R™(a,by,...,by)} (see Remark 1), and (9, X, by,...,by) is the expan-
sion of M interpreting R, ¢y, ..., ¢y by X, by, ..., by, respectively (with
X C Mn-&-l).
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Definition 13.4. Given two abstract logics (L1, =) and (Ly, |=1,) we say that
the latter is at least as expressive as the former, written (L1, =r,) < (Lo, =L,
), if for each language £ and sentence a € Li(L) there is a sentence B €
Lp(L) such that Modf1 (w) = Mode(,B). The logics (Ly, =1,) and (Lo, |=1,)
are equivalent if (L1, }=r,) < (Lo, [=r,) and (Ly, =1,) < (L1, F=r,)-

Remark 5. First-order logic, i.e., the abstract logic (F, |=), is normal. In fact,
the above properties are mostly straightforward for first-order logic. We just
remark that the expansion property comes down to extensionality, and that
the relativization of a sentence « to R(x,cy,...,c,) is obtained by replacing
each subformula Vx g by Vx (R(x,c1,...,¢:) — B). Moreover, if (L, =1 is
normal, then (F, =) < (L, =r), as can be can shown by induction on first-
order formulas. Accordingly, with no loss in generality, we can assume that
every first-order sentence belongs to every normal logic.

13.3 Compactness and Lowenheim-Skolem Properties

We now give the obvious extensions of compactness and Lowenheim-Skolem
to the case of abstract logics.

Definition 13.5. An abstract logic (L, =) has the Compactness Property if each
set I of L(L)-sentences is satisfiable whenever each finite [y C I is satisfiable.

Definition 13.6. (L, =1 ) has the Downward Lowenheim-Skolem property if any
satisfiable I" has an enumerable model.

The notion of partial isomorphism from Definition 11.14 is purely “alge-
braic” (i.e., given without reference to the sentences of the language but only
to the constants provided by the language L of the structures), and hence it
applies to the case of abstract logics. In case of first-order logic, we know
from Theorem 11.16 that if two structures are partially isomorphic then they
are elementarily equivalent. That proof does not carry over to abstract logics,
for induction on formulas need not be available for arbitrary « € L(L), but
the theorem is true nonetheless, provided the Lowenheim-Skolem property
holds.

Theorem 13.7. Suppose (L, =1 is a normal logic with the Lowenheim-Skolem prop-
erty. Then any two structures that are partially isomorphic are elementarily equiva-

lent in (L, |=L).

Proof. Suppose 9t ~, N, but for some « also M = « while N [~ «. By the
Isomorphism Property we can assume that |91 and |91 are disjoint, and by
the Expansion Property we can assume that « € L(L£) for a finite language L.
Let 7 be a set of partial isomorphisms between 9t and 0, and with no loss of
generality also assume that if p € Z and g C p then also g € 7.
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|21 <¢ is the set of finite sequences of elements of |901]. Let S be the ternary
relation over |9ﬁ\<w representing concatenation, i.e., if a,b,c € |9ﬁ|<w then
S(a, b, c) holds if and only if ¢ is the concatenation of a and b; and let T be the
ternary relation such that T(a, b, c) holds for b € M and a,c € |9|<“ if and
only ifa = ay,...a, and ¢ = ay,...a,,b. Pick new 3-place predicate symbols
P and Q and form the structure 90t* having the universe |9t U [9|~“, having
M as a substructure, and interpreting P and Q by the concatenation relations
Sand T (so M* is in the language £ U {P, Q}).

Define |N|=“, 8, T/, P, Q' and 0M* analogously. Since by hypothesis 9 ~,,
N, there is a relation I between || and |9~ such that I(a, b) holds if
and only if a and b are isomorphic and satisfy the back-and-forth condition of
Definition 11.14. Now, let 2t be the structure whose domain is the union of the
domains of M* and 9%, having MT* and HM* as substructures, in the language
with one extra binary predicate symbol R interpreted by the relation I and
predicate symbols denoting the domains |[971|" and |91 x.

m

m* Pl

(. J

Figure 13.1: The structure 9t with the internal partial isomorphism.

The crucial observation is that in the language of the structure 2t there is
a first-order sentence 6; true in 9 saying that M = a and N = « (this re-
quires the Relativization Property), as well as a first-order sentence 6, true in
9N saying that 91 ~;, N via the partial isomorphism I. By the Lowenheim-
Skolem Property, 6; and 6 are jointly true in an enumerable model 9ty con-
taining partially isomorphic substructures 9 and 9y such that My = « and
Ny =L a. But enumerable partially isomorphic structures are in fact isomor-
phic by Theorem 11.15, contradicting the Isomorphism Property of normal
abstract logics. O

13.4 Lindstrom’s Theorem

Lemma 13.8. Suppose « € L(L), with L finite, and assume also that there is an
n € IN such that for any two structures MM and N, if M =, Nand M =1 « then
also N |=1, a. Then w is equivalent to a first-order sentence, i.e., there is a first-order
6 such that Modp () = Modp ().
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Proof. Let n be such that any two n-equivalent structures 9t and 91 agree on
the value assigned to a. Recall Proposition 11.18: there are only finitely many
first-order sentences in a finite language that have quantifier rank no greater
than n, up to logical equivalence. Now, for each fixed structure 2t let Ogy be
the conjunction of all first-order sentences « true in M with qr(a) < n (this
conjunction is finite), so that M |= Oyy if and only if N =, M. Then put 6 =
V{0on : M [= a}; this disjunction is also finite (up to logical equivalence).
The conclusion Mod| («) = Mod[ () follows. In fact, if 9t =1 6 then for
some M = « we have N |= Ogy, whence also M =1 « (by the hypothesis
of the lemma). Conversely, if M |=; a then 0y is a disjunct in 6, and since
N |= Oy, also N = 6. O

Theorem 13.9 (Lindstrém’s Theorem). Suppose (L, =1 ) has the Compactness and
the Lowenheim-Skolem Properties. Then (L, =) < (F, =) (so (L, =) is equivalent
to first-order logic).

Proof. By Lemma 13.8, it suffices to show that for any « € L(L), with L finite,
there is n € IN such that for any two structures 9t and : if M =,, N then M
and Ot agree on «. For then o is equivalent to a first-order sentence, from which
(L, L) < (F, =) follows. Since we are working in a finite, purely relational
language, by Theorem 11.22 we can replace the statement that 9t =,, 91 by the
corresponding algebraic statement that I,,(®, ©).

Given «, suppose towards a contradiction that for each n there are struc-
tures M1, and N, such that I,(D, D), but (say) M, =1 « whereas N,, = a. By
the Isomorphism Property we can assume that all the 91,,’s interpret the con-
stants of the language by the same objects; furthermore, since there are only
finitely many atomic sentences in the language, we may also assume that they
satisfy the same atomic sentences (we can take a subsequence of the 9’s oth-
erwise). Let 91 be the union of all the 9t,’s, i.e., the unique minimal structure
having each 91, as a substructure. As in the proof of Theorem 13.7, let 9t*
be the extension of M with domain [9%| U |2|~%, in the expanded language
comprising the concatenation predicates P and Q.

Similarly, define 91, 9t and 9t*. Now let 2t be the structure whose domain
comprises the domains of Mt* and 91* as well as the natural numbers IN along
with their natural ordering <, in the language with extra predicates represent-
ing the domains |92, |0, |9%|=“ and |9|=“ as well as predicates coding the
domains of M, and N, in the sense that:

|9, | = {a € |M|:R(a,n)}; M| ={a e N :S(a,n)};
0 ={a € M~ :R(a,n)}; MY ={ae N :S(an)}
The structure 91 also has a ternary relation | such that J(n,a,b) holds if and
only if I,(a,b).

Now there is a sentence 6 in the language £ augmented by R, S, ], etc.,
saying that < is a discrete linear ordering with first but no last element and
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such that M, = a, N, [~ a, and for each 7 in the ordering, (1, a,b) holds if
and only if I, (a, b).

Using the Compactness Property, we can find a model 9t* of § in which
the ordering contains a non-standard element n*. In particular then D" will
contain substructures 9« and N+ such that M+ = « and N« ;. a. But
now we can define a set Z of pairs of k-tuples from |« | and [N, | by putting
(a,b) € T if and only if J(n* — k,a, b), where k is the length of a and b. Since
n* is non-standard, for each standard k we have that n* — k > 0, and the set Z
witnesses the fact that 90,+ ~ 91,,«. But by Theorem 13.7, 91+ is L-equivalent
to N,;+, a contradiction. O

Problems
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This part is based on Jeremy Avigad’s notes on computability theory.
Only the chapter on recursive functions contains exercises yet, and every-
thing could stand to be expanded with motivation, examples, details, and
exercises.
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Chapter 14

Recursive Functions

These are Jeremy Avigad’s notes on recursive functions, revised and
expanded by Richard Zach. This chapter does contain some exercises,
and can be included independently to provide the basis for a discussion
of arithmetization of syntax.

14.1 Introduction

In order to develop a mathematical theory of computability, one has to first
of all develop a model of computability. We now think of computability as the
kind of thing that computers do, and computers work with symbols. But at
the beginning of the development of theories of computability, the paradig-
matic example of computation was numerical computation. Mathematicians
were always interested in number-theoretic functions, i.e., functions f: IN" —
IN that can be computed. So it is not surprising that at the beginning of the
theory of computability, it was such functions that were studied. The most
familiar examples of computable numerical functions, such as addition, mul-
tiplication, exponentiation (of natural numbers) share an interesting feature:
they can be defined recursively. It is thus quite natural to attempt a general
definition of computable function on the basis of recursive definitions. Among
the many possible ways to define number-theoretic functions recursively, one
particulalry simple pattern of definition here becomes central: so-called prim-
itive recursion.

In addition to computable functions, we might be interested in computable
sets and relations. A set is computable if we can compute the answer to
whether or not a given number is an element of the set, and a relation is com-
putable iff we can compute whether or not a tuple (ny, ..., 1) is an element
of the relation. By considering the characteristic function of a set or relation,
discussion of computable sets and relations can be subsumed under that of

166



14.2. PRIMITIVE RECURSION

computable functions. Thus we can define primitive recursive relations as
well, e.g., the relation “n evenly divides m” is a primitive recursive relation.

Primitive recursive functions—those that can be defined using just primi-
tive recursion—are not, however, the only computable number-theoretic func-
tions. Many generalizations of primitive recursion have been considered, but
the most powerful and widely-accepted additional way of computing func-
tions is by unbounded search. This leads to the definition of partial recur-
sive functions, and a related definition to general recursive functions. General
recursive functions are computable and total, and the definition character-
izes exactly the partial recursive functions that happen to be total. Recursive
functions can simulate every other model of computation (Turing machines,
lambda calculus, etc.) and so represent one of the many accepted models of
computation.

14.2 Primitive Recursion

Suppose we specify that a certain function / from IN to IN satisfies the follow-
ing two clauses:

0) = 1
I(x+1) = 2-1(x).

It is pretty clear that there is only one function, [, that meets these two criteria.
This is an instance of a definition by primitive recursion. We can define even
more fundamental functions like addition and multiplication by

f(x,0) = x
floy+1) = floy)+1
and
g(x,0) = 0
gloy+1) = f(g(xy)x).
Exponentiation can also be defined recursively, by
h(x,0) = 1
h(xy+1) = gh(xy) x).
We can also compose functions to build more complex ones; for example,
k(x) = x*4+(x+3)-x
= f(h(x,x),g(f(x,3),x)).
Remember that the arity of a function is the number of arguments. For

convenience, we will consider a constant, like 7, to be a 0-ary function. (Send
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it zero arguments, and it returns 7.) The set of primitive recursive functions is
the set of functions from IN to IN that you get if you start with 0 and the suc-
cessor function, S(x) = x + 1, and iterate the two operations above, primitive
recursion and composition. The idea is that primitive recursive functions are
defined in a straightforward and explicit way, so that it is intuitively clear that
each one can be computed using finite means.

Definition 14.1. If f is a k-ary function and gy, ..., gx—1 are l-ary functions on
the natural numbers, the composition of f with gy, ..., gx_1 is the [-ary function
h defined by

h(XQ,. ..,Xl,l) = f(go(XQ,. ..,Xl,l),.. .,gk,l(xo,.. .,xl,l)).

Definition 14.2. If f(zo,...,2zx_1) is a k-ary function and g(x, v, zo, ..., 2x_1) is
a k + 2-ary function, then the function defined by primitive recursion from f and
g is the k 4 1-ary function h, defined by the equations

h(O,ZQ,...,Zkfl) = f(ZOI-'-/Zkfl)
h(x+1,z0,...,2k1) = g(x,h(x,z0,.-.,2k-1),20,-+,2Zk_1)

In addition to the constant, 0, and the successor function, S(x), we will
include among primitive recursive functions the projection functions,

Pjn(x()/ R /xn—l) = Xi,
for each natural number n and i < n. In the end, we have the following:

Definition 14.3. The set of primitive recursive functions is the set of functions
of various arities from the set of natural numbers to the set of natural numbers,
defined inductively by the following clauses:

1. The constant, 0, is primitive recursive.
The successor function, S, is primitive recursive.

Each projection function P!" is primitive recursive.

s W N

If f is a k-ary primitive recursive function and gy, . .., gx_1 are [-ary prim-
itive recursive functions, then the composition of f with gg, ..., gx_1 is
primitive recursive.

5. If f is a k-ary primitive recursive function and g is a k + 2-ary primi-
tive recursive function, then the function defined by primitive recursion
from f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest
set containing the constant 0, the successor function, and projection functions,
and closed under composition and primitive recursion.
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Another way of describing the set of primitive recursive functions keeps
track of the “stage” at which a function enters the set. Let Sy denote the set
of starting functions: zero, successor, and the projections. Once S; has been
defined, let S; 1 be the set of all functions you get by applying a single instance
of composition or primitive recursion to functions in S;. Then

s=Us
iEN
is the set of primitive recursive functions
Our definition of composition may seem too rigid, since gy, ..., gx—1 are
all required to have the same arity, I. But adding the projection functions
provides the desired flexibility. For example, suppose f and g are ternary
functions and # is the binary function defined by

h(x,y) = f(x,g(x,x,y),y).

Then the definition of /1 can be rewritten with the projection functions, as

h(x,y) = f(P3(x,y),8(P3(x,y), P§ (x,y), P} (x,y)), P} (x,y)).

Then & is the composition of f with Pg, I, Plz, where

1(x,y) = g(P5(x,v), P (x,y), P (x,y)),

i.e., I is the composition of g with P2, Pg, Plz.

For another example, let us consider one of the informal examples given
above, namely, addition. This is described recursively by the following two
equations:

x+0 = «x
x+y+1) = S(x+y).
In other words, addition is the function g defined recursively by the equations
g(0x) = «x
sy+Lx) = S8y x))

But even this is not a strict primitive recursive definition; we need to put it in
the form

g(0,x) = k(x)
sly+Lx) = h(yglyx)x)

for some 1-ary primitive recursive function k and some 3-ary primitive recur-
sive function h. We can take k to be P}, and we can define h using composition,

h(y,w,x) = S(P}(y,w,x)).
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The function /, being the composition of basic primitive recursive functions,
is primitive recursive; and hence so is g. (Note that, strictly speaking, we
have defined the function g(y, x) meeting the recursive specification of x +
y; in other words, the variables are in a different order. Luckily, addition is
commutative, so here the difference is not important; otherwise, we could
define the function g’ by

§'(x,y) = g(P{(y,x)), Py (y,x)) = g(y,x),

using composition.)

One advantage to having the precise description of the primitive recursive
functions is that we can be systematic in describing them. For example, we can
assign a “notation” to each such function, as follows. Use symbols 0, S, and
P! for zero, successor, and the projections. Now suppose f is defined by com-
position from a k-ary function & and [-ary functions g, ..., gx—1, and we have
assigned notations H, Gy, ..., Gx_1 to the latter functions. Then, using a new
symbol Comp; ;, we can denote the function f by Comp, ;[H, G, ..., Gx_1].
For the functions defined by primitive recursion, we can use analogous nota-
tions of the form Recy[G, H], where k denotes that arity of the function being
defined. With this setup, we can denote the addition function by

Recy[P3, Comp, 5[S, Py

Having these notations sometimes proves useful.

14.3 Primitive Recursive Functions are Computable
Suppose a function / is defined by primitive recursion
ho,2) = f(2)
hix+1,Z) = g(xh(x,2),2)

and suppose the functions f and g are computable. Then (0, Z) can obviously
be computed, since it is just f(Z) which we assume is computable. /(1,Z) can
then also be computed, since 1 = 0+ 1 and so h(1,Z2) is just

8(0,h(0,2),2) = 8(0, f(2), 2)-

We can go on in this way and compute
h(2,Z) =g ),
h(s,2) = g(2,8(1,8(0, f
h(4,2) =g 1,8
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—

Thus, to compute h(x,Z) in general, successively compute 1(0,2), h(1,2), ...,
until we reach h(x, 2).

Thus, primitive recursion yields a new computable function if the func-
tions f and g are computable. Composition of functions also results in a com-
putable function if the functions f and g; are computable.

Since the basic functions 0, S, and P;" are computable, and composition and
primitive recursion yield computable functions from computable functions,
his means that every primitive recursive function is computable.

14.4 Examples of Primitive Recursive Functions

Here are some examples of primitive recursive functions:

1. Constants: for each natural number 7, n is a 0-ary primitive recursive
function, since it is equal to S(5(... S(0))).

The identity function: id(x) = x, i.e. P
Addition, x +y

Multiplication, x - y

Exponentiation, x¥ (with 0° defined to be 1)

Factorial, x!

N Uk »w N

The predecessor function, pred(x), defined by
pred(0) =0, pred(x+1)=x
8. Truncated subtraction, x — y, defined by
x—0=x x—(y+1)=pred(x —y)
9. Maximum, max(x,y), defined by
max(x,y) = x+ (y — x)
10. Minimum, min(x, y)

11. Distance between x and y, |x — y|

The set of primitive recursive functions is further closed under the follow-
ing two operations:

1. Finite sums: if f(x,Z) is primitive recursive, then so is the function
¥
gy2) = ) f(x2)

x=0
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2. Finite products: if f(x,Z) is primitive recursive, then so is the function
hy,2) =] f(x2).

For example, finite sums are defined recursively by the equations

8(0,2) = f(0,2), gy+1,7) =g(y2)+ fy+13).
We can also define boolean operations, where 1 stands for true, and 0 for false:
1. Negation, not(x) =1 - x
2. Conjunction, and(x,y) = x -y
Other classical boolean operations like or(x, y) and ifthen(x, y) can be defined

from these in the usual way.

14.5 Primitive Recursive Relations

Definition 14.4. A relation R(X) is said to be primitive recursive if its charac-

teristic function,
o J 1 ifR(X)
Xr(X) = { 0 otherwise

is primitive recursive.

In other words, when one speaks of a primitive recursive relation R(X),
one is referring to a relation of the form xg(X¥) = 1, where xr is a primitive
recursive function which, on any input, returns either 1 or 0. For example, the
relation Zero(x), which holds if and only if x = 0, corresponds to the function
XZero, defined using primitive recursion by

XZero(O) =1, XZero(x + 1) =0.

It should be clear that one can compose relations with other primitive re-
cursive functions. So the following are also primitive recursive:

1. The equality relation, x = y, defined by Zero(|x — y|)
2. The less-than relation, x < y, defined by Zero(x — y)

Furthermore, the set of primitive recursive relations is closed under boolean
operations:

1. Negation, —P

2. Conjunction, P A Q
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3. Disjunction, PV Q
4. Implication, P — Q

are all primitive recursive, if P and Q are.
One can also define relations using bounded quantification:

1. Bounded universal quantification: if R(x, Z) is a primitive recursive re-
lation, then so is the relation

Vx < yR(x,Z2)
which holds if and only if R(x, Z) holds for every x less than y.

2. Bounded existential quantification: if R(x, Z) is a primitive recursive re-
lation, then so is
Ix <yR(x,Z).

By convention, we take expressions of the form Vx < 0R(x,Z) to be true (for
the trivial reason that there are no x less than 0) and 3x < 0 R(x, Z) to be false.
A universal quantifier functions just like a finite product; it can also be defined
directly by

8(0,2) =1, g(y+12) = Xana(8(¥,Z), xr (v, 2)).

Bounded existential quantification can similarly be defined using or. Alter-
natively, it can be defined from bounded universal quantification, using the
equivalence, 3x < y¢(x) < —Vx < y-¢@(x). Note that, for example, a
bounded quantifier of the form Jx < y is equivalent to 3x < y + 1.

Another useful primitive recursive function is:

1. The conditional function, cond(x, y,z), defined by

cond(x,y,z) = { y ifx=0

z otherwise

This is defined recursively by
cond(0,y,z) =y, cond(x+1,y,z) =z
One can use this to justify:

1. Definition by cases: if go(X), . .., gm(X) are functions, and Ry (X), ..., Ry—1(X)
are relations, then the function f defined by

go(¥)  if Ro(X)
21(%) if R1(¥) and not Ry (%)

f(R) =9 :
gm—1(X) if R;,—1(X) and none of the previous hold
m(%X) otherwise

is also primitive recursive.
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When m = 1, this is just the function defined by

f(X) = cond(x-r, (¥), g0(X), g1(X))-

For m greater than 1, one can just compose definitions of this form.

14.6 Bounded Minimization

Proposition 14.5. If R(x, Z) is primitive recursive, so is the function mg (y, Z) which
returns the least x less than y such that R(x, Z) holds, if there is one, and 0 otherwise.
We will write the function mpg as

min x < y R(x,Z),

Proof. Note than there can be no x < 0 such that R(x, Z) since there isno x < 0
at all. So mg(x,0) = 0.

In case the bound is y + 1 we have three cases: (a) There is an x < y such
that R(x,Z), in which case mg(y +1,Z) = mg(y,Z). (b) There is no such x
but R(y,Z) holds, then mg(y +1,Z) = y. (c) There isno x < y + 1 such that
R(x,Z), thenmg(y+1,Z) = 0. So,

mR(O, Z) =0
mr(y,Z) if Ix <yR(x,Z2)
mr(y+1,2) =<y otherwise, provided R(y, Z)
0 otherwise.

O

The choice of “0 otherwise” is somewhat arbitrary. It is in fact even easier
to recursively define the function m, which returns the least x less than y such
that R(x,Z) holds, and y + 1 otherwise. When we use min, however, we will
always know that the least x such that R(x, Z) exists and is less than y. Thus,
in practice, we will not have to worry about the possibility that if min x <
y R(x,Z) = 0 we do not know if that value indicates that R(0,Z) or that for
no x < y, R(x,Z). As with bounded quantification, min x < y ... can be
understood asmin x <y +1 ....

All this provides us with a good deal of machinery to show that natural
functions and relations are primitive recursive. For example, the following
are all primitive recursive:

1. The relation “x divides y”, written x | y, defined by
x|lye Iz<yx-z)=y.
2. The relation Prime(x), which holds iff x is prime, defined by

Prime(x) & (x >2AVy <x(y|x —>y=1Vy=x)).
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3. The function nextPrime(x), which returns the first prime number larger
than x, defined by

nextPrime(x) = miny < x!' 4+ 1 (y > x A Prime(y))

Here we are relying on Euclid’s proof of the fact that there is always a
prime number between x and x! + 1.

4. The function p(x), returning the xth prime, defined by p(0) = 2, p(x +
1) = nextPrime(p(x)). For convenience we will write this as py (starting
with 0;i.e. po = 2).

14.7 Sequences

The set of primitive recursive functions is remarkably robust. But we will be
able to do even more once we have developed an adequate means of handling
sequences. We will identify finite sequences of natural numbers with natural
numbers in the following way: the sequence (ag, a1, ay, . . ., ax) corresponds to

the number

[l(]+1 Ll1+l H2+1 Ilk+1
po . pl . pz ..... pk .

We add one to the exponents to guarantee that, for example, the sequences
(2,7,3) and (2,7,3,0,0) have distinct numeric codes. We will take both 0 and
1 to code the empty sequence; for concreteness, let @ denote 0.

Let us define the following functions:

1. len(s), which returns the length of the sequence s:
0 ifs=0ors=1
len(s) = q = . o :
mini <s (p; [sAVj<s(j>i—pj|s))+1 otherwise

Note that we need to bound the search on i; clearly s provides an accept-
able bound.

2. append(s, a), which returns the result of appending a to the sequence s:

2a+1 ifs=0o0rs=1
append(s,a) = a1

S Plen(s) otherwise

3. element(s, i), which returns the ith element of s (where the initial ele-
ment is called the Oth), or 0 if i is greater than or equal to the length of
s:

1 (s, i) 0 ifi > len(s)
element(s, i) = -
min j <s (pé+2 fs) —1 otherwise
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Instead of using the official names for the functions defined above, we in-
troduce a more compact notation. We will use (s); instead of element(s, i), and
(so, - .,Sk) to abbreviate append (append(. . . append(Q, sp) . .. ), sx). Note that
if s has length k, the elements of s are (s)o, ..., (S)x_1-

It will be useful for us to be able to bound the numeric code of a sequence
in terms of its length and its largest element. Suppose s is a sequence of length
k, each element of which is less than equal to some number x. Then s has at
most k prime factors, each at most py_1, and each raised to at most x + 1 in the
prime factorization of s. In other words, if we define

sequenceBound(x, k) = Pﬁ?l)'

then the numeric code of the sequence s described above is at most sequenceBound (x, k).
Having such a bound on sequences gives us a way of defining new func-

tions using bounded search. For example, suppose we want to define the

function concat(s, t), which concatenates two sequences. One first option is to

define a “helper” function hconcat(s, t, n) which concatenates the first n sym-

bols of t to s. This function can be defined by primitive recursion, as follows:

1. hconcat(s,t,0) = s
2. hconcat(s, t,n + 1) = append (hconcat(s, t, 1), (t),)
Then we can define concat by
concat(s, t) = hconcat(s, t,len(t)).

But using bounded search, we can be lazy. All we need to do is write down a
primitive recursive specification of the object (number) we are looking for, and
a bound on how far to look. The following works:
concat(s,t) = min v < sequenceBound(s + t,1len(s) + len(#))
(len(v) = len(s) + len(t)A
Vi <len(s) ((v); = (s)i) A V] <len(t) ((V)ien(s)+j = (£)}))

We will write s —~ t instead of concat(s, t).

14.8 Other Recursions

Using pairing and sequencing, we can justify more exotic (and useful) forms
of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

f0(0,2) = ko(2)

fi(0,2) = k()
fo(X-Fl,Z) = ho(X,fo(JC,Z),fﬂX,Z),Z)
fl(X‘l'l,Z) = hl(x,fo(x,i’),ﬂ(x,f),i’)
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This is an instance of simultaneous recursion. Another useful way of defining
functions is to give the value of f(x + 1,Z) in terms of all the values f(0,Z),
..., f(x,Z), as in the following definition:

f0,2) = (@)
Fx+1,2) = hx, (f(0,2),...,f(x,2)),3).

The following schema captures this idea more succinctly:

f(x,2) = h(x, (f(0,2),..., f(x = 1,2)))

with the understanding that the second argument to h is just the empty se-
quence when x is 0. In either formulation, the idea is that in computing the
“successor step,” the function f can make use of the entire sequence of values
computed so far. This is known as a course-of-values recursion. For a particular
example, it can be used to justify the following type of definition:

flrz) = {h(x,f(k(x,i’),i’),i’) ifk(x,2) < x

g(x,2) otherwise
In other words, the value of f at x can be computed in terms of the value of f
at any previous value, given by k.
You should think about how to obtain these functions using ordinary prim-
itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

f(0,2) = g(3)
flx+12) = hix f(xk(2)),2)

This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)

Finally, notice that we can always extend our “universe” by defining addi-
tional objects in terms of the natural numbers, and defining primitive recur-
sive functions that operate on them. For example, we can take an integer to
be given by a pair (m, n) of natural numbers, which, intuitively, represents the
integer m — n. In other words, we say

Integer(x) < length(x) =2
and then we define the following:
1. iequal(x, y)
2. iplus(x,y)
3. iminus(x, y)
4. itimes(x,y)

Similarly, we can define a rational number to be a pair (x,y) of integers with
y # 0, representing the value x/y. And we can define gqequal, qplus, qminus,
gtimes, qdivides, and so on.
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14.9 Non-Primitive Recursive Functions

The primitive recursive functions do not exhaust the intuitively computable
functions. It should be intuitively clear that we can make a list of all the unary
primitive recursive functions, fy, f1, f2, ...such that we can effectively com-
pute the value of f, on input y; in other words, the function g(x,y), defined

by
8l y) = fx(v)
is computable. But then so is the function

h(x) = g(x,x)+1
— )41

For each primitive recursive function f;, the value of h and f; differ ati. So h
is computable, but not primitive recursive; and one can say the same about g.
This is a an “effective” version of Cantor’s diagonalization argument.

One can provide more explicit examples of computable functions that are
not primitive recursive. For example, let the notation ¢ (x) denote ¢(g(. .. g(x))),
with 7 ¢’s in all; and define a sequence gy, 1, - - . of functions by

golx) = x+1
gui(x) = @)

You can confirm that each function g, is primitive recursive. Each successive
function grows much faster than the one before; g;(x) is equal to 2x, g»(x)
is equal to 2* - x, and g3(x) grows roughly like an exponential stack of x 2’s.
Ackermann’s function is essentially the function G(x) = gx(x), and one can
show that this grows faster than any primitive recursive function.

Let us return to the issue of enumerating the primitive recursive functions.
Remember that we have assigned symbolic notations to each primitive recur-
sive function; so it suffices to enumerate notations. We can assign a natural
number #(F) to each notation F, recursively, as follows:

0)

) (

) (1)
#(P" = (2,n,i)

) (

) (

#(Compkll [H, Go, ey Gk*l] 3 k l #( ) (Go), cee /#(Gk71)>
#(Req/[G, H| 4,1,#(G),#(H))

Here I am using the fact that every sequence of numbers can be viewed as
a natural number, using the codes from the last section. The upshot is that
every code is assigned a natural number. Of course, some sequences (and
hence some numbers) do not correspond to notations; but we can let f; be the
unary primitive recursive function with notation coded as i, if i codes such a
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notation; and the constant 0 function otherwise. The net result is that we have
an explicit way of enumerating the unary primitive recursive functions.

(In fact, some functions, like the constant zero function, will appear more
than once on the list. This is not just an artifact of our coding, but also a result
of the fact that the constant zero function has more than one notation. We will
later see that one can not computably avoid these repetitions; for example,
there is no computable function that decides whether or not a given notation
represents the constant zero function.)

We can now take the function g(x,y) to be given by fy(y), where f, refers
to the enumeration we have just described. How do we know that g(x,y) is
computable? Intuitively, this is clear: to compute g(x,y), first “unpack” x,
and see if it a notation for a unary function; if it is, compute the value of that
function on input y.

You may already be convinced that (with some work!) one can write
a program (say, in Java or C++) that does this; and now we can appeal to
the Church-Turing thesis, which says that anything that, intuitively, is com-
putable can be computed by a Turing machine.

Of course, a more direct way to show that g(x,y) is computable is to de-
scribe a Turing machine that computes it, explicitly. This would, in partic-
ular, avoid the Church-Turing thesis and appeals to intuition. But, as noted
above, working with Turing machines directly is unpleasant. Soon we will
have built up enough machinery to show that g¢(x,y) is computable, appeal-
ing to a model of computation that can be simulated on a Turing machine:
namely, the recursive functions.

14.10 Partial Recursive Functions

To motivate the definition of the recursive functions, note that our proof that
there are computable functions that are not primitive recursive actually estab-
lishes much more. The argument was simple: all we used was the fact was
that it is possible to enumerate functions fy, f1,... such that, as a function of
x and y, fx(y) is computable. So the argument applies to any class of functions
that can be enumerated in such a way. This puts us in a bind: we would like to
describe the computable functions explicitly; but any explicit description of a
collection of computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see
that it is possible to enumerate the partial computable functions. In fact, we
already pretty much know that this is the case, since it is possible to enumerate
Turing machines in a systematic way. We will come back to our diagonal
argument later, and explore why it does not go through when partial functions
are included.

The question is now this: what do we need to add to the primitive recur-
sive functions to obtain all the partial recursive functions? We need to do two
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things:

1. Modify our definition of the primitive recursive functions to allow for
partial functions as well.

2. Add something to the definition, so that some new partial functions are
included.

The first is easy. As before, we will start with zero, successor, and projec-
tions, and close under composition and primitive recursion. The only differ-
ence is that we have to modify the definitions of composition and primitive
recursion to allow for the possibility that some of the terms in the definition
are not defined. If f and g are partial functions, we will write f(x) | to mean
that f is defined at x, i.e., x is in the domain of f; and f(x) 1 to mean the
opposite, i.e., that f is not defined at x. We will use f(x) ~ g(x) to mean that
either f(x) and g(x) are both undefined, or they are both defined and equal.
We will use these notations for more complicated terms as well. We will adopt
the convention that if 1 and gy, ..., g all are partial functions, then

h(go(X), .-, &k(X))

is defined if and only if each g; is defined at X, and / is defined at go(X),
..., 8k(¥). With this understanding, the definitions of composition and prim-
itive recursion for partial functions is just as above, except that we have to
replace “=" by “~".

What we will add to the definition of the primitive recursive functions to
obtain partial functions is the unbounded search operator. If f(x,Z) is any partial
function on the natural numbers, define px f(x,Z) to be

the least x such that f(0,2), f(1,2),..., f(x,Z) are all defined, and
f(x,Z) = 0, if such an x exists

with the understanding that ux f(x,Z) is undefined otherwise. This defines
ux f(x,Z) uniquely.

Note that our definition makes no reference to Turing machines, or algo-
rithms, or any specific computational model. But like composition and prim-
itive recursion, there is an operational, computational intuition behind un-
bounded search. When it comes to the computability of a partial function,
arguments where the function is undefined correspond to inputs for which
the computation does not halt. The procedure for computing ux f(x,Z) will
amount to this: compute f(0,Z), f(1,Z), f(2,Z) until a value of 0 is returned. If
any of the intermediate computations do not halt, however, neither does the
computation of ux f(x,Zz).

If R(x,Z) is any relation, px R(x,Z) is defined to be ux (1 — xr(x,Z)). In
other words, jix R(x, Z) returns the least value of x such that R(x,Z) holds. So,
if f(x,Z) is a total function, ux f(x,z) is the same as ux (f(x,Z) = 0). But note
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that our original definition is more general, since it allows for the possibility
that f(x, Z) is not everywhere defined (whereas, in contrast, the characteristic
function of a relation is always total).

Definition 14.6. The set of partial recursive functions is the smallest set of partial
functions from the natural numbers to the natural numbers (of various arities)
containing zero, successor, and projections, and closed under composition,
primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total,
i.e., defined for every argument.

Definition 14.7. The set of recursive functions is the set of partial recursive
functions that are total.

A recursive function is sometimes called “total recursive” to emphasize
that it is defined everywhere.

14.11 The Normal Form Theorem

Theorem 14.8 (Kleene’s Normal Form Theorem). There is a primitive recursive
relation T (e, x,s) and a primitive recursive function U(s), with the following prop-
erty: if f is any partial recursive function, then for some e,

f(x) = U(ps T(e, x,s))

for every x.

The proof of the normal form theorem is involved, but the basic idea is
simple. Every partial recursive function has an index e, intuitively, a number
coding its program or definition. If f(x) |, the computation can be recorded
systematically and coded by some number s, and that s codes the computation
of f on input x can be checked primitive recursively using only x and the
definition e. This means that T is primitive recursive. Given the full record of
the computation s, the “upshot” of s is the value of f(x), and it can be obtained
from s primitive recursively as well.

The normal form theorem shows that only a single unbounded search is
required for the definition of any partial recursive function. We can use the
numbers e as “names” of partial recursive functions, and write ¢, for the func-
tion f defined by the equation in the theorem. Note that any partial recursive
function can have more than one index—in fact, every partial recursive func-
tion has infinitely many indices.

Release : c2feada (2016-08-01) 181



CHAPTER 14. RECURSIVE FUNCTIONS

14.12 The Halting Problem

The halting problem in general is the problem of deciding, given the specifica-
tion e (e.g., program) of a computable function and a number n, whether the
computation of the function on input 7 halts, i.e., produces a result. Famously,
Alan Turing proved that this problem itself cannot be solved by a computable
function, i.e., the function

he,n) = {1 if computation e halts on input n

0 otherwise,

is not computable.

In the context of partial recursive functions, the role of the specification
of a program may be played by the index e given in Kleene’s normal form
theorem. If f is a partial recursive function, any e for which the equation in
the normal form theorem holds, is an index of f. Given a number e, the normal
form theorem states that

@e(x) =~ U(us T(e, x,s))

is partial recursive, and for every partial recursive f: N — IN, there is an
e € N such that ¢@.(x) ~ f(x) for all x € N. In fact, for each such f there is
not just one, but infinitely many such e. The halting function h is defined by

he,x) = {1 if pe(x) |

0 otherwise.

Note that h(e, x) = 0 if ¢.(x) T, but also when e is not the index of a partial
recursive function at all.

Theorem 14.9. The halting function h is not partial recursive.

Proof. If h were partial recursive, we could define

1 ifh(y,y) =0
ﬂy:{ )
Hux x # x otherwise.

From this definition it follows that
1. d(y) | iff @, (y) 1 or y is not the index of a partial recursive function.

2..d(y) 1iff ¢y (y) I

If h were partial recursive, then d would be partial recursive as well. Thus,
by the Kleene normal form theorem, it has an index ¢;. Consider the value of
h(ey,e4). There are two possible cases, 0 and 1.
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1. If h(ez,eq) = 1 then ¢e,(e;z) . But @, ~ d, and d(e;) is defined iff
h(eg,eq) =0.S0 h(ey, eq) # 1.

2. If h(ey4,e4) = 0 then either e; is not the index of a partial recursive func-
tion, or it is and ¢, (e;) 1. But again, @,, ~ d, and d(e;) is undefined iff
(Ped (ed) \l’

The upshot is that e; cannot, after all, be the index of a partial recursive func-
tion. But if 1 were partial recursive, d would be too, and so our definition of
ey as an index of it would be admissible. We must conclude that & cannot be
partial recursive. O

14.13 General Recursive Functions

There is another way to obtain a set of total functions. Say a total function
f(x,Z) is reqular if for every sequence of natural numbers Z, there is an x such
that f(x,Z) = 0. In other words, the regular functions are exactly those func-
tions to which one can apply unbounded search, and end up with a total func-
tion. One can, conservatively, restrict unbounded search to regular functions:

Definition 14.10. The set of general recursive functions is the smallest set of
functions from the natural numbers to the natural numbers (of various arities)
containing zero, successor, and projections, and closed under composition,
primitive recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. The difference between
Definition 14.10 and Definition 14.7 is that in the latter one is allowed to use
partial recursive functions along the way; the only requirement is that the
function you end up with at the end is total. So the word “general,” a historic
relic, is a misnomer; on the surface, Definition 14.10 is less general than Defi-
nition 14.7. But, fortunately, the difference is illusory; though the definitions
are different, the set of general recursive functions and the set of recursive
functions are one and the same.

Problems

Problem 14.1. Show that

foy =2 Jy2s

is primitive recursive.

Problem 14.2. Show thatd(x,y) = |x/y] (i.e., division, where you disregard
everything after the decimal point) is primitive recursive. When y = 0, we
stipulate d(x, y) = 0. Give an explicit definifion of d using primitive recursion
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and composition. You will have detour through an axiliary function—you
cannot use recursion on the arguments x or y themselves.

Problem 14.3. Define integer division d(x, y) using bounded minimization.

Problem 14.4. Show that there is a primitive recursive function sconcat(s)
whith the property that

sconcat((sg,...,5k)) =50 ™ «evn.. ~ S.
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Chapter 15

The Lambda Calculus

This chapter needs to be expanded (issue #66).

15.1 Introduction

The lambda calculus was originally designed by Alonzo Church in the early
1930s as a basis for constructive logic, and not as a model of the computable
functions. But soon after the Turing computable functions, the recursive func-
tions, and the general recursive functions were shown to be equivalent, lambda
computability was added to the list. The fact that this initially came as a small
surprise makes the characterization all the more interesting.

Lambda notation is a convenient way of referring to a function directly
by a symbolic expression which defines it, instead of defining a name for it.
Instead of saying “let f be the function defined by f(x) = x + 3,” one can
say, “let f be the function Ax. (x + 3).” In other words, Ax. (x + 3) is just a
name for the function that adds three to its argument. In this expression, x
is a dummy variable, or a placeholder: the same function can just as well
be denoted by Ay. (y + 3). The notation works even with other parameters
around. For example, suppose g(x,y) is a function of two variables, and k is a
natural number. Then Ax. g(x, k) is the function which maps any x to g(x, k).

This way of defining a function from a symbolic expression is known as
lambda abstraction. The flip side of lambda abstraction is application: assuming
one has a function f (say, defined on the natural numbers), one can apply it to
any value, like 2. In conventional notation, of course, we write f(2) for the
result.

What happens when you combine lambda abstraction with application?
Then the resulting expression can be simplified, by “plugging” the applicand
in for the abstracted variable. For example,

(Ax. (x+3))(2)
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can be simplified to 2 + 3.

Up to this point, we have done nothing but introduce new notations for
conventional notions. The lambda calculus, however, represents a more radi-
cal departure from the set-theoretic viewpoint. In this framework:

1. Everything denotes a function.
2. Functions can be defined using lambda abstraction.
3. Anything can be applied to anything else.

For example, if F is a term in the lambda calculus, F(F) is always assumed
to be meaningful. This liberal framework is known as the untyped lambda
calculus, where “untyped” means “no restriction on what can be applied to
what.”

There is also a fyped lambda calculus, which is an important variation on
the untyped version. Although in many ways the typed lambda calculus is
similar to the untyped one, it is much easier to reconcile with a classical set-
theoretic framework, and has some very different properties.

Research on the lambda calculus has proved to be central in theoretical
computer science, and in the design of programming languages. LISP, de-
signed by John McCarthy in the 1950s, is an early example of a language that
was influenced by these ideas.

15.2 The Syntax of the Lambda Calculus

One starts with a sequence of variables x, , z, ...and some constant symbols
a,b,c,.... The set of terms is defined inductively, as follows:

1. Each variable is a term.

2. Each constant is a term.

3. If M and N are terms, so is (MN).

4. If M is a term and x is a variable, then (Ax. M) is a term.

The system without any constants at all is called the pure lambda calculus.
We will follow a few notational conventions:

1. When parentheses are left out, application takes place from left to right.
For example, if M, N, P, and Q are terms, then MNPQ abbreviates

((MN)P)Q).

2. Again, when parentheses are left out, lambda abstraction is to be given
the widest scope possible. From example, Ax. MNP is read Ax. (MNP).
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3. Alambda can be used to abstract multiple variables. For example, Axyz. M
is short for Ax. Ay. Az. M.

For example,
AXY. XXYXAzZ. Xz

abbreviates
Ax Ay ((((xx)y)x)Az. (xz)).

You should memorize these conventions. They will drive you crazy at first,
but you will get used to them, and after a while they will drive you less crazy
than having to deal with a morass of parentheses.

Two terms that differ only in the names of the bound variables are called «-
equivalent; for example, Ax. x and Ay.y. It will be convenient to think of these
as being the “same” term; in other words, when we say that M and N are the
same, we also mean “up to renamings of the bound variables.” Variables that
are in the scope of a A are called “bound”, while others are called “free.” There
are no free variables in the previous example; but in

(Az.yz)x

y and x are free, and z is bound.

15.3 Reduction of Lambda Terms

What can one do with lambda terms? Simplify them. If M and N are any
lambda terms and x is any variable, we can use M[N/x]| to denote the result
of substituting N for x in M, after renaming any bound variables of M that
would interfere with the free variables of N after the substitution. For exam-
ple,

(Aw. xxw)[yyz/ x| = Aw. (yyz)(yyz)w.

Alternative notations for substitution are [N /x| M, M[N/x], and also M[x/N].
Beware!

Intuitively, (Ax. M)N and M[N/x] have the same meaning; the act of re-
placing the first term by the second is called B-conversion. More generally,
if it is possible convert a term P to P’/ by B-conversion of some subterm, one
says P B-reduces to P' in one step. If P can be converted to P’ with any num-
ber of one-step reductions (possibly none), then P B-reduces to P'. A term that
cannot be B-reduced any further is called B-irreducible, or B-normal. I will say
“reduces” instead of “B-reduces,” etc., when the context is clear.

Let us consider some examples.

1. We have

(Ax.xxy)Az.z >q (Az.z)(Az.2)y
>1 (Az.2)y

[>1y
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2. “Simplifying” a term can make it more complex:

(Ax. xxy)(Ax. xxy) 1 (Ax. xxy) (Ax. xxy)y

>1 (Ax. xxy) (Ax. xxy)yy
>1 ...

3. It can also leave a term unchanged:

(Ax.xx)(Ax. xx) >1 (Ax. xx)(Ax. xx)

4. Also, some terms can be reduced in more than one way; for example,
(Ax. (Ay.yx)z)v >y (Ay.yv)z
by contracting the outermost application; and
(Ax. (Ay.yx)z)v >1 (Ax.zx)v

by contracting the innermost one. Note, in this case, however, that both
terms further reduce to the same term, zv.

The final outcome in the last example is not a coincidence, but rather il-
lustrates a deep and important property of the lambda calculus, known as the
“Church-Rosser property.”

154 The Church-Rosser Property

Theorem 15.1. Let M, Ny, and Ny be terms, such that M 1> Ny and M > N,. Then
there is a term P such that Ny > P and Np > P.

Corollary 15.2. Suppose M can be reduced to normal form. Then this normal form
is unique.

Proof. If M > Nj and M > Ny, by the previous theorem there is a term P such
that N7 and N, both reduce to P. If N; and N, are both in normal form, this
can only happen if N = P = Nj. O

Finally, we will say that two terms M and N are B-equivalent, or just equiv-
alent, if they reduce to a common term; in other words, if there is some P such
that M > P and N > P. This is written M = N. Using Theorem 15.1, you can
check that = is an equivalence relation, with the additional property that for
every M and N, if M> N or N> M, then M = N. (In fact, one can show that
= is the smallest equivalence relation having this property.)
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15.5 Representability by Lambda Terms

How can the lambda calculus serve as a model of computation? At first, it is
not even clear how to make sense of this statement. To talk about computabil-
ity on the natural numbers, we need to find a suitable representation for such
numbers. Here is one that works surprisingly well.

Definition 15.3. For each natural number 7, define the numeral 71 to be the
lambda term Ax. Ay. (x(x(x(...x(y))))), where there are n x’s in all.

The terms 7 are “iterators”: on input f, 7 returns the function mapping y
to f"(y). Note that each numeral is normal. We can now say what it means
for a lambda term to “compute” a function on the natural numbers.

Definition 15.4. Let f(xo,...,x,_1) be an n-ary partial function from IN to IN.
We say a lambda term X represents f if for every sequence of natural numbers
mO/ R mi’l*l/

Xmommy ..., > f(mo,my, ..., my—1)

if f(mg, ..., my_1) is defined, and X7igmi; . . . 7,1 has no normal form other-
wise.

Theorem 15.5. A function f is a partial computable function if and only if it is
represented by a lambda term.

This theorem is somewhat striking. As a model of computation, the lambda
calculus is a rather simple calculus; the only operations are lambda abstrac-
tion and application! From these meager resources, however, it is possible to
implement any computational procedure.

15.6 Lambda Representable Functions are Computable

Theorem 15.6. If a partial function f is represented by a lambda term, it is com-
putable.

Proof. Suppose a function f, is represented by a lambda term X. Let us de-
scribe an informal procedure to compute f. On input my, ..., m,_1, write
down the term Xy ...71,_1. Build a tree, first writing down all the one-step
reductions of the original term; below that, write all the one-step reductions
of those (i.e., the two-step reductions of the original term); and keep going. If
you ever reach a numeral, return that as the answer; otherwise, the function
is undefined.

An appeal to Church’s thesis tells us that this function is computable. A
better way to prove the theorem would be to give a recursive description of
this search procedure. For example, one could define a sequence primitive re-
cursive functions and relations, “IsASubterm,” “Substitute,” “ReducesToInOneStep,”
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“ReductionSequence,” “Numeral,” etc. The partial recursive procedure for
computing f(my,...,m,_1) is then to search for a sequence of one-step reduc-
tions starting with Xy ...7,,_1 and ending with a numeral, and return the
number corresponding to that numeral. The details are long and tedious but
otherwise routine. O

15.7 Computable Functions are Lambda Representable

Theorem 15.7. Every computable partial function if representable by a lambda term.

Proof. Wwe need to show that every partial computable function f is rep-
resented by a lambda term ? By Kleene’s normal form theorem, it suffices
to show that every primitive recursive function is represented by a lambda
term, and then that the functions so represented are closed under suitable
compositions and unbounded search. To show that every primitive recursive
function is represented by a lambda term, it suffices to show that the initial
functions are represented, and that the partial functions that are represented
by lambda terms are closed under composition, primitive recursion, and un-
bounded search. O

We will use a more conventional notation to make the rest of the proof
more readable. For example, we will write M(x,y, z) instead of Mxyz. While
this is suggestive, you should remember that terms in the untyped lambda
calculus do not have associated arities; so, for the same term M, it makes just
as much sense to write M(x,y) and M(x,y,z, w). But using this notation indi-
cates that we are treating M as a function of three variables, and helps make
the intentions behind the definitions clearer. In a similar way, we will say
“define M by M(x,y,z) = ...” instead of “define M by M = Ax.Ay.Az. ...

15.8 The Basic Primitive Recursive Functions are Lambda
Representable

Lemma 15.8. The functions 0, S, and P]* are lambda representable.

Proof. Zero, 0, is just Ax. Ay.y.

The successor function S, is defined by S(u) = Ax. Ay. x(uxy). You should
think about why this works; for each numeral 77, thought of as an iterator, and
each function f, S(7, f) is a function that, on input y, applies f n times starting
with y, and then applies it once more.

There is nothing to say about projections: P/'(x, ..., X,_1) = x;. In other
words, by our conventions, PT” is the lambda term Axg. ... Ax,_1.x;. O

190 Release : c2feada (2016-08-01)



15.9. LAMBDA REPRESENTABLE FUNCTIONS CLOSED UNDER

COMPOSITION

159 Lambda Representable Functions Closed under
Composition

Lemma 15.9. The lambda representable functions are closed under composition.

Proof. Suppose f is defined by composition from £, o, ..., k1. Assuming h,
80, ---, 8k—1 are represented by 1, go, ..., §k—1, reipectively, we need to find a
term f representing f. But we can simply define f by

7(9(0,. . .,lel) = E(%(Xo,. . .,xl,l),. . ~r8k71(x01-- .,lel)).

In other words, the language of the lambda calculus is well suited to represent
composition. O

15.10 Lambda Representable Functions Closed under
Primitive Recursion

When it comes to primitive recursion, we finally need to do some work. We
will have to proceed in stages. As before, on the assumption that we already
have terms g and & representing functions ¢ and &, respectively, we want a
term f representing the function f defined by

f(0,2) =g(2)
f(x+1,2) =h(z, f(x,2),2).

So, in general, given lambda terms G’ and H’, it suffices to find a term F such
that

for every natural number n; the fact that G’ and H' represent ¢ and 1 means
that whenever we plug in numerals 7 for Z, F(n + 1,7) will normalize to the
right answer.

But for this, it suffices to find a term F satisfying

F0)=G
F(n+1)=H(n, F(n))

for every natural number 71, where

G =AZ.G'(Z) and
H(u,v) = AZ.H' (u,9(u,Z),2).
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In other words, with lambda trickery, we can avoid having to worry about the
extra parameters Z—they just get absorbed in the lambda notation.

Before we define the term F, we need a mechanism for handling ordered
pairs. This is provided by the next lemma.

Lemma 15.10. There is a lambda term D such that for each pair of lambda terms M
and N, D(M, N)(0) > M and D(M, N)(1) > N.

Proof. First, define the lambda term K by
K(y) = Ax.y.
In other words, K is the term Ay. Ax.y. Looking at it differently, for every M,
K(M) is a constant function that returns M on any input.
Now define D(x,y,z) by D(x,y,z) = z(K(y))x. Then we have
D(M,N,0)>0(K(N))M>M and
D(M,N,1)>1(K(N))M>K(N)M®>N,

as required. O

The idea is that D(M, N) represents the pair (M, N), and if P is assumed
to represent such a pair, P(0) and P(1) represent the left and right projections,
(P)o and (P);. We will use the latter notations.

Lemma 15.11. The lambda representable functions are closed under primitive recur-
sion.

Proof. We need to show that given any terms, G and H, we can find a term F
such that

F(0)=G
F(n+1) = H(n,F(n))

for every natural number n. The idea is roughly to compute sequences of pairs

(0,F(0)),(1,F(1)),...,

using numerals as iterators. Notice that the first pair is just (0, G). Given a
pair (71, F(7)), the next pair, (n+ 1, F(n + 1)) is supposed to be equivalent to
(n+1,H(n, F(n))). We will design a lambda term T that makes this one-step
transition.

The details are as follows. Define T(u) by

T(u) = (S((w)o), H((#)o, (u)1))-

Now it is easy to verify that for any number n,

T((m, M)) > (n+1,H(1, M)).
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As suggested above, given G and H, define F(u) by
F(u) = (u(T,(0,G)))1-

In other words, on input 71, F iterates T n times on (0, G), and then returns the
second component. To start with, we have

1. 0(T, (0,G)) = (0,G)

2. F0)=G

By induction on n, we can show that for each natural number one has the
following:

1. n+1(T,{0,G)) = (n+1,F(n +1))
2. F(n+1)=H(n, F(n))

For the second clause, we have
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Here we have used the induction hypothesis on the second-to-last line. For
the first clause, we have

Here we have used the second clause in the last line. So we have shown
F(0) = G and, for every n, F(n+1) = H(7, F(7n)), which is exactly what
we needed. O

15.11 Fixed-Point Combinators

Suppose you have a lambda term g, and you want another term k with the
property that k is B-equivalent to gk. Define terms

diag(x) = xx

and

I(x) = g(diag(x))
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using our notational conventions; in other words, [ is the term Ax. g(xx). Let
k be the term /. Then we have

If one takes
Y = Ag. ((Ax. g(xx))(Ax. g(xx)))

then Yg and g(Yg) reduce to a common term; so Yg =g ¢(Yg). This is known
as “Curry’s combinator.” If instead one takes

Y = (Axg.g(xxg))(Axg. g(xxg))
then in fact Yg reduces to g(Yg), which is a stronger statement. This latter

version of Y is known as “Turing’s combinator.”

15.12 Lambda Representable Functions Closed under
Minimization
Lemma 15.12. Suppose f(x,y) is primitive recursive. Let g be defined by
8(x) =~ py f(x,y).
Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function &y (1) which searches for a y starting at ;
then g(x) is just i, (0). The function h, can be expressed as the solution of a
fixed-point equation:

hx(n):{n if f(x,n) =0

hy(n+1) otherwise.

Here are the details. Since f is primitive recursive, it is represented by
some term F. Remember that we also have a lambda term D, such that D(M, N, 0) >
M and D(M, N, 1) > N. Fixing x for the moment, to represent i, we want to
find a term H (depending on x) satisfying

H(n) = D(n,H(S(n)),F(x,7)).
We can do this using the fixed-point term Y. First, let U be the term

Ah.Az.D(z, (h(Sz)),F(x,z)),
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MINIMIZATION

and then let H be the term YU. Notice that the only free variable in H is x. Let
us show that H satisfies the equation above.
By the definition of Y, we have

H=YU=U(YU)=U(H).
In particular, for each natural number #n, we have

H(7) = U(H,7)
> D(7i, H(S(7)), F(x, 7)),

as required. Notice that if you substitute a numeral 7 for x in the last line, the
expression reduces to 7 if F(77,7) reduces to 0, and it reduces to H(S(7)) if
F(m, ) reduces to any other numeral.

To finish off the proof, let G be Ax. H(0). Then G represents g; in other
words, for every m, G(1) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise. O

Problems
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Chapter 16

Computability Theory

Material in this chapter should be reviewed and expanded. In paticu-
lar, there are no exercises yet.

16.1 Introduction

The branch of logic known as Computability Theory deals with issues having to
do with the computability, or relative computability, of functions and sets. It is
a evidence of Kleene’s influence that the subject used to be known as Recursion
Theory, and today, both names are commonly used.

Let us call a function f: IN - IN partial computable if it can be computed
in some model of computation. If f is total we will simply say that f is com-
putable. A relation R with computable characteristic function xr is also called
computable. If f and g are partial functions, we will write f(x) | to mean that
f is defined at x, i.e., x is in the domain of f; and f(x) 1 to mean the opposite,
i.e., that f is not defined at x. We will use f(x) ~ g(x) to mean that either f(x)
and g(x) are both undefined, or they are both defined and equal.

One can explore the subject without having to refer to a specific model
of computation. To do this, one shows that there is a universal partial com-
putable function, Un(k, x). This allows us to enumerate the partial computable
functions. We will adopt the notation ¢; to denote the k-th unary partial com-
putable function, defined by ¢ (x) ~ Un(k, x). (Kleene used {k} for this pur-
pose, but this notation has not been used as much recently.) Slightly more
generally, we can uniformly enumerate the partial computable functions of
arbitrary arities, and we will use ¢} to denote the k-th n-ary partial recursive
function.

Recall that if f(X,y) is a total or partial function, then uy f(X,y) is the
function of ¥ that returns the least y such that f(X,y) = 0, assuming that all of
f(%,0),..., f(X,y — 1) are defined; if there isno such y, py f(X,y) is undefined.
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If R(X,y) is arelation, uy R(X,y) is defined to be the least y such that R(X, y) is
true; in other words, the least y such that one minus the characteristic function
of R is equal to zero at X, y.

To show that a function is computable, there are two ways one can pro-
ceed:

1. Rigorously: describe a Turing machine or partial recursive function ex-
plicitly, and show that it computes the function you have in mind;

2. Informally: describe an algorithm that computes it, and appeal to Church’s
thesis.

There is no fine line between the two; a detailed description of an algorithm
should provide enough information so that it is relatively clear how one could,
in principle, design the right Turing machine or sequence of partial recursive
definitions. Fully rigorous definitions are unlikely to be informative, and we
will try to find a happy medium between these two approaches; in short, we
will try to find intuitive yet rigorous proofs that the precise definitions could
be obtained.

16.2 Coding Computations

In every model of computation, it is possible to do the following:

1. Describe the definitions of computable functions in a systematic way. For
instance, you can think of Turing machine specifications, recursive def-
initions, or programs in a programming language as providing these
definitions.

2. Describe the complete record of the computation of a function given by
some definition for a given input. For instance, a Turing machine com-
putation can be described by the sequence of configurations (state of the
machine, contents of the tape) for each step of computation.

3. Test whether a putative record of a computation is in fact the record of
how a computable function with a given definition would be computed
for a given input.

4. Extract from such a description of the complete record of a computation
the value of the function for a given input. For instance, the contents of
the tape in the very last step of a halting Turing machine computation is
the value.

Using coding, it is possible to assign to each description of a computable
function a numerical index in such a way that the instructions can be recovered
from the index in a computable way. Similarly, the complete record of a com-
putation can be coded by a single number as well. The resulting arithmetical
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relation “s codes the record of computation of the function with index e for
input x” and the function “output of computation sequence with code s” are
then computable; in fact, they are primitive recursive.

This fundamental fact is very powerful, and allows us to prove a number
of striking and important results about computability, independently of the
model of computation chosen.

16.3 The Normal Form Theorem

Theorem 16.1 (Kleene’s Normal Form Theorem). There are a primitive recur-
sive relation T (k,x,s) and a primitive recursive function U(s), with the following
property: if f is any partial computable function, then for some k,

f(x) ~U(us T(k,x,s))
for every x.

Proof Sketch. For any model of computation one can rigorously define a de-
scription of the computable function f and code such description using a nat-
ural number k. One can also rigorously define a notion of “computation se-
quence” which records the process of computing the function with index k for
input x. These computation sequences can likewise be coded as numbers s.
This can be done in such a way that (a) it is decidable whether a number s
codes the computation sequence of the function with index k on input x and
(b) what the end result of the computation sequence coded by s is. In fact, the
relation in (a) and the function in (b) are primitive recursive. O

In order to give a rigorous proof of the Normal Form Theorem, we would
have to fix a model of computation and carry out the coding of descriptions of
computable functions and of computation sequences in detail, and verify that
the relation T and function U are primitive recursive. For most applications,
it suffices that T and U are computable and that U is total.

It is probably best to remember the proof of the normal form theorem in
slogan form: us T(k, x, s) searches for a computation sequence of the function
with index k on input x, and U returns the output of the computation sequence
if one can be found.

T and U can be used to define the enumeration ¢y, ¢1, ¢2, .... From now
on, we will assume that we have fixed a suitable choice of T and U, and take
the equation

@e(x) >~ U(us T(e, x,s))

to be the definition of @e.
Here is another useful fact:

Theorem 16.2. Every partial computable function has infinitely many indices.
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Again, this is intuitively clear. Given any (description of) a computable
function, one can come up with a different description which computes the
same function (input-output pair) but does so, e.g., by first doing something
that has no effect on the computation (say, test if 0 = 0, or count to 5, etc.). The
index of the altered description will always be different from the original in-
dex. Both are indices of the same function, just computed slightly differently.

16.4 The s-m-n Theorem

The next theorem is known as the “s-m-n theorem,” for a reason that will be
clear in a moment. The hard part is understanding just what the theorem says;
once you understand the statement, it will seem fairly obvious.

Theorem 16.3. For each pair of natural numbers n and m, there is a primitive re-
cursive function s} such that for every sequence x, ag, ..., Ay—1, Y0 -, Yn—1, We
have

m+n

P (o) Y0r -+ Yn—1) = @5 (a0, -, A1, Y0, - - Yn—-1)-

It is helpful to think of s} as acting on programs. That is, s]} takes a pro-
gram, x, for an (m + n)-ary function, as well as fixed inputs ao, ..., a,_1; and
it returns a program, s (x, ag, . .., a,_1), for the n-ary function of the remain-
ing arguments. It you think of x as the description of a Turing machine, then
si'(x,ap,...,ay—1) is the Turing machine that, on input vy, ..., y,—1, prepends
ao, ..., y—1 to the input string, and runs x. Each s}/ is then just a primitive
recursive function that finds a code for the appropriate Turing machine.

16.5 The Universal Partial Computable Function

Theorem 16.4. There is a universal partial computable function Un(k, x). In other
words, there is a function Un(k, x) such that:

1. Un(k, x) is partial computable.

2. If f(x) is any partial computable function, then there is a natural number k
such that f(x) ~ Un(k, x) for every x.

Proof. Let Un(k,x) ~ U(us T(k, x,s)) in Kleene’s normal form theorem.  [J

This is just a precise way of saying that we have an effective enumeration
of the partial computable functions; the idea is that if we write f; for the func-
tion defined by fx(x) = Un(k, x), then the sequence fy, f1, f2, ...includes all
the partial computable functions, with the property that f;(x) can be com-
puted “uniformly” in k and x. For simplicity, we am using a binary func-
tion that is universal for unary functions, but by coding sequences of num-
bers we can easily generalize this to more arguments. For example, note that
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if f(x,y,z) is a 3-place partial recursive function, then the function g(x) =~
f((x)o, (x)1, (x)2) is a unary recursive function.

16.6 No Universal Computable Function

Theorem 16.5. There is no universal computable function. In other words, the uni-
versal function Un’(k, x) = @k (x) is not computable.

Proof. This theorem says that there is no total computable function that is uni-
versal for the total computable functions. The proof is a simple diagonaliza-
tion: if Un’(k, x) were total and computable, then

d(x) =Un'(x,x) +1

would also be total and computable. However, for every k, d(k) is not equal
to Un’(k, k). O

Theorem Theorem 16.4 above shows that we can get around this diagonal-
ization argument, but only at the expense of allowing partial functions. It is
worth trying to understand what goes wrong with the diagonalization argu-
ment, when we try to apply it in the partial case. In particular, the function
h(x) = Un(x, x) + 1 is partial recursive. Suppose / is the k-th function in the
enumeration; what can we say about h(k)?

16.7 The Halting Problem

Since, in our construction, Un(k, x) is defined if and only if the computation
of the function coded by k produces a value for input x, it is natural to ask if
we can decide whether this is the case. And in fact, it is not. For the Turing
machine model of computation, this means that whether a given Turing ma-
chine halts on a given input is computationally undecidable. The following
theorem is therefore known as the “undecidability of the halting problem.” I
will provide two proofs below. The first continues the thread of our previous
discussion, while the second is more direct.

Theorem 16.6. Let

hk,x) = 1 if Un(k', x) is defined
0 otherwise.
Then h is not computable.

Proof. 1f h were computable, we would have a universal computable function,
as follows. Suppose & is computable, and define

Un'(k, x) = {g”un(k"‘) if h(k,x) =1

otherwise.
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But now Un/(k, x) is a total function, and is computable if / is. For instance,
we could define g using primitive recursion, by

2(0,k,x) ~ 0
¢(y+ 1,k x) ~ Un(k, x);

then
Un'(k, x) ~ g(h(k, x),k, x).

And since Un’ (k, x) agrees with Un(k, x) wherever the latter is defined, Un’ is
universal for those partial computable functions that happen to be total. But
this contradicts Theorem 16.5. O

Proof. Suppose h(k, x) were computable. Define the function g by

0 ifh(x,x) =0
8(x) = { : .
undefined otherwise.
The function g is partial computable; for example, one can define it as py h(x, x) =
0. So, for some k, g(x) ~ Un(k, x) for every x. Is g defined at k? If it is, then, by
the definition of g, h(k, k) = 0. By the definition of f, this means that Un(k, k)
is undefined; but by our assumption that g(k) ~ Un(k, x) for every x, this
means that g(k) is undefined, a contradiction. On the other hand, if g(k) is
undefined, then h(k, k) # 0, and so h(k, k) = 1. But this means that Un(k, k) is
defined, i.e., that g(k) is defined. O

We can describe this argument in terms of Turing machines. Suppose there
were a Turing machine H that took as input a description of a Turing machine
K and an input x, and decided whether or not K halts on input x. Then we
could build another Turing machine G which takes a single input x, calls H to
decide if machine x halts on input x, and does the opposite. In other words, if
H reports that x halts on input x, G goes into an infinite loop, and if H reports
that x doesn’t halt on input x, then G just halts. Does G halt on input G? The
argument above shows that it does if and only if it doesn’t—a contradiction.
So our supposition that there is a such Turing machine H, is false.

16.8 Comparison with Russell’s Paradox

It is instructive to compare and contrast the arguments in this section with
Russell’s paradox:

1. Russell’s paradox: let S = {x:x ¢ x}. Thenx € Sifandonlyifx ¢ S, a
contradiction.

Conclusion: There is no such set S. Assuming the existence of a “set of
all sets” is inconsistent with the other axioms of set theory.
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2. A modification of Russell’s paradox: let F be the “function” from the set
of all functions to {0,1}, defined by

E(f) = {1 if f is in the domain of f, and f(f) =0

0 otherwise

A similar argument shows that F(F) = 0 if and only if F(F) = 1, a
contradiction.

Conclusion: F is not a function. The “set of all functions” is too big to be
the domain of a function.

3. The diagonalization argument: let fo, fi, ...be the enumeration of the
partial computable functions, and let G: IN — {0,1} be defined by

0 otherwise

If G is computable, then it is the function fi for some k. But then G(k) =
1if and only if G(k) = 0, a contradiction.

Conclusion: G is not computable. Note that according to the axioms of set
theory, G is still a function; there is no paradox here, just a clarification.

That talk of partial functions, computable functions, partial computable
functions, and so on can be confusing. The set of all partial functions from IN
to IN is a big collection of objects. Some of them are total, some of them are
computable, some are both total and computable, and some are neither. Keep
in mind that when we say “function,” by default, we mean a total function.
Thus we have:

1. computable functions

2. partial computable functions that are not total

3. functions that are not computable

4. partial functions that are neither total nor computable
To sort this out, it might help to draw a big square representing all the partial
functions from IN to IN, and then mark off two overlapping regions, corre-
sponding to the total functions and the computable partial functions, respec-
tively. It is a good exercise to see if you can describe an object in each of the

resulting regions in the diagram.
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16.9 Computable Sets

We can extend the notion of computability from computable functions to com-
putable sets:

Definition 16.7. Let S be a set of natural numbers. Then S is computable iff its
characteristic function is. In other words, S is computable iff the function

1 ifxes
Xs(x)Z{

0 otherwise

is computable. Similarly, a relation R(xy, ..., xx_1) is computable if and only
if its characteristic function is.

Computable sets are also called decidable.

Notice that we now have a number of notions of computability: for partial
functions, for functions, and for sets. Do not get them confused! The Turing
machine computing a partial function returns the output of the function, for
input values at which the function is defined; the Turing machine computing
a set returns either 1 or 0, after deciding whether or not the input value is in
the set or not.

16.10 Computably Enumerable Sets

Definition 16.8. A set is computably enumerable if it is empty or the range of a
computable function.

Historical Remarks Computably enumarable sets are also called recursively
enumerable instead. This is the original terminology, and today both are com-
monly used, as well as the abbreviations “c.e.” and “r.e.”

You should think about what the definition means, and why the termi-
nology is appropriate. The idea is that if S is the range of the computable

function f, then
5= 1{f(0),f(1),f2),-.- },

and so f can be seen as “enumerating” the elements of S. Note that according
to the definition, f need not be an increasing function, i.e., the enumeration
need not be in increasing order. In fact, f need not even be injective, so that
the constant function f(x) = 0 enumerates the set {0}.

Any computable set is computably enumerable. To see this, suppose S is
computable. If S is empty, then by definition it is computably enumerable.
Otherwise, let a be any element of S. Define f by

Flx) = {x if xs(x) =1

a otherwise.

Then f is a computable function, and S is the range of f.
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16.11 Equivalent Defininitions of Computably Enumerable
Sets

The following gives a number of important equivalent statements of what it
means to be computably enumerable.

Theorem 16.9. Let S be a set of natural numbers. Then the following are equivalent:
1. S is computably enumerable.
2. Sis the range of a partial computable function.
3. S is empty or the range of a primitive recursive function.
4. S is the domain of a partial computable function.

The first three clauses say that we can equivalently take any nonempty
computably enumerable set to be enumerated by either a computable func-
tion, a partial computable function, or a primitive recursive function. The
fourth clause tells us that if S is computably enumerable, then for some index
2

S = {x: ge(x) 1}.
In other words, S is the set of inputs on for which the computation of ¢,
halts. For that reason, computably enumerable sets are sometimes called semi-
decidable: if a number is in the set, you eventually get a “yes,” but if it isn’t,
you never get a “no”!

Proof. Since every primitive recursive function is computable and every com-
putable function is partial computable, (3) implies (1) and (1) implies (2).
(Note that if S is empty, S is the range of the partial computable function that
is nowhere defined.) If we show that (2) implies (3), we will have shown the
first three clauses equivalent.

So, suppose S is the range of the partial computable function ¢.. If S is
empty, we are done. Otherwise, let a be any element of S. By Kleene’s normal
form theorem, we can write

@e(x) = U(us T(e, x,5)).

In particular, ¢.(x) | and = y if and only if there is an s such that T(e, x,s)
and U(s) = y. Define f(z) by

f@)_{u«mo if T(e, (2)o, (2)1)

a otherwise.

Then f is primitive recursive, because T and U are. Expressed in terms of Tur-
ing machines, if z codes a pair ((z)o, (z)1) such that (z); is a halting computa-
tion of machine e on input (z)o, then f returns the output of the computation;
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otherwise, it returns a.We need to show that S is the range of f, i.e., for any
natural number y, y € S if and only if it is in the range of f. In the forwards
direction, suppose y € S. Then y is in the range of ¢, so for some x and s,
T(e,x,s) and U(s) = y; but then y = f((x,s)). Conversely, suppose y is in the
range of f. Then either y = a, or for some z, T(e, (z)o, (z)1) and U((z)1) = y.
Since, in the latter case, ¢.(x) }= y, either way, yisin S.

(The notation ¢.(x) |= y means “¢.(x) is defined and equal to y.” We
could just as well use ¢.(x) = y, but the extra arrow is sometimes helpful in
reminding us that we are dealing with a partial function.)

To finish up the proof of Theorem 16.9, it suffices to show that (1) and (4)
are equivalent. First, let us show that (1) implies (4). Suppose S is the range of
a computable function f, i.e.,

S = {y : for some x,f(x) = y}.

Let
g(y) =pux f(x) =y.

Then ¢ is a partial computable function, and g(y) is defined if and only if for
some x, f(x) = y. In other words, the domain of g is the range of f. Expressed
in terms of Turing machines: given a Turing machine F that enumerates the
elements of S, let G be the Turing machine that semi-decides S by searching
through the outputs of F to see if a given element is in the set.

Finally, to show (4) implies (1), suppose that S is the domain of the partial
computable function ¢,, i.e.,

S = {x: ge(x) 1}

If S is empty, we are done; otherwise, let a be any element of S. Define f by

f@)_{@m if 7(e, (2)o, (2)1)

a otherwise.

Then, as above, a number x is in the range of f if and only if ¢.(x) |, i.e., if and
only if x € S. Expressed in terms of Turing machines: given a machine M, that
semi-decides S, enumerate the elements of S by running through all possible
Turing machine computations, and returning the inputs that correspond to
halting computations. O

The fourth clause of Theorem 16.9 provides us with a convenient way of
enumerating the computably enumerable sets: for each ¢, let W, denote the
domain of @.. Then if A is any computably enumerable set, A = W,, for some
e.

The following provides yet another characterization of the computably
enumerable sets.
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Theorem 16.10. A set S is computably enumerable if and only if there is a com-
putable relation R(x,y) such that

S={x:3yR(x,y)}.

Proof. In the forward direction, suppose S is computably enumerable. Then
for some ¢, S = W,. For this value of ¢ we can write S as

S={x:3yT(exy)}
In the reverse direction, suppose S = {x : 3y R(x,y)}. Define f by
f(x) ~ uy AtomRx,y.

Then f is partial computable, and S is the domain of f. O

16.12 Computably Enumerable Sets are Closed under Union
and Intersection

The following theorem gives some closure properties on the set of computably
enumerable sets.

Theorem 16.11. Suppose A and B are computably enumerable. Then so are AN B
and AU B.

Proof. Theorem 16.9 allows us to use various characterizations of the com-
putably enumerable sets. By way of illustration, we will provide a few differ-
ent proofs.

For the first proof, suppose A is enumerated by a computable function f,
and B is enumerated by a computable function g. Let

h(x) = py (f(y) =xVg(y) =x) and
j(x) = ny (f((y)o) = x A g((y)1) = x).

Then A U B is the domain of /1, and A N B is the domain of ;.

Here is what is going on, in computational terms: given procedures that
enumerate A and B, we can semi-decide if an element x is in A U B by looking
for x in either enumeration; and we can semi-decide if an element x isin AN B
for looking for x in both enumerations at the same time.

For the second proof, suppose again that A is enumerated by f and B is
enumerated by g. Let

) f(x/2) if x is even
Kx) = {g((x— 1)/2) if x is odd.

Then k enumerates A U B; the idea is that k just alternates between the enumer-
ations offered by f and g. Enumerating A N B is tricker. If AN B is empty, it
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is trivially computably enumerable. Otherwise, let ¢ be any element of AN B,
and define [ by

) = {f((x)o) if £((x)o) = §((x)1)
c otherwise.

In computational terms, | runs through pairs of elements in the enumerations

of f and g, and outputs every match it finds; otherwise, it just stalls by out-

putting c.

For the last proof, suppose A is the domain of the partial function m(x) and
B is the domain of the partial function #n(x). Then A N B is the domain of the
partial function m(x) + n(x).

In computational terms, if A is the set of values for which m halts and B
is the set of values for which # halts, A N B is the set of values for which both
procedures halt.

Expressing A U B as a set of halting values is more difficult, because one
has to simulate m and 7 in parallel. Let d be an index for m and let e be an
index for #; in other words, m = ¢; and n = ¢,. Then A U B is the domain of
the function

p(x) = py (T(d,x,y) vV T(e,x,y)).

In computational terms, on input x, p searches for either a halting compu-
tation for m or a halting computation for #n, and halts if it finds either one.
O

16.13 Computably Enumerable Sets not Closed under
Complement

Suppose A is computably enumerable. Is the complement of A, A = N\
A, necessarily computably enumerable as well? The following theorem and
corollary show that the answer is “no.”

Theorem 16.12. Let A be any set of natural numbers. Then A is computable if and
only if both A and A are computably enumerable.

Proof. The forwards direction is easy: if A is computable, then A is com-
putable as well (x4 = 1 — x), and so both are computably enumerable.

In the other direction, suppose A and A are both computably enumerable.
Let A be the domain of ¢4, and let A be the domain of ¢,. Define & by

h(x) = us (T(d,x,s) vV T(ex,s)).

In other words, on input x, h searches for either a halting computation of ¢,
or a halting computation of ¢.. Now, if x € A, it will succeed in the first case,
and if x € A, it will succeed in the second case. So, h is a total computable
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function. But now we have that for every x, x € A if and only if T(e, x, h(x)),
i.e., if ¢, is the one that is defined. Since T (e, x, h(x)) is a computable relation,
A is computable. O

It is easier to understand what is going on in informal computational terms:
to decide A, on input x search for halting computations of ¢, and ¢¢. One of

them is bound to halt; if it is ¢, then x is in A, and otherwise, x is in A.

Corollary 16.13. K is not computably enumerable.

Proof. We know that K is computably enumerable, but not computable. If
Ko were computably enumerable, then Ky would be computable by Theo-
rem 16.12. O

16.14 Reducibility

We now know that there is at least one set, Ky, that is computably enumerable
but not computable. It should be clear that there are others. The method of
reducibility provides a powerful method of showing that other sets have these
properties, without constantly having to return to first principles.

Generally speaking, a “reduction” of a set A to a set B is a method of
transforming answers to whether or not elements are in B into answers as
to whether or not elements are in A. We will focus on a notion called “many-
one reducibility,” but there are many other notions of reducibility available,
with varying properties. Notions of reducibility are also central to the study
of computational complexity, where efficiency issues have to be considered as
well. For example, a set is said to be “NP-complete” if it is in NP and every
NP problem can be reduced to it, using a notion of reduction that is similar to
the one described below, only with the added requirement that the reduction
can be computed in polynomial time.

We have already used this notion implicitly. Define the set K by

K= {x:g:(x) 1},

ie, K = {x : x € Wy}. Our proof that the halting problem in unsolvable,
Theorem 16.6, shows most directly that K is not computable. Recall that Kj is
the set

Ko = {{e,x) : ge(x) I}.

ie. Ko = {(x,e) : x € W,}. Itis easy to extend any proof of the uncom-
putability of K to the uncomputability of Ky: if Ky were computable, we could
decide whether or not an element x is in K simply by asking whether or not
the pair (x, x) is in Ko. The function f which maps x to (x, x) is an example of
a reduction of K to Kj.
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Definition 16.14. Let A and B be sets. Then A is said to be many-one reducible
to B, written A <, B, if there is a computable function f such that for every
natural number x,

x €A ifandonlyif f(x)€ B.

If A is many-one reducible to B and vice-versa, then A and B are said to be
many-one equivalent, written A =, B.

If the function f in the definition above happens to be injective, A is said
to be one-one reducible to B. Most of the reductions described below meet this
stronger requirement, but we will not use this fact.

It is true, but by no means obvious, that one-one reducibility really is a
stronger requirement than many-one reducibility. In other words, there are
infinite sets A and B such that A is many-one reducible to B but not one-one
reducible to B.

16.15 Properties of Reducibility

The intuition behind writing A <,, B is that A is “no harder than” B. The
following two propositions support this intuition.

Proposition 16.15. If A <, Band B <,,, C, then A <, C.

Proof. Composing a reduction of A to B with a reduction of B to C yields a
reduction of A to C. (You should check the details!) O

Proposition 16.16. Let A and B be any sets, and suppose A is many-one reducible
to B.

1. If B is computably enumerable, so is A.
2. If B is computable, so is A.

Proof. Let f be a many-one reduction from A to B. For the first claim, just
check that if B is the domain of a partial function g, then A is the domain

of gof:
x € Aiff f(x) €B
iff g(£(x)) L.

For the second claim, remember that if B is computable then B and B are
computably enumerable. It is not hard to check that f is also a many-one
reduction of A to B, so, by the first part of this proof, A and A are computably
enumerable. So A is computable as well. (Alternatively, you can check that
XA = XxB o f;soif xpis computable, then sois x 4.) O
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A more general notion of reducibility called Turing reducibility is useful
in other contexts, especially for proving undecidability results. Note that by
Corollary 16.13, the complement of Kj is not reducible to Kp, since it is not
computably enumerable. But, intuitively, if you knew the answers to ques-
tions about Ky, you would know the answer to questions about its comple-
ment as well. A set A is said to be Turing reducible to B if one can determine
answers to questions in A using a computable procedure that can ask ques-
tions about B. This is more liberal than many-one reducibility, in which (1)
you are only allowed to ask one question about B, and (2) a “yes” answer has
to translate to a “yes” answer to the question about A, and similarly for “no.”
It is still the case that if A is Turing reducible to B and B is computable then
A is computable as well (though, as we have seen, the analogous statement
does not hold for computable enumerability).

You should think about the various notions of reducibility we have dis-
cussed, and understand the distinctions between them. We will, however,
only deal with many-one reducibility in this chapter. Incidentally, both types
of reducibility discussed in the last paragraph have analogues in computa-
tional complexity, with the added requirement that the Turing machines run in
polynomial time: the complexity version of many-one reducibility is known as
Karp reducibility, while the complexity version of Turing reducibility is known
as Cook reducibility.

16.16 Complete Computably Enumerable Sets

Definition 16.17. A set A is a complete computably enumerable set (under many-
one reducibility) if

1. A is computably enumerable, and
2. for any other computably enumerable set B, B <, A.

In other words, complete computably enumerable sets are the “hardest”
computably enumerable sets possible; they allow one to answer questions
about any computably enumerable set.

Theorem 16.18. K, Ky, and Ky are all complete computably enumerable sets.

Proof. To see that Ky is complete, let B be any computably enumerable set.
Then for some index e,

B=W, = {x:¢c(x) ]}

Let f be the function f(x) = (e, x). Then for every natural number x, x € B if
and only if f(x) € Ko. In other words, f reduces B to Kp.
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To see that K is complete, note that in the proof of Proposition 16.19 we
reduced Kj to it. So, by Proposition 16.15, any computably enumerable set can
be reduced to K; as well.

K can be reduced to Ky in much the same way. O

So, it turns out that all the examples of computably enumerable sets that
we have considered so far are either computable, or complete. This should
seem strange! Are there any examples of computably enumerable sets that
are neither computable nor complete? The answer is yes, but it wasn’t until
the middle of the 1950s that this was established by Friedberg and Muchnik,
independently.

16.17 An Example of Reducibility
Let us consider an application of Proposition 16.16.

Proposition 16.19. Let
Ky = {e: ¢e(0) 1}.

Then K is computably enumerable but not computable.

Proof. Since K; = {e : 3sT(e,0,s)}, Kj is computably enumerable by Theo-
rem 16.10.

To show that K; is not computable, let us show that K| is reducible to it.

This is a little bit tricky, since using K; we can only ask questions about
computations that start with a particular input, 0. Suppose you have a smart
friend who can answer questions of this type (friends like this are known as
“oracles”). Then suppose someone comes up to you and asks you whether
or not (e, x) is in Kj, that is, whether or not machine e halts on input x. One
thing you can do is build another machine, ey, that, for any input, ignores that
input and instead runs e on input x. Then clearly the question as to whether
machine ¢ halts on input x is equivalent to the question as to whether machine
ex halts on input 0 (or any other input). So, then you ask your friend whether
this new machine, ey, halts on input 0; your friend’s answer to the modified
question provides the answer to the original one. This provides the desired
reduction of K to Kj.

Using the universal partial computable function, let f be the 3-ary function
defined by

f(x,y,2) =~ x(y).

Note that f ignores its third input entirely. Pick an index e such that f = ¢3;
so we have

P2 (x,y,2) ~ ¢x(y).
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By the s-m-n theorem, there is a function s(e, x, y) such that, for every z,

Ps(e,x,y) (Z) = (Pg (x/ Y Z)
>~ ¢x(y).
In terms of the informal argument above, s(e, x, y) is an index for the ma-

chine that, for any input z, ignores that input and computes ¢x(y).
In particular, we have

Ps(exy)(0) & ifandonlyif @x(y) | .
In other words, (x,y) € Ky if and only if s(e,x,y) € Kj. So the function g
defined by
8(w) = s(e, (w)o, (w)1)
is a reduction of Kj to Kj. O

16.18 Totality is Undecidable

Let us consider one more example of using the s-m-n theorem to show that
something is noncomputable. Let Tot be the set of indices of total computable
functions, i.e.

Tot = {x : for every y, px(y) |}

Proposition 16.20. Tot is not computable.

Proof. To see that Tot is not computable, it suffices to show that K is reducible
to it. Let h(x, y) be defined by

0 ifx e K
h(x,y)N{

undefined otherwise

Note that /1(x, y) does not depend on y at all. It should not be hard to see that
h is partial computable: on input x, y, the we compute h by first simulating the
function ¢, on input x; if this computation halts, h(x,y) outputs 0 and halts.
So h(x,y) isjust Z(us T(x,x,s)), where Z is the constant zero function.

Using the s-m-n theorem, there is a primitive recursive function k(x) such
that for every x and y,

Prx)(y) = {

S0 @ (y) is total if x € K, and undefined otherwise. Thus, k is a reduction of K
to Tot. O

0 ifx e K
undefined otherwise

It turns out that Tot is not even computably enumerable—its complexity
lies further up on the “arithmetic hierarchy.” But we will not worry about this
strengthening here.
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16.19 Rice’s Theorem

If you think about it, you will see that the specifics of Tot do not play into
the proof of Proposition 16.20. We designed h(x,y) to act like the constant
function j(y) = 0 exactly when x is in K; but we could just as well have made
it act like any other partial computable function under those circumstances.
This observation lets us state a more general theorem, which says, roughly,
that no nontrivial property of computable functions is decidable.

Keep in mind that ¢y, @1, @2, ...is our standard enumeration of the partial
computable functions.

Theorem 16.21 (Rice’s Theorem). Let C be any set of partial computable functions,
and let A = {n : ¢, € C}. If A is computable, then either C is @ or C is the set of
all the partial computable functions.

An index set is a set A with the property that if n and m are indices which
“compute” the same function, then either both n and m are in A, or neither is.
Itis not hard to see that the set A in the theorem has this property. Conversely,
if A is an index set and C is the set of functions computed by these indices,
then A = {n: ¢, € C}.

With this terminology, Rice’s theorem is equivalent to saying that no non-
trivial index set is decidable. To understand what the theorem says, it is
helpful to emphasize the distinction between programs (say, in your favorite
programming language) and the functions they compute. There are certainly
questions about programs (indices), which are syntactic objects, that are com-
putable: does this program have more than 150 symbols? Does it have more
than 22 lines? Does it have a “while” statement? Does the string “hello world”
every appear in the argument to a “print” statement? Rice’s theorem says that
no nontrivial question about the program’s behavior is computable. This in-
cludes questions like these: does the program halt on input 0? Does it ever
halt? Does it ever output an even number?

Proof of Rice’s theorem. Suppose C is neither @ nor the set of all the partial com-
putable functions, and let A be the set of indices of functions in C. We will
show that if A were computable, we could solve the halting problem; so A is
not computable.

Without loss of generality, we can assume that the function f which is
nowhere defined is not in C (otherwise, switch C and its complement in the
argument below). Let g be any function in C. The idea is that if we could
decide A, we could tell the difference between indices computing f, and in-
dices computing g; and then we could use that capability to solve the halting
problem.
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Here’s how. Using the universal computation predicate, we can define a
function

undefined if gy (x) 1
g(y) otherwise.

h(x,y) =~ {

To compute h, first we try to compute ¢, (x); if that computation halts, we go
on to compute g(y); and if that computation halts, we return the output. More
formally, we can write

h(x,y) =~ P§(g(y), Un(x, x)).

where P2(zg,z1) = 2 is the 2-place projection function returning the 0-th ar-
gument, which is computable.

Then h is a composition of partial computable functions, and the right side
is defined and equal to g(y) just when Un(x, x) and g(y) are both defined.

Notice that for a fixed x, if ¢ (x) is undefined, then h(x, y) is undefined for
every y; and if ¢ (x) is defined, then h(x,y) ~ ¢(y). So, for any fixed value
of x, either hi(x,y) acts just like f or it acts just like g, and deciding whether or
not ¢y(x) is defined amounts to deciding which of these two cases holds. But
this amounts to deciding whether or not hy(y) ~ h(x,y) is in C or not, and if
A were computable, we could do just that.

More formally, since / is partial computable, it is equal to the function ¢
for some index k. By the s-m-n theorem there is a primitive recursive function
s such that for each x, @5 x)(y) = hx(y). Now we have that for each x, if
@x(x) |, then @y ) is the same function as g, and so s(k, x) is in A. On the
other hand, if ¢x(x) 1, then @, is the same function as f, and so s(k, x)
is not in A. In other words we have that for every x, x € K if and only if
s(k,x) € A. If A were computable, K would be also, which is a contradiction.
So A is not computable. O

Rice’s theorem is very powerful. The following immediate corollary shows
some sample applications.

Corollary 16.22. The following sets are undecidable.

1. {x:17 s in the range of ¢y}

2. {x: @y is constant}

3. {x: @y istotal}

4. {x : whenevery <y', gx(y) 4, and if x(y') 1, then ¢x(y) < ¢x(y')}
Proof. These are all nontrivial index sets. O
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16.20 The Fixed-Point Theorem

Let’s consider the halting problem again. As temporary notation, let us write
T@x(y) ' for (x,y); think of this as representing a “name” for the value ¢, (y).
With this notation, we can reword one of our proofs that the halting problem
is undecidable.

Question: is there a computable function /, with the following property?
For every x and y,

1 ifgx(y) 4

0 otherwise.

h("ex(y) ") = {
Answer: No; otherwise, the partial function

o) = {0 if h("ge(x)") =0

undefined otherwise

would be computable, and so have some index e. But then we have

N {0 if h("ge(e)”) =0

pele) = undefined otherwise,

in which case ¢, (e) is defined if and only if it isn’t, a contradiction.

Now, take a look at the equation with ¢.. There is an instance of self-
reference there, in a sense: we have arranged for the value of ¢, (e) to depend
on' ¢.(e) ', in a certain way. The fixed-point theorem says that we can do this,
in general—not just for the sake of proving contradictions.

Lemma 16.23 gives two equivalent ways of stating the fixed-point theo-
rem. Logically speaking, the fact that the statements are equivalent follows
from the fact that they are both true; but what we really mean is that each one
follows straightforwardly from the other, so that they can be taken as alterna-
tive statements of the same theorem.

Lemma 16.23. The following statements are equivalent:

1. For every partial computable function g(x,y), there is an index e such that for
every y,
Pe(y) = gle,y)-

2. For every computable function f(x), there is an index e such that for every y,
Pe(y) = () (y)-

Proof. (1) = (2): Given f, define g by g(x,y) ~ Un(f(x),y). Use (1) to get an
index e such that for every y,

@e(y) = Un(f(e),y)
= @¢(e)(¥)-
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(2) = (1): Given g, use the s-m-n theorem to get f such that for every x
and y, ¢¢(x)(y) = g(x,y). Use (2) to get an index e such that

Pe(y) = ¢5(e) (V)
=gley).
This concludes the proof. O
Before showing that statement (1) is true (and hence (2) as well), consider
how bizarre it is. Think of e as being a computer program; statement (1) says
that given any partial computable g(x,y), you can find a computer program

e that computes g.(y) ~ g(e,y). In other words, you can find a computer
program that computes a function that references the program itself.

Theorem 16.24. The two statements in Lemma 16.23 are true. Specifically, for every
partial computable function g(x,y), there is an index e such that for every y,

Pe(y) = g(e,y).

Proof. The ingredients are already implicit in the discussion of the halting
problem above. Let diag(x) be a computable function which for each x re-
turns an index for the function f(y) =~ ¢x(x,y), i.e.

Pdiag(x) (V) = x(x, 1)

Think of diag as a function that transforms a program for a 2-ary function into
a program for a 1-ary function, obtained by fixing the original program as its
first argument. The function diag can be defined formally as follows: first
define s by

s(x,y) ~ Un?(x, x,y),

where Un? is a 3-ary function that is universal for partial computable 2-ary
functions. Then, by the s-m-n theorem, we can find a primitive recursive func-
tion diag satisfying
Pdiag(x) (V) = s(x,y).
Now, define the function ! by
l(x,y) ~ g(diag(x), y)-
and let "I7 be an index for I. Finally, let e = diag("!"). Then for every y, we
have
Pe(Y) = Piag(r17)(¥)
~ 4)rl—|(’_l_‘,y)
~I("I"y)
=~ g(diag("1"), y)
~gley),

as required. N
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What's going on? Suppose you are given the task of writing a computer
program that prints itself out. Suppose further, however, that you are working
with a programming language with a rich and bizarre library of string func-
tions. In particular, suppose your programming language has a function diag
which works as follows: given an input string s, diag locates each instance of
the symbol ‘x” occuring in s, and replaces it by a quoted version of the original
string. For example, given the string

hello x world
as input, the function returns
hello "hello x world’ world

as output. In that case, it is easy to write the desired program; you can check
that

print (diag (’'print (diag(x))’))

does the trick. For more common programming languages like C++ and Java,
the same idea (with a more involved implementation) still works.

We are only a couple of steps away from the proof of the fixed-point theo-
rem. Suppose a variant of the print function print(x, y) accepts a string x and
another numeric argument y, and prints the string x repeatedly, y times. Then
the “program”

getinput (y); print(diag(’getinput(y); print(diag(x), v)’), V)

prints itself out y times, on input y. Replacing the getinput—print—diag
skeleton by an arbitrary funtion g(x,y) yields

g(diag('g(diag(x), y)"), vy)

which is a program that, on input y, runs g on the program itself and y. Think-
ing of “quoting” with “using an index for,” we have the proof above.

For now, it is o.k. if you want to think of the proof as formal trickery, or
black magic. But you should be able to reconstruct the details of the argument
given above. When we prove the incompleteness theorems (and the related
“fixed-point theorem”) we will discuss other ways of understanding why it
works.

The same idea can be used to get a “fixed point” combinator. Suppose you
have a lambda term g, and you want another term k with the property that k
is B-equivalent to gk. Define terms

diag(x) = xx

and

I(x) = g(diag(x))
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using our notational conventions; in other words, [ is the term Ax. g(xx). Let
k be the term /. Then we have

k= (Ax.g(xx))(Ax. g(xx))

>&((Ax. g(xx))(Ax.g(xx)))
= gk.

If one takes
Y = Ag. ((Ax.g(xx))(Ax. g(xx)))

then Yg and g(Yg) reduce to a common term; so Yg =g g(Yg). This is known
as “Curry’s combinator.” If instead one takes

Y = (Axg.g(xxg))(Axg. g(xxg))

then in fact Y'g reduces to g(Yg), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”

16.21 Applying the Fixed-Point Theorem

The fixed-point theorem essentially lets us define partial computable func-
tions in terms of their indices. For example, we can find an index e such that
for every y,

Pe(y) =e+y.
As another example, one can use the proof of the fixed-point theorem to de-
sign a program in Java or C++ that prints itself out.

Remember that if for each e, we let W, be the domain of ¢, then the se-
quence Wy, Wy, Wy, ... enumerates the computably enumerable sets. Some of
these sets are computable. One can ask if there is an algorithm which takes as
input a value x, and, if Wy happens to be computable, returns an index for its
characteristic function. The answer is “no,” there is no such algorithm:

Theorem 16.25. There is no partial computable function f with the following prop-
erty: whenever We is computable, then f(e) is defined and ¢,y is its characteristic
function.

Proof. Let f be any computable function; we will construct an e such that W,
is computable, but ¢(,) is not its characteristic function. Using the fixed point
theorem, we can find an index e such that

0 if y = 0and 0)l=0
(PE(y) ,._V{ Yy q)f(e)( )

undefined otherwise.

That is, e is obtained by applying the fixed-point theorem to the function de-
fined by
0 if]/ =0and (Pf(x) (0) J,: 0

undefined otherwise.

g(x,y) ~ {
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Informally, we can see that g is partial computable, as follows: on input x and
y, the algorithm first checks to see if y is equal to 0. If it is, the algorithm
computes f(x), and then uses the universal machine to compute ¢, (0). If
this last computation halts and returns 0, the algorithm returns 0; otherwise,
the algorithm doesn’t halt.

But now notice that if ¢¢(,) (0) is defined and equal to 0, then @.(y) is de-
fined exactly when y is equal to 0, so We = {0}. If ¢ (0) is not defined,
or is defined but not equal to 0, then W, = @. Either way, ¢¢(,) is not the
characteristic function of W,, since it gives the wrong answer on input 0. [

16.22 Defining Functions using Self-Reference

It is generally useful to be able to define functions in terms of themselves.
For example, given computable functions k, /, and m, the fixed-point lemma
tells us that there is a partial computable function f satisfying the following
equation for every y:

k(y) ifl(y) =0
f(m(y)) otherwise.

Again, more specifically, f is obtained by letting

L) ifl(y) =0
g(xy) = {(px(m(y)) otherwise

and then using the fixed-point lemma to find an index e such that ¢.(y) =
gley).

For a concrete example, the “greatest common divisor” function ged(u, v)
can be defined by

v if0=0
ged(u,v) ~ _
ged(mod(v, 1), u) otherwise

where mod (v, u) denotes the remainder of dividing v by u. An appeal to the
fixed-point lemma shows that gcd is partial computable. (In fact, this can be
putin the format above, letting y code the pair (1, v).) A subsequent induction
on u then shows that, in fact, gcd is total.

Of course, one can cook up self-referential definitions that are much fancier
than the examples just discussed. Most programming languages support def-
initions of functions in terms of themselves, one way or another. Note that
this is a little bit less dramatic than being able to define a function in terms
of an index for an algorithm computing the functions, which is what, in full
generality, the fixed-point theorem lets you do.

Release : c2feada (2016-08-01) 219



CHAPTER 16. COMPUTABILITY THEORY

16.23 Minimization with Lambda Terms

When it comes to the lambda calculus, we’ve shown the following:
1. Every primitive recursive function is represented by a lambda term.
2. There is a lambda term Y such that for any lambda term G, YG > G(YG).

To show that every partial computable function is represented by some lambda
term, we only need to show the following.

Lemma 16.26. Suppose f(x,y) is primitive recursive. Let g be defined by
g(x) = py f(x,y) =0.

Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function hy (1) which searches for a y starting at n;
then g(x) is just i1, (0). The function /i, can be expressed as the solution of a
fixed-point equation:

hx(n)N{n if f(x,n) =0

hy(n+1) otherwise.

Here are the details. Since f is primitive recursive, it is represented by
some term F. Remember that we also have a lambda term D such that D(M, N, 0) >
M and D(M, N, 1) > N. Fixing x for the moment, to represent /i, we want to
find a term H (depending on x) satisfying

H(n) = D(n, H(S(n)), F(x,7)).
We can do this using the fixed-point term Y. First, let U be the term
Ah.Az.D(z, (h(Sz)),F(x,2)),

and then let H be the term YU. Notice that the only free variable in H is x. Let
us show that H satisfies the equation above.
By the definition of Y, we have

H=YU = U(YU) = U(H).
In particular, for each natural number 1, we have
H(n) = U(H,n)
>D(n, H(S(n)), F(x, 7)),

as required. Notice that if you substitute a numeral 77 for x in the last line, the
expression reduces to 7 if F(77,7) reduces to 0, and it reduces to H(S(7)) if
F(m, ) reduces to any other numeral.

To finish off the proof, let G be Ax. H(0). Then G represents g; in other

words, for every m, G(7) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise. O
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Problems

Problem 16.1. Give a reduction of K to Kj.
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16.23. MINIMIZATION WITH LAMBDA TERMS

The material in this part is a basic and informal introduction to Turing
machines. It needs more examples and exercises, and perhaps informa-
tion on available Turing machine simulators. The proof of the unsolvabil-
ity of the decision problem uses a successor function, hence all models
are infinite. One could strengthen the result by using a successor rela-
tion instead. There probably are subtle oversights; use these as checks on
students’ attention (but also file issues!).
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Chapter 17

Turing Machine Computations

17.1 Introduction

What does it mean for a function, say, from IN to IN to be computable? Among
the first answers, and the most well known one, is that a function is com-
putable if it can be computed by a Turing machine. This notion was set out
by Alan Turing in 1936. Turing machines are an example of a model of compu-
tation—they are a mathematically precise way of defining the idea of a “com-
putational procedure.” What exactly that means is debated, but it is widely
agreed that Turing machines are one way of specifying computational proce-
dures. Even though the term “Turing machine” evokes the image of a physi-
cal machine with moving parts, strictly speaking a Turing machine is a purely
mathematical construct, and as such it idealizes the idea of a computational
procedure. For instance, we place no restriction on either the time or memory
requirements of a Turing machine: Turing machines can compute something
even if the computation would require more storage space or more steps than
there are atoms in the universe.

It is perhaps best to think of a Turing machine as a program for a spe-
cial kind of imaginary mechanism. This mechanism consists of a fape and a
read-write head. In our version of Turing machines, the tape is infinite in one
direction (to the right), and it is divided into squares, each of which may con-
tain a symbol from a finite alphabet. Such alphabets can contain any number of
different symbols, but we will mainly make do with three: >, 0, and 1. When
the mechanism is started, the tape is empty (i.e., each square contains the sym-
bol 0) except for the leftmost square, which contains >, and a finite number of
squares which contain the input. At any time, the mechanism is in one of a
finite number of states. At the outset, the head scans the leftmost square and
in a specified initial state. At each step of the mechanism’s run, the content
of the square currently scanned together with the state the mechanism is in
and the Turing machine program determine what happens next. The Turing
machine program is given by a partial function which takes as input a state g
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and a symbol ¢ and outputs a triple (4’, 0/, D). Whenever the mechanism is in
state g and reads symbol o, it replaces the symbol on the current square with
o', the head moves left, right, or stays put according to whether D is L, R, or
N, and the mechanism goes into state q'.

For instance, consider the situation below:

[-]1

t{1fofr]1]1]1]ofofo]

.

The tape of the Turing machine contains the end-of-tape symbol > on the
leftmost square, followed by three 1’s, a 0, four more 1’s, and the rest of the
tape is filled with 0’s. The head is reading the third square from the left,
which contains a 1, and is in state 4;—we say “the machine is reading a 1
in state q1.” If the program of the Turing machine returns, for input (g1,1),
the triple (45,0, R), we would now replace the 1 on the third square with a 0,
move right to the fourth square, and change the state of the machine to gs.

We say that the machine halts when it encounters some state, g, and sym-
bol, o such that there is no instruction for (g,,0), i.e., the transition function
for input (g, o) is undefined. In other words, the machine has no instruction
to carry out, and at that point, it ceases operation. Halting is sometimes repre-
sented by a specific halt state h. This will be demonstrated in more detail later
on.

The beauty of Turing’s paper, “On computable numbers,” is that he presents
not only a formal definition, but also an argument that the definition captures
the intuitive notion of computability. From the definition, it should be clear
that any function computable by a Turing machine is computable in the in-
tuitive sense. Turing offers three types of argument that the converse is true,
i.e., that any function that we would naturally regard as computable is com-
putable by such a machine. They are (in Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

3. Giving examples of large classes of numbers which are computable.

Our goal is to try to define the notion of computability “in principle,” i.e.,
without taking into account practical limitations of time and space. Of course,
with the broadest definition of computability in place, one can then go on
to consider computation with bounded resources; this forms the heart of the
subject known as “computational complexity.”
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Historical Remarks Alan Turing invented Turing machines in 1936. While
his interest at the time was the decidability of first-order logic, the paper has
been described as a definitive paper on the foundations of computer design.
In the paper, Turing focuses on computable real numbers, i.e., real numbers
whose decimal expansions are computable; but he notes that it is not hard to
adapt his notions to computable functions on the natural numbers, and so on.
Notice that this was a full five years before the first working general purpose
computer was built in 1941 (by the German Konrad Zuse in his parents living
room), seven years before Turing and his colleagues at Bletchley Park built the
code-breaking Colossus (1943), nine years before the American ENIAC (1945),
twelve years before the first British general purpose computer the Manchester
Mark I was built in Manchester (1948) and thirteen years before the Americans
first tested the BINAC (1949). The Manchester Mark I has the distinction of be-
ing the first stored-program computer—previous machines had to be rewired
by hand for each new task.

17.2 Representing Turing Machines

Turing machines can be represented visually by state diagrams. The diagrams
are composed of state cells connected by arrows. Unsurprisingly, each state
cell represents a state of the machine. Each arrow represents an instruction
that can be carried out from that state, with the specifics of the instruction
written above or below the appropriate arrow. Consider the following ma-
chine, which has only two internal states, g9 and 41, and one instruction:

start —

Recall that the Turing machine has a read/write head and a tape with the
input written on it. The instruction can be read as if reading a blank in state qo,
write a stroke, move right, and move to state q;. This is equivalent to the transition
function mapping (go,0) to (q1,1, R).

Example 17.1. Even Machine: The following Turing machine halts if, and only
if, there are an even number of strokes on the tape.

0,0,R
1,1,R

start _)
1,1,R
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The state diagram corresponds to the following transition function:

6(q0,1) = {q1, 1, R),
6(q1,1) = (90,1, R),
5(‘71/ 0) = <‘71, 0, R>

The above machine halts only when the input is an even number of strokes.
Otherwise, the machine (theoretically) continues to operate indefinitely. For
any machine and input, it is possible to trace through the configurations of the
machine in order to determine the output. We will give a formal definition
of configurations later. For now, we can intuitively think of configurations
as a series of diagrams showing the state of the machine at any point in time
during operation. Configurations show the content of the tape, the state of the
machine and the location of the read /write head.

Let us trace through the configurations of the even machine if it is started
with an input of 4 1s. In this case, we expect that the machine will halt. We
will then run the machine on an input of 3 1s, where the machine will run
forever.

The machine starts in state gy, scanning the leftmost 1. We can represent
the initial state of the machine as follows:

>191110. ..

The above configuration is straightforward. As can be seen, the machine starts
in state one, scanning the leftmost 1. This is represented by a subscript of the
state name on the first 1. The applicable instruction at this point is 5(g9,1) =
(91,1, R), and so the machine moves right on the tape and changes to state g;.

>11;110. ..

Since the machine is now in state g; scanning a stroke, we have to “follow”
the instruction 6(q1,1) = (g0, 1, R). This results in the configuration

>111410. ..

As the machine continues, the rules are applied again in the same order, re-
sulting in the following two configurations:

>1111;0. ..

5111105 . . .

The machine is now in state gy scanning a blank. Based on the transition
diagram, we can easily see that there is no instruction to be carried out, and
thus the machine has halted. This means that the input has been accepted.
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Suppose next we start the machine with an input of three strokes. The first
few configurations are similar, as the same instructions are carried out, with
only a small difference of the tape input:

>10110. ..

>11;10. ..
>11140. ..
511105 . ..

The machine has now traversed past all the strokes, and is reading a blank
in state ;. As shown in the diagram, there is an instruction of the form
5(q1,0) = (41,0,R). Since the tape is infinitely blank to the right, the ma-
chine will continue to execute this instruction forever, staying in state q; and
moving ever further to the right. The machine will never halt, and does not
accept the input.

It is important to note that not all machines will halt. If halting means that
the machine runs out of instructions to execute, then we can create a machine
that never halts simply by ensuring that there is an outgoing arrow for each
symbol at each state. The even machine can be modified to run infinitely by
adding an instruction for scanning a blank at gp.

Example 17.2.
0,0,R 0,0,R
1,1,R
O @S0
1,1,R

Machine tables are another way of representing Turing machines. Machine
tables have the tape alphabet displayed on the x-axis, and the set of machine
states across the y-axis. Inside the table, at the intersection of each state and
symbol, is written the rest of the instruction—the new state, new symbol, and
direction of movement. Machine tables make it easy to determine in what
state, and for what symbol, the machine halts. Whenever there is a gap in the
table is a possible point for the machine to halt. Unlike state diagrams and
instruction sets, where the points at which the machine halts are not always
immediately obvious, any halting points are quickly identified by finding the
gaps in the machine table.

Example 17.3. The machine table for the even machine is:

0 1
qO 1/ ql/R
q1 0/ q1/0 1/ QO/R
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As we can see, the machine halts when scanning a blank in state go.

So far we have only considered machines that read and accept input. How-
ever, Turing machines have the capacity to both read and write. An example
of such a machine (although there are many, many examples) is a doubler. A
doubler, when started with a block of n strokes on the tape, outputs a block
of 2n strokes.

Example 17.4. Before building a doubler machine, it is important to come
up with a strategy for solving the problem. Since the machine (as we have
formulated it) cannot remember how many strokes it has read, we need to
come up with a way to keep track of all the strokes on the tape. One such way
is to separate the output from the input with a blank. The machine can then
erase the first stroke from the input, traverse over the rest of the input, leave a
blank, and write two new strokes. The machine will then go back and find the
second stroke in the input, and double that one as well. For each one stroke of
input, it will write two strokes of output. By erasing the input as the machine
goes, we can guarantee that no stroke is missed or doubled twice. When the
entire input is erased, there will be 21 strokes left on the tape.

1,1,R 1,1,R

0,0,R 0,1,R
qs @ qs3
0,0,L h/ 1,1,L
1,1,L 1,1,L 0,1,L

17.3 Turing Machines

The formal definition of what constitutes a Turing machine looks abstract,
but is actually simple: it merely packs into one mathematical structure all
the information needed to specify the workings of a Turing machine. This
includes (1) which states the machine can be in, (2) which symbols are allowed
to be on the tape, (3) which state the machine should start in, and (4) what the
instruction set of the machine is.

Definition 17.5 (Turing machine). A Turing machine T = (Q,Z,q0,6) consists
of
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1. a finite set of states Q,

2. afinite alphabet X which includes > and 0,

3. an initial state go € Q,

4. afinite instruction set 6: Q x X + Q x X x {L,R,N}.
The function J is also called the transition function of T.

We assume that the tape is infinite in one direction only. For this reason
it is useful to designate a special symbol > as a marker for the left end of the
tape. This makes it easier for Turing machine programs to tell when they’re
“in danger” of running off the tape.

Example 17.6. Even Machine: The even machine is formally the quadruple
(Q, X, 90,9) where

Q={q0,qm}

> = {501},
6(q0,1) = (71,1, R),
5(q1,1) = (90,1, R),
5(q1,0) = {(q1,0,R).

17.4 Configurations and Computations

Recall tracing through the configurations of the even machine earlier. The
imaginary mechanism consisting of tape, read/write head, and Turing ma-
chine program is really just in intuitive way of visualizing what a Turing ma-
chine computation is. Formally, we can define the computation of a Turing
machine on a given input as a sequence of configurations—and a configuration
in turn is a sequence of symbols (corresponding to the contents of the tape
at a given point in the computation), a number indicating the position of the
read/write head, and a state. Using these, we can define what the Turing
machine M computes on a given input.

Definition 17.7 (Configuration). A configuration of Turing machine M = (Q, X, qo, 6)
is a triple (C, n, q) where

1. C € X* is a finite sequence of symbols from X,
2. n € N is a number < len(C), and
3.g9€Q
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Intuitively, the sequence C is the content of the tape (symbols of all squares
from the leftmost square to the last non-blank or previously visited square), n
is the number of the square the read/write head is scanning (beginning with
0 being the number of the leftmost square), and g is the current state of the
machine.

The potential input for a Turing machine is a sequence of symbols, usually
a sequence that encodes a number in some form. The initial configuration of
the Turing machine is that configuration in which we start the Turing machine
to work on that input: the tape contains the tape end marker immediately
followed by the input written on the squares to the right, the read /write head
is scanning the leftmost square of the input (i.e., the square to the right of the
left end marker), and the mechanism is in the designated start state g.

Definition 17.8 (Initial configuration). The initial configuration of M for input
IeX*is
<l> ~1,1, I]Q>

The —~ symbol is for concatenation—we want to ensure that there are no
blanks between the left end marker and the beginning of the input.

Definition 17.9. We say that a configuration (C,n,q) yields (C',n’,q’) in one
step (according to M), iff

1. the n-th symbol of C is 7,

2. the instruction set of M specifies §(q,0) = (¢q',0’, D),
3. the n-th symbol of C’ is ¢/, and
4

a) D=Landn'=n—-1,or
b) D=Randn' =n-+1,or
c) D=Nandn' =n,

. if n’ > len(C), thenlen(C’) = len(C) + 1 and the n’-th symbol of C’ is 0.
6. for all i such thati < len(C’) and i # n, C'(i) = C(i),

921

Definition 17.10. A run of M on input I is a sequence C; of configurations of
M, where Cj is the initial configuration of M for input I, and each C; yields
Ci41 in one step.

We say that M halts on input I after k steps if Cy = (C, n, q), the nth symbol
of Cis o, and 6(g,0) is undefined. In that case, the output of M for input I
is O, where O is a string of symbols not beginning or ending in 0 such that
C=p~0 ~O ~ 0 forsomei,jc N.

According to this definition, the output O of M always begins and ends in
a symbol other than 0, or, if at time k the entire tape is filled with 0 (except for
the leftmost >), O is the empty string.
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17.5 Unary Representation of Numbers

Turing machines work on sequences of symbols written on their tape. De-
pending on the alphabet a Turing machine uses, these sequences of symbols
can represent various inputs and outputs. Of particular interest, of course, are
Turing machines which compute arithmetical functions, i.e., functions of natu-
ral numbers. A simple way to represent positive integers is by coding them
as sequences of a single symbol 1. If n € IN, let 1" be the empty sequence if
n = 0, and otherwise the sequence consisting of exactly n 1’s.

Definition 17.11 (Computation). A Turing machine M computes the function
f:IN" — N iff M halts on input

1%101%20. .. 01k
with output 1f (kppeekn)

Example 17.12. Addition: Build a machine that, when given an input of two
non-empty strings of 1’s of length n and m, computes the function f(n,m) =
n—+m.

We want to come up with a machine that starts with two blocks of strokes
on the tape and halts with one block of strokes. We first need a method to
carry out. The input strokes are separated by a blank, so one method would
be to write a stroke on the square containing the blank, and erase the first (or
last) stroke. This would result in a block of n + m 1’s. Alternatively, we could
proceed in a similar way to the doubler machine, by erasing a stroke from the
first block, and adding one to the second block of strokes until the first block
has been removed completely. We will proceed with the former example.

1,1,R 1,1,R 1,0,N

start —( 40 q1 q2

N

17.6 Halting States

Although we have defined our machines to halt only when there is no in-
struction to carry out, common representations of Turing machines have a
dedicated halting state, h, such that h € Q.

The idea behind a halting state is simple: when the machine has finished
operation (it is ready to accept input, or has finished writing the output), it
goes into a state & where it halts. Some machines have two halting states, one
that accepts input and one that rejects input.
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Example 17.13. Halting States. To elucidate this concept, let us begin with an
alteration of the even machine. Instead of having the machine halt in state gg
if the input is even, we can add an instruction to send the machine into a halt

state.
0,0,R
1,R

1,
start —> e

1,1,R
0,0,N

0,

Let us further expand the example. When the machine determines that the
input is odd, it never halts. We can alter the machine to include a reject state
by replacing the looping instruction with an instruction to go to a reject state r.

1,1,R
SEOWBO
1,1,R
0,0,N 0,0,N

ONENO

Adding a dedicated halting state can be advantageous in cases like this,
where it makes explicit when the machine accepts/rejects certain inputs. How-
ever, it is important to note that no computing power is gained by adding a
dedicated halting state. Similarly, a less formal notion of halting has its own
advantages. The definition of halting used so far in this chapter makes the
proof of the Halting Problem intuitive and easy to demonstrate. For this rea-
son, we continue with our original definition.

17.7 Combining Turing Machines

The examples of Turing machines we have seen so far have been fairly sim-
ple in nature. But in fact, any problem that can be solved with any modern
programming language can als o be solved with Turing machines. To build
more complex Turing machines, it is important to convince ourselves that we
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can combine them, so we can build machines to solve more complex prob-
lems by breaking the procedure into simpler parts. If we can find a natural
way to break a complex problem down into constituent parts, we can tackle
the problem in several stages, creating several simple Turing machines and
combining then into one machine that can solve the problem. This point is
especially important when tackling the Halting Problem in the next section.

Example 17.14. Combining Machines: Design a machine that computes the
function f(m,n) =2(m +n).

In order to build this machine, we can combine two machines we are al-
ready familiar with: the addition machine, and the doubler. We begin by
drawing a state diagram for the addition machine.

1,LR 1,1,R

1,0,N
cart @ 0,1,R % 0,0,L @
start —( 40 \_1/ 2

Instead of halting at state g, we want to continue operation in order to double
the output. Recall that the doubler machine erases the first stroke in the input
and writes two strokes in a separate output. Let’s add an instruction to make
sure the tape head is reading the first stroke of the output of the addition
machine.

1,1,R 1,1,R
start —( 4o \qu (]2
1,0,L
11,1 669
>, >, R

()

It is now easy to double the input—all we have to do is connect the doubler
machine onto state g4. This requires renaming the states of the doubler ma-
chine so that they start at g4 instead of gp—this way we don’t end up with two
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starting states. The final diagram should look like:

1,1,R 1,1,R

0,1,R A 0,0, L
g0 n

start — U \jz
1,0,L
1,1,L (:69
111 >, >, R
) 001 @ 0,0,R GD
YN
1,1,L L1L 1,0,R

0,1, L q7 @ /115

0,1,R \D/ 0,0,R

1,1,R 1,1,R

17.8 Variants of Turing Machines

There are in fact many possible ways to define Turing machines, of which ours
is only one. We allow arbitrary finite alphabets, a more restricted definition
might allow only two tape symbols, 1 and 0. We allow the machine to write
a symbol to the tape and move at the same time, other definitions allow ei-
ther writing or moving. We allow the possibility of writing without moving
the tape head, other definitions leave out the N “instruction.” Our definition
assumes that the tape is infinite in one direction only, other definitions allow
the tape to be infinite both to the left and the right. In fact, we might even
allow any number of separate tapes, or even an infinite grid of squares. We
represent the instruction set of the Turing machine by a transition function;
other definitions use a transition relation.

This last relaxation of the definition is particularly interesting. In our def-
inition, when the machine is in state g4 reading symbol ¢, 5(g,0) determines
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what the new symbol, state, and tape head position is. But if we allow the
instruction set to be a relation between current state-symbol pairs (g, ) and
new state-symbol-direction triples (q’, 0/, D), the action of the Turing machine
may not be uniquely determined—the instruction relation may contain both
(q,0,9',0',D) and (q,0,q",0”,D’). In this case we have a non-deterministic
Turing machine. These play an important role in computational complexity
theory.

There are also different conventions for when a Turing machine halts: we
say it halts when the transition function is undefined, other definitions require
the machine to be in a special designated halting state. And there are differnt
ways of representing numbers: we use unary representation, but you can also
use binary representation (this requires two symbols in addition to 0).

Now here is an interesting fact: none of these variations matters as to
which functions are Turing computable. If a function is Turing computable
according to one definition, it is Turing computable according to all of them.

17.9 The Church-Turing Thesis

Turing machines are supposed to be a precise replacement for the concept of
an effective procedure. Turing took it that anyone who grasped the concept of
an effective procedure and the concept of a Turing machine would have the
intuition that anything that could be done via an effective procedure could be
done by Turing machine. This claim is given support by the fact that all the
other proposed precise replacements for the concept of an effective procedure
turn out to be extensionally equivalent to the concept of a Turing machine—
that is, they can compute exactly the same set of functions. This claim is called
the Church-Turing thesis.

Definition 17.15 (Church-Turing thesis). The Church-Turing Thesis states that
anything computable via an effective procedure is Turing computable.

The Church-Turing thesis is appealed to in two ways. The first kind of
use of the Church-Turing thesis is an excuse for laziness. Suppose we have a
description of an effective procedure to compute something, say, in “pseudo-
code.” Then we can invoke the Church-Turing thesis to justify the claim that
the same function is computed by some Turing machine, eve if we have not in
fact constructed it.

The other use of the Church-Turing thesis is more philosophically interest-
ing. It can be shown that there are functions whch cannot be computed by a
Turing machines. From this, using the Church-Turing thesis, one can conclude
that it cannot be effectively computed, using any procedure whatsoever. For
if there were such a procedure, by the Church-Turing thesis, it would follow
that there would be a Turing machine. So if we can prove that there is no
Turing machine that computes it, there also can’t be an effective procedure.
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In particular, the Church-Turing thesis is invoked to claim that the so-called
halting problem not only cannot be solved by Turing machines, it cannot be
effectively solved at all.

Problems

Problem 17.1. Choose an arbitary input and trace through the configurations
of the doubler machine in Example 17.4.

Problem 17.2. The double machine in Example 17.4 writes its output to the
right of the input. Come up with a new method for solving the doubler prob-
lem which generates its output immediately to the right of the end-of-tape
marker. Build a machine that executes your method. Check that your ma-
chine works by tracing through the configurations.

Problem 17.3. Design a Turing-machine with alphabet {0, A, B} that accepts
any string of As and Bs where the number of As is the same as the number of
Bs and all the As precede all the Bs, and rejects any string where the number
of As is not equal to the number of Bs or the As do not precede all the Bs.
(E.g., the machine should accept AABB, and AAABBB, but reject both AAB
and AABBAABB.)

Problem 17.4. Design a Turing-machine with alphabet {0, A, B} that takes as
input any string « of As and Bs and duplicates them to produce an output of
the form ax. (E.g. input ABBA should result in output ABBAABBA).

Problem 17.5. Alphabetical?: Design a Turing-machine with alphabet {0, A, B}
that when given as input a finite sequence of As and Bs checks to see if all
the As appear left of all the Bs or not. The machine should leave the input
string on the tape, and output either halt if the string is “alphabetical”, or
loop forever if the string is not.

Problem 17.6. Alphabetizer: Design a Turing-machine with alphabet {0, A, B}
that takes as input a finite sequence of As and Bs rearranges them so that
all the As are to the left of all the Bs. (e.g., the sequence BABAA should
become the sequence AAABB, and the sequence ABBABB should become
the sequence AABBBB).

Problem 17.7. Trace through the configurations of the machine for input (3, 5).
Problem 17.8. Subtraction: Design a Turing machine that when given an input

of two non-empty strings of strokes of length n and m, where n > m, computes
the function f(n,m) = n — m.
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Problem 17.9. Equality: Design a Turing machine to compute the following
function:
1 ifx=y

equality(x,y) = {O ifx £y

where x and y are integers greater than 0.

Problem 17.10. Design a Turing machine to compute the function min(x,y)
where x and y are positive integers represented on the tape by strings of 1’s
separated by a 0. You may use additional symbols in the alphabet of the ma-
chine.

The function min selects the smallest value from its arguments, somin(3,5) =
3, min(20,16) = 16, and min(4,4) = 4, and so on.
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Chapter 18

Undecidability

18.1 Introduction

It might seem obvious that not every function, even every arithmetical func-
tion, can be computable. There are just too many, whose behavior is too
complicated. Functions defined from the decay of radioactive particles, for
instance, or other chaotic or random behavior. Suppose we start counting 1-
second intervals from a given time, and define the function f(n) as the num-
ber of particles in the universe that decay in the n-th 1-second interval after
that initial moment. This seems like a candidate for a function we cannot ever
hope to compute.

But it is one thing to not be able to imagine how one would compute such
functions, and quite another to actually prove that they are uncomputable.
In fact, even functions that seem hopelessly complicated may, in an abstract
sense, be computable. For instance, suppose the universe is finite in time—
some day, in the very distant future the universe will contract into a single
point, as some cosmological theories predict. Then there is only a finite (but
incredibly large) number of seconds from that initial moment for which f(n)
is defined. And any function which is defined for only finitely many inputs is
computable: we could list the outputs in one big table, or code it in one very
big Turing machine state transition diagram.

We are often interested in special cases of functions whose values give the
answers to yes/no questions. For instance, the question “is n a prime num-
ber?” is associated with the function

isprime(n) = {

1 if nis prime

0 otherwise.

We say that a yes/no question can be effectively decided, if the associated 1/0-
valued function is effectively computable.

To prove mathematically that there are functions which cannot be effec-
tively computed, or problems that cannot effectively decided, it is essential to
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fix a specific model of computation, and show about it that there are functions
it cannot compute or problems it cannot decide. We can show, for instance,
that not every function can be computed by Turing machines, and not ev-
ery problem can be decided by Turing machines. We can then appeal to the
Church-Turing thesis to conclude that not only are Turing machines not pow-
erful enough to compute every function, but no effective procedure can.

The key to proving such negative results is the fact that we can assign
numbers to Turing machines themselves. The easiest way to do this is to enu-
merate them, perhaps by fixing a specific way to write down Turing machines
and their programs, and then listing them in a systematic fashion. Once we
see that this can be done, then the existence of Turing-uncomputable func-
tions follows by simple cardinality considerations: there functions from IN to
N (in fact, even just from N to {0,1}) are non-enumerable, but since we can
enumerate all the Turing machines, the Turing-computable functions are only
denumerable.

We can also define specific functions and problems which we can prove
to be uncomputable and undecidable, respectively. One such problem is the
so-called Halting Problem. Turing machines can be finitely described by list-
ing their instructions. Such a description of a Turing machine, i.e., a Turing
machine program, can of course be used as input to another Turing machine.
So we can consider Turing machines that decide questions about other Tur-
ing machines. One particularly interesting question is this: “Does the given
Turing machine eventually halt when started on input n?” It would be nice if
there were a Turing machine that could decide this question: think of it as a
quality-control Turing machine which ensures that Turing machines don’t get
caught in infinite loops and such. The interestign fact, which Turing proved,
is that there cannot be such a Turing machine. There cannot be a single Turing
machine which, when started on input consisting of a description of a Turing
machine M and some number n, will always halt with either output 1 or 0
according to whether M machine would have halted when started on input n
or not.

Once we have examples of specific undecidable problems we can use them
to show that other problems are undecidable, too. For instance, one celebrated
undecidable problem is the question, “Is the first-order formula ¢ valid?”.
There is no Turing machine which, given as input a first-order formula ¢, is
guaranteed to halt with output 1 or 0 according to whether ¢ is valid or not.
Historically, the question of finding a procedure to effectively solve this prob-
lem was called simply “the” decision problem; and so we say that the decision
problem is unsolvable. Turing and Church proved this result independently
at around the same time, so it is also called the Church-Turing Theorem.
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18.2 Enumerating Turing Machines

We can show that the set of all Turing-machines is enumerable. This follows
from the fact that each Turing machine can be finitely described. The set of
states and the tape vocabulary are finite sets. The transition function is a par-
tial function from Q x Zto Q x X x {L, R, N}, and so likewise can be specified
by listing its values for the finitely many argument pairs for which it is de-
fined. Of course, strictly speaking, the states and vocabulary can be anything;
but the behavior of the Turing machine is independent of which objects serve
as states and vocabulary. So we may assume, for instance, that the states and
vocabulary symbols are natural numbers, or that the states and vocabulary
are all strings of letters and digits.

Suppose we fix a denumerable vocabulary for specifying Turing machines:
op=0v,00=0,00=1,03,...,R L, N, qo, g1, -... Then any Turing machine
can be specified by some finite string of symbols from this alphabet (though
not every finite string of symbols specifies a Turing machine). For instance,
suppose we have a Turing machine M = (Q, X, q, ) where

Q={q0,---,qx} < {90,491, } and
X={v,01,09,...,00} C{oo,01,...}.

We could specify it by the string

Goqs - qu oy ..o >q>S(0h,q0) > .. > S(0h, qn)
where 5(07, q;) is the string 07q;0 (s q;) if 6(c/, q;) is defined, and o] q;- other-
wise.

Theorem 18.1. There are functions from IN to IN which are not Turing computable.

Proof. We know that the set of finite strings of symbols from a denumerable
alphabet is enumerable. This gives us that the set of descriptions of Turing
machines, as a subset of the finite strings from the enumerable vocabulary
{90,91,...,>,01,02,...}, is itself enumerable. Since every Turing computable
function is computed by some (in fact, many) Turing machines, this means
that the set of all Turing computable functions from IN to IN is also enumer-
able.

On the other hand, the set of all functions from IN to IN is not enumerable.
This follows immediately from the fact that not even the set of all functions
of one argument from IN to the set {0,1} is enumerable. If all functions were
computable by some Turing machine we could enumerate the set of all func-
tions. So there are some functions that are not Turing-computable. O

18.3 The Halting Problem

Assume we have fixed some finite descriptions of Turing machines. Using
these, we can enumerate Turing machines via their descriptions, say, ordered
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by the lexicographic ordering. Each Turing machine thus receives an index: its
place in the enumeration M, My, M3, ...of Turing machine descriptions.

We know that there must be non-Turing-computable functions: the set of
Turing machine descriptions—and hence the set of Turing machines—is enu-
merable, but the set of all functions from IN to IN is not. But we can find
specific examples of non-computable function as well. One such function is
the halting function.

Definition 18.2 (Halting function). The halting function h is defined as

0 if machine M, does not halt for input n
he,n) =

1 if machine M, halts for input n

Definition 18.3 (Halting problem). The Halting Problem is the problem of de-
termining (for any m, w) whether the Turing machine M, halts for an input
of n strokes.

We show that / is not Turing-computable by showing that a related func-
tion, s, is not Turing-computable. This proof relies on the fact that anything
that can be computed by a Turing machine can be computed using just two
symbols: 0 and 1, and the fact that two Turing machines can be hooked to-
gether to create a single machine.

Definition 18.4. The function s is defined as

s(e) = 0 if machine M, does not halt for input e
|1 if machine M, halts for inpute

Lemma 18.5. The function s is not Turing computable.

Proof. We suppose, for contradiction, that the function s is Turing-computable.
Then there would be a Turing machine S that computes s. We may assume,
without loss of generality, that when S halts, it does so while scanning the first
square. This machine can be “hooked up” to another machine J, which halts if
it is started on a blank tape (i.e., if it reads 0 in the initial state while scanning
the square to the right of the end-of-tape symbol), and otherwise wanders off
to the right, never halting. S —~ ], the machine created by hooking S to J,
is a Turing machine, so it is M, for some e (i.e., it appears somewhere in the
enumeration). Start M, on an input of e 1s. There are two possibilities: either
M, halts or it does not halt.

1. Suppose M, halts for an input of e 1s. Then s(e) = 1. So S, when started
on e, halts with a single 1 as output on the tape. Then | starts with a 1
on the tape. In that case | does not halt. But M, is the machine S —~ J, so
it should do exactly what S followed by | would do. So M, cannot halt
for an input of e 1’s.
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2. Now suppose M, does not halt for an input of e 1s. Then s(e) = 0, and
S, when started on input e, halts with a blank tape. J, when started on
a blank tape, immediately halts. Again, M, does what S followed by |
would do, so M, must halt for an input of e 1’s.

This shows there cannot be a Turing machine S: s is not Turing computable.
O

Theorem 18.6 (Unsolvability of the Halting Problem). The halting problem is
unsolvable, i.e., the function h is not Turing computable.

Proof. Suppose h were Turing computable, say, by a Turing machine H. We
could use H to build a Turing machine that computes s: First, make a copy of
the input (separated by a blank). Then move back to the beginning, and run
H. We can clearly make a machine that does the former, and if H existed, we
would be able to “hook it up” to such a modified doubling machine to get a
new machine which would determine if M, halts on input e, i.e., computes s.
But we’ve already shown that no such machine can exist. Hence,  is also not
Turing computable. O

18.4 The Decision Problem

We say that first-order logic is decidable iff there is an effective method for
determining whether or not a given sentence is valid. AS it turns out, there
is no such method: the problem of deciding validity of first-order sentences is
unsolvable.

In order to establish this important negative result, we prove that the de-
cision problem cannot be solved by a Turing machine. That is, we show that
there is no Turing machine which, whenever it is started on a tape that con-
tains a first-order sentence, eventually halts and outputs either 1 or 0 depend-
ing on whether the sentence is valid or not. By the Church-Turing thesis, ev-
ery function which is computable is Turing computable. So if if this “validity
function” were effectively computable at all, it would be Turing computable.
If it isn’t Turing computable, then, it also cannot be effectively computable.

Our strategy for proving that the decision problem is unsolvable is to re-
duce the halting problem to it. This means the following: We have proved that
the function h(e, w) that halts with output 1 if the Turing-machine described
by e halts on input w and outputs 0 otherwise, is not Turing-computable. We
will show that if there were a Turing machine that decides validity of first-
order sentences, then there is also Turing machine that computes k. Since h
cannot be computed by a Turing machine, there cannot be a Turing machine
that decides validity either.

The first step in this strategy is to show that for every input w and a Turing
machine M, we can effectively describe a sentence 7 representing M and w
and a sentence « expressing “M eventually halts” such that:
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F T — a iff M halts for input w.
The bulk of our proof will consist in describing these sentences T(M, w) and

a(M, w) and verifying that T(M, w) — a(M, w) is valid iff M halts on input w.

18.5 Representing Turing Machines

In order to represent Turing machines and their behavior by a sentence of
first-order logic, we have to define a suitable language. The language consists
of two parts: predicate symbols for describing configurations of the machine,
and expressions for counting execution steps (“moments”) and positions on
the tape. The latter require an initial moment, o, a “successor” function which
is traditionally written as a postfix /, and an ordering x < y of “before.”

Definition 18.7. Given a Turing machine M = (Q,Z,q0, 5>, the language Ly
consists of:

1. A two-place predicate symbol Q4(x,y) for every state g € Q. Intu-
itively, Q4(7, 1) expresses “after m steps, M is in state g scanning the
nth square.”

2. A two-place predicate symbol S,(x,y) for every symbol o € X. Intu-
itively, S, (7,1) expresses “after m steps, the nth square contains sym-
bol o.”

3. A constant o
4. A one-place function /
5. A two-place predicate <

For each number 7 there is a canonical term 71, the numeral for n, which
represents it in £y;. 0is 0, 1is o/, 2is 0”, and so on. More formally:

0=o0
n+1=mw

The sentences describing the operation of the Turing machine M on input
w = 0;, ...0;, are the following:

1. Axioms describing numbers:

a) A sentence that says that the successor function is injective:
VaVy (X' =y = x=y)
b) A sentence that says that every number is less than its successor:

Vx (x < x)
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c)

d)

A sentence that ensures that < is transitive:
VaVyVz ((x <yAy<z)—x<z)
A sentence that connects < and =:

VxVy (x <y —x #y)

2. Axioms describing the input configuration:

a)

b)

<)

M is in the inital state gg at time 0, scanning square 1:
Qlio (T/ 6)
The first n + 1 squares contain the symbols >, 0; , ..., 0;,:
S$5(0,0) A So (LO)A--- NS, (7,0)
Otherwise, the tape is empty:
Vx (1 < x = Sp(x,0))

3. Axioms describing the transition from one configuration to the next:

For the following, let ¢(x,y) be the conjunction of all sentences of the

form

Vz(((z<xVx<z)ASs(z,y)) = Se(z,y))

where o € X. We use ¢(7, 71) to express “other than at square 7, the tape
after m 4+ 1 steps is the same as after m steps.”

a)

For every instruction é(q;, o) = (g;,0’, R), the sentence:

VaVy ((Qq; (x,y) A Se(x,y)) —
(Qq; (x",y") NSy (x,y") A p(x,)))

This says that if, after y steps, the machine is in state g; scanning
square x which contains symbol o, then after y + 1 steps it is scan-
ning square x + 1, is in state ¢;, square x now contains ¢’, and every
square other than x contains the same symbol as it did after y steps.

For every instruction é(q;, o) = (g;,0”, L), the sentence:

YWy ((Qq (', y) A Se(x',y)) —
(Qq;(x, ¥ ) NS (X', y) N p(x,)))

Take a moment to think about how this works: now we don't start
with “if scanning square x ...” but: “if scanning squarex+1...” A
move to the left means that in the next step the machine is scanning
square x. But the square that is written on is x + 1. We do it this
way since we don’t have subtraction or a predecessor function.
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c) For every instruction §(g;, o) = (q;,0’, N), the sentence:

VaVy ((Qq,(x,¥) A Se(x,y)) =
(Qq;(x, ¥ ) A Se(x,y") A g(x,1)))

Let 7(M, w) be the conjunction of all the above sentences for Turing machine M
and input w

In order to express that M eventually halts, we have to find a sentence that
says “after some number of steps, the transition function will be undefined.”
Let X be the set of all pairs (g,0) such that §(g,0) is undefined. Let a(M,w)
then be the sentence

I3y (\ (Qlx,y) ASe(x,y)))
(q0)eX

If we use a Turing machine with a designated halting state /, it is even
easier: then the sentence a(M, w)

Jx Iy Qu(x,y)

expresses that the machine eventually halts.

18.6 Verifying the Representation

In order to verify that our representation works, we first have to make sure
that if M halts on input w, then (M, w) — a(M, w) is valid. We can do this
simply by proving that T(M, w) implies a description of the configuration of
M for each step of the execution of M on input w. If M halts on input w, then
for some 1, M will be in a halting configuration at step n (and be scanning
square m, for some m). Hence, (M, w) implies Q,(7,7) A S¢ (71, 1) for some g
and o such that §(g, o) is undefined.

Definition 18.8. Let x (M, w, n) be the sentence
Qq(,7) A Sey(0,7) A+ -+ A Sqp (K, 1) AVx (k < x — So(x,7))

where g is the state of M at time #n, M is scanning square m at time n, square i
contains symbol o; at time n for 0 < i < k and k is the right-most non-blank
square of the tape at time m.

Suppose that M does halt for input w. Then there is some time #, state g,
square m, and symbol ¢ such that:

1. At time n the machine is in state g scanning square m on which o ap-
pears.

2. There transition function §(g, ) is undefined.
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X(M, w,n) will be the description of this time and will include the clauses
Qq(m, 1) and S, (71, 7). These clauses together imply a (M, w):

I3y (V (Qlxy) ASe(x,y)))
(qo)eX

since Qy (11, 7) N Sy (11, 1) F V(.0 x (Qq(11,71) A So(11,7), as (¢, 0") € X.

So if M halts for input w, then there is some time n such that x(M, w, n) F
a(M,w)

Since consequence is transitive, it is sufficient to show that for any time n,
(M, w) E x(M,w,n).

Lemma 18.9. For each n, (M, w) E x(M,w,n).

Proof. Inductive basis: If n = 0, then the conjuncts of x(M, w,0) are also con-
juncts of T(M, w), so entailed by it.

Inductive hypothesis: If M has not halted before the nth step, then T(M, w) £
x(M,w,n).

Suppose n > 0 and after n steps, M started on w is in state g4 scanning
square 1.

Suppose that M has not just halted, i.e., it has not halted before the (1 +
1)st step. If T(M, n) is true in a structure 9, the inductive hypothesis tells us
that x (M, w, n) is true in 901 also. In particular, Q, (7, 7) and S, (71, 77) are true
in 9.

Since M does not halt after n steps, there must be an instruction of one of
the following three forms in the program of M:

1. 4(q,0) = {q',¢",R)
2. 6(q,0) = (q',0',L)
3. 6(q,0) =(q',0',N)
We will consider each of these three cases in turn. First, assume that m < k.

1. Suppose there is an instruction of the form (1). By Definition 18.7, (3a),
this means that

Y Vy ((Qq(x,y) A Se(x,y)) —
(Qy (&, ¥ ) NS (x,y') A (x,)))

is a conjunct of T(M,w). This entails the following sentence, through
universal instantiation:

(Qq(,7) A S (1, 7)) — (Qq (', 1) A S (11, 7') A (71, 70) ).
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This in turn entails,
Qq (i, ') N Sei (71,7 ) A
Soy (0,7 ) A+ A Sg (k7)) A
Vx (k < x — Sp(x,7'))

The first line comes directly from the consequent of the preceding con-
ditional. Each conjunct in the middle line—which excludes S, (7, 77’ )—
follows from the corresponding conjunct in x (M, w,n) together with
¢(m, 7). The last line follows from the corresponding conjunct in C(M, w, n),
M < x — k< x,and ¢(m, 7). Together, this justis x(M, w,n + 1).

2. Suppose there is an instruction of the form (2). Then, by Definition 18.7,
(3b),

VxVy ((Qq(x,y) A Se(x,y)) —
(Q(x,y') A S (x, ') A 9lx,)))
is a conjunct of T(M, w), which entails the following sentence:
(Qq(', 1) A So(m', 7)) = (Qq (1, 7') A S (', 7') A (1, 7)),
which in turn implies
Qq (i, 7') N Sy (7, 7') N\
Sey(0,7') -+ A S (k7)) A
Vx (k < x — So(x,7'))
as before. But this justis x(M, w,n +1).

3. Case (3) is left as an exercise.

If m > kand ¢’ # 0, the last instruction has written a non-blank symbol to the
right of the right-most non-blank square k at time #n. In this case, x(M,w,n+
1) has the form

Qy (', ') A

Vx (m < x — So(x,7'))

For k < i < m, So(i,7) follows from the conjunct Vx (k < x = So(x,7)) of
X(M,w,n) and the fact that T(M,w) F k < iif k < i. So(i,7’) then follows
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from A(m,n) and i < 7. From Vx (k < x — So(x,7)) we get Vx (1 < x —
So(x,7)) since k < 7 and < is transitive. From that plus ¢(71,7) we get
Vx (m < x — Sp(x,7’)). Similarly for cases (2) and (3).

We have shown that for any n, T(M, w) E x(M, w,n). O

Lemma 18.10. If M halts on input w, then T(M,w) — a(M, w) is valid.

Proof. By Lemma 18.9, we know that, for any time 7, the description x (M, w, n)
of the configuration of M at time # is a consequence of 7(M, w). Suppose M
halts after k steps. It will be scanning square m, say. Then x(M,w,k) con-
tains as conjuncts both Q, (77, k) and Sy (77, k) with 6(g,0) undefined. Thus,
X(M,w, k) E a(M,w). But then T(M, w) F (M, w) and therefore (M, w) —
a(M,w) is valid. O

To complete the verification of our claim, we also have to establish the
reverse direction: if T(M,w) — a(M,w) is valid, then M does in fact halt
when started on input m.

Lemma 18.11. IfF ©(M,w) — a(M,w), then M halts on input w.

Proof. Consider the £-structure 9t with domain IN which interprets o as 0,
" as the successor function, and < as the less-than relation, and the predicates
Qg and S, as follows:

started on w, after n steps,
QY ={{mmn): " o ep }
M is in state g scanning square m
started on w, after n steps, )

m _ )
S = {{m,n): square m of M contains symbol o

In other words, we construct the structure 9t so that it describes what M
started on input w actually does, step by step. Clearly, M = t(M,w). If
E1(M,w) — a(M,w), then also M = a(M,w), i.e.,

MEIxI(\ (Qx,y) ASe(x,y))).
(qo)eX

As |M| = N, there must be m, n € N so that M |= Q, (1, 1) A Sy (m, 1) for
some g and ¢ such that (g, o) is undefined. By the definition of 91, this means
that M started on input w after n steps is in state g and reading symbol o, and
the transition function is undefined, i.e., M has halted. O]

18.7 The Decision Problem is Unsolvable

Theorem 18.12. The decision problem is unsolvable.
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Proof. Suppose the decision problem were solvable, i.e., suppose there were
a Turing machine D of the following sort. Whenever D is started on a tape
that contains a sentence ¢ of first-order logic as input, D eventually halts,
and outputs 1 iff ¢ is valid and 0 otherwise. Then we could solve the halt-
ing problem as follows. We construct a Turing machine E that, given as input
the number ¢ of Turing machine M, and input w, computes the correspond-
ing sentence T(M,, w) — «(M,, w) and halts, scanning the leftmost square on
the tape. The machine E —~ D would then, given input ¢ and w, first com-
pute T(M,, w) — a(M,, w) and then run the decision problem machine D on
that input. D halts with output 1 iff T(M,, w) — a(M,, w) is valid and out-
puts 0 otherwise. By Lemma 18.11 and Lemma 18.10, 7(M,, w) — a(M,, w)
is valid iff M, halts on input w. Thus, E —~ D, given input ¢ and w halts
with output 1 iff M, halts on input w and halts with output 0 otherwise. In
other words, E —~ D would solve the halting problem. But we know, by The-
orem 18.6, that no such Turing machine can exist. O

Problems

Problem 18.1. The Three Halting (3-Halt) problem is the problem of giving a
decision procedure to determine whether or not an arbitrarily chosen Turing
Machine halts for an input of three strokes on an otherwise blank tape. Prove
that the 3-Halt problem is unsolvable.

Problem 18.2. Show that if the halting problem is solvable for Turing machine
and input pairs M, and n where e # n, then it is also solvable for the cases
where e = n.

Problem 18.3. We proved that the halting problem is unsolvable if the input
is a number ¢, which identifies a Turing machine M, via an enumaration of all
Turing machines. What if we allow the description of Turing machines from
section 18.2 directly as input? (This would require a larger alphabet of course.)
Can there be a Turing machine which decides the halting problem but takes
as input descriptions of Turing machines rather than indices? Explain why or
why not.

Problem 18.4. Complete case (3) of the proof of Lemma 18.9.
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Material in this part covers the incompleteness theorems. It depends
on material in the parts on first-order logic (esp., the proof system), the
material on recursive functions (in the computability part). It is based on
Jeremy Avigad’s notes with revisions by Richard Zach.
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Chapter 19

Arithmetization of Syntax

19.1 Introduction

This introduction should be expanded to include more motivation (is-
sue #67).

In order to connect computability and logic, we need a way to talk about the
objects of logic (symbols, terms, formulas, derivations), operations on them,
and their properties and relations, in a way amenable to computational treat-
ment. We can do this directly, by considering computable functions and re-
lations on symbols, sequences of symbols, and other objects built from them.
Since the objects of logical syntax are all finite and built from an enumerable
sets of symbols, this is possible for some models of computation. But other
models of computation are restricted to numbers, their relations and func-
tions. Moreover, ultimately we also want to deal with syntax in certain theo-
ries, specifically, in theories formulated in the language of arithmetic. In these
cases it is necessary to arithmetize syntax, i.e., to represent syntactic objects,
operations, and relations as numbers, arithmetical functions, and arithmetical
relations, respectively. This is done by assigning numbers to symbols as their
“codes.” Since we can deal with sequences of numbers purely arithmetically
by the powers-of-primes coding, we can extend this coding of individual sym-
bols to coding of sequences of symbols (such as terms and formulas) and also
arrangements of such sequences (such as derivations). This extended coding
is called “Godel numbering.” Because the sequences of interest (terms, for-
mulas, derivations) are inductively defined, and the operations and relations
on them are computable, the corresponding sets, operations, and relations are
in fact all computable, and almost all of them are in fact primitive recursive.
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19.2 Coding Symbols
The basic language L of first order logic makes use of the symbols
- \// /\/ _>/ v/ 3/ = (/ )

together with enumerable sets of variables and constant symbols, and enu-
merable sets of function symbols and predicate symbols of arbitrary arity. We
can assign codes to each of these symbols in such a way that every symbol is
assigned a unique number as its code, and no two different symbols are as-
signed the same number. We know that this is possible since the set of all
symbols is enumerable and so there is a bijection between it and the set of nat-
ural numbers. But we want to make sure that we can recover the symbol (as
well as some information about it, e.g., the arity of a function symbol) from
its code in a computable way. There are many possible ways of doing this,
of course. Here is one such way, which uses primitive recursive functions.
(Recall that (ny, ..., ng) is the number coding the sequence of numbers ny, ...,

nk.)

Definition 19.1. If s is a symbol of L, let the symbol code c(s) be defined as
follows:

1. If s is among the logical symbols, c(s) is given by the following table:

- Y A — N 3 = ( ) ,
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (0,8) (0,9)

2. If s is the i-th variable x;, then c(s) = (1,1).

3. If s is the i-th constant symbol ¢/, then c(s) = (2, ).

4. If s is the i-th n-ary function symbol £, then c(s) = (3,1, 1).

5. If s is the i-th n-ary predicate symbol P/, then c(s) = (4,n,1).
Proposition 19.2. The following relations are primitive recursive:

1. Fn(x,n) iff x is the code of £ for some i, i.e., x is the code of an n-ary function
symbol.

2. Pred(x,n) iff x is the code of P* for some i or x is the code of = and n = 2,
i.e., x is the code of an n-ary predicate symbol.

Definition 19.3. If sy, . . ., s, is a sequence of symbols, its Godel number is (c(so), . . .
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19.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up induc-
tively from constants and variables according to the formation rules for terms.
Since sequences of symbols can be coded as numbers—using a coding scheme
for the symbols plus a way to code sequences of numbers—assigning Godel
numbers to terms is not difficult. The challenge is rather to show that the
property a number has if it is the Godel number of a correctly formed term is
computable, or in fact primitive recursive.

Proposition 19.4. The relation Term(x) which holds iff x is the Gidel number of a
term, is primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence sy, ..., sx_1 = s
of terms which records how the term s was formed from constant symbols
and variables according to the formation rules for terms. To express that such
a putative formation sequence follows the formation rules it has to be the case
that, for each i < k, either

1. s;is a variable vj, or
2. s; is a constant symbol ¢;, or

3. s; is built from # terms ¢4, ..., t; occurring prior to place i using an n-
place function symbol 7;-".

To show that the corresponding relation on Gédel numbers is primitive re-
cursive, we have to express this condition primitive recursively, i.e., using
primitive recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s, ..., sy_1, i.e, y =
(#(s0), ..., #(sx)). It codes a formation sequence for the term with Gédel num-
ber x iff for all i < k:

1. there is a j such that (y); = #(v;), or
2. there is a j such that (y); = #(¢;), or

3. there is an n and a number z = (z3,...,z,) such that each z; is equal to
some (y)y fori’ < iand

(y)i = #(f"() ~ flatten(z) ~ #()),

and moreover (y)x_1 = x. The function flatten(z) turns the sequence (#(t1), ...

into #(t4,...,t,) and is primitive recursive.

The indices j, n, the Godel numbers z; of the terms f;, and the code z of the
sequence (z1,...,2n), in (3) are all less than y. We can replace k above with
len(y). Hence we can express “y is the code of a formation sequence of the
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term with Godel number x” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a primitive recursive
bound on y. But if x is the Godel number of a term, it must have a forma-
tion sequence with at most len(x) terms (since every term in the formation
sequence of s must start at some place in s, and no two subterms can start at
the same place). The Godel number of each subterm of s is of course < x.
Hence, there always is a formation sequence with code < x'"(*)., O

19.4 Coding Formulas

Proposition 19.5. The relation Atom(x) which holds iff x is the Godel number of
an atomic formula, is primitive recursive.

Proof. The number x is the Godel number of an atomic formula iff one of the
following holds:

1. There are n, j < x, and z < x such that for each i < n, Term((z);) and

x = #(PI'() ~ flatten(z) ~ #()).

2. There are z1,2, < x such that Term(z;), Term(z,), and

x =1z —~#(=) ~ 5.

3. x =#(L1).
4. x =#(T).
O

Proposition 19.6. The relation Frm(x) which holds iff x is the Godel number of
a formula is primitive recursive.

Proof. A sequence of symbols s is a formula iff there is formation sequence sy,
..., Sx_1 = s of formula which records how s was formed from atomic formu-
las according to the formation rules. The code for each s; (and indeed of the
code of the sequence (s, . ..,sk_1) is less than the code x of s. O

19.5 Substitution

Proposition 19.7. There is a primitive recursive function Subst(x,y, z) with the
property that
Subst(#(¢p), #(t), #(x)) = #(¢[t/x])
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Proof. Let us suppose that the predicate FreeOcc(x, z, i), which holds if the i-
th symbols of the formula with Godel number x is a free occurrence of the
variable with Godel number z, is primitive recursive. We can then define a
function Subst’ by primitive recursion as follows:

Subst' (0, x,v,z) = @
Y

Subst'(i 1 1, 1,y,2) Subst' (i, x, v, z/) - y if Free(?cc(x, z,i+1)
append (Subst' (i, x,y,z),(x);+1) otherwise.
Subst(x,y,z) can now be defined as Subst’ (len(x), x,y, z). O

19.6 Derivations in LK

In order to arithmetize derivations, we must represent derivations as num-
bers. Since derivations are trees of sequents where each inference carries also
a label, a recursive representation is the most obvious approach: we represent
a derivation as a tuple, the components of which are the end-sequent, the la-
bel, and the representations of the sub-derivations leading to the premises of
the last inference.

Definition 19.8. If I is a finite set of sentences, I' = {¢1,..., ¢n }, then #(I') =

#(@1), ..., #(on))-
If I' = Ais a sequent, then a Godel number of I' = Ais

#(T = 4) = (1), #(4))
If 7 is a derivation in LK, then #(77) is
1. (0,#(I' = A)) if 7 consists only of the initial sequent I' = A.

2. (1,#(I' = A),k,#(7")) if  ends in an inference with one premise, k is
given by the following table according to which rule was used in the last
inference, and 71’ is the immediate subproof ending in the premise of the
last inference.

Rule: Contr —left —right Aleft Vright — right
k: 1 2 3 4 5 6

Rule: Vleft Vright dleft Jright =
k: 7 8 9 10 11

3. (2,#(I' = A),k,#(7c'),#(7r"")) if w ends in an inference with two premises,
k is given by the following table according to which rule was used in the
last inference, and 7/, 77"’ are the immediate subproof ending in the left
and right premise of the last inference, respectively.

Rule: Cut Aright Vleft — left
k: 1 2 3 4
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Having settled on a representation of derivations, we must also show that
we can manipulate such derivations primite recursively, and express their es-
sential properties and relations so. Some operations are simple: e.g., given a
Godel number d of a derivation, (s); gives us the Godel number of its end-
sequent. Some are much harder. We'll at least sketch how to do this. The
goal is to show that the relation “7r is a derivation of ¢ from I'” is primitive
recursive on the Godel numbers of 7r and ¢.

Proposition 19.9. The following relations are primitive recursive:

1. pel.

2. I CA

3. I' = Ais an initial sequent.

4. T = Afollows from I'" = A (and T"" = A") by a rule of LK.

5. 7t is a correct LK-derivation.

Proof. We have to show that the corresponding relations between Gédel num-
bers of formulas, sequences of Godel numbers of formulas (which code sets
of formulas), and Godel numbers of sequents, are primitive recursive.

1. ¢ € I iff #(¢) occurs in the sequence #(I'), i.e, IsIn(x,g) < Ji <
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len(g) (g); = x. We'll abbreviate this as x € g.

I' C A iff every element of #(I') is also an an element of #(A), i.e.,
SubSet(g,d) < Vi < len(g) (g); € d. We'll abbreviate this as g C d.

I' = Ais an initial sequent if either there is a sentence ¢ such that I' => A
is ¢ = @, or thereis a term ¢ such that ' = Ais @ = t = t. In terms of
Godel numbers,

InitSeq(s) <3dx < s (Sent(x) As = ((x), (x))) V
Jt < s (Term(t) As = (0,t ~#(=) —~t)).

Here we have to show that for each rule of inference R the relation
FollowsByyp (s, s") which holds if s and s” are the Godel numbers of con-
clusion and premise of a correct application of R is primitive recursive.
If R has two premises, FollowsBy of course has three arguments.

For instance, I' = A follows correctly from I'" = A’ by Jright iff I' =
I'" and there is a formula ¢, a variable x and a closed term t such that
@[t/x] € A and Ix ¢ € A, for every ¢ € A, either p = Fxgporp € A,
and forevery ¢ € A, p = ¢[t/x] or € A. We just have to translate this
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into Godel numbers. If s = #(I' = A) then (s)o = #(I') and (s)1 = #(A).
So:

FollowsBy 5,;0n(5,5") < (s)o € (s)o A (s)0 € (s)o A
3f < s3x < s3It < (Frm(f) A Var(x) A Term(t) A
Subst(f,t,x) € ()1 A#(3) ~x ~ f € (s)1 A
Vi <len((s)1) (((s)1)i =#(3) ~x ~ fV ((s)1)i € (s)) A
Vi <len((s")1) (((s)1)i = Subst(f,t,x) Vv ((s")1)i € (s)1))

The individual lines express, respectively, “I' C I AT” C I',” “there is
a formula with Godel number f, a variable with Gédel number x, and a
term with Godel number t,” “[t/x] € A AN3xp € A" “forall p € A,
either p = Ixporp € A,” “forall p € A, either p = ¢[t/x] or P € A.
Note that in the last two lines, we quantify over the elements ¢ of A and
A’ not directly, but via their place i in the Godel numbers of A and A'.
(Remember that #(A) is the number of a sequence of Godel numbers of
formulas in A.)

5. We first define a helper relation hDeriv (s, ) which holds if s codes a cor-
rect derivation at least to n inferences up from the end sequent. If n = 0
we let the relation be satisfied by default. Otherwise, hDeriv(s, n + 1) iff
either s consists just of an initial sequent, or it ends in a correct inference
and the codes of the immediate subderivations satisfy hDeriv (s, n).

hDeriv(s,0) < 1
hDeriv(s,n+ 1) < ((s)o = 0 A InitialSeq((s)1)) V
((s)o=1A
((s)2 = 1 A FollowsBy o ((5)1, ((5)3)1)) V

((s)2 = 11 A FollowsBy_((s)1, ((s)3)1)) A
hDeriv((s)3, n)) V

((s)o=2A
((s)2 = 1 AFollowsBy,((s)1, ((s)3)1), ((s)4)1)) V

((s)2 = 4 AFollowsBy _,je((s)1,((s)3)1), ((5)4)1)) A
hDeriv((s)3,n) AhDeriv((s)s, 1))

This is a primitive recursive definition. If the number 7 is large enough,
e.g., larger than the maximum number of inferences between an initial
sequent and the end sequent in s, it holds of s iff s is the Godel number
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of a correct derivation. The number s itself is larger than that maximum
number of inferences. So we can now define Deriv(s) by hDeriv(s, s).

O

Proposition 19.10. Suppose I is a primitive recursive set of sentences. Then the
relation Prr(x,y) expressing “x is the code of a derivation 7 of Iy = ¢ for some
finite Iy C I and x is the Godel number of ¢” is primitive recursive.

Proof. Suppose “y € I'” is given by the primitive recursive predicate Rr(y).
We have to show that Prr(x,y) which holds iff y is the Godel number of a
sentence ¢ and x is the code of an LK-derivation with end sequent I = ¢ is
primitive recursive.

By the previous proposition, the property Deriv() which holds iff x is the
code of a correct derivation 77 in LK is primitive recursive. If x is such a code,
then (x); is the code of the end sequent of 77, and so ((x)1)o is the code of the
left side of the end sequent and ((x)1); the right side. So we can express “the
right side of the end sequent of 77 is ¢” as len(((x)1)1) = 1A (((x)1)1)0 = x.
The left side of the end sequent of 7t is of course automatically finite, we just
have to express that every sentence in it is in I". Thus we can define Pry(x,y)
by

Prr(x,y) < Sent(y) A Deriv(x) A
Vi <len(((x)1)o) (((x)1)o)i € T A
len(((x)1)1) = 1A (((x)1)1)0 = x

19.7 Derivations in Natural Deduction

In order to arithmetize derivations, we must represent derivations as num-
bers. Since derivations are trees of formula where each inference carries one or
two labels, a recursive representation is the most obvious approach: we repre-
sent a derivation as a tuple, the components of which are the end-formula, the
labels, and the representations of the sub-derivations leading to the premises
of the last inference.

Definition 19.11. If I' is a finite set of sentences, I' = {¢1,..., ¢}, then#(I') =
{#(91), -, #(gn))-

If 6 is a derivation in natural deduction, then #(§) is

1. (0,#(¢),n) if 4 consists only of the initial formula ¢. The number 7 is 0
if it is an undischarged assumption, and the numerical label otherwise.
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2. (1,#(¢),n,k,#(8')) if § ends in an inference with one premise, k is given
by the following table according to which rule was used in the last in-
ference, and ¢’ is the immediate subproof ending in the premise of the
last inference. 7 is the label of the inference, or 0 if the inference does not
discharge any assumptions.

Rule: L1Elim —Intro -Elim AElim VIntro — Intro
k: 1 2 3 4 5 6

Rule: VIntro VElIm dIntro = Intro
k: 7 8 9 10

3. (2,#(¢),n,k,#(8'),#(8")) if § ends in an inference with two premises, k
is given by the following table according to which rule was used in the
last inference, and &', 6" are the immediate subderivations ending in the
left and right premise of the last inference, respectively. n is the label of
the inference, or 0 if the inference does not discharge any assumptions.

Rule: LlIntro Alntro — Elim
k: 1 2 3

4. (3,#(¢),n,#(5'),#(8"),#(8")) if § ends in an VElim inference. &', 6", 5"
are the immediate subderivations ending in the left, middle, and right
premise of the last inference, respectively, and 7 is the label of the infer-
ence.

Having settled on a representation of derivations, we must also show that
we can manipulate such derivations primite recursively, and express their es-
sential properties and relations so. Some operations are simple: e.g., given a
Godel number d of a derivation, (d); gives us the Godel number of its end-
formula. Some are much harder. We'll at least sketch how to do this. The
goal is to show that the relation “¢ is a derivation of ¢ from I'” is primitive
recursive on the Godel numbers of § and ¢.

Proposition 19.12. The following relations are primitive recursive:
1. ¢ is an initial formula in § with label n.
2. @ is an undischarged assumption of 6.

3. An inference with conclusion ¢ and upper derivations & (and &', 6") labelled n
is correct.

4. 6 is a correct natural deduction derivation.

Proof. We have to show that the corresponding relations between Gédel num-
bers of formulas, sequences of Godel numbers of formulas (which code sets
of formulas), and Godel numbers of derivations are primitive recursive.
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1. For this we need a helper relation hinitFrm(x, d, n,i) which holds if the
formula ¢ with Godel number x occurs as an initial formula with label n
in the derivation with Godel number d within i inferences up from the
end-formula.

hInitFrm(x,d,n,0) < 1
hInitFrm(x,d,n,i +1) <

d=(0,#(¢),n) Vv

((d)o = 1 AhInitFrm(x, (d)4,n,i)) V

((d)o =2 A (hInitFrm(x, (d)4,n,i) V
hInitFrm(x, (d)s,n,i))) V

((d)o = 3 A (hInitFrm(x, (d)3, n,i) V
hInitFrm(x, (d)y,n,1)) V hInitFrm(x, (d)3, 1, 1))

If the number i is large enough, e.g., larger than the maximum number of
inferences between an initial formula and the end-formula of J, it holds
of x, d, n, and i iff ¢ is an initial formula in ¢ labelled n. The number
d itself is larger than that maximum number of inferences. So we can
define InitFrm(x, d, n) as InitFrm(x, d, n,d).

2. For this we proceed similarly: Define the helper relation hOpenAssum(x, d, 1, )
as

hOpenAssum(x,d, n,0) < 1
hOpenAssum(x,d,n,i+1) <
d=(0,#(¢),n) Vv
((d)2 # n A
((d)o = 1 ANhOpenAssum(x, (d)y4,n,i)) V
((d)o = 2 A (hOpenAssum(x, (d)g,n,i) V
hOpenAssum(x, (d)s,n,i))) V
((d)o = 3 A (hOpenAssum(x, (d)3, n,i) V
hOpenAssum(x, (d)a,1,i)) V hOpenAssum(x, (d)3,n,1))
Here the main difference is that an assumption is undischarged not only
if it is undischarged in one of the immediate subderivations, but it must
also not be discharged by the last inference, i.e., the label must be differ-

ent from the label of the inference, (d)3. We can then define OpenAssum(x, d)
as Vn < dInitFrm(x,d, n,d).

3. Here we have to show that for each rule of inference R the relation
FollowsByy (x,d,n) which holds if x is the Godel number of the con-
clusion and d is the Godel number of a derivation ending in the premise
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of a correct application of R with label # is primitive recursive, and sim-
ilarly for rules with two or three premises.

The simplest case is that of the = Intro rule. Here there is no premise,
ie, d = 0. However, ¢ must be of the form ¢t = ¢, for a closed term ¢.
Here, a primitive recursive definition is

Jt <x(Term(t) Ax =t ~#(=) ~t) Ad =0).

For a more complicated example, FollowsBy_, ;... (x,d,n) holds iff ¢ is
of the form ¢ — yx, the end-formula of J is ), and any initial formula in &
labelled 7 is of the form 1. We can express this primitive recursively by

Jy<xFTz<x(x=#() ~y~#(—=) ~z~#))AN(d)1 =zA
Vu < d((Sent(u) A InitFrm(u,d, n)) — u =y)

For another example, consider JIntro. Here, ¢ is the conclusion of a
correct inference with one upper derivation iff there is a formula ¢, a
closed term t and a variable x such that ¢[t/x] is the end-formula of
the upper derivation and 3x 1 is the conclusion ¢, i.e., the formula with
Godel number x.

FollowsBy=y, .o (X, d, 1) <
Jdy < x3v < x3t < d(Frm(y) A Term(t) A Var(v) A
Subst(y,t,v) = (d)1 A#(3) ~v ~z=x)

4. We first define a helper relation hDeriv(d, i) which holds if d codes a cor-
rect derivation at least to i inferences up from the end sequent. hDeriv(d, 0)
holds always. Otherwise, hDeriv(d, i + 1) iff either d just codes an initial
formula or d it ends in a correct inference with label # and the codes of
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the immediate sub-derivations satisfy hDeriv(d’, ).

hDeriv(d,0) < 1
hDeriv(d,i+1) &
Ix < d3In < d(Frm(x) Ad = (0,x,n)) V
(d)o=1A
((s)3 = 1 AFollowsBy | gpi ((d)1, (d)4, (d)2) V

((s)3 = 10 A FollowsBy_ ... ((d)1, ()4, (d)2)) A
nDeriv((d)4,1)) V

((s)o=2A
((s)3 = 1 A FollowsBy | 1 ((d)1, (d)4, (d)5, (d)2)) V

((s)3 = 3 A FollowsBy gy, ((d)1, (d)a, (d)s, (d)2)) A
hDeriv((d)4,i) A hDeriv((d)s,)) V

((s)o=3A
FollowsBy, g, ((d)1, (d)3, (d)4, (d)5, (d)2) A
hDeriv((d)3,i) AhDeriv((d)s,i)) AhDeriv((d)s, i)

This is a primitive recursive definition. Again we can define Deriv(d) as
hDeriv(d, d).

O

Proposition 19.13. Suppose I' is a primitive recursive set of sentences. Then the
relation Prr(x,y) expressing “x is the code of a derivation § of ¢ from undischarged
assumptions in I' and y is the Godel number of ¢” is primitive recursive.

Proof. Suppose “y € I'” is given by the primitive recursive predicate Rr(y).
We have to show that Prr(x,y) which holds iff y is the Godel number of a sen-
tence ¢ and x is the code of a natural deduction derivation with end formula
¢ and all undischarged assumptions in I" is primitive recursive.

By the previous proposition, the property Deriv(x) which holds iff x is the
code of a correct derivation J in natural deduction is primitive recursive. If
x is such a code, then (x); is the code of the end formula of . Thus we can
define Prr(x,y) by

Prr(x,y) < Sent(y) A Deriv(x) A (x); =y A
Vz < x((Sent(z) A OpenAssum(z,x)) — Rr(z))

O
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19.7. DERIVATIONS IN NATURAL DEDUCTION

Problems

Problem 19.1. Show that the relation FreeOcc(x, z,7), which holds if the i-
th symbols of the formula with Godel number x is a free occurrence of the
variable with Godel number z, is primitive recursive.

Problem 19.2. Show that FreeFor(x, y, z), which holds iff the term with Godel
number y is free for the variable with Godel number z in the formula with
Godel number x, is primitive recursive.

Problem 19.3. Define the following relations as in Proposition 19.9:
1. FollowsByAright (s,¢',¢"),
2. FollowsBy_(s,s’),
3. FollowsByyyion (s, s').-

Problem 19.4. Define the following relations as in Proposition 19.12:
1. FollowsBy g, (x,d’,d",n),
2. FollowsBy_g.(x,d,d’',n),
3. FollowsBy, gy, (x,d,d",d", n),

4. FollowsBy ;... (x,d,n).
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Chapter 20

Representability in Q

20.1 Introduction

We will describe a very minimal such theory called “Q” (or, sometimes, “Robin-
son’s Q,” after Raphael Robinson). We will say what it means for a function
to be representable in Q, and then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we
will also use it to show that the set {¢ : Q ¢} is not decidable, by reducing
the halting problem to it. By the time we are done, we will have proved much
stronger things than this.

The language of Q is the language of arithmetic; Q consists of the fol-
lowing axioms (to be used in conjunction with the other axioms and rules of
first-order logic with identity predicate):

1. VaVyx' =y —x=y

2. Vx0 #x'

3. Vxx #0— Jyx =y

4. Vx(x+0)=x

5. VxVy(x+y) =(x+y)

6. Vx (x x0)=0

7. ¥xVy (x xy') = ((x xy) + x)
8. VaVyx <y« 3Jz(z +x) =y
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For each natural number 7, define the numeral 7 to be the term 0"+ where
there are n tick marks in all.

As a theory of arithmetic, Q is extremely weak; for example, you can’t even
prove very simple facts like Vx x # x’ or VxVy (x +y) = (y + x). But we will
see that much of the reason that Q is so interesting is because it is so weak, in
fact, just barely strong enough for the incompleteness theorem to hold; and
also because it has a finite set of axioms.

A stronger theory than Q called Peano arithmetic PA, is obtained by adding
a schema of induction to Q:

(@(0) AVx (p(x) = @(x'))) = Vx p(x)

where ¢(x) is any formula, possibly with free variables other than x. Using
induction, one can do much better; in fact, it takes a good deal of work to find
“natural” statements about the natural numbers that can’t be proved in Peano
arithmetic!

Definition 20.1. A function f(xo, ..., x;) from the natural numbers to the nat-
ural numbers is said to be representable in Q if there is a formula ¢¢(x, . . ., X, y)
such that whenever f(ny,...,n;) = m, Q proves

L. @g(fio, ..., fig, 1)
2. Yy (@f(fio, - -, fix, y) — 1 =y).

There are other ways of stating the definition; for example, we could equiv-
alently require that Q proves Vy (¢¢(7io, - .., fix, y) <> 1 = y).

Theorem 20.2. A function is representable in Q if and only if it is computable.

There are two directions to proving the theorem. One of them is fairly
straightforward once arithmetization of syntax is in place. The other direction
requires more work.

20.2 Functions Representable in Q are Computable

Lemma 20.3. Every function that is representable in Q is computable.

Proof. All we need to know is that we can code terms, formulas, and proofs in
such a way that the relation “d is a proof of ¢ in the theory Q” is computable,
as well as the function SubNumeral(¢, 1, v) which returns (a numerical code
of) the result of substituting the numeral corresponding to n for the variable
(coded by) v in the formula (coded by) ¢. Assuming this, suppose the function
f is represented by ¢¢(xo, . .., xk,y). Then the algorithm for computing f is as
follows: on input ny, . .., 1, search for a number m and a proof of the formula
Q f(ﬁo, ..., Tig, m); when you find one, output m. In other words,

f(ng,...,ng) = (us(“(s)o is a proof of ¢(fiy, . .., 7, (s)1) in Q”))1.
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This completes the proof, modulo the (involved but routine) details of coding
and defining the function and relation above. O
20.3 Computable Functions are Representable in Q

Lemma 20.4. Every computable function is representable in Q.

1. We will define a set of (total) functions, C.

2. We will show that C is the set of computable functions, i.e. our definition
provides another characterization of computability.

3. Then we will show that every function in C can be represented in Q.

20.4 The Functions C
Let C be the smallest set of functions containing

1. 0,

2. successor,

3. addition,

4. multiplication,

5. projections, and

6. the characteristic function for equality, x—;
and closed under

1. composition, and

2. unbounded search, applied to regular functions.
Remember this last restriction means simply that you can only use the y op-
eration when the result is total. Compare this to the definition of the general
recursive functions: here we have added plus, times, and x—, but we have
dropped primitive recursion.

Clearly everything in C is recursive, since plus, times, and x— are. We will
show that the converse is also true; this amounts to saying that with the other

stuff in C we can carry out primitive recursion.
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20.5 The Beta Function Lemma

In order to show that C can carry out primitive recursion, we need to develop
functions that handle sequences. (If we had exponentiation as well, our task
would be easier.) When we had primitive recursion, we could define things
like the “nth prime,” and pick a fairly straightforward coding. But here we do
not have primitive recursion, so we need to be more clever.

Lemma 20.5. There is a function (d, i) in C such that for every sequence ay, ..., a,
there is a number d, such that for every i less than or equal to n, B(d, i) = a;.

Think of d as coding the sequence (ay, ..., a,), and B(d, i) returning the ith
element. The lemma is fairly minimal; it doesn’t say we can concatenate se-
quences or append elements with functions in C, or even that we can compute
d from ay, . .., a, using functions in C. All it says is that there is a “decoding”
function such that every sequence is “coded.”

The use of the notation B is Godel’s. To repeat, the hard part of proving the
lemma is defining a suitable § using the seemingly restricted resources in the
definition of C. There are various ways to prove this lemma, but one of the
cleanest is still Godel’s original method, which used a number-theoretic fact
called the Chinese Remainder theorem.

Definition 20.6. Two natural numbers a and b are relatively prime if their great-
est common divisor is 1; in other words, they have no other divisors in com-
mon.

Definition 20.7. 4 = b mod ¢ means ¢ | (a — b), i.e. a and b have the same
remainder when divided by c.

Here is the Chinese Remainder theorem:

Theorem 20.8. Suppose xy, ..., x, are (pairwise) relatively prime. Let yo, ..., Y, be
any numbers. Then there is a number z such that

z = yp mod xg
z = y; modx;
z = yp mod xy,.

Here is how we will use the Chinese Remainder theorem: if xg, ..., x, are
bigger than yy, ..., y, respectively, then we can take z to code the sequence
(Yo, - - -, Yn)- To recover y;, we need only divide z by x; and take the remainder.
To use this coding, we will need to find suitable values for xy, ..., x;.

A couple of observations will help us in this regard. Given vy, ..., yu, let

j = maX(]’l,yO,. . ,yn) + 1/
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and let
Xg = 1+j!
X = 1+2-§!
X = 1+3-)!
Xy = 1+m+1)-j!

Then two things are true:
1. xq, ..., x, are relatively prime.
2. For each i, y; < x;.

To see that clause 1 is true, note that if p is a prime number and p | x; and
p| x thenp | 14+ (i+1)j!and p | 14 (k+ 1)j!. But then p divides their
difference,
I+ G+ D) = 1+ (k+1)jH) = (i = k)jt.

Since p divides 1+ (14 1)j!, it can’t divide j! as well (otherwise, the first divi-
sion would leave a remainder of 1). So p divides i — k. But |i — k| is at most 1,
and we have chosen j > #, so this implies that p | j!, again a contradiction. So
there is no prime number dividing both x; and x;. Clause 2 is easy: we have
yi <j<jl<ux.

Now let us prove the B function lemma. Remember that C is the small-
est set containing 0, successor, plus, times, x—, projections, and closed under
composition and y applied to regular functions. As usual, say a relation is
in C if its characteristic function is. As before we can show that the relations
in C are closed under boolean combinations and bounded quantification; for
example:

1. not(x) = x=(x,0)
2. ux <zR(x,y) = pux (R(x,y) Vx =z)
3. dx <zR(x,y) & R(ux <z R(x,y),y)
We can then show that all of the following are in C:
1. The pairing function, J(x,y) = 5[(x +y)(x +y +1)] + x

2. Projections
K(z) =px <q Iy <z[z=](xy)])
and
L(z) =py <q (3x < z[z=J(x,y)]).

3. x<y
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4. x|y

5. The function rem(x, y) which returns the remainder when y is divided
by x

Now define
B*(do,dy,i) = rem(1+ (i + 1)dq,do)

and
B(d,i) = p*(K(d),L(d),i).

This is the function we need. Given ay, .. ., a,, as above, let
j=max(n,aq,...,a,)+1,

and letd; = j!. By the observations above, we know that1+4-d;,1+2dy,...,1+
(n+1)d; are relatively prime and all are bigger than ay, . . ., a,. By the Chinese
Remainder theorem there is a value dy such that for each i,

do=a; mod (1+ (i+1)dy)
and so (because d; is greater than a;),
a; = rem(1 + (i +1)dy, dp).
Letd = J(dy,dq). Then for each i from 0 to n, we have

pld,i) = p*(do,d,i)
= rem(1+ (i +1)dy,do)

which is what we need. This completes the proof of the S-function lemma.

20.6 Primitive Recursion in C

Now we can show that C is closed under primitive recursion. Suppose f(Z)
and g(u,v,Z) are both in C. Let h(x, Z) be the function defined by

h0,2) = f(2)
hix+1,Z) = g(xh(x,2),72).

We need to show that # is in C.
First, define an auxiliary function (x, Z) which returns the least number d
such that d codes a sequence satisfying

1. (d)o = f(Z), and
2. foreachi < x, (d)iy1 = g(i,(d);,2),
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where now (d); is short for B(d, ). In other words, /i returns a sequence that
begins (h(0,2),h(1,Z),...,h(x,Z)). hisin C, because we can write it as

~

fi(x,2) = ud (B(d,0) = f(Z) AVi < xB(d,i +1) = g(i, B(d, 1), Z)).

But then we have
h(x,2) = B(h(x,2), %),

so hisin C as well.

20.7 Functions in C are Representable in Q

We have to show that every function in C is representable in Q. In the end,
we need to show how to assign to each k-ary function f(xp,...,x,_1) in C a
formula ¢¢(xo, ..., xx_1,y) that represents it.

Lemma 20.9. Given natural numbers nand m, if n % m, then Q =1 # m.

Proof. Use induction on n to show that for every m, if n # m, then Q - 7 # m.

In the base case, n = 0. If m is not equal to 0, then m = k + 1 for some
natural number k. We have an axiom that says Vx0 # x’. By a quantifier
axiom, replacing x by k, we can conclude 0 # K. Butk is just 7.

In the induction step, we can assume the claim is true for n, and consider
n + 1. Let m be any natural number. There are two possibilities: either m = 0
or for some k we have m = k + 1. The first case is handled as above. In the
second case, suppose 11 + 1 # k + 1. Then n # k. By the induction hypothesis
for n we have Q I 71 # k. We have an axiom that says VxVyx' =y — x = v.
Using a quantifier axiom, we have 7 =K — 7 =k Using propositional
logic, we can conclude, in Q, 17 # k-7 # . Using modus ponens, we can
conclude 77’ # El, which is what we want, since ¥ is m. O

Note that the lemma does not say much: in essence it says that Q can
prove that different numerals denote different objects. For example, Q proves
0” # 0. But showing that this holds in general requires some care. Note also
that although we are using induction, it is induction outside of Q.

We will be able to represent zero, successor, plus, times, the characteristic
function for equality, and projections. In each case, the appropriate represent-
ing function is entirely straightforward; for example, zero is represented by
the formula

y=0
successor is represented by the formula

Xo =Y,
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and plus is represented by the formula
Xp+x1 =Y.

The work involves showing that Q can prove the relevant statements; for ex-
ample, saying that plus is represented by the formula above involves showing
that for every pair of natural numbers m and 1, Q proves

n+m=n+m
and
Vy((n+m)=y—y=n+m).
What about composition? Suppose / is defined by
h(XQ, .. .,xl,l) = f(go(xo, .. .,xl,l),. . ~/8k71(x01 . .,xl,l)).

where we have already found formulas ¢ Fr Pgor - - -1 Pgi_ TEPTEsenting the func-
tions f, go, . . ., Sk—1, respectively. Then we can define a formula ¢}, represent-
ing h, by defining ¢y, (xo, ..., x;_1,y) tobe

3z, ... Fzk—1 (@go (X0, -+ -, X1-1,20) N+ A Qg (X0, -+, X117, Zk—1) A
q)f(z()/ .- ~/Zk71/y))‘
Finally, let us consider unbounded search. Suppose g(x,Z) is regular and
representable in Q, say by the formula ¢¢(x,Z,y). Let f be defined by f(Z) =

pux g(x,Z). We would like to find a formula ¢ (2, y) representing f. Here is a
natural choice:

P(Zy) = 9g(y,Z,0) AVw (w <y — ~¢g(w,Z,0)).
It can be shown that this works using some additional lemmas, e.g.,

Lemma 20.10. For every variable x and every natural number n, Q proves (x' +
) = (x+7).
It is again worth mentioning that this is weaker than saying that Q proves

VxVy (" +y) = (x +y)’ (which is false).

Proof. The proof is, as usual, by induction on n. In the base case, n = 0, we
need to show that Q proves (x' +0) = (x + 0)’. But we have:

(x' +0) =x' from axiom 4
(x+0) =x from axiom 4
(x+0) =x" byline2

(¥’ +0) = (x+0) lines1and 3
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In the induction step, we can assume that we have derived (x' +7) = (x +7)’
in Q. Since n + 1 is 77/, we need to show that Q proves (x' +7') = (x +7)’.
The following chain of equalities can be derived in Q:

(x'+7) = (¥'+7) axiom5

= (x+7)" from the inductive hypothesis

Lemma 20.11. 1. Q proves —(x < 0).
2. For every natural number n, Q proves
x<n+1l—=(x=0V---Vx=n).

Proof. Letus do 1 and part of 2, informally (i.e., only giving hints as to how to
construct the formal derivation).

For part 1, by the definition of <, we need to prove =3y (y' + x) = 0
in Q, which is equivalent (using the axioms and rules of first-order logic) to
Yy (y' + x) # 0. Here is the idea: suppose (' + x) = 0. If x is 0, we have
(¥’ +0) = 0. But by axiom 4 of Q, we have (y' 4+ 0) = y/, and by axiom 2 we
have y' # 0, a contradiction. So Yy (y' + x) # 0. If x is not 0, by axiom 3 there
is a z such that x = z’. But then we have (' 4+ z’) = 0. By axiom 5, we have
(v +z)" = 0, again contradicting axiom 2.

For part 2, use induction on n. Let us consider the base case, when n = 0.
In that case, we need to show x < 1 — x = 0. Suppose x < 1. Then by the
defining axiom for <, we have Jy (v’ + x) = 0’. Suppose y has that property;
sowe havey +x =0".

We need to show x = 0. By axiom 3, if x is not 0, it is equal to z’ for some z.
Then we have (' +2z) = 0. By axiom 5 of Q, we have (' +z)’ = (/. By axiom
1, we have (¥’ +z) = 0. But this means, by definition, z < 0, contradicting
part 1. O

We have shown that the set of computable functions can be characterized
as the set of functions representable in Q. In fact, the proof is more general.
From the definition of representability, it is not hard to see that any theory
extending Q (or in which one can interpret Q) can represent the computable
functions; but, conversely, in any proof system in which the notion of proof is
computable, every representable function is computable. So, for example, the
set of computable functions can be characterized as the set of functions rep-
resented in Peano arithmetic, or even Zermelo Fraenkel set theory. As Godel
noted, this is somewhat surprising. We will see that when it comes to prov-
ability, questions are very sensitive to which theory you consider; roughly,
the stronger the axioms, the more you can prove. But across a wide range
of axiomatic theories, the representable functions are exactly the computable
ones.
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20.8 Representing Relations

Let us say what it means for a relation to be representable.

Definition 20.12. A relation R(xo,...,x;) on the natural numbers is repre-
sentable in Q if there is a formula ¢g(xo, . .., X ) such that whenever R(ny, . .., ny)
is true, Q proves ¢ (7, . . ., fix ), and whenever R(ny, ..., ny) is false, Q proves

—r(ng, ..., 7).
Theorem 20.13. A relation is representable in Q if and only if it is computable.

Proof. For the forwards direction, suppose R(x, ..., x) is represented by the
formula ¢g(xo, ..., x;). Hereis an algorithm for computing R: oninput n, .. ., 1,
simultaneously search for a proof of ¢ (7, . . ., ) and a proof of —¢g (7, . . ., 7ig).
By our hypothesis, the search is bound to find one of the other; if it is the first,
report “yes,” and otherwise, report “no.”

In the other direction, suppose R(xy, ..., xx) is computable. By definition,
this means that the function xg(xo, ..., x;) is computable. By Theorem 20.2,
XR is represented by a formula, say @y (xo,..., Xk ). Let pr(xo,...,x;) be

the formula ¢, (xo, ..., X, 1). Then for any ny, ..., ny, if R(ny, ..., ng) is true,
then xr(no,...,ng) = 1, in which case Q proves ¢, (7o, ..., 7, 1), and so
Q proves ¢gr(7p,...,ng). On the other hand if R(ny,...,ny) is false, then
Xr(no,...,nr) = 0. This means that Q proves ¢, (7, ..., 7, y) — y = 0.
Since Q proves —(0 = 1), Q proves ¢y, (7o, ..., 7, 1), and so it proves

_‘(PR(ﬁO/u-;ﬁk)- O

20.9 Undecidability

We call a theory T undecidable if there is no computational procedure which, af-
ter finitely many steps and unfailingly, provides a correct answer to the ques-
tion “does T prove ¢?” for any sentence ¢ in the language of T. So Q would
be decidable iff there were a computational procedure which decides, given a
sentence ¢ in the language of arithmetic, whether Q - ¢ or not. We can make
this more precise by asking: Is the relation Provg(y), which holds of y iff y is
the Godel number of a sentence provable in Q, recursive? The answer is: no.

Theorem 20.14. Q is undecidable, i.e., the relation
Provg(y) < Sent(y) A 3x Prg(x,y)
is not recursive.

Proof. Suppose it were. Then we could solve the halting problem as follows:
Given e and 1, we know that ¢, (n) | iff there is an s such that T(e, 1, s), where
T is Kleene’s predicate from Theorem 14.8. Since T is primitive recursive it
is representable in Q by a formula ¥, thatis, Q - ¢ (e, %,5) iff T(e,n,s). If
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Q + y¢r(e,n,53) then also Q + Jyyr(e,7,y). If no such s exists, then Q +
—pr(e,7,5) for every s. But Q is w-consistent, i.e., if Q - —¢(7) for every n €
N, then Q ¥ 3y ¢(y). We know this because the axioms of Q are true in the
standard model M. So, Q ¥ Jy (e, 7,y). In other words, Q - Ty pr(e,7,y)
iff there is an s such that T(e,n,s), i.e., iff ¢.(n) |. From e and n we can
compute #(3y Pr(e,7,y)), let g(e, n) be the primitive recursive function which

does that. So
1 ifP
hen) =14 ro(glen))
0 otherwise.

This would show that / is recursive if Prg is. But  is not recursive, by Theo-
rem 14.9, so Prg cannot be either. O]

Corollary 20.15. First-order logic is undecidable.
Proof. If first-order logic were decidable, provability in Q would be as well,

since Q - ¢ iff - w — @, where w is the conjunction of the axioms of Q. [

Problems

This chapter depends on material in the chapter on computability the-
ory, but can be left out if that hasn’t been covered. It’s currently a basic
conversion of Jeremy Avigad’s notes, has not been revised, and is missing
exercises.
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Chapter 21

Theories and Computability

21.1 Introduction

We have the following:

1. A definition of what it means for a function to be representable in Q
(Definition 20.1)

2. a definition of what it means for a relation to be representable in Q (Def-
inition 20.12)

3. atheorem asserting that the representable functions of Q are exactly the
computable ones (Theorem 20.2)

4. a theorem asserting that the representable relations of Q are exactly the
computable ones Theorem 20.13)

A theory is a set of sentences that is deductively closed, that is, with the
property that whenever T proves ¢ then ¢ is in T. It is probably best to think
of a theory as being a collection of sentences, together with all the things that
these sentences imply. From now on, I will use Q to refer to the theory con-
sisting of the set of sentences derivable from the eight axioms in section 20.1.
Remember that we can code formula of Q as numbers; if ¢ is such a formula,
let #(¢) denote the number coding ¢. Modulo this coding, we can now ask
whether various sets of formulas are computable or not.

21.2 Qs c.e.-complete

Theorem 21.1. Q is c.e. but not decidable. In fact, it is a complete c.e. set.

Proof. 1t is not hard to see that Q is c.e., since it is the set of (codes for) sen-
tences y such that there is a proof x of y in Q:

Q= {y:3xPro(x,y)}.
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But we know that Prg(x,y) is computable (in fact, primitive recursive), and
any set that can be written in the above form is c.e.

Saying that it is a complete c.e. set is equivalent to saying that K <,, Q,
where K = {x : ¢x(x) |}. So let us show that K is reducible to Q. Since
Kleene's predicate T(e, x, s) is primitive recursive, it is representable in Q, say,
by ¢r. Then for every x, we have

x € K— 3sT(x,x,9)

— 35 (QF ¢r(%,%,5))
— QF Jser(x,x%,s).

Conversely, if Q - 3s ¢7 (X, %, s), then, in fact, for some natural number 7 the
formula ¢7(%, X, 7) must be true. Now, if T(x, x, n) were false, Q would prove
—¢1(X,%,7), since gt represents T. But then Q proves a false formula, which
is a contradiction. So T(x, x, n) must be true, which implies ¢, (x) |.

In short, we have that for every x, x is in K if and only if Q proves 3s T(%, X, s).
So the function f which takes x to (a code for) the sentence 3s T(X, X, s) is a re-
duction of K to Q. O

21.3 w-Consistent Extensions of Q are Undecidable

The proof that Q is c.e.-complete relied on the fact that any sentence prov-
able in Q is “true” of the natural numbers. The next definition and theorem
strengthen this theorem, by pinpointing just those aspects of “truth” that were
needed in the proof above. Don’t dwell on this theorem too long, though, be-
cause we will soon strengthen it even further. We include it mainly for histori-
cal purposes: Godel’s original paper used the notion of w-consistency, but his
result was strengthened by replacing w-consistency with ordinary consistency
soon after.

Definition 21.2. A theory T is w-consistent if the following holds: if Jx ¢(x)
is any sentence and T proves =¢(0), =¢(1), =¢(2), ...then T does not prove

dx ¢(x).

Theorem 21.3. Let T be any w-consistent theory that includes Q. Then T is not
decidable.

Proof. If T includes Q, then T represents the computable functions and rela-
tions. We need only modify the previous proof. As above, if x € K, then
T proves 3s g7 (X,%,s). Conversely, suppose T proves 3s ¢7(X,%,s). Then x
must be in K: otherwise, there is no halting computation of machine x on input
x; since @t represents Kleene’s T relation, T proves —¢7(%,%,0), —¢7(X, %, 1),
..., making T w-inconsistent. O
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21.4 Consistent Extensions of Q are Undecidable

Remember that a theory is consistent if it does not prove ¢ and —¢ for any
formula ¢. Since anything follows from a contradiction, an inconsistent theory
is trivial: every sentence is provable. Clearly, if a theory if w-consistent, then
it is consistent. But being consistent is a weaker requirement (i.e., there are
theories that are consistent but not w-consistent — we will see an example
soon). We can weaken the assumption in Definition 21.2 to simple consistency
to obatin a stronger theorem.

Lemma 21.4. There is no “universal computable relation.” That is, there is no binary
computable relation R(x,y), with the following property: whenever S(y) is a unary
computable relation, there is some k such that for every y, S(y) is true if and only if
R(k,y) is true.

Proof. Suppose R(x,y) is a universal computable relation. Let S(y) be the
relation =R (y,y). Since S(y) is computable, for some k, S(y) is equivalent to
R(k,y). But then we have that S(k) is equivalent to both R(k, k) and —R(k, k),
which is a contradiction. O

Theorem 21.5. Let T be any consistent theory that includes Q. Then T is not decid-
able.

Proof. Suppose T is a consistent, decidable extension of Q. We will obtain a
contradiction by using T to define a universal computable relation.
Let R(x,y) hold if and only if

x codes a formula 6(u), and T proves 6(7).

Since we are assuming that T is decidable, R is computable. Let us show that
R is universal. If S(y) is any computable relation, then it is representable in Q
(and hence T) by a formula 6g(u). Then for every n, we have

S(n) — Tt 6s(n)
—  R(#(6s(u)),n)
and
-S(m) — Tk —6s(n)
— T 6g(m) (since T is consistent)
—  R(#(0s(u)),n).

That is, for every y, S(y) is true if and only if R(#(6s(u)),y) is. So R is univer-
sal, and we have the contradiction we were looking for. O

Let “true arithmetic” be the theory {¢ : N = ¢}, that is, the set of sen-
tences in the language of arithmetic that are true in the standard interpreta-
tion.
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Corollary 21.6. True arithmetic is not decidable.

21.5 Computably Axiomatizable Theories

A theory T is said to be computably axiomatizable if it has a computable set
of axioms A. (Saying that A is a set of axioms for Tmeans T = {¢ : A I
¢}.) Any “reasonable” axiomatization of the natural numbers will have this
property. In particular, any theory with a finite set of axioms is computably
axiomatizable. The phrase “effectively axiomatizable” is also commonly used.

Lemma 21.7. Suppose T is computably axiomatizable. Then T is computably enu-
merable.

Proof. Suppose A is a computable set of axioms for T. To determine if ¢ € T,
just search for a proof of ¢ from the axioms.

Put slightly differently, ¢ is in T if and only if there is a finite list of axioms
1, ..., Pr in A and a proof of (1 A - -+ A P) — ¢ in first-order logic. But we
already know that any set with a definition of the form “there exists ...such
that...” is c.e., provided the second “...” is computable. O

21.6 Computably Axiomatizable Complete Theories are
Decidable

A theory is said to be complete if for every sentence ¢, either ¢ or —¢ is prov-
able.

Lemma 21.8. Suppose a theory T is complete and computably axiomatizable. Then
T is decidable.

Proof. Suppose T is complete and A is a computable set of axioms. If T is
inconsistent, it is clearly computable. (Algorithm: “just say yes.”) So we can
assume that T is also consistent.

To decide whether or not a sentence ¢ is in T, simultaneously search for a
proof of ¢ from A and a proof of —¢. Since T is complete, you are bound to
find one or another; and since T is consistent, if you find a proof of —¢, there
is no proof of ¢.

Put in different terms, we already know that T is c.e.; so by a theorem
we proved before, it suffices to show that the complement of T is c.e. But a
formula ¢ is in T if and only if =@ isin T;so T <,, T. O

21.7 Q has no Complete, Consistent, Computably
Axiomatized Extensions

Theorem 21.9. There is no complete, consistent, computably axiomatized extension

of Q.
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21.8. SENTENCES PROVABLE AND REFUTABLE IN Q ARE
COMPUTABLY INSEPARABLE

Proof. We already know that there is no consistent, decidable extension of Q.
But if T is complete and computably axiomatized, then it is decidable. O

This theorems is not that far from Gdédel’s original 1931 formulation of
the First Incompleteness Theorem. Aside from the more modern terminology,
the key differences are this: Godel has “w-consistent” instead of “consistent”;
and he could not say “computably axiomatized” in full generality, since the
formal notion of computability was not in place yet. (The formal models of
computability were developed over the following decade, in large part by
Godel, and in large part to be able to characterize the kinds of theories that
are susceptible to the Gédel phenomenon.)

The theorem says you can’t have it all, namely, completeness, consistency,
and computable axiomatizability. If you give up any one of these, though, you
can have the other two: Q is consistent and computably axiomatized, but not
complete; the inconsistent theory is complete, and computably axiomatized
(say, by {0 # 0}), but not consistent; and the set of true sentence of arithmetic
is complete and consistent, but it is not computably axiomatized.

21.8 Sentences Provable and Refutable in Q are Computably
Inseparable

Let Q be the set of sentences whose negations are provable in Q, i.e., Q = {¢:
Q F —¢}. Remember that disjoint sets A and B are said to be computably
inseparable if there is no computable set C such that A C Cand B C C.

Lemma 21.10. Q and Q are computably inseparable.

Proof. Suppose C is a computable set such that Q C Cand Q C C. Let R(x,y)
be the relation

x codes a formula 6(u) and 6(y) is in C.

We will show that R(x,y) is a universal computable relation, yielding a con-
tradiction.
Suppose S(y) is computable, represented by 6s(u) in Q. Then

S(m) — Qi 6s(n)
— fg(n) eC

and
-S(m) — QF —6s(n)
— 0s(n) €Q
— Os(n) € C
So S(y) is equivalent to R(#(05(%)), y). O
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21.9 Theories Consistent with Q are Undecidable

The following theorem says that not only is Q undecidable, but, in fact, any
theory that does not disagree with Q is undecidable.

Theorem 21.11. Let T be any theory in the language of arithmetic that is consistent
with Q (i.e., T U Q is consistent). Then T is undecidable.

Proof. Remember that Q has a finite set of axioms, ¢1, ..., ¢3. We can even
replace these by a single axiom, & = @1 A - - - A @s.
Suppose T is a decidable theory consistent with Q. Let

C={¢:TkHa— ¢}

We show that C would be a computable separation of Q and Q, a contra-
diction. First, if ¢ is in Q, then ¢ is provable from the axioms of Q; by the
deduction theorem, there is a proof of « — ¢ in first-order logic. So ¢ is in C.

On the other hand, if ¢ is in Q, then there is a proof of & — —¢ in first-
order logic. If T also proves & — ¢, then T proves —&, in which case TU Q
is inconsistent. But we are assuming T U Q is consistent, so T does not prove
x — @, and so @ isnotin C.

We’ve shown that if ¢ is in Q, then itis in C, and if ¢ is in Q’, then it is in C.
So C is a computable separation, which is the contradiction we were looking
for. O

This theorem is very powerful. For example, it implies:

Corollary 21.12. First-order logic for the language of arithmetic (that is, the set
{ : @ is provable in first-order logic}) is undecidable.

Proof. First-order logic is the set of consequences of @, which is consistent
with Q. O

21.10 Theories In Which Q is Intepretable are Undecidable

We can strengthen these results even more. Informally, an interpretation of a
language £ in another language £, involves defining the universe, relation
symbols, and function symbols of £ with formulas in £,. Though we won't
take the time to do this, one can make this definition precise.

Theorem 21.13. Suppose T is a theory in a language in which one can interpret the
language of arithmetic, in such a way that T is consistent with the interpretation of
Q. Then T is undecidable. If T proves the interpretation of the axioms of Q, then no
consistent extension of T is decidable.
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The proof is just a small modification of the proof of the last theorem; one
could use a counterexample to get a separation of Q and Q. One can take ZFC,
Zermelo Fraenkel set theory with the axiom of choice, to be an axiomatic foun-
dation that is powerful enough to carry out a good deal of ordinary mathemat-
ics. In ZFC one can define the natural numbers, and via this interpretation,
the axioms of Q are true. So we have

Corollary 21.14. There is no decidable extension of ZFC.

Corollary 21.15. There is no complete, consistent, computably axiomatized exten-
sion of ZFC.

The language of ZFC has only a single binary relation, €. (In fact, you
don’t even need equality.) So we have

Corollary 21.16. First-order logic for any language with a binary relation symbol is
undecidable.

This result extends to any language with two unary function symbols,
since one can use these to simulate a binary relation symbol. The results just
cited are tight: it turns out that first-order logic for a language with only unary
relation symbols and at most one unary function symbol is decidable.

One more bit of trivia. We know that the set of sentences in the language
0,S,+, X, < true in the standard model is undecidable. In fact, one can de-
fine < in terms of the other symbols, and then one can define + in terms of
x and S. So the set of true sentences in the language 0, S, x is undecidable.
On the other hand, Presburger has shown that the set of sentences in the lan-
guage 0, 5, + true in the language of arithmetic is decidable. The procedure is
computationally infeasible, however.

Problems
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Chapter 22

Incompleteness and Provability

22.1 Introduction

Hilbert thought that a system of axioms for a mathematical structure, such
as the natural numbers, is inadequate unless it allows one to derive all true
statements about the structure. Combined with his later interest in formal
systems of deduction, this suggests that one should try to guarantee that, say,
the formal system one is using to reason about the natural numbers is not
only consistent, but also complete, i.e., every statement is either provable or
refutable. Godel’s first incompleteness theorem shows that no such system of
axioms exists: there is no complete, consistent, effectively axiomatized formal
system for arithmetic. In fact, no “sufficiently strong,” consistent, effectively
axiomatized mathematical theory is complete.

A more important goal of Hilbert’s, the centerpiece of his program for the
justification of modern (“classical”) mathematics, was to find finitary consis-
tency proofs for formal systems representing classical reasoning. With regard
to Hilbert’s program, then, Godel’s second incompleteness theorem was a
much bigger blow.

The second incompleteness theorem can be stated in vague terms, like the
first incompleteness theorem. Roughly speaking, then, it says that no suf-
ficiently strong theory of arithmetic can prove its own consistency. We will
have to take “sufficiently strong” to include a little bit more than Q.

The idea behind Gédel’s original proof of the incompleteness theorem can
be found in the Epimenides paradox. Epimenides, a Cretin, asserted that all
Cretans are liars; a more direct form of the paradox is the assertion “this sen-
tence is false.” Essentially, by replacing truth with provability, Godel was
able to formalize a sentence which, in essence, asserts “this sentence is not
provable.” Assuming w-consistency—a property stronger than consistency—
Godel was able to show that this sentence is neither provable nor refutable
from the system of axioms he was considering.

The first challenge is to understand how one can construct a sentence that
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refers to itself. For every formula ¢ in the language of Q, let "¢ denote the
numeral corresponding to #(¢). Think about what this means: ¢ is a formula
in the language of Q, #(¢) is a natural number, and "¢ is a ferm in the lan-
guage of Q. So every formula ¢ in the language of Q has a name, "¢, which is
a term in the language of Q; this provides us with a conceptual framework in
which formulas in the language of Q can “say” things about other formulas.
The following lemma is known as Godel’s fixed-point lemma.

Lemma 22.1. Let T be any theory extending Q, and let {(x) be any formula with
free variable x. Then there is a sentence ¢ such that T proves ¢ <> p("¢™).

The lemma asserts that given any property 1(x), there is a sentence ¢ that
asserts “i(x) is true of me.”

How can we construct such a sentence? Consider the following version of
the Epimenides paradox, due to Quine:

“Yields falsehood when preceded by its quotation” yields false-
hood when preceded by its quotation.

This sentence is not directly self-referential. It simply makes an assertion
about the syntactic objects between quotes, and, in doing so, it is on par with
sentences like

1. “Robert” is a nice name.
2. “I'ran.” is a short sentence.
3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood when pre-
ceded by its quotation,” and precedes it with a quoted version of itself? Then
one has the original sentence! In short, the sentence asserts that it is false.

22.2 The Fixed-Point Lemma

Let diag(y) be the computable (in fact, primitive recursive) function that does
the following: if y is the Godel number of a formula ¥(x), diag(y) returns the
Godel number of P("¢(x)"). ("¢(x) ' is the standard numeral of the Godel
number of ¢(x), i.e., #(¢(x))). If diag were a function symbol in T represent-
ing the function diag, we could take ¢ to be the formula ¢(diag("y(diag(x))")).
Notice that

diag(#(y(diag(x)))) = #(p(diag("y(diag(x)) "))
#(¢).

Assuming T can prove
diag("p(diag(x))") = "¢
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it can prove ¢(diag("y(diag(x))")) «> P("¢7). But the left hand side is, by
definition, ¢.

In general, diag will not be a function symbol of T. But since T extends
Q, the function diag will be represented in T by some formula 6g;ag (%, ¥). So
instead of writing ¢(diag(x)) we will have to write 3y (Ogiag (X, y) A P(y)).
Otherwise, the proof sketched above goes through.

Lemma 22.2. Let T be any theory extending Q, and let (x) be any formula with
free variable x. Then there is a sentence ¢ such that T proves ¢ <> P("¢™7).

Proof. Given §(x), let a(x) be the formula 3y (fgiag (x,¥) A P(y)) and let ¢ be
the formula a("a(x)").
Since f4;ag represents diag, T can prove

VY (Oiag("a(x) L y) <> y = diag("a(x) ).

But by definition, diag(#(a(x))) = #(a("a(x) ")) = #(¢), so T can prove

vy (Gdiag(r“(x)—lry) —cy= I—(P_‘)'

Going back to the definition of a(x), we see a("a(x) ') is just the formula

Ay (Biag (" (x) " y) A p(y))-
Using the last two sentences and ordinary first-order logic, one can then prove
a("a(x)") < p(Te7).
But the left-hand side is just ¢. O

You should compare this to the proof of the fixed-point lemma in com-
putability theory. The difference is that here we want to define a statement in
terms of itself, whereas there we wanted to define a function in terms of itself;
this difference aside, it is really the same idea.

22.3 The First Incompleteness Theorem

We can now describe Godel’s original proof of the first incompleteness theo-
rem. Let T be any computably axiomatized theory in a language extending
the language of arithmetic, such that T includes the axioms of Q. This means
that, in particular, T represents computable functions and relations.

We have argued that, given a reasonable coding of formulas and proofs
as numbers, the relation Pry(x, y) is computable, where Prr(x, y) holds if and
only if x is a proof of formula y in T. In fact, for the particular theory that
Godel had in mind, Godel was able to show that this relation is primitive
recursive, using the list of 45 functions and relations in his paper. The 45th
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relation, xBy, is just Prr(x,y) for his particular choice of T. Remember that
where Godel uses the word “recursive” in his paper, we would now use the
phrase “primitive recursive.”

Since Prr(x,y) is computable, it is representable in T. We will use Prr(x, y)
to refer to the formula that represents it. Let Prov(y) be the formula 3x Prr(x, ).
This describes the 46th relation, Bew (), on Godel’s list. As Godel notes, this
is the only relation that “cannot be asserted to be recursive.” What he proba-
bly meant is this: from the definition, it is not clear that it is computable; and
later developments, in fact, show that it isn’t.

Definition 22.3. A theory T is w-consistent if the following holds: if Jx ¢(x)
is any sentence and T proves —¢(0), =¢(1), =¢(2), ...then T does not prove

dx ¢(x).

We can now prove the following.

Theorem 22.4. Let T be any w-consistent, computably axiomatized theory extending
Q. Then T is not complete.

Proof. Let T be any computably axiomatized theory containing Q, and let
Provrt () be the formula we described above. By the fixed-point lemma, there
is a formula 1 such that T proves

YT <~ _|PI’OVT('_’)/T7). (221)

Note that ¢ says, in essence, “I am not provable.”
We claim that

1. If T is consistent, T doesn’t prove yr
2. If T is w-consistent, T doesn’t prove .

This means that if T is w-consistent, it is incomplete, since it proves neither v
nor —yt. Let us take each claim in turn.

Suppose T proves yr. Then there is a proof, and so, for some number m,
the relation Pr(m, #(yt)) holds. But then T proves the sentence Prr (77, "y1 ™).
So T proves 3x Pry(x,"y1™), which is, by definition, Provr("y1™). By eq. (22.1),
T proves —ytr. We have shown that if T proves yt, then it also proves =y,
and hence it is inconsistent.

For the second claim, let us show that if T proves =y, then it is w-inconsistent.
Suppose T proves —yr. If T is inconsistent, it is w-inconsistent, and we are
done. Otherwise, T is consistent, so it does not prove 1. Since there is no
proof of y1 in T, T proves

ﬁPI’T(ﬁ, ’_’)/T_‘), ﬁPrT(T, I—’yTj), ﬁPrT(E, I—’)/T—‘), e

On the other hand, by eq. (22.1), =yt is equivalent to 3x Pry(x,"y1 ™). So T is
w-inconsistent. O
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22.4 Rosser’s Theorem

Can we modify Godel’s proof to get a stronger result, replacing “w-consistent”
with simply “consistent”? The answer is “yes,” using a trick discovered by
Rosser. Let not(x) be the primitive recursive function which does the follow-
ing: if x is the code of a formula ¢, not(x) is a code of =¢. To simplify matters,
assume T has a function symbol not such that for any formula ¢, T proves
not("¢™) = "—¢™. This is not a major assumption; since not(x) is computable,
it is represented in T by some formula 6not(x,y), and we could eliminate the
reference to the function symbol in the same way that we avoided using a
function symbol diag in the proof of the fixed-point lemma.

Rosser’s trick is to use a “modified” provability predicate RProvr(y), de-
fined to be

dx (Prr(x,y) AVz (z < x — =Pry(z, not(y)))).

Roughly, RProvr(y) says “there is a proof of y in T, and there is no shorter
proof of the negation of y.” (You might find it convenient to read RProvr(y)
as “y is shmovable.”) Assuming T is consistent, RProvy(y) is true of the same
numbers as Provy(y); but from the point of view of provability in T (and we
now know that there is a difference between truth and provability!) the two
have different properties.

By the fixed-point lemma, there is a formula pt such that T proves

oT < _\RPFOVT(rpT—I).

In contrast to the proof above, here we claim that if T is consistent, T doesn’t
prove prt, and T also doesn’t prove —pt. (In other words, we don’t need the
assumption of w-consistency:.)

By comparison to the proof of Theorem 21.9, the proofs of Theorem 22.4
and its improvement by Rosser explicitly exhibit a statement ¢ that is inde-
pendent of T. In the former, you have to dig to extract it from the argument.
The Godel-Rosser methods therefore have the advantage of making the inde-
pendent statement perfectly clear.

22.5 Comparison with Godel’s Original Paper

It is worthwhile to spend some time with Godel’s 1931 paper. The introduc-
tion sketches the ideas we have just discussed. Even if you just skim through
the paper, it is easy to see what is going on at each stage: first Godel describes
the formal system P (syntax, axioms, proof rules); then he defines the prim-
itive recursive functions and relations; then he shows that xBy is primitive
recursive, and argues that the primitive recursive functions and relations are
represented in P. He then goes on to prove the incompleteness theorem, as
above. In section 3, he shows that one can take the unprovable assertion to
be a sentence in the language of arithmetic. This is the origin of the f-lemma,
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which is what we also used to handle sequences in showing that the recursive
functions are representable in Q. Godel doesn’t go so far to isolate a minimal
set of axioms that suffice, but we now know that Q will do the trick. Finally,
in Section 4, he sketches a proof of the second incompleteness theorem.

22.6 The Provability Conditions for PA

Peano arithmetic, or PA, is the theory extending Q with induction axioms for
all formulas. In other words, one adds to Q axioms of the form

(9(0) A Vx (9(x) = 9(x))) = Vx g(x)

for every formula ¢. Notice that this is really a schema, which is to say, in-
finitely many axioms (and it turns out that PA is not finitely axiomatizable).
But since one can effectively determine whether or not a string of symbols is
an instance of an induction axiom, the set of axioms for PA is computable. PA
is a much more robust theory than Q. For example, one can easily prove that
addition and multiplication are commutative, using induction in the usual
way. In fact, most finitary number-theoretic and combinatorial arguments can
be carried out in PA.

Since PA is computably axiomatized, the provability predicate Prpa (¥, y)
is computable and hence represented in Q (and so, in PA). As before, I will
take Prpa (x, ) to denote the formula representing the relation. Let Provpa ()
be the formula 3x Prpa (x, ), which, intuitively says, “y is provable from the
axioms of PA.” The reason we need a little bit more than the axioms of Q is
we need to know that the theory we are using is strong enough to prove a
few basic facts about this provability predicate. In fact, what we need are the
following facts:

1. If PA + ¢, then PA |- Provpa ("¢™)

2. For every formula ¢ and ¢, PA F Provpa ("¢ — ¢7) — (Provpa(T¢™) —
Provpa ("9™))

3. For every formula ¢, PA I Provpa ("¢ ") — Provpa ("Provpa (T¢™)7).

The only way to verify that these three properties hold is to describe the for-
mula Provpa (y) carefully and use the axioms of PA to describe the relevant
formal proofs. Clauses 1 and 2 are easy; it is really clause 3 that requires work.
(Think about what kind of work it entails...) Carrying out the details would
be tedious and uninteresting, so here we will ask you to take it on faith that
PA has the three properties listed above. A reasonable choice of Provpa (y)
will also satisfy

4. If PA proves Provpa ("¢™), then PA proves ¢.
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But we will not need this fact.

Incidentally, Godel was lazy in the same way we are being now. At the
end of the 1931 paper, he sketches the proof of the second incompleteness
theorem, and promises the details in a later paper. He never got around to it;
since everyone who understood the argument believed that it could be carried
out (he did not need to fill in the details.)

22.7 The Second Incompleteness Theorem

How can we express the assertion that PA doesn’t prove its own consistency?
Saying PA is inconsistent amounts to saying that PA proves 0 = 1. So we
can take Conpy to be the formula —Provpa ("0 = 17), and then the following
theorem does the job:

Theorem 22.5. Assuming PA is consistent, then PA does not prove Conpa.

It is important to note that the theorem depends on the particular repre-
sentation of Conpp (i.e., the particular representation of Provpa (1)). All we
will use is that the representation of Provpa () has the three properties above,
so the theorem generalizes to any theory with a provability predicate having
these properties.

It is informative to read Godel’s sketch of an argument, since the theorem
follows like a good punch line. It goes like this. Let ypa be the Godel sentence
that we constructed in the proof of Theorem 22.4. We have shown “If PA is
consistent, then PA does not prove ypa.” If we formalize this in PA, we have
a proof of

COHPA — ﬁPrOVpA('—’)/PA—').

Now suppose PA proves Conpa. Then it proves —=Provpa ("ypa ). But since
Ypa is a Godel sentence, this is equivalent to ypa. So PA proves ypa.

But: we know that if PA is consistent, it doesn’t prove ypa! So if PA is
consistent, it can’t prove Conpa.

To make the argument more precise, we will let ypa be the Godel sentence
for PA and use properties 1-3 above to show that PA proves Conpa — Ypa.
This will show that PA doesn’t prove Conpa. Here is a sketch of the proof,
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in PA:
ypa — —Provpa("ypa”) since 7ypa is a Godel sentence
Provpa ("vpa — —Provpa(Typa™)") by 1
Provpa("ypa™) —

Provpa (" ~Provpa (Typa™) ) by 2
Provpa("ypa”) —
PI’OVPA(FPFOVPA(FP}/PAT) S 0= 17) by land 2

PI’OVPA (’_’)/PA—l) —

Provpa ("Provpa ("ypa™) ") by 3
Provpa ("ypa) — Provpa ("0 =17) using 1 and 2
Conpa — —Provpa ("ypa™) by contraposition
Conpa — Ypa since ypa is a Godel sentence

The move from the third to the fourth line uses the fact that =Provpa ("ypa ™)
is equivalent to Provpa ("ypa') — 0 = 1 in PA. The more abstract version of
the incompleteness theorem is as follows:

Theorem 22.6. Let T be any theory extending Q and let Provr(y) be any formula
satisfying 1-3 for T. Then if T is consistent, then T does not prove Conr.

The moral of the story is that no “reasonable” consistent theory for math-
ematics can prove its own consistency. Suppose T is a theory of mathematics
that includes Q and Hilbert’s “finitary” reasoning (whatever that may be).
Then, the whole of T cannot prove the consistency of T, and so, a fortiori, the
finitary fragment can’t prove the consistency of T either. In that sense, there
cannot be a finitary consistency proof for “all of mathematics.”

There is some leeway in interpreting the term finitary, and Godel, in the
1931 paper, grants the possibility that something we may consider “finitary”
may lie outside the kinds of mathematics Hilbert wanted to formalize. But
Godel was being charitable; today, it is hard to see how we might find some-
thing that can reasonably be called finitary but is not formalizable in, say,
ZFC.

22.8 Lob’s Theorem

In this section, we will consider a fun application of the fixed-point lemma.
We now know that any “reasonable” theory of arithmetic is incomplete, which
is to say, there are sentences ¢ that are neither provable nor refutable in the
theory. One can ask whether, in general, a theory can prove “If I can prove ¢,
then it must be true.” The answer is that, in general, it can’t. More precisely,
we have:
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Theorem 22.7. Let T be any theory extending Q, and suppose Provr (y) is a formula
satisfying conditions 1-3 from section 22.7. If T proves Provt("¢7) — ¢, then in
fact T proves ¢.

Put differently, if ¢ is not provable in T, T can’t prove Provy("¢™) — ¢.
This is known as Lob’s theorem.

The heuristic for the proof of Lob’s theorem is a clever proof that Santa
Claus exists. (If you don't like that conclusion, you are free to substitute any
other conclusion you would like.) Here it is:

1. Let X be the sentence, “If X is true, then Santa Claus exists.”

Suppose X is true.

Then what it says is true; i.e., if X is true, then Santa Claus exists.

Since we are assuming X is true, we can conclude that Santa Claus exists.
So, we have shown: “If X is true, then Santa Claus exists.”

But this is just the statement X. So we have shown that X is true.

A N U R

But then, by the argument above, Santa Claus exists.

A formalization of this idea, replacing “is true” with “is provable,” yields the
proof of Lob’s theorem.

Proof. Suppose ¢ is a sentence such that T proves Provy(T¢") — ¢. Let ¢(y)
be the formula Provy(y) — ¢, and use the fixed-point lemma to find a sen-
tence 0 such that T proves 0 <> ("67). Then each of the following is provable
inT:

6 — (Provp("67) — ¢)

Provr("0 — (Provy("67) — ¢) ) by 1
Provr(767) — Provr("Provy(T07) — ¢ ) using 2
Provy(707) —

(Provr (" Provr(707) ") — Provr(T¢™)) using 2
Provy(707) — Provy (" Provp(T67) 1) by 3
Provy(707) — Provr(T¢™)

Provr(T¢7) — ¢ by assumption
Provr(707) — ¢

0 def of 6
Provr(707) by 1

?

O
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With Lob’s theorem in hand, there is a short proof of the first incomplete-
ness theorem (for theories having a provability predicate satisfying 1-3): if a
theory proves Provy("0 =17) — 0 =1, it proves 0 = 1.

22,9 The Undefinability of Truth

The notion of definability depends on having a formal semantics for the lan-
guage of arithmetic. We have described a set of formulas and sentences in
the language of arithmetic. The “intended interpretation” is to read such sen-
tences as making assertions about the natural numbers, and such an assertion
can be true or false. Let 91 be the structure with domain IN and the standard
interpretation for the symbols in the language of arithmetic. Then N = ¢
means “¢ is true in the standard interpretation.”

Definition 22.8. A relation R(xq, ..., x;) of natural numbers is definable in 9 if
and only if there is a formula ¢(x1, ..., x;) in the language of arithmetic such
that for every ny, ..., ng, R(ny, ..., n) if and only if M |= @(71, ..., 7).

Put differently, a relation is definable in in 91 if and only if it is repre-
sentable in the theory TA, where TA = {¢ : 0N |= ¢} is the set of true sentences
of arithmetic. (If this is not immediately clear to you, you should go back and
check the definitions and convince yourself that this is the case.)

Lemma 22.9. Every computable relation is definable in 2.

Proof. 1t is easy to check that the formula representing a relation in Q defines
the same relation in 9. O

Now one can ask, is the converse also true? That is, is every replation
definable in 91 computable? The answer is no. For example:

Lemma 22.10. The halting relation is definable in N.
Proof. Let H be the halting relation, i.e.,
H={(e,x): 3IsT(e,x,s)}.
Let 61 define T in 9t. Then
H={(e,x) : N|=3sOr(e,x,s)},
s0 Js0r(z, x,s) defines H in . O

What about TA itself? Is it definable in arithmetic? That is: is the set
{#(¢) : M |= ¢} definable in arithmetic? Tarski’s theorem answers this in the
negative.
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Theorem 22.11. The set of true statements of arithmetic is not definable in arith-
metic.

Proof. Suppose 6(x) defined it. By the fixed-point lemma, there is a formula
¢ such that Q proves ¢ <+ =0("¢™"), and hence 9 |= ¢ +» =6("¢™"). But then
N = ¢ if and only if N = —6("¢™), which contradicts the fact that 8(y) is
supposed to define the set of true statements of arithmetic. O

Tarski applied this analysis to a more general philosophical notion of truth.
Given any language L, Tarski argued that an adequate notion of truth for L
would have to satisfy, for each sentence X,

‘X’ is true if and only if X.
Tarski’s oft-quoted example, for English, is the sentence
‘Snow is white’ is true if and only if snow is white.

However, for any language strong enough to represent the diagonal function,
and any linguistic predicate T(x), we can construct a sentence X satisfying
“X if and only if not T(‘X").” Given that we do not want a truth predicate
to declare some sentences to be both true and false, Tarski concluded that
one cannot specify a truth predicate for all sentences in a language without,
somehow, stepping outside the bounds of the language. In other words, a the
truth predicate for a language cannot be defined in the language itself.

Problems

Problem 22.1. Show that PA proves yps — Conpa.

Problem 22.2. Let T be a computably axiomatized theory, and let Provt be a
provability predicate for T. Consider the following four statements:

1. fTF ¢, then T - Provy("¢™).
2. Tk ¢ — Provp(T¢™).
3. If T+ Provr("¢™), then T F ¢.
4. T+ Provr(T¢™) — ¢
Under what conditions are each of these statements true?

Problem 22.3. Show that Q(n) < n € {#(¢) : Q I ¢} is definable in arith-
metic.
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This part covers general and methodological material, especially ex-
planations of various proof methods a non-metahmatics student may be
unfamiliar with. It currently contains a chapter on induction, but chapters
on how to write proofs in general, and on mathematical terminology, are
also planned.
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Chapter 23

Induction

23.1 Introduction

Induction is an important proof technique which is used, in different forms,
in almost all areas of logic, theoretical computer science, and mathematics. It
is needed to prove many of the results in logic.

Induction is often contrasted with deduction, and characterized as the in-
ference from the particular to the general. For instance, if we observe many
green emeralds, and nothing that we would call an emerald that’s not green,
we might conclude that all emeralds are green. This is an inductive inference,
in that it proceeds from many particlar cases (this emerald is green, that emer-
ald is green, etc.) to a general claim (all emeralds are green). Mathematical
induction is also an inference that concludes a general claim, but it is of a very
different kind that this “simple induction.”

Very roughly, and inductive proof in mathematics concludes that all math-
ematical objects of a certain sort have a certain property. In the simplest case,
the mathematical objects an inductive proof is concerned with are natural
numbers. In that case an inductive proof is used to establish that all natu-
ral numbers have some property, and it does this by showing that (1) 0 has
the property, and (2) whenever a number n has the property, so does n + 1.
Induction on natural numbers can then also often be used to prove general
about mathematical objects that can be assigned numbers. For instance, finite
sets each have a finite number n of elements, and if we can use induction to
show that every number n has the property “all finite sets of size n are ...”
then we will have shown something about all finite sets.

Induction can also be generalized to mathematical objects that are induc-
tively defined. For instance, expressions of a formal language suchh as those of
first-order logic are defined inductively. Structural induction is a way to prove
results about all such expressions. Structural induction, in particular, is very
useful—and widely used—in logic.
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23.2 Induction on N

In its simplest form, induction is a technique used to prove results for all nat-
ural numbers. It uses the fact that by starting from 0 and repeatedly adding 1
we eventually reach every natural number. So to prove that something is true
for every number, we can (1) establish that it is true for 0 and (2) show that
whenever a number has it, the next number has it too. If we abbreviate “num-
ber n has property P” by P(n), then a proof by induction that P(n) for all
n € IN consists of:

1. a proof of P(0), and
2. aproof that, for any n, if P(n) then P(n +1).

To make this crystal clear, suppose we have both (1) and (2). Then (1) tells us
that P(0) is true. If we also have (2), we know in particular that if P(0) then
P(0+1),i.e., P(1). (This follows from the general statement “for any n, if P(n)
then P(n 4 1)” by putting 0 for n. So by modus ponens, we have that P(1).
From (2) again, now taking 1 for n, we have: if P(1) then P(2). Since we've
just established P(1), by modus ponens, we have P(2). And so on. For any
number k, after doing this k steps, we eventually arrive at P(k). So (1) and (2)
together established P(k) for any k € IN.

Let’s look at an example. Suppose we want to find out how many different
sums we can throw with n dice. Although it might seem silly, let’s start with
0 dice. If you have no dice there’s only one possible sum you can “throw”:
no dots at all, which sums to 0. So the number of different possible throws
is 1. If you have only one die, i.e,, n = 1, there are six possible values, 1
through 6. With two dice, we can throw any sum from 2 through 12, that’s
11 possibilities. With three dice, we can throw any number from 3 to 18, i.e,,
16 different possibilities. 1, 6, 11, 16: looks like a pattern: maybe the answer
is 5n + 1? Of course, 51 + 1 is the maximum possible, because there are only
51 + 1 numbers between 7, the lowest value you can throw with n dice (all
1’s) and 6mn, the highest you can throw (all 6’s).

Theorem 23.1. With n dice one can throw all 5n + 1 possible values between n and
6n.

Proof. To prove that this holds for any number of dice, we use induction: we
prove, (1) that the number of different throws with 0 diceis 5-0+1 = 1,
and (2) that if we can throw all 5n + 1 values between n and 6n with n dice,
then with n + 1 dice we can throw all 5(n + 1) + 1 = 51 + 6 possible values
between n + 1 and 6(n + 1). We've already established (1): If you have no
dice, there’s only one possible outcome: you throw all 0 dice, and the number
of dots visible is 0.

Now let’s see how many possible total values you can throw with n +1
dice: we're going to show that it’s all 5n 4 6 different sums between n + 1
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and 6n + 6, assuming that you can throw all 51 4 1 different sums between n
and 6n with n dice. This assumption is called the induction hypothesis. So:
assume that you can throw all 5n 4 1 different sums between n and 6n with
n dice

Suppose you have n dice. Each possible throw sums to some number be-
tween n (all n dice show 1’s) and 6n (all 6’s). Now throw another die. You
get another number between 1 and 6. If your total is less than 61 you could
have thrown the same total with your original n dice, by induction hypothe-
sis. Only the possible totals 61 4 1 through 67 + 6 are totals you couldn’t have
thrown with just n dice—and these are new possible totals, which you’d get,
e.g., by throwing 1 6’s plus whatever your new die shows. So there are 6 new
possible totals. You can still throw any of the old totals, except one. With n 41
dice you can’t roll just n. But any other value you can throw with n dice you
can also throw with n + 1 dice: just imagine one of your n dice showed one
eye fewer (and at least one of them must show at least a 2) and your (n + 1)st
die shows a 1. With an additional die we lose only one possible total (1) and
gain 6 new possible totals (67 4 1 through 67 4 6). So the number of possible
totals with n 4+ 1 dice is 51 + 1, minus 1, plus 6, i.e., 51 4- 6. So we have proved
that, assuming the number of totals we can throw with n dice is 57 + 1, the
number of totals we can throw with n + 1 diceis5n +6 =5(n+1) + 1. O

Very often we use induction when we want to prove something about a
series of objects (numbers, sets, etc.) that is itself defined “inductively,” i.e.,
by defining the (n+1)-st object in terms of the n-th. For instance, we can
define the sum s, of the natural numbers up to n by

S():O
Su1 =5+ (n+1)

This definition gives:

so =0,

s1=50+1 =1,
Sp=51+2 =1+2=3
S3 =55+ 3 =142+3=6, etc.

Now we can prove, by induction, that s, = n(n+1)/2.
Proposition 23.2. s, = n(n+1)/2.

Proof. We have to prove (1) thatsp = 0-(0+1)/2and (2) if s, = n(n+1)/2
then s, = (n+1)(n+2)/2. (1) is obvious. To prove (2), we assume the
inductive hypothesis: s, = n(n + 1) /2. Using it, we have to show that s, =
(n+1)(n+2)/2.
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What is s,11? By the definition, s, 1 = s, + (1 + 1). By inductive hypoth-
esis, s, = n(n +1)/2. We can substitute this into the previous equation, and
then just need a bit of arithmetic of fractions:

+1
Sp+1 = #4‘(7’14‘1) =
nn+1) 2n+1)
2 2
nn+1)+2(n+1)
2
(n+2)(n+1)
N 2

O

The important lesson here is that if you're proving something about some
inductively defined sequence a,, induction is the obvious way to go. And
even if it isn’t (as in the case of the possibilities of dice throws), you can use
induction if you can somehow relate the case for n + 1 to the case for n.

23.3 Strong Induction

In the principle of induction discussed above, we prove P(0) and also if P(n),
then P(n 4 1). In the second part, we assume that P(n) is true and use this
assumption to prove P(n + 1). Equivalently, of course, we could assume
P(n — 1) and use it to prove P(n)—the important part is that we be able to
carry out the inference from any number to its successor; that we can prove
the claim in question for any number under the assumption it holds for its
predecessor.

There is a variant of the principle of induction in which we don't just as-
sume that the claim holds for the predecessor n — 1 of #, but for all numbers
smaller than #, and use this assumption to establish the claim for . This also
gives us the claim P(k) for all k € IN. For once we have established P(0), we
have thereby established that P holds for all numbers less than 1. And if we
know that if P(I) for all ] < n then P(n), we know this in particular for n = 1.
So we can conclude P(2). With this we have proved P(0), P(1), P(2), i.e., P(I)
for all I < 3, and since we have also the conditional, if P(I) for all | < 3, then
P(3), we can conclude P(3), and so on.

In fact, if we can establish the general conditional “for all n, if P(I) for all
I < n, then P(n),” we do not have to establish P(0) anymore, since it follows
from it. For remember that a general claim like “for all I < n, P(I)” is true if
there are no | < n. This is a case of vacuous quantification: “all As are Bs” is
true if there are no As, Vx (¢(x) — (x)) is true if no x satisfies ¢(x). In this
case, the formalized version would be “VI (I < n — P(I))”"—and that is true if
there are no ! < n. And if n = 0 that’s exactly the case: no ! < 0, hence “for all
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1 <0, P(0)” is true, whatever P is. A proof of “if P(I) for all | < n, then P(n)”
thus automatically establishes P(0).

This variant is useful if establishing the claim for # can’t be made to just
rely on the claim for n — 1 but may require the assumption that it is true for
one or more | < n.

23.4 Inductive Definitions

In logic we very often define kinds of objects inductively, i.e., by specifying
rules for what counts as an object of the kind to be defined which explain how
to get new objects of that kind from old objects of that kind. For instance, we
often define special kinds of sequences of symbols, such as the terms and for-
mulas of a language, by induction. For a simpler example, consider strings
of parentheses, such as “(()(” or “()(())”. In the second string, the parentheses
“balance,” in the first one, they don’t. The shortest such expression is “()”. Ac-
tually, the very shortest string of parentheses in which every opening paren-
thesis has a matching closing parenthesis is “”, i.e., the empty sequence @. If
we already have a parenthesis expression p, then putting matching parenthe-
ses around it makes another balanced parenthesis expression. And if p and p’
are two balanced parentheses expressions, writing one after the other, “pp’”
is also a balanced parenthesis expression. In fact, any sequence of balanced
parentheses can be generated in this way, and we might use these operations
to define the set of such expressions. This is an inductive definition.

Definition 23.3 (Paraexpressions). The set of parexpressions is inductively de-
fined as follows:

1. @ is a parexpression.

2. If p is a parexpression, then so is (p).

3. If p and p’ are parexpressions # @, then so is pp’.
4. Nothing else is a parexpression.

(Note that we have not yet proved that every balanced parenthesis expres-
sion is a parexpression, although it is quite clear that every parexpression is a
balanced parenthesis expression.)

The key feature of inductive definitions is that if you want to prove some-
thing about all parexpressions, the definition tells you which cases you must
consider. For instance, if you are told that g is a parexpression, the inductive
definition tells you what q can look like: g can be @, it can be (p) for some
other parexpression p, or it can be pp’ for two parexpressions p and p’ # @.
Because of clause (4), those are all the possibilities.

When proving claims about all of an inductively defined set, the strong
form of induction becomes particularly important. For instance, suppose we
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want to prove that for every parexpression of length 7, the number of ( in it
is n/2. This can be seen as a claim about all n: for every n, the number of ( in
any parexpression of length n is n1/2.

Proposition 23.4. For any n, the number of ( in a parexpression of length n is n/2.

Proof. To prove this result by (strong) induction, we have to show that the
following conditional claim is true:

If for every k < n, any parexpression of length k has k/2 (’s, then
any parexpression of length n has n/2 (s.

To show this conditional, assume that its antecedent is true, i.e., assume that
for any k < n, parexpressions of length k contain k (’s. We call this assumption
the inductive hypothesis. We want to show the same is true for parexpressions
of length n.

So suppose g is a parexpression of length n. Because parexpressions are
inductively defined, we have three cases: (1) g is @, (2) g is (p) for some par-
expression p, or (3) g is pp’ for some parexpressions p and p’ # @.

1. gis @. Then n = 0, and the number of ( in g is also 0. Since 0 = 0/2, the
claim holds.

2. g is (p) for some parexpression p. Since g contains two more symbols
than p, len(p) = n — 2, in particular, len(p) < n, so the inductive hy-
pothesis applies: the number of ( in p is len(p) /2. The number of (in g
is1+ the number of (in p,so = 1+len(p)/2, and since len(p) =n —2,
this gives 1+ (n —2)/2 =n/2.

3. gis pp’ for some parexpression p and p’ # @. Since neither pnor p’ = @,
both len(p) and len(p’) < n. Thus the inductive hypothesis applies in
each case: The number of (in p is len(p)/2, and the number of (in p’ is
len(p’) /2. On the other hand, the number of ( in g is obviously the sum
of the numbers of (in p and p/, since g = pp’. Hence, the number of (in
gislen(p)/2+len(p’)/2 = (len(p) +len(p’))/2 = len(pp’) /2 = n/2.

In each case, we've shown that teh number of ( in g is /2 (on the basis of the
inductive hypothesis). By strong induction, the proposition follows. O

23.5 Structural Induction

So far we have used induction to establish results about all natural numbers.
But a corresponding principle can be used directly to prove results about all
elements of an inductively defined set. This often called structural induction,
because it depends on the structure of the inductively defined objects.
Generally, an inductive definition is given by (a) a list of “initial” elements
of the set and (b) a list of operations which produce new elements of the set
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from old ones. In the case of parexpressions, for instance, the initial object is @
and the operations are

o1(p) =(p)
02(9,9") =49’

You can even think of the natural numbers IN themselves as being given be an
inductive definition: the initial object is 0, and the operation is the successor
function x + 1.

In order to prove something about all elements of an inductively defined
set, i.e., that every element of the set has a property P, we must:

1. Prove that the initial objects have P

2. Prove that for each operation o, if the arguments have P, so does the
result.

For instance, in order to prove something about all parexpressions, we would
prove that it is true about @, that it is true of (p) provided it is true of p, and
that it is true about gq" provided it is true of 4 and ¢’ individually.

Proposition 23.5. The number of ( equals the number of ) in any parexpression p.

Proof. We use structural induction. Parexpressions are inductively defined,
with initial object @ and the operations 01 and o5.

1. The claim is true for @, since the number of ( in @ = 0 and the number
of ) in @ also = 0.

2. Suppose the number of ( in p equals the number of ) in p. We have to
show that this is also true for (p), i.e., 01(p). But the number of (in (p) is
1+ the number of (in p. And the number of ) in (p) is 1+ the number
of ) in p, so the claim also holds for (p).

3. Suppose the number of ( in g equals the number of ), and the same is
true for q/. The number of (in 02(p,p’), i-e., in pp/, is the sum of the
number ( in p and p’. The number of ) in 02(p, p’), i.e., in pp’, is the sum
of the number of ) in p and p’. The number of ( in 02(p, p’) equals the
number of ) in 0 (p, p').

The result follows by structural induction. O

Problems
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Chapter 24

Biographies

24.1 Georg Cantor

An early biography of Georg Cantor
(GAY-org KAHN-tor) claimed that he
was born and found on a ship that was
sailing for Saint Petersburg, Russia,
and that his parents were unknown.
This, however, is not true; although he
was born in Saint Petersburg in 1845.
Cantor received his doctorate in
mathematics at the University of Berlin
in 1867. He is known for his work in
set theory, and is credited with found-
ing set theory as a distinctive research
discipline. He was the first to prove
that there are infinite sets of differ-
ent sizes. His theories, and especially
his theory of infinities, caused much
debate among mathematicians at the
time, and his work was controversial.
Cantor’s religious beliefs and his
mathematical work were inextricably

Figure 24.1: Georg Cantor

tied; he even claimed that the theory of transfinite numbers had been com-
municated to him directly by God. In later life, Cantor suffered from mental
illness. Beginning in 1984, and more frequently towards his later years, Can-
tor was hospitalized. The heavy criticism of his work, including a falling out
with the mathematician Leopold Kronecker, led to depression and a lack of
interest in mathematics. During depressive episodes, Cantor would turn to
philosophy and literature, and even published a theory that Francis Bacon

was the author of Shakespeare’s plays.
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Cantor died on January 6, 1918, in a sanatorium in Halle.

Further Reading For full biographies of Cantor, see ( ) and

( ). Cantor’s radical views are also described in the BBC Radio 4
program A Brief History of Mathematics ( , ). If you'd like to hear
about Cantor’s theories in rap form, see ( ).

24.2 Alonzo Church

Alonzo Church was born in Washing- : _
ton, DC on June 14, 1903. In early .
childhood, an air gun incident left "
Church blind in one eye. He finished
preparatory school in Connecticut in
1920 and began his university educa-
tion at Princeton that same year. He
completed his doctoral studies in 1927.
After a couple years abroad, Church
returned to Princeton. Church was
known exceedingly polite and careful.
His blackboard writing was immacu-
late, and he would preserve important
papers by carefully covering them in
Duco cement. Outside of his academic Figure 24.2: Alonzo Church
pursuits, he enjoyed reading science

fiction magazines and was not afraid to write to the editors if he spotted any
inaccuracies in the writing.

Church’s academic achievements were great. Together with his students
Stephen Kleene and Barkley Rosser, he developed a theory of effective calcu-
lability, the lambda calculus, independently of Alan Turing’s development of
the Turing machine. The two definitions of computability are equivalent, and
give rise to what is now known as the Church-Turing Thesis, that a function of
the natural numbers is effectively computable if and only if it is computable
via Turing machine (or lambda calculus). He also proved what is now known
as Church’s Theorem: The decision problem for the validity of first-order for-
mulas is unsolvable.

Church continued his work into old age. In 1967 he left Princeton for
UCLA, where he was professor until his retirement in 1990. Church passed
away on August 1, 1995 at the age of 92.

Further Reading For a brief biography of Church, see (
)- Church’s original writings on the lambda calculus and the Entschei-
dungsproblem (Church’s Thesis) are ( ,b). ( ) records
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an interview with Church about the Princeton mathematics community in the
1930s. Church wrote a series of book reviews of the Journal of Symbolic Logic
from 1936 until 1979. They are all archived on John MacFarlane’s website

( , 2015).

24.3 Gerhard Gentzen

Gerhard Gentzen is known primarily
as the creator of structural proof the-
ory, and specifically the creation of the
natural deduction and sequent calcu-
lus proof systems. He was born on
November 24, 1909 in Greifswald, Ger-
many. Gerhard was homeschooled for
three years before attending prepara-
tory school, where he was behind most
of his classmates in terms of education.
Despite this, he was a brilliant student
and showed a strong aptitude for mathematics. His interests were varied,
and he, for instance, also write poems for his mother and plays for the school
theatre.

Figure 24.3: Gerhard Gentzen

Gentzen began his university studies at the University of Greifswald, but
moved around to Go6ttingen, Munich, and Berlin. He received his doctorate in
1933 from the University of Géttingen under Hermann Weyl. (Paul Bernays
supervised most of his work, but was dismissed from the university by the
Nazis.) In 1934, Gentzen began work as an assistant to David Hilbert. That
same year he developed the sequent calculus and natural deduction proof sys-
tems, in his papers Untersuchungen iiber das logische Schlieflen I-II [Investigations
Into Logical Deduction I-11]. He proved the consistency of the Peano axioms in
1936.

Gentzen'’s relationship with the Nazis is complicated. At the same time his
mentor Bernays was forced to leave Germany, Gentzen joined the university
branch of the SA, the Nazi paramilitary organization. Like many Germans, he
was a member of the Nazi party. During the war, he served as a telecommuni-
cations officer for the air intelligence unit. However, in 1942 he was released
from duty due to a nervous breakdown. It is unclear whether or not Gentzen’s
loyalties lay with the Nazi party, or whether he joined the party in order to en-
sure academic success.

In 1943, Gentzen was offered an academic position at the Mathematical
Institute of the German University of Prague, which he accepted. However, in
1945 the citizens of Prague revolted against German occupation. Soviet forces
arrived in the city and arrested all the professors at the university. Because of
his membership in Nazi organizations, Gentzen was taken to a forced labour
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camp. He died of malnutrition while in his cell on August 4, 1945 at the age
of 35.

Further Reading For a full biography of Gentzen, see Menzler-Trott (2007).
An interesting read about mathematicians under Nazi rule, which gives a brief
note about Gentzen's life, is given by Segal (2014). Gentzen’s papers on logical
deduction are available in the original german (Gentzen, 1935a,b). English
translations of Gentzen’s papers have been collected in a single volume by
Szabo (1969), which also includes a biographical sketch.

244 Kurt Godel

Kurt Godel (GER-dle) was born on
April 28, 1906 in Briinn in the Austro-
Hungarian empire (now Brno in the
Czech Republic). Due to his inquisitive
and bright nature, young Kurtele was
often called “Der kleine Herr Warum”
(Little Mr. Why) by his family. He
excelled in academics from primary
school onward, where he got less than
the highest grade only in mathematics.
Godel was often absent from school
due to poor health and was exempt
from physical education. Godel was
diagnosed with rheumatic fever dur-
ing his childhood. Throughout his life,
he believed this permanently affected
his heart despite medical assessment
saying otherwise. Figure 24.4: Kurt Godel
Godel began studying at the Uni-

versity of Vienna in 1920 and completed his doctoral studies in 1929. He first
intended to study physics, but his interests soon moved to mathematics and
especially logic, in part due to the influence of the philosopher Rudolf Car-
nap. His dissertation, written under the supervision of Hans Hahn, proved
the completeness theorem of first-order predicate logic with identity. Only a
couple years later, his most famous results were published—the first and sec-
ond incompleteness theorems (Godel, 1931). During his time in Vienna, Godel
was also involved with the Vienna Circle, a group of scientifically-minded
philosophers.

In 1938, Godel married Adele Nimbursky. His parents were not pleased:
not only was she six years older than him and already divorced, but she
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worked as a dancer in a nightclub. Social pressures did not affect Godel, how-
ever, and they remained happily married until his death.

After Nazi Germany annexed Austria in 1938, Godel and Adele immi-
grated to the United States, where he took up a position at the Institute for
Advanced Study in Princeton, New Jersey. Despite his introversion and ec-
centric nature, Godel’s time at Princeton was collaborative and fruitful. He
published essays in set theory, philosophy and physics. Notably, he struck up
a particularly strong friendship with his colleague at the IAS, Albert Einstein.

In his later years, Godel’s mental health deteriorated. His wife’s hospital-
ization in 1977 meant she was no longer able to cook his meals for him. Suc-
cumbing to both paranoia and anorexia, and deathly afraid of being poisoned,
Godel refused to eat. He died of starvation on January 14, 1978 in Princeton.

Further Reading For a complete biography of Godel’s life is available, see
( ). For further biographical pieces, as well as essays about

Godel’s contributions to logic and philosophy, see ( ),
(2011), (2003), and (2007).

Godel’s PhD thesis is available in the original German ( , ). The
original text of the incompleteness theorems is ( , ). All of Godel’s
published and unpublished writings, as well as a selection of correspondence,
are available in English in his Collected Papers ( , )-

For a detailed treatment of Godel’s incompleteness theorems, see
( ). For an informal, philosophical discussion of Godel’s theorems, see
Mark Linsenmayer’s podcast ( , )-

The Kurt Godel society keeps Godel’s memory alive by promoting re-
search in logic and other areas influenced by his works

(2004).

24.5 Emmy Noether

Emmy Noether (NER-ter) was born in Erlangen, Germany, on March 23, 1882,
to an upper-middle class scholarly family. Hailed as the “mother of modern
algebra,” Noether made groundbreaking contributions to both mathematics
and physics, despite significant barriers to women’s education. In Germany at
the time, young girls were meant to be educated in arts and were not allowed
to attend college preparatory schools. However, after auditing classes at the
Universities of Gottingen and Erlangen (where her father was professor of
mathematics), Noether was eventually able to enrol as a student at Erlangen
in 1904, when their policy was updated to allow female students. She received
her doctorate in mathematics in 1907.

Despite her qualifications, Noether experienced much resistance during
her career. From 1908-1915, she taught at Erlangen without pay. During this
time, she caught the attention of David Hilbert, one of the world’s foremost
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mathematicians of the time, who invited her to Gottingen. However, women
were prohibited from obtaining professorships, and she was only able to lec-
ture under Hilbert’s name, again without pay. During this time she proved
what is now known as Noether’s theorem, which is still used in theoretical
physics today. Noether was finally granted the right to teach in 1919. Hilbert’s
response to continued resistance of his university colleagues reportedly was:
“Gentlemen, the faculty senate is not a bathhouse.”

In the later 1920s, she concentrated
on work in abstract algebra, and her
contributions revolutionized the field.
In her proofs she often made use of
the so-called ascending chain condi-
tion, which states that there is no infi-
nite strictly increasing chain of certain
sets. For instance, certain algebraic
structures now known as Noetherian
rings have the property that there are
no infinite sequences of ideals I; C
I € .... The condition can be gener-
alized to any partial order (in algebra,
it concerns the special case of ideals or-
dered by the subset relation), and we
can also consider the dual descending
chain condition, where every strictly
decreasing sequence in a partial order
eventually ends. If a partial order sat-
isfies the descending chain condition, it is possible to use induction along this
order in a similar way in which we can use induction along the < order on IN.
Such orders are called well-founded or Noetherian, and the corresponding proof
principle Noetherian induction.

Figure 24.5: Emmy Noether

Noether was Jewish, and when the Nazis came to power in 1933, she was
dismissed from her position. Luckily, Noether was able to emigrate to the
United States for a temporary position at Bryn Mawr, Pennsylvania. During
her time there she also lectured at Princeton, although she found the univer-
sity to be unwelcoming to women (Dick, 1981, 81). In 1935, Noether under-
went an operation to remove a uterine tumour. She died from an infection as
a result of the surgery, and was buried at Bryn Mawr.

Further Reading For a biography of Noether, see Dick (1981). The Perime-
ter Institute for Theoretical Physics has their lectures on Noether’s life and
influence available online (Institute, 2015). If you're tired of reading, Stuff You
Missed in History Class has a podcast on Noether’s life and influence (Frey and
Wilson, 2015). The collected works of Noether are available in the original
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German (Jacobson, 1983).

24.6 Rozsa Péter

Roézsa Péter was born Résza Politzer,
in Budapest, Hungary, on February 17,
1905. She is best known for her work
on recursive functions, which was es-
sential for the creation of the field of
recursion theory.

Péter was raised during harsh po-
litical times—WWI raged when she
was a teenager—but was able to at-
tend the affluent Maria Terezia Girls’
School in Budapest, from where she
graduated in 1922. She then studied
at Pazmany Péter University (later re-
named Lordnd Eotvos University) in
Budapest. She began studying chem-
istry at the insistence of her father,
but later switched to mathematics, and
graduated in 1927. Although she had the credentials to teach high school
mathematics, the economic situation at the time was dire as the Great De-
pression affected the world economy. During this time, Péter took odd jobs
as a tutor and private teacher of mathematics. She eventually returned to
university to take up graduate studies in mathematics. She had originally
planned to work in number theory, but after finding out that her results had
already been proven, she almost gave up on mathematics altogether. She was
encouraged to work on Godel’s incompleteness theorems, and unknowingly
proved several of his results in different ways. This restored her confidence,
and Péter went on to write her first papers on recursion theory, inspired by
David Hilbert’s foundational program. She received her PhD in 1935, and in
1937 she became an editor for the Journal of Symbolic Logic.

Péter’s early papers are widely credited as founding contributions to the
field of recursive function theory. In Péter (1935a), she investigated the rela-
tionship between different kinds of recursion. In Péter (1935b), she showed
that a certain recursively defined function is not primitive recursive. This
simplified an earlier result due to Wilhelm Ackermann. Péter’s simplified
function is what’s now often called the Ackermann function—and sometimes,
more properly, the Ackermann-Péter function. She wrote the first book on re-
cursive function theory (Péter, 1951).

Despite the importance and influence of her work, Péter did not obtain a
full-time teaching position until 1945. During the Nazi occupation of Hungary

Figure 24.6: R6zsa Péter
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during World War II, Péter was not allowed to teach due to anti-Semitic laws.
In 1944 the government created a Jewish ghetto in Budapest; the ghetto was
cut off from the rest of the city and attended by armed guards. Péter was
forced to live in the ghetto until 1945 when it was liberated. She then went on
to teach at the Budapest Teachers Training College, and from 1955 onward at
Eo6tvos Lorand University. She was the first female Hungarian mathematician
to become an Academic Doctor of Mathematics, and the first woman to be
elected to the Hungarian Academy of Sciences.

Péter was known as a passionate teacher of mathematics, who preferred
to explore the nature and beauty of mathematical problems with her students
rather than to merely lecture. As a result, she was affectionately called “Aunt
Rosa” by her students. Péter died in 1977 at the age of 71.

Further Reading For more biographical reading, see (O’Connor and Robert-
son, 2014) and (Andrasfai, 1986). Tamassy (1994) conducted a brief interview
with Péter. For a fun read about mathematics, see Péter’s book Playing With
Infinity (Péter, 2010).

24.7 Julia Robinson

Julia Bowman Robinson was an Amer-
ican mathematician. She is known
mainly for her work on decision prob-
lems, and most famously for her con-
tributions to the solution of Hilbert’s
tenth problem. Robinson was born
in St. Louis, Missouri on Decem-
ber 8, 1919. At a young age Robin-
son recalls being intrigued by numbers
(Reid, 1986, 4). At age nine she con-
tracted scarlet fever and suffered from
several recurrent bouts of rheumatic
fever. This forced her to spend much of
her time in bed, putting her behind in
her education. Although she was able
to catch up with the help of private tu-
tors, the physical effects of her illness
had a lasting impact on her life.
Despite her childhood struggles, Robinson graduated high school with
several awards in mathematics and the sciences. She started her university
career at San Diego State College, and transferred to the University of Califor-
nia, Berkeley as a senior. There she was highly influenced by mathematician
Raphael Robinson. They quickly became good friends, and married in 1941.

Figure 24.7: Julia Robinson
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As a spouse of a faculty member, Robinson was barred from teaching in the
mathematics department at Berkeley. Although she continued to audit mathe-
matics classes, she hoped to leave university and start a family. Not long after
her wedding, however, Robinson contracted pneumonia. She was told that
there was substantial scar tissue build up on her heart due to the rheumatic
fever she suffered as a child. Due to the severity of the scar tissue, the doctor
predicted that she would not live past forty and she was advised not to have
children ( , , 13).

Robinson was depressed for a long time, but eventually decided to con-
tinue studying mathematics. She returned to Berkeley and completed her PhD
in 1948 under the supervision of Alfred Tarski. The first-order theory of the
real numbers had been shown to be decidable by Tarski, and from Godel’s
work it followed that the first-order theory of the natural numbers is unde-
cidable. It was a major open problem whether the first-order theory of the
rationals is decidable or not. In her thesis ( ), Robinson proved that it was
not.

Interested in decision problems, Robinson next attempted to find a solu-
tion Hilbert’s tenth problem. This problem was one of a famous list of 23
mathematical problems posed by David Hilbert in 1900. The tenth problem
asks whether there is an algorithm that will answer, in a finite amount of
time, whether or not a polynomial equation with integer coefficients, such as
3x2 — 2y + 3 = 0, has a solution in the integers. Such questions are known as
Diophantine problems. After some initial successes, Robinson joined forces with
Martin Davis and Hilary Putnam, who were also working on the problem.
They succeeded in showing that exponential Diophantine problems (where
the unknowns may also appear as exponents) are undecidable, and showed
that a certain conjecture (later called “J.R.”) implies that Hilbert’s tenth prob-
lem is undecidable ( , ). Robinson continued to work on the
problem for the next decade. In 1970, the young Russian mathematician Yuri
Matijasevich finally proved the J.R. hypothesis. The combined result is now
called the Matijasevich-Robinson-Davis-Putnam theorem, or MDRP theorem
for short. Matijasevich and Robinson became friends and collaborated on sev-
eral papers. In a letter to Matijasevich, Robinson once wrote that “actually I
am very pleased that working together (thousands of miles apart) we are obvi-
ously making more progress than either one of us could alone” ( ,

,45).

Robinson was the first female president of the American Mathematical So-
ciety, and the first woman to be elected to the National Academy of Science.
She died on July 30, 1985 at the age of 65 after being diagnosed with leukemia.

Further Reading Robinson’s mathematical papers are available in her Col-
lected Works ( , ), which also includes a reprint of her National
Academy of Sciences biographical memoir ( , ). Robinson’s older
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sister Constance Reid published an “Autobiography of Julia,” based on inter-
views (Reid, 1986), as well as a full memoir (Reid, 1996). A short documentary
about Robinson and Hilbert’s tenth problem was directed by George Csicsery
(Csicsery, 2016). For a brief memoir about Yuri Matijasevich’s collaborations
with Robinson, and her influence on his work, see (Matijasevich, 1992).

24.8 Bertrand Russell

Bertrand Russell is hailed as one of
the founders of modern analytic phi-
losophy. Born May 18, 1872, Russell
was not only known for his work in
philosophy and logic, but wrote many
popular books in various subject areas.
He was also an ardent political activist
throughout his life.

Russell was born in Trellech, Mon-
mouthshire, Wales. His parents were
members of the British nobility. They
were free-thinkers, and even made
friends with the radicals in Boston at
the time. Unfortunately, Russell’s par-
ents died when he was young, and
Russell was sent to live with his grand-
parents. There, he was given a reli-
gious upbringing (something his par- Figure 24.8: Bertrand Russell
ents had wanted to avoid at all costs).

His grandmother was very strict in all matters of morality. During adoles-
cence he was mostly homeschooled by private tutors.

Russell’s influence in analytic philosophy, and especially logic, is tremen-
dous. He studied mathematics and philosophy at Trinity College, Cambridge,
where he was influenced by the mathematician and philosopher Alfred North
Whitehead. In 1910, Russell and Whitehead published the first volume of
Principia Mathematica, where they championed the view that mathematics is
reducible to logic. He went on to publish hundreds of books, essays and po-
litical pamphlets. In 1950, he won the Nobel Prize for literature.

Russell’s was deeply entrenched in politics and social activism. During
World War I he was arrested and sent to prison for six months due to pacifist
activities and protest. While in prison, he was able to write and read, and
claims to have found the experience “quite agreeable.” He remained a pacifist
throughout his life, and was again incarcerated for attending a nuclear disar-
mament rally in 1961. He also survived a plane crash in 1948, where the only
survivors were those sitting in the smoking section. As such, Russell claimed
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that he owed his life to smoking. Russell was married four times, but had a
reputation for carrying on extra-marital affairs. He died on February 2, 1970
at the age of 97 in Penrhyndeudraeth, Wales.

Further Reading Russell wrote an autobiography in three parts, spanning
his life from 1872-1967 (Russell, 1967, 1968, 1969). The Bertrand Russell Re-
search Centre at McMaster University is home of the Bertrand Russell archives.
See their website at Duncan (2015), for information on the volumes of his col-
lected works (including searchable indexes), and archival projects. Russell’s
paper On Denoting (Russell, 1905) is a classic of 20th century analytic philoso-
phy.

The Stanford Encyclopedia of Philosophy entry on Russell (Irvine, 2015)
has sound clips of Russell speaking on Desire and Political theory. Many video
interviews with Russell are available online. To see him talk about smoking
and being involved in a plane crash, e.g., see Russell (n.d.). Some of Russell’s
works, including his Introduction to Mathematical Philosophy are available as
free audiobooks on LibriVox (n.d.).

249 Alfred Tarski

Alfred Tarski was born on January 14,
1901 in Warsaw, Poland (then part of
the Russian Empire). Often described
as “Napoleonic,” Tarski was boister-
ous, talkative, and intense. His energy
was often reflected in his lectures—he
once set fire to a wastebasket while dis-
posing of a cigarette during a lecture,
and was forbidden from lecturing in
that building again.

Tarski had a thirst for knowledge
from a young age. Although later in
life he would tell students that he stud-
ied logic because it was the only class
in which he got a B, his high school
records show that he got A’s across the
board—even in logic. He studied at Figure 24.9: Alfred Tarski
the University of Warsaw from 1918 to
1924. Tarski first intended to study biology, but became interested in mathe-
matics, philosophy, and logic, as the university was the center of the Warsaw
School of Logic and Philosophy. Tarski earned his doctorate in 1924 under the
supervision of Stanistaw Le$niewski.
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Before emigrating to the United States in 1939, Tarski completed some of
his most important work while working as a secondary school teacher in War-
saw. His work on logical consequence and logical truth were written during
this time. In 1939, Tarski was visiting the United States for a lecture tour. Dur-
ing his visit, Germany invaded Poland, and because of his Jewish heritage,
Tarski could not return. His wife and children remained in Poland until the
end of the war, but were then able to emigrate to the United States as well.
Tarski taught at Harvard, the College of the City of New York, and the Insti-
tute for Advanced Study at Princeton, and finally the University of California,
Berkeley. There he founded the multidisciplinary program in Logic and the
Methodology of Science. Tarski died on October 26, 1983 at the age of 82.

Further Reading For more on Tarski’s life, see the biography Alfred Tarski:
Life and Logic (Feferman and Feferman, 2004). Tarski’s seminal works on logi-
cal consequence and truth are available in English in (Corcoran, 1983). All of
Tarski’s original works have been collected into a four volume series, (Tarski,
1981).

24.10 Alan Turing

Alan Turing was born in Mailda Vale,
London, on June 23, 1912. He is con-
sidered the father of theoretical com-
puter science. Turing’s interest in
the physical sciences and mathematics
started at a young age. However, as a
boy his interests were not represented
well in his schools, where emphasis
was placed on literature and classics.
Consequently, he did poorly in school
and was reprimanded by many of his
teachers.

Turing attended King’s College,
Cambridge as an undergraduate, where
he studied mathematics. In 1936 Tur-
ing developed (what is now called) the Figure 24.10: Alan Turing
Turing machine as an attempt to pre-
cisely define the notion of a computable function and to prove the undecid-
ability of the decision problem. He was beaten to the result by Alonzo Church,
who proved the result via his own lambda calculus. Turing’s paper was still
published with reference to Church’s result. Church invited Turing to Prince-
ton, where he spent 1936-1938, and obtained a doctorate under Church.
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Despite his interest in logic, Turing’s earlier interests in physical sciences
remained prevalent. His practical skills were put to work during his ser-
vice with the British cryptanalytic department at Bletchley Park during World
War II. Turing was a central figure in cracking the cypher used by German
Naval communications—the Enigma code. Turing’s expertise in statistics and
cryptography, together with the introduction of electronic machinery, gave
the team the ability to crack the code by creating a de-crypting machine called
a “bombe.” His ideas also helped in the creation of the world’s first pro-
grammable electronic computer, the Colossus, also used at Bletchley park to
break the German Lorenz cypher.

Turing was gay. Nevertheless, in 1942 he proposed to Joan Clarke, one
of his teammates at Bletchley Park, but later broke off the engagement and
confessed to her that he was homosexual. He had several lovers throughout
his lifetime, although homosexual acts were then criminal offences in the UK.
In 1952, Turing’s house was burgled by a friend of his lover at the time, and
when filing a police report, Turing admitted to having a homosexual relation-
ship, under the impression that the government was on their way to legalizing
homosexual acts. This was not true, and he was charged with gross indecency.
Instead of going to prison, Turing opted for a hormone treatment that reduced
libido. Turing was found dead on June 8, 1954, of a cyanide overdose—most
likely suicide. He was given a royal pardon by Queen Elizabeth II in 2013.

Further Reading For a comprehensive biography of Alan Turing, see

(2014). Turing’s life and work inspired a play, Breaking the Code, which was
produced in 1996 for TV starring Derek Jacobi as Turing. The Imitation Game,
an Academy Award nominated film starring Bendict Cumberbatch and Kiera
Knightley, is also loosely based on Alan Turing’s life and time at Bletchley
Park ( , ).

( ) has several podcasts on Turing’s life and work. BBC Hori-
zon’s documentary The Strange Life and Death of Dr. Turing is available to watch
online ( , ). ( , ) is a short video of a working LEGO Tur-

ing Machine—made to honour Turing’s centenary in 2012.
Turing’s original paper on Turing machines and the decision problem is

(1957).

24.11 Ernst Zermelo

Ernst Zermelo was born on July 27, 1871 in Berlin, Germany. He had five
sisters, though his family suffered from poor health and only three survived
to adulthood. His parents also passed away when he was young, leaving
him and his siblings orphans when he was seventeen. Zermelo had a deep
interest in the arts, and especially in poetry. He was known for being sharp,
witty, and critical. His most celebrated mathematical achievements include
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the introduction of the axiom of choice (in 1904), and his axiomatization of set
theory (in 1908).

Zermelo’s interests at university
were varied. He took courses in
physics, mathematics, and philosophy.
Under the supervision of Hermann
Schwarz, Zermelo completed his dis-
sertation Investigations in the Calculus of
Variations in 1894 at the University of
Berlin. In 1897, he decided to pursue
more studies at the University of Gotti-
gen, where he was heavily influenced
by the foundational work of David
Hilbert. In 1899 he became eligible for
professorship, but did not get one un-
til eleven years later—possibly due to
his strange demeanour and “nervous
haste.”

Zermelo finally received a paid Figure 24.11: Ernst Zermelo

professorship at the University of

Zurich in 1910, but was forced to re-

tire in 1916 due to tuberculosis. After his recovery, he was given an hon-
ourary professorship at the University of Freiburg in 1921. During this time
he worked on foundational mathematics. He became irritated with the works
of Thoralf Skolem and Kurt Godel, and publicly criticized their approaches in
his papers. He was dismissed from his position at Freiburg in 1935, due to his
unpopularity and his opposition to Hitler’s rise to power in Germany.

The later years of Zermelo’s life were marked by isolation. After his dis-
missal in 1935, he abandoned mathematics. He moved to the country where
he lived modestly. He married in 1944, and became completely dependent on
his wife as he was going blind. Zermelo lost his sight completely by 1951. He
passed away in Giinterstal, Germany, on May 21, 1953.

Further Reading For a full biography of Zermelo, see Ebbinghaus (2015).
Zermelo’s seminal 1904 and 1908 papers are available to read in the original
German (Zermelo, 1904, 1908). Zermelo’s collected works, including his writ-
ing on physics, are available in English translation in (Ebbinghaus et al., 2010;
Ebbinghaus and Kanamori, 2013).
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Photo Credits

Georg Cantor, p. 305: Portrait of Georg Cantor by Otto Zeth courtesy of the
Universitdtsarchiv, Martin-Luther Universitat Halle-Wittenberg. UAHW Rep. 40-
VI, Nr. 3 Bild 102.

Alonzo Church, p. 306: Portrait of Alonzo Church, undated, photogra-
pher unknown. Alonzo Church Papers; 1924-1995, (C0948) Box 60, Folder 3.
Manuscripts Division, Department of Rare Books and Special Collections, Prince-
ton University Library. (© Princeton University. The Open Logic Project has
obtained permission to use this image for inclusion in non-commercial OLP-
derived materials. Permission from Princeton University is required for any
other use.

Gerhard Gentzen, p. 307: Portrait of Gerhard Gentzen playing ping-pong
courtesy of Ekhart Mentzler-Trott.

Kurt Godel, p. 308: Portrait of Kurt Godel, ca. 1925, photographer un-
known. From the Shelby White and Leon Levy Archives Center, Institute for
Advanced Study, Princeton, NJ, USA, on deposit at Princeton University Li-
brary, Manuscript Division, Department of Rare Books and Special Collec-
tions, Kurt Godel Papers, (C0282), Box 14b, #110000. The Open Logic Project
has obtained permission from the Institute’s Archives Center to use this image
for inclusion in non-commercial OLP-derived materials. Permission from the
Archives Center is required for any other use.

Emmy Noether, p. 310: Portrait of Emmy Noether, ca. 1922, courtesy of the
Abteilung fiir Handschriften und Seltene Drucke, Niedersédchsische Staats-
und Universitédtsbibliothek Gottingen, Cod. Ms. D. Hilbert 754, Bl. 14 Nr. 73.
Restored from an original scan by Joel Fuller.

Roézsa Péter, p. 311: Portrait of Rézsa Péter, undated, photographer un-
known. Courtesy of Béla Andrésfai.

Julia Robinson, p. 312: Portrait of Julia Robinson, unknown photographer,
courtesy of Neil D. Reid. The Open Logic Project has obtained permission to
use this image for inclusion in non-commercial OLP-derived materials. Per-
mission is required for any other use.

Bertrand Russell, p. 314: Portrait of Bertrand Russell, ca. 1907, courtesy of
the William Ready Division of Archives and Research Collections, McMaster
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Photo Credits

University Library. Bertrand Russell Archives, Box 2, {. 4.

Alfred Tarski, p. 315: Passport photo of Alfred Tarski, 1939. Cropped and
restored from a scan of Tarski’s passport by Joel Fuller. Original courtesy
of Bancroft Library, University of California, Berkeley. Alfred Tarski Papers,
Banc MSS 84/49. The Open Logic Project has obtained permission to use this
image for inclusion in non-commercial OLP-derived materials. Permission
from Bancroft Library is required for any other use.

Alan Turing, p. 316: Portrait of Alan Mathison Turing by Elliott & Fry, 29
March 1951, NPG x82217, (© National Portrait Gallery, London. Used under a
Creative Commons BY-NC-ND 3.0 license.

Ernst Zermelo, p. 318: Portrait of Ernst Zermelo, ca. 1922, courtesy of the
Abteilung fiir Handschriften und Seltene Drucke, Niedersédchsische Staats-
und Universitdtsbibliothek Gottingen, Cod. Ms. D. Hilbert 754, Bl. 6 Nr. 25.
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