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1. Introduction

The aim of this chapter is to present a system of linear equation and inequalities in max-al‐
gebra. Max-algebra is an analogue of linear algebra developed on the pair of operations
(⊕ , ⊗ ) extended to matrices and vectors, where a⊕ b = max(a, b) and a⊗ b = a + b for
a, b ∈ ℝ. The system of equations A⊗ x = c and inequalities B⊗ x ≤ d  have each been stud‐
ied in the literature. We will present necessary and sufficient conditions for the solvability of
a system consisting of these two systems and also develop a polynomial algorithm for solv‐
ing max-linear program whose constraints are max-linear equations and inequalities. More‐
over, some solvability concepts of an inteval system of linear equations and inequalities will
also be presented.

Max-algebraic linear systems were investigated in the first publications which deal with the
introduction of algebraic structures called (max,+) algebras. Systems of equations with varia‐
bles only on one side were considered in these publications [1], [2] and [3]. Other systems
with a special structure were investigated in the context of solving eigenvalue problems in
correspondence with algebraic structures or synchronisation of discrete event systems, see
[4] and also [1] for additional information. Given a matrix A, a vector b of an appropriate
size, using the notation ⊕ = max, ⊗ = plus, the studied systems had one of the following
forms: A⊗ x = b, A⊗ x = x or A⊗ x = x⊕ b. An infinite dimensional generalisation can be
found in [5].

In [1] Cuninghame-Green showed that the problem A⊗ x = b can be solved using residua‐
tion [6]. That is the equality in A⊗ x = b be relaxed so that the set of its sub-solutions is stud‐
ied. It was shown that the greatest solution of A⊗ x ≤ b is given by x̄ where
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x̄ j = mini∈M (bi⊗ aij
-1) forall j ∈ N ()

The equation A⊗ x = b is also solved using the above result as follows: The equation
A⊗ x = b has solution if and only if A⊗ x̄ = b. Also, Gaubert [7] proposed a method for solv‐
ing the one-sided system x = A⊗ x⊕ b using rational calculus.

Zimmermann [3] developed a method for solving A⊗ x = b by set covering and also pre‐
sented an algorithm for solving max-linear programs with one sided constraints. This meth‐
od is proved to has a computational complexity of O(mn), where m, n are the number of
rows and columns of input matrices respectively. Akian, Gaubert and Kolokoltsov [5] ex‐
tended Zimmermann's solution method by set covering to the case of functional Galois con‐
nections.

Butkovic [8] developed a max-algebraic method for finding all solutions to a system of in‐
equalities xi - xj > bij, i, j = 1, ..., n using n generators. Using this method Butkovic [8] devel‐
oped a pseudopolynomial algorithm which either finds a bounded mixed-integer solution,
or decides that no such solution exists. Summary of these results can be found in [9] and [10]

Cechlárova and Diko [11] proposed a method for resolving infeasibility of the system
A⊗ x = b . The techniques presented in this method are to modify the right-hand side as lit‐
tle as possible or to omit some equations. It was shown that the problem of finding the mini‐
mum number of those equations is NP-complete.

2. Max-algebra and some basic definitions

In this section we introduce max-algebra, give the essential definitions and show how the
operations of max-algebra can be extended to matrices and vectors.

In max-algebra, we replace addition and multiplication, the binary operations in conven‐
tional linear algebra, by maximum and addition respectively. For any problem that involves
adding numbers together and taking the maximum of numbers, it may be possible to de‐
scribe it in max-algebra. A problem that is nonlinear when described in conventional terms
may be converted to a max-algebraic problem that is linear with respect to
(⊕ , ⊗ ) = (max , + ).

Definition 1 The max-plus semiring ℝ̄ is the set ℝ ∪ { - ∞}, equipped with the addition
(a, b) ↦ max(a, b) and multiplication (a, b) ↦ a + b denoted by ⊕  and ⊗  respectively. That
is a⊕ b = max (a, b) and a⊗ b = a + b. The identity element for the addition (or zero) is -∞,
and the identity element for the multiplication (or unit) is 0.

Definition 2 The min-plus semiring ℝmin is the set ℝ ∪ { + ∞}, equipped with the addition
(a, b) ↦ min(a, b) and multiplication (a, b) ↦ a + b denoted by ⊕ '  and ⊗ '  respectively. The
zero is +∞, and the unit is 0. The name tropical semiring is also used as a synonym of min-
plus when the ground set is ℕ.
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The completed max-plus semiring ℝ̄max is the set ℝ ∪ { ± ∞}, equipped with the addition
(a, b) ↦ max(a, b) and multiplication (a, b) ↦ a + b, with the convention that
-∞ + ( + ∞) = + ∞ + ( - ∞) = - ∞. The completed min-plus semiring ℝ̄min is defined in the dual
way.

Proposition 1 The following properties hold for all a, b, c ∈ ℝ̄:

a⊕ b = b⊕ a
a⊗ b = b⊗ a

a⊕ (b⊕ c) = (a⊕ b)⊕ c
a⊗ (b⊗ c) = (a⊗ b)⊗ c

()

a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c
a⊕ ( - ∞) = - ∞ = ( - ∞)⊕ a

a⊗ 0 = a = 0⊗ a
a⊗ a -1 = 0, a, a -1 ∈ ℝ

()

The statements follow from the definitions.

Proposition 2 For all a, b, c ∈ ℝ̄ the following properties hold:

a ≤ b �a⊕ c ≤ b⊕ c
a ≤ b �a⊗ c ≤ b⊗ c, c ∈ ℝ
a ≤ b �a⊕ b = b
a > b �a⊗ c > b⊗ c, - ∞ < c < + ∞

()

The statements follow from definitions. The pair of operations (⊕ ,⊗ ) is extended to matri‐
ces and vectors as in the conventional linear algebra as follows: For A = (aij), B = (bij) of
compatible sizes and α ∈ ℝ we have:

A⊕ B = (aij⊕ bij)
A⊗ B = (∑

k

⊕ aik ⊗ bkj)

α⊗A = (α⊗ aij)
()

Example 1

(3 1 5
2 1 5)⊕ (-1 0 2

6 -5 4) = (3 1 5
6 1 5) ()

Example 2
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(-4 1 -5
3 0 8)⊗ (-1 2

1 7
3 1

)
= (( - 4 + ( - 1))⊕ (1 + 1)⊕ ( - 5 + 3) ( - 4 + 2)⊕ (1 + 7)⊕ ( - 5 + 1)

(3 + ( - 1))⊕ (0 + 1)⊕ (8 + 3) (3 + 2)⊕ (0 + 7)⊕ (8 + 1) ) = ( 2 8
11 9)

()

Example 3

10⊗ (7 -3 2
6 1 0) = (17 7 12

16 11 10) ()

Proposition 3

For A, B, C ∈ ℝ̄m×n of compatible sizes, the following properties hold:

A⊕ B = B⊕A
A⊕ (B⊕C) = (A⊕ B)⊕C
A⊗ (B⊗C) = (A⊗ B)⊗C
A⊗ (B⊕C) = A⊗ B⊕ A⊗C
(A⊕ B)⊗C = A⊗C ⊕ B⊗C

()

The statements follow from the definitions.

Proposition 4

The following hold for A, B, C , a, b, c, x, y of compatible sizes and α, β ∈ ℝ:

A⊗ (α⊗ B) = α⊗ (A⊗ B)
α⊗ (A⊕ B) = α⊗ A⊕α⊗ B
(α⊕ β)⊗ A = α⊗ A⊕ β⊗ B
x T ⊗α⊗ y = α⊗ x T ⊗ y

a ≤ b �c T ⊗ a ≤ c T ⊗ b
A ≤ B �A⊕C ≤ B⊕C
A ≤ B �A⊗C ≤ B⊗C
A ≤ B �A⊕ B = B

()

The statements follow from the definition of the pair of operations (⊕ ,⊗ ).

Definition 3 Given real numbers a, b, c, ⋯ , a max-algebraic diagonal matrix is defined as:
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diag(a, b, c, ⋯ ) = (a b -∞
c

-∞ ⋱
⋱

) ()

Given a vector d = (d1, d2, ⋯ , dn), the diagonal of the vector d  is denoted as
diag(d ) = diag(d1, d2, ⋯ , dn).

Definition 4 Max-algebraic identity matrix is a diagonal matrix with all diagonal entries zero.
We denote by I  an identity matrix. Therefore, identity matrix I = diag(0, 0, 0, ⋯ ).

It is obvious that A⊗ I = I ⊗A for any matrices A and I  of compatible sizes.

Definition 5 Any matrix that can be obtained from the identity matrix, I , by permuting its
rows and or columns is called a permutation matrix. A matrix arising as a product of a diago‐
nal matrix and a permutation matrix is called a generalised permutation matrix [12].

Definition 6 A matrix A ∈ ℝ̄n×n is invertible if there exists a matrix B ∈ ℝ̄n×n, such that
A⊗ B = B⊗ A = I . The matrix B is unique and will be called the inverse of A. We will hence‐
forth denote B by A -1.

It has been shown in [1] that a matrix is invertible if and only if it is a generalised permuta‐
tion matrix.

If x = (x1, ⋯ , xn) we will denote x -1 = (x1
-1, ⋯ , xn

-1), that is x -1 = - x, in conventional nota‐
tion.

Example 4

Consider the following matrices

A = (-∞ -∞ 3
5 -∞ -∞

-∞ 8 -∞
) and B = (-∞ -5 -∞

-∞ -∞ -8
-3 -∞ -∞

) ()

The matrix B is an inverse of A because,

A⊗ B = (-∞ -∞ 3
5 -∞ -∞

-∞ 8 -∞
)⊗ (-∞ -5 -∞

-∞ -∞ -8
3 -∞ -∞

) = ( 0 -∞ -∞
-∞ 0 -∞
-∞ -∞ 0

) ()

Given a matrix A = (aij) ∈ ℝ̄, the transpose of A will be denoted by A T , that is A T = (a ji).
Structures of discrete-event dynamic systems may be represented by square matrices A over
the semiring:
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ℝ̄ = ({ - ∞} ∪ ℝ, ⊕ , ⊗ ) = ({ - ∞} ∪ ℝ, max, + ) ()

The system ℜ is embeddable in the self-dual system:

ℝ̄̄ = ({ - ∞} ∪ ℝ{ + ∞}, ⊕ , ⊗ , ⊕ ' , ⊗ ' ) = ({ - ∞} ∪ ℝ{ + ∞}, max, + , min, + ) ()

Basic algebraic properties for ⊕ '  and ⊗ '  are similar to those of ⊕  and ⊗  described earlier.
These are obtained by swapping ≤  and ≥  . Extension of the pair (⊕ ' , ⊗ ' ) to matrices and
vectors is as follows:

Given A, B of compatible sizes and α ∈ ℝ, we define the following:

A⊕ ' B = (aij⊕ ' bij)
A⊗ ' B = (∑

k
⊕ ' aik⊗ ' bkj) = mink (aik + bkj)

α⊗ ' A = (α⊗ ' aij)
()

Also, properties of matrices for the pair (⊕ ' , ⊗ ' ) are similar to those of (⊕ , ⊗ ), just swap
≤  and ≥ . For any matrix A = aij  over ℝ̄̄, the conjugate matrix is A * = - a ji  obtained by

negation and transposition, that is A = - A T .

Proposition 5 The following relations hold for any matrices U , V , W  over ℝ̄̄ .

(U⊗ ' V )⊗W ≤ U⊗ ' (V ⊗W ) (id16)

U ⊗ (U *⊗ ' W ) ≤ W (id17)

U ⊗ (U *⊗ ' (U ⊗W )) = U ⊗W (id18)

Follows from the definitions.

3. The Multiprocessor Interactive System (MPIS): A practical application

Linear equations and inequalities in max-algebra have a considerable number of applica‐
tions, the model we present here is called the multiprocessor interactive system (MPIS) which
is formulated as follows:

Products P1, ⋯ , Pm are prepared using n processors, every processor contributing to the
completion of each product by producing a partial product. It is assumed that every pro‐
cessor can work on all products simultaneously and that all these actions on a processor
start as soon as the processor is ready to work. Let aij be the duration of the work of the j th

processor needed to complete the partial product for Pi (i = 1, ⋯ , m; j = 1, ⋯ , n). Let us
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denote by xj the starting time of the j th  processor ( j = 1, ⋯ , n). Then, all partial products
for Pi (i = 1, ⋯ , m; j = 1, ⋯ , n) will be ready at time max (ai1 + x1, ⋯ , ain + xn). If the com‐
pletion times b1, ⋯ , bm are given for each product then the starting times have to satisfy the
following system of equations:

max (ai1 + x1, ⋯ , ain + xn) = bi forall i ∈ M ()

Using the notation a⊕ b = max(a, b) and a⊗ b = a + b for a, b ∈ ℝ extended to matrices and
vectors in the same way as in linear algebra, then this system can be written as

A⊗ x = b (id19)

Any system of the form (▭) is called 'one-sided max-linear system'. Also, if the requirement
is that each product is to be produced on or before the completion times b1, ⋯ , bm, then the
starting times have to satisfy

max (ai1 + x1, ⋯ , ain + xn) ≤ bi forall i ∈ M ()

which can also be written as

A⊗ x ≤ b (id20)

The system of inequalities (▭) is called 'one-sided max-linear system of inequalities'.

4. Linear equations and inequalities in max-algebra

In this section we will present a system of linear equation and inequalities in max-algebra.
Solvability conditions for linear system and inequalities will each be presented. A system
consisting of max-linear equations and inequalities will also be discussed and necessary and
sufficient conditions for the solvability of this system will be presented.

4.1. System of equations

In this section we present a solution method for the system A⊗ x = b as given in [3], [1], [13]
and also in the monograph [10]. Results concerning the existence and uniqueness of solution
to the system will also be presented.

Given A = (aij) ∈ ℝ̄m×n and b = (b1, ⋯ , bm)T ∈ ℝ̄m, a system of the form

A⊗ x = b (id22)
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is called a one-sided max-linear system, some times we may omit 'max-linear' and say one-sid‐

ed system. This system can be written using the conventional notation as follows

max j=1,⋯,n (aij + xj) = bi, i ∈ M (id23)

The system in (▭) can be written after subtracting the right-hand sides constants as

max j=1,⋯,n (aij⊗ bi
-1 + xj) = 0, i ∈ M ()

A one-sided max-linear system whose all right hand side constants are zero is called normal‐

ised max-linear system or just normalised and the process of subtracting the right-hand side

constants is called normalisation. Equivalently, normalisation is the process of multiplying the

system (▭) by the matrix B ' from the left. That is

B '⊗A⊗ x = B '⊗ b = 0 ()

where,

B ' = diag(b1
-1, b2

-1, ⋯ , bm
-1) = diag(b -1) ()

For instance, consider the following one-sided system:

(-2 1 3
3 0 2
1 2 1

)⊗ (x1

x2

x3

) = (56
3
) (id24)

After normalisation, this system is equivalent to

(-7 -4 -2
-3 -6 -4
-2 -1 -2

)⊗ (x1

x2

x3

) = (00
0
) ()

That is after multiplying the system (▭) by

( -5 -∞ -∞
-∞ -6 -∞
-∞ -∞ -3

) ()

Linear Algebra8



Consider the first equation of the normalised system above, that is
max(x1 - 7, x2 - 4, x3 - 2) = 0. This means that if (x1, x2, x3)T  is a solution to this system then
x1 ≤ 7,x2 ≤ 4, x3 ≤ 2 and at least one of these inequalities will be satisfied with equality. From
the other equations of the system, we have for x1 ≤ 3, x1 ≤ 2, hence we have
x1 ≤ min(7, 3, 2) = - max( - 7, - 3, - 2) = - x̄1 where - x̄1 is the column 1 maximum. It is clear
that for all j then xj ≤ x̄ j, where - x̄ j is the column j maximum. At the same time equality
must be attained in some of these inequalities so that in every row there is at least one col‐
umn maximum which is attained by xj. This observation was made in [3].

Definition 7 A matrix A is called doubly ℝ-astic [14], [15], if it has at least one finite element
on each row and on each column.

We introduce the following notations

S(A, b) = {x ∈ ℝ̄n; A⊗ x = b}
M j = {k ∈ M ; bk ⊗ akj

-1 = maxi (bi⊗ aij
-1)} forall j ∈ N

x̄(A, b) j = mini∈M (bi⊗ aij
-1) forall j ∈ N

()

We now consider the cases when A = - ∞ and/or b = - ∞. Suppose that b = - ∞. Then S (A, b)
can simply be written as

S (A, b) = {x ∈ ℝ̄n; xj = - ∞, if Aj ≠ - ∞, j ∈ N } ()

Therefore if A = - ∞ we have S (A, b) = ℝ̄n . Now, if A = - ∞ and b ≠ - ∞ then S (A, b) = ∅.
Thus, we may assume in this section that A = - ∞ and b ≠ - ∞. If bk = - ∞ for some k ∈ M

then for any x ∈ S (A, b) we have xj = - ∞ if akj ≠ - ∞, j ∈ N , as a result the k th  equation
could be removed from the system together with every column j in the matrix A where
akj ≠ - ∞ (if any), and set the corresponding xj = - ∞. Consequently, we may assume without

loss of generality that b ∈ ℝm.

Moreover, if b ∈ ℝm and A has an -∞ row then S (A, b) = ∅. If there is an -∞ column j in A
then xj may take on any value in a solution x. Thus, in what follows we assume without loss

of generality that A is doubly ℝ - astic and b ∈ ℝm.

Theorem 1 Let A = (aij) ∈ ℝ̄m×n be doubly ℝ - astic and b ∈ ℝm. Then x ∈ S (A, b) if and only
if

i) x ≤ x̄(A, b)and

ii) ⋃
j∈Nx

M j = MwhereNx = { j ∈ N ; xj = x̄(A, b) j} ()
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Suppose x ∈ S (A, b). Thus we have,

A⊗ x = b
�max j (aij + xj) = bi forall i ∈ M

�aij + xj = bi forsome j ∈ N

�xj ≤ bi⊗ aij
-1 forall i ∈ M

�xj ≤ mini∈M (bi⊗ aij
-1) forall j ∈ N

()

Hence, x ≤ x̄ .

Now that x ∈ S (A, b). Since M j ⊆ M  we only need to show that M ⊆ ⋃ j∈N x
M j. Let

k ∈ M . Since bk = akj⊗ xj > - ∞ for some j ∈ N  and xj
-1 ≥ x̄ j

-1 ≥ aij⊗ bi
-1 for every i ∈ M  we

have xj
-1 = akj⊗ bk

-1 = maxi∈M aij⊗ bi
-1. Hence k ∈ M j and xj = x̄ j.

Suppose that x ≤ x̄ and ⋃ j∈N x
M j = M . Let k ∈ M , j ∈ N . Then akj⊗ xj ≤ bk  if akj = - ∞. If

akj ≠ - ∞ then

akj⊗ xj ≤ akj⊗ x̄ j ≤ akj⊗ bk ⊗ akj
-1 = bk (id27)

Therefore A⊗ x ≤ b. At the same time k ∈ M j for some j ∈ N  satisfying xj = x̄ j. For this j
both inequalities in (▭) are equalities and thus A⊗ x = b. The following is a summary of pre‐
requisites proved in [1] and [12]:

Theorem 2 Let A = (aij) ∈ ℝ̄m×n be doubly ℝ - astic and b ∈ ℝm. The system A⊗ x = b has a
solution if and only if x̄(A, b) is a solution.

Follows from Theorem ▭.

Since x̄(A, b) has played an important role in the solution of A⊗ x = b. This vector x̄ is called
the principal solution to A⊗ x = b [1], and we will call it likewise. The principal solution will
also be used when studying the systems A⊗ x ≤ b and also when solving the one-sided sys‐
tem containing both equations and inequalities. The one-sided systems containing both
equations and inequalities have been studied in [16] and the result will be presented later in
this chapter.

Note that the principal solution may not be a solution to the system A⊗ x = b. More precise‐
ly, the following are observed in [12]:

Corollary 1 Let A = (aij) ∈ ℝ̄m×n be doubly ℝ - astic and b ∈ ℝm. Then the following three
statements are equivalent:
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i) S (A, b) ≠∅
ii) x̄(A, b) ∈ S (A, b)

iii) ⋃
j∈N

M j = M
()

The statements follow from Theorems ▭ and ▭.

For the existence of a unique solution to the max-linear system A⊗ x = b we have the follow‐
ing corollary:

Corollary 2 Let A = (aij) ∈ ℝ̄m×n be doubly ℝ - astic and b ∈ ℝm. Then S (A, b) = {x̄(A, b)} if

and only if

i) ⋃
j∈N

M j = Mand

ii) ⋃
j∈N

M j ≠ MforanyN ' ⊆ N , N ' ≠ N
()

Follows from Theorem ▭. The question of solvability and unique solvability of the system
A⊗ x = b was linked to the set covering and minimal set covering problem of combinatorics
in [12].

4.2. System of inequalities

In this section we show how a solution to the one-sided system of inequalities can be ob‐
tained.

Let A = (aij) ∈ ℝm×n and b = (b1, ⋯ , bm)T ∈ ℝ. A system of the form:

A⊗ x ≤ b (id32)

is called one-sided max-linear system of inequalities or just one-sided system of inequalities. The
one-sided system of inequalities has received some attention in the past, see [3], [1] and [17]
for more information. Here, we will only present a result which shows that the principal sol‐
ution, x̄(A, b) is the greatest solution to (▭). That is if (▭) has a solution then x̄(A, b) is the
greatest of all the solutions. We denote the solution set of (▭) by S (A, b, ≤ ). That is

S (A, b, ≤ ) = {x ∈ ℝn; A⊗ x ≤ b} ()

Theorem 3 x ∈ S (A, b, ≤ ) if and only if x ≤ x̄(A, b).

Suppose x ∈ S (A, b, ≤ ). Then we have
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A⊗ x ≤ b
�max j (aij + xj) ≤ bi forall i

�aij + xj ≤ bi forall i, j

�xj ≤ bi⊗ aij
-1 forall i, j

�xj ≤ mini (bi⊗ aij
-1) forall j

�x ≤ x̄(A, b)

()

and the proof is now complete. The system of inequalities

A⊗ x ≤ b
C ⊗ x ≥ d

(id34)

was discussed in [18] where the following result was presented.

Lemma 1 A system of inequalities (▭) has a solution if and only if C ⊗ x̄(A, b) ≥ d

4.3. A system containing of both equations and inequalities

In this section a system containing both equations and inequalities will be presented, the re‐

sults were taken from [16]. Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝr . A one-sided max-linear system with both equations and inequalities is of

the form:

A⊗ x = b
C ⊗ x ≤ d

(id37)

We shall use the following notation throughout this paper

R = {1, 2, ..., r}
S (A, C , b, d ) = {x ∈ ℝn; A⊗ x = b and C ⊗ x ≤ d }

S(C , d , ≤ ) = {x ∈ ℝn; C ⊗ x ≤ d }
x̄ j(C , d ) = mini∈R (di⊗ cij

-1) forall j ∈ N
K = {1, ⋯ , k }
K j = {k ∈ K ; bk ⊗ akj

-1 = mini∈K (bi⊗ aij
-1)} forall j ∈ N

()
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x̄ j(A, b) = mini∈K (bi⊗ aij
-1) forall j ∈ N

x̄ = (x̄1, ..., x̄n)T

J = { j ∈ N ; x̄ j(C , d ) ≥ x̄ j(A, b)} and
L = N ∖ J

()

We also define the vector x̂ = (x̂1, x̂2, ..., x̂n)T , where

x̂ j(A, C , b, d ) ≡ {x̄ j(A, b) if j ∈ J
x̄ j(C , d ) if j ∈ L

(id38)

and N x̂ = { j ∈ N ; x̂ j = x̄ j}.

Theorem 4 Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝr . Then the following three statements are equivalent:

(i) S (A, C , b, d ) ≠∅
(ii) x̂(A, C , b, d ) ∈ S(A, C , b, d )

(iii) ⋃
j∈J

K j = K
()

(i) �(ii). Let x ∈ S (A, C , b, d ), therefore x ∈ S (A, b) and x ∈ S (C , d , ≤ ). Since
x ∈ S (C , d , ≤ ), it follows from Theorem ▭ that x ≤ x̄(C , d ). Now that x ∈ S (A, b) and also
x ∈ S (C , d , ≤ ), we need to show that x̄ j(C , d ) ≥ x̄ j(A, b) for all j ∈ Nx (that is Nx ⊆ J ). Let
j ∈ Nx then xj = x̄ j(A, b). Since x ∈ S (C , d , ≤ ) we have x ≤ x̄(C , d ) and therefore
x̄ j(A, b) ≤ x̄ j(C , d ) thus j ∈ J . Hence, Nx ⊆ J  and by Theorem ▭ ⋃ j∈J K j = K . This also

proves (i) �(iii)

(iii) �(i). Suppose ⋃ j∈J K j = K . Since x̂(A, C , b, d ) ≤ x̄(C , d ) we have
x̂(A, C , b, d ) ∈ S(C , d , ≤ ). Also x̂(A, C , b, d ) ≤ x̄(A, b) and N x̂ ⊇ J  gives
⋃ j∈N x̂ (A,C ,b,d )

K j ⊇ ⋃ j∈J K j = K . Hence ⋃ j∈N x̂ (A,C ,b,d )
K j = K , therefore x̂(A, C , b, d ) ∈ S(A, b)

and x̂(A, C , b, d ) ∈ S(C , d , ≤ ). Hence x̂(A, C , b, d ) ∈ S(A, C , b, d ) (that is
S (A, C , b, d ) ≠∅) and this also proves (iii) �(ii).

Theorem 5 Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝr . Then x ∈ S (A, C , b, d ) if and only if

(i) x ≤ x̂(A, C , b, d )and

(ii) ⋃
j∈Nx

K j = KwhereNx = { j ∈ N ; xj = x̄ j(A, b)} ()
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(�) Let x ∈ S (A, C , b, d ), then x ≤ x̄(A, b) and x ≤ x̄(C , d ). Since
x̂(A, C , b, d ) = x̄(A, b)⊕ ' x̄(C , d ) we have x ≤ x̂(A, C , b, d ). Also, x ∈ S (A, C , b, d ) implies
that x ∈ S (C , d , ≤ ). It follows from Theorem ▭ that ⋃ j∈N x

K j = K .

(�) Suppose that x ≤ x̂(A, C , b, d ) = x̄(A, b)⊕ ' x̄(C , d ) and ⋃ j∈N x
K j = K . It follows from The‐

orem ▭ that x ∈ S (A, b), also by Theorem ▭ x ∈ S (C , d , ≤ ). Thus
x ∈ S (A, b) ∩ S (C , d , ≤ ) = S(A, C , b, d ).

We introduce the symbol | X |  which stands for the number of elements of the set X .

Lemma 2 Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝr . If | S(A, C , b, d ) | = 1 then | S(A, b) | = 1.

Suppose | S(A, C , b, d ) | = 1, that is S (A, C , b, d ) = {x} for an x ∈ ℝn. Since
S (A, C , b, d ) = {x} we have x ∈ S (A, b) and thus S (A, b) ≠∅. For contradiction, suppose
| S(A, b) | > 1. We need to check the following two cases: (i) L ≠∅ and (ii) L = ∅ where
L = N ∖ J , and show in each case that | S(A, C , b, d ) | > 1.

Proof of Case (i), that is L ≠∅: Suppose that L  contains only one element say n ∈ N  i.e
L = {n}. Since x ∈ S (A, C , b, d ) it follows from Theorem ▭that
x̂(A, C , b, d ) ∈ S(A, C , b, d ). That is
x = x̂(A, C , b, d ) = (x̄1(A, b), x̄2(A, b), ⋯ , x̄n-1(A, b), x̄n(C , d )) ∈ S (A, C , b, d ). It can also be
seen that, x̄(C , d )n < x̄n(A, b) and any vector of the form
z = (x̄1(A, b), x̄2(A, b), ⋯ , x̄n-1(A, b), α) ∈ S (A, C , b, d ), where α ≤ x̄n(C , d ). Hence
| S(A, C , b, d ) | > 1. If L  contains more than one element, then the proof is done in a simi‐

lar way.

Proof of Case (ii), that is L = ∅ (J = N ): Suppose that J = N . Then we have
x̂(A, C , b, d ) = x̄(A, b) ≤ x̄(C , d ). Suppose without loss of generality that x, x ' ∈ S(A, b)
such that x ≠ x '. Then x ≤ x̄(A, b) ≤ x̄(C , d ) and also x ' ≤ x̄(A, b) ≤ x̄(C , d ). Thus,
x, x ' ∈ S(C , d , ≤ ). Consequently, x, x ' ∈ S (A, C , b, d ) and x ≠ x '. Hence
| S(A, C , b, d ) | > 1.

Theorem 6 Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝr . If | S(A, C , b, d ) | = 1 then J = N .

Suppose | S(A, C , b, d ) | = 1. It follows from Theorem ▭ that ⋃ j∈J K j = K . Also,
| S(A, C , b, d ) | = 1 implies that | S(A, b) | = 1 (Lemma ▭). Moreover, | S(A, b) | = 1

implies that ⋃ j∈N K j = K  and ⋃ j∈N ' K j ≠ K , N ' ⊆ N , N ' ≠ N  (Theorem ▭). Since J ⊆ N
and ⋃ j∈J K j = K , we have J = N .

Corollary 3 Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝr . If | S(A, C , b, d ) | = 1 then S (A, C , b, d ) = {x̄(A, b)}.

The statement follows from Theorem ▭ and Lemma ▭.
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Corollary 4 Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝk . Then, the following three statements are equivalent:

(i) | S(A, C , b, d ) | = 1
(ii) | S(A, b) | = 1 and J = N

(iii) ⋃
j∈J

K j = Kand ⋃
j∈J '

K j ≠ K , forevery J ' ⊆ J , J ' ≠ J , and J = N
()

(i) �(ii) Follows from Lemma ▭ and Theorem ▭.

(ii) �(i) Let J = N , therefore x̄ ≤ x̄(C , d ) and thus S (A, b) ⊆ S(C , d , ≤ ). Therefore we have
S (A, C , b, d ) = S (A, b) ∩ S (C , d , ≤ ) = S (A, b). Hence | S(A, C , b, d ) | = 1.

(ii) �(iii) Suppose that S (A, b) = {x} and J = N . It follows from Theorem ▭ that ⋃ j∈N K j = K
and ⋃ j∈N ' K j ≠ K , N ' ⊆ N , N ' ≠ N . Since J = N  the statement now follows from Theorem
▭.

(iii) �(ii) It is immediate that J = N  and the statement now follows from Theorem ▭.

Theorem 7 Let A = (aij) ∈ ℝk ×n, C = (cij) ∈ ℝr×n, b = (b1, ⋯ , bk )T ∈ ℝk  and

d = (d1, ⋯ , dr)T ∈ ℝk . If | S(A, C , b, d ) | > 1 then | S(A, C , b, d ) |  is infinite .

Suppose | S(A, C , b, d ) | > 1. By Corollary ▭ we have ⋃ j∈J K j = K , for some J ⊆ N , J ≠ N
(that is ∃ j ∈ N  such that x̄ j(A, b) > x̄ j(C , d )). Now J ⊆ N  and ⋃ j∈J K j = K , Theorem ▭
implies that any vector x = (x1, x2, ..., xn)T  of the form

xj ≡ {x̄ j(A, b) if j ∈ J
y ≤ x̄ j(C , d ) if j ∈ L

()

is in S (A, C , b, d ), and the statement follows.

Remark 1 From Theorem ▭ we can say that the number of solutions to the one-sided system
containing both equations and inequalities can only be 0, 1, or ∞.

The vector x̂(A, C , b, d ) plays an important role in the solution of the one-sided system con‐
taining both equations and inequalities. This role is the same as that of the principal solution
x̄(A, b) to the one-sided max-linear system A⊗ x = b, see [19] for more details.

5. Max-linear program with equation and inequality constraints

Suppose that the vector f = ( f 1, f 2, ..., f n)T ∈ ℝn is given. The task of minimizing [maxi‐

mizing]the function f (x) = f T ⊗ x = max ( f 1 + x1, f 1 + x2..., f n + xn) subject to (▭) is called
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max-linear program with one-sided equations and inequalities and will be denoted by
ML P≤

min and [ML P≤
max]. We denote the sets of optimal solutions by S min(A, C , b, d ) and

S max(A, C , b, d ), respectively.

Lemma 3 Suppose f ∈ ℝn and let f (x) = f T ⊗ x be defined on ℝn. Then,

(i) f (x) is max-linear, i.e. f (λ⊗ x⊕μ⊗ y) = λ⊗ f (x)⊕μ⊗ f (y)

for every x, y ∈ ℝn.

(ii) f (x) is isotone, i.e. f (x) ≤ f (y) for every x, y ∈ ℝn, x ≤ y.

(i) Let α ∈ ℝ. Then we have

f (λ⊗ x⊕μ⊗ y) = f T ⊗λ⊗ x⊕ f T ⊗μ⊗ y
= λ⊗ f T ⊗ x⊕μ⊗ f T ⊗ y
= λ⊗ f (x)⊕μ⊗ f (y)

()

and the statement now follows.

(ii) Let x, y ∈ ℝn such that x ≤ y. Since x ≤ y, we have

max (x) ≤ max (y)

�f T ⊗ x ≤ f T ⊗ y, forany, f ∈ ℝn

� f (x) ≤ f (y).
()

Note that it would be possible to convert equations to inequalities and conversely but this
would result in an increase of the number of constraints or variables and thus increasing the
computational complexity. The method we present here does not require any new constraint
or variable.

We denote by

(A⊗ x)i = max j∈N (aij + xj) ()

A variable xj will be called active if xj = f (x), for some j ∈ N . Also, a variable will be called
active on the constraint equation if the value (A⊗ x)i is attained at the term xj respectively. It

follows from Theorem ▭ and Lemma ▭ that x̂(A, C , b, d ) ∈ S max(A, C , b, d ). We now
present a polynomial algorithm which finds x ∈ S min(A, C , b, d ) or recognizes that
S min(A, B, c, d ) = ∅. Due to Theorem ▭ either x̂(A, C , b, d ) ∈ S(A, C , b, d ) or
S (A, C , b, d ) = ∅. Therefore, we assume in the following algorithm that S (A, C , b, d ) ≠∅
and also S min(A, C , b, d ) ≠∅.

ONEMLP-EI(Max-linear program with one-sided equations and inequalities)
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f = ( f 1, f 2, ..., f n)T ∈ ℝn, b = (b1, b2, ...bk )T ∈ ℝk , d = (d1, d2, ...dr)T ∈ ℝr , A = (aij) ∈ R k ×n

and C = (cij) ∈ R r×n. x ∈ S min(A, C , b, d ).

• Find x̄(A, b), x̄(C , d ), x̂(A, C , b, d ) and K j, j ∈ J ;J = { j ∈ N ; x̄ j(C , d ) ≥ x̄ j(A, b)}

• x : = x̂(A, C , b, d )

• H (x) : = { j ∈ N ; f j + xj = f (x)}

• J : = J ∖H (x)

• If

⋃
j∈J

K j ≠ K ()

then stop (x ∈ S min(A, C , b, d ))

• Set xj small enough (so that it is not active on any equation or inequality) for every
j ∈ H (x)

• Go to 3

Theorem 8 The algorithm ONEMLP-EI is correct and its computational complexity is
O((k + r)n 2).
The correctness follows from Theorem ▭ and the computational complexity is computed as
follows. In Step 1 x̄(A, b) is O(kn), while x̄(C , d ), x̂(A, C , b, d ) and K j can be determined in
O(rn), O(k + r)n and O(kn) respectively. The loop 3-7 can be repeated at most n - 1 times,
since the number of elements in J  is at most n and in Step 4 at least one element will be re‐
moved at a time. Step 3 is O(n), Step 6 is O(kn) and Step 7 is O(n). Hence loop 3-7 is O(kn 2).

5.1. An example

Consider the following system max-linear program in which f = (5, 6, 1, 4, - 1)T ,

A = (3 8 4 0 1
0 6 2 2 1
0 1 -2 4 8

), b = (75
7
), ()

C = (-1 2 -3 0 6
3 4 -2 2 1
1 3 -2 3 4

) and d = (55
6
). ()

We now make a record run of Algorithm ONEMLP-EI. x̄(A, b) = (5, - 1, 3, 3, - 1)T ,
x̄(C , d ) = (2, 1, 7, 3, - 1)T , x̂(A, C , b, d ) = (2, - 1, 3, 3, - 1)T , J = {2, 3, 4, 5} and K2 = {1, 2},
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K3 = {1, 2}, K4 = {2, 3} and K5 = {3}. x : = x̂(A, C , b, d ) = (2, - 1, 3, 3, - 1)T  and H (x) = {1, 4}
and J ¬ ⊆ H (x). We also have J : = J ∖H (x) = {2, 3, 5} and K2 ∪ K3 ∪ K5 = K . Then set

x1 = x4 = 10-4 (say) and x = (10-4, - 1, 3, 10-4, - 1)T . Now H (x) = {2} and J : = J ∖H (x) = {3, 5}.

Since K3 ∪ K5 = K  set x2 = 10-4(say) and we have x = (10-4, 10-4, 3, 10-4, - 1)T . Now H (x) = {3}
and J : = J ∖H (x) = {5}. Since K5 ≠ K  then we stop and an optimal solution is

x = (10-4, 10-4, 3, 10-4, - 1)T  and f min = 4.

6. A special case of max-linear program with two-sided constraints

Suppose c = (c1, c2, ..., cm)T , d = (d1, d2, ..., dm)T ∈ ℝm, A = (aij) and B = (bij) ∈ ℝm×n are given
matrices and vectors. The system

A⊗ x⊕ c = B⊗ x⊕ d (id57)

is called non-homogeneous two-sided max-linear system and the set of solutions of this sys‐
tem will be denoted by S . Two-sided max-linear systems have been studied in [20], [21], [22]
and [23].

Optimization problems whose objective function is max-linear and constraint (▭) are called
max-linear programs (MLP). Max-linear programs are studied in [24] and solution methods
for both minimization and maximization problems were developed. The methods are
proved to be pseudopolynomial if all entries are integer. Also non-linear programs with
max-linear constraints were dealt with in [25], where heuristic methods were develeoped
and tested for a number of instances.

Consider max-linear programs with two-sided constraints (minimization), ML P min

f (x) = f T ⊗ x �min
subjectto
A⊗ x⊕ c = B⊗ x⊕ d

(id58)

where f = ( f 1, ⋯ , f n)T ∈ ℝn, c = (c1, ⋯ , cm)T , d = (d1, ⋯ , dm)T ∈ ℝm, A = (aij) and

B = (bij) ∈ ℝm×n are given matrices and vectors. We introduce the following:

y = ( f 1⊗ x1, f 2⊗ x2, ⋯ , f n⊗ xn)
= diag( f )⊗ x

(id59)

diag( f ) means a diagonal matrix whose diagonal elements are f 1, f 2, ..., f n and off diagonal
elements are -∞. It therefore follows from (▭) that
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f T ⊗ x = 0T ⊗ y

� x = ( f 1
-1⊗ y1, f 2

-1⊗ y2, ⋯ , f n
-1⊗ yn)

= (diag( f ))-1⊗ y

(id60)

Hence, by substituting (▭) and (▭) into (▭) we have

0T ⊗ y �min
subjectto
A '⊗ y⊕ c = B '⊗ y⊕ d ,

(id61)

where 0T  is transpose of the zero vector, A ' = A⊗ (diag( f ))-1 and B ' = B⊗ (diag( f ))-1

Therefore we assume without loss of generality that f = 0 and hence (▭) is equivalent to

f (x) = ∑
j=1,⋯,n

⊕ xj �min

subjectto
A⊗ x⊕ c = B⊗ x⊕ d

(id62)

The set of feasible solutions for (▭) will be denoted by S  and the set of optimal solutions by

S min. A vector is called constant if all its components are equal. That is a vector x ∈ ℝn is
constant if x1 = x2 = ⋯ = xn. For any x ∈ S  we define the set Q(x) = {i ∈ M ; (A⊗ x)i > ci}.
We introduce the following notation of matrices. Let A = (aij) ∈ R m×n, 1 ≤ i1 < i2 < ⋯ < iq ≤ m

and 1 ≤ j1 < j2 < ⋯ < jr ≤ n. Then,

A( i1, i2, ⋯ , iq
j1, j2, ⋯ , jr

) = (ai1 j1
ai1 j2

⋯ ai1 jr

ai2 j1
ai2 j2

⋯ ai2 jr

⋯
aiq j1

aiq j2
⋯ aiq jr

) = A(Q, R) ()

where, Q = {i1, ⋯ , iq}, R = { j1, ⋯ , jr}. Similar notation is used for vectors

c(i1, ⋯ , ir) = (ci1
⋯ cir)T = c(R). Given ML P min with c ≥ d , we define the following sets

M = = {i ∈ M ; ci = di} and

M > = {i ∈ M ; ci > di}
()

We also define the following matrices:
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A= = A(M =, N ), A> = A(M >, N )

B= = B(M =, N ), B> = B(M >, N )

c= = c(M =), c> = c(M >)
(id63)

An easily solvable case arises when there is a constant vector x ∈ S  such that the set
Q(x) = ∅. This constant vector x satisfies the following equations and inequalities

A=⊗ x ≤ c=

A>⊗ x ≤ c>

B=⊗ x ≤ c=

B>⊗ x = c>

(id64)

where A=, A>, B=, B>, c= and c> are defined in (▭). The one-sided system of equation and in‐
equalities (▭) can be written as

G⊗ x = p
H ⊗ x ≤ q

(id65)

where,

G = (B>), H = (A=

A>

B=

)
p = c> and q = (c=

c>

c=

) (id66)

Recall that S (G, H , p, q) is the set of solutions for (▭).

Theorem 9 Let Q(x) = ∅ for some constant vector x = (α, ⋯ , α)T ∈ S . If z ∈ S min then
z ∈ S (G, H , p, q).

Let x = (α, ⋯ , α)T ∈ S . Suppose Q(z) = ∅ and z ∈ S min. This implies that f (z) ≤ f (x) = α.
Therefore we have, ∀ j ∈ N , z ≤ α. Consequently, z ≤ x and (A⊗ z)i ≤ (A⊗ x)i for all
i ∈ M . Since, Q(z) = ∅ and z ∈ S (G, H , p, q).

Corollary 5 If Q(x) = ∅ for some constant vector x ∈ S  then S min ⊆ S min(G, H , p, q).

The statement follows from Theorem ▭.
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7. Some solvability concepts of a linear system containing of both
equations and inequalities

System of max-separable linear equations and inequalities arise frequently in several
branches of Applied Mathematics: for instance in the description of discrete-event dynamic
system [4], [1] and machine scheduling [10]. However, choosing unsuitable values for the
matrix entries and right-handside vectors may lead to unsolvable systems. Therefore, meth‐
ods for restoring solvability suggested in the literature could be employed. These methods
include modifying the input data [11], [26] or dropping some equations [11]. Another possi‐
bility is to replace each entry by an interval of possible values. In doing so, our question will
be shifted to asking about weak solvability, strong solvability and control solvability.

Interval mathematics was championed by Moore [27] as a tool for bounding errors in com‐
puter programs. The area has now been developed in to a general methodology for investi‐
gating numerical uncertainty in several problems. System of interval equations and
inequalities in max-algebra have each been studied in the literature. In [26] weak and strong
solvability of interval equations were discussed, control sovability, weak control solvability
and universal solvability have been dealt with in [28]. In [29] a system of linear inequality
with interval coefficients was discussed. In this section we consider a system consisting of
interval linear equations and inequalities and present solvability concepts for such system.

An algebraic structure (B, ⊕ , ⊗ ) with two binary operations ⊕  and ⊗  is called max-plus
algebra if

B = ℝ ∪ { - ∞}, a⊕ b = max {a, b}, a⊗ b = a + b ()

for any a, b ∈ ℝ.

Let m, n, r  be given positive integers and a ∈ ℝ, we use throughout the paper the notation
M = {1, 2, ..., m}, N = {1, 2, ..., n}, R = {1, 2, ..., r} and a -1 = - a. The set of all m × n, r × n ma‐
trices over B is denoted by B(m, n) and B(r , n) respectively. The set of all n-dimensional
vectors is denoted by B(n). Then for each matrix A ∈ B(n, m) and vector x ∈ B(n) the prod‐
uct A⊗ x is define as

(A⊗ x) = max j∈N (aij + xj) ()

For a given matrix interval ��= A
¯

, Ā  with A
¯

, Ā ∈ B(k , n), A
¯
≤ Ā and given vector interval

��= b
¯
, b̄  with b

¯
, b̄ ∈ B(n), b

¯
≤ b̄ the notation

��⊗ x = �� (id69)

represents an interval system of linear max-separable equations of the form
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A⊗ x = b (id70)

Similarly, for a given matrix interval ��= A
¯

, Ā  with C
¯

, C̄ ∈ B(r , n), C
¯
≤ C̄  and given vector

interval ��= d
¯

, d̄  with d
¯

, d̄ ∈ B(n), b
¯
≤ b̄ the notation

��⊗ x ≤ �� (id71)

represents an interval system of linear max-separable inequalities of the form

C ⊗ x ≤ d (id72)

Interval system of linear max-separable equations and inequalities have each been studied
in the literature, for more information the reader is reffered to . The following notation

��⊗ x = ��

��⊗ x ≤ ��
(id73)

represents an interval system of linear max-separable equations and inequalities of the form

A⊗ x = b
C ⊗ x ≤ d

(id74)

where A ∈ ��, C ∈ ��, b ∈ �� and d ∈ ��.

The aim of this section is to consider a system consisting of max-separable linear equations
and inequalities and presents some solvability conditions of such system. Note that it is pos‐
sible to convert equations to inequalities and conversely, but this would result in an increase
in the number of equations and inequalities or an increase in the number of unknowns thus
increasing the computational complexity when testing the solvability conditions. Each sys‐
tem of the form (▭) is said to be a subsystem of (▭). An interval system (▭) has constant
matrices if A

¯
= Ā and C

¯
= C̄ . Similarly, an interval system has constant right hand side if

b
¯

= b̄ and d
¯

= d̄ . In what follows we will consider A ∈ ℝ(k , n) and C ∈ ℝ(r , n).

7.1. Weak solvability

Definition 8 A vector y is a weak solution to an interval system (▭) if there exists
A ∈ ��, C ∈ ��, b ∈ �� and d ∈ �� such that

A⊗ y = b
C ⊗ y ≤ d

(id77)

Theorem 10 A vector x ∈ ℝn is a weak solution of (▭) if and only if
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x = x̄(A
¯

b̄
C
¯

d̄ ) ()

and

Ā⊗ x̄(A
¯

b̄
C
¯

d̄ ) ≥ b
¯

()

Let i = {1, ..., m} be an arbitrary chosen index and x = (x1, x2, ..., xn)T ∈ ℝn fixed. If A ∈ ��

then (A⊗ x)i is isotone and we have

(A⊗ x)i ∈ (A
¯
⊗ x)i, (Ā⊗ x)i ⊆ ℝ ()

Hence, x is a weak solution if and only if

(A
¯
⊗ x)i, (Ā⊗ x)i ∩ b

¯
i, b̄i (id79)

Similarly, if C
¯
⊗ x ≤ d̄  then x is obviously a weak solution to

A
¯
⊗ x ≤ b̄

C
¯
⊗ x ≤ d̄

(id80)

That is

x = x̄(A
¯

b̄
C
¯

d̄ ) ()

Also from (▭) x is a weak solution if and only if

(A
¯
⊗ x)i, (Ā⊗ x)i ∩ b

¯
i, b̄i ≠∅, ∀ i = 1, 2, ..., m ()

That is

Ā⊗ x̄(A
¯

b̄
C
¯

d̄ ) ≥ b
¯

()

Definition 9 An interval system (▭) is weakly solvable if there exists A ∈ ��, C ∈ ��, b ∈ �� and
d ∈ �� such that (▭) is solvable.

Theorem 11 An interval system (▭) with constant matrix A = A
¯

= Ā, C = C
¯

= C̄  is weakly
solvable if and only if
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A⊗ x̄(A b̄
C d̄ ) ≥ b

¯
()

The (if) part follows from the definition. Conversely, Let

A⊗ x̄(A b
C d ) = b ()

be solvable subsystem for b ∈ b
¯

i, b̄i . Then we have

A⊗ x̄(A b̄
C d̄ ) ≥ A⊗ x̄(A b

C d ) = b ≥ b
¯

()

7.2. Strong solvability

Definition 10 A vector x is a strong solution to an interval system (▭) if for each A ∈ ��, C ∈ ��

and each b ∈ ��, d ∈ �� there is an x ∈ ℝ such that (▭) holds.

Theorem 12 a vector x is a strong solution to (▭) if and only if it is a solution to

E ⊗ x = f
C̄ ⊗ x ≤ d

¯

()

where

E = (Ā
A
¯

), f = (bb̄̄) (id86)

If x is a strong solution of (▭), it obviously satisfies (▭). Conversely, suppose x satisfies (▭)

and let Ã ∈ ��, C̃ ∈ ��, b̃ ∈ ��, d̃ ∈ �� such that Ã⊗ x ≠ b̃ and C̃ ⊗ x > d̃ . Then ∃ i ∈ (1, 2, ..., m) such
that either (Ã⊗ x)i < b̃i or (Ã⊗ x)i > b̃i and (C̃ ⊗ x)i > d̃ i. Therefore, (A

¯
⊗ x)i < (Ã⊗ x)i < bi,

(Ā⊗ x)i ≥ (Ã⊗ x)i > bi and (C̄ ⊗ x)i > (C̃ ⊗ x)i > di and the theorem statement follows.
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