

Immunophenotypic and molecular features of cuplike morphology in AML

BHS GAM 2020

A. Louwagie, M. Tajdar, B. Cauwelier, H. Devos, J. Emmerechts

Department of Laboratory Medicine, AZ Sint-Jan Hospital, Brugge-Oostende, Bruges, Belgium

Background

- © Careful evaluation of leukemic blast morphology supplemented by immunophenotyping may provide clues to a specific category of the WHO 2016 classification of AML.
- Nuclear invaginations, referred to as 'fishmouth' or 'cuplike' nuclei (Figure 1) have been associated with a lack of CD34 and HLA-DR expression, a normal karyotype and mutations in NPM1 and FLT3. According to literature these findings may help in rapid recognition of the entity 'AML with mutated NPM1'.

Objectives

- To evaluate the association between cuplike blasts (CLB) and specific immunophenotypic and molecular patterns based on:
 - a literature study.
 - the evaluation of de novo AMLs at our institution.

Methods

- A literature study was based on 7 publications.
- Bone marrow slides of de novo AMLs at our institution between January 2018 and May 2019 (n=41) were reviewed for % of CLB (as % of total blasts), immunophenotype and mutational status of NPM1 and FLT3 by 1 analyst blinded for all results.

Results

- Inconsistent results were found in literature as studies differed in definition of CLB and in inclusion criteria. In most studies, the definition of cuplike AML is restricted to cases with ≥10% CLB. A summary is shown in Table 1.
- At our institution, 5/41 (12%) de novo AMLs had ≥10% CLB (Table 2), all demonstrating mutated FLT3. HLADR expression was absent in only 1/5 cases, whereas CD34 expression was absent in 3/5 cases. These 3 cases all showed mutated NPM1.
- In 5 additional cases with 5-9% CLB (Table 3), 3 cases demonstrated NPM1 mutation, of which 2 with concomitant FLT3 mutation. These 3 cases all lacked CD34 and HLADR expression.
- Not all cases with FLT3 (n=13/41, 32%) and/or NPM1 (n=10/41, 24%) mutation demonstrated CLB. In total, 7/13 (54%) FLT3 mutated cases and 6/10 (60%) NPM1 mutated cases showed the presence of ≥5% CLB.

Conclusions

- Showed ≥10% CLB.
 Showed ≥10% CLB.
- Solution Simple States Simple Sim
- Solution Signature Sig
- A follow-up of a larger series of cases will be required to confirm these findings.

[1] Kussick SJ, Stirewalt DL, Yi HS, et al. A distinctive nuclear morphology in acute myeloid leukemia is strongly associated with

loss of HLA-DR expression and FLT3 internal tandem duplication. *Leukemia*. 2004 Oct;18(10):1591–8.

[2] Chen W, Rassidakis GZ, Li J, et al. High frequency of NPM1 gene mutations in acute myeloid leukemia with prominent nuclear

[3] Kroschinsky FP, Schäkel U, Fischer R, et al. Cup-like acute myeloid leukemia: new disease or artificial phenomenon?

[4] Bennett JM, Pryor J, Laughlin TS, Rothberg PG, Burack WR. Is the association of 'cup-like' nuclei with mutation of the NPM1 gene in acute myeloid leukemia clinically useful? *Am J Clin Pathol*. 2010 Oct;134(4):648–52.

leukaemia with cuplike nuclei. Br J Haematol. 2011 Oct;155(1):125–8.

6] Carluccio P, Mestice A, Pastore

[7] Park BG, Chi H-S, Jang S, et al. Association of cup-like nuclei in blasts with FLT3 and NPM1 mutations in acute myeloid

Leukaemic blasts with cup-shaped morphology

Cuplike AML are characterized by 10% or more blasts with prominent, cup-like nuclear invagination spanning at least 25% of the nuclear diameter.

Definition by Kussick et al, 2004 [1]

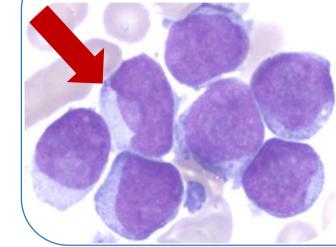


Figure 1. Cuplike nuclei

Literature study

Table 1. Summary of literature study

Author	Study population	Number of cuplike AML	Comparison group	FAB type: N (%)	Lack of CD34	Lack of HLADR	NPM1 mutated	FLT3 mutated
Kussick et al, 2004 [1]	5-year survey of nonAPL/ nonmonocytic AML.	N=19	Cuplike negative AML N=24	M1/M2?	68%* (95% with partial loss)	68%* (100% with partial loss)	ND	84%*
Chen et al, 2006 [2]	Review of AMLs at the institution (no further specification)	N=24	Control group N=20	М1	71%*	50%*	64%*	88**
Kroschinsky et	266 randomly selected patients from AML96 protocol (DSIL). Exclusion of APL. (non-monocytic	(all FAB		NS (M1 and M2 62% of cuplike AML)	93%**	33%**	60%*	73%**
al, 2008 [3]					84%**	76%**	64%*	80%*
Bennett et al, 2010 [4]	17 AML with mutated NPM1, 3-year interval.	N=6	Cuplike negative N=11	ND	4/6	2/6	6/6	3/6
Rakheja et al, 2011 [5]	12 cuplike AML with sufficient amplifiable DNA, 8-year interval.	N=12	Control group N=23	M1 : 12 (100%)	100%*	67%*	100%*	80%**
Carluccio et al, 2013 [6]	68 de novo AML (M0/M1/ M2), 3- year interval.	N=15	Cuplike negative N=53	M0:1 (7%) M1:2 (13%) M2: 12 (80%)	53%*	40%*	50%**	64%* ITD 7%**, TKD
Park et al, 2013 [7]	208 patients diagnosed with AML (excl. APL) with available NPM1 and FLT3 mutation status.	N= 44	Cuplike negative N=164	M0: 0 (0%) M1: 23 (38%) M2:11 (19%) M4: 5 (13%) M5: 1 (11%) M7/M8: 0(0%) MRC: 4 (14%)	72%*		71%*	48%*,ITD 11%*, TKD

*statistically significant; **statistically insignificant

ND, Not determined; NS, not specified

APL, acute promyelocytic leukemia; MRC, myelodysplasia-related change
ITD, internal tandem duplication; TKD tyrosine kinase domain

CLB in 41 de novo AMLs at our institution

Table 2. Cases with \geq 10% CLB (n=5/41)

Case	% CLB	FAB type	Lack of CD34	Lack of HLADR	NPM1 mutated	FLT3 mutated
1	17	M0/M1	Y	N	Y	Y
2	16	M1	N	N	N	Υ
3	13	M5/M4	Υ	N	Υ	Υ
4	11	M5	N	N	N	Υ
5	30	M0/M1	Υ	Υ	Y	Υ

Table 3. Cases with 5-9% CLB (n=5/41)

Case	% CLB	FAB type	Lack of CD34	Lack of HLADR	NPM1 mutated	FLT3 mutated
6	5	M4eo	ND	ND	N	N
7	6	M2	Υ	Y	Υ	Υ
8	7	M0/M1	ND	ND	N	N
9	5	M1	Υ	Υ	Υ	N
10	8	M1	Y	Υ	Υ	Υ

ND, Not determined Y, Yes (Present); N, No (not present)