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Abstract

Ferroelectrics systems are of great interest from the fundamental as well as applications
points, such as ferroelectric random access memories, electro-optic switches and a num-
ber of electro-optic devices. Curie temperature (TC) is one of the important parameters of
ferroelectrics for high-temperature applications. Particularly, the optical modes, which
are associated with the ferroelectric to paraelectric phase transition, are of great interest.
Structural transformations that alter the crystal symmetry often have a significant effect
on the Raman spectroscopy. This chapter systematically studies the type ferroelectric
oxides and rare earth element doped ferroelectric materials such as PbTiO3-Bi(Mg0.5Ti0.5)
O3 (PT-BMT), Sr

x
Ba1�x

Nb2O6 (SBN), Pb1�1.5xLaxZr0.42Sn0.4Ti0.18O3 (PLZST), Bi1�xLaxFe1�y

TiyO3 (BLFT) and (K0.5Na0.5)NbO3-0.05LiNbO3 (KNN-LN) and so on synthesis of single
crystal/ceramic and optical phonon vibration modes and the improvement of the Curie
temperature characteristic using spectrometry measurements. The TC, distortion degree,
and phase structure of the ferroelectric materials have been investigated by temperature-
dependent Raman spectroscopy. Meanwhile, the important physical parameters exhibited
a strong dependence on dopants resulting in structural modifications and performance
promotion.

Keywords: ferroelectrics, Raman spectra, vibration modes, phase transitions, Curie
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1. Introduction

As we know, ferroelectric ceramics were first found in barium titanate ceramic with the

ferroelectricity in the 1940s [1]. Since that time, the ferroelectric material with high resistivity,

good fatigue resistance characteristic and high dielectric constant, pyroelectric detector, uncooled

infrared detectors, uncooled infrared focal plane arrays and ferroelectric memory, and other
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fields has great application prospect [2–5]. In recent years, complex mixed-ion ferroelectric

materials have been extensively investigated in order to achieve optimum properties as well as

to understand the underlying factors for property tweaking [6–9]. Therefore, the ferroelectric

materials are considered to be one of the most practical materials in the future.

The ABO3 ferroelectric materials have achieved wide usage owing to their superior electrome-

chanical properties (Scheme 1 shows the typical structure). Investigations of bulk ferroelectric

materials have demonstrated good macroscopic homogeneity of their properties and clear

ferroelectric behavior [2]. However, the development of knowledge about ferroelectric behav-

ior at the submicrometer level is relatively slow. It has been found that the structural and

chemical factors such as grain size, strain, stoichiometric and compositional homogeneity and

phase structure, have great effect on optimization and reproducibility of the property coeffi-

cients in ferroelectric materials [10–12]. Therefore, a further investigation should be necessary

in order to illustrate the physical mechanism in these ferroelectrics.

It is important to remember that the experimentally obtained parameters depend primarily on

the spatial magnitude and time-scale of the measured physical phenomena, especially for study-

ing the structure–property correlations in these materials. Raman spectroscopy is a sensitive

technique for investigating the structure modifications and lattice vibration modes, which can

give the information on the changes of lattice vibrations and the occupying positions of doping

ions. Structural changes that alter the crystal symmetry often have a significant effect on the

Raman spectrum. In addition, spatially resolved Raman spectroscopy can be used to probe the

chemical homogeneity at sub-micrometer levels. This chapter provides a review of systematic

Raman scattering study on the phase transition behavior in perovskites, tungsten bronze,

Aurivillius layered, multiferroics and lead-free bulk materials. The effect of A- and B-site sub-

stitutions on the Raman spectra and phase transition behavior of these materials have been

studied in detail. This chapter is arranged in the following way. In Section 1, research back-

ground; In Section 2, detailed growths of the ferroelectric materials and Raman experiment; In

Section 3, results of Raman spectra in PbTiO3-Bi(Mg0.5Ti0.5)O3 (PT-BMT), SrxBa1�xNb2O6 (SBN),

Pb1�1.5xLaxZr0.42Sn0.4Ti0.18O3 (PLZST), Bi1�xLaxFe1�yTiyO3 (BLFT) and (K0.5Na0.5)NbO3-0.05LiN

bO3 (KNN-LN); at last, the main results and remarks are summarized.

Scheme 1. Schematic representation of the typical ABO3 ferroelectric structure.
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2. Experiment details

2.1. Fabrication of ferroelectric materials

The ferroelectric single crystals have been grown by a high temperature solution method (flux

method) [13, 14]. High-purity powders were selected as starting materials. The raw material

powders were stoichiometrically weighed, mixed by milling with zirconia media in the etha-

nol as a solvent. After drying. The powders were calcined at a certain temperature for hours to

form the desired perovskite phase. Details of the fabrication process for the single crystals can

be found elsewhere [13].

The bulk ceramics were fabricated by a conventional solid state reaction sintering, using the

appropriate amount of reagent grade raw materials [15, 16]. The samples were sintered at

different temperature for several hours in air atmosphere, and then remilled for several hours to

reduce the particle size for sintering. The calcined powders were added with 8 wt.% polyvinyl

alcohol (PVA) as a binder. Before Raman measurements, the ceramics with the diameter of

15 mm and the thickness of 1 mm were rigorously single-side polished and cleaned in pure

ethanol with an ultrasonic bath and rinsed several times by deionized water.

2.2. Raman experiment details

Raman scattering experiments were carried out using a Jobin-Yvon LabRAM HR 800 UV

micro-Raman spectrometer, excited by 632.8 nm He-Ne laser or 488 nm Ar laser and recorded

in the frequency range of 10–1000 cm�1 with a spectral resolution of 0.5 cm�1. For the different

temperature Raman spectra, we choose a 50� microscope with a long working distance of

18 mm. The spectrometer grating can be choosed by 600, 1800 or 2400 grooves/mm grating

which is depending on the different excitation wavelength. In order to learn more about the

variation trend of vibration modes, all of the experimental spectra were fitted with indepen-

dent damped harmonic oscillators. The polarized Raman spectra were recorded in back-

scattering geometry in parallel <x|zx|y > (VH) and perpendicular <x|zz|y > (VV) polarization

configurations. Temperature dependent Raman spectra were collected with a THMSE 600

heating/cooling stage (Linkam Scientific Instruments) in the temperature range from 77 to

800 K with a resolution of 0.1 K.

3. Results and discussion

3.1. PbTiO3-based single crystals

PbTiO3 (PT)-based perovskite compounds are important multifunctional materials, which

have been investigated in the last half century due to their controllable physical properties.

Most recently, the research hotspot for PbTiO3-BiMeO3 ferroelectrics have stimulated much

interest [14]. A range of compelling information on thermal expansion behavior and lattice

dynamics of novel ferroelectric perovskite-type 0.62PbTiO3-0.38Bi(Mg0.5Ti0.5)O3 (PT-BMT) sin-

gle crystal has been revealed by means of temperature-dependent X-ray diffraction and polar-

ized Raman scattering. Figure 1 shows the polarized Raman spectra of 0.62PT-0.38BMT single

Structural Transformations in Ferroelectrics Discovered by Raman Spectroscopy
http://dx.doi.org/10.5772/intechopen.72770

255



crystal at representative temperature of 80 K. It can be found that the Raman spectra is consistent

with previous reports of the tetragonal crystal structure. Comparing to the theoretical calculations

and experimental results, three main regions with different kinds of vibration in the lattice can be

distinguished: (1) Low frequency below 150 cm�1, which can be associated with vibrations of the

perovskite A-site, involving Pb and Bi ions. (2) Frequency range 150–450 cm�1, which is related to

the Ti-O/Mg-O stretching vibrations. (3) High frequency bands above 450 cm�1 have all been

associated with BO6 vibrations, namely the breathing and stretching modes of the oxygen octahe-

dra. The Raman spectra suggest a certain degree of local B-site chemical order for the 0.62PT-

0.38BMT single crystal with A-site and B-site simultaneously doping.

In order to understand the relationship between negative thermal expansion (NTE) and lattice

dynamic behavior for the 0.62PT-0.38BMT crystal, Figure 2 presents the polarized Raman

spectra in different temperature point from 80 to 850 K. It can be found that the peak position

and intensity of the polarized Raman phonon modes have a decreasing trend with increasing

temperature, while the broadening of the Raman modes is observed, which is consist with the

other ferroelectrics [17]. It should be pointed that around the temperature range of 600–700 K,

the lowest phonon modes occurs (marked by the dashed rectangles). In XRD results, we can

also found the similar anomalies range (different coefficient of thermal expansion values in

Figure 3). Thus, there are some minor structural changes in the tetragonal PT-BMT crystal,

which is corresponding to the change of the Raman phonon modes above 700 K. This phe-

nomenon is the result of interaction by spontaneous volume ferroelectrostriction mechanism

and the dynamics of the polar nanoregions (PNRs).

Figure 3 shows the different temperature Raman spectra with different changing trend. As

we know, an abnormal phonon softening upon heating can be detected by high resolution Raman

spectra if there is any phase transition change. From the 0.62PT-0.38BMT Raman spectra, one clear

anomaly is observed at about 670 K, which is quite different from the phase transition tempera-

ture. We found the Curie temperature of this single crystal is located at about 800 K through

the XRD pattern and dielectric permittivity experiment. The PNRs can play an important role in

Figure 1. The polarized VH and VV Raman spectra of 0.62PT-0.38BMT single crystal at 80 K. The peak assignment is

based on the individual vibration mode, which is fitted by Lorentz function (Figure reproduced with permission from

[14]. Copyright 2016, Royal Society of Chemistry).

Raman Spectroscopy256



lead-based ferroelectric materials. Note that the physical properties of the single crystal have some

linear changes near phase transition, for example the refractive index n, lattice parameters, and

unit cell volume V. Thus, the abnormal increasing for the soft mode indicates some structure

changes from the crystal Raman spectra. In the whole temperature range, two different slopes of

lines are observed (�0.011 and �0.030 cm�1 K�1), which can be attributed to the variation of the

soft mode frequency induced by the local spontaneous polarization (PS) inside the PNRs [18–20].

Therefore, the various tendency of the Raman soft mode frequency with temperature agrees well

with the PNRs in Pb-based ferroelectrics, in which unit cell volume deviates from linear thermal

expansion at Burns temperature according to the XRD results in Figure 3. The current Raman

study presents a novel method to characterize the relationship between the NTE and PS of

perovskite ferroelectric materials.

Figure 3. Temperature dependence of the lattice parameters and unit cell volume of the 0.62PT-0.38BMT crystal. FE(T)

and PE(C) mean ferroelectric tetragonal phase and paraelectric cubic phase, respectively. The phonon frequency of soft

mode as a function of temperature for 0.62PT-0.38BMT crystal. The solid lines indicate the different decrement of the soft

mode with temperature (Figure reproduced with permission from [14]. Copyright 2016, Royal Society of Chemistry).

Figure 2. Temperature evolution of Raman intensities for 0.62PT-0.38BMT single crystal. The dashed rectangles mark the

temperature ranges of the most pronounced changes (Figure reproduced with permission from [14]. Copyright 2016,

Royal Society of Chemistry).
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3.2. Tungsten bronze niobate ferroelectrics

Disordered ferroelectric systems are of great interest from the fundamental as well as applica-

tions points of view. The uniaxial relaxor ferroelectric SBN, which is of particular interest due

to its well-known pyroelectric, electro-optic, and non-linear optical properties, has some poten-

tial applications such as holographic data storage, and generation of photorefractive solitons

[21]. The aim of this part is to investigate the lattice vibration of the SrxBa1�xNb2O6 ceramics

with different Sr/Ba ratios studied by Raman spectroscopy. The physical mechanism of the

ferroelectric to paraelectric phase transition is found from the soft mode variation with the

temperature. Figure 4 shows Raman spectra of the SBN ceramics recorded at 150 K with

different Sr compositions. The A1g mode corresponding to a stretch type vibration of the

NbO6 octahedron decrease with increasing the Sr/Ba ratio. The Raman shift of the modes

decreases from 643 and 612 cm�1 to 636 and 605 cm�1, respectively. Another important feature

observed in Figure 4 is that the lowest modes (labeled with “LM”) at about 42 cm�1 can be

detected, which is inferred to the soft mode of the SBN ceramics. The soft mode is eigenvector

approximated the ionic displacements occurring at a crystallographic phase transition in the

ferroelectric material.

From the temperature dependence of the Raman spectra for all SBN ceramics in the tempera-

ture range from 150 to 750 K, the temperature evolution of the soft mode peak position is

presented in Figure 5. The frequency of the soft modes decreases from 42 to 38 cm�1 with the

Sr composition at 150 K. The phenomenon can be attributed to the A site substitution origi-

nated in the smaller ionic radius of Sr, as compared to Ba element. All frequency of the soft

mode first decreases and then disappears in the SBN paraelectric phase. The TC of the SBN

ceramics shifts to lower temperature with increasing Sr composition. It can be well expressed

by TC (x) = 566 � 371x, where x is the Sr molar fraction. According to changes of the soft

modes, it is clear that increasing Sr composition leads to the shrinking of TC.

Figure 4. (a) Experimental Raman spectrum (dotted lines) and Lorentzian fitting results (solid lines) of the Sr0.3Ba0.7Nb2O6

ceramic at 150 K. The arrows indicate that the lowest phonon mode is located at about 40 cm�1 (labeled with “LM”).

(b) Raman spectra of the SBN ceramics with different Sr composition recorded at 150 K. (c) The A1g Raman-active phonon

mode at about 636 and 605 cm�1 as a function of Sr composition.
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3.3. Aurivillius-type bismuth layer-structured ferroelectrics

Recently, bismuth layer-structured ferroelectrics (BLSFs) have gained increasing attention for

the promising applications of non-volatile random access memories (NvRAMs), optical

switches and high-temperature piezoelectric devices, because of their relatively high Tc, low

dielectric dissipation, and excellent hysteresis behavior [22–25]. Calcium bismuth niobate

(CaBi2NbO9, CBN) is an Aurivillius layered material with the ultra-high Tc and relative higher

thermal depoling temperature. The different properties induced by doping in BLSFs are

always related to the structure distortions. The spectra of vibration modes in different frequen-

cies could be sensitive to describe the structural distortion. As an example, Figure 6 shows

temperature-dependent Raman spectra of CaBi2Nb1.97W0.03O9 (W3) ceramic and the CBNW

ceramics with different W compositions at 100 K. The results suggest that the peak center of ν5

deviated from the vertical dash line, and the color (in the web version) which represented the

intensity of phonon mode faded with increasing temperature. This phenomenon means that

the ν5 phonon mode was soften. However, there is no obvious change in the ν6 phonon mode

upon heating, as compared to the behaviors of ν5. The similar Raman spectra with different W

compositions also confirm that CBN doped with tungsten can keep single phase.

To further investigate the evolution of the ν5 and ν6 phonon modes, Raman spectra are well-

fitted with multi-Lorentz oscillators. Figure 7 shows Raman scattering results and well-fitted

peaks with multi-Lorentz oscillators for all samples at 100, 300 and 800 K. The frequency,

intensity and full width at half maximum of each phonon mode at different temperature can be

derived from the fitting. The frequencies of the ν5 and ν6 phononmodes forW3 are presented in

Figure 8. The shift of phonon modes can be explained by a simplified Klemens model [26].

From the fitting result according to the model, we can conclude that the change of the Raman

phonon mode is dominated by the lattice expansion and thermal evolution. However, the

intrinsic anharmonic coupling of phonons is quite weak for ν5. We can observe a slightly blue

shift for ν6 phonon mode, while an opposite trend for ν5 in the whole temperature range. The

Figure 5. The soft mode frequency as a function of the temperature for the SBN ceramics. The dashed arrows show the

temperature points where the soft mode vanishes.
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different changes between the phonon modes may be ascribed to the unusually strong and

positive intrinsic anharmonicity instead of thermal evolution with increasing temperature. On

the other hand, for all of the ceramics with increasing W composition, we found that the I(ν6)/I

Figure 6. (a) Temperature-dependence of Raman spectra of CaBi2Nb1.97W0.03O9 (W3) ceramics from 100 to 800 K. (b)

Raman scattering of CBNW ceramics with different W compositions at 100 K (Figure reproduced with permission from

[22]. Copyright 2015, Elsevier).

Figure 7. Experimental (dots) and the best fitting (solid lines) Raman spectra of CaBi2Nb2-xWxO9 ceramics with (a) 0, (b)

0.01, (c) 0.03, and (d) 0.05 at 100, 300 and 800 K, respectively (Figure reproduced with permission from [22]. Copyright

2015, Elsevier).
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[(ν5) + I(ν6)] ratio increase with increasing temperature. The result is that the distortion

degrees of perovskite (Nb, W)O6 octahedra decrease with increasing temperature [27], and

the BO6 octahedra distortion predominates the structure distortion with Aurivillius niobate

phase [28]. Thus, it can be concluded that the structure distortion in CBNW ceramics decreases

with increasing W composition. The variation tendency is consistent with the XRD result in

previous study. From the change of the Raman phonon modes with different temperature, we

can see the parameter TC generally decreases with the decrease of structure distortion degree [29,

30]. It was found that the relative peak intensity of I(ν6)/I[(ν5) + I(ν6)] ratio is sensitive for the

distortion degree in ferroelectric materials. The Curie temperature of CaBi2Nb2�xWxO9 decreases

with increasing composition from the Raman results, which is consistent with the results of

dielectric permittivity experiments. The results indicate that the Raman spectrum is an effective

tool for detecting structure distortion and phase transition of ferroelectric materials.

3.4. ABO3 perovskite ceramics

In the past few decades, the complex Pb-based ABO3 perovskite materials have attracted much

attentions due to the excellent properties obtained in the compositions close to morphotropic

phase boundary (MPB) [31]. The A-site substitution plays an important role in phase transition

and more studies are requisite. In this part, the A-site substitution effect on the phase transition

nearMPB is investigated for PLZSTceramics. Transition temperature region and lattice dynam-

ics are systematically discussed according to the temperature dependent Raman scattering

spectroscopy. In addition, a new transient phase called the intermediate phase was found to

exist between AFE and PE phase, which could be induced by defects through increasing

temperature and doping of foreign ions.

Figure 9 depicts room-temperature Raman scattering results and well-fitted deconvolution

peaks for all samples. A sharp increase of relative strength of E(TO2) mode could be observed

Figure 8. (a) Temperature-dependence of Raman phonon mode of ν5 (squares) and ν6 (trilateral). The inset shows the W3

Raman spectra at 100 K using Lorentz fitting. (b) the ratio of I(ν6)/I[(ν5) + I(ν6)] intensity with different W doping

compositions (Figure reproduced with permission from [22]. Copyright 2015, Elsevier).
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at La composition of 2.8%. This indicates that PLZST3.4 ceramic is more likely to be tetragonal

phase rather than the rhombohedral phase in the PLZST2 ceramic. The softing peak upon La

composition is assigned as A1(TO1) symmetry, which stems from splitting of T1u in cubic phase.

The mode softs from 123.4 (PLZST2) to 116.3 cm�1 (PLZST3.4) with an incommensurate drop at

La composition of 2.6%. The fact that both of two dramatic changes occur indicates the phase

transition from rhombohedral to tetragonal structure for La composition between 2.6 and 2.8%.

To elucidate the thermal evolution of PLZST ceramics, temperature dependence of Raman

spectra from 100 to 650 K are shown in Figure 10. We can see all of the Raman modes for the

four PLZST ceramics have a blue shift with increasing temperature. Note that some of them

disappear above 400 K during the cubic phase appearing. The results indicate that there is a

structure transformation at about 400 K. Similar abnormal decrease in Raman intensity of

PLZST ceramics has been detected by the spectra with increasing temperature.

To further investigate the phase transition mechanism, we plot temperature dependence of the

wavenumber from the Raman modes in Figure 11. It can be found that some abrupt variations

in the whole temperature range, which is easily divided into two phase transition regions.

Note that there is a new intermediate phase at about 300 K for all of samples.

Figure 12 shows the phase diagram of PLZST ceramics according to the temperature depen-

dence of Raman spectra. Three different structure phases can be found: AFEO phase, interme-

diate phase, and PEC phase. We can found that the PLZST ceramics have a transformation

from AFEO to the intermediate phase with the composition of Ti exceeds 5.0% at room

temperature. However, all of the ceramics remain cubic phase when the temperature upon

450 K. Note that the PLZST ceramics undergo successive phase transitions with increasing

Figure 9. Raman scattering spectra of Pb1�1.5xLaxZr0.42Sn0.4Ti0.18O3 ceramics with different La composition recorded at room

temperature. The inset shows the frequency variation of A1(TO1) mode and relative strength of E(TO2) mode as a function of

La composition (Figure reproduced with permission from [16]. Copyright 2013, American Institute of Physics).
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Figure 10. Temperature dependent Raman spectra for PLZST ceramics from 100 to 650 K. The symbol (*) represents the

low wavenumber phonon modes (Figure reproduced with permission from [31]. Copyright 2016, Elsevier).
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temperature: from antiferroelectric phase at low temperature to intermediate phase and

paraelectric cubic phase at high temperature. The Curie temperature for PLZST ceramics is

lower than that of pure PZT materials because of some ions doping [32, 33]. Note that the

intermediate boundaries in the phase diagram have a downward trend with Ti composition.

However, the cubic phase boundaries almost remain the same temperature of about 400 K. The

intermediate phase temperature ranges gradually become larger with increasing Ti compositions.

The Curie temperature detected by Raman spectra are consist with the XRD and dielectric

results, which suggests that the Raman spectrum is an effective tool to distinguish different

phase structure in PZT ceramics with different temperature and doping level.

3.5. Multiferroics materials

BiFeO3 (BFO) has been hailed as an important material for magnetoelectric devices due to its

room-temperature multiferroic properties, in which the electric polarization is coupled to anti-

ferromagnetic (AFM) order, allowing for manipulation of magnetism by applied electric fields

and vice versa [34]. During the last several years, intriguing behavior was found in doped BFO

compounds. In this part, we present Raman results on La and Ti codoped BFO ceramics to

systematically study phase transitions induced by the chemical substitution and temperature.

Figure 13 demonstrates the spectra recorded at several characteristic temperatures and well-

fitted deconvolution peaks at 80 K. The frequencies of the phonon modes shift to low energies

and the intensity of all major peaks reduces as the temperature increases from 80 to 680 K. The

modes in higher-frequency range become severely widening and merge into a broadening

Figure 11. The variations of A1(TO1), AFD, E(TO1), and AHC modes as a function of temperature for PLZST ceramics

with different Ti composition. Note that the dashed lines show the boundaries of two adjacent phase structures

(Figure reproduced with permission from [31]. Copyright 2016, Elsevier).
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peak. From the analysis of the mode position with the temperature, the anomalies in phonon

modes suggest a strong magnon-phonon coupling of BLFTO in the present work.

Figure 14 shows composition dependence of the local structural transition temperature (T*) and

Neel temperature (TN). With the increase in the doping compositions of La and Ti, T* and TN
decrease from 580 to 540 K and from 645 to 630 K, respectively. According to La and Ti-codoped

in BFO, an external pressure is induced due to size mismatch of host (Bi, Fe) and substitution (La,

Ti) cations, which leads to the variation of tolerance factor and structural distortions. On the

other hand, the strength of the antiferromagnetic superexchange interaction relies on the Fe-O-Fe

angle. These structural effects weaken the magnetic exchange and decrease TN. Thus, a compli-

cated mechanism induced by the variation of bond length, bond angle, and the exchange

interaction between adjacent magnetic moments could substantially contribute to the shrinking

of Neel temperature. In summary, the Raman phonon modes have abnormal change around 140

and 205 K, which can be ascribed to the strong magnon-phonon coupling. The structural

transition occurred at about 570 K can be detected by the Raman spectra, indicating that the

Raman modes are sensitive to the structure changes and spin reorientation.

3.6. Lead-free ferroelectrics

Recently, KNN based lead-free materials were reported to offer comparable piezoelectric

properties to that of PZT [35]. The (K0.5Na0.5)NbO3-0.05LiNbO3-yMnO2 (y = 0 and 1.0%)

(KNN-LN-M) single crystals have been studied by the Raman spectra from the temperature

300–800 K. Moreover, the thermotropic phase boundaries are observed, indicating the exis-

tence of the mixed-phase region (i.e. PPT) between orthorhombic (O) and tetragonal (T)

phases.

Figure 12. The phase diagram of PLZST ceramics based on the low wavenumber phonon mode variations with the

temperature and Ti composition. The phase transformation regions of AFEO, intermediate phase and PEC characteristics

can be clearly distinguished by the solid dots (Figure reproduced with permission from [31]. Copyright 2016, Elsevier).
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Figure 15 depicts temperature dependence of Raman scattering for the KNN-LN and KNN-

LN-1%MnO2 crystals, respectively. The phase structure of KNN-LN based crystals transforms

from O phase to T phase, then to cubic (C) phase with increasing temperature. The disorder in

the O, T, and C phases can be characterized mainly by the Nb central ion allowed positions,

and then the framework of the established eight-site model will be adopted [36]. In order to

obtain a complete description of the dynamical properties through the successive phase tran-

sitions, it is useful to know the classification of the optical modes and their correlations

between the various phases [37].

Figure 13. Temperature dependence of Raman scattering for the BLFTO ceramics collected in the temperature range from

80 to 680 K. As an example, Raman spectra recorded at 80 K, which were fitted with independent damped harmonic

oscillators, have been indicated on the bottom (Figure reproduced with permission from [34]. Copyright 2014, American

Institute of Physics).

Figure 14. Composition dependence of phase transition temperature T* and Neel temperature TN for the BLFTO

ceramics derived from temperature dependent Raman scattering (Figure reproduced with permission from [34]. Copy-

right 2014, American Institute of Physics).
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For a closer inspection, the peak positions of all modes in each phase are plotted in Figure 16

against the temperature between 300 and 800 K. Frequency shifts and transformations of the

modes are clear at the O-T and T-C boundaries. The trends within each phase consist primarily

of mode softening with increasing temperature, exactly as expected to follow from the lattice

thermal expansion. In the light of all the results, displacive and order–disorder mechanisms

have to be associated in the description of the phase transitions. Thus, the successive phase

transitions in KNN-LN based single crystals derive from competition between a soft phonon

mode and a relaxation mode.

In order to obtain the phase fraction, we assume that one phase at thermal phase boundaries is a

linear superposition of the spectra below and above phase boundaries. As shown in Figure 17,

the fitting Raman spectra at 410–440 K in KNN-LN and KNN-LN-1%MnO2, respectively, are

displayed in comparison with the observed spectra at the same temperature. The fitting spectra

are obtained from the linear superposition of the Raman spectra below and above phase bound-

aries. The coincidence of the experimental and the fitted Raman spectra are well for both

samples, which strongly confirms the coexistence of the O and T phases at the thermal phase

boundary from O to T phase. The mixed structure state at the thermal phase boundaries is due to

sufficient competing mechanical and dipolar interactions between domains in multi-domain

configurations [38]. In single domain case, the system undergoes a series of first-order ferroelec-

tric transitions upon heating, sequentially adopting the O and T ferroelectric phases before

reverting to the C parent phase.

Figure 15. Temperature dependence of Raman scattering for the KNN-LN based single crystals collected in the temper-

ature range from 300 to 800 K and Lorentzian-shaped deconvolution at the temperature of 300 K. The arrows are applied

to separate different phase transition (Figure reproduced with permission from [35]. Copyright 2015, American Institute

of Physics).
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Figure 17. Phase fraction of (a) KNN-LN, and (b) KNN-LN-1%MnO2 single crystals as a function of temperature. Note

that (c) and (d) is the fitting Raman spectra at 410–440 K for KNN-LN and KNN-LN-1%MnO2, respectively (Figure

reproduced with permission from [35]. Copyright 2015, American Institute of Physics).

Figure 16. Temperature dependence of the phonon frequency from KNN-LN based crystals. (a) and (c): The low

frequency range of 10–300 cm�1, (b) and (d): The high frequency range of 400–900 cm�1. Note that different shade regions

indicate that the crystals are located in diverse phase (Figure reproduced with permission from [35]. Copyright 2015,

American Institute of Physics).
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4. Conclusions and outlook

This chapter reports a systematic micro-Raman scattering study on A- and B-site doped lead-

based, tungsten bronze niobate, Bi-layered, ABO3 perovskites, multiferroics and lead-free

ferroelectrics. The processing conditions, substitution, temperature-dependent Raman spec-

tra and the structure–property correlations are discussed in the ceramics and single crystal

forms of these materials. It can be concluded that the Raman spectra can provide us with a

lot of important physical parameters for application in the future, such as spontaneous

polarization, Curie temperature, structure distortion degree, mix-phase region and phase

diagram and so on. The excellent agreement between the Raman, XRD or dielectric observa-

tions of merging of phase transition temperatures in all of the ferroelectric materials with

different doping compositions suggested the powerful tool for detecting phase transition

with solid state spectroscopy.

It should be emphasized that the domains in these ferroelectric materials and their related

phenomena with different conditions, such as electric field, magnetic field and pressure have

not been well investigated. The Raman spectra can be used to characterize the species of

domain (including a/c domains, 90�/180� domains), critical sizes and domain wall in ferro-

electrics. Thus, we can check the domain status by recording the high-resolution Raman

response. Our next goal is to characterize the domain information in these ferroelectric

ceramics and films and identify the factors which can affect the domain structure. We believe

that our research results will be of great significance to the development of microelectronic

physics in the future.
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