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1. Introduction

Adaptive control has attracted a lot of research attention in control theory for many decades.
In the certainty equivalence based adaptive controller design [4, 5], the unknown parameters
of the uncertainty system are substituted by their online estimates, which are generated
through a variety of identifiers, as long as the estimates satisfy certain properties independent
of the controller. This approach leads to structurally simple adaptive controllers and has been
demonstrated its effectiveness for linear systems with or without stochastic disturbance inputs
[10] when long term asymptotic performance is considered. Yet, the certainty equivalence
approach is unsuccessful to generalize to systems with severe nonlinearities. Also, early
designs based on this approach were shown to be nonrobust [13] when the system is subject
to exogenous disturbance inputs and unmodeled dynamics. Then, the stability and the
performance of the closed-loop system becomes an important issue. This has motivated the
study of robust adaptive control in the 1980s and 1990s, and the study of nonlinear adaptive
control in the 1990s.

The topic of adaptive control design for nonlinear systems was studied intensely in the last
decade after the celebrated characterization of feedback linearizable or partially feedback
linearizable systems [7]. A breakthrough is achieved when the integrator backstepping
methodology [8] was introduced to design adaptive controllers for parametric strict-feedback
and parametric pure-feedback nonlinear systems systematically. Since then, a lot of important
contributions were motivated by this approach, and a complete list of references can be found
in the book [9]. Moreover, this nonlinear design approach has been applied to linear systems
to compare performance with the certainty equivalence approach. However, simple designs
using this approach without taking into consideration the effect of exogenous disturbance
inputs have also been shown to be nonrobust when the system is subject to exogenous
disturbance inputs.
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The robustness of closed-loop adaptive systems has been an important research topic in late
1980s and early 1990s. Various adaptive controllers were modified to render the closed-loop
systems robust [6]. Despite their successes, they still fell short of directly addressing the
disturbance attenuation property of the closed-loop system.

The objectives of robust adaptive control are to improve transient response, to accommodate
unmodeled dynamics, and to reject exogenous disturbance inputs, which are the same as
the objectives to motivate the study of the H®- optimal control problem. H®%-optimal
control was proposed as a solution to the robust control problem, where these objectives are
achieved by studying only the disturbance attenuation property for the closed-loop system.
The game-theoretic approach to H*-optimal control developed for the linear quadratic
problems, offers the most promising tool to generalize the results to nonlinear systems [3].
Worst-case analysis based adaptive control design was proposed in late 1990s to address
the disturbance attenuation property directly, and it is motivated by the success of the
game-theoretic approach to H*-optimal control problems [2]. In this approach, the robust
adaptive control problem is formulated as a nonlinear H* control problem under imperfect
state measurements. By cost-to-come function analysis, it is converted into an H* control
problem with full information measurements. This full information measurements problem
is then solved using nonlinear design tools for a suboptimal solution. This design scheme
has been applied to worst-case parameter identification problems [11], which has led to new
classes of parametrized identifiers for linear and nonlinear systems. It has also been applied
to adaptive control problems [1, 12, 14, 15, 18, 19], and the convergence properties is studied
in [20]. In [14], adaptive control for a strict-feedback nonlinear systems was considered with
noiseless output measurements, and more general class of nonlinear systems was studied
in [1]. In [12], single-input and single output (SISO) linear systems were considered with
noisy output measurements. SISO linear systems with partly measured disturbance was
studied in [18], which leads to a disturbance feed-forward structure in the adaptive controller.
[19] generalizes the results of [12] to the adaptive control design for SISO linear systems
with zero relative degree under noisy output measurements. In [17], adaptive control for
a sequentially interconnected SISO linear system was considered, and a special class of
unobservable systems was also studied using the proposed approach. More recently, [16]
generalized the result of [17] to adaptive control design for a linear system under simultaneous
driver, plant and actuation uncertainties.

In this Chapter, we study the adaptive control design for sequentially interconnected SISO
linear systems, S; and Sj(see Figure 1), under noisy output measurements and partly
measured disturbance using the similar approaches as [12] and [17]. We assume that the linear
systems satisfy the same assumption as [17], and the adaptive control design follows the same
design method discussed above. The robust adaptive controller achieves asymptotic tracking
of the reference trajectories when disturbance inputs are of finite energy. The closed-loop
system is totally stable with respect to the disturbance inputs and the initial conditions.
Furthermore, the closed-loop system admits a guaranteed disturbance attenuation level with
respect to the exogenous disturbance inputs, where ultimate lower bound for the achievable
attenuation performance level is equal to the noise intensity in the measurement channel of
Si. The results are as same as those in [17]. In addition, the controller achieves arbitrary
positive distance attenuation level with respect to the measured disturbances by proper
scaling. Moreover, if the measured disturbances satisfy the assumption 2 for @, ; and @, , the
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proposed controller achieves disturbance attenuation level zero with respect to the measured
disturbances, which further leads to a stronger asymptotic tracking property, namely, the
tracking error converges to zero when the unmeasured disturbances are £, N Lo, and the
measured disturbances are Lo, only.

The balance of this Chapter is organized as follows. In Section 2, we list the notations used
in the Chapter. In Section 3, we present the formulation of the adaptive control problem and
discuss the general solution methodology. In Section 4, we first obtain parameter identifier
and state estimator using the cost-to-come function analysis in Subsection 4.1, then we derive
the adaptive control law in Subsection 4.2. We present the main results on the robustness of
the system in Section 5, and the example in Section 6. The Chapter ends with some concluding
remarks in Section 7.

2. Notations

We denote R to be the real line; R, to be the extended real line; N to be the set of natural

numbers; C to be the set of complex numbers. For a function f, we say that it belongs to C if it

is continuous; we say that it belongs to Cy if it is k-times continuously (partial) differentiable.
-1b<0

For any matrix A, A’ denotes its transpose. For any b € R, sgn(b) = 0 b=0. For
1 b6>0

any vector z € R", where n € N, |z| denotes (z'z)!/2. For any vector z € R”, and any

n x n-dimensional symmetric matrix M, where n € N, \zﬁw = z/Mz. For any matrix M,

the vector M is formed by stacking up its column vectors. For any symmetric matrix M, M
denotes the vector formed by stacking up the column vector of the lower triangular part of
M. For n x n-dimensional symmetric matrices M; and Mj, where n € N, we write M1 > M,
if Mj — Mj is positive definite; we write M; > M, if M; — M, is positive semi-definite.
For n € N, the set of n x n-dimensional positive definite matrices is denoted by S.,. For
n € NU {0}, I, denotes the n x n-dimensional identity matrix. For any matrix M, ||M]|,
denotes its p-induced norm, 1 < p < oo. L, denotes the set of square integrable functions
and Lo denotes the set of bounded functions. For any 1, m € N U {0}, 0,x; denotes the
n x m-dimensional matrix whose elements are zeros. Forany n € Nand k € {1,--- ,n}, €n k

U
denotes [01X(k_1) 1015 (n—ik)

3. Problem Formulation

We consider the robust adaptive control problem for the system which is described by the
block diagram in Figure 1.

N W,
W2
W, S, % S, Y
u ) v
W
7
Y,

Figure 1. Diagram of two sequentially interconnected SISO linear systems.
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We assume that the system dynamics for S; and S; are given by,

X1 = Ajxg + B1y2 + Dy + Dlwl, (1a)
yl = G131 + By (1b)

= Apxy + Byu+ Ay 15 + Doy + Y (1o
v = Coxp + Eriy (1d)

where %; is the n;-dimensional state vectors with initial condition %;(0) = %;, #; € N; u is the
scalar control input; y; is the scalar measurement output; w; is §;-dimensional unmeasured
disturbance input vector, 4; € N; w; is ql-dlmenswnal measured disturbance input vector,

ji € N; the elements of w; are [W;; - - wwl] ; o = y1; the matrices A; Aly, B;, Ci, D;, D and
E; are of the appropriate dimensions, generally unknown or partially unknown, i = 1,2. For
subsystem Sy, the transfer function from y, to y; is Hy (s) = C1 (sIy, — A) 1By, for subsystem
S», the transfer function from u to y, is Hy(s) = Cy(sIy, — Ay) ' B,. All signals in the system

are assumed to be continuous.
The subsystems S and S; satisfy the following assumptions,

Assumption 1. Fori = 1,2, the pair (A;, C;) is observable; the transfer function H;(s) is known to
have relative degree v; € IN, and is strictly minimum phase. The uncontrollable part of S1 (with respect
to y,) is stable in the sense of Lyapunov; any uncontrollable mode corresponding to an eigenvalue of the
matrix Ay on the jw-axis is uncontrollable from (@] @ | " The uncontrollable part of Sy (with respect
to u) is stable in the sense of Lyapunov; any uncontrollable mode corresponding to an eigenvalue of the
matrix Ay on the jw-axis is uncontrollable from [} o @', o

Based on Assumption 1, for i = 1,2, there exists a state diffeomorphism: x; = Tia‘ci, and a
disturbance transformation: w; = M;w;, such that S; can be transformed into the following
state space representation,

J
X1 = Arxr + (y1Aion +y2 A0 + Z @1,jA1,213))01 + Biya + Diwy + Dyvy;
j=1

y1 = Cixp + Equn
— - qz - - N
Xy = Apxy + (2 Aopn1 + ulyoia + Y W2 A2 013) + Y2 Ao014)02 + Bou + Ag yijn + Dywy + Dythy;
j=1
y2 = Coxp + Eqywp
where 0; is the g;-dimensional vector of unknown parameters for the subsystem S;, o; € N;

the matrices Ai/ Ai,le/ Ai,ZlZ/ A_i,2131/ ceey, Ai,213qv,-/ A_2,214, A2/y, Bi/ Dir Dir Ci/ and Ei are known
and have the following structures, A; = (“i,jk)n,-xn,-;”i,j (+1) = 1a;5 =0, forl1 <j<r—1

— - - !
and j+2 < k < ny; Ajpp = [ Opx(ri1) Algino Alna, ] , Ci = [1 0 (n-1) ], Aizi20
!
is a row vector, B; = [01X(,i,1) bi,pO e bi,p(ni,ri)} , bi/p]-j =0,1,---,n; — r; are constants.

We denote the elements of x1 and xp by [x171 -+ X1, ]/ and [xp7 -+ X2, ]/ , with initial
conditions x7 ¢ and x; o, respectively.
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/
Assumption 2. The measured disturbance Wy can be partitioned as: W = [d]’l i b] where Wy 4 is

1, dimensional, §; , € N U {0}, and the transfer function from each element of w1 , to y; has relative

!
degree less than r1 + ry; the measured disturbance Wy can be partitioned as: Wy = [ZT)’Z 2 ] where

W q i §p o dimensional, i , € N U {0}, and the transfer function from each element of Wy , to yo has
relative degree less than ry. o

Based on Assumption 2, the matrix D; can be partitioned into [ Di,a Ev)i,b |, where Di,a and Di,b
have n; X §; ;- and n; X §; j,-dimensional, respectively; and D; ;, A; 513 (G+1)r "+ Ai13g; have
the following structure

. O(Vijl)xﬁi,b _ 0(11—1)><t7i
Dip = D o ;o Aipizj= | Aizzjo | =it Lo di
D;jpr, Ain13jr,

where Di,bo and Ai,213]~0,j ={qia+1,-,§iq+ qip are row vectors,i = 1,2.

Since we will base our design of adaptive controllers using the model (2), we call (2) the design
model, and make the following two assumptions.

Assumption 3. For i = 1,2, the matrices E; are such that E,E] > 0. o

Define {; := (E;E})"? and L; := D;E}, i = 1,2.

Due to the structures of A;, A;51» and B, the high frequency gain of the transfer function
H;(s), b;, is equal to bi,pO + Ai,21209ir i=1,2.

To guarantee the stability of the identified system, we make the following assumption on the
parameter vectors ¢ and 6.

Assumption 4. The sign of b;g is known; there exists a known smooth nonnegative
radially-unbounded strictly convex function P; : R% — R, such that the true value 6; € ©; :=
{éi e RY ‘ Pi(gi) < 1},‘ moreover, Vél €0, Sgn(bi’o)(bi/po + Ai,ZlZOéi) >0,i=1,2. <o

Assumption 4 delineates a priori convex compact sets where the parameter vectors 6; and
6, lie in, respectively. This will guarantee the stability of the closed-loop system and the
boundedness of the estimate of 6; and 0,.

We make the following assumption about the reference signal, .

Assumption 5. The reference trajectory, y4, is 1 + 1o times continuously differentiable. Define

vector Yy 1= [ygo), e, yyl”Z)}’, where y§,°) = Ya, and yé,j) is the jth order time derivative of y4,
j=1,---,r1 + 1y define Yy := [ygo)(O), e ,yyl+r271)(0)]’ € R"*"2, The signal Yy is available
for feedback. o
The uncertainty of subsystem Sq is @y := (x1,0,01, @1[0,00), D1(0,00): Ya~ yg[(l)zz))) eW =

R" x @1 x C x C x R"*"2 x C, which comprises the initial state x1,0, the true value of the
parameters 61, the unmeasured disturbance waveform @[ ), the measured disturbance
waveform @y ), the initial conditions of the reference trajectory Yo, and the waveform
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of the (1 4+ rp) th order derivative of the reference trajectory, yé?”?. The uncertainty for

subsystem Sy is @ 1= (x2,0, 02, W0 c0), W2[0,00)) € Wy :=R"™ x @, x C x C, which comprises
the initial state xp0, the true value of the parameters 6, the unmeasured disturbance
waveform @y(g ), and the measured disturbance waveform @;(g ).

Our objective is to derive a control law, which is generated by the following mapping,

u(t) = p (20,4 Y210, Yajo,) @1, @2) ®)

where y : C xC xC xC xC — R, such that x1; can asymptotically track the reference
trajectory y,, while rejecting the uncertainty (@i, @,) € W; x W, and keeping the
closed-loop signals bounded. The control law x must also satisfy that, ¥(cwy,w;) € Wy x W,
there exists a solution 1[g ;) and X3(g «,) to the system (1), which yields a continuous control
signal i o). We denote the class of these admissible controllers by M.

For design purposes, instead of attenuating the effect of [@} @] W) wz]l we design the

adaptive controller to attenuate the effect of [w] @] w) wz]/. This is done to allow our
design paradigm to be carried out. This will result in a guaranteed attenuation level
with respect to w; and wy. To simplify the notation, we take the uncertainty w; :=

(Xl 0,91,w1[0w) wl[o(,o) Ydo,y;[l+ 3)) S Wl = R™ x @1 x Cx(C x erJrrZ X C, and Wy =
(X2,0,92, wz[o,oo),wz[o,w)) eEW, =R x0, xC xC.
We state the control objective precisely as follows,
Definition 1. A controller p € M, is said to achieve disturbance attenuation level -y with respect
!
to [w} @), whH W), |, and disturbance attenuation level zero with respect to [d)ﬁ/b w’lh] , if
there exists functions L1 (£, 61, X1, Y110, Yajo,) W1(0,1 Dafo,. Yapo, 1), 12(t,02, %2, 1[04, Y20, D1(0,1)s
Wa(0,4]/ Yd[O,t]) and a known nonnegative constant lo(¥1 g, ¥2,0, 01,0, 02,0), such that
sup Jytp £0; Vip >0 (4)
wy EWl,ﬁIzEWz

and Iy > 0and Iy > 0 along the closed-loop trajectory, where

Joti Tt + T2t (5a)
ot . 3 712
hvtf:/o ((C1x1 —ya)? +h =l - 72@1%"2) dr—o? [91 — 010 x10 xﬁ,o] Q(Sb)
1,0
ot . 712
]2,7,&;:/0 (lz — 7 |waf? — 72\%712,”\2) dr—1lp—1* ‘ [9; — b0 x99~ fé,o} o (5¢)
2,0

éi,o € ©; is the initial guess of 0;; %90 € R is the initial guess of x;0; Qi;o > 0 is a

(n; + ;) x (nj + 07)-dimensional weighting matrix, quantifying the level of confidence in the estimate
-1 1/

Qio Qio Pio 0,

1OQ,0 H10+®10Q @'

and n; x n;-dimensional positive definite matrices, respectively, i = 1,2.

. I )
[9;0 f;o] ; Qi_ol admits the structure , Qi and I1; o are 0; X 0j-
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Clearly, when the inequality (4) is achieved, the squared £, norm of the output tracking error
Cy1x1 — Y4 is bounded by 4 times the squared £, norm of the transformed disturbance input

[w] d/w wy W), | | plus some constant. When the £, norm of @, @,, @1, and @, are finite,
the squared £, norm of C1x1 — yy is also finite, which implies tlim (Crx1(£) —ya(t)) =0,
)

under additional assumptions.

Let &; denote the expanded state vector §; = [0/, x}]', i = 1,2, and note that 6; = 0, we have
the following expanded dynamics for system (2),

0 0

b = yiAin +y2A1 0 + 2?1:1 Wy,;A1213 A1

&1+ {];)1} Yo+ {[())J wy + Lgl} wy
=: A1(y1,Y2,W1)& + Biyz + Dywy + Dyay
y1 = [0C1] &1+ Ejwy
=: C’lc;‘l + Eqwq
0 0
Y2 Az m + Az + 2?2:1 Wy jAr013j + oAz 14 Ar

0 0| .
+ |:D2:| Z{J2+ |:D2:| wo
=t A2 (y1, Y2, W2, 1) + Bott + A ytjo + Dowy + Doy

v2 = [0Cy] & + Exwy
=: 82 + Eawy

e 2o )

The worst-case optimization of the cost function (4) can be carried out in two steps as depicted
in the following equations.

sup ],th: sup sup ]'ytf
W1 EW, W eW, W €W w1EW, (Z/zEWz‘meWW
< sup sup Jyts
W €Wy wlewll(UZeWZ‘wmeWm
2
=sup (Y swp i) ©)

W €Wpi=1 w,‘€W,“wm€Wm

where wy, is the measured signals of the system, and defined as
Wi 1= (yl[o,oo)fyz[o,oowwl[o,oo)r%z[o,ooydey[é,tori)) €Wn=CxCxCxCxR1TxC.

The inner supremum operators will be carried out first. We maximize over w; given that the
measurement wy, is available for estimator design, i = 1,2. In this step, the control input, u,
is a function only depended on wy,, then u is an open-loop time function and available for the
optimization. Using cost-to-come function analysis, we derive the dynamics of the estimators
for subsystem S; and S; independently.

The outer supremum operator will be carried out second. In this step, we use a backstepping
procedure to design the controller y.

This completes the formulation of the robust adaptive control problem.
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4. Adaptive control design

In this section, we present the adaptive control design, which involves estimation design and
control design. First, we discuss estimation design.

4.1. Estimation design

In this subsection, we present the estimation design for the adaptive control problem
formulated. First, we will derive the identifier of subsystem S;. In this step, the measurement
waveform v, y» and measured disturbance w; are assumed to be known. Then we can
obtain the identifier of subsystem Sq from a game-theoretic solution methodology — cost-to-come
function analysis.

We first set function I; in the definition to be |&7 — 61%1 +2(& — l11)'hp +1;, where
¢1 = [01,%]] is the worst-case estimate for the expanded state &1, Q1(¥1[o}, Yapo,«], @1)0,7))
is a matrix-valued weighting function, I 1 (y; (0,2 Ya[o,2 @1[0,7] ) lia(yy (0,<]» Ya[o, <)+ TZ)l[O,T]) and
I (11 (0,2 Ya[o,7)- zbl[o,T]) are three design functions to be introduced later, the cost function of
subsystem Sy is then of the a linear quadratic structure.

The robust adaptive problem for S; becomes an H* control of affine quadratic problem, and
admits a finite dimensional solution. By cost-to-come function analysis, we obtain the dynamics
of worst-case covariance matrix ¥, and state estimator ¢1, which are given by

1= (A = GBLiC)E + £ (A — BL1Gy) — £ (¥*33CC - GG — Q)%

+y 7DD - PELLY £4(0) = 172Q5p (7a)
& = (A + 21 (CiCr+ Q)& + Biya + 83 (VP51 C1 + L) (1 — Gi&y)
_ - - A 2 ~ ¥ “ !
=21 (Clya + Q1é1 — h2) + D1y, 61(0) = [91,0 xi,o} (7b)

where L is defined as Ly = [0, L} ]/ )
We partition ¥ as the same structure as

= [_21 ?1,12}
2101 X122

™M

©®)

i} 2P
1%y Tl + @12 P

where @ (t) := £ 5 (£)(Z1(#)) ! and Ty (£) 1= 92 (Z1,2(F) = £1,21(£) (21 (£)) "E112(8)), ¥ €
[0, ¢¢]. Then the weighting matrix X1 is positive definite if and only if 21 and I1; are positive
definite. To guarantee the boundedness of 1, we choose weighing matrix Q; as follows,

= «—1 |00 %0y Ooyxny | w1 €1CI>/1C1(’}/2€% - 1)Clq)l 00, 511y
Ql - z‘1 |:0n1><(71 Al(t) :| Z‘1 + [ (9)

01y x oy 03y x 11y

where Aq(t) = 77281 AT11 (t) + Aq 1, with By > 0 being a constant and A 1 being an 17 x 111~
dimensional positive-definite matrix, and €; is a scalar function defined by
e1(t) :=Tr(Zq(t)) ' /Kye VteE[0,tf] (10a)
or
€1(f) =1 Vte [0, tf] (10b)
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Then the dynamics of ¥, @y, I} are given as follows with initial conditions y2 Q1 é, Iy,
and @ o respectively,

L1 = (a1 = DEPIC] (3] — DCIP1Z (11a)
M) = (A1 = LT + 1Ty (Ay = T Cr)’ = GLiLy = TLCY (GF — o 2)Cilly
+D1 D] + 9?1 (11b)
. — — ql —
D) = Ay @1 +y1A0n +y2Arpn +) | A1zl (11c)
j=1

where Ay ¢ 1= Ay — {3L1Cy — I1,C{Cy (32 — v2) is Hurwitz. By picking v > Cfl, we have
the covariance matrix X1 upper and lower bounded as summarized in the following Lemma
[12].

Lemma 1. Consider the dynamic equation (11a) for the covariance matrix £1. Let K1 . > v*Tr(Q1),
Q10>0,72> @1_1, and €1 be given by either (10b) or (10b). Then, the matrix L1 is upper and lower
bounded as follows, whenever ®y is continuous on [0, t f},

K he < Zq(8) <24(0) =77 %Q s
YPTr(Quo) < Tr(Z1(t) ' < Ky VEE[0,ty]

To avoid the calculation of i ! online, we define siy = Tr(Z] 1). Based on the structure of
Q1, we have the following assumption to guarantee the boundedness of ¥ and s 5,

Assumption 6. If the matrix A1 — §%L1C1 is Hurwitz, then the desired disturbance attenuation level
v > él_l. In case y = él_l, choose By p > 0 such that Ay — é%LlCl + B1,a /21y, is Hurwitz. If the
matrix A — é%LlCl is not Hurwitz, then the desired disturbance attenuation level v > {7 1 o

This assumption implies that the achievable disturbance attenuation level <y is no smaller than
- 1. Under this assumption, we initialize I1; as the unique positive definite solution of its
Riccati Differential Equation (11b), which is summarized as the following assumption.

Assumption 7. The initial weighting matrix I1; ¢ is chosen as the unique positive definite solutions
to the following algebraic Riccati equations:

(A1=GTLiC)I +TL (A1 =3 LiCr) — T Ci G il +D1 Dy i Li L 9781 = 0y ey (12)
To guarantee the estimates parameter to be bounded and the estimate of high frequency gain
to be bounded away from zero, projection function scheme is applied to modify the dynamics
of ’;1 .
Define
p1 :=inf{P1(01) | 01 € R, by po + A1 212001 = 0} (13)

By Assumption 4 and Lemma 2 in [19] we have 1 < p; < oo. Fix any p1, € (1,p1), and define
the open set ©1, := {f; € R | P;(6) < p1,}. Our control design will guarantee that the
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estimate 6; lies in ©1,,, which immediately implies |b1,p0 + A1012 oél\ > c19 > 0, for some
c1,0 > 0. Moreover, the convexity of P; implies the following inequality

Py

50 (61) (61 —6;) <0 V6 € R"\Oy
1

We set 11’1 = 51, and 11/2 = [_(Pl,r(él))/ 01><ﬂ1 ]/, where

T (203 )

i
Pl,r(gl) = (Plo Pi( 91 ) V91 S ®1 0\®1
00-1><1 V91 S @1
JdP
= o) (26 (1)

then, we obtain

1= 21 [(PL(8)) 01y, |+ A1E+E1C (yg—Cré1) —£1Q1 (1, 51,2) 81 0+ Baya

N

— = = - X < !
+33 (R0 + L) — Gié) + D &(0) = [ 8, %] (15)
where &1, = ¢ —G1.
We summarize the equations for subsystem S; as follows,
0= (A1 —~GLiCIHIL (A —GTLiC) ~ I G (G~ 2) Gl +D1D] ~ (L1 Ly +9°0

%

—(1— €)X @[ C] (v?4] — 1)C1P1 %4

(V61 = 1) (1 — 1) C1 &1 D Cy
€1 = Kf,clsl,Z or 1

$1,3

Ayp = Ay —(FL1C — T CICy (ZF — 772
. _ _ oo
D1 = Ay @1+ 1A + Ao + ) Aoz
=1
01 = = Pyp(61) — T4 Cf (yg — Cr¥y) — [Z1 Za @) ] Q1ée + v EiE1PICY (y1 — Ci¥y)

¥ = —D1% Py (6h) + Ary — (72T + @12 ®))Cf (yg — Ci¥p) + Brya + Dy
B} _ _ o _ y
— [@1Z1 v + P X | Qiue + (V1A1011 + Y2 A1 + ) D1 A1 213))01
=1
+01 (TG + @15 PICL + Ly) (1 — Ci¥p)

This completes the estimation design of S1.
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Next, we will derive the estimator for subsystem S,. In this step, the measurements waveform
wy is assumed to be known. Since the control input, u, is a causal function of wy,, then it is
known. Again, we will apply the cost-to-come function methodology to derive the estimator.
We briefly summarize the estimation design for S, as follows.

Set function I, in definition to be |& — 62%2 +2(& — &)l + I, where & = 05, %] is the
worst-case estimate for the expanded state >, & is the estimate of &, Q is a matrix-valued
weighting function, I » and ZVZ are two design functions to be introduced later, the cost function
of subsystem S, is then of a linear quadratic structure. By cost-to-come function analysis, we
obtain the dynamics of worst-case covariance matrix %, and state estimator &. We partition
Yrasty = { R ;2,12} and introduce @) := 55525 and Iy := 42(£20 — £021%5 180 12),
2021 2022 | - ’ T
then the weighting matrix X is positive definite if and only if ¥, and I1, are positive definite.
To guarantee the boundedness of ¥, we choose weighing matrix Q as follows,

!
0, = [_q’/z} 2L AL, ! [—@2} N {ezqﬂzcgyzggqqu 0oy 1y a6

Inz Inz 011, x o, 011, x 11,

where Ay(t) = W*Zﬁz,Anz(t) + Ayq, with oo > 0 being a constant and A, ; being an
ny X np- dimensional positive-definite matrix, and e; is a scalar function defined by e, =
K, (}Tr(Zz_ Dore, =1. Ko > v*Tr(Qay) is a design constant, Qp is an 03 x 0»-dimensional
positive-definite matrix. Then the dynamics of ¥, ®, I, are given as follows,

)
o = (€ — 1) 5 @)Ch 030 055;  p(0) = & (17a)
Ty = (A2 — 3LaCa + Boa /20, )Ty +T1h (Ay — Z3LoCo + Boa/21n,) — T1aChZ3CoTTy + Do D)
—3LaLh +9*Ar1; T1p(0) =Tl (17b)
. _ _ (LI _
Dy = Ay sy +yaAopnn + uhopin + ) Appiaihn + Yo Arois; P2(0) = Pop (17¢)
=1

where Ay ¢ := Ay — {3L2Cy — I1,C)Ca73 is Hurwitz. By Lemma [12], we have the covariance
matrix Xy upper and lower bounded as follows, Kz_lcllg2 < B(f) < E(0) = 'y_zQz_lé,
Y2Tr(Qa0) < Tr(Z2(t))~! < Ky, whenever it exists on [0, t] and @; is continuous on [0, ¢].
To avoid the calculation of X5 ! online, we define sy, = Tr(Z, .

To guarantee the estimates parameter to be bounded and the estimate of high frequency
gain to be bounded away from zero without persistently exciting signals, we introduce the
following soft projection design on the parameter estimate.

Define pp := inf{Py(62) | 02 € R7, by 0 + Az212062 = 0}, we have 1 < pp < co. Fix any
02,0 € (1,p2), we define the open set ®;, := {0, | P2(f) < pa,}. Our control design will
guarantee that the estimate 6, lies in @, ,, which immediately implies |b2,p0 + Axp1206a| >
c20 > 0, for some cp 9 > 0. Moreover, the convexity of P, implies the following inequality:

g—g; (62) (8 —6,) <0 V6, € R™\@,. To incorporate the modifier to the estimates dynamics,
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we introduce Iy = [~ (Py,(62)" 01xy,]’, where

(p20—P2(62))
0(72 %1 V92 S @2

= part@) (202 0)

and the dynamics of & is then given as follows,

y () (aps g 0)"
Py, (6;) := { PR TR (37;5(92)) V2 € ©2,\02

& =~ [(Pyr(62)) 01y | + Asly + Bott + 3 (v2£2Ch + Ayt + L) (2 — Coda)

+Daity — £,0(& — &)
where & = [0} %]’ with initial condition [6} ¥)]’, and L, is defined as L, = [0y, L]'.
This completes the estimation design of S,.

Associated with the above identifier and estimator of subsystem S;, i = 1,2, we introduce the
value function W; : R""% x R""% x S, , . — Rand the time derivative are as follows

Wi(Gi, §in i) = |9i_éi|éi—1 + 77X — X — D (6; — 6)) %1;1 (18)

Wi = —[x11 —yal> =7 — £ — Py (61 — 91)|%11’1A1H1’1 +[Cr¥ —yal?

—e1(7’8 = D161 — 613000, — VR — Cita P+ P = P wr —wr,

+2(61 — 61)' Py, (6;) (19)
Wy = —9*xy — £ — D (62— b) ‘%ElAsz’l — 2703162 — 023,10,
—V%ly2 — Cota|* + 7 [wal* — VP wy — wa > +2(62 — 62) P, (62) (20)
where w; , is the worst-case disturbance, givenby w; , : R x R"1% x R" 1% x § +(n+o) — R
w; (&, & S w;) = CPEL (yi — Ci&) +v 2 (I, — CPEENDIE (& - &) i=1,2

We note that (18) holds when ¥; > 0 and 6; € ®;9, and the last term in W; is nonpositive,
zero on the set ®; and approaches —co as f; approaches the boundary of the set ®; ,, which
guarantees the boundedness of g;,i=1,2.

Then (5) can be equivalently written as, i = 1,2:
_ C _ 2 l _ _C _ 2 20 2 d
Jiqt, = | 1% —Yal*+|E1cl th—y 202 y1 —Ci#1 > = |wy — wy . * — Y| @1, ) dT
—11,0 —[¢1(tr) — gl(tf)‘(il(tf))—l
rty .
J2, 4t :/0 (|Cz,c|éz+12—72§§\y2—czf2|2—72\702—wz,*|2—72|7172,u\2>dT

—lo— |&a(ts) — Ealty) \%mtf))*l

This completes the identification design step.
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4.2. Control design

In this section, we describe the controller design for the uncertain system under consideration.
Note that, we ignored some terms in the cost function (5) in the identification step, since they
are constant when vy, y2, Wy, Wy and ¥, are given. In the control design step, we will include
such terms. Then, based on the cost function (5), the controller design is to guarantee that the
following supremum is less than or equal to zero for all measurement waveforms,

sup ],th
W1 EWL, W €W,

<sup ( sup Jiyt + sup o, )

W €W w1 €Wy ‘wm EWn W EW, ‘wm EWn

Wy € Wm

ty 2 .
<sup {/0 (\Clﬂ?l—yd|2+z (\Ci,cléﬂrli—’yzélz\yi—Cifilz—’Yz\wi,u\z) ) dT} (1)
i-1

where  function [j(x, Yo7 Yajo,;pW1) is part of the weighting function
11(, 01, %1, Y1)0,4) Yajo,«, @1), and lvz(T,yz[O,T],Yd[olT],Z{v)z) is part of the weighting function

15(T, 02, X2, Y2[0,7] Ya[o,), W2) to be designed, which are constants in the identifier design step
and are therefore neglected.

By equation (21), we observe that the cost function is expressed in term of the states of
the estimator we derived, whose dynamics are driven by the measurement y1, y2, W, Wy,
2, the reference trajectory y,, the input u, and the worst-case estimate for the expanded
state vector ¢; and &, which are signals we either measure or can construct. This is then a
nonlinear H*-optimal control problem under full information measurements. Since 7o = y;
in the adaptive system under consideration, we can equivalently deal with the following
transformed variables instead of considering v, y2, W1, W2, and ¥ as the maximizing variable,

[ 71 (y1 — C1%q) |

wW1,a

Yo W1 _|n
7o (2 — Co¥p) vy

/
where ; = [gi (y; — Ci¥y) @, Wy | i = 1,2,

By the special structure of the system, we define v;, = [; (v; — C;¥;) uv)glu ]’, i=1,2 v, =
Py ], and we will attenuate disturbance v,, and cancel the disturbance @, ; and @, 5. In
viewofyp = 2*16:% 12,4200 X1, we will treat X; ; as the virtual control input of subsystem
S1, where fs = 1,0 + 2 -

For i = 1,2, we introduce the matrix M5 = [A?}_lp,',ni o Ai,fp,',nl, Pin, ] , where p; . is a
n;-dimensional vector such that the pair (A; f, p; ,) is controllable. We note that 1/, = y1, then
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the following 311 + 41y + §1 + §>-dimensional prefiltering system for y1, yo, u, W1, Wy, and 1o
generates the ®; and ®; online:

= Ay + pLm i
Hoyj = ALy + PLm @1 Mw,j(0) =1 joi =1+, §i
A= Ay ph + punyz M(0) = Ay

P = [A;',lfl'h < Agm 771] M[}Al,zu + [A;',lfl)u s Ay /\1] Ml_,}z‘_h,zu

-1 -
+) [Aflf Ny, A1 fwyj 'le,j] Ml,}Ai,213j
=1

2 = Ap 2 + P2,mY2;

N, = Az, fllws,j + P2m®2ji M, j(0) =Ny jo j =1, i
Ay = Ap pha + pamtt; A1 (0) = Aqg

Moy = AZ,f772,y + P2y Y2; ’IZ,y(O) = M2,40

-1 15 1 1=
Dy = [Afo Mo Ao 772] Mz,}Az,zn + [Afo Ag -+ ApfAy /\2] Mz,}Az,zlz
&2 n,—1 17
+) [Aff Navej * Az flwn,j 'hbz,j] M, ¢ A2213)
=1

+ [Ag,szlﬂz,y o Ag sty ’72,y] M, tAs

The variables to be designed at this stage include X1, u, {1, and .. Note that the
structures of A; and A, in the dynamics is in strict-feedback form, we will use the
backstepping methodology, see [9], to design the control input u, which will guarantee the
global boundedness of the closed-loop system states and the asymptotic convergence of the
tracking error. Since there are the nonnegative definite weighting on ¢ . and ¢; . in the cost
function (21), we can not use integrator backstepping to design feedback law for &1 . and ¢ ..
Hence, we set 1. = {». = 0 in the backstepping procedure. After the completion of the
backstepping procedure, we will then optimize the choice of {; . and &, . based on the value
function obtained. Note that X, Iy, 515, 91, Yy, Iy, sp 5, and g, are always bounded by
the design in Section 4.1. Since ®; is driven by control y,, and ®; is explicitly driven by u,
they can not be stabilized in conjunction with ¥; and ¥, in the backstepping design. We will
assume they are bounded and prove later they are indeed so under the derived control law.

We carry out the backstepping design for subsystem Sy first, and treat X,; as the virtual

control input of subsystem Sp in view of y» = {; 16{% 42,41,42% T X21. To stabilize 11,
we introduce variable 7 4, which satisfies 1714 = Ay f171,4 + P1,n,¥4 With initial condition
711,4(0) = #7140, and is the reference trajectory for #; to track. Choosing value function

Vig = |m—114 |zzl' where Z; is the solution to an algebraic Riccati equation. Treating ¥; ; as
the virtual control input, we complete the step 0 with the virtual control law a1 g = y4, which
will guarantee the Vl,o < Ounder %17 = aq9. At step 1, we introduce z1; := %11 — y4, and
choose value function V; 1 = Vi o + %Z%,l' Treating ¥ » as the virtual control input, we end the
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step 1 with the virtual control law «; 1, which guarantees Vl,l < O under ¥;, = «y,1. Define
the variable zy» = ¥; » — w1 for step 2. Repeating the backstepping procedure until step 74,
the virtual control input ¥; ; will appear in the dynamic of z; ,,. Using the similar procedure
as previous steps, we can derive the robust adaptive controller &1 ,, such that Vl,n < 0 under
Xp1 := «q,,. This completes the control design for subsystem S;.

To stabilize 775, we introduce variable 77, 4 as below,

. / . —
fad = A2, f12d + P2,m®1,r + P25, 12,4, +2V1,r5 12,4(0) = 12,40

and is the reference trajectory for 7, to track, where vy ,, is a function obtained after step r;.
Choosing value function Vo g := [172 — 172,,,1\222 + Vi, where Z, is the solution to an algebraic
Riccati equation. We complete the step r1 + 1 with the virtual control law a3 9 = «1,,,, which
will guarantee the Vo9 < 0 under ¥, ; = ay9. Repeating the backstepping procedure until
step r1 + 12 + 1, the virtual control input u will appear in the dynamic of Z;,,. Introduce
Vor, = Z%:l(‘ﬁj‘zz, + Z;le %Z]Z,k)' we then can derive the robust adaptive controller y such

that VZ,rz < 0 under u := u. Later, we will show that the control law y will guarantee the
boundedness of the closed-loop system states and the asymptotic convergence of tracking
error.

For the closed-loop adaptive nonlinear system, we have the following value function, U =
Wi + Wy + V, ,,, and its time derivative is given by

2
U= —|x11—yal —2(74|Xj—9?]'—q>]'(9]'—9]')|%I/,1AIH;1 + € (’YzC]Z =116, - 9j\<21>;c;c,¢>/
=1

2

rj
ht h ~ 12 2 2 2 2 2 VAR
—2(6; — 0;)'P; . (6)) + \77]'|y]-+};1ﬁj,kzj,k—“r [w;]= + W — wjoptl” — 77 [Wj 0

20~ 2 A 1 2 1 2
YN D)0 — D opt] ) —€2|02 — olaycici0, — 4 ‘gl,(rﬁer) o 4 62,11,

2

1 2
C1et 561 n4n) o

1
‘;2,6 + 562

* 2

+

1

2

where ¢1 4, and ¢y, are functions obtained after step r1 + 12 + 1, wy o and wy op; are the
worst case disturbance with respect to the value function U, which are given by

Wi opt = G1E1€h 101, +9 72 (Ig, — CRE{E)DIETH(& — &) + TTEICr (1 — x1)

Woopt = (aEReh gvap, + 72 (Iy, — (3ESE2)DAES (&2 — &) + GBESCa (%2 — x0)

!
N / O |
Lopt = [le(zwl,ﬁqzﬂ) @t ratioa)d """ (2t ratdn) dra °<1+qz,u)x<z+ql,u+qz,a)} Vi

/
. / .. L
W2,0pt = |:0(2+'71,a)><(2+qvl,u+qu,u) €(2+G1,0tdoa) 1 e(2+q1,a+072,n),‘/72,n] V2,1,

where vy ,, and 1, ,, are functions obtained after backstepping design.
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Then the optimal choice for the variable ¢; . and &, i=1,2, are:

1 " v 1

Cl,c* = _Egl,rl+r2 <~ gl,* =01 — igl,rﬁ»rz;
1 s ¥ 1

‘;2,6* = —§€2,r2 <~ ’;2,* =y — EQZ,rZ

which yields that the closed-loop system is dissipative with storage function U and supply
rate with optimal choice for ¢;,i = 1,2:

2

—|x11 —yd|2 +72\w1\2 +’Y2|w2|2 +’Yz\w1,a|2 +72\w2,a

This completes the adaptive controller design step. We will discuss the robustness and
tracking properties of the proposed adaptive control laws.

5. Main result
In this Section, we present the main result by stating two theorems.

For the adaptive control law, with the optimal choice of ¢; .., the closed-loop system dynamics
are

X = F(X, g\ 4 G(X) [w) wy] + Ga(X) [@] @) ] X(0) = Xo (22)

where F, G and Gy are smooth mapping of D x R, D and D, respectively; and the
initial condition Xo € Dy = {Xo € D|6; € O,0;p € 0,%;(0) = 772Q;) >
0,Tr ((%;(0))7!) < Kig5ix(0) = v*Tr(Qip); i = 1,2}. And the value function U satisfies
an Hamilton-Jacobi-Isaacs equation, VX € D, Vy;rﬁh) cR.

TR ORI )+ 2125000 (600 Gal0] [6(X) Gax)') (350)

+Q(X,y;rl+72)) — 0,

where Q : D x R — R is smooth and given by

2
+ . A
QX ") =[xy —yaP+ Y (yﬂxj—xj —q>j(9j—9)j\fij,1AjH;1
=1

i
2,2 A.12 h ht ~ 12 2
+6j ("8 = D16 = Ojlarcic0, =26 — 0;)'P;,r(0)) + I7jly, + k; /51‘,kzj,k)

2 A
0, T €202 — 62eyc0,0,

2 1
o) + 1 ‘92,72

1
+1 ’gl,(n-HZ)

The closed-loop adaptive system possesses a strong stability property, which will be stated
precisely in the following theorem.

Theorem 1. Consider the robust adaptive control problem formulated and assumptions in Section 3.
The robust adaptive controller y with the optimal choice of {; ., achieves the following strong robustness
properties for the closed-loop system.
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1. Given ¢y, > 0, and ¢g > 0, there exists a constant c. > 0 and compact sets @1, C ©1,,
and @y,c C @ such that for any uncertainty (x1,0,61, W1,[0,c0), V1, [0,00)r Ydo,y‘(ir[ﬁr?)) €W

and (x,0, 02, W5 [0,00), V2, 0,00)) € Wh with [x10] < cw; 1 ()] < cws |@2(t)] <
Cw; |01 (1) < e |02 (1) < cw; |Yq(8)| < cg; VE € [0, 00) all closed-loop state variables x1, %1,
01, 21, 51,5 71, 11,4 P us X2, X2, 02, X, S0, 12, 12,4, P2, are bounded as follows, Vt € [0, 00),

xi(5)] < ce; |%i ()] < ce;0i(t) € O i |mi ()] < i M1 ()] < e+ i, < ce

i,a(1)] < cc; [ @i ()] < e K< Zi(8) < v 72Q0 5 7*Tr(Qio) < siml(t) < Kiy i=1,2

The inputs are also bounded |u(t)| < c,, and 61 < ¢y, 62 < ¢y, Vt € [0,00), for some constant
¢y > 0. Furthermore, there exists constant ¢y > 0 such that |A;o(t)] < ¢y, |Ai(H)] < cp,i=1,2,
and |12, (t)| < ¢y, Yt > 0.

2. For any uncertainty (x1,0,61, Wy,[0,c0), W1,[0,00)s Ydo,y,§,f+ 3)) € Wy, and (x20,62, Wy [000),

W) [0,00)) € W, the controller u € M achieves disturbance attenuation level « with respect to w;
and wy, arbitrary disturbance attenuation level <y with respect to Wy , and Wy 4, and disturbance
attenuation level zero with respect to Wy , and Wy p, .

3. For any uncertainty (x1,0,01, W1[0e0) W1[0,00)s Ydo,y‘(;[1+r§)) € Wy, and (x90,0,, W)[0,00)s

2[0,00)) € Wz with wl[O,oo) € LoN L, wz[o,oo) € LoN L, wl,a[o,oo) € LoN L,
W),4[0,00) € L2 M Loo W1 pj0,00) € Loos W p[0,00) € Loo, AN Y[ o0) € Leo, the noiseless output of
the system, x1 1, asymptotically tracks the reference trajectory, y4, i.e.,

li f)—yy(t) =0

im (11 (£) = ya(1))

4. The ultimate lower bound on the achievable performance level is only relevant to the Subsystem S1,
e,y > Cl_l ory > Cl_l

Proof For the first statement, fix ¢, > 0, and ¢; > 0 consider any uncertainty (x1, X2,0,

01, 02, W1, [0,00)s W2, [0,00) W1,[0,00)7 W2,[0,00) yé?”?) that satisfies:

21,01 < cw; [x2,0] < s [W1(H)] < s [Wa(F)] < cas [W1(F)] < s [Wa(t)] < s [Ya(t)] <
Cd;Vf S [0 )

We define [0, Tf) to be the maximal length interval on which the closed system (22) has a
solution that lies in D. Note that we have ¥4, ¥, s1 5 and s; 5. are uniformly upper bounded
and uniformly bounded away from 0 as desired by Section 4.

Introduce the vector of variables
R . TR 3\ (% A\ sl sl Y
X = [07 0 (%1 — P101) (%2 — P2bp) 7y b 201 -+ 2, Z21 - 22, )
and two nonnegative and continuous functions defined on R?"1+212+01+02 471472

Upm : Zch‘9|2+Z’Y|xl q>9|1-[1+Z"71|Z+271]21]+272]Zz]
i=1 i=1 i=1 =1

- 5 - B " 2
) = ;72\91‘@,-,0 + Z{’Yzm - q)i9i|%1i—1 + Zi 7ilZ, + Zi%,jz%,j + Zi?z,jzij
1= 1= 1= ]= ]:
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then, we have
Un(Xe) UL X,) < Upm(Xe), Yt X,) € [0,Ty) x RAmtma)tartatnn

Since Uy, (X,) is continuous, nonnegative definite and radially unbounded, then Va € R,
the set Sy, = {X, € RXmHm)tatetntr | 11 (X,) < a} is compact or empty. Since
W1 (t)| < cw,and |y ()| < ¢y, VE € [0,00), there exists a constant ¢ > 0 such that we have the
following inequality for the derivative of U:

2 4 ri
u<-y° ( %|xi — X = By (6; = 0;) [T 1y 1 — 26— 6,)' Py (B) + 75, + ) Ci,,BjZiz,j) +e
i=1 o =

2 4 T
. Y . X ~ X X .
Since — 2(7 |+ % — @i (6; = 01) [T 1, 1 + |7l —2(6: = 6,)'Pi(6:) + ) g, 27) will tend
i=1 P j=1
to —co when X, approaches the boundary of ®; , x @, x R21F72)¥1572 then there exists a
compact set Q) (cyp) C O X @y 5 x REM )14 sych that U < 0 for VX, € @1, X Oy X
RZ(m-&-nz)-&—n-&—rz\Ql.

Then we have U(t, X,(t)) < c1, and X,(t) is in the compact set S1,, € R2(”1~+"2~)+‘71+‘72+”+~r2,
Vit € [0, Tf). It follows that the signal X, is uniformly bounded, namely, 61, 6, £; — P16,
Xy — Poby, 71, 72, 211, ++, 21,5, and 2p1, - - -, Z2 , are uniformly bounded.

Based on the dynamics of 75 4, we have 7 4 is uniformly bounded. Since 7j; = 11 — 1714 is

uniformly bounded, then #; is also uniformly bounded. Furthermore, there is a particular
linear combination of the components of 7;, denoted by 71 1,

= Ay + prm

m,. = Ti,Lm

which is strictly minimum phase and has relative degree 1 with respect to y;. Then the signal
11,1, has relative degree 11 + 1 with respect to the input y,, and is uniformly bounded. The
composite system of #7; and %1 with input @ and y, and output 77; | may serve as a reference
system in the application of bounding Lemma [12].

Note &1 = &7, + Py, and Py, is uniformly bounded. To prove P is bounded, we need to
prove ®; ,, is uniformly bounded. Define the following equations to separate ®; , into two

part:
@1, = Dy, + A pAinizo (23a)
Ay = A pArp +emny2 Ap(0) = 0y (23b)
= 07’ D%
Dy, = A1 P, + SR Py, (0) = O 23¢
1, 1fP1u, + 12 [ A1,21271:| 1,u,(0) = P10 (23¢)

We observe that the relative degree for each element of ®1 ,, 1 is at least r; + 1 with respect to
the input 15, and is the output of a stable linear system. Take 771 ; and y; as output and input of
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the reference system, we conclude @ ,,_; is uniformly bounded by bounding Lemma. Because
the first row element of ¥; — ®;6, is:

~ A x A ! A
%11 — D1 101 — AMp1Arp12001 — 71T 10h

we can conclude that £1 1 — Ay 5 A1,2120§1 is uniformly bounded in view of the boundedness
of ¥ — P16, 01, ®q ,.1,and 177. Since z11 = ¥11 — Y4, and z1 1, ¥4 are both uniformly bounded,
we have that ¥ ; is also uniformly bounded.

Notice that Ay f = Aj — {3L1Cy — I1;C;Cy (3 — 72), we generated the signal x1 1 — by oAy 1
by:

. ; 0 P N
X1 —b1oArp = Aqp (¥1 = broAe) + |:A_1 ;;191} y2 + A1 o611 + Dy Moy + (Z3L4
- 1

1 N /
+I,CY (25 - ?)) (y1 — EsMyv1) + [O15r, bipt - bipm—n ] 12

q1
+ ) Ay, 1,61 + Dity
=
x1,1 — bioAp = Ci (X1 —bioArp)

Now we will separate the above dynamics into y; dependent and y, dependent parts by the
linearity of the system, x11 — b1,0A151 = X1,41 + X1,51, Which are respectively given by,

_071 x1

!
Aq 212 9] Y2+ [Oncr bupr - brpni—r | 2
” 1

X0 = Ay X + [

11 = Crxyy

. 1 o -
ty = Ay gy + (3L + 11 C (3F — 2 ) (y1 — ExM1@1) + Aq 2110191 + D1Myay

1

+ ) A113,01,i61 + D1y
=1

x1y1 = Crxyy

We observe that the signal x,1 has relative degree at least r1 + 1 with respect to y,, take
11,1, and yp as output and input of the reference system, we conclude x;,1 is uniformly
bounded by bounding Lemma . Since x1,1 has relative degree at least 1 with respect to y1,
take 771, and y; as output and input of the reference system, we conclude x1 1 is uniformly
bounded by bounding Lemma. Then, x; ;1 — by A1 p; is uniformly bounded. It follows that
X110 — At (brpo + A1212061) is also uniformly bounded. Since ¥ ; is uniformly bounded
and 6; is uniformly bounded away from 0, we have Ay 4 is uniformly bounded. That further
imply ®q 1, i.e., C;®y, is uniformly bounded. Furthermore, since x17 — by gAq 1 and Wy are
bounded, we have that the signals of x; ; and y; are uniformly bounded.

Next, we need to prove the existence of a compact set ©1, C ©1, such that él(t) € O,
Vt € [0, Ty). First introduce the function

Y; = U+ (1, — P1(61)) ' P1(61)
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We notice that, when 6; approaches the boundary of © ,, P1(é1) approaches 01 ,. Then Y;

approaches co as X, approaches the boundary of ®;, X ©,, x R2(m+72) 4114 - There exist
some constant ¢ > 0 such that the following inequalities hold.

. . oo oP; « ¢
Y1 = U+ (p1,0 — P1(61)) 2‘01,0879;(91)91

2 4 i
< - Z;(%Pm — X — D (0; — 9i)|12—[lr1AiH;1 —2(0; — 6;) P, (6;) + |:l3, + ;Ci,ﬁfz%,j)
i= j=
oP ?
N Y y <2
- (789; (91)) (p1,0 — P1(61))* (KLclpl,opl,r(gl) (01,0 = P1(61))" — C) +c

Since Y1 will tend to —oo when X, approaches the boundary of ®; , x @, x R2(M+72) 71472,
then there exists a compact set Oq7(cw) C @1, X O, X R2(mtm)tritr guch that VX, €
O X Opp x REMFTMIINHR\O) 5 Yy (X,) < 0.

Then there exists a compact set @1, C ©q,, such that 01(t) € O, YVt € [0, Tf). Moreover,
Y1 (t, X,(t)) < ¢z, and X,(t) is in the compact set S15c, € O1 X Oy X R2(mtm)tritr gy o
[0, Tf).

To derive the uniformly boundedness of the closed-loop system states, we separate the relative
degree, 1, into two cases: r{ = 1, and r; > 2. First, we consider the case 1: r; = 1.

Taking x1 1 and y; as the output and input of the reference system, we note that x; ; is strictly
minimum phase and has relative degree r; with respect to input y,. Since the state x; can
be viewed as stably filtered output signals of y, and y, it is uniformly bounded. Since A is
also some stably filtered signals of y; and y», it is uniformly bounded. It further implies ® is
uniformly bounded. Then we can conclude ¥; is uniformly bounded from the boundedness
of 1 — ®10;. This further implies that the inputs ¥, ; and & are uniformly bounded.

Case 2: r; > 2. Considering the canonical form (78) in [12] for the true system (1), we denote
the elements of X by [%11 - -+ X1y, ]'. We will use the mathematical induction to derive the
boundedness of @y, i, X1; — A1piA1212001, X1, %10 — b1,0A bir Avpis Pruis X1,i X120 Vi =
{1,---,r1}. For the boundedness of x1;, we will show that xy; is a linear combination of x7 1,
-+, X1, %3, and X4, ie.,

X1 =d1%10 o Ayioixior X+ Typ¥s + Tuxy 1<i<n (24)

where 1,1, -+, d1,;—1; are constants, T1,i3r Tl,i4 are constant matrices, and 9?3 and 9?4 are
defined at (78) in [12].

1°: We have deduced that 171, 713 4, 111,1, P1,u.1, ¥1,1 — Ap1A1,212001, %11, X110 — b1,0A1 61, A s
®1,41, and x1,1 are uniformly bounded in [0, Tf). %17 is bounded in view of x1; — C3X3 — Cyy.

2°: We assume that @1/145 ir 551’,‘ — /\1,;]1‘A_1,212091, 55'1/1', xl,i — bl,O/\l,bi/ Al,bi/ q)l,u ir xl,i/ and J:Ch' are
bounded, and

Indl

1= a1+ ayivyio vy + Tyia®s + Tty Vi€ {1k} (25)

where 1 < k < rq.
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3°: First, we need to show that @1, g1, %1 k41 — AMpks141212001, X1k 1, X1k11 — D1,0AL bk 110
Mpk+1, P1ukt1, X1k 41, and X741 are bounded.

From equation (23c), we note that every element of ®, 1 has relative degree of at least
r1 — k4 1 with respect to y,, and is the output of a stable linear system. Since the boundedness
of 11, - - -, X1k, we conclude @ ;, i1 is uniformly bounded by Lemma 11 in [12], where the
reference system has input y, and output y;.

Note that k + 1st row element of #; — ®10; is
%11 — Pru k101 — Mprr1A1212000 — 71Ty ks161

We can conclude that ;4,1 — Aqpri1A1012001 is uniformly bounded in view of the
boundedness of ¥, — ®16;, 01, @ ;. k41, and 771. Since the boundedness of y4, 51,5, 171, 71,4,
X1, %11, yg,l), D1, X y‘(ik), P,k and él(t) € 01, YVt e [0, Tf), aq i is bounded. Since
Z1 j41 = X1k41 — ¥1k and zj g1 is uniformly bounded, we have that X ;1 is also uniformly
bounded.

The signal x1 j41 — b1,0A1, k1 is generated by:

. ; 0 P N
X1 —bioAp = Arr (1 —bioAp) + |:A1 ;;1191} y2 + A1onb1y1 + D1 Moy + (Z3L4

1 N /
+H1C{ (g% - ?)) (yl - Ellel) + [lerl bl,pl t bl,pnlfn] Y2
i .
+ ) A1z, 1,01 + Dy
=1
X1 — D1oApkr1 = €y i1 (X1 = b1oA1p)

Now we will separate the above dynamics into yy; dependent and y, dependent parts by the
linearity of the system, x1 x 11 — b1,0A1,bk+1 = X1,uk+1 + X1,yk+1, which are respectively given
by,

_ 071)(1

+10 b ... b i
A1,212r191:|y2 [0 b1 Lpm-r1] Y2

X0 = Aqpx1,u + [
/
XLuk+1 = €y k+1XLu

. 1 o -
f1y = Ay + (L +THhCY (5 - ?)) (y1 — ExMy1) + A 116191 + D1 Myy

q
+ ) Ay, 0,61 + Dithy
j=1
/
XLyk+1 = € k+1%Ly
We observe that the signal x1 , ;41 has relative degree at least r; — k + 1 with respect to y5.
Since X111, - - -, 1,1 are uniformly bounded, we conclude x; ;1 is uniformly bounded by

Lemma 11 in [12], where the reference system with input y, and output y;. We conclude
X1,yk+1 is uniformly bounded since y; is bounded. Then, xq .1 — b1,0A1 g1 is uniformly

bounded. It follows that ¥; x 1 — Ay pxs1 (by,po + A1,2120é1) is also uniformly bounded. Since
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¥1 k1 is uniformly bounded and by o + A1,2120é1 is uniformly bounded away from 0, we
have Aj,yyq is uniformly bounded. That further imply @, is uniformly bounded.
Furthermore, since xq 541 — b1,0A1pk+1 and Aq pyq are bounded, we have that the signals
of x1 j11 is uniformly bounded.

Next, we need to show X 1.1 is satisfied equation (24). Comparing the design model (2) and

the canonical form (78) in [12], we have Ci= Cyx1. It further implies

CL AR = C1(A1 + App1101C1)Fxy

Hence, we have
X1kl = k01X + 0 F A kX ke + X0 k1 T Toer13X3 + T 14X (26)

where @y 141, - -+, @1 kk+1 are constants, and Tl,k+1 3, Tl,k+14 are constant matrices.

Then, we have the boundedness of X1 x1. Thus, we can conclude the boundedness of @, ;,
1, = Mpidrp12001, X1, X1,0 = broApis Mpis Pruis X1, and X1, Vi€ {1, -+ -}

Since the state x1 can be viewed as stably filtered output signals of y, and v, it is uniformly
bounded. Also, 171, A are some stably filtered signals of y, and y;, they are uniformly
bounded. It further implies ®; is uniformly bounded. Then we can conclude ¥; is uniformly
bounded from the boundedness of ¥; — ®1f;. This further implies that the control input
¥p1 is uniformly bounded. Therefore, it follows Ty = co and the complete system states are
uniformly bounded on [0, o).

The boundedness of closed-loop state variables of S, can be proven with the similar line of
reasoning above. Thus, we have established statement 1 in all cases.

We define Iy = I1 9+ b0 = Vo, (X1(0), X2(0)), and
2 4 .
11+12::Z(’Y ‘xi_ﬁi_q)i( )|H1AH1+‘771|Y_2(9_9 11’9 +Zﬁ1]21])
i=1

1 2 1 2 2,2 A2 A2
411 o, T 7162015, Te1 (V78 = D181 = bilg; im0, + 2102 = O2l0c000,

by 2 2
sup {/ ((xl,l —y)?+h+h— Y Plwl* - Z’Yz\wi,u\2) dt
wlewl,ZD2EW2 0 i=1 i=1
2 2
2 5 y
-5 [t w5 ], —zo}
.tf
< sup {/0 ((Xn—yd) +11+l2—27\w|2 Z

W EWl,ﬁ&EWz

Z
“Vr
2 2 tf
—P Y[ -0y 1ty - ¥y +/ Udr —u
v ; [ i 1,0 7,0 1,0] Qi,o 0

< -U(H) <0
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then, we establish the second statement.

For the third statement, we consider the following inequality,

2 2| My 2 + 92 [, + vP Mo |*)dT

/o UdTS/O (—[x1 — yal* + ¥ 1,0

it follows that

2 2.y
X drt </ w
/O ‘ 1 yd| 0 (’)’ ‘ la

By the first statement, we notice that

2+ My |2 + 9 [ ? + 7 | Moty

2) dr 4+ U(0) < +o0

sup |31 — ja| < co.
0<t<oo

Then, we have
lim [xq(t) —ya(t)| =0

t—o00

For the last statement, it’s easy to establish by Section 4.

This complete the proof of the theorem. o

6. Example

In this section, we present one example to illustrate the main results of this Chapter. The
designs were carried out using MATLAB symbolic computation tools, and the closed-loop
systems were simulated using SIMULINK.

Consider the following linear systems with zeros initial conditions:

%1 = & + 1 + 23+ 0.1y (27a)
Fo = (14601)x3 + (1+6y)w, (27b)
X3 = —X — 3+ x4 +utd (27¢)
X4 = %1+ (24 63)u + 0.1y + Wy (27d)

y = ¥ +0.1w; (27¢)

where 61, 6, and 03 are three unknown parameters with true value 0s. The coefficient terms,
0.1 and 1, reflect the a priori knowledge that the disturbances w; and @, are weak in power
relative to that of the disturbance @; and w,. We note that (27) is an unobservable system.
We can decompose (27) into the following two SISO linear systems, S1 and Sj, sequentially
interconnected with additional output measurement,

X11 = X171+ X12 + Y2 +wiq; (28a)

X120 = (14 01)y2 + (14 602)W1 + wip; (28b)
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1= X1+ wis; (28¢)
Xp1 = —Xo1 + X2+ U — Y1 + W2+ Wpy; (28d)
Xy = (2+03)u +y; + Wy + wy; (28e)
Y2 = Xp1 + W3 (28f)
where
MENES RN
X1 = = N ;X = = . ;
L X12 X2 X22 X4
_wn 0.1?111 — ZI)3 wWo1 0.1w1
wy = |wp| = _(1 _ 91)?213 swo = |wy, | = —0.1?211 + 0.1?1)2
| W13 0.1 w3 w3

Here w3 is the measurement disturbance of the state X3. It is easy to check that S; and S, in
(28) satisfied the assumptions 1-5.

For the adaptive control design, we set the desired disturbance attenuation level ¢y = 10.
We select the true value of the parameters in subsystem S; and subsystem S, are zeros, and
belong to the interval [—1, 1]. The projection function P (1) and P, (6, ) are chosen as P; (1) =
0.5(6% + 63), P2(62) = 63. The reference trajectory, y4, is generated by the following linear
system X1 = —X42, X42 = X431 — X4 +d, Y3 = xg1 with zeros initial condition, where
d is the command input signal. The objective is to achieve asymptotic tracking of X1 to the
reference trajectory y,.

For design and simulation parameters of S;, (i = 1,2), we select

Y10 =1[020]"; %0=1[010]";610=[05-05]"; o9 =—1/2;Q;0 = 0.0011;
Kic =02, Aj=1Dp; pin, =22 Pig=0x1; pio=2 Pin=0 €= K{Clsi,z; Aip = 0zx1;

0.0893 —0.0081 0.1094 —0.0099
Pir =05 10 =02i Z1=| 40081 00097 } 72 = {—0.0099 0.0099

We present one set of simulation results in this example to illustrate the regulatory behavior
of the adaptive controller. We set d(t) = 0.4sin(0.1f) + sin(0.6t), w1 (t) = 0, wo(t) =
0, w3(t) = 0, wi(t) = sin(12t 4+ §) + 0.8sin(3t), and Wy(t) = 3sin(3t + ). The
results are shown in Figure 2(a)—(f). To illustrate that the proposed controller can improve
the system performance by incorporating the measurements and/or the estimation of the
significant external disturbances into the control design, the simulation results based on [17]
are presented in Figure 2(c)(d), where the measured disturbances w; and w, are treated
as arbitrary disturbances and 63 is treated as constant in control design. We observe that
the output tracking error asymptotically converges to zero and the parameter estimates
asymptotically converge to its true value 0 in (a) and (b) even if there is a non-zero measured
disturbance in the system. But the parameter estimates doesn’t converge to the true value,
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Figure 2. System response for Example under command input d(t) = 0.4sin(0.1t) + sin(0.6t), w1 =0,
Wy = 0, w3 = 0, W (t) = sin(12t + §) 4 0.8sin(3t), and Wy (t) = 3sin(3t + 5 ). (a) Parameter estimate; (b)
Tracking error; (c) Parameter estimate(based on [17]); (d) Tracking error(based on [17]); (e) control input;

(f) State estimation error;
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and the tracking error doesn’t converge to zero in (c) and (d). State estimation error, x; — X;
and x, — Xp, converge to zero in (f), and the transient performance behaves well as in (e).

7. Conclusions

In this Chapter, we present the game-theoretical approach based adaptive control design for a
special class of MIMO linear systems, which is composed of two sequentially interconnected
SISO linear systems, S; and S;. We assume the subsystem under studied subject to
noisy output measurements, unknown initial state conditions, linear unknown parametric
uncertainties, measured and unmeasured additive exogenous disturbance input uncertainties.
Our design objective is to address the asymptotical tracking, the transient response and
robustness of the closed-loop system, which are the same as the objectives to motivate
the study of the H*- optimal control problem. In view of the similar solution between
H® optimal control design and zero sum differential game, we convert the original adaptive
control design problem into a zero-sum game with soft constraints on the disturbance
input uncertainties and the unknown initial state uncertainties, which incorporates the
measures of transient response, disturbance attenuation, and asymptotic tracking into a single
game-theoretic cost function and formulates the design problem as a nonlinear H* control
problem under imperfect state measurements. A game-theoretical approach, cost-to-come
function analysis, is then applied to obtain the finite dimensional estimators of S1 and S,
independently, which is also converted the control design as an H* control problem with full
information measurements. The integrator backstepping methodology is finally applied on
this full information measurements problem to obtain a suboptimal solution. The controller
achieves the same result as [17], namely the total stability of the closed-loop system, the
desired disturbance attenuation level, and asymptotic tracking of the reference trajectory
when the disturbance is of finite energy and uniformly bounded. In addition, the proposed
controller may achieve arbitrary positive disturbance attenuation level with respect to the
measured disturbances by proper scaling. The contribution of the measurements of part of the
disturbance inputs is that we can design an adaptive controller with disturbance feedforward
structure with respect to w;}, and @, to eliminate their effect on the squared £, norm
of the tracking error. Moreover, the asymptotic tracking is achieved even if the measured
disturbances are only uniformly bounded without requiring them to be of finite energy.
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