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1. Introduction

Individual authentication increases in importance as network technology advances. IC
passport, SIM card and ID card used in entering and leaving management systems are
dependent on a cryptography circuit for keeping their security. LSI chips used there usually
include cryptography circuits and encrypt/decrypt important data such as ID numbers and
electronic money information. However, there is a threat that a secret key may be retrieved
from the cryptography LSI chip. Recently, side-channel attacks against a cryptosystem LSI
has been reported (Boneh et al., 1997; Brier et al., 2004; Kocher, 1996; Kocher el al., 1999;
Schramm el al., 2003). For example, scan-based side-channel attacks which retrieve secret
keys in a cryptography LSI have attracted attention over the five years. A scan path is one
of the most important testing techniques, where registers are connected in serial so that they
can be controlled and observed directly from outside the LSI. Test efficiency can be increased
significantly. On the other hand, one can have register data easily by using a scan path, which
implies that one can retrieve a secret key in a cryptography LSI. This is a scan-based side-channel
attack.

One of the difficulties in the scan-based side-channel attack is how to retrieve a secret key
from obtained scanned data from a cryptosystem LSI. In a scan path, registers inside a
circuit have to be connected so that its interconnection length will be shortened to satisfy
timing constraints. This means that no one but a scan-path designer knows correspondence
between registers and scanned data. To succeed a scan-based side-channel attack against
a cryptography LSI, an attacker needs to retrieve secret keys from the scanned data almost
“randomly” connected.

Symmetric-key cryptosystems such as DES and AES are very popular and widely used. They
make use of the same secret key in encryption and decryption. However, it may be difficult
to securely share the same secret key, such as in communicating on the Internet. Public-key
cryptosystems, on the other hand, make use of different keys to encrypt and decrypt. One
of the most popular public-key cryptography algorithms is RSA (Rivest et al., 1978), which is
used by many secure technologies such as secure key agreement and digital signature.

Yang et al. first showed a scan-based side-channel attack against DES in 2004 and retrieved
a secret key in DES (Yang et al., 2004). They also proposed a scan-based side-channel
attack against AES in 2006 (Yang et al., 2006). Nara et al. proposed an improved scan-based
side-channel attack method against AES in 2009 (Nara et al., 2009). A scan-based side-channel
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attack against elliptic curve cryptography (Koblitz, 1987; Miller, 1986) was proposed by Nara
et al. (Nara et al., 2011). On the other hand, any scan-based side-channel attacks against RSA
have not been proposed yet in spite of the fact that RSA is a de-facto standard for a public-key
cryptosystem. Since public-key cryptosystems have complicated algorithm compared with
that of symmetric-key cryptosystems such as DES and AES, we cannot apply the scan-based
side-channel attacks against symmetric-key cryptosystems to an RSA circuit. An elliptic curve
cryptography algorithm is completely different from an RSA algorithm although they both are
public-key algorithms. We cannot apply the scan-based side-channel attacks against elliptic
curve cryptosystem to RSA, either.

In this paper, we propose a scan-based side-channel attack against an RSA circuit, which is
almost independent of a scan-path structure. The proposed method is based on detecting
intermediate values calculated in an RSA circuit. We focus on a 1-bit time-sequence which
is specific to some intermediate value. We call it a scan signature because its value shows
their existence in the scanned data obtained from an RSA circuit. By checking whether a scan
signature is included in the scanned data or not, we can retrieve a secret key in the target RSA
circuit even if we do not know a scan path structure, as long as a scan path is implemented on
an RSA circuit and it includes at least 1-bit of each intermediate value.

The purpose of our proposed method is, not to make secure scan architecture ineffective but to
retrieve a secret key using scanned data in an RSA circuit with as few limitations as possible.
In fact, our scan-based side-channel attack method without any modification might not work
against RSA circuits using some secure scan architecture. Several secure scan architectures
without consideration of our proposed scan signature cannot protect our method as discussed
in Section 6.

This paper is organized as follows: Section 2 introduces RSA encryption and decryption
algorithms; Section 3 shows an algorithm of retrieving a secret key in an RSA circuit
using intermediate values and explains problems to retrieve a secret key using a scan path;
Section 4 proposes our scan-based side-channel attack method based on a scan signature;
Section 5 demonstrates experimental results and performance analysis; Section 7 gives several
concluding remarks.

2. RSA algorithm

RSA cryptography (Rivest et al., 1978) was made public in 1978 by Ronald Linn Rivest,
Adi Shamir, Leonard Max Adleman. The RSA is known as the first algorithm which
makes public-key cryptography practicable. It is commonly used to achieve not only
encryption/decryption but also a digital signature and a digital authentication, so that most
cryptography LSIs in the market implement and calculate the RSA cryptography.

The security of an RSA cryptography depends on the difficulty of factoring large numbers.
To decrypt a ciphertext of an RSA cryptography will be almost impossible on the assumption
that no efficient algorithm exists for solving it.

2.1 Encryption and decryption

An RSA algorithm encrypts a plaintext with a public key (n, e) and decrypts a ciphertext
with a secret key (n, d). Let us select two distinct prime numbers p and q. We calculate n by

166 Cryptography and Security in Computing

www.intechopen.com



Scan-Based Side-Channel Attack on the RSA Cryptosystem 3

Algorithm 1 Binary method (MSB to LSB).

Input: c, d, and n.
Output: cd mod n.

i = L − 1.
m = 1.
while i ≥ 0 do

m = m2 mod n.
if di = 1 then

m = m × c mod n.
end if
i = i − 1.

end while
return m.

multiplying p by q, which is used as the modulus for both a public key and a secret key. To
determine exponents of them, we calculate ϕ(pq)1 for multiplying (p − 1) by (q − 1).

Let us select an integer e satisfying the conditions that 1 < e < ϕ(pq) and, e and ϕ(pq) is
coprime, where e is an exponent of a public key. Let us determine an integer d satisfying the
congruence relation de ≡ 1 mod ϕ(pq). That is to say, the public key consists of the modulus
n and the exponent e. The private key consists of the modulus n and the exponent d.

Let us consider that Alice secretly sends a message m to Bob. First, Alice receives his public
key (n, e). Second, she calculates the ciphertext c with Equation 1.

c = me mod n (1)

Then Alice transmits c to Bob. Bob decrypts c by using his private key and receive her message
m. Equation 2 represents a decryption computation.

m ≡ cd mod n (2)

2.2 Binary method

The bit length of an RSA key must be more than 1,024 bits because its security depends on its
key length. It is currently recommended that n be at least 2,048 bits long (Silverman, 2002).
This means that the exponent d in Equation 2 is at least 1,024 bits long. When we decrypt a
cyphertext, its computation amount becomes quite large without modification. Since modulo
exponentiation dominates the execution time of decrypting a cyphertext, efficient algorithms
have been proposed. The binary method (Stein, 1967), as shown in Algorithm 1, is one of
the most typical exponent algorithms. In Algorithm 1, the exponent d is represented by d =
dL−12L−1 + dL−22L−2 + · · · + d12 + d0, where L shows the maximum key bit length. Fig. 1
shows an example of the binary method in case of d = 10112.

3. Scan-based attack against RSA

A scan path connects registers in an circuit serially and makes us access to them directly so
that a tester can observe register values inside the circuit easily. A scan path model is shown

1 ϕ() is Euler’s totient function.
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m = 1 m=1 c mod n2 m=c mod n2
m=(c ) c mod n2 2

m=(c ) c mod n
25

c c c

Fig. 1. Binary method example (d = 10112).

in Fig. 2. A scan path test is widely used in recent circuit implementations due to its testability
and easiness of implementation.

Combinational
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Fig. 2. Scan path model.

The purpose of a scan-based attack against RSA is to retrieve a secret exponent d from scanned
data in an RSA circuit. Scan-based attack here requires several assumptions as in the previous
researches in (Nara et al., 2009; 2011; Yang et al., 2004; 2006), which are summarized as shown
below:

1. Attackers can encrypt/decrypt arbitrary data using the secret key on a target RSA circuit.

2. Attackers can obtain scanned data from a target RSA circuit.

3. Scanned data is not modified with compactors aimed at test efficiency.

4. Attackers know that the binary method in Algorithm 1 is used in a target RSA circuit.

5. Attackers also know the modulus n used in a target RSA circuit.2

In addition to these, they need to be able to predict the intermediate values of the binary
method using an off-line simulation.

In this section, we explain the scan-based attack against an RSA circuit (Section 3.1) and its
problems in a practical case (Section 3.2).

2 Note that, since the public key consists of the modulus n and the public exponent e, attackers can easily
know the modulus n.
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3.1 Retrieving a secret exponent using intermediate values (Messerges et al., 1999)

In order to retrieve a secret exponent d, we have to solve the integer factorization in RSA. If the
bit length of a secret exponent d is more than 1,024 bits or more than 2,048 bits, it is impossible
to solve this problem within a realistic time. However, if we know all the “intermediate
values” during the binary method shown in Algorithm 1, we can retrieve a secret exponent d
in a polynomial time (Messerges et al., 1999).

Let d = dL−12L−1 + dL−22L−2 + · · · + d12 + d0, where L is the maximum key bit length
of d. Assume that all the intermediate values in Algorithm 1 are obtained. Let m(i)
be the intermediate value of m at the end of loop i in Algorithm 1. Assume also that
dL−1, dL−2, · · · , di+1 are already retrieved. An attacker tries to reveal the next bit di. In this
case, m(i) is equal to Equation 3 below, if and only if di = 0:

c∑
L−1
j=i+1 dj2

j−i

mod n. (3)

Similarly, m(i) is equal to Equation 4 below, if and only if di = 1:

c∑
L−1
j=i+1 dj2

j−i+1 mod n. (4)

Based on the above discussion, we employ SF(i) defined by Equation 5 as a selective function
for RSA:

SF(i) = c∑
ℓ−1
j=i+1 dj2

j−i+1 mod n. (5)

ℓ represents a significant key length, or key length in left-align representation, i.e., the secret
exponent can be represented by

d = dL−12L−1 + · · ·+ d12 + d0

∣

∣

∣

dL−1=0,...,dℓ=0

= dℓ−12ℓ−1 + · · ·+ d12 + d0. (6)

When using the selective function for RSA above, we have to know in advance
dℓ−1, dℓ−2, · · · , di+1.

SF(i) �= SF(j) always holds true for i �= j for 0 ≤ i, j ≤ ℓ − 1. Given a message c and bit
values of secret component dℓ−1, dℓ−2, · · · , di+1, we assume that di = 1 and check whether
SF(i) appears somewhere in intermediate values. If it appears in them, we really determine
di as one. If not, we determine di as zero.

Example 1. Let us consider that the public key (n, e) = (101111001, 1011) and the secret key (n, d) =
(101111001, 10111). The maximum key length L is 8 bits and the secret exponent d = 10111, i.e,
d7 = 0, d6 = 0, d5 = 0, d4 = 1, d3 = 0, d2 = 1, d1 = 1, d0 = 1. We assume that we do not know d
and a significant key length ℓ. The intermediate values in Algorithm 1 are summarized in Table 2 when
we use a message c = 10011100, whose parameters are shown in Table 1.

Now we try to retrieve the 8-bit secret exponent d using intermediate values.

First we try to retrieve the first bit dℓ−1 (i = ℓ− 1). We find dℓ−1 = 1 by the definition of a significant
key length ℓ. Then SF(ℓ− 1) is calculated as SF(ℓ− 1) = c = 10011100. Since 10011100 appears in
Table 2, we confirm that dℓ−1 is retrieved as one. Now we assume that the secret exponent d = 1. We
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compare m(ℓ− 1) = (c1 mod n) = 10011100 with the binary method result 10001111. Since they
are not equal, d �= 1.

Next, we try to retrieve the second bit dℓ−2 (i = ℓ− 2). We have already known that dℓ−1 = 1. We
assume here that dℓ−2 = 1. In this case, SF(ℓ− 2) is calculated as SF(ℓ− 2) = 11010. Since 11010
does not appear in Table 2, then dℓ−2 is retrieved not as one but as zero, i.e., dℓ−2 = 0. Now we assume
that d = 10. We compare m(ℓ− 2) = (c10 mod n) = (m(ℓ− 1)2 mod n) = 11010000 with the
binary method result 10001111. Since they are not equal, d �= 10.

Next, we try to retrieve the third bit dℓ−3 (i = ℓ − 3). We have already known that dℓ−1 = 1 and
dℓ−2 = 0. We assume here that dℓ−3 = 1. In this case, SF(ℓ− 3) is calculated as SF(ℓ− 3) =
10000010. Since 10000010 appears in Table 2, then dℓ−3 is retrieved as one, i.e., dℓ−3 = 1. Now we
assume that d = 101. We compare m(ℓ− 3) = (c101 mod n) = SF(ℓ− 3) = 10000010 with the
binary method result 10001111. Since they are not equal, d �= 101.

Next, we try to retrieve the fourth bit dℓ−4 (i = ℓ − 4). We have already known that dℓ−1 = 1,
dℓ−2 = 0 and dℓ−3 = 1. We assume here that dℓ−4 = 1. In this case, SF(ℓ− 4) is calculated as
SF(ℓ− 4) = 100111. Since 100111 appears in Table 2, then dℓ−1 is retrieved as one, i.e., dℓ−4 = 1.
Now we assume that d = 1011. We compare m(ℓ− 4) = (c1011 mod n) = SF(ℓ− 4) = 100111
with the binary method result 10001111. Since they are not equal, d �= 1011.

We have already known that dℓ−1 = 1, dℓ−2 = 0, dℓ−3 = 1 and dℓ−4=1. We assume here that
dℓ−5 = 1. SF(ℓ− 5) is calculated as SF(ℓ− 5) = 10001111 (i = ℓ− 5). Since 10001111 appears in
Table 2, then dℓ−5 is retrieved as one, i.e., dℓ−5 = 1. Now we assume that d = 10111. We compare
m(ℓ − 5) = (c10111 mod n) = SF(ℓ− 5) = 10001111 with the binary method result 10001111.
Since they are equal to each other, we find that the secret exponent d is 10111 and a significant bit ℓ is
five.

3.2 Problems to retrieve a secret key using scan path

If we retrieve an L-bit secret exponent d using an exhaustive search, we have to try 2L possible
values to do it. On the other hand, the method explained in Section 3.1 retrieves a secret
exponent one-bit by one-bit from MSB to LSB. It tries at most 2L possible values to retrieve an
L-bit secret exponent. Further, the method just checks whether SF(i) exists in the intermediate
value m(i) in Algorithm 1.

In order to apply this method to a scan-based attack, we have to know which registers store
intermediate values, i.e., we have to know correspondence between scanned data and SF(i).

However, scan paths are usually designed automatically by EDA tools so that nearby registers
are connected together to shorten the scan path length. Only designers can know the
correspondence between scanned data and registers and thus retrieved scanned data can be
considered to be “random” for attackers. Therefore, it is very difficult to find out the values
of SF(i) in scanned data for attackers.

Messerges (Messerges et al., 1999) only shows the correspondence between intermediate
values and a bit of a secret exponent. It does not indicate the method how to discover the
intermediate value from scanned data. For that reason, its analysis method cannot directly
apply to scan-based attacks against an RSA LSI.

We have to find out only SF(i) somehow in the scanned data to retrieve a secret exponent d
using the method in Section 3.1.
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Maximum key length L 8 bits

Modulus n 101111001

Public exponent e 1011

Secret exponent d 10111

Table 1. Example parameters in Algorithm 1.

i di m2 m

7 0 1 1

6 0 1 1

5 0 1 1

4 1 1 10011100

3 0 11010000 11010000

2 1 100011110 10000010

1 1 100111000 100111

0 1 1101 10001111

Table 2. Intermediate values at the end of i-th loop of Algorithm 1 (message c = 100111002).

4. Analysis scanned data

In order to solve the problem that attackers do not know the correspondence between registers
of the scanned data and ones storing intermediate values during the binary method, we focus
on the general property on scan paths: a bit position of a particular register r in a scanned data
when giving one input data is exactly the same as that when giving another input data. This is clearly
true, since a scan path is fixed in an LSI chip and the order of connected registers in its scan
path is unchanged.

If we execute the binary method for each of N messages on an RSA circuit, a bit pattern of
a particular bit position in scanned data for these N messages gives N-bit data. Based on the
above property, this N-bit data may give a bit pattern of a particular bit in an intermediate
value when we give each of these N messages to the RSA circuit.

We can calculate SF(i) from the same N messages and dℓ−1 down to d0 of the secret exponent
d by using an off-line simulation. By picking up a particular bit (LSB, for example) in each of
SF(i) values for N messages, we also have an N-bit data (see Fig. 3). If N is large enough, this
N-bit data gives information completely unique to SF(i). We can use this N-bit data as a scan
signature SSi to SF(i) in scanned data.

Our main idea in this section is that we find out a scan signature SSi to SF(i) in scanned
data (see Fig. 4) to retrieve the secret exponent d from dℓ−1 down to d0. If an N-bit scan
signature SSi appears in the scanned data for N messages, di is determined as one. If not, it is
determined as zero.

In the rest of this section, we firstly propose a scan signature SSi to SF(i). Secondly we propose
an overall method to retrieve a secret exponent d using scan signatures. Thirdly we analyze
the probabilities of successfully retrieving a secret exponent by using our method.
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SF(i) = 0 0 1 … 1 1 … 0 1 1

SF(i) = 1 1 1 … 0 1 … 0 1 1

SF(i) = 0 1 1 … 0 0 … 1 0 0

SF(i) = 0 1 1 … 0 1 … 1 1 0

SF(i) = 1 0 0 … 1 0 … 1 0 1

SF(i) = 0 1 0 … 1 1 … 1 1 0

(N bits)

Input: SF(i) (1 r N),

Output: Scan Signature SS

SS

L bits

Fig. 3. Scan signature SSi.

…001100001011……110011011000……010000111110…

…111100101100……101101000110……010101001101…

…101110011110……101110011110……110111010110…

…111000101101……111000101101……001110100101…

…010111001110……010111001110……000110001111…

…001000101101……001000101101……011010101000…

sd =

sd =

sd =

sd =

sd =

sd =

Size of scan path

N bits

FF

th

FF

th

FF

th

Scan path

All cycles during binary method

Fig. 4. Scanned data.

4.1 Calculating a scan signature to SF(i)

Assume that N messages c1, · · · , cN are given. Also assume that we have already known
dℓ−1, · · · , di+1 for a secret exponent d. Let SF(i)r be the selective function for RSA when
giving the message cr for 1 ≤ r ≤ N. Assuming that di = 1, we can calculate SF(i)r for
1 ≤ r ≤ N.

Let us focus on a particular bit of SF(i)r. If N is large enough, a set of these bits for SF(i)r

(1 ≤ r ≤ N) gives information unique to SF(i)r. By using it, we can check whether SF(i)r are
calculated or not in the target. As Fig. 3 shows, we define a scan signature SSi to be a set of
SF(i)r LSBs for the sake of convenience.
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If SSi appears in scanned data, di is determined as one. If not, di is determined as zero. After
di is correctly determined, we can continue to determine the next bit of the secret exponent d
in the same way.

Our proposed method has an advantage compared to conventional scan-based attacks (Yang
et al., 2004; 2006). Our method is effective in the case of partial scan architecture. As long as
a scan path includes at least 1-bit of each intermediate value, we can check whether the scan
signature exists or not in the scanned data.

4.2 Scanned data analysis method

First we prepare N messages c1, · · · , cN and give them to an RSA circuit. For each of these
messages, we obtain all the scanned data from the scan out of the RSA circuit until it outputs
the binary method result. As Fig. 4 shows, the size of scanned data for each of these messages
is (“scan path length” × “number of binary method cycles.”)

Now we check whether a scan signature SSi to SF(i) appears in the obtained scanned data
under the assumption that we do not know a secret exponent d in the RSA circuit as follows:

Step 1: Prepare N messages c1, c2, · · · , cN , where cr �= cs for 1 ≤ r, s ≤ N and r �= s.

Step 2: Input cr (1 ≤ r ≤ N) into the target RSA circuit and obtain scanned data every one
cycle while the binary method works, until the RSA circuit outputs the result. Let sdr

denote the obtained scanned data for the message cr (1 ≤ r ≤ N).

Step 3: From the definition, we have dℓ−1 = 1. Compare m(ℓ − 1) = (c1 mod n) with its
binary method result. If they are equal, then we find that the secret exponent d is one and
stop. If not, go to the next step.

Step 4: Calculate SF(ℓ− 2)r assuming dℓ−2 = 1 for each cr (1 ≤ r ≤ N) and obtain the scan
signature SSℓ−2.

Step 5: Check whether the scan signature SSℓ−2 exists in the scanned data sd1, · · · , sdN ,
which includes the scanned data in all the cycles while the binary method runs. If it exists,
then we can find out that dℓ−2 is equal to 1, and if it does not exist, then we can find out
that dℓ−2 is equal to 0.

Step 6: Calculate m(ℓ− 2) = ((c1)
dℓ−1×2+dℓ−2 mod n) and compare it with its binary method

result. If they are equal, then we find that the secret exponent d is retrieved and terminate
the analysis flow.

Step 7: We determine dℓ−3, dℓ−4, · · · in the same way as Step 4–Step 6 until the analysis flow
is terminated at Step 6.

We show the example below to explain how the method above works.

Example 2. As in Example 1, let us consider that the public key (n, e) = (101111001, 11) and the
secret key (n, d) = (101111001, 10111). The maximum key length L is 8 bits and the secret exponent
d = 1011110 = 101112 , i.e, d7 = 0, d6 = 0, d5 = 0, d4 = 1, d3 = 0, d2 = 1, d1 = 1, d0 = 1.
We assume that we do not know d and a significant key length ℓ. The parameters are shown in Table 1.
Assume that the cycle counts of binary method are 16 and the size of the scan path is 128 in the target
RSA circuit.

(Step 1) First we prepare 8 messages c1, c2, · · · , c8, where cr �= cs for 1 ≤ r, s ≤ 8 and r �= s. The
target RSA circuit executes the binary method as in Table 2.
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(Step 2) We input cr (1 ≤ r ≤ 8) into the target RSA circuit and obtain scanned data every one cycle
while the binary method works, until the RSA circuit outputs the result. Let sdr denote the obtained
scanned data for the messages cr (1 ≤ r ≤ 8). The total size of scanned data is 16 × 128 = 2, 048 (see
Fig. 5).

sd =

sd =

sd =

sd =

sd =

sd =

sd =

sd =

16 x 128 = 2,048 bits

8 bits

……101110011110……1011…1101…1110…

……001110111101……1010…0110…0110…

……101110111100……0011…0111…0111…

……110011001111……0110…1100…0100…

……100011110000……0011…0110…0110…

……101000100110……1111…1111…0110…

……011011000000……0111…0111…0100…

……110010111010……1011…0100…1111…

SS SS SS SS

Fig. 5. Scanned data example.

(Step 3) Let us start to determine dℓ−1. We find dℓ−1 = 1 by the definition of ℓ. It is not necessary to
check whether dℓ−1 = 1 or not, but we can check it as follows: we calculate SF(ℓ− 1)r = cr for each cr

(1 ≤ r ≤ 8) and obtain the scan signature SSℓ−1 (see Fig. 6). As Fig. 6 (a) shows, the scan signature
SSℓ−1 becomes “11101001”. Since we find out that the scan signature SSℓ−1 exists in bit patterns of
scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we confirm that dℓ−1 is retrieved as one, i.e., dℓ−1 = 1. Now
we assume that d = 1. We compare m(ℓ− 1) = ((c1)

1 mod n) with its binary method result. In
case they are not equal, d �= 1.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine dℓ−2. We calculate SF(ℓ− 2)r assuming
dℓ−2 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SSℓ−2 (see Fig. 6 (b)). As Fig. 6 (b)
shows, the scan signature SSℓ−2 becomes “01111100”. Since we find out that the scan signature SSℓ−2

does not exist in bit patterns of scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we can determine that dℓ−2

is equal to zero, i.e., dℓ−2 = 0. Now we assume that d = 10. We compare m(ℓ− 2) = (m(ℓ − 1)2

mod n) with its binary method result. In case they are not equal, d �= 10.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine dℓ−3. We calculate SF(ℓ− 3)r assuming
dℓ−3 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SSℓ−3 (see Fig. 6 (c)). As Fig. 6
(c) shows, the scan signature SSℓ−3 becomes “00010110”. Since we find out that the scan signature
SSℓ−3 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we can determine that dℓ−3 is
equal to one, i.e., dℓ−3 = 1. Now we assume that d = 101. We compare m(ℓ− 3) = (m(ℓ− 2)2 × c1

mod n) = SF(ℓ− 3)1 with its binary method result. In case they are not equal, d �= 101.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine dℓ−4. We calculate SF(ℓ− 4)r assuming
dℓ−4 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SSℓ−4 (see Fig. 6 (d)). As Fig. 6
(d) shows, the scan signature SSℓ−4 becomes “01101110”. Since we find out that the scan signature
SSℓ−4 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8), we can determine that dℓ−4 is equal
to one, i.e., dℓ−4 = 1. Now we assume that d = 1011. We compare m(ℓ− 4) = (m(ℓ − 3)2 × c1

mod n) = SF(ℓ− 4)1 with its binary method result. In case they are not equal, d �= 1011.

(Step 4, Step 5, Step 6, and Step 7) Finally let us determine dℓ−5. We calculate SF(ℓ− 5)r assuming
dℓ−5 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SSℓ−5 (see Fig. 6 (e)). As Fig. 6
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Input: SF( -1) (1 r 8)

Output: Scan signature SS

SF( -1) = 1 0 1 1 0 0 1 1

SF( -1) = 1 0 0 1 1 0 0 1

SF( -1) = 0 0 1 0 1 1 0 1

SF( -1) = 0 1 0 1 0 0 1 0

SF( -1) = 1 0 1 0 1 1 0 1

SF( -1) = 0 0 0 1 0 0 1 0

SF( -1) = 1 1 1 1 1 0 0 0

SF( -1) = 0 0 0 1 1 0 0 1

SS

(a) Scan signature

SF( -2) = 0 0 0 0 1 0 1 0

SF( -2) = 1 1 1 1 0 1 0 1

SF( -2) = 0 1 1 0 0 1 1 1

SF( -2) = 1 1 0 0 1 1 0 1

SF( -2) = 1 1 0 0 1 0 1 1

SF( -2) = 0 0 1 1 1 0 1 1

SF( -2) = 0 1 1 0 0 1 1 0

SF( -2) = 0 1 1 1 0 1 0 0

Input: SF( -2) (1 r 8)

Output: Scan signature SS

SS

(b) Scan signature

Input: SF( -3) (1 r 8)

Output: Scan signature SS

SF( -3) = 0 1 1 0 0 1 1 0

SF( -3) = 1 1 1 1 1 0 0 0

SF( -3) = 0 1 1 0 0 1 0 0

SF( -3) = 1 0 0 1 0 0 1 1

SF( -3) = 0 0 0 0 1 1 0 0

SF( -3) = 0 0 0 1 0 0 1 1

SF( -3) = 0 1 1 1 0 0 0 1

SF( -3) = 0 0 0 1 1 0 0 0

SS

(c) Scan signature

SF( -4) = 1 1 0 0 1 0 1 0

SF( -4) = 0 1 0 1 1 1 0 1

SF( -4) = 1 1 1 0 0 1 1 1

SF( -4) = 0 1 1 0 0 1 0 0

SF( -4) = 1 1 0 1 1 0 1 1

SF( -4) = 1 0 1 1 0 0 1 1

SF( -4) = 0 1 1 0 0 1 1 1

SF( -4) = 1 0 1 1 0 0 0 0

Input: SF( -4) (1 r 8)

Output: Scan signature SS

SS

(d) Scan signature

SF( -5) = 0 0 1 0 1 1 1 1

SF( -5) = 0 0 0 1 1 0 0 1

SF( -5) = 0 0 1 0 0 1 0 1

SF( -5) = 0 1 1 1 0 1 0 0

SF( -5) = 0 1 1 1 1 0 1 1

SF( -5) = 1 0 1 0 0 0 0 1

SF( -5) = 0 1 1 0 1 1 1 0

SF( -5) = 1 0 1 1 1 0 1 1

Input: SF( -5) (1 r 8)

Output: Scan signature SS

SS

(e) Scan signature

Fig. 6. Example of scan signatures.

(e) shows, the scan signature SSℓ−5 becomes “11101101”. Since we find out that the scan signature
SSℓ−5 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8), we can determine that dℓ−5 is equal
to one, i.e., dℓ−5 = 1. Now we assume that d = 10111. We compare m(ℓ− 5) = (m(ℓ− 4)2 × c1

mod n) = SF(ℓ− 5)1 with its binary method result. In case they are equal to each other, we find that
the secret exponent d is 10111 and a significant bit ℓ is five.
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4.3 Possibility of successfully retrieving a secret key

Given that the scan size is α bits and the cycle counts to obtain the binary method result is T.
Assume that scanned data are completely random data.

Even though SF(i)r for 1 ≤ r ≤ N is not calculated in the target RSA circuit, its scan signature
may exist in scanned data. When αT < 2N , the probability that the scan signature SSi to SF(i)r

exists in somewhere in bit patterns of scanned data sdr (1 ≤ r ≤ N) is αT/2N despite we do
not calculate SF(i)r.

Sufficiently large N can decrease the probability that we mistakenly find out the scan signature
SSi in scanned data. For instance, if α is 3,072, T is 1,024, and N is 303, then the probability
that we mistakenly find out the scan signature SSi in scanned data is 3, 072 × 1, 024/230 ≃

2.93 × 10−3. If α is 6,144, T is 2,048, and N is 35, then the probability that we mistakenly find
out the scan signature SSi in scanned data is 6, 144 × 2, 048/235 ≃ 3.66 × 10−4.

5. Experiments and analysis

We have implemented our analysis method proposed in Section 4 in the C language on Red
Hat Enterprise Linux 5.5, AMD Opteron 2360SE 2.5GHz, and 16GB memories and performed
the following experiments:

1. First, we have generated secret exponents randomly. Thousand of them have a bit length
of 1,024 and 2,048, respectively. The other hundred of them have a bit length of 4,096.

2. Next, we have given each of the secret exponents into the target RSA circuit based on
Algorithm 1 and obtained scanned data. The target RSA circuit obtains binary method
results in 1,024 cycles for a 1,024-bit secret exponent, in 2,048 cycles for a 2,048-bit secret
exponent, and in 4,096 cycles for a 4,096-bit secret exponent. Scan path length for a 1,024-bit
secret exponent is 3,072 bits, that for a 2,048-bit secret exponent is 6,144 bits, and that for
a 4,096-bit secret exponent is 12,192 bits. Then total size of the obtained scanned data
for 1,024-bit secret exponent is 3, 072 × 1, 024 = 3, 145, 728 bits, that for 2,048-bit secret
exponent is 6, 144 × 2, 048 = 12, 582, 912 bits, and that for 4,096-bit secret exponent is
12, 192 × 4, 096 = 49, 938, 432 bits

3. Finally, we have retrieved each of the secret exponents by our proposed analysis method
using the obtained scanned data.

Fig. 7 and Table 4 show the results. Fig. 7 shows the number N of required messages to
retrieve each secret exponent when giving each of the secret exponents. For example, the
4th 1,024-bit secret exponent is shown in Table 3. In order to retrieve this secret exponent,
we need 29 messages, i.e., n = 29. In this case, we can successfully retrieve the 4th secret
exponent using 29 messages but fail to retrieve it using 28 messages or less.

Throughout this experiment, the required number of messages is approximately 29.5 on
average for 1,024-bit secret exponents and is approximately 32 for 2,048-bit secret exponents
and is approximately 37 for 4,096-bit secret exponents. A running time is 98.3 seconds to
retrieve a 1,024-bit secret exponent and 634.0 seconds to retrieve a 2,048-bit secret exponent.

3 These values are derived from the experiments in Section 5.
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4-th secret exponent d
1,024 bits 0x3AD29CF2FC6CB6B0C010B17DF98C5081

4E4585225AC42E8ECB7BB1847498D62F
BA696CDD226EE9195F4E58A89321721F
021C4511E6C994301363706058FF3765
E29EEBA03E370A201BA5B60A356682A5
1D05EE10DF8CB75D7B4578B3D29A515E
2F86DEC487AB6BCD88C7351908D71851
6C11B2419BD8C05739214E6CF44D12F

Table 3. Secret exponent example.

Key bit length bit 1,024 2,048 4,096
# of retrieving secret exponents 1,000 1,000 100

# of required messages (average) 29.5 32 37

Table 4. Experimental results.
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Fig. 7. Number of required messages to retrieve secret exponents.

6. Discussions

We consider secure scan architecture proposed so far against our proposed scan-based attack.

Firstly, the secure scan architecture proposed in (Sengar et al., 2007) cannot protect our
proposed method from retrieving a secret key. (Sengar et al., 2007) inserts some inverters
into a scan path to invert scanned data. However, since inverted positions of scanned data
are always fixed, the value of a 1-bit register sequence is only changed to its inverted value.
By checking whether SSi or inverted SSi exist in the scanned data, our proposed method can
easily make it ineffective.

Inoue’s secure scan architecture (Inoue et al., 2009) adds unrelated data to scanned data to
confuse attackers. A sequence of scanned data to which unrelated data are added is fixed and
it is not always true that they confuse all the bits to protect the scanned data in order to reduce
area overhead. If the register storing scan signature SSi is not confused, our proposed method
can easily make it ineffective, too.

Secondly, (Chandran & Zhao, 2009; Gomułkiewicz et al., 2006; Hely et al., 2005; 2006; 2007;
Lee et al., 2006; 2007; Paul et al., 2007; Yang et al., 2006) require authentication to transfer
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between system mode and test mode, and their security depends on authentication methods.
If authentication would be broken-through and attackers could obtain scanned data, a secret
key in an RSA circuit could be retrieved by using our proposed method. We consider that
authentication strength is a different issue from the purpose of this chapter.

Finally, (Mukhopadhyay, et al.; Sengar et al., 2007; Shi el al., 2008) use a compactor so as not
to output scanned data corresponding to registers directly. (Doulcier el al., 2007) proposes
AES-based BIST, whereby there is no need for scan path test. However, applying these
methods effectively to an RSA circuit is quite unclear because these methods are implemented
only on an AES circuit or just on a sample circuit not for cryptography.

7. Concluding remarks

Our proposed scan-based attack can effectively retrieve a secret key in an RSA circuit, since
we just focus on the variation of 1-bit of intermediate values named a scan signature. By
monitoring it in the scan path, we can find out the register position specific to intermediate
values. The experimental results demonstrate that a 1,024-bit secret key can be retrieved by
using 29.5 messages, a 2,048-bit secret key by using 32 input, and a 4,096-bit secret key can be
retrieved by using 37 messages.

In the future, we will develop a new scan-based side-channel attack against compressed scan
data for RSA. In this paper, we only pick up one RSA LSI implementation but there can be
other implementations available such as in (Miyamoto et al., 2008). We will attack these RSA
implementations and successfully retrieve a secret key. Developing countermeasures against
the proposed scan-based side-channel attacking method is another future work.
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