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1. Introduction

This chapter is about techniques for robust stability analysis and robust stabilization of
discrete-time systems with delay in the state vector. The relevance of this study is mainly
due to the unavoidable presence of delays in dynamic systems. Even small time-delays can
reduce the performance of systems and, in some cases, lead them to instability. Examples of
such systems are robotics, networks, metal cutting, transmission lines, chemical and thermal
processes among others as can be found in the books from Gu et al. (2003), Richard (2003),
Niculescu (2001) and Kolmanovskii & Myshkis (1999).
Studies and techniques for dealing with such systems are not new. Since the beginning of
control theory, researchers has been concerned with this issue, either in the input-output
approach or in state-space approach. For the input-output approach, techniques such as Padé
approximation and the Smith predictor are widely used, mainly for process control. The use
of state space approach allows to treat both cases. For both approaches delays can be constant
or time-varying. Besides, both the delay and the systems can be precisely known or affected
by uncertainties.
In this chapter the class of uncertain discrete-time systems with state delay is studied. For
these systems, the techniques for analysis and design could be delay dependent or delay
independent, can lead with precisely known or uncertainty systems (in a polytopic or in a
norm-bonded representation, for instance), and can consider constant or time-varying delays.
For discrete-time systems with constant and known delay in the state it is always possible
to study an augmented delay-free system Kapila & Haddad (1998), Leite & Miranda (2008a).
However, this solution does not seem to be suitable to several cases such as time-varying delay
or uncertain systems.
For these systems, most of the applied techniques for robust stability analysis an robust control
design are based on Lyapunov-Krasovskii (L-K) approach, which can be used to obtain convex
formulation problems in terms of linear matrix inequalities (LMIs).
In the literature it is possible to find approaches based on LMIs for stability analysis, most of
them based on the quadratic stability (QS), i.e., with the matrices of the Lyapunov-Krasovskii
function being constant and independent of the uncertain parameters.
In the context of QS, non-convex formulations of delay-independent type have been proposed,
for example, in Shi et al. (2003) where the delay is considered time-invariant. In Fridman &
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Shaked (2005a) and Fridman & Shaked (2005b), delay dependent conditions, convex to the
analysis of stability and non-convex for the synthesis, are formulated using the approach of
descriptor systems. These works consider systems with both polytopic uncertainties — see
Fridman & Shaked (2005a) — and with norm-bounded uncertainties as done by Fridman &
Shaked (2005b).
Some other different aspects of discrete-time systems with delayed state have been studied.
Kandanvli & Kar (2009) present a proposal with LMI conditions for robust stability analysis of
discrete time delayed systems with saturation. In the work of Xu & Yu (2009), bi-dimensional
(2D) discrete-time systems with delayed state are investigated, and delay-independent
conditions for norm-bounded uncertainties and constant delay are given by means of
nonconvex formulations. In the paper from Ma et al. (2008), convex conditions have been
proposed for discrete-time singular systems with time-invariant delay. Discrete-time switched
systems with delayed state have been studied by Hetel et al. (2008) and Ibrir (2008). The
former establishes the equivalence between the approach used here (Lyapunov-Krasovskii
functions) and the one used, in general, for the stability of switched systems with time-varying
delay. The latter gives nonconvex conditions for switched systems where each operation mode
is subject to a norm-bounded uncertainty and constant delay.
The problem of robust filtering for discrete-time uncertain systems with delayed state is
considered in some papers. Delayed state systems with norm-bounded uncertainties are
studied by Yu & Gao (2001), Chen et al. (2004) and Xu et al. (2007) and with polytopic
uncertainties by Du et al. (2007). The results of Gao et al. (2004) were improved by Liu et al.
(2006), but the approach is based on QS and the design conditions are nonconvex depending
directly on the Lyapunov-Krasovskii matrices.
The problem of output feedback has attracted attention for discrete-time systems with delay in
the state and the works of Gao et al. (2004), He et al. (2008) and Liu et al. (2006) can be cited as
examples of on going research. In special, He et al. (2008) present results for precisely known
systems with time-varying delay including both static output feedback (SOF) and dynamic
output feedback (DOF). However, the conditions are presented as an interactive method that
relax some matrix inequalities.
The main objective of this chapter is to study the robust analysis and synthesis of discrete-time
systems with state delay. This chapter is organized as follows. In Section 2 some notations
and statements are presented, together the problems that are studied and solved in the next
sections. In sections 3 and 4 solutions are presented for, respectively, robust stability analysis
and robust design, based in a L-K function presented in section 2. In Section 5 some additional
results are given by the application of the techniques developed in previous sections are
presented, such as: extensions for switched systems, to treat actuator failure and to make
design with pole location. In the last section it is presented the final comments.

2. Preliminaries and problem statement

In this chapter the uncertain discrete time system with time-varying delay in the state vector
is given by

Ω(α) :

{
xk+1 = A(α)xk + Ad(α)xk−dk

+ B(α)uk + Bw(α)wk,
zk = C(α)xk + Cd(α)xk−dk

+ D(α)uk + Dw(α)wk,
(1)

where k is the k-th sample-time, matrices A(α), Ad(α), B(α), Bw, C(α), Cd(α), D(α) and Dw(α)
are time-invariant, uncertain and with adequate dimensions defined in function of the signals
xk = x(k) ∈ R

n, the state vector at sample-time k, uk = u(k) ∈ R
m, representing the control

vector with m control signals, wk = w(k) ∈ R
ℓ, the exogenous input vector with ℓ input
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signals, and zk = z(k) ∈ R
p, the output vector with p weight output signals. These matrices

can be described by a polytope P with known vertices

P =

{

Ω(α) ∈ R
n+p×2n+m+ℓ : Ω(α) =

N

∑
i=1

αiΩi, α ∈ Υ

}

, (2)

where

Υ =

{

α :
N

∑
i=1

αi = 1, αi ≥ 0, i ∈ I [1, N]

}

(3)

and

Ωi =

[
Ai Adi Bi Bwi

Ci Cdi Di Dwi

]

, i ∈ I [1, N]. (4)

The delay, denoted by dk, is supposed to be time-varying and given by:

dk ∈ I
[
d, d̄
]

, (d, d̄) ∈ N
2
∗ (5)

with d, d̄ representing the minimum and maximum values of dk, respectively. Thus, any
system Ω(α) ∈ P can be written as a convex combination of the N vertices Ωi, i ∈ I [1, N], of
P .
The following control law is considered in this chapter:

uk = Kxk + Kdxk−dk
(6)

with [K|Kd] ∈ R
m×2n. By replacing (6) in (1)-(4), the resulting uncertain closed-loop system is

given by

Ω̃(α) :

{
xk+1 = Ã(α)xk + Ãd(α)xk−dk

+ Bw(α)wk

zk = C̃(α)xk + C̃d(α)xk−dk
+ Dw(α)wk

(7)

with Ω̃(α) ∈ P̃ ,

P̃ =

{

Ω̃(α) ∈ R
n+p×2n+ℓ : Ω̃(α) =

N

∑
i=1

αiΩ̃i, α ∈ Υ

}

(8)

where

Ω̃i =

[
Ãi Ãdi Bwi

C̃i C̃di Dwi

]

, i ∈ I [1, N]. (9)

and matrices Ãi, Ãdi, C̃i e C̃di are defined by

Ãi = Ai + BiK, Ãdi = Adi + BiKd, (10)

C̃i = Ci + DiK, C̃di = Cdi + DiKd (11)

Note that, control law (6) requires that both xk and xk−dk
are available at each sample-time.

Eventually, this can be achieved in physical systems by employing, for instance, a
time-stamped in the measurements or in the estimated states Srinivasagupta et al. (2004). In
case of dk is not known, it is sufficient to assume Kd = 0.
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2.1 Stability conditions

Since the stability of system Ω̃(α) given in (7) plays a central rule in this work, it is addressed
in the sequence. Note that, without loss of generality, it is possible to consider the stability of
the system (7) with wk = 0, ∀ k ∈ N.
Consider the sequence composed by d̄ + 1 null vectors

φ̂d̄ = {0, . . . , 0}
︸ ︷︷ ︸

(d̄+1) terms

In this chapter null initial conditions are always assumed, that is,

xk = φ0,k = φ̂d̄, k ∈ I [−d̄, 0] (12)

If φt,k = φ̂d̄, then an equilibrium solution for system (7) with wk = 0, ∀ k ∈ N, is achieved
because xk+1 = xk = 0, ∀k > t and α ∈ Ω̃.

Definition 1 (Uniform asymptotic stability). For a given α ∈ Υ, the trivial solution of (7) with
wk = 0, ∀ k ∈ N is said uniformly asymptotically stable if for any κ ∈ R+ such that for all initial

conditions xk ∈ φd̄
0,k ∈ Φκ

d̄
, k ∈ I [−d̄, 0], it is verified

lim
t→∞

φd̄
t,j,k = 0, ∀j ∈ I [1, d̄ + 1]

This allows the following definition:

Definition 2 (Robust stability). System (7) subject to (3), (5) and (8) is said robustly stable if its
respective trivial solution is uniformly asymptotically stable ∀ α ∈ Υ.

The main objective in this work is to formulate convex optimization problems, expressed as
LMIs, allowing an efficient numerical solution to a set of stability and performance problems.

2.2 Problems

Two sets of problems are investigated in this chapter. The first set concerns stability issues
related to uncertain discrete time with time varying delay in the state vector as presented in
the sequence.

Problem 1 (Robust stability analysis). Determine if system (7) subject to (3), (5) and (8) is robustly
stable.

Problem 2 (Robust control design). Determine a pair of static feedback gains, K and Kd, such that
(1)-(5) controlled by (6) is robustly stable.

The other set of problems is related to the performance of the class of systems considered in
this chapter. In this proposal, the H∞ index is used to quantify the performance of the system
as stated in the following problems:

Problem 3 (H∞ guaranteed cost). Given the uncertain system Ω̃(α) ∈ P̃ , determine an estimation
for γ > 0 such that for all wk ∈ ℓ2 there exist zk ∈ ℓ2 satisfying

‖zk‖2 < γ‖wk‖2 (13)

for all α ∈ Υ. In this case, γ is called an H∞ guaranteed cost for (7).
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Problem 4 (Robust H∞ control design). Given the uncertain system Ω(α) ∈ P̃ , (1), and a scalar
γ > 0, determine robust state feedback gains K and Kd, such that the uncertain closed-loop system
Ω̃(α) ∈ P̃ , (7), is robustly stable and, additionally, satisfies (13) for all wk and zk belonging to ℓ2.

It is worth to say that, in cases where time-delay depends on a physical parameter (such as
velocity of a transport belt, the position of a steam valve, etc.) it may be possible to determine
the delay value at each sample-time. As a special case, consider the regenerative chatter in
metal cutting. In this process a cylindrical workpiece has an angular velocity while a machine
tool (lathe) translates along the axis of this workpiece. For details, see (Gu et al., 2003, pp. 2). In
this case the delay depends on the angular velocity and can be recovered at each sample-time
k. However, the study of a physical application is not the objective in this chapter.
The following parameter dependent L-K function is used in this paper to investigate problems
1-4:

V(α, k) =
3

∑
v=1

Vv(α, k) > 0 (14)

with

V1(α, k) = x′kP(α)xk , (15)

V2(α, k) =
k−1

∑
j=k−dk

x′jQ(α)xj , (16)

V3(α, k) =
1−d

∑
ℓ=2−d̄

k−1

∑
j=k+ℓ−1

x′jQ(α)xj, (17)

The dependency of matrices P(α) and Q(α) on the uncertain parameter α is a key issue on
reducing the conservatism of the resulting conditions. Here, a linear relation on α is assumed.
Thus, consider the following structure for these matrices:

P(α) =
N

∑
i=1

αiPi; Q(α) =
N

∑
i=1

αiQi (18)

with α ∈ Υ. Note that, more general structures such as P(α) and Q(α) depending
homogeneously on α — see Oliveira & Peres (2005) — may result in less conservative
conditions, but at the expense of a higher numerical complexity of the resulting conditions.
To be a L-K function, the candidate (14) must be positive definite and satisfy

∆V(α, k) = V(α, k + 1)− V(α, k) < 0 (19)

for all
[

xT
k xT

k−dk

]T
	= 0 and α ∈ Υ.

The following result is used in this work to obtain less conservative results and to decouple
the matrices of the system from the L-K matrices P(α) and Q(α).

Lemma 1 (Finsler’s Lemma). Let ϕ ∈ R
n, M(α) = M(α)T ∈ R

n×n and G(α) ∈ R
m×n such

that rank(G(α)) < n. Then, the following statements are equivalents:

i) ϕTM(α)ϕ < 0, ∀ϕ : G(α)ϕ = 0, ϕ 	= 0

ii) G(α)⊥TM(α)G(α)⊥ < 0,

299Uncertain Discrete-Time Systems with Delayed State:
Robust Stabilization with Performance Specification via LMI Formulations

www.intechopen.com



iii) ∃ μ(α) ∈ R+ : M(α)− μ(α)G(α)TG(α) < 0

iv) ∃ X (α) ∈ R
n×m : M(α) +X (α)G(α) + G(α)TX (α)T < 0

In the case of parameter independent matrices, the proof of this theorem can be found in
de Oliveira & Skelton (2001). The proof for the case depending on α follows similar steps.

3. Robust stability analysis and H∞ guaranteed cost

In this section it is presented the conditions for stability analysis and calculation of H∞

guaranteed cost for system (7). The objective here is to present sufficient convex conditions
for solving problems 1 and 3.

3.1 Robust stability analysis

Theorem 1. If there exist symmetric matrices 0 < Pi ∈ R
n×n, 0 < Qi ∈ R

n×n, a matrix X ∈
R

3n×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such that

Ψi = Qi +XBi + BT
i X T

< 0; i = 1, . . . , N (20)

with

Qi =

⎡

⎣

Pi 0 0
⋆ βQi − Pi 0
⋆ ⋆ −Qi

⎤

⎦ (21)

β = d̄ − d + 1 (22)

and
Bi =

[
I −Ai −Adi

]
(23)

is verified ∀ α admissible, then system (7) subject to (5) is robustly stable. Besides, (14)-(17) is a
Lyapunov-Krasovskii function assuring the robust stability of the considered system.

Proof. The positivity of the function (14) is assured with the hypothesis of Pi = PT
i > 0,

Qi = QT
i > 0. For the equation (14) be a Lyapunov-Krasovskii function, besides its positivity,

it is necessary to verify (19) ∀ α ∈ Ω. From hereafter, the α dependency is omitted in the
expressions Vv(k), v = 1, . . . , 3, To calculate (19), consider

∆V1(k) = xT
k+1P(α)xk+1 − xT

k P(α)xk (24)

∆V2(k) = xT
k Q(α)xk − xT

k−d(k)Q(α)xk−d(k) +
k−1

∑
i=k+1−d(k+1)

xT
i Q(α)xi −

k−1

∑
i=k+1−d(k)

xT
i Q(α)xi

(25)
and

∆V3(k) = (d̄ − d)xT
k Q(α)xk −

k−d

∑
i=k+1−d̄

xT
i Q(α)xi (26)

Observe that the third term in equation (25) can be rewritten as

Ξk ≡
k−1

∑
i=k+1−d(k+1)

xT
i Q(α)xi =

k−1

∑
i=k+1−d

xT
i Q(α)xi +

k−d

∑
i=k+1−d(k+1)

xT
i Q(α)xi

≤
k−1

∑
i=k+1−d(k)

xT
i Q(α)xi +

k−d

∑
i=k+1−d̄

xT
i Q(α)xi (27)
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Using (27) in (25), one gets

∆V2(k) ≤ xT
k Q(α)xk − xT

k−d(k)Q(α)xk−d(k) +
k−d

∑
i=k+1−d̄

xT
i Q(α)xi (28)

So, considering (24), (26) and (28) the following upper bound for (19) can be obtained

∆V(k) ≤ xT
k+1P(α)xk+1 + xT

k [βQ(α)− P(α)]xk − xT
k−d(k)Q(α)xk−d(k) < 0 (29)

Taking into account (7) and using Lemma 1 with

ϕ = ξk =
[

xT
k+1 xT

k xT
k−dk

]T
(30)

M(α) =

⎡

⎣

P(α) 0 0
⋆ βQ(α)− P(α) 0
⋆ ⋆ −Q(α)

⎤

⎦ (31)

G(α) =
[

I −A(α) −Ad(α)
]

(32)

then (29) is equivalent to

Ψ(α) = M(α) +X (α)G(α) + G(α)TX (α)T
< 0. (33)

which is assured whenever (20) is verified by taking X (α) = X ,

M(α) =
N

∑
i=1

αiQi; G(α) =
N

∑
i=1

αiBi, (34)

α ∈ Υ, Qi and Bi given in (21) and (23), respectively, completing the proof.

An important issue in Theorem 1 is that there is no product between the matrices of the system
and the matrices of the Lyapunov-Krasovskii proposed function, (14). This can be exploited
to reduce conservatism in both analysis and synthesis methods.

Example 1 (Stability Analysis). In this example the stability analysis condition given in Theorem 1
is used to investigate system (7), with Dw = 0, where

Ã1 =

[
0.6 0

0.35 0.7

]

and Ãd1 =

[
0.1 0
0.2 0.1

]

. (35)

This system has been investigated by Liu et al. (2006), Boukas (2006) and Leite & Miranda (2008a).
The objective here is to establish the larger delay interval such that this system remains stable. The
results are summarized in Table 1.
Although Theorem 1 and the condition from Liu et al. (2006) achieve the same upper bound for dk, the
L-K function employed by Liu et al. (2006) has 5 parts while Theorem 1 uses a function with only 3
parts, as given by (14)-(17).
Consider that (35) is affected by an uncertain parameter being described by a polytope (8) with Ã1 and
Ãd1 given by (35) and Ã2 = 1.1Ã1 and Ãd2 = 1.1Ãd1. In this case the conditions of Boukas (2006)
are no longer applicable and those from Liu et al. (2006) are not directly applied, because of type of
the system uncertainty. Using Theorem 1 it is possible to assure the robust stability of this system for
|dk+1 − dk| ≤ 3.
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Condition d d̄

Boukas (2006)[Theorem 3.1] 2 10

Liu et al. (2006) 2 13

Theorem 1 2 13

Table 1. Maximum delay intervals such that (7) with (35) is stable.

3.2 Estimation of H∞ guaranteed cost

Theorem 2 presented in the sequel states a convex condition for checking if a given γ is an H∞

guaranteed cost for system (7).

Theorem 2. If there exist symmetric matrices 0 < Pi ∈ R
n×n, 0 < Qi ∈ R

n×n, a matrix XH ∈
R

3n+p+ℓ×n+p, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, and a scalar μ = γ2 ∈ R+, such that

ΨHi = QHi +XHBH i + BH
T
i XH

T
< 0, i = 1, . . . , N, (36)

with

QHi =

⎡

⎣

Qi 0

⋆

[
Iℓ 0
⋆ −μIp

]

⎤

⎦ (37)

where Qi is given by (21) and

BH i =

[
Bi 0 Bwi[

0 C̃i C̃di

]
−I Dwi

]

(38)

with Bi given by (23), then system (7) subject to (5) with null initial conditions, see (12), is robustly
stable with an H∞ guaranteed cost given by γ =

√
μ. Besides, (14)-(17) is a L-K function assuring

the robust stability of the considered system.

Proof. Following the proof given for Theorem 1, it is possible to conclude that the positivity of
(14) is assured with the hypothesis of P(α) = P(α)T > 0, Q(α) = Q(α)T > 0 and, by (29) that

∆V(k) ≤ x′k+1P(α)xk+1 + x′k[βQ(α)− P(α)]xk − x′k−d(k)Q(α)xk−d(k) < 0 (39)

Consider system (7) as robustly stable with null initial conditions given by (12), assume μ = γ2

and signals wk and zk belonging to ℓ2. In this case, it is possible to verify that V(α, 0) = 0 and
V(α, ∞) approaches zero, whenever wk goes to zero as k increases, or to a constant φ̃ < ∞,
whenever wk approaches φ < ∞ as k increases. Also, consider the H∞ performance index
given by

J(α, k) =
∞

∑
k=0

[

zT
k zk − μwT

k wk

]

(40)

Then, using (39), J(α, k) can be over bounded as

J(α, k) ≤
∞

∑
k=0

[

zT
k zk − μwT

k wk + ∆V(α, k)
]

≤
∞

∑
k=0

[

zT
k zk − μwT

k wk + x′k+1P(α)xk+1 + x′k[βQ(α)− P(α)]xk − x′k−d(k)Q(α)xk−d(k)

]
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which can be rewritten as

J(α, k) ≤
∞

∑
k=0

ζT
k QH(α)ζk (41)

with ζk =
[

ξT
k zT

k wT
k

]T
, ξk defined in (30), and QH(α) =

N

∑
i=1

αiQHi, α ∈ Υ. Then, applying

Lemma 1 to
ζT

k QH(α)ζk < 0 subject to (7), (42)

with M(α) = QH(α), ϕ = ζk,

G(α) = BH(α) =

[ B(α) 0 Bw(α)[
0 C̃(α) C̃d(α)

]
−I Dw(α)

]

, (43)

and α ∈ Υ, (42) is equivalent to

ΨH(α) = QH(α) +XH(α)BH(α) + BH(α)TXH(α)T
< 0. (44)

Once (36) is verified, (44) is assured with the special choice XH(α) = XH ∈ R
3n+p+ℓ×n+p —

i.e., eliminating the dependency on the uncertain parameter α — and noting that G(α) =

∑
N
i=1 αiBH i, convexity is achieved, and (36) can be used to recover (44) by ΨH(α) =

∑
N
i=1 αiΨHi, α ∈ Υ. Thus, this assures the negativity of J(α, k) for all wk ∈ ℓ2 implying that (7)

is robustly stable with H∞ guaranteed cost given by γ =
√

μ.

In case of time-varying uncertainties, i.e. α = αk = α(k), the conditions formulated in both
Theorem 1 and Theorem 2 can be adapted to match the quadratic stability approach. In this
case, it is enough to use Pi = P, Qi = Q, i ∈ I [1, N]. This yields conditions similar to (20)
and (36), respectively, with constant L-K matrices. See Subsection (5.1) for a more detailed
discussion on this issue.
Note that, it is possible to use the conditions established by Theorem 2 to formulate the
following optimization problem that allows to minimize the value of μ = γ2:

EH∞
:

⎧

⎨

⎩

min
Pi > 0; Qi > 0;X

μ

such that (36) is feasible
(45)

4. Robust H∞ feedback design

The stability analysis conditions can be used to obtain convex synthesis counterpart
formulations for designing robust state feedback gains K and Kd, such that control law (6)
applied in (1) yields a robustly stable closed-loop system, and, therefore, provides a solution
to problems 2 and 4. In this section, such conditions for synthesis are presented for both robust
stabilization and robust H∞ control design.

4.1 Robust stabilization

The following Theorem provides some LMI conditions depending on the difference d̄ − d to
design robust state feedback gains K and Kd that assure the robust stability of the closed-loop
system.
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Theorem 3. If there exist symmetric matrices 0 < P̃i ∈ R
n×n, 0 < Q̃i ∈ R

n×n, i = 1, . . . , N,
matrices F ∈ R

n×n, W ∈ R
m×n and Wd ∈ R

m×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such
that

Ψ̃i =

⎡

⎣

P̃i +F +F T −(AiF + BiW) −(AdiF + BiWd)
⋆ βQ̃i − P̃i 0

⋆ ⋆ −Q̃i

⎤

⎦ < 0, i = 1, . . . , N (46)

are verified with β given by (22), then system (1)-(3) is robustly stabilizable with (6), where the robust
static feedback gains are given by

K = WF−1 and Kd = WdF−1 (47)

yielding a convex solution to Problem 2.

Proof. Observe that, if (46) is feasible, then F is regular, once block (1, 1) of (46) assures P̃i +
F +F T < 0, allowing to define

T = I3 ⊗F−T (48)

Then, by replacing W and Wd by KF and KdF , respectively obtained from (47), it is possible

to recover Ψi = T Ψ̃iT T < 0 with X =
[
F−T 0 0

]T
, Pi = F−TP̃iF−1, Qi = F−TQ̃iF−1 and

the closed-loop system matrices Ãi = (A+ BiK) and Ãdi = (Adi + BiKd) replacing Ai and Adi

in (20), which completes the proof.

Note that, conditions in Theorem 3 encompass quadratic stability approach, since it is always
possible to choose Pi = P and Qi = Q, i = 1, . . . , N. Also observe that, if dk is not available
at each sample-time, and therefore xk−dk

cannot be used in the feedback, then it is enough to
choose Wd = 0 leading to a control law given by uk = Kxk. Finally, note the convexity of the
conditions stated in Theorem 3. This is a relevant issue, once most of the results available in
the literature depend on a nonlinear algorithm to solve the stabilization problem.

Example 2 (Robust Stabilization). Consider the discrete-time system studied in Leite & Miranda
(2008a) with delayed state described by (1) with Dw = 0 and

A =

[
0 1
−2 −3

]

; Ad =

[
0.01 0.1

0 0.1

]

; B =

[
0
1

]

(49)

Suppose that this system is affected by uncertain parameters |ρ| ≤ 0.07, |θ| ≤ 0.1 and |η| ≤ 0.1, such
that

A(ρ) = (1 + ρ)A; Ad(θ) = (1 + θ)Ad; B(η) = (1 + η)B (50)

These parameters yield a polytope with 8 vertices determined by the combination of the extreme values
of ρ, θ and η. Also, suppose that delay is not available on line and it is bounded as 1 ≤ dk ≤ 10. By
applying the conditions presented in Theorem 3 with Wd = 0 — this is a necessary issue once the delay
value is not known at each sample-time — it is possible to get the robust stabilizing gain

K =
[

1.9670 2.7170
]

. (51)

The behavior of the states of the closed-loop response of this uncertain discrete-time system with
time-varying delay is shown in Figure 4. It has been simulated the time response of this system at
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Fig. 1. The behavior of the states x1(k) (top) and x2(k) (bottom), with dk ∈ I [1, 10] randomly
genereated and the robust state feedback gain (51).

each vertex of the polytope that defines the uncertain closed-loop system. The initial conditions have
been chosen as

φ0,k =

{[
1
−1

]

, . . . ,

[
1
−1

]}

︸ ︷︷ ︸

11 terms

,

and the value of the delay, dk, has been varied randomly. Please see Leite & Miranda (2008a) for details.
In Figure 4, it is illustrated the stability of the uncertain close-loop system, assured by the robust state
feedback gain (51).

4.2 Robust H∞ feedback design

An stabilization condition assuring the H∞ cost of the feedback system is stated in the sequel.

Theorem 4. If there exist symmetric matrices 0 < P̃i ∈ R
n×n, 0 < Q̃i ∈ R

n×n, matrices F ∈ R
n×n,

W ∈ R
m×n, Wd ∈ R

m×n, a scalar variable θ ∈]0, 1] and for a given μ = γ2 ∈ R+ such that

⎡

⎢
⎢
⎢
⎢
⎣

P̃i −F −F T AiF + BiW AdiF + BiWd 0 Bwi

⋆ βQ̃i − P̃i 0 F TCT
i + WTDT

i 0

⋆ ⋆ −Q̃i F TCT
di + WT

d DT
i 0

⋆ ⋆ ⋆ −θ I Dwi

⋆ ⋆ ⋆ ⋆ −μI

⎤

⎥
⎥
⎥
⎥
⎦

< 0, i = 1, . . . , N (52)

are feasible with β given by (22), then system (1)-(3) is robustly stabilizable with (6) assuring a
guaranteed H∞ cost given by γ to the closed-loop system by robust state feedback gains K and Kd

given by (47).

Proof. To demonstrate the sufficiency of (52), firstly note that, if it is verified, then the
regularity of F is assured due to its block (1, 1) that verifies P̃i − F − F T < 0. Besides, there
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exist a real scalar κ ∈]0, 2[ such that for θ ∈]0, 1], κ(κ − 2) = −θ. Thus, replacing block (4, 4) of
(52) by κ(κ − 2)Ip, the optimization variables W and Wd by KF and KdF , respectively, using
the definitions given by (10)–(11) and pre- and post-multiplying the resulting LMI by TH (on
the left) and by T T

H (on the right), with

TH =

⎡

⎣

T 0

⋆

[
G 0
⋆ Iℓ

]

⎤

⎦

−1

(53)

with T given by (48) and G ∈ R
p×p, it is possible to obtain Ψ̃Hi < 0, with Ψ̃Hi given by

Ψ̃Hi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F−T P̃iF−1 −F−T −F−1 F−T (Ai + BiK)
︸ ︷︷ ︸

Ãi

F−T (Adi + BiKd
︸ ︷︷ ︸

Ãdi

)

⋆ βF−TQ̃iF−1 −F−TP̃iF−1 0

⋆ ⋆ −F−TQ̃iF−1

⋆ ⋆ ⋆

⋆ ⋆ ⋆

0 FBw

(CT
i + KTDT

i )
︸ ︷︷ ︸

C̃i

GT 0

(CdT
i + KT

d DT
i )

︸ ︷︷ ︸

C̃di

GT 0

G
(
κ2 − 2κ

)
GT GDw

⋆ −μIℓ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(54)

Observe that, assuming G = − 1

κ
Ip, block (4, 4) of (54) can be rewritten as

G
(

κ2 − 2κ
)

GT =

(

− 1

κ
Ip

)(

κ2 − 2κ
) (

− 1

κ
Ip

)

=

(

1 − 2

κ

)

Ip

= Ip −
1

κ
Ip −

1

κ
Ip

= Ip + G + GT (55)

assuring the feasibility of ΨHi < 0 given in (36) with Pi = F−T P̃iF−1, Qi = F−TQ̃iF−1,
i ∈ I [1, N], and

XH =

⎡

⎢
⎢
⎢
⎢
⎣

F−1 0
0 0
0 0
0 G
0 0

⎤

⎥
⎥
⎥
⎥
⎦

completing the proof.
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Theorem 4 provides a solution to Problem 4. This kind of solution can be efficiently achieved
by means of, for example, interior point algorithms. Note that all matrices of the system can
be affected by polytopic uncertainties which states a difference w.r.t. most of the proposals
found in the literature. Another remark concerns the technique used to obtain the synthesis
condition: differently from the usual approach for delay free systems, here it is not enough
to replace matrices in the analysis conditions with their respective closed-loop versions and
to make a linearizing change of variables. This makes clear that the H∞ control of systems
with delayed state is more complex than with delay free systems. Also, note that the design
of state feedback gains K and Kd can be done minimizing the guaranteed H∞ cost, γ =

√
μ,

of the uncertain closed-loop system. In this case, it is enough to solve the following convex
optimization problem:

SH∞
:

⎧

⎪⎪⎨

⎪⎪⎩

min
P̃i > 0; Q̃i > 0; 0 < θ ≤ 1;

W; Wd; F

μ

such that (52) is feasible

(56)

Example 3 (H∞ Design). A physically motivated problem is considered in this example. It consists of
a fifth order state space model of an industrial electric heater investigated in Chu (1995). This furnace is
divided into five zones, each of them with a thermocouple and a electric heater as indicated in Figure 2.
The state variables are the temperatures in each zone (x1, . . . , x5), measured by thermocouples, and
the control inputs are the electrical power signals (u1, . . . , u5) applied to each electric heater. The

u1

x1

u2

x2

u3

x3

u4

x4

u5

x5

Fig. 2. Schematic diagram of the industrial electric heater.

temperature of each zone of the process must be regulated around its respective nominal operational
conditions (see Chu (1995) for details). The dynamics of this system is slow and can be subject to several
load disturbances. Also, a time-varying delay can be expected, since the velocity of the displacement of
the mass across the furnace may vary. A discrete-time with delayed state model for this system has been
obtained as given by (1) with dk = d = 15, where

A = A0 =

⎡

⎢
⎢
⎢
⎢
⎣

0.97421 0.15116 0.19667 −0.05870 0.07144
−0.01455 0.88914 0.26953 0.11866 −0.22047
0.06376 0.12056 1.00049 −0.03491 −0.02766
−0.05084 0.09254 0.28774 0.82569 0.02570
0.01723 0.01939 0.29285 0.03544 0.87111

⎤

⎥
⎥
⎥
⎥
⎦

(57)
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Ad = Ad0 =

⎡

⎢
⎢
⎢
⎢
⎣

−0.01000 −0.08837 −0.06989 0.18874 0.20505
0.02363 0.03384 0.05282 −0.09906 −0.00191
−0.04468 −0.00798 0.05618 0.00157 0.03593
−0.04082 0.01153 −0.07116 0.16472 0.00083
−0.02537 0.03878 −0.04683 0.05665 −0.03130

⎤

⎥
⎥
⎥
⎥
⎦

, (58)

B = B0 =

⎡

⎢
⎢
⎢
⎢
⎣

0.53706 −0.11185 0.09978 0.04652 0.25867
−0.51718 0.73519 0.57518 0.40668 −0.12472
0.29469 0.31528 1.16420 −0.29922 0.23883
−0.20191 0.19739 0.41686 0.66551 0.11366
−0.11835 0.16287 0.20378 0.23261 0.36525

⎤

⎥
⎥
⎥
⎥
⎦

, (59)

and C = D = I5, Cd = 0, Dw = 0, Bw = 0.1I with A0, Ad0, and B0 being the nominal matrices of
this system. Note that, this nominal system has unstable modes. The design of a stabilizing state
feedback gain for this system has been considered in Chu (1995) by using optimal control theory,
designed by an augmented delay-free system with order equal to 85 and a time-invariant delay d = 15,
by means of a Riccati equation.
Here, robust H∞ state feedback gains are calculated to stabilize this system subject to uncertain
parameters given by |ρ| ≤ 0.4, |η| ≤ 0.4 and |σ| ≤ 0.08 that affect the matrices of the system as
follows:

A(ρ) = A(1 + ρ), Ad(θ) = Ad(1 + θ), B(σ) = B(1 + σ) (60)

This set of uncertainties defines a polytope with 8 vertices, obtained by combination of the upper and
lower bounds of uncertain parameters. Also, it is supposed in this example that the system has a
time-varying delay given by 10 ≤ dk ≤ 20.
In these conditions, an H∞ guaranteed cost γ = 6.37 can be obtained by applying Theorem 4 that
yields the robust state feedback gains presented in the sequel.

K =

⎡

⎢
⎢
⎢
⎢
⎣

−2.2587 −1.0130 −0.0558 0.4113 0.9312
−2.0369 −2.1037 0.0822 1.5032 0.0380
0.9410 0.5645 −0.7523 −0.8688 0.3801
−0.5796 −0.2559 0.0454 −1.0495 0.4072
−0.0801 0.4106 −0.4369 0.5415 −2.4452

⎤

⎥
⎥
⎥
⎥
⎦

(61)

Kd =

⎡

⎢
⎢
⎢
⎢
⎣

−0.0625 0.2592 0.0545 −0.2603 −0.5890
−0.1865 0.1056 −0.0508 0.1911 −0.4114
0.1108 −0.0460 −0.0483 −0.0612 0.1551
0.0309 0.0709 0.1404 −0.3511 −0.1736
0.0516 −0.1016 0.1324 −0.0870 0.1158

⎤

⎥
⎥
⎥
⎥
⎦

(62)

5. Extensions

In this section some extensions to the conditions presented in sections 3 and 4 are presented.

5.1 Quadratic stability approach

The quadratic stability approach is the source of many results of control theory presented in
the literature. In such approach, the Lyapunov matrices are taken constant and independent of
the uncertain parameter. As a consequence, their achieved results may be very conservative,
specially when applied to uncertain time-invariant systems. See, for instance, the works
of Leite & Peres (2003), de Oliveira et al. (2002) and Leite et al. (2004). Perhaps the main
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advantages of the quadratic stability approach are the simple formulation — with low
numerical complexity — and the possibility to deal with time-varying systems. In this case, all
equations given in Section 2 can be reformulated by using time-dependency on the uncertain
parameter, i.e., by using α = αk. In special, the uncertain open-loop system (1) can be
described by

Ωv(αk) :

{
xk+1 = A(αk)xk + Ad(αk)xk−dk

+ B(αk)uk + Bw(αk)wk,
zk = C(αk)xk + Cd(αk)xk−dk

+ D(αk)uk + Dw(αk)wk,
(63)

with αk ∈ Υv

Υv =

{

αk :
N

∑
i=1

αki = 1, αki ≥ 0, i ∈ I [1, N]

}

(64)

which allows to define the polytope P given in (2) with αk replacing α. Still considering control
law (6), the resulting closed-loop system is given by

Ω̃v(αk) :

{
xk+1 = Ã(αk)xk + Ãd(αk)xk−dk

+ Bw(αk)wk,
zk = C̃(αk)xk + C̃d(αk)xk−dk

+ Dw(αk)wk,
(65)

with Ω̃(αk) ∈ P̃ given in (8) with αk replacing α.
The convex conditions presented can be simplified to match with quadratic stability
formulation. This can be done in the analysis cases by imposing Pi = P > 0 and Qi = Q > 0
in (20) and (36) and, in the synthesis cases, by imposing P̃i = P̃ > 0, Q̃i = Q̃ > 0, i = 1, . . . , N.
This procedure allows to establish the following Corollary.

Corollary 1 (Quadratic stability). The following statements are equivalent and sufficient for the
quadratic stability of system Ω̃v(αk) given in (65):

i) There exist symmetric matrices 0 < P ∈ R
n×n, 0 < Q ∈ R

n×n, matrices F ∈ R
n×n, G ∈ R

n×n

and H ∈ R
n×n ∈ R

n×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such that

Ψqi =

⎡

⎣

P + FT + F GT − FAi HT − FAdi

⋆ βQ − P − AT
i GT − GAi −AT

i HT − GT Adi

⋆ ⋆ −(Q + HAdi + AT
diH

T)

⎤

⎦ < 0, (66)

is verified for i = 1, . . . , N.

ii) There exist symmetric matrices 0 < P ∈ R
n×n, 0 < Q ∈ R

n×n, dk ∈ I [d, d̄] with d̄ and d
belonging to N∗, such that

Φi =

[
AT

i PAi + βQ − P AT
i PAdi

⋆ AT
diPAdi − Q

]

< 0 (67)

is verified for i = 1, . . . , N.

Proof. Condition (66) can be obtained from (20) by imposing Pi = P > 0 and Qi = Q > 0.
This leads to a Lyapunov-Krasovskii function given by

V(xk) = x′kPxk +
k−1

∑
j=k−d(k)

x′jQxj +
1−d

∑
ℓ=2−d̄

k−1

∑
j=k+ℓ−1

x′jQxj
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which is sufficient for the quadratic stability of Ω̃v(αk). This condition is not necessary for
the quadratic stability because this function is also not necessary, even for the stability of the
precisely known system. The equivalence between (66) and (67) can be stated as follows: i) ⇒
ii) if (66) is verified, then (67) can be recovered by Φi = T T

qi ΨqiTqi with

Tqi =

[
Ai Adi

I2n

]

i) ⇐ ii) On the other hand, if (67) is verified, then it is possible by its Schur’s complement to
obtain

Φi < 0 ⇔

⎡

⎣

−P PAi PAdi

⋆ βQ − P 0
⋆ ⋆ −Q

⎤

⎦ < 0, i = 1, . . . , N (68)

which assures the feasibility of (66) with F = −P, G = H = 0, completing the proof.

It is possible to obtain quadratic stability conditions corresponding to each of the formulations
presented by theorems 2, 3, 4 following similar steps of those taken to obtain Corollary 1.
However, due to the straight way to obtain such conditions, they are not shown here.
Nevertheless, quadratic stability based conditions may lead to results that are, in general,
more conservative than those achieved by similar formulations that employ parameter
dependent Lyapunov-Krasovskii functions.

5.2 Actuator failure

Partial or total actuator failures are important issues on real word systems and the
formulations presented in this chapter can also be used to investigate the robust stability as
well as to design robust state feedback control gains assuring stability and H∞ guaranteed
performance for the uncertain closed-loop system under such failures. The robustness against
actuator failures plays an important role in industry, representing not only an improvement
in the performance of the closed-loop system, but also a crucial security issue in many plants
Leite et al. (2009). In this case, the problem of actuator failures is cast as a special type of
uncertainty affecting the input matrix B, being modeled as Bρ(t), with ρ(t) ∈ I [0, 1]. If
ρ(t) = 1, then the actuator is perfectly working. On the other hand, when the value of ρ(t) is
reduced, it means that the actuator cannot delivery all energy required by the control law. The
limit is when ρ(t) = 0, meaning that the actuator is off. Once the actuator failure implies on
time-varying matrix B(α), i.e., B(αk), it is necessary to employ quadratic stability approach,
as described in subsection 5.1.

5.3 Switched systems with delayed state

Another class of time-varying systems is composed by the discrete-time switched systems
with delay in the state vector. In this case the system can be described by

xk+1 = A(αk)xk + Ad(αk)xk−dk
+ B(αk)u(αk) (69)

with adequate initial conditions and the uncertain parameter αk = α(k) is

αi(k) =

{
1, for i = σk

0, otherwise
(70)
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and σk is an arbitrary switching function defined as

σk : N → I [1, N] (71)

where N is the number of subsystems. The matrices [A(αk)|Ad(αk)|B(αk)] ∈ R
n×2n+m are

switched matrices depending on the switching function (71) and can be written as the vertices
of the polytope defined by the set of submodes of the system. Naturally, except the vertices,
no element of this polytope is reached by the system. Therefore, function σk can select one of
the subsystems [A|Ad|B]i, i = 1, . . . , N, at each instant k. Those definitions can be done with
all other matrices presented in (69) or (65).
It is usual to take the following hypothesis when dealing with switched delay systems:

Hypothesis 1. The switching function is not known a priori, but it is available at each sample-time,
k.

Hypothesis 2. All matrices of system (69) (or mutatis mutandis (65)) are switched simultaneously
by (71).

Hypothesis 3. Both state vectors, xk and xk−dk
, are available for feedback.

These hypotheses can be considered on both stabilization and H∞ control problems proposed
in sections 3 and 4. An important difference w.r.t. the main stabilization problems investigated
in this chapter is that, if σk is known, it is reasonable to use also a switched control law given
by

uk = K(αk)xk + Kd(αk)xk−dk
(72)

where the gains K(αk) and Kd(αk) are considered to stabilize the respective subsystem i, i =
1, . . . , N, and assure stable transitions σk → σk+1. Thus, the switched closed-loop system may
be stabilizable by a solution of this problem, being written as in (65) with

Ã(αk) ≡ A(αk) + B(αk)K(αk) Ãd(αk) ≡ Ad(αk) + B(αk)Kd(αk) (73)

The stability of the closed-loop system can be tested with the theorem presented in the sequel.

Theorem 5. If there exist symmetric matrices 0 < Pi ∈ R
n×n, 0 < Qi ∈ R

n×n, matrices Fi ∈ R
n×n,

Gi ∈ R
n×n and Hi ∈ R

n×n, i = 1, . . . , N, and a scalar β = d̄ − d + 1, with d and d̄ known, such
that ⎡

⎣

Pj + FT
i + Fi GT

i − FiAi HT
i − Fi Adi

⋆ βQi − Pi − AT
i GT

i − Gi Ai −AT
i HT

i − Gi Adi

⋆ ⋆ −(Qℓ + Hi Adi + AT
diH

T
i )

⎤

⎦ < 0, (74)

for (i, j, ℓ) ∈ I [1, N]×I [1, N]×I [1, N], then the switched time-varying delay system (69)-(73) with
uk = 0 is stable for arbitrary switching function σk.

As it can be noted, a relevant issue of (74) is that the extra matrices are also dependent on the
switching function σk. This condition can be casted in a similar form of (20) as follows

Ψσi,j,ℓ = Qi,j,ℓ+XiBi + BT
i X T

i < 0, (i, j, ℓ) ∈ I [1, N]× I [1, N]× I [1, N] (75)

where

Qi,j,ℓ =

⎡

⎣

Pj 0 0

⋆ βQi − Pi 0
⋆ ⋆ −Qℓ

⎤

⎦ .

The synthesis case, i.e. to solve the problem of designing Ki and Kdi, i = 1, . . . , N, such that
the (69)–(72) is robustly stable, is presented in the following theorem.
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Theorem 6. If there exist symmetric matrices 0 < Pi ∈ R
n×n, 0 < Qi ∈ R

n×n, matrices Fi ∈ R
n×n,

Wi ∈ R
n×ℓ and Wdi ∈ R

n×ℓ, i = 1, . . . , N, and a scalar β = d̄ − d + 1, with d and d̄ known, such
that

Ψ̃i =

⎡

⎣

P̃j +Fi +F T
i −(AiFi + BiWi) −(AdiFi + BiWdi)

⋆ βQ̃i − P̃i 0
⋆ ⋆ −Q̃ℓ

⎤

⎦ < 0, (76)

for (i, j, ℓ) ∈ I [1, N]× I [1, N]× I [1, N], then the switched system with time-varying delay (69) is
robustly stabilizable by the control law (72) with

Ki = WiF
−1
i and Kdi = WdiF

−1
i (77)

The proof of theorems 5 and 6 can be found in Leite & Miranda (2008b) and are omitted here.
An important issue of Theorem 6 is the use of one matrix Xi for each submode. This is possible
because of the switched nature of the system that reaches only the vertices of the polytope.

Example 4. Consider the switched discrete-time system with time varying delay described by (69)
where where A(σk) = An + (−1)σk ρL′ J, Ad(σk) = (0.225 + (−1)σk0.025)An and

B(σk) = [0 1.5 0 1.5]′ + (−1)σk [0 0.5 0 0.5]′

with

An =

⎡

⎢
⎢
⎣

0.8 −0.25 0 1
1 0 0 0
0 0 0.2 0.03
0 0 1 0

⎤

⎥
⎥
⎦

(78)

L = [0, 0, 1, 0]′, J = [0.8, −0.5, 0, 1], σk ∈ {1, 2}, ρ = 0.35. This system with 2 submodes has been
investigated by Leite & Miranda (2008b). Note that, even for d = d̄ = 1, conditions from Theorem 5
fail to identify this system as a stable one. Observe that, once the delay is time-varying, conditions
presented in Montagner et al. (2005), Phat (2005) and Yu et al. (2007) cannot be applied. Supposing
d = 1, a search on d̄ has been done to find its maximum value such that the considered system is
stabilizable. Two alternatives are pursued: firstly, consider that only xk is available for feedback, i.e.,
Kd = 0. Conditions of Theorem 6 are feasible until d̄ = 15, for which value it is possible to determine
the following gains:

KTh 6,1 =
[

0.1215 0.0475 −1.6326 −0.4744
]

KTh 6,2 =
[
−0.1494 0.1551 −0.8168 −0.5002

]

Secondly, consider that both xk and xk−dk
are available for feedback. By using Theorem 6 it is possible

to stabilize the switched system for 1 ≤ dk ≤ 335. In this case, with d̄ = 335, conditions of Theorem 6
lead to

K1 =
[
−0.6129 0.3269 −1.2873 −1.1935

]
(79)

K2 =
[
−0.2199 0.1107 −0.6450 −0.4890

]
(80)

Kd1 =
[
−0.1291 0.0677 −0.3228 −0.2685

]
(81)

Kd2 =
[
−0.0518 0.0271 −0.1291 −0.1076

]
(82)

These gains are used in a numerical simulation where random signals for σk ∈ {1, 2} and for 1 ≤
d(k) ≤ 335 have been generated as indicated in Figure 3. The initial condition used in this simulation
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Fig. 3. The switched function, σ(k) and the varying delay, dk.

is

φ0,k =

⎧

⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

1
−1
1
−1

⎤

⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎣

1
−1
1
−1

⎤

⎥
⎥
⎦

⎫

⎪⎪⎬

⎪⎪⎭

︸ ︷︷ ︸

336 terms

.

Thus, it is expected that the delayed state degenerate the overall system response, at least for the first
d̄ = 335 samples, since it is like an impulsive state action arrives at each sample instant for 0 ≤ k ≤
335. Note that, this initial condition is harder than the ones usually found in the literature. The state
behavior of the switched closed-loop system with time-varying delay is presented in Figure 4. Observe
that the initial value of the state are not presented due to the scale choice. As can be noted by the response
behavior presented in Figure 4, the states are almost at the equilibrium point after 400 samples. The
control signal is presented in Figure 5. In the top part of this figure, it is shown the control signal part
due to Kσk

x(k) and in the bottom the control signal due to Kdσk
x(k − dk). The actual control signal is,

thus, the addition of these two signals. If quadratic stability is used in the system of this example, the
results are more conservative as can be seen in Leite & Miranda (2008b).

5.4 Decentralized control

It is interesting to note that the synthesis conditions proposed in this chapter, i.e. theorems 3, 4,
6 as well as the convex optimization problem SH∞

, can be easily used to design decentralized
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Fig. 4. The behaviors of the states x1k to x4k, with 1 ≤ d(k) ≤ 335 (see Fig. 3).

control gains. This kind of control gain is usually employed when interconnected systems
must be controlled by means of local information only. In this case, decentralized control gains
K = KD and Kd = KdD can be obtained by imposing block-diagonal structure to matrices W,
Wd and F as follows

W = WD = block-diag{W1, . . . , W̺},

Wd = WdD = block-diag{W1
d , . . . , W

̺
d },

F = FD = block-diag{F 1, . . . ,F ̺}
where ̺ denote the number of defined subsystems. In this case, it is possible to get robust

block-diagonal state feedback gains KD = WDF−1
D and KdD = WdDF−1

D . It is worth to

mention that the matrices of the Lyapunov-Krasovskii function, P̃(α) and Q̃(α), do not have
any restrictions in their structures, which may leads to less conservative designs.

5.5 Static output feedback

When only a linear combination of the states is available for feedback and the output signal is
given by yk = C̃xk, it may be necessary to use the static output feedback. See the survey made
by Syrmos et al. (1997) on this subject. In case of C̃ with full row rank, it is always possible
to find a regular matrix L such that C̃L−1 =

[
Ip 0

]
. Using such matrix L in a similarity

transformation applied to (1) it yields

x̂k+1 = Â(α)x̂k + Âd(α)x̂k−dk
+ B̂(α)uk, (83)
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Fig. 5. Control signal uk = Kσk
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, with Kσk

xk and Kd,σk
xk−dk

shown in the top
and bottom parts, respectively.

where Â(α) = LÃ(α)L−1, Âd(α) = LÃd(α)L−1 and B̂(α) = LB̃(α), x̂k = Lxk and the output
signal is given by yk =

[
IP 0

]
x̂k. Thus, the objective here is to find robust static feedback

gains K ∈ R
p×ℓ and Kd ∈ R

p×ℓ such that (83) is robustly stabilizable by the control law

uk = Kyk +Kdyk−dk
(84)

These gains can be determined by using the conditions of theorems 3, 4, 6 with the following
structures

F =

[F 11
o 0

F 21
o F 22

o

]

, W =
[

WK 0
]

, Wd =
[

WKd
0
]

with F 11
o ∈ R

p×p, F 21
o ∈ R

(n−p)×p, F 22
o ∈ R

(n−p)×(n−p), WK ∈ R
p×n, WKd

∈ R
p×n which

yields
K =

[
K 0

]
and Kd =

[
Kd 0

]

Note that, similarly to the decentralized case, no constraint is taken over the
Lyapunov-Krasovskii function matrices leading to less conservative conditions, in general.

5.6 Input delay

Another relevant issue in Control Theory is the study of stability and stabilization of input
delay systems, which is quite frequent in many real systems Yu & Gao (2001), Chen et al.
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(2004). In this case, consider the controlled system given by

xk+1 = A(α)xk + B(α)uk−dk
(85)

with A(α) and B(α) belonging to polytope (2), Adi = 0 and α ∈ Υ. In Zhang et al. (2007) this
system is detailed investigated and the problem is converted into an optimization problem
in Krein space with an stochastic model associated. Here, the delayed input control signal is
considered as

uk−dk
= Kdxk−dk

(86)

The closed-loop-system is given by

xk+1 = Ã(α)xk + Ãd(α)xk−dk
(87)

with Ã(α) = A(α), Ãd(α) = B(α)Kd. Thus, with known Kd, closed-loop system (87) is
equivalent to (7) with null exogenous signal wk. This leads to simple analysis stability
conditions obtained from Theorem 1 replacing Ãi by Ai and Ãdi by BiKd, i = 1, . . . , N.
Besides, similar replacements can be used with conditions presented in theorems 2 and 5 and
in Corollary 1. The possibility to address both controller fragility and input delay is a side
result of this proposal. In the former it is required that no uncertainty affects the input matrix,
i.e., B(α) = B, ∀α ∈ Υ, while the latter can be used to investigate the bounds of stability
of a closed-loop system with a delay due to, for example, digital processing or information
propagation.
In case of the design of Kd it is possible to take similar steps with conditions of theorems 3, 4
and 6. In this case, it is sufficient to impose, Adi = 0, i = 1, . . . , N and W = 0 that yield K = 0.
Finally, observe that static delayed output feedback control can be additionally addressed here
by considering what is pointed out in Subsection 5.5.

5.7 Performance by delay-free model specification

Some well developed techniques related to model-following control (or internal model
control) can be applied in the context of delayed state systems. The major advantage of
such techniques for delayed systems concerns with the design with performance specification
based on zero-pole location. See, for example, the works of Mao & Chu (2009) and Silva
et al. (2009). Generally, the model-following control design is related to an input-output
closed-loop model, specified from its poles, zeros and static gain, from which the controller
is calculated. As the proposal presented in this chapter is based on state feedback control,
it does not match entirely with the requirements for following-model, because doing state
feedback only the poles can be redesigned, but not the zeros and the static gain. To develop a
complete following model approach an usual way is to deal with output feedback, that yields
a non-convex formulation. One way to match all the requirements of following model by
using state feedback and maintaining the convexity of the formulation, is to use the technique
presented by Coutinho et al. (2009) where the model to be matched is separated into two
parts: One of them is used to coupe the static gain and zeros of the closed loop system with
the prescribed model and the other part is matched by state feedback control. Consider the
block diagram presented in Figure 6. In this figure, Ω(α) is the system to controlled with
signal uk. This system is subject to input wk which is required to be reject at the output yk.
Please, see equation (1). Ωm stands for a specified delay-free model with realization given by
[

Am Bm

Cm Dm

]

. The model receives the same exogenous input of the system to be controlled, wk,

and has an output signal ymk at the instant k.
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Fig. 6. Following model inspired problem.

The objective here is to design robust state feedback gains K and Kd to implement the control
law (6) such that the H∞ guaranteed cost between the input wk and the output ek = yk − ymk is
minimized. In other words, it is desired that the disturbance rejection of the uncertain system
with time-varying delay in the state have a behavior as close as possible to the behavior of
the specified delay-free model Ωm. The dashed line in Figure 6 identifies the enlarged system
required to have its H∞ guaranteed cost minimized.
Taking the closed-loop system (7) and the specified model of perturbation rejection given by

xmk+1 = Amxmk + Bmwk (88)

ymk = Cmxmk + Dmwk (89)

where xmk ∈ R
nm is the model state vector at the k-th sample-time, ymk ∈ R

p is the output
of the model at the same sample-time and wk ∈ R

ℓ is the same perturbation affecting the
controlled system, the difference ek = ymk − zk is obtained as

ek =
[

Cm −(C(α) + D(α)K) −(Cd(α) + D(α)Kd)
]

⎡

⎣

xmk

xk

xk−dk

⎤

⎦

+
[

Dm − Dw(α)
]

wk (90)

Thus, by using (1) with (88)-(89) and (90) it is possible to construct an augmented system
composed by the state of the system and those from model yielding the following system

Ω̂(α) :

{
x̂k+1 = Â(α)x̂k + Âd(α)x̂k−dk

+ B̂w(α)wk

ek = Ĉ(α)x̂k + Ĉd(α)x̂k−dk
+ D̂w(α)wk

(91)
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with x̂k =
[

xT
mk xT

k

]T ∈ R
nm+n, Ω̂(α) ∈ P̂ ,

P̂ =

{

Ω̂(α) ∈ R
n+nm+p×2(n+nm)+ℓ : Ω̂(α) =

N

∑
i=1

αiΩ̂i, α ∈ Υ

}

(92)

where

Ω̂i =

[
Âi Âdi B̂wi

Ĉi Ĉdi D̂wi

]

=

⎡

⎣

Am 0 0 0 Bm

0 Ai + BiK 0 Adi + BiKd Bwi

Cm − (Ci + DiK) 0 − (Cdi + DiKd) Dm − Dwi

⎤

⎦ , i ∈ I [1, N]. (93)

Therefore, matrices in (93) — Âi, Âdi, B̂wi, Ĉi, Ĉdi, D̂wi — can be used to replace their respective
in (38) and (23). As a consequence, LMI (36) becomes with 3(n + nm) + 2(p + ℓ) rows. Since
the main interest in this section is to design K and Kd that minimize the H∞ guaranteed
cost between ek and wk, only the design condition is presented in the sequel. To achieve
such condition, similar steps of those taken in the proof of Theorem 4 are taken. The main
differences are related to i) the size and structure of the matrices and ii) the manipulations
done to keep the convexity of the formulation.

Theorem 7. If there exist symmetric matrices 0 < P̃i =

[
P̃11i P̃12i

⋆ P̃22i

]

∈ R
n+nm×n+nm , 0 < Q̃i =

[
Q̃11i Q̃12i

⋆ Q̃22i

]

∈ R
n+nm×n+nm , matrices F =

[
F11 F12

F22Λ F22

]

∈ R
n+nm×n+nm , Λ ∈ R

n×nm is a given

matrix, W ∈ R
p×n, Wd ∈ R

p×n, a scalar variable θ ∈]0, 1] and for a given μ = γ2 such that

Ψ̄i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P̃11i −F11 −F T
11 P̃12i −F12 − ΛTF T

22 AmF11 AmF12

⋆ P̃22i −F22 −F T
22 (AiF22 + BiW)Λ AiF22 + BiW

⋆ ⋆ βQ̃11i − P̃11i βQ̃12i − P̃12i

⋆ ⋆ ⋆ βQ̃22i − P̃22i

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 Bm

(AdiF22 + BiWd)Λ AdiF22 + BiWd 0 Bwi

0 0 F T
11CT

m − ΛT(WTDT
i +F T

22CT
i ) 0

0 0 F T
12CT

m − (WTDT
i +F T

22CT
i ) 0

−Q̃11i −Q̃12i −ΛT(WT
d DT

i +F T
22CT

di) 0

⋆ −Q̃22i −(WT
d DT

i +F T
22CT

di) 0
⋆ ⋆ −θIp Dm − Dwi

⋆ ⋆ ⋆ −μIℓ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

i = 1, . . . , N (94)

then system (1)–(5) is robustly stabilizable by (6) with

K = WF−1
22 and Kd = WdF−1

22 (95)
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providing an H∞ guaranteed cost γ =
√

μ between the output ek, as defined by (93), and the input
signal wk.

Proof. The proof follows similar steps to those of the proof of the Theorem 4. Once (94) is

verified, then the regularity of F =

[
F11 F12

F22Λ F22

]

is assured by the block

P̃i −F −F T =

[
P̃11i −F11 −F T

11 P̃12i −F12 − ΛTF T
22

⋆ P̃22i −F22 −F T
22

]

< 0.

Thus it is possible to define the congruence transformation TH given by (53) with

T = I3 ⊗F−T = I3 ⊗
[

F11 F12

F22Λ F22

]−T

to get Ψ̂i = THΨ̄iT T
H . In block (7, 7) of Ψ̂i, it always exist a real scalar κ ∈]0, 2[ such that for

θ ∈]0, 1], κ(κ − 2) = −θ. Thus, replacing this block by κ(κ − 2)Ip, the optimization variables
W and Wd by KF22 and KdF22, respectively, and using the definitions given by (91)–(93) it
is possible to verify (36) by i) replacing matrices Ãi, Ãdi, C̃i, C̃di, Bwi and Dwi by Âi, Âdi, Ĉi,
Ĉdi, B̂wi and D̂wi, respectively, given in (93); ii) choosing G = 1

κ Ip that leads block (7, 7) to be
rewritten as in (55); iii) assuming

Pi =

[
F11 F12

F22Λ F22

]−T [
P̃11i P̃12i

⋆ P̃22i

] [
F11 F12

F22Λ F22

]−1

Qi =

[
F11 F12

F22Λ F22

]−T [
Q̃11i Q̃12i

⋆ Q̃22i

] [
F11 F12

F22Λ F22

]−1

and

XH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
F11 F12

F22Λ F22

]−1

0

0 0
0 0

0
1

κ
Ip

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which completes the proof.

An important aspect of Theorem 7 is the choice of Λ ∈ R
n×nm in (94). This matrix plays

an important role in this optimization problem, once it is used to adjust the dimensions of
block (2, 1) of F that allows to use F22 to design both robust state feedback gains K and Kd.
This kind choice made a priori also appears in some results found on the literature of filtering
theory. Another possibility is to use an interactive algorithm to search for a better choice of Λ.
This can be done by taking the following steps:

1. Set max_iter←− maximum number of iterations; j ←− 0; ǫ =precision;

2. Choose an initial value of Λj ←− Λ such that (94) is feasible.

(a) Set μj ←− μ; ∆μ ←− μj; F22,j ←− F22; Wj ←− W; Wd,j ←− Wd.

3. While (∆μ > ǫ)AND(j < max_iter)
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(a) Set j ←− j + 1;

(b) If j is odd

i. Solve (94) with F22 ←− F22,j; W ←− Wj; Wd ←− Wd,j.

ii. Set Λ ←− Λj;

Else

i. Solve (94) with Λ ←− Λj.

ii. Set F22,j ←− F22; Wj ←− W; Wd,j ←− Wd.

End_if

(c) Set μj ←− μ; ∆μ ←− |(μj − μj−1)|;
End_while

4. Calculate K and Kd by means of (95);

5. Set μ⋆ = μj

Once this is a non-convex algorithm — only steps 3.(b).i are convex — different initial guesses
for Λ may lead to different final values for the controllers K and Kd, as well as to the γ =

√
μ⋆

To overcome the main drawback of this proposal, two approaches can be stated. The first
follows the ideas of Coutinho et al. (2009) by designing an external loop to the closed-loop
system proposed in Figure 6. In this sense, it is possible to design a transfer function that can
adjust the gain and zeros of the controlled system. The second approach is based on the work
of Rodrigues et al. (2009) where a dynamic output feedback controller is proposed. However,
in this case the achieved conditions are non-convex and a relaxation algorithm is required.
In the example presented in the sequel, Theorem 7 with

Λ =

[
Inm

0n−nm×nm

]

(96)

Example 5. Consider the uncertain discrete-time system with time-varying delay dk ∈ I [2, 13] as
given in (1) with uncertain matrices belonging to polytope (2)-(3) with 2 vertices given by

A1 =

[
0.6 0

0.35 0.7

]

, Ad1 =

[
0.1 0
0.2 0.1

]

, A2 = 1.1A1, Ad2 = 1.1Ad1 (97)

Bw1 =

[
0
1

]

, B1 =

[
0
1

]

, Bw2 = 1.1Bw1, B2 = 1.1B1 (98)

C1 =
[

1 0
]

, Cd1 =
[

0 0.05
]

, C2 = 1.1C1, Cd2 = 1.1Cd1 (99)

Dw1 = 0.2, D1 = 0.1, Dw2 = 1.1Dw1 D2 = 1.1D1 (100)

It is desired to design robust state feedback gains for control law (6) such that the output of this
uncertain system approaches the behavior of delay-free model given by

Ωm = G(z) =
0.1847z − 0.01617

z + 0.3
=

[ −0.3 0.25
−0.2864 0.1847

]

(101)

Thus, it is desired to minimize the H∞ guaranteed cost between signals ek and wk identified in Figure 6.
The static gain of model (101) was adjusted to match the gain of the controlled system. This procedure
is similar to what has been proposed by Coutinho et al. (2009). The choice of the pole and the zero was
arbitrary. Obviously, different models result in different value of H∞ guaranteed cost.
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By applying Theorem 7 to this problem, with Λ given in (96), it has been found an H∞ guaranteed cost
γ = 0.2383 achieved with the robust state feedback gains:

K =
[

1.8043 −0.7138
]

and Kd =
[
−0.1546 −0.0422

]
(102)

In case of unknown dk, Theorem 7 is unfeasible for the considered variation delay interval, i.e., imposing
Kd = 0. On the other hand, if this interval is narrower, this system can be stabilized with an H∞

guaranteed cost using only the current state. So, reducing the value of d̄ from d̄ = 13, it has been found
that Theorem 7 is feasible for dk ∈ I [2, 10] with

K =
[
−2.7162 −0.6003

]
and Kd = 0 (103)

and γ = 0.3427. Just for a comparison, with this same delay interval, if K and Kd are designed, then
the H∞ guaranteed cost is reduced about 37.8% yielding an attenuation level given by γ = 0.2131.
Thus, it is clear that, whenever the information about the delay is used it is possible to reduce the
H∞ guaranteed cost. Some numerical simulations have been done considering gains (102), and a
disturbance input given by

wk =

{
0, if k = 0 or k ≥ 11
1, if 1 ≤ 10

(104)

Two conditions were considered: i) dk = 13, ∀k ≤ 0 and different values of α1 ∈ [0, 1]; and ii)
dk = d =∈ I [2, 13] with α1 = 1 (i.e., only for the first vertex). The output responses of the controlled
system have been performed with dk = 13, ∀k ≥ 0. This family of responses and that of the reference
model are shown at the top of Figure 7 with solid lines. A red dashed line is used to indicate the desired
model response. The absolute value of the error (|ek| = |yk − ymk|) is shown in solid lines at the
bottom of Figure 7 and the estimate H∞ guaranteed cost provide by Theorem 7 in dashed red line. The
respective control signals are shown in Figure 8.
The other set of time simulations has been performed using only vertex number 1 (α1 = 1). In this
numerical experiment, the perturbation (104) has been applied to system defined by vertex 1 and twelve
numerical simulations were performed, one for each constant delay value dk = d ∈ [2, 13]. The results
are shown in Figure 9: at the top, a red dashed line indicates the model response and at the bottom it is
shown the absolute value of the error (|ek| = |yk − ymk|) in solid lines and the estimate H∞ guaranteed
cost provide by Theorem 7 in dashed red line. This value is the same provide in Figure 7, once it is the
same design. The respective control signals performed in simulations shown in Figure 9 are shown in
Figure 10.
At last, the frequency response considering the input wk and the output ek is shown in Figure 11 with
a time-invariant delay. For each value of delay in the interval [2, 13] and α ∈ [0, 1], a frequency
sweep has been performed on both open loop and closed-loop systems. The gains used in the closed-loop
system are given in (102). It is interesting to note that, once it is desired that yk approaches ymk, i.e.,
ek approaches zero, the gain frequency response of the closed-loop should approaches zero. By Figure 11
the H∞ guaranteed cost of the closed-loop system with time invariant delay is about 0.1551, but this
value refers to the case of time-invariant delay only. The estimative provided by Theorem 7 is 0.2383
and considers a time varying delay.

6. Final remarks

In this chapter, some sufficient convex conditions for robust stability and stabilization
of discrete-time systems with delayed state were presented. The system considered is
uncertain with polytopic representation and the conditions were obtained by using parameter
dependent Lyapunov-Krasovskii functions. The Finsler’s Lemma was used to obtain LMIs
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Fig. 7. Time behavior of yk and |ek| in blue solid lines and model response (top) and
estimated H∞ guaranteed cost (bottom) in red dashed lines, for dk = 13 and α ∈ [0, 1].

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

uk

k

Fig. 8. Control signals used in time simulations presented in Figure 7.

condition where the Lyapunov-Krasovskii variables are decoupled from the matrices of the
system. The fundamental problem of robust stability analysis and stabilization has been dealt.
The H∞ guaranteed cost has been used to improve the performance of the closed-loop system.
It is worth to say that even all matrices of the system are affected by polytopic uncertainties,
the proposed design conditions are convex, formulated in terms of LMIs.
It is shown how the results on robust stability analysis, synthesis and on H∞ guaranteed cost
estimation and design can be extended to match some special problems in control theory such
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Fig. 9. Time behavior of yk and |ek| in blue solid lines and model response (top) and estimated
H∞ guaranteed cost (bottom) in red dashed lines, for vertex 1 and delays from 2 to 13.
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Fig. 10. Control signals used in time simulations presented in Figure 9.

as decentralized control, switched systems, actuator failure, output feedback and following
model conditions.
It has been shown that the proposed convex conditions can be systematically obtained by
i) defining a suitable positive definite parameter dependent Lyapunov-Krasovskii function;
ii) calculating an over bound for ∆V(k) < 0 and iii) applying Finsler’s Lemma to get a set
of LMIs, formulated in a enlarged space, where cross products between the matrices of the
system and the matrices of the Lyapunov-Krasovskii function are avoided. In case of robust
design conditions, they are obtained from the respective analysis conditions by congruence
transformation and, in the H∞ guaranteed cost design, by replacing some matrix blocs by
their over bounds. Numerical examples are given to demonstrated some relevant aspects of
the proposed conditions.
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Fig. 11. Gain frequency response between signals ek and wk for the open loop (top) and
closed-loop (bottom) cases for delays from 2 to 13 and a sweep on α ∈ [0, 1].

The approach used in this proposal can be used to deal with more complete
Lyapunov-Krasovskii functions, yielding less conservative conditions for both robust stability
analysis and design, including closed-loop performance specifications as presented in this
chapter.
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