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Abstract

In this chapter, the stabilization problem of complex dynamical network with non-
delayed and delayed couplings is realized by a new kind of stochastic pinning control‐
ler being partially delay dependent, where the topologies related to couplings may be
exchanged. The designed pinning controller is different from the traditional ones, whose
non-delay  and delay  state  terms occur  asynchronously  with  a  certain  probability,
respectively. Sufficient conditions for the stabilization of complex dynamical network
over topology exchange are derived by the robust method and are presented with liner
matrix inequities (LMIs). The switching between the non-delayed and delayed cou‐
plings is modeled by the related coupling matrices containing uncertainties. It has shown
that the bound of such uncertainties play very important roles in the controller design.
Moreover, when the bound is inaccessible, a kind of adaptive partially delay-depend‐
ent controller is proposed to deal with this general case, where another adaptive control
problem in terms of unknown probability is considered too. Finally, some numerical
simulations are used to demonstrate the correctness and effectiveness of our theoretical
analysis.

Keywords: complex dynamical network, partially delay-dependent pinning control‐
ler, non-delayed and delayed couplings, robust method, adaptive control

1. Introduction

With the rapid development of science and technology, human beings have marched into the
network era, and complex network has become a hot topic. Complex network is an important

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



method to describe and study complex systems, and all complex systems can be abstracted from
practical background by different perspectives and become a complex network of interacting
individuals, such as ecological network, food network, gene regulation network, social network,
and distributed sensor network. Research on complex network has become a frontier subject
with many subjects and challenges. Over the past few years, studies on complex network have
received more and more attention from various fields of scientific research See [1–5]. The
popularization of complex network has also caused a series of important problems about the
network structures and studies of the network dynamic behaviors. Particularly, special attention
has been paid to the studies of synchronization control problems of complex dynamical networks.
As one of the significant dynamic behaviors of complex dynamical network, synchronization
is widely used in neural network, public transit scheduling, laser system, secure communiza‐
tion system, information science, etc. [6–11]. So it is concerned by more and more scholars. In
real networks, because of the complex dynamical network having a great many nodes, and every
node has its dynamical behavior, it is hard for the complex dynamical network itself to make
the states of the network to desired trajectory. Thus, the studies on the control strategy of complex
dynamical network will be meaningful. So far, many control methods for complex dynamical
network have been reported in refs. [12–17]. Pinning control such as in refs. [18–20] is widely
welcomed for its advantages. It is easy to be realized and can save the cost effectively. The main
idea of pinning control is to control a part of nodes in the complex networks to realize the whole
network to the expected states and to reduce the number of the controllers effectively. When
there exist some unknown parameters, the adaptive control method could be exploited, some
of which was mentioned in refs. [21–23].

On the other hand, there are many factors that affect the stability of complex network, where
time delay and network topology are two important factors. First, time delay is an objective
phenomenon in nature and human society. In the process of transmission and response of
complex network, it is inevitable to produce time delay, which is because of the physical
limitations of the speed of transmission and the existence of network congestion, such as the
existence of time delay in communication network and virus transmission. There are some
typical time delay network systems such as circuit system [24], satellite communication system
[25], and laser array system [26]. It is noticed that the majority of the studies on complex
network have been performed on some absolute assumptions. For example, the stabilization
referred to state feedback control is realized only by a non-delay or delay controller, which is
relied on some absolute assumptions [18, 19, 27]. However, in many practical applications,
these assumptions do not accord with the peculiarities of the real networks. Based on these
facts, we may design a kind of controller that contains non-delay and delay states simultane‐
ously. Second, the topology of the network plays an important role in determining the network
characteristics and the synchronization control. The research of coupling delay also plays a
significant role in complex networks. In most of the above papers, it is seen that the topologies
are fixed. But in practical applications, the topological structure of the complex network is not
constant and may be changed randomly. That is because of the influence of various stochastic
factors. In this case, how to ensure the stabilization of networks by the proposed controller
when the topologies related to couplings change is worth discussing.
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Motivated by the above discussions, in this chapter, the stabilization problem of complex
networks with non-delayed and delayed couplings over random exchanges is studied by
exploiting the robust method to describe the topologies exchanging randomly. A kind of
stochastic pinning controller being partially delay-dependent is developed, which contains
non-delay and delay terms simultaneously but occur asynchronously. Here, the probability
distributions are taken into account in the proposed controller design. The rest of this chapter
is organized as follows: In Section 2, the model of complex dynamical networks with non-
delayed and delayed couplings over random exchanges is established. In Section 3, the
stabilization of the underlying complex networks is considered, which is realized by partially
delay-dependent controller and adaptive controller respectively. A numerical example is
demonstrated in Section 4; the conclusion of this chapter is given in Section 5.

Notation: ▯n denotes the n dimensional Euclidean space, ▯m × n is the set of all m × n real matrices.
E{⋅} is the expectation operator with respect to some probability measure. diag{⋅⋅⋅} stands for
a block-diagonal matrix. IN is an identity matrix being of N dimensions. S=Sℓ∪ S̄ℓ, where
Sl ={1, 2, …, l}, S̄ℓ ={l + 1, l + 2, …, N }. λmax(M) is the maximum eigenvalue of M, while σmax(M)
is the maximum singular value of M. ‖G‖ denotes the 2-norm of matrix G. * stands for an
ellipsis for the term induced by symmetry.

2. Model of complex networks with non-delayed and delayed couplings
over random exchanges

As is known, time delay is ubiquitous in many network systems. When time delay exists in
the interaction, it may affect the dynamic behavior and even destabilize the network system.
Thus, time delay should be taken into consideration, which could accurately reflect some
characteristics of networks. By investing the existing literatures, it is easy to find that most of
the results on complex networks have been carried out under some implicit assumptions. That
is the communication information of nodes is only related to x(t) or x(t − τ). However, in many
cases, this simplification is not satisfactory for the special nature of the networks. In fact, the
information communication of nodes is not only related to x(t) but also to x(t − τ). Unfortu‐
nately, this property has been ignored in many literatures that are about the complex systems
with non-delayed and delayed couplings simultaneously. In this section, we will consider a
general stabilization problem of complex systems with non-delayed and delayed couplings
exchanging randomly.

Considering a kind of complex dynamical network consisting of N nodes and every node is a
n -dimensional dynamical system, which is described as

1 1
( ) ( ( )) ( ) ( ), S

N N

i i ij j ij j
j j

x t f x t c a x t c b x t it
= =

= + + - Îå å& (1)
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where xi(t) = (xi1(t), xi2(t), …, xin(t))T ∈ ▯n is the state vector of the ith node. f : ▯n → ▯n is a
continuously differentiable function that describes the activity of an individual system.

c > 0 is the coupling strength among the nodes. τ > 0 is the coupling delay. A = (aij) ∈ ▯N × N and
B = (bij) ∈ ▯N × N stand for the configuration matrices of the complex dynamical network with
the non-delayed and delayed couplings, respectively. A and B can be defined as follows: for
i ≠ j, if there exist non-delayed and delayed couplings between nodes i and j, then aij > 0 and
bij > 0; Otherwise, aij = 0 and bij = 0, respectively. Assuming both A and B are symmetric and
also satisfy

1, 1,

, ,
N N

ii ij ii ij
j j i j j i

a a b b i
= ¹ = ¹

= - = - Îå å S

Here, the topologies of the complex network are more general, whose related coupling matrices
exchange each other randomly. That is, A changes into B, while B changes into A simultane‐
ously. In other words, matrices A and B exchange. In this case, we have the following complex
network:

1 1
( ) ( ( )) ( ) ( ), S

N N

i i ij j ij j
j j

x t f x t c b x t c a x t it
= =

= + + - Îå å& (2)

From these demonstrations, it is seen that the above two complex networks occur separately
and randomly. To describe the above random switching between coupling matrices A and B,
a robust method will be exploited. That is

1 1
( ) ( ( )) ( ) ( ) ( ) ( ), S

N N

i i ij ij j ij ij j
j j

x t f x t c a a x t c b b x t it
= =

= + + D + + D - Îå å& (3)

when ΔA = (Δaij) ∈ ▯N × N and ΔB = (Δbij) ∈ ▯N × N. Especially, such uncertainties are selected to
be ΔA = B − A and ΔB = A − B, which is assumed to be

*B A d- £� � (4)

where δ* is a given positive scalar.

Before giving the main results, a definition is needed.

Definition 1. The complex network (1) is asymptotically stable over topologies exchanging
randomly, if the complex network (3) with condition (4) is asymptotically stable.
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3. Stabilization of complex networks with couplings exchanging
randomly

Based on the proposed model, this section focuses on the design of stochastic pinning
controller. By investigating the existing references, it is found that most of the stabilization
results of complex networks are achieved by either non-delay or delay controllers. However,
from the above explanations, it is said that two such controllers may not describe the actual
systems very well. Here, a kind of partially delay-dependent pinning controller containing
both non-delay and delay states that take place with a certain probability is proposed to deal
with the general case. Without loss of generality, it is assumed that the first l nodes are selected
to be added the desired pinning controller ui(t), which are described as

( ) ( ) ( ) ( )( ) ( )
( )

1 ,

0,
i i i di i

i

u t c t k x t c t k x t i

u t i

a a tì = - - - - Îï
í

= Îïî

l

l

S

S
(5)

where ki and kdi are the non-delayed and delayed coupling control gains, respectively. α(t) is
the Bernoulli stochastic variable and is described as follows:

1,  ( )  
( )

0,  ( )  
if x t is valid

t
if x t is valid

a
t

ì
= í -î

(6)

whose probabilities are expressed by

* *{ ( ) 1} E{ ( } { ( ) 0 .} 1,r rP t t P ta a a a a= = = = = - (7)

where α* ∈ [0, 1]. In addition, it is obtained that

*E{ ( ) } 0ta a- = (8)

Substituting ui(t) into complex network (3), one has
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which is equivalent to

1

1

*

*

* *

1
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Assumption 1. Supposing that there exists a positive definite diagonal matrix
P = diag{p1, p2, …, pn} and η > 0, such that

( ) ( ( )) ( ) ( ), ( ) , 0h£ " Î ³¡T T n
i i i ix t Pf x t x t x t x t t (11)
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3.1 Stabilization realized by a partially delay-dependent pinning controller

THEOREM 1. Let Assumption 1 hold, for given scalars α* and δ*, there exists a pinning
controller (5) such that the complex network (9) is asymptotically stable over topology
exchange (4), if there exist Q > 0, ki > 0, and kdi > 0, ∀ i∈Sℓ, such that the following condition

* *2 2 2 ( ) 0
*

N N NI cA c I Q c B I
Q

j d dé ù+ + + +
<ê ú

-ë û

% %
(12)

is satisfied, where

1
min( )ii n

p
hj

£ £

=

* * *
1 2{ , , , ,0, ,0},l

N ll

A A diag k k ka a a
-

= - ¼ ¼%
123144424443

* * *
1 2{(1 ) ,(1 ) , ,(1 ) ,0, ,0}.d d dl

N ll

B B diag k k ka a a
-

= - - - ¼ - ¼%
123144444424444443

Proof. For complex network (9), we choose a Lyapunov function as follows:

1 1

1 1( ( )) ( ) ( ) ( ) ( )
2 2

N n tT T
i i j j jt

i j
V x t x t Px t p x s Qx s ds

t-
= =

= +å å ò % % (13)

where x̃ j(t)= (x1 j(t), x2 j(t), …, xNj(t))T ∈▯N , j = 1, 2, …, n, and Q is a positive definite of suitable

dimensions matrix. Let L be the weak infinitesimal generator of stochastic process, it is defined
as

0

E{ ( ( ))} ( ( ))L ( ( )) lim V x t V x tV x t
+D®

+ D -
=

D
(14)

Then, one has
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1
1

( )1 ( ) ( ) 0
( )2

n
jT T

j j j
j j

x t
p x t x t

x t
t

t=

é ù
é ù= - P <ê úë û -ë û

å
%
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%

where

* *

1
2 2 2 ( )

*
N N NI cA c I Q c B I

Q
j d dé ù+ + + +

P = ê ú
-ë û

% %

It is guaranteed by Π1 < 0. By condition (12), it is known that LV(x(t)) < 0. This completes the
proof.

REMARK 1. It is worth mentioning that for any given function f(xi(t)), it is necessary to find
suitable parameters P and η. There, P is related to f(xi(t)), where η can be obtained by the given
matrix P. Moreover, Theorem 1 is also extended to other general cases that the coupling
matrices A and B change to the other ones independently. Here, we only consider the special
case that A and B exchanges each other.

Based on Theorem 1, it is claimed that Q is selected with a general case. However, it may be
selected to be some special cases. When Q is chosen as the special case that
Q =cσmax(B̃ + δ *IN )IN , we will have the following corollary.

COROLLARY 1. Let Assumption 1 hold, for given scalars α* and δ* > 0, there exists a pinning
controller (5) such that the complex network (9) is asymptotically stable over topology
exchange (4), if there exist ki > 0, and kdi > 0, ∀ i∈Sℓ, such that the following condition

* *( ) 0N N max N NI cA c I c B I Ij d s d+ + + + <% % (16)

is satisfied, where the other symbols are defined in Theorem 1.

Proof. Based on Theorem 1 and using the Schur complement lemma, one has

* 2 * 1 *2 2 2 ( ) ( ) 0T
N N N NI cA c I Q c B I Q B Ij d d d-+ + + + + + <% % % (17)

implying Π1 < 0. By choosing Q =cσmax(B̃ + δ *IN )IN , it is concluded that (17) is guaranteed by

* *
max2 2 2 2 ( ) 0N N N NI cA c I c B I Ij d s d+ + + + <% % (18)

This completes the proof.

When there is no topology exchange, we will have the following corollary directly.
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COROLLARY 2. Let Assumption 1 hold, for given scalar α*, there exists a pinning controller
(5) such that the complex network (9) is asymptotically stable over topology exchange (4), if
there exist Q > 0, ki > 0, and kdi > 0, ∀ i∈Sℓ, such that the following condition holds:

2 2 0
*

NI cA Q cB
Q

jé ù+ +
<ê ú

-ë û

% %
(19)

where φ, Ã, and B̃ are defined as those in (12).

It is seen that the expectation of α(t) in Theorem 1 plays a vital role in the control of the complex
network, which needs to be given exactly. However, in practice, it may be very hard to get α*
exactly, and only its estimation α̃ is available. For an uncertain α* with its estimation α̃, its
admissible uncertainty Δα is defined as

* , [0,1]a a a aD = - Î% % (20)

where Δα ∈ [−μ, μ] with μ ∈ [0, 1]. Then, we have the following theorem.

THEOREM 2. Let Assumption 1 hold, for given scalars α̃ and δ* > 0, there exists a pinning
controller (5) satisfying condition (20) such that the complex network (9) is asymptotically
stable over topology exchange (4), if there exist Q > 0, W > 0, ki > 0, and kdi > 0, ∀ i∈Sℓ, such that
the following conditions

* *
1 11 2 12

22

2 2 2 2 2 ( 2 )
0

* 2
N N NI cA c K c W c I Q c B K W I

c W Q
j m m d m m d

m
é ù+ + + + + - + +

<ê ú
-ë û

(21)

1 11 2 12

22

2
0

*
K W K W

W
- - -é ù

<ê ú-ë û
(22)

hold, where

11 12

21 22

,
W W

W
W W
é ù

= ê ú
ë û

1 1 2{ , , , ,0, ,0},l
N ll

K diag k k k
-

= ¼ L12314243
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2 1 2{ , , , ,0, ,0},d d dl
N ll

K diag k k k
-

= ¼ L1231442443

1 2{ , , , ,0, ,0},l
N ll

A A diag k k ka a a
-

= - ¼ ¼% % % 1231442443

1 2{(1 ) ,(1 ) , ,(1 ) ,0, ,0}d d dl
N ll

B B diag k k ka a a
-

= - - - ¼ - ¼% % % 123144444424444443

Proof. Based on the proof of Theorem 1, it is known that the stabilization of complex network
(9) over random exchanges with (20) is guaranteed by (12), which is equivalent to

* *
1 22 2 2 2 ( )

0
*

N N NI cA c K c I Q c B K I
Q

j a d a dé ù+ - D + + + D +
<ê ú-ë û

(23)

It could be rewritten as

* *

1 2

2 2 2 ( )
*

2
0

* 0

N N NI cA c I Q c B I
Q

K K
c

j d d

a

é ù+ + + +
ê ú-ë û

-é ù
+ D <ê ú

ë û

(24)

That is

* *
1 2

1 2

22 2 2 ( )
( )

* 0*

2
( ) ( ) 0

* 0

N N N K KI cA c I Q c B I
c

Q
K K

c W c c W

j d d
a m

a m m a m

-é ù+ + + + é ù
+ D +ê ú ê ú- ë ûë û

-é ù
- D + - + D + <ê ú

ë û

(25)

which is implied by
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* *

1 11 2 12 1 2

22

11 12

22

2 2 2 ( )
*

2 2
( )

* * 0

2 0
*

N N NI cA c I Q c B I
Q

K W K W K K
c c

W

W W
c

W

j d d

a m m

m

é ù+ + + +
ê ú-ë û

- - - -é ù é ù
+ D + -ê ú ê ú- ë ûë û

é ù
+ <ê ú

ë û

(26)

Taking into account condition (22), it is further guaranteed by

* *
1 2

11 12

22

22 2 2 ( )
* 0*

2 0
*

N N N K KI cA c I Q c B I
c

Q

W W
c

W

j d d
m

m

-é ù+ + + + é ù
-ê ú ê ú- ë ûë û

é ù
+ <ê ú

ë û

(27)

which is (21) actually. This completes the proof.

3.2 Stabilization realized by adaptive pinning controller

When α* is unknown, how to stabilize a complex network through a pinning controller should
also be taken into consideration. In this section, we will exploit the adaptive pinning control
method to deal with this general case.

THEOREM 3. Let Assumption 1 hold, for given scalar δ*, if there exist Q > 0, ki > 0, and kdi > 0,
∀ i∈Sℓ, such that the following condition

* *ˆ ˆ2 2 2 ( ) 0
*

N N NI cA c I Q c B I
Q

j d dé ù+ + + +
<ê ú

-ë û
(28)

holds with Â = A − K1 and B̂ =B −K2, then the complex network (9) is asymptotically stable over
topology exchange (4) under the adaptive pinning controller

( ) ( ) ( ) ( ), s
( ) 0,                                             s
i i i di i i

i

u t ck x t ck x t v t i
u t i

t= - - - + Î

= Î
ì
í
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(29)

where

ˆ( ) ( ) ( )i iv t c t x ta= -
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and the updating law
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where ∀ó > 0 and α̂0∈ 0, 1 .

Proof. Here, the Lyapunov function is defined as
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where α̃(t)= α̂(t)−α *, x̃ j(t), and Q are same as the ones in (13). Then, it is obtained
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This completes the proof.
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On the other hand, it is obtained that δ* is also important to the control of the complex network.
When it is unavailable, how to get the sufficient condition for the stabilization of complex
network is an interesting problem to be discussed. In the next, such a problem will be solved
by the following theorem.

THEOREM 4. Let Assumption 1 hold, for given scalar α*, if there exist Q > 0, ki > 0, and kdi > 0,
∀ i∈Sℓ, such that the following condition

2 2 0
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NI cA Q cB
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<ê ú
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% %
(33)

holds, then the complex network (9) is asymptotically stable over topology exchange (4) under
the adaptive pinning controller
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and the updating law
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where ξ is a positive constant and δ0 ≥ 0.

Proof. For this case, we choose the Lyapunov function as
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where δ̃ = δ̂ −δ *. Then, it is obtained
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It is guaranteed by Π3 < 0 which is equivalent to (33). This completes the proof.
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4. Numerical example

In this section, a numerical example is used to verify the effectiveness of the proposed methods.

Example 1. Consider a dynamical network consisting of 10 nodes that are identical Chua’s
circuits. A single Chua’s circuit is described by

1 1 2 1

2 1 2 3

3 2

( ( ))x x x x
x x x x
x x

J z

w

= - + -
= - +

= -

ì
ï
í
ï
î

&
&
&

(38)

where ϑ = 10, ω = 14.87, ζ(x1)=bx1 + a − b
2 (|x1 + 1| − | x1−1|), a = − 1.27, and b = − 0.68. It is known

that the Chua’s system has a chaotic attractor which is shown in Figure 1.

Figure 1. The chaotic attractor of Chua’s circuit.

It is obvious that system (38) is also be rewritten as

( )x Hx g x= +& (39)

where
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[ ]1( ) ( ) 0 0 Tg x xJz= -

Without loss of generality, matrix P here is selected as P = diag{1, ω, 1}. Next, we will check
whether there is a suitable η satisfying condition (11) in Assumption 1. It is obtained that
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where H̃ =PH + diag{−ϑa, 0, 0} and η = 1
2 λmax(H̃ + H̃ T )=9.0620. Thus, condition (11) is satisfied.

Then, the resulting network closed by controller (4) is described as
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Without loss of generality, the coupling matrices A and B are expressed by small-world and
scale-free networks, which are depicted in Figures 2 and 3, respectively.
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Figure 2. The simulation of coupling matrix A.

Figure 3. The simulation of coupling matrix B.

When such coupling matrices exchange randomly, under conditions such that c = 50, α* = 0.85,
δ* = 3.6, and pinning fraction � = 0.8, based on Theorem 1, we have the corresponding parameters
computed as follows:

ki = 22.8791, kdi = 2.3840, i∈Sℓ, and
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1137.4 35.5 28.5 34.6 43.2 2.5 36.5 34.6 47.9 51.3
* 1074.4 34.8 35.9 41.1 9.1 9.7 4.9 54.9 53.3
* * 1.1085 33.8 42.2 32.2 32.1 6.1 2.7 50.3
* * * 1075.2 45.4 40.3 47.0 4.8 3.5 3.2
* * * * 1097.1 50.2 37.0 38.8 2
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- - - - - - - - -
- - - - - - - -

- - - - - - -
- - - - - -

- - - -
=

.6 6.6
* * * * * 1075.5 36.3 39.2 54.0 0.8
* * * * * * 1134.6 41.1 48.4 53.5
* * * * * * * 1074.8 54.7 51.9
* * * * * * * * 156.6 78.4
* * * * * * * * * 148.1
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Under the initial condition xi(t)= 0.1 0.1 0.2 T , where i = 1, 2, …, 10 and τ = 0.005, we have
the state response of the closed-loop network by the stochastic pinning controller (5) shown
in Figure 4 and is stable.

Figure 4. The state response of the complex network by controller (5).

Based on the results in this chapter, it is known that probability α* plays important roles in
the stabilization of complex networks, where non-delay and delay control gains ki and kdi are

very close to α*. Let ka= ki
2 + kdi

2, we have the relationship between parameters α* and ki, kdi
and ka given in Table 1, where the more detailed correlation between α* and ki, kdi and ka is
simulated in Figure 5. From Table 1 and Figure 5, it is seen that both gains of ki and kdi have
effects in the stabilization of the underlying complex network. It is also found that there is not
a phenomenon that larger α* results in larger kdi or smaller ki. This property further demon‐
strates the necessity of considering the probability distribution of non-delay and delay states
while the stabilization problem of delayed systems is considered. Particularly, it is seen that
when α* = 0, there are no solutions to ki and kdi. This is determined by condition (10), which is
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actually determined by the inherent property of pinning control of complex network with
delayed coupling.

α* 0 0.02 0.1 0.3 0.5 0.7 0.8 0.85 0.9 1

ki – 5108.5 1018.8 334.23 192.59 35.18 100.66 22.88 103.17 67.84

kdi – 22.91 25.56 34.07 45.33 5.67 86.89 2.38 204.64 4072.20

ka – 5108.55 1019.12 335.96 197.86 35.64 132.98 23.00 229.17 4072.77

Table 1. The relations between α* and ki, kdi, ka.

Figure 5. The simulation of correlation between α* and ki, kdi, ka.

When probability α* is uncertain and described as (20) such that α̃ =0.85 and μ = 0.1, by Theorem
2, one has the corresponding parameters computed as follows:

ki = 150.8308, kdi = 63.5059, i∈Sℓ, and

2648.1 3.9 10.0 2.2 2.8 27.6 7.2 8.0 23.6 30.5
* 2540.4 17.9 19.4 2.6 9.7 23.7 20.3 21.4 29.0
* * 2585.4 16.3 4.0 15.5 2.2 27.0 2.3 30.0
* * * 2542.1 5.4 0.3 2.9 29.5 0.4 6.8
* * * * 2555.6 3.5 2.0 8.6 0.3 1.6
* * * * * 2548.0 19.2 7.0 22

Q

- - - -
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- -
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- - - -
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- - .3 0.8
* * * * * * 2586.5 3.9 22.4 19.9
* * * * * * * 2538.5 21.3 27.8
* * * * * * * * 118.3 55.8
* * * * * * * * * 0.1159
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11

813.9 10.19 10.86 10.07 9.55 2.78 9.14 10.63 7.00 6.26
* 805.26 11.63 11.87 9.71 0.94 2.32 1.89 7.14 6.40
* * 810.49 11.34 10.21 11.38 10.06 2.69 0.19 6.32
* * * 805.28 10.36 9.80 9.56 2.88 0.04 0.67
* * * * 813.7

W

- - - - - - - - -
- - - - - - - -

- - - - - -
- - - -

=
8 9.40 9.63 8.92 0.04 0.15

* * * * * 804.55 11.81 9.13 7.08 0.08
* * * * * * 820.49 9.54 7.09 7.30
* * * * * * * 805.14 7.17 6.52
* * * * * * * * 7.17 2.97
* * * * * * * * * 7.36
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12

101.76 4.67 4.64 4.71 4.72 4.70 4.69 4.69 4.18 4.18
* 92.71 4.70 4.72 4.70 4.77 4.71 0.11 0.06 4.17
* * 101.91 4.68 4.73 4.74 4.76 4.71 4.06 4.18
* * * 92.62 4.75 4.74 0.08 4.77 0.02 4.10
* * * * 83.40 0.11 4.74

W

- - - - - - - - -
- - - - - - - -

- - - - - - -
- - - - -

- -
=

0.09 0.01 0.02
* * * * * 88.09 4.74 0.09 4.18 0.02
* * * * * * 92.76 4.68 4.16 0.05
* * * * * * * 83.62 0.02 4.15
* * * * * * * * 1.39 0.01
* * * * * * * * * 4.82

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú-
ê ú

- - -ê ú
ê ú- - -ê ú
ê ú- -
ê ú
ê ú
ê úë û

22

209.59 0.33 1.05 0.23 0.36 2.42 0.62 0.64 1.96 2.52
* 200.26 1.49 1.64 0.35 0.76 1.93 1.91 1.71 2.38
* * 204.41 1.37 0.23 1.28 0.12 2.36 0.23 2.48
* * * 200.41 0.38 0.08 0.21 2.53 0.04 0.62
* * * * 201.24 0.20 0.28 0.69 0.02 0.1

W

- - - -
- - -

- -
- - - -
- - - -

=
4

.
* * * * * 200.74 1.57 0.56 1.81 0.07
* * * * * * 204.31 0.48 1.83 1.55
* * * * * * * 199.66 1.69 2.27
* * * * * * * * 8.06 3.82
* * * * * * * * * 7.90

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

- -ê ú
ê ú- - -ê ú
ê ú- -
ê ú-ê ú
ê úë û

When probability α* is inaccessible, a kind of adaptive pinning control method may be
exploited. Let the corresponding parameters P, η, and δ* same to the above values, by Theorem
3, one could get the related parameters computed as follows: ki = 102.2258, kdi = 22.3035,
i∈Sℓ, and
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5134.0 28.2 82.8 40.8 112.6 153.4 36.7 62.2 50.0 54.5
* 5437.0 82.4 61.7 100.9 2.1 84.6 87.9 49.7 51.8
* * 5214.8 35.4 232.0 93.1 119.2 20.6 4.9 52.3
* * * 5516.0 173.6 12.1 303.0 24.9 5.2 2.3
* * * * 5644.9 59.9 107.9 2

Q

- - - - - -
- - - - - - -

- - - -
- - - - -

- - -
=

06.4 0.4 7.0
* * * * * 5431.7 195.1 196.0 47.2 0.6
* * * * * * 5589.6 123.3 46.6 50.7
* * * * * * * 5101.7 50.8 50.5
* * * * * * * * 143.9 66.4
* * * * * * * * * 133.0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú-
ê ú

- - - -ê ú
ê ú- - -ê ú
ê ú- -
ê ú-ê ú
ê úë û

where ó is selected to be ó = 5. Under the same initial condition and topologies having couplings
exchanges, the simulations of the resulting complex network are given in Figures 6 and 7,
where Figure 6 is state response of the closed-loop system through the desired adaptive
pinning controller with form (29) and updating law with form (30), and Figure 7 is the curve
of estimation α(t) with α0=0.2.

Figure 6. The state response of the complex network by controller (29).
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Figure 7. The curve of estimation of α*.

From these simulations, it is said that the desired partially delay-dependent controllers in
terms of stochastic pinning controller (5) and adaptive controller (29) are both effective, where
the resulting complex network is stable even if the coupling matrices experience random
exchanges. On the other hand, when α is obtained exactly but δ* is unavailable, using Theorem
4, we have the corresponding parameters obtained as follows: ki = 30.6104, kdi = 16.7135, i∈Sℓ,
and

1648.4 36.0 31.3 34.5 39.7 2.5 36.2 37.5 48.8 52.0
* 1573.4 35.6 33.0 38.4 5.7 6.0 1.5 53.0 52.1
* * 1613.6 33.0 38.9 35.4 34.2 4.1 1.7 50.7
* * * 1574.9 41.5 40.3 42.6 0.5 2.0 5.0
* * * * 1603.5 45.1 37.1 36.6 1.5 5.

Q

- - - - - - - -
- - - - - - - -

- - - - - -
- - - - -

- - -
=

8
* * * * * 1576.6 34.3 44.8 43.6 0.3
* * * * * * 1643.7 39.6 45.3 52.0
* * * * * * * 1578.1 52.8 48.6
* * * * * * * * 334.8 75.6
* * * * * * * * * 308.0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

- - -ê ú
ê ú- - -ê ú
ê ú- -
ê ú-ê ú
ê úë û

where ξ is selected to be ξ = 1.
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5. Conclusion

In this chapter, the stabilization problem of complex dynamical network with non-delayed
and delayed couplings exchanging randomly has been realized by a new kind of stochastic
pinning controller being partially delay-dependent, where the switching between the non-
delayed and delayed couplings is modeled by the related coupling matrices containing
uncertainties. Different from the traditional pinning methods, the designed pinning controller
contains non-delay and delay state terms simultaneously but occurs asynchronously with a
certain probability, respectively. Sufficient conditions for the stabilization of complex dynam‐
ical network over topology exchange are derived by the robust method and presented with
liner matrix inequities (LMIs). It has been shown that the probability distributions of non-delay
and delay states in addition to the bound of such uncertainties play very important roles in
the controller design. Moreover, when the probability is inaccessible, a kind of adaptive
partially delay-dependent controller is proposed to deal with this general case, where another
adaptive control problem in terms of unknown bound is also considered. Finally, the correct‐
ness and feasibility of the proposed method are verified by a numerical simulation.
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