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Abstract

The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift

in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influ-

ence metabolic processes in phytoplankton species but it is unclear how the combination of

individual physiological changes alters the structure of entire phytoplankton communities.

To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at

the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the

other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and

10 out of 16 investigated phytoplankton groups were significantly and mostly positively

affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass

were generally subtle and present only during certain succession stages. (2) Some of the

CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chem-

istry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly

affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton

(0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several

succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic

apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH)

conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance

observed in this experiment is strikingly consistent with results from previous studies, sug-

gesting that picoeukaryotes are among the winners in a future ocean.

1. Introduction

The seasonal succession of plankton involves the occurrence and disappearance of plankton

taxonomic and functional groups in an annually repeated pattern [1]. The major biomass

build-up during the spring bloom is traditionally seen as the starting point of the succession

in temperate regions, although the initiation of the bloom already takes place in early winter

[2,3]. Succession patterns differ among oceanographic regions and are controlled by a
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multitude of abiotic factors such as turbulence, nutrients, and light [4], as well as biotic interac-

tions, including competition, predation, and infection [1,4,5].

Changes in the marine carbonate system due to the net influx of anthropogenic CO2 into

the ocean’s surface layer (i.e. ocean acidification (OA)) could alter phytoplankton succession

because taxonomic groups shaping the succession pattern are differently sensitive to changing

carbonate chemistry. Phytoplankton species which benefit from CO2 fertilization may become

more dominant in future communities while those which are unresponsive to increasing CO2

or even detrimentally affected by decreasing pH could become less important or be replaced

by other species [6–9]. Uncovering the potential for CO2-induced community shifts is impor-

tant as these can re-organize the energy flow through food webs and alter biogeochemical ele-

ment fluxes [10,11].

In this study we investigated the influence of projected end-of-the century carbonate chem-

istry conditions (average pCO2 = 760 μatm) on a natural winter-to-summer phytoplankton

succession in a temperate coastal environment. Our study is part of the BIOACID II long-term

mesocosm study which took place in Gullmar Fjord (Skagerrak, west coast of Sweden) from

January to July 2013. It belongs to a series of papers covering various components of the plank-

ton community in and outside the mesocosms. A summary on the main foci of these contribu-

tions is provided in the overview paper accompanying this PLOS collection [12]. The focus in

the present contribution is primarily on how CO2 affects phytoplankton functional and taxo-

nomic groups during the winter-to-summer succession.

2. Methods

2.1 Mesocosm deployment, manipulation, and maintenance

On the 29th of January 2013, ten “Kiel Off-Shore Mesocosms for Future Ocean Simulations”

(KOSMOS, M1-M10; [13]) were moored by research vessel Alkor in Gullmar Fjord on the

Swedish west coast (58˚ 15’ 50” N, 11˚ 28’ 46” E). Study site, key events, deployment, and

mesocosm manipulation procedures are described in detail in the abovementioned overview

paper [12]. In brief, each mesocosm was composed of an 8 m tall floatation frame and an 18.7

m long cylindrical polyurethane bag with a diameter of 2 m. The bags were folded and installed

in the floatation frame before mesocosm deployment by Alkor. After deployment, bags were

unfolded and lowered underwater to allow water exchange with the fjord. Water inside the

bags was isolated from the fjord water by attaching 2 m long conical sediment traps to the bot-

tom and pulling the upper end of the bag about 1.5 m above the surface [13,14]. The mesocosm

bags with the attached sediment traps reached ~19 m deep after the closing procedure.

Extended sea ice coverage prolonged the time between mesocosm deployment and the clos-

ing procedure. They were closed for the first time on the 12th of February and CO2 was manip-

ulated in the high CO2mesocosms (M2, M4, M6, M7, M8) shortly thereafter. However, due to

technical difficulties with the sediment traps we had to stop the experiment after 19 days on

the 3rd of March. Afterwards, mesocosms were lowered below surface to allow water exchange

while the sediment traps were repaired on land. After four days we restarted the experiment by

closing the mesocosms for the second time on the 7th of March. The second experiment lasted

for 113 days until the 28th of June. In the present paper we only describe results from the sec-

ond experiment. We will use the “experimental day nomenclature” which is consistent among

all papers associated with this mesocosm study. Here, the 7th of March is day -2 and the 28th of

June is day 111.

The mesocosms enclosed a volume ranging from 47.5 (M3) to 55.9 (M2) m3 [12]. The

water was gently mixed directly after enclosure by bubbling the water column for 5 minutes

with compressed air. A second bubbling procedure two days after enclosure (day 0) was
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necessary to fully eliminate the salinity stratification. All mesocosms were cleaned by divers

from the outside approximately every second week and from the inside with a cleaning ring

approximately every 8th day. A mesh (1 mmmesh size) was attached to the cleaning ring on

day 6 to remove large zooplankton (e.g. jelly fish) or nekton (e.g. fish) from the water column

as these organisms were considered to be unevenly distributed among mesocosms. However,

only very few organisms, mostly jelly fish and some fish larvae, were removed during this

operation.

Five of the ten mesocosms were enriched with CO2-aerated seawater at the beginning of the

experiment (M2, M4, M6, M7, M8) while the other five mesocosms remained unperturbed

and served as controls (M1, M3, M5, M9, M10). High CO2 concentrations had to be re-estab-

lished on 5 occasions (days 17, 46, 48, 68, 88) during the study to compensate for CO2 gas loss

at the air-sea boundary layer of the mesocosms.

Due to the long duration of the experiment, we added 22 L of unfiltered fjord water to each

mesocosm on every 4th day thereby allowing plankton species which were not present during

closing to enter the mesocosm [12]. Green sea-urchin (Strongylocentrotus droebachiensis) and

herring (Clupea harengus) larvae were added to each mesocosm on day 56 and day 63, respec-

tively, to study the influence of OA on their development. Both species were added in relatively

low densities (~90 herring eggs and 110 sea urchin larvae per m3) to minimize potential top-

down-effects [12]. Please note that the OA response of these particular organisms will be

addressed in detail in other publications.

Ethical statement: Herring welfare was assured by performing the experiment according to

the ethical permission (number 332–2012) issued by the Swedish Board of Agriculture "Jord-

bruksverket"). The species (Clupea harengus) used is not endangered and was obtained from a

local registered and licensed fisherman (licence ID = 977 224 357).

2.2 Sampling, filtration, and measurements

All mesocosms were sampled every second day for usually 1–3 hours starting at 9 a.m.

(local time) from small boats. The water column was sampled with integrating water sam-

plers equipped with pressure sensors (IWS, Hydrobios) which collect 5 L of seawater evenly

from the water column while being lowered from 0–17 m. Water from two IWS hauls were

transferred with a tube into a 10 L carboy. The carboys were brought back to shore and

stored in a temperature-controlled room set to in situ water temperature. Subsamples for

particulate matter (PM), flow cytometry, light microscopy, and pigment analysis were taken

from carboys shortly (usually within 1 hour) after they arrived in the temperature-con-

trolled room. Each carboy was rotated gently before subsampling in order to avoid sedimen-

tation bias.

PM samples were filtered (500 mL, Δpressure -200 mbar) on glass fiber (GF/F) filters and

immediately photographed at full magnification with a CANON 60D and a EF-S 60 mm f/2.8

Macro lens. These pictures were manually processed to count the abundance of the large

(>200 μm) diatom Coscinodiscus concinnus.

Pigment samples were filtered (800 mL, Δpressure -200 mbar) on GF/F filters. These filters

were folded, put into 2 mL cryovials, and stored at -80˚C for 4–7 months until analysis. Pig-

ments were extracted in 90% acetone and their concentrations quantified by means of reverse

phase high performance liquid chromatography (HPLC) [15]. The contribution of distinct

phytoplankton taxa to total chlorophyll a (chla) was calculated with the CHEMTAX software

which classifies phytoplankton based on taxon-specific pigment ratios [16]. For the calcula-

tion, we used pigment ratios provided by Mackey et al. [16]. Pigment data from all mesocosms

were aggregated in one data sheet and evaluated in the same analysis run (iterations = 86,
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root-mean-square error = 0.22). Thus, the in- and output pigment ratios used in the CHEM-

TAX analysis were identical in all mesocosms (S1 Table).

Light microscopy samples were transferred from the carboys into 250 mL brown glass bot-

tles and fixed with acidic Lugol’s solution (1% final concentration). Phytoplankton were

counted and identified 1–24 months after sampling at 200 and 400 times magnification with

an Zeiss Axiovert inverted microscope [17]. Light microscopic species counts comprised

auto-, mixo-, and heterotrophic protists within a size range from ~10–500 μm. A species list

with approximate organism sizes is provided in S2 Table.

Cells smaller than 10 μmwere abundant in the experiment but could often not be taxonom-

ically identified. The exceptions were small silicifying species (<5 μm) which were identified

with scanning electron microscopy. Therefore, ~10 mL of water sample were gravity filtered

on 0.2 μm polycarbonate filters and further processed as described by Bach et al. [18].

Flow cytometry subsamples for phytoplankton analyses were transferred from the 10 L car-

boys into 50 mL beakers directly after return of the sampling boats in the harbor. Subsamples

(650 μL per mesocosm) were immediately analyzed within 3 hours using a Accuri C6 (BD Bio-

sciences) flow cytometer [12]. The flow rate estimated by the Accuri C6 was controlled and

verified regularly by weighing sample before and after measurements and calculating the vol-

ume difference. Phytoplankton populations were distinguished based on the signal strength of

the forward light scatter (FSC), the red fluorescence from chlorophyll a light emission (FL3),

and the orange fluorescence from phycoerythrin light emission (FL2) [19]. The FSC signal

strength is positively correlated with particle size and can be used to distinguish phytoplankton

size classes [20]. To constrain the size range we conducted sequential fractionations using

polycarbonate filters of different pore sizes (0.2, 0.8, 2, 3, 5, 8 μm) and gravity filtration [21].

The following groups were defined (S1 Fig): Synechococcus (0.8–3 μm), Cryptophytes (Crypto,

2–8 μm), Picoeukaryotes (Peuks, 0.8–3 μm), and four groups of Nanoeukaryotes with increas-

ing size (Nano I–III between 2–8 μmwith Nano III being the largest; Nano IV,>8 μm). The

clusters of Peuk and Nano I–IV populations changed their appearance slightly in the course of

the study. We accounted for these changes by adjusting gate shapes in the cytograms on 7

occasions (days 14, 30, 46, 66, 79, 94, 108). Importantly, gates and gate adjustments were iden-

tical in all mesocosms at every point in time. This was essential to keep the flow cytometry data

comparable among replicates and treatments. The abundance of each flow cytometry group

(in cells mL-1) was calculated as the number of events within a gate divided by the analyzed

volume.

Bacterial abundance samples were withdrawn from the 10 L carboys directly after sampling

and immediately fixed with glutaraldehyde (0.5% v/v; 30 minutes), flash-frozen in liquid nitro-

gen, and stored at -80˚C for 4–7 months until measurements with the Accuri C6 flow cytome-

ter. Bacteria samples were prepared for analysis by thawing samples at 37˚C and staining them

with SYBR green I for 15 minutes at 20˚C in the dark. Bacteria could be distinguished from

non-living particles by the green fluorescence of the stained DNA and from phytoplankton by

the lack of red fluorescence [22]. Please note that archaea are also included in this analysis but

they are typically much less abundant in surface waters than bacteria and therefore not specifi-

cally considered here as a separate group [23].

2.3 Statistical data analysis

We postulated that the high CO2 treatment can affect the temporal trend of a dependent vari-

able in four different ways: by amplification or weakening of the peak amplitudes (Fig 1A); by

inducing a shift in peak timing (Fig 1B); by a changing peak amplitude and timing (Fig 1C);

by changing the entire pattern of the response curve (Fig 1D). To detect and visualize such

Influence of high CO2 on coastal phytoplankton succession
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potential responses we applied generalized additive mixed-effect modelling (GAMM; R pack-

ages “mgcv” and “nlme” [24–26]) and analyzed the data with the following procedure. Three

different GAMMmodels were fitted to each dependent variable as a function of time (in our

case as a function of the day of experiment; e.g. chla(day of experiment)). CO2 was set as cate-

gorical explanatory variable modifying the absolute values of the dependent variable and/or its

trend shape over time [25,27]. The first model assumed no difference between treatments. The

second model assumed a more or less constant offset in temporal trends but no change in

trend shape (i.e. phenology). The third model assumed differences in phenology. In each

model, the mesocosm number was set as random effect to account for any unknown effects of

individual mesocosms. We accounted for heteroscedasticity and temporal autocorrelation of

residuals in the models to ensure that model assumptions were satisfied [26]. In most cases

best fitting results were gained with a 3rd order autoregressive structure and a variance config-

uration accounting for within-treatment variance. Statistically significant GAMMmodels

were compared by their coefficient of correlation (R2). The model with the highest R2 was cho-

sen as the one describing the response best. With this approach, CO2 effects were detected by

determination of the most appropriate GAMMmodel (model 1 = no CO2 effect; model

2,3 = CO2 effect detected). Importantly, model 2 was in no case gaining the highest R2 value.

Thus, when a CO2 effect was detected, it was always an effect on phenology (model 3). The

response scenario (Fig 1) was determined in case of a detected CO2 effect by visually inspecting

the phenology of the GAMMmodel fits shown in S2 Fig.

3. Results

3.1 Basic chemical parameters and the different phases of
phytoplankton blooms in control and high CO2mesocosms

The partial pressure of CO2 was elevated to ~1000 μatm in the high CO2mesocosms during

the first six days of the study. CO2-outgassing at the air-sea interface in the high CO2meso-

cosms was countered by regular additions of CO2-aerated water while pCO2 was not manipu-

lated in the control treatment. The pCO2 levels averaged over the entire experimental period

were 759 (±11) and 384 (±19) μatm in the high CO2 and control environments, respectively

[12].

Inorganic nutrients were up-welled by winter mixing before the study started and enclosed

with comparable concentrations in all mesocosm bags when isolating the water from the sur-

rounding fjord (S3 Table; see also [12]). The subsequent temporal development of nutrient

Fig 1. Four potential scenarios how phytoplankton bloom development could be altered by ocean acidification explained with the example
of chla concentration. Blue and red lines illustrate control and “treatment”, respectively. (A) Change in bloom amplitude. (B) Change in bloom timing.
(C) Change in bloom amplitude and timing. (D) Change in bloom pattern.

https://doi.org/10.1371/journal.pone.0188198.g001
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concentrations was similar in control and high CO2mesocosms. NO3
-+NO2

- concentrations

dropped to values close to detection limit at the first chla peak (around day 33; Fig 2) and

remained at these low values until the end of the experiment (0.04 ±0.01 μmol kg-1). PO4
3-

and Si(OH)4 concentrations were also quite low at the first chla peak (0.07 ±0.07 and

2.67 ± 0.30 μmol kg-1 on day 33, respectively) but those nutrients were not the primarily limit-

ing ones after the spring bloom [12]. Si(OH)4 remained above detection limit for some days to

weeks after day 33 before reaching detection limit. PO4
3- fluctuated at a very low level (max.

0.2 μmol kg-1) from day 33 until the end of the experiment [12]. The average inorganic nutri-

ent concentrations (NO3
-+NO2

-, PO4
3-, Si(OH)4, and NH4

+) for each of the four phases are

provided in S3 Table. A graphical representation of the inorganic nutrient dataset is provided

in the overview paper [12] accompanying this study.

The temporal development of Chla was similar in control and high CO2mesocosms (Fig

2). Chla concentrations were initially low (~0.3 μg L-1) and showed a relatively slow increase

until day 17. Afterwards, chla started to increase rapidly until reaching the first of two major

peaks around day 33 (Fig 2). The first bloom declined after day ~33 with chla concentrations

dropping to ~1.5 μg L-1 on day ~40. This temporal minimum of chla also marks the initiation

of the second phytoplankton bloom which peaked around day 55 (Fig 2). Peak chla concentra-

tions were on average only slightly lower than in the first bloom with peak1/peak2 chla ratios

ranging from 1.5 (M10) to 0.9 (M3) [12]. The second chla peak declined more slowly and

reached baseline values around day 77 (Fig 2). After day 77, chla concentrations remained at

low concentrations (~0.5 μg L-1) and no further chla peak developed (Fig 2).

Based on the observed chla development we divided the experiment in 4 major phases (Fig

2). Phase I is the time before the first major chla build-up and characterized by relatively low

chla (day -2–16). Phase II comprises the build-up and decline of the first major chla peak (day

17–40). Phase III includes the second major chla peak (day 41–77). Phase IV is the post-bloom

period where chla was relatively low and fairly stable (day 78–111).

Fig 2. Chla development over time.Red and blue lines display the average of five high and five ambient
CO2mesocosms, respectively. Shaded areas represent standard deviations frommeans. Vertical grey lines
(Roman numbers I to IV) separate the four experimental phases.

https://doi.org/10.1371/journal.pone.0188198.g002
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3.2 Succession of functional and taxonomic phytoplankton groups in
control and high CO2 mesocosms

The plankton community composition was similar among mesocosms at the beginning of the

study (see [12] for a detailed analysis). Likewise, the succession of phytoplankton groups was

similar in all mesocosms so that the following description of the temporal development refers

to both the control and the high CO2 treatment.

Initially, picoeukaryotes were abundant (Fig 3) and contributed about half of the total chla

concentration (Figs 4 and 5). Their abundance started declining, however, around day 10 (Fig

3B and 3J) which is also reflected in a slight decline in chla (Fig 2). The major spring bloom

forming groups distinguished by flow cytometry and filter counts were Nano I–IV, Crypto,

and C. concinnus. Their abundances were very low at the beginning but they grew exponen-

tially from the first days until the peak of the bloom around day 33. This is difficult to see on

linear cell abundance plots (Fig 3A–3H), but becomes clearly visible when using a logarith-

mized y-axis (Fig 3I–3P). HPLC pigment measurements and CHEMTAX analysis revealed

Fig 3. Development of phytoplankton groups quantified by flow cytometry and filter counts.Red and blue lines display the average of five high
and five ambient CO2mesocosms, respectively. Shaded areas represent standard deviations frommeans. Data are displayed on linear (A-H) and
logarithmic y-axis (I-P). Note: the exponent in A-H after a group name needs to be multiplied with the y-axis numbering (e.g. 5 Syn x 104! 50000
Synechoccocus cells mL-1). Vertical grey lines (Roman numbers I to IV) separate the four experimental phases.

https://doi.org/10.1371/journal.pone.0188198.g003
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that diatoms were the dominant taxon during the first bloom (Figs 4 and 5). The bloom-form-

ing diatom community was composed of small nanoplankton species such asMinidiscus sp.

and Arcocellulus sp. (~2–7 μm; Fig 6) and the large mesophytoplankton species C. concinnus

(>200 μm). The bimodal diatom size spectrum with only very small and a very large species is

unusual for the study region and will be addressed specifically in a separate paper. Nano I–IV

Fig 4. Development of phytoplankton classes based on CHEMTAX pigment taxonomy.Red and blue lines show the average of five high and five
ambient CO2mesocosms, respectively. Shaded areas represent standard deviations frommeans. The y-axis shows the amount of chla contributed by
each class. Vertical grey lines (Roman numbers I to IV) separate the four experimental phases.

https://doi.org/10.1371/journal.pone.0188198.g004

Fig 5. Relative chla contribution of the 8 phytoplankton classes determined with CHEMTAX to bulk chla. (A) Average of
the control mesocosms. (B) Average of the high CO2mesocosms. Vertical grey lines (Roman numbers I to IV) separate the four
experimental phases. Chryso = Chrysophyceae; Cyano = Cyanophyceae; Dino = Dinophyceae; Pras = Prasinophyceae;
Chloro = Chlorophyceae; Crypto = Cryptophyceae; Prym = Prymnesiophyceae; Dia = Diatoms.

https://doi.org/10.1371/journal.pone.0188198.g005

Influence of high CO2 on coastal phytoplankton succession

PLOSONE | https://doi.org/10.1371/journal.pone.0188198 November 30, 2017 8 / 22

https://doi.org/10.1371/journal.pone.0188198.g004
https://doi.org/10.1371/journal.pone.0188198.g005
https://doi.org/10.1371/journal.pone.0188198


and Crypto abundances decreased rapidly after day ~33 at the end of phase II and dropped to

values that were close to those before the first bloom (Fig 3C–3G). This is in contrast to C. con-

cinnus abundances which showed a less pronounced decrease after the first bloom and recov-

ered quickly thereafter (decrease from ~300–~150 cells L-1; Fig 3H).

Phytoplankton groups identified by flow cytometry that markedly participated in the sec-

ond major bloom in phase III were Peuks, Nano I, and Nano II (Fig 3). Abundances of Cryp-

tos, Nano III, and Nano IV, important groups during the first bloom, remained close to

detection limit. Diatoms were also the dominant taxon during the second bloom and repre-

sented primarily by C. concinnus, which was present at similar abundances as during the first

bloom (Fig 3). Very small diatoms such as Arcocellulus sp. andMinidiscus sp. and small silicify-

ing Chrysophyceae (Fig 6) were also present during the second bloom but their biomass con-

tribution was probably lower compared to the first bloom (see also section 4.2.1).

Prasinophyceae were the only other noteworthy taxon that contributed to chla but already

much less important than diatoms (in average 14% was contributed by Prasinophyceae vs.

82% contributed by diatoms on day 55; Fig 5). The decline of the second bloom towards the

end of phase III was reflected in decreasing Peuk, Nano I, Nano II, and C. concinnus abun-

dances (Fig 3). The observed increases of Synechococcus and Crypto abundances during this

time were too low to have a predominant influence on the decreasing chla trend that was trig-

gered by the loss of the other groups. During the decline of the second bloom, the community

started to shift away from one dominated by diatoms, to a more diverse community. (Fig 5).

Fig 6. SEM pictures of important pico- and nanophytoplankton species during the twomajor
phytoplankton blooms. A) Representative overview picture fromM1 on day 35 including Arcocellulus sp.,
Minidiscus sp., and Tetraparma sp. (all three are silicifying species). B) ThreeMinidiscus sp. cells without
organic membrane cover in M6 on day 35. C)Minidiscus sp. without organic membrane cover in M4 on day
27. D) Arcocellulus sp. in M1 on day 27 E) Two Tetraparma sp. cells in M1 on day 35. F) Three spherical cells
(probably picophytoplankton) in M1 on day 35. Yellow scale bars are 3 μm long.

https://doi.org/10.1371/journal.pone.0188198.g006
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The tendency towards a more diverse phytoplankton community continued in phase IV

(the post bloom phase) where Prasino-, Crypto-, Cyano-, Chloro-, Prymnesio-, and Dinophy-

ceae became more important (Fig 5). Notably, auto- and/or mixotrophic Dinophyceae were

quasi absent during the two diatom-dominated blooms but emerged quickly thereafter (phase

IV, Fig 4). The marked increases of Cyano- and Cryptophyceae in phase IV that was revealed

by the CHEMTAX analysis was reflected in the increase of Synechococcus (a Cyanophyceae

genus) and Crypto groups measured with the flow cytometer (compare Figs 3A and 4D). The

high consistency among both independent methods increases the confidence in our results.

3.3 CO2 effects on the phytoplankton community

CO2 significantly influenced the development of chla (Table 1), however not consistently. An

effect of CO2 was absent during the first chla peak in phase II but clearly identifiable during

the second bloom in phase III. Here, chla build-up was significantly amplified under high CO2

conditions (Fig 2). A shift in the timing (i.e. temporal occurrence) of chla peaks was not appar-

ent. Thus, our results point towards a type A response of chla (increase in bloom amplitude;

Fig 1A) during the second phytoplankton bloom in phase III.

The GAMM analyses revealed temporal CO2 effects in 6 of the 8 taxonomic phytoplankton

groups distinguished with CHEMTAX (Table 1). Diatom, Prasinophyceae, and Chlorophyceae

biomass was significantly higher under high CO2 (Table 1). The positive effect on diatoms

occurred for a relatively short period during the second phytoplankton bloom in phase III,

similar to bulk chla (compare Figs 2 and 4A). Prasinophyceae were stimulated during a minor

peak in phase I and throughout phase III (Fig 4B). Chlorophyceae were close to detection limit

during most of the experiment but showed a positive response to high CO2 during a peak in

phase IV (Fig 4E). Auto- and/or mixotrophic Dinoflagellates (Dinophyceae) experienced posi-

tive CO2 effects during the end of phases II and IV. Prymnesiophyceae were impaired by high

CO2 from the end of phase II until the middle of phase IV. (Table 1, Fig 4H). Cyanophyceae

Table 1. Summary of statistical results. The temporal development of phytoplankton was analyzed by means of GAMM. A CO2 effect was detected when
the GAMMmodel with the best fit (highest R2 value) accounted for a CO2 dependency of the phenology. In the case of Nano I a CO2 effect was detected by
the GAMM analysis but not considered further due to an unsatisfactory model fit.

analysis measurement dependent variable CO2 effect detected? R2 adjusted most likely response scenario? remark

GAMM HPLC chlorophyll a yes 0.73 Type A

GAMM flow cytometry Synechococcus yes 0.67 Type A

GAMM flow cytometry Peuks yes 0.71 Type A

GAMM flow cytometry Nano I (yes) poor fit of the data

GAMM flow cytometry Nano II no 0.49

GAMM flow cytometry Nano III no 0.44

GAMM flow cytometry Crypto no 0.79

GAMM flow cytometry Nano IV yes 0.54 Type A

GAMM filter counts C. concinnus yes 0.83 Type A

GAMM HPLC (CHEMTAX) Diatoms yes 0.74 Type A

GAMM HPLC (CHEMTAX) Prasinophyceae yes 0.61 Type A

GAMM HPLC (CHEMTAX) Cryptophyceae no 0.54

GAMM HPLC (CHEMTAX) Cyanophytceae yes 0.45 Type A

GAMM HPLC (CHEMTAX) Chlorophyceae yes 0.3 Type A or C

GAMM HPLC (CHEMTAX) Dinophyceae yes 0.67 Type B

GAMM HPLC (CHEMTAX) Chrysophyceae no 0.59

GAMM HPLC (CHEMTAX) Prymnesiophyceae yes 0.68 Type A

https://doi.org/10.1371/journal.pone.0188198.t001
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were negatively affected under high CO2 during phase III and positively affected during phase

IV (Table 1), although it must be recognized that the effects were very small and Cyanophyceae

were close to detection limit during phase III (Fig 4D).

The GAMM analyses of flow cytometry and filter count data revealed significant temporal

CO2 effects on 5 out of 8 groups (Table 1) with the clearest CO2 response observed for Peuks

(Fig 3). Importantly, Peuk abundance was already significantly higher by about 9% (~1500

cells mL-1; t-test p = 0.0018) in the high CO2 treatment on the first day of the experiment and

thus already before the first CO2 addition [12]. The reason for this was a carry-over effect from

a failed OA experiment we carried out in the same mesocosms before our successful experi-

ment started (see section 2.1). In this previous experiment we already observed a positive CO2

effect on picoeukaryotes [12]. However, due to technical problems we had to finish this experi-

ment, lower the mesocosms below surface and dismount the sediment traps until we could

restart four days later (section 2.1; [12]). In the four days in between the two studies, water

exchange with the fjord was almost but not entirely complete so that some of the CO2-induced

picoeukaryote signal was transferred into the successful second experiment that is described in

the present paper. The small initial difference was lost at the end of phase I (day 17) where

abundances in the control and the high CO2 treatment were insignificantly different. The first

CO2 effect on picoeukaryotes that developed during the second experiment started to appear

right at the peak of the first chla bloom (day ~33). At this time, Peuk net growth was positive

under high CO2 and slightly negative in the control mesocosms (Fig 3B and 3J). Opposite net

growth rates were observed until day ~47 and generated an offset in Peuk abundance between

control and high CO2mesocosms which prevailed until the end of phase III (Fig 3B and 3J). A

second divergence in Peuk abundance occurred during phase IV where they bloomed under

high CO2 (~38,000 cells mL-1 on day 91) but not in the control (Fig 3B and 3J).

The abundance of C. concinnus was significantly elevated under high CO2, mainly during

the second phytoplankton bloom in phase III (Fig 3H and 3P). Synechoccocus abundance was

slightly lower under high CO2 during phase III and marginally higher during a short period in

phase IV (Fig 3I, Table 1). Nano IV abundance was lower under high CO2 during the begin-

ning of phase IV but the effect was very small (Fig 3O). The detected CO2 effect on Nano I

(Table 1) must be regarded carefully. Here, short consecutive abundance peaks constrained

the generation of adequate GAMM fits (S2 Fig) so that a reliable determination of CO2 effects

was not possible.

4. Discussion

4.1 The potential influence of ocean acidification on phytoplankton
blooms

We observed no detectable CO2 effect on chla during the first bloom in phase II (Fig 2) where

phytoplankton utilized inorganic nutrients that were initially available from winter upwelling.

This outcome is consistent with results from the majority of previous mesocosm OA experi-

ments under nutrient replete conditions. So far, ten studies with mesocosm volumes� 100 L

reported no response of CO2 on maximum chla build-up [28–37], while only five detected

either positive [35,37–39] or negative [40] impacts.

A positive CO2 effect on chla build-up was observed during the second bloom in phase III.

The CO2 effect did not appear to be particularly pronounced (Fig 2) but this may not reflect

the actual chla difference appropriately because we also observed significantly higher meso-

zooplankton biomass under high CO2 during this period [20,27]. Thus, part of the chla differ-

ence may have been grazed off.
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Inorganic nutrient concentrations were close to detection limit during the second bloom so

that the bloom was fueled by other nutrient sources. Published results on mesocosm OA

experiments conducted under inorganic nutrient deplete conditions are less numerous so

far, making it even more difficult to reveal a general response pattern. The seven mesocosm

experiments we are aware of (volume� 100 L; published until June 2017) either observed a

stimulation of chla concentrations under high CO2 [35,41] or reported no effect [37,39,42].

Accordingly, the chla response pattern observed in our study aligns reasonably well with the

general tendency currently taking form in the literature—i.e. rather no chla response to OA

under nutrient replete conditions and perhaps a slight tendency towards a positive response

when inorganic nutrients are low [42]. However, more data and thorough meta-analyses that

consider the individual features of experiments are needed to confirm or disprove this

impression.

4.2 CO2 effects in the phytoplankton community

CO2 effects on individual phytoplankton groups were identified in 10 out of 16 parameters

analyzed with GAMM (Table 1; Nano I was not considered here). As for chla, most of the

detected effects were present only during certain stages of the succession and effect sizes

appeared to be small in most cases (Figs 3 and 4). Uncovering the origin of group-specific CO2

responses is challenging in ecologically realistic experiments because the multitude of uncon-

strained factors allows for a multitude of potential explanations. For example, changing CO2

or pH can lead to a direct (i.e. physiological) response of the investigated taxon with direct

consequences for its competitiveness within the natural community. In this case, results from

physiological laboratory investigations can be used to explain certain patterns. However,

observed responses can equally well be evoked indirectly, via CO2 effects on other players in

the food web which influence the investigated taxon through trophic cascades. Indirect effects

are considered to be very important but hard to prove as they require a comprehensive under-

standing of the various interactions in the food web [43]. In the following, we aim to present

what we consider to be the most likely explanations for the observed CO2 responses in some of

the investigated phytoplankton groups. We would like to emphasize, however, that explana-

tions different to the ones provided here are possible in each case.

4.2.1 Diatoms. Diatoms were dominating the phytoplankton community and their tem-

poral development is largely identical to the development of bulk chla. (compare Figs 2 and

4A) This suggests that the positive CO2 effect on chla during phase III is primarily a positive

CO2 effect on diatoms. Diatoms were represented by very small species (~2–8 μm) such as

Minidiscus sp. or Arcocellulus sp. and by the large species C. concinnus (>200 μm). The abun-

dance of C. concinnus was significantly higher in the high CO2 treatment by about 70 cells L-1

during the peak of the second bloom in phase III (average between days 45 to 55 of 255 and

324 cells mL-1 in the control and the high CO2 mesocosms, respectively). To approximate the

relevance of this difference in terms of chla, we measured chla content of C. concinnus cells on

days 45 and 49, multiplied the average chla cell-1 value with measured cell numbers, and com-

pared this to bulk chla concentrations. Based on that, C. concinnus contributed about 50%

(ranging from 36% in M5 to 66% in M4) to the bulk chla concentration during phase III. The

difference of ~70 cells L-1 between control and high CO2 explains about half (i.e. 0.5 μg L
-1) of

the CO2-induced difference in bulk chla (i.e. ~1 μg L-1; Fig 2). The CHEMTAX diatom trend

suggests, however, that the entire 1 μg L-1 difference is due to differences in diatom biomass

(compare Figs 2 and 4A). Thus, the remaining 0.5 μg L-1must have been due to biomass differ-

ences in the small diatom species like e.g. Arcocellulus sp. (Fig 6). Unfortunately, there is no

biomass data on any of the small diatoms available but due to their approximate size they must
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have been included in the Nano I and/or Nano II populations quantified with the flow cytome-

try. Here, we do not find any CO2-related differences (Fig 3) meaning that the CHEMTAX

and the flow cytometry data are conflicting in this particular case. We found no explanation

for this other than uncertainties in the associated measurements and the abovementioned bio-

mass estimation of C. concinnus.

The elevated C. concinnus abundances observed in the high CO2 treatment occurred during

phase III where inorganic nutrients were depleted. This is consistent with results from a recent

laboratory study where the diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus also

reached higher population densities under high CO2 when nutrients were exhausted [44]. The

authors hypothesized that less resources were necessary for inorganic carbon acquisition

under high CO2 thereby allocating resources to growth which leads to higher population den-

sities [44]. Interestingly, CO2 stimulation was shown to be much more pronounced in larger

diatoms as these are considered to be more diffusion limited [44–46]. This may explain why

we found a clear positive CO2 effect in the large (i.e.>200 μm) diatom C. concinnus.

The line of reasoning presented above points towards a direct (i.e. physiological) effect of

CO2 on the growth of C. concinnus. An indirect effect through food web interactions seems

less likely, also because C. concinnus was too large to be grazed by any of the present zooplank-

ton species [20] including herring larvae where no C. concinnus was found in the gut content.

Thus, our results support the hypothesis that large diatom genera like Coscinodiscus could

become more competitive in an acidified ocean under nutrient deplete conditions through

facilitated inorganic carbon acquisition [44,45]. In contrast, our observations on small diatoms

are inconclusive, mainly because our data is not resolved with the necessary detail on diatom

community structure in the small size range.

4.2.2 Dinoflagellates. Dinoflagellates are a diverse group of protists which acquire energy

through photo- or heterotrophy or a combination of both known as mixotrophy [47]. Here,

we determined dinoflagellate contribution to chla with CHEMTAX and therefore only consid-

ered photosynthesizing species with a pigment setup characteristic for Dinophyceae [16]. This

excludes heterotrophic species and mixotrophic ones which acquire plastids from other phyto-

plankton taxa (e.g. Dinophysis which sequesters cryptophyceae chloroplasts from its prey [47]).

Dinophyceae were growing early in the experiment but started to decline at the beginning of

phase II in the control mesocosms. High CO2 did not affect the maximum biomass but delayed

their decline by two weeks (Fig 4F). Based on microscopy counts we identified Heterocapsa tri-

quetra as the most likely species responsible for the observed trends in the CHEMTAX data

during phase I and II since it was the only dinoflagellate species found in noticeable quantities

during this time.H. triquetra is primarily phototrophic but can apply phagotrophy under

nutrient-limiting conditions to acquire nitrogen and phosphorous [48]. Culture experiments

suggested that the growth rate ofH. triquetra is unaffected by pH in the range between 8.7–7.5

[49]. This argues against a direct CO2 effect onH. triquetra growth rate and points towards an

indirect effect, for example through reduced grazing pressure under high CO2 during phase II.

Dinophyceae were not detected for most of phase III but started to increase again during

phase IV. They reached higher biomass in the high CO2 treatment towards the end of the

experiment (Fig 4F). Horn et al., investigated dinoflagellate abundance in the same mesocosm

study by means of light microscopy and found the same CO2 trend in phase IV [50]. In their

analysis they focused on species which are traditionally considered as heterotrophic although

still aware that many species are at least facultative mixotrophic [50]. The CO2 effect detected

by Horn et al. was caused by elevated abundances of athecate dinoflagellates (<30–55 μm) [50]

represented primarily by Gyrodinium and/or Gymnodinium sp. (H. Horn, pers. comm.). The

authors hypothesized that the positive CO2 effect on these mixotrophic species was caused by

increased availability of picoeukaryote (Peuk) prey [50]. Our data supports this hypothesis
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since Peuk abundance was indeed elevated under high CO2 before the onset of the second

dinoflagellate bloom and then rapidly declined to very low numbers when Dinophyceae

started to grow (Fig 4). The elevated availability of picoeukaryotic prey under high CO2 may

have enabled Dinophyceae to reach higher biomass on the last days of the experiment.

4.2.3 Prymnesiophyceae. Prymnesiophyceae had a minor contribution to total chla (Fig

5). Their biomass peaked in the aftermath of the two major phytoplankton blooms and was

lower in the high CO2 treatment throughout almost the entire experiment (Fig 4H). A recent

synthesis of OA studies with natural plankton communities found a consistently negative CO2

effect on Prymnesiophyceae (aka Haptophyceae) biomass with only few exceptions [7]. Nega-

tive effects were often driven by calcifying Prymnesiophyceae (coccolithophores) [7], which

are known to be sensitive to low pH [51,52]. However, non-calcifying genera like Phaeocystis

or Chrysochromulina also responded negatively to increasing CO2 [7]. Unfortunately, we were

unable to identify the species or species assemblage causing the negative CO2 response in our

study but the high consistency among the various mesocosm experiments with taxonomically

very different Prymnesiophyceae species points towards a physiological carbonate chemistry

sensitivity that is rooted in the core physiological apparatus of this taxon. An (indirect) CO2

effect on Prymnesiophyceae through food web interactions seems rather unlikely because in

this case we would have expected a more variable response among previous studies and also a

less consistent negative CO2 effect in our “long-term” study. Collectively, the evidence from

multiple experiments suggests that Prymnesiophyceae face the risk of playing a less important

role in plankton communities in an acidified ocean.

4.2.4 Picocyanobacteria (Cyanophyceae). Picocyanobacteria were present throughout

the entire study although they played a minor role in terms of biomass and occurred in high

abundances only at the end of the experiment (Figs 3A and 5). They were represented most

likely by the genus Synechococcus and not Prochlorococcus because the latter is not occurring

above 40˚N [53] and its marker pigments (divinyl chlorophyll a and b [54]) were not detected.

The temporal development of Synechococcus counted with the flow cytometer, and Cyanophy-

ceae, determined with CHEMTAX agree well with each other (compare Figs 3A and 4D) sug-

gesting that Synechococcus was the only cyanobacterium genus present in noticeable amounts.

CO2 had a weakly negative effect on its abundance (and Cyanophyceae biomass) during phase

III and a marginally positive one during phase IV (Figs 3A and 4D). Previous experiments

with pelagic communities revealed variable responses of Synechococcus abundances to simu-

lated OA (positive, negative, neutral) which was attributed to the enormous cryptic diversity of

this genus [7,55,56].

Alternatively, indirect CO2 effects could explain their variable responses. In our experi-

ment, the negative CO2 effect manifested shortly after inorganic nutrients were exhausted

(~day 33) and the major spring bloom was on the decline (Fig 2; phase II). We observed no sig-

nificant CO2 effect on predominant microzooplanktonic grazers such as ciliates and heterotro-

phic dinoflagellates during this period [50] but detected a positive effect on picoeukaryotes

appearing precisely when Synechococcus responded negatively to CO2 (Fig 3). Indeed, picoeu-

karyote genera likeMicromonas can be mixotrophic and feed on spherical particles with a size

of at least 0.9 μm in diameter [57–59]. Thus, enhanced grazing on Synechococcus by picoeukar-

yotes under high CO2 could potentially explain their negative CO2 response during phase III

(mixotrophy of picoeukaryotes is discussed further in section 4.2.5; please note that Dinophy-

ceae, represented by the mixotroph H. triquetra (section 4.2.2), also respond positively to CO2

during this time but this species does not feed on Synechococcus [48]). A similar antagonistic

CO2 response between picoeukaryotes and Synechococcus has also been observed in a previous

mesocosm study in Raunefjord (Norway) [60]. Here, Paulino et al. speculated that picoeukar-

yotes were better nutrient competitors under high CO2 relative to Synechococcus [60]. Findings
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by Paulino et al. are in contrast to the findings by Schulz et al. who observed a synergistic

response of picoeukaryotes and Synechococcus in a follow-up OAmesocosm experiment at the

Raunefjord study site (both Synechococcus and picoeukaryote abundance was stimulated by

high CO2 [7]). However, in the case of the Schulz et al study, picoeukaryotes were dominated

by Chlorophyceae whereas Paulino et al. argue that they were dominated by Prasinophyceae

(Micromonas) in their particular study [7,60]. In accordance with both studies, we observed

an antagonistic response during phase III where picoeukaryotes were dominated by Prasino-

phyceae whereas a synergistic response occurred during phase IV where picoeukaryotes were

predominantly composed of Chlorophyceae (see section 4.2.5). Thus, CO2 effects on Synecho-

coccusmay be coupled to the taxonomic composition and the trophic interactions with their

picoeukaryotic competitors.

4.2.5 Picoeukaryotes (Prasinophyceae and Chlorophyceae). The abundance of picoeu-

karyotes (Peuks) was positively affected by high CO2 at different stages of the winter-to-sum-

mer succession. The Peuk clusters determined by means of flow cytometry were most likely

dominated by Prasino- and Chlorophyceae as the combined pattern closely resembles the

Peuks trend over time (compare Figs 3B with 4B and 4E; see also section 4.2.4). This is in line

with previous studies who also determined Prasino- and Chlorophyceae as the predominant

picoeukaryotes [7].

The small but significant difference in Peuk abundance between control and high CO2 at

the first day was a remnant of a preceding CO2 experiment (see section 3.3). We cannot fully

exclude that this initial difference was also causing the differences observed later in the experi-

ment but several reasons make this unlikely. Most importantly, the difference was small (1500

cells mL-1; less than 9% of the population) and could be equalized quickly under the assump-

tion of realistic picoeukaryote growth rates [12]. Indeed, mean Peuk abundances equalized

between control and high CO2 already quite early in the experiment and it lasted more than

two weeks until deviating Peuk abundances between control and high CO2 treatment reestab-

lished (day ~33; Fig 3B and 3J). We would have expected a continuous offset between control

and high CO2 rather than a reoccurring one in case the initial difference was responsible for

the deviating trends later in the experiment. Furthermore, Peuks belonged primarily to the

Prasinophyceae class at the beginning of the study while a large fraction belonged to the Chlor-

ophyceae at a later stage. It seems rather unlikely that an initial difference in one class triggered

the same response in another class later in the experiment. To conclude this line of arguments

we would like to point out the following: Even in the unlikely case that the positive CO2

responses of Peuks observed in this study were triggered by the small initial difference, our

interpretations would still be valid. This is because the initial difference itself is not a coinci-

dence but the result of a positive CO2 effect on Peuks occurring in the preceding experiment

which was stopped due to technical problems (section 2.1; [12]).

Stimulation of phytoplankton growth rate and abundance by elevated levels of CO2 has fre-

quently been observed in cell cultures and natural assemblages [61]. The phenomenon is typi-

cally explained by a CO2 fertilization of the often rate-limited carbon fixing enzyme Rubisco

[62]. This straight-forward hypothesis may also be true for picoeukaryotes where in-vitro exper-

iments documented accelerated growth rates of important picoeukaryote genera likeOstreococ-

cus andMicromonas under above ambient pCO2 (i.e. ~500–1000 μatm; [63,64]). It is

surprising, however, that we found a particularly pronounced CO2-stimulation on abundance

in the smallest eukaryotic phytoplankton group. In theory, we would expect that primarily

larger species like C. concinnus benefit more from high CO2 because they are more diffusion-

limited due to their lower surface to volume (S/V) ratio (section 4.2.1; [46,65]). This counter-

intuitive result indicates that additional (or complementary) mechanisms may have determined
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the specific stimulation of Peuks. We propose three of these mechanisms in the following. All

three are related to nutrient acquisition when inorganic nutrients are limiting.

1. The largest differences in Peuk net growth between control and high CO2 were observed

after day 33 when NO3
-+NO2

- concentrations were close to detection limit (days ~33–47

and ~80–90 in Fig 3J; nutrient concentrations are shown in S3 Table). These conditions pri-

marily select for phytoplankton with high abilities to gather nutrients from the environ-

ment [66]. In general, smaller phytoplankton groups are considered to be more capable in

nutrient acquisition than larger ones due to their relatively high S/V ratio [67]. Thus, Peuks

may be the phytoplankton group who could capitalize best on the CO2 fertilization of

photosynthesis under nutrient-limiting conditions since they were superior nutrient

competitors.

2. The second mechanism follows the same underlying logic as described in the first one but

takes a pH dependency of remineralization rather than a CO2 dependency of photosynthe-

sis into account. Previous OA studies with auto- and heterotrophic bacteria reported accel-

erated rates of extracellular enzymes involved in organic matter remineralization under low

pH [68–72]. If the same pH dependency also applies for eukaryotic phytoplankton, they

should have an advantage in the extraction of nutrients from organic sources under acidi-

fied conditions. This would be once more particularly beneficial for picoeukaryotes due to

their increased S/V ratio relative to larger species.

3. The third mechanism we propose is related to the mixotrophic abilities of picoeukaryotes.

Recent field studies revealed the potential of photosynthesizing picoeukaryotes to satisfy

part of their nutrient requirements through phagocytosis of bacteria in oligotrophic regimes

[58,59,73]. CO2 fertilization of photosynthesis in the OA treatment may have raised the

nutrient requirements of Peuks and therefore stimulated grazing on bacteria. This hypothe-

sis is supported by the abundance ratio of Peuks to heterotrophic bacteria which was signifi-

cantly elevated under high CO2 during the picoeukaryote bloom under inorganic nutrient

deplete conditions in phase III (S3 Fig). This antagonistic pattern was also observed in a

previous mesocosm study in oligotrophic post-bloom conditions [74]. It has been hypothe-

sized that bacterivory by mixotrophs can serve as alternative nutrient source when inor-

ganic nutrients are limiting and simultaneously weaken heterotrophic bacteria as nutrient

competitors [75]. Indeed, laboratory experiments with mixotrophic phytoplankton showed

that photosynthesizing cells can adjust phagotrophic rates to changing nutrient concentra-

tion and/or light intensity in order to sustain optimal nutrient supply [48,76]. Thus, it is

possible that such an adjustment of phagotrophic rates also occurs when the nutrient

demand of Peuks is altered by changing carbonate chemistry.

Another noticeable positive CO2 effect on Peuk abundance was observed later in the experi-

ment during phase IV (around day 90; Fig 3J). This Peuk bloom was different to the previous

ones in that it was dominated by Chlorophyceae and not Prasinophyceae. Accordingly, the

positive CO2 effect on picoeukaryotes seems to be related to their size and their role in the

food web rather than on their taxonomic classification.

The positive effect of end-of-the-century CO2 partial pressures on picoeukaryote abun-

dance is a strikingly consistent result in ocean acidification studies with plankton communities

[7]. This has been shown from eutrophic to oligotrophic regimes [41,60], from high to lower

latitudes [35,37,77], from winter to summer [this study], and from marine to freshwater envi-

ronments [78,79]. Other climate change related consequences such as ocean warming, fresh-

ening, and enhanced stratification also seem to favor picoeukaryotes [80–83]. Thus, multiple
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evidences from different studies and different climate change related drivers strongly suggest

that the proliferation of picoeukaryotes in the future ocean is likely.

Supporting information

S1 Table. Pigment to chlorophyll a (chla) ratios of input (F0) and output (F1) matrices

from the CHEMTAX analysis. Chlorophyll c3/chla (chlc3), Chlorophyll c2/chla (chlc2),

Peridinin/chla (Peri), 19-Butanoyloxyfucoxanthin/chla (19-But), Fucoxanthin/chla (Fuco),

Neoxanthin/chla (Neox), Prasinoxanthin/chla (Prasino), Violaxanthin/chla (Viola), 19-Hexa-

noyloxyfucoxanthin/chla (19-Hex), Diadinoxanthin/chla (Diadino), Alloxanthin/chla (Allox),

Diatoxanthin/chla (Diatox), Lutein/chla (Lutein), chlorophyll b/chla (chlb).

(XLSX)

S2 Table. List of species identified by means of light microscopy.

(XLSX)

S3 Table. Average inorganic nutrient concentrations during each phase. The inorganic

nutrient development is was similar in all mesocosms [12] so that the averages shown here

include all mesocosms. A graphical representation of the inorganic nutrient dataset as well as

the analytical methodology is provided in the overview paper [12] accompanying this study.

Phase I = day -2–16; phase II = day 17–40; phase III = day 41–77; phase IV = day 78–111.

(XLSX)

S1 Fig. Gating strategy in the flow cytometer analysis. Plots A–C and E–G show the gates for

Peuks and Nano I–IV in mesocosm 4 (A = day -1, B = day 35, C = day 93) and mesocosm 10

(E = day -1, F = day 35, G = day 93). Please note that gates were adjusted in the course of the

experiments to account for changing population appearances (section 2.2). Plots D and H

show the gates of Synechococcus and Crypto populations, respectively. These gates remained

unchanged during the entire study.

(PDF)

S2 Fig. Generalized additive mixed-effect model (GAMM) results. The blue and red lines

are fitted GAMMs with the shaded areas representing confidence intervals. CO2 effects were

detected when both a red and a blue line are present in the plots. A blue line is always present

meaning that time always had a significant effect on the trends. Blue and red dots are underly-

ing raw data from 5 control and 5 high CO2mesocosms, respectively. A summary on the

GAMM results is provided in Table 1.

(TIFF)

S3 Fig. Development of picoeukaryotes and bacteria abundance relative to each other. Red

and blue lines show the average of five high and five ambient CO2mesocosms, respectively.

Shaded areas represent standard deviations from means. Vertical grey lines (Roman numbers

I to IV) separate the four experimental phases. (A) Peuk abundance (same as in Fig 3B). (B)

Bacteria abundance. (C) Peuk to bacteria abundance ratio. Statistical significance was detected

in all three datasets by means of GAMM (Peuk abundance R2
adj. = 0.71, bacteria abundance

R2
adj. = 0.72, Peuk/bacteria ratio R2

adj. = 0.76).

(TIF)
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microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc
Lond B Biol Sci. 2010; 365: 2137–2149. https://doi.org/10.1098/rstb.2010.0045 PMID: 20513721

83. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC. Smallest algae thrive as the Arctic Ocean freshens.
Science. 2009; 326: 539. https://doi.org/10.1126/science.1179798 PMID: 19900890

Influence of high CO2 on coastal phytoplankton succession

PLOSONE | https://doi.org/10.1371/journal.pone.0188198 November 30, 2017 22 / 22

https://doi.org/10.3354/ame01633
https://doi.org/10.5194/bg-10-567-2013
https://doi.org/10.1111/j.1574-6941.2011.01253.x
http://www.ncbi.nlm.nih.gov/pubmed/22092954
https://doi.org/10.5194/bg-14-1-2017
https://doi.org/10.1007/s00248-014-0543-x
http://www.ncbi.nlm.nih.gov/pubmed/25482369
https://doi.org/10.5194/bg-10-719-2013
https://doi.org/10.5194/bg-10-719-2013
https://doi.org/10.1071/MF14353
https://doi.org/10.1071/MF14353
https://doi.org/10.1111/j.1462-2920.2012.02762.x
https://doi.org/10.1111/j.1462-2920.2012.02762.x
http://www.ncbi.nlm.nih.gov/pubmed/22591022
https://doi.org/10.1002/lno.10049
https://doi.org/10.1111/brv.12266
http://www.ncbi.nlm.nih.gov/pubmed/27028628
https://doi.org/10.1098/rstb.2010.0045
http://www.ncbi.nlm.nih.gov/pubmed/20513721
https://doi.org/10.1126/science.1179798
http://www.ncbi.nlm.nih.gov/pubmed/19900890
https://doi.org/10.1371/journal.pone.0188198

