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1. Introduction 

Fractional-order calculus is an area of mathematics that deals with derivatives and 
integrals from non-integer orders. In other words, it is a generalization of the traditional 
calculus that leads to similar concepts and tools, but with a much wider applicability. In 
the last two decades, fractional calculus has been rediscovered by scientists and engineers 
and applied in an increasing number of fields, namely in the area of control theory. The 
success of fractional-order controllers is unquestionable with a lot of success due to 
emerging of effective methods in differentiation and integration of non-integer order 
equations. 
Fractional-order proportional-integral-derivative (FOPID) controllers have received a 
considerable attention in the last years both from academic and industrial point of view. In 
fact, in principle, they provide more flexibility in the controller design, with respect to the 
standard PID controllers,because they have five parameters to select (instead of three). 
However, this also implies that the tuning of the controller can be much more complex. In 
order to address this problem, different methods for the design of a FOPID controller have 
been proposed in the literature. 
The concept of FOPID controllers was proposed by Podlubny in 1997 (Podlubny et al., 
1997; Podlubny, 1999a). He also demonstrated the better response of this type of 
controller, in comparison with the classical PID controller, when used for the control of 
fractional order systems. A frequency domain approach by using FOPID controllers is 
also studied in (Vinagre et al., 2000). In (Monje et al., 2004), an optimization method is 
presented where the parameters of the FOPID are tuned such that predefined design 
specifications are satisfied. Ziegler-Nichols tuning rules for FOPID are reported in 
(Valerio & Costa, 2006). Further research activities are runnig in order to develop new 
tuning methods and investigate the applications of FOPIDs. In (Jesus & Machado, 2008) 
control of heat diffusion system via FOPID controllers are studied and different tuning 
methods are applied. Control of an irrigation canal using rule-based FOPID is given in 
(Domingues, 2010). In (Karimi et al., 2009) the authors applied an optimal FOPID  
tuned by Particle Swarm Optimzation (PSO) algorithm to control the Automatic  
Voltage Regulator (AVR) system. There are other papers published in the recent  
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years where the tuning of FOPID controller via PSO such as (Maiti et al., 2008) was 
investigated.  
More recently, new tuning methods are proposed in (Padula & Visioli, 2010a). Robust 
FOPID design for First-Order Plus Dead-Time (FOPDT) models are reported in (Yeroglu et 
al., 2010). In (Charef & Fergani, 2010 ) a design method is reoported, using the impulse 
response. Set point weighting of FOPIDs are given in (Padula & Visioli, et al., 2010b). 
Besides, FOPIDs for integral processes in (Padula & Visioli, et al., 2010c), adaptive design for 
robot manipulators in (Delavari et al., 2010) and loop shaping design in (Tabatabaei & Haeri, 
2010) are studied.  
The aim of this chapter is to study some of the well-known tuning methods of FOPIDs 
proposed in the recent literature. In this chapter, design of FOPID controllers is presented 
via different approaches include optimization methods, Ziegler-Nichols tuning rules, and 
the Padula & Visioli method. In addition, several interesting illustrative examples are 
presented. Simulations have been carried out using MATLAB via Ninteger toolbox (Valerio 
& Costa, 2004). Thus, a brief introduction about the toolbox is given.  
The rest of this chapter is organized as follows: In section 2, basic definitions of fractional 
calculus and its frequency domain approximation is presented. Section 3 introduces the 
Ninteger toolbox. Section 4 includes the basic concepts of FOPID controllers. Several design 
methods are presented in sections 5 to 8 and finally, concluding remarks are given in  
section 9. 

2. Fractional calculus 

In this section, basic definitions of fractional calculus as well as its approximation method is 
given. 

2.1 Definitions 
The differintegral operator, denoted by q

a tD , is a combined differentiation-integration 
operator commonly used in fractional calculus. This operator is a notation for taking both 
the fractional derivative and the fractional integral in a single expression and is defined  
by  
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Where q is the fractional order which can be a complex number and  a and t are the limits of 
the operation. There are some definitions for fractional derivatives. The commonly used 
definitions are Grunwald–Letnikov, Riemann–Liouville, and Caputo definitions (Podlubny, 
1999b). The Grunwald–Letnikov definition is given by 

 


    
        


-qq N-1

jq
a t q N

j=0

qd f(t) t - a t - a
D f(t) = = lim (-1) f(t - j )

jd(t - a) N N  (2) 
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The Riemann–Liouville definition is the simplest and easiest definition to use. This 
definition is given by 

 
tq n

q n-q-1
a t q n

0

d f(t) 1 d
D f(t) = = (t - τ) f(τ)dτ

d(t - a) Γ(n - q) dt
 (3) 

where n is the first integer which is not less than q i.e. n - 1 q < n  and Γ  is the Gamma 

function. 

 


 z-1 -t

0

Γ(z) = t e dt  (4) 

For functions f(t) having n continuous derivatives for t 0 where n - 1 q < n ,  

the Grunwald–Letnikov and the Riemann–Liouville definitions are equivalent. The  
Laplace transforms of the Riemann–Liouville fractional integral and derivative are given as 
follows: 

    
n-1

q q q-k-1k
0 t 0 t

k=0

L D f(t) = s F(s) - s D f(0) n - 1 < q n N  (5) 

Unfortunately, the Riemann–Liouville fractional derivative appears unsuitable to be treated 
by the Laplace transform technique because it requires the knowledge of the non-integer 
order derivatives of the function at t = 0 . This problem does not exist in the Caputo 
definition that is sometimes referred as smooth fractional derivative in literature. This 
definition of derivative is defined by  
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 (6) 

where m is the first integer larger than q. It is found that the equations with Riemann–
Liouville operators are equivalent to those with Caputo operators by homogeneous  
initial conditions assumption. The Laplace transform of the Caputo fractional derivative  
is 

    
n-1

q q q-k-1 (k)
0 t

k=0

L D f(t) = s F(s) - s f (0) n - 1 < q n N  (7) 

Contrary to the Laplace transform of the Riemann–Liouville fractional derivative, only 
integer order derivatives of function f are appeared in the Laplace transform of the Caputo 
fractional derivative. For zero initial conditions, Eq. (7) reduces to 

  q q
0 tL D f(t) = s F(s)  (8) 

In the rest of this paper, the notation qD , indicates the Caputo fractional derivative. 
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2.2 Approximation methods 
The numerical simulation of a fractional differential equation is not simple as that of an 
ordinary differential equation. Since most of the fractional-order differential equations do 
not have exact analytic solutions, so approximation and numerical techniques must be used. 
Several analytical and numerical methods have been proposed to solve the fractional-order 
differential equations. The method which is considered in this chapter is based on the 
approximation of the fractional-order system behavior in the frequency domain. To simulate 
a fractional-order system by using the frequency domain approximations, the fractional 
order equations of the system is first considered in the frequency domain and then Laplace 
form of the fractional integral operator is replaced by its integer order approximation. Then 
the approximated equations in frequency domain are transformed back into the time 
domain. The resulted ordinary differential equations can be numerically solved by applying 
the well-known numerical methods. 
One of the best-known approximations is due to Oustaloup and is given by (Oustaloup, 
1991) 

 
N

q zn

n=1

pn

s1 +
ω

s = k q > 0
s1 +
ω

 (9) 

The approximation is valid in the frequency range l h[ω ,ω ] ; gain k is adjusted so that the 

approximation shall have unit gain at 1 rad/sec; the number of poles and zeros N is chosen 
beforehand (low values resulting in simpler approximations but also causing the 
appearance of a ripple in both gain and phase behaviours); frequencies of poles and zeros 
are given by  

 
q

h N

l

ωα = ( )
ω  (10) 

 
1-q

h N

l

ωη = ( )
ω  (11) 

 z1 lω = ω η  (12) 

 zn p,n-1ω = ω η, n = 2,...,N  (13) 

 pn z,n-1ω = ω α, n = 1,...,N  (14) 

The case q < 0  may be dealt with inverting (9). 

In Table 1, approximations of q1 s have been given for  q 0.1,0.2,...,0.9 with maximum 

discrepancy of 2 dB within (0.01, 100) rad/sec frequency range (Ahmad & Sprott,  
2003). 
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q Approximated transfer function 

0.1 
1584.8932(s + 0.1668)(s + 27.83)

(s + 0.1)(s + 16.68)(s + 2783)
 

0.2 
79.4328(s + 0.05623)(s + 1)(s + 17.78)

(s + 0.03162)(s + 0.5623)(s + 10)(s + 177.8)
 

0.3 
39.8107(s + 0.0416)(s + 0.3728)(s + 3.34)(s + 29.94)

(s + 0.02154)(s + 0.1931)(s + 1.73)(s + 15.51)(s + 138.9)
 

0.4 
35.4813(s + 0.03831)(s + 0.261)(s + 1.778)(s + 12.12)(s + 82.54)

(s + 0.01778)(s + 0.1212)(s + 0.8254)(s + 5.623)(s + 38.31)(s + 261)
 

0.5 
15.8489(s + 0.03981)(s + 0.2512)(s + 1.585)(s + 10)(s + 63.1)

(s + 0.01585)(s + 0.1)(s + 0.631)(s + 3.981)(s + 3.981)(s + 25.12)(s + 158.5)
 

0.6 
10.7978(s + 0.04642)(s + 0.3162)(s + 2.154)(s + 14.68)(s + 100)
(s + 0.01468)(s + 0.1)(s + 0.631)(s + 4.642)(s + 31.62)(s + 215.4)

 

0.7 
9.3633(s + 0.06449)(s + 0.578)(s + 5.179)(s + 46.42)(s + 416)

(s + 0.01389)(s + 0.1245)(s + 1.116)(s + 10)(s + 89.62)(s + 803.1)
 

0.8 
5.3088(s + 0.1334)(s + 2.371)(s + 42.17)(s + 749.9)

(s + 0.01334)(s + 0.2371)(s + 4.217)(s + 74.99)(s + 1334)
 

0.9 
2.2675(s + 1.292)(s + 215.4)

(s + 0.01292)(s + 2.154)(s + 359.4)
 

Table 1. Approximation of q1 s for different q values 

3. The Ninteger toolbox 

Ninteger is a toolbox for MATLAB intended to help developing fractional-order controllers 
and assess their performance. It is freely downloadable from the internet and implements 
fractional-order controllers both in the frequency and the discrete time domains. This 
toolbox includes about thirty methods for implementing approximations of fractional-order 
and three identification methods. The Ninteger toolbox allow us to implement, simulate and 
analyze FOPID controllers easily via its functions. In the rest of this chapter, all the 
simulation studies have been carried out using the Ninteger toolbox. 
In order to use this toolbox in our simulation studies, the function nipid is suitable for 
implementing FOPID controllers. The toolbox allow us to implement this function either 
from command window or SIMULINK. In order to use SIMULINK, a library is provided called 
Nintblocks. In this library, one can find the Fractional PID block which implements FOPID 
controllers. We can specify the following parameters of a FOPID via nipid function or 
Fractional PID block: 
 proportional gain 
 derivative gain 
 fractional derivative order 
 integral gain  
 fractional integral order  
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 bandwidth of frequency domian approximation 
 number of zeros and poles of the approximation  
 the approximating formula 
It was pointed out in (Oustaloup et al., 2000) that a band-limit implementation of fractional 
order controller is important in practice, and the finite dimensional approximation of the 
fractional order controller should be done in a proper range of frequencies of practical 
interest. This is true since the fractional order controller in theory has an infinite memory 
and some sort of approximation using finite memory must be done. 
In the simulation studies of this chapter, we will use the Crone method within the frequency 
range (0.01, 100) rad/s and the number of zeros and poles are set to 10. 

4. Fractional-order Proportional-Integral-Derivative controller  

The most common form of a fractional order PID controller is the ǍǌPI D controller 
(Podlubny, 1999a), involving an integrator of order ǌ and a differentiator of order Ǎ where ǌ 
and Ǎ can be any real numbers. The transfer function of such a controller has the form 

 Ǎ
c P I Dǌ

U(s) 1
G (s) = = k + k + k s , (ǌ,Ǎ > 0)

E(s) s
 (15) 

where Gc(s) is the transfer function of the controller, E(s) is an error, and U(s) is controller’s 
output. The integrator term is 1 ǌs , that is to say, on a semi-logarithmic plane, there is a line 
having slope -20ǌ dB/decade. The control signal u(t) can then be expressed in the time 
domain as 

 Ǎ-ǌ
P I Du(t) = k e(t) + k D e(t) + k D e(t)  (16) 

Fig. 1 is a block-diagram configuration of FOPID. Clearly, selecting ǌ = 1 and Ǎ = 1, a 
classical PID controller can be recovered. The selections of ǌ = 1, Ǎ = 0, and ǌ = 0, Ǎ = 1 
respectively corresponds conventional PI & PD controllers. All these classical types of PID 
controllers are the special cases of the fractional ǍǌPI D  controller given by (15).  
 

qs

1 qs

Pk

Dk

Ik


E(s) U(s)Proportional Action

Derivative Action

Integral Action

 
Fig. 1. Block-diagram of FOPID 

It can be expected that the ǍǌPI D  controller may enhance the systems control performance. 
One of the most important advantages of the ǍǌPI D  controller is the better control of 
dynamical systems, which are described by fractional order mathematical models. Another 
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advantage lies in the fact that the ǍǌPI D  controllers are less sensitive to changes of 
parameters of a controlled system (Xue et al., 2006). This is due to the two extra degrees of 
freedom to better adjust the dynamical properties of a fractional order control system. 
However, all these claimed benefits were not systematically demonstrated in the literature. 
In the next sections, different design methods of FOPID controllers are discussed. In all 
cases, we considered the unity feedback control scheme depicted in Fig.2.   
 

E(s)  G(s)G (s)c
R(s)

D(s)

Y(s)

 
Fig. 2. The considered control scheme; G(s) is the process, Gc(s) is the FOPID controller, R(s) 
is the reference input, E(s) is the error, D(s) is the disturbance and Y(s) is the output 

5. Tuning by minimization 

In (Monje et al., 2004) an optimization method is proposed for tuning of FOPID controllers. 
The analytic method, that lies behind the proposed tuning rules, is based on a specified 
desirable behavior of the controlled system. We start the section with basic concepts of this 
design method, and then control pH neutralization process is presented as an illustrative 
example. 

5.1 Basic concepts 
In this method, the desirable dynamics is described by the following criteria: 
1. No steady-state error: 
Properly implemented a fractional integrator of order k +ǌ, k ∈ N, 0 < ǌ < 1, is, for         
steady-state error cancellation, as efficient as an integer order integrator of order    k + 1. 
2. The gain-crossover frequency cgω  is to have some specified value 

 c cg cgG (jω )G(jω ) = 0 dB  (17) 

3. The phase margin mφ  is to have some specified value 

  m c cg cg-π +φ = arg G (jω )G(jω )  (18) 

4. So as to reject high-frequency noise, the closed loop transfer function must have a small 
magnitude at high frequencies; thus it is required that at some specified frequency tω  
its magnitude be less than some specified gain 

   c
t

c

G (jω)G(jω)
T(jω) = < A dB ω ω T(jω) = A dB

1 + G (jω)G(jω)
 (19) 
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5. So as to reject output disturbances and closely follow references, the sensitivity function 
must have a small magnitude at low frequencies; thus it is required that at some 
specified frequency sω  its magnitude be less than some specified gain 

   s

c

1
S(jω) = < B dB ω ω S(jω) = B dB

1 + G (jω)G(jω)
 (20) 

6. So as to be robust in face of gain variations of the plant, the phase of the open-loop 
transfer function must be (at least roughly) constant around the gain-crossover 
frequency 

  c ω=ωcg
d

arg G (jω)G(jω) | = 0
dω

 (21) 

A set of five of these six specifications can be met by the closed-loop system, since the 
FOPID has five parameters to tune. The specifications 2-6 yield a robust performance of the 
controlled system against gain changes and noise and the condition of no steady-state error 
is fulfilled just with the introduction of the fractional integrator properly implemented, as 
commented before. 
In (Monje et al., 2004), the use of numerical optimization techniques is proposed to satisfy 
the specifications 2-6. Motivated from the fact that the complexity of a set of five nonlinear 
equations (17-21) with five unknown parameters (kP, kI, kD, ǌ and Ǎ) is very significant, the 
optimization toolbox of MATLAB has been used to reach out the better solution with the 
minimum error. The function used for this purpose is called fmincon, which finds the 
constrained minimum of a function of several variables. In this case, the specification in    
Eq. (17) is taken as the main function to minimize, and the rest of specifications (18-21) are 
taken as constrains for the minimization, all of them subjected to the optimization 
parameters defined within the function fmincon. 

5.2 Example: pH neutralization process 
The pH dynamic model of a real sugar cane raw juice neutralization process can be 
modelled by the following FOPDT dynamic: 

 
-s0.55e

G(s) =
62s + 1

 (22) 

Assume that the design specifications are as follows: 
 Gain crossover frequency cgω = 0.08  

 Phase margin mφ = 0.44π  
 Robustness to variations in the gain of the plant must be fulfilled. 
    tT(jω) -20 dB, ω ω = 10 rad/sec 

    sS(jω) -20dB, ω ω = 0.01 rad/sec 

Using the function fmincon, the FOPID controller to control the plant is 

 c
0.0150

0.9646
0.2299

G (s) = 7.9619 + + 0.1594 s
s

 (23) 
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Simulation block-diagram of the system is depicted in Fig. 3 and the step response of the 
closed-loop system is illustrated in Fig. 4. 
 

 
Fig. 3. Simulation block-diagram for control of pH neutralization process 
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Fig. 4. Step responses of closed loop and open loop pH neutralization process 
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Fig. 5. Bode plot of pH neutralization process 
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As shown in the Fig.4 the closed loop step response has no steady state error and a fulfilling 
rise time in the comparison of the open loop response. In order to evaluate the effect of 
FOPID in frequency response of the process, let us consider Fig.5 as bode plot of the open 
loop pH neutralization process. The diagram is provided via “Control System Toolbox” of 
MATLAB. The bode diagram of the FOPID defined in (23) is also depicted in Fig. 6 and 
finally, the bode plot of cG(s)G (s) is depicted in Fig. 7. 
 

 
Fig. 6. Bode plot of FOPID controller designed for pH neutralization process 
 

 
Fig. 7. Bode plot of pH neutralization process when the controller is applied 

6. Ziegler-Nichols type tuning rules  

In the previous section, a tuning method based on optimization techniques is proposed. The 
method is effective but allows local minima to be obtained. In practice, most solutions found 
with this optimization method are good enough, but they strongly depend on initial 
estimates of the parameters provided. Some may be discarded, because they are unfeasible 
or lead to unstable loops, but in many cases it is possible to find more than one acceptable 
FOPID. In others, only well-chosen initial estimates of the parameters allow finding a 
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solution. Motivated from the fact that the optimization techniques depend on initial 
estimates, Valerio and Costa have introduced some Ziegler-Nichols-type tuning rules for 
FOPIDs. In this section, we will explain these tuning rules, and two illustrative examples 
will be presented. These tuning rules are applicable only for systems that have S-shaped 
step response. The simplest plant to have S-shaped step response can be described by 

 ( )
1

sLK
G s e

Ts



 (24) 

Valerio and Costa have employed the minimisation tuning method to plants given by (24) 
for several values of L and T, with K = 1. The parameters of FOPIDs thus obtained vary in a 
regular manner. Having translated the regularity into formulas, some tuning rules are 
obtained for particular desired responses. 

6.1 First set of tuning rules  
A first set of rules is given in Tables 2 and 3. These are to be read as  

 2 2P = -0.0048 + 0.2664L + 0.4982T + 0.0232L - 0.0720T - 0.0348TL  (25) 

and so on. They may be used if   0.1 T 50, L 2 and were designed for the following 
specifications: 
 cgω = 0.5 rad/sec 

 mφ = 2 / 3 rad 
 tω = 10 rad/sec 
 sω = 0.01 rad/sec 
 A = -10 dB  
 B = -20 dB 
 

 kP kI ǌ kD Ǎ 
1 -0.0048 0.3254 1.5766 0.0662 0.8736 
L 0.2664 0.2478 -0.2098 -0.2528 0.2746 
T 0.4982 0.1429 -0.1313 0.1081 0.1489 
L2 0.0232 -0.1330 0.0713 0.0702 -0.1557 
T2 -0.0720 0.0258 0.0016 0.0328 -0.0250 
LT -0.0348 -0.0171 0.0114 0.2202 -0.0323 

Table 2. Parameters for the first set of tuning rules when  0.1 T 5  
 

 kP kI ┣ kD ┤ 

1 2.1187 -0.5201 1.0645 1.1421 1.2902 
L -3.5207 2.6643 -0.3268 -1.3707 -0.5371 
T -0.1563 0.3453 -0.0229 0.0357 -0.0381 
L2 1.5827 -1.0944 0.2018 0.5552 0.2208 
T2 0.0025 0.0002 0.0003 -0.0002 0.0007 
LT 0.1824 -0.1054 0.0028 0.2630 -0.0014 

Table 3. Parameters for the first set of tuning rules when  5 T 50  
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6.2 Second set of tuning rules  
A second set of rules is given in Table 4. These may be applied for 0.1  T  50 and L 0.5 . 
Only one set of parameters is needed in this case because the range of values of L these rules 
cope with is more reduced. They were designed for the following specifications: 
 cgω = 0.5 rad/sec 

 mφ = 1 rad 

 tω = 10 rad/sec 

 sω = 0.01  rad/sec 

 A = -20  dB  
 B = -20 dB 
 

 kP kI ┣ kD ┤ 

1 -1.0574 0.6014 1.1851 0.8793 0.2778 
L 24.5420 0.4025 -0.3464 -15.0846 -2.1522 
T 0.3544 0.7921 -0.0492 -0.0771 0.0675 
L2 -46.7325 -0.4508 1.7317 28.0388 2.4387 
T2 -0.0021 0.0018 0.0006 -0.0000 -0.0013 
LT -0.3106 -1.2050 0.0380 1.6711 0.0021 

Table 4. Parameters for the second set of tuning rules 

6.3 Example: High-order process control 
Consider the following high-order process 

 
 4

1
( )

1
G s

s



 (26) 

The transfer function of the process is not on the form of FOPDT. In order to control the 
process via FOPID, let us approximate the process by a FOPDT model. The process can be 
approximated by the following model (see (Astrom & Hagglund, 1995)) 

 21
( )

2 1
sG s e

s



 (27) 

where K=1, L=2 and T=2. Fig.8 shows the step response of the process (26) and its 
approximated model. As we see, the model can approximate the process with satisfying 
accuracy. The step response of the process is of S-shaped type and we can use the Ziegler-
Nichols type tuning rules for our FOPID controller.  
Using the first set of tuning rules, one can obtain the following FOPID controller. 

 0.8686
1.2316

1
( ) 1.1900 0.6096 1.0696cG s s

s
    (28) 

The closed step response of the system is depicted in Fig. 9.  
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Fig. 8. Step response of the process and its approximated model 
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Fig. 9. Step response of high order process controlled by FOPID 

6.4 Example: Non-minimum phase process control 
When the transfer function of a process is not a FOPDT model, an approximated FOPDT 
model can be developed; this fact was shown in the previous example. Here, we consider a 
Non-Minimum phase process. We need to approximate a FOPDT model in order to use 
Ziegler-Nichols tuning rules. The following non-minimum phase process is considered 

 
  

1
( )

0.5 2

s
G s

s s




 
 (29) 

The process can be approximated by the following model 
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 1.71
( )

1.8 1
sG s e

s



 (30) 

The step response of the transfer function (30) is compared with the process (29) and 
depicted in Fig. 10. As we see, the FOPDT model of the process presents a good accuracy. 
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Fig. 10. Step response of the process and its approximated model 

After having approximated the process with a FOPDT transfer function, application of the 
first set of tuning rules gives the following FOPID controller  

 0.9786
1.2297

1
( ) 1.0721 0.6508 0.8140cG s s

s
    (31) 

while the step response of the closed loop control system for set point and is depicted in Fig. 11. 
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Fig. 11. Step response of non-minimum phase process controlled by FOPID 
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7. The Padula & Visioli method 

In (Padula & Visioli, 2010a), a new set of tuning rules are presented for FOPID controllers. 
Based on FOPDT models, the tuning rules have been devised in order to minimise the 
integrated absolute error with a constraint on the maximum sensitivity. In this section, the 
tuning rules are presented and then the problem of heat exchanger temperature is given. 

7.1 Tuning rules 
Let us consider a process defined by FOPDT model as one given by Eq. (24). The process 
dynamics can be conveniently characterised by the normalised dead time and defined as 

 
Lτ =

L + T
 (32) 

which represents a measure of difficulty in controlling the process. The proposed tuning 
rules are devised for values of the normalised dead time in the range 0.05 0.8 τ . In fact, 
for values of 0.05τ the dead time can be virtually neglected and the design of a controller 
is rather trivial, while for values of 0.8τ the process is significantly dominated by the dead 
time and therefore a dead time compensator should be employed. By the methodology 
developed in (Padula & Visioli, 2010a), the FOPID controller is modeled by the following 
transfer function 

 1 1

1

i d
c p

di

K s K s
KK s s
N

 




 


G (s) = K  (33) 

The major difference of FOPID defined by (33) with the standard form of FOPID defined by 
(15) is that an additional first-order filter has been employed in (33) in order to make the 
controller proper. The parameter N is chosen as (Ǎ-1)N = 10T . The performance index is 
integrated absolute error which is defined as follows 

  


0IAE = e t dt  (34) 

Using Eq.(34) as performance index yields a low overshoot and a low settling time at the 
same time (Shinskey, 1994). The maximum sensitivity (Astrom and Hagglund, 1995) is 
defined as 

 
  
 
  

s

c

1
M = max

1 + G (s)G(s)
 (35) 

which represents the inverse of the maximum distance of the Nyquist plot from the critical 
point (-1,0). Obviously, the higher value of sM  yields the less robustness against 
uncertainties. Tuning rules are devised such that the typical values of sM  = 1.4 and          

sM  = 2.0 are achieved. If only the load disturbance rejection task is addressed, we have 

  b
p

1
K = aτ + c

K
 (36) 
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  
     

b

i

L
K = T a + c

T
 (37) 

 
  
     

b

d

L
K = T a + c

T
 (38) 

where the values of the parameters are shown in Tables 5-8. 
 

 a b c 

kP 0.2776 -1.097 -0.1426 
kD 0.6241 0.5573 0.0442 
kI 0.4793 0.7469 -0.0239 

Table 5. Tuning rules for kP, kD and kI when sM  = 1.4 

 
┣ ┤ 

1 

1.0 if 0.1τ <  
1.1 if 0.40.1 τ <  

1.2 if 0.4  τ  

Table 6. Tuning rules for ǌ and Ǎ when sM  = 1.4 

 
 a b c 

kP 0.164 -1.449 -0.2108 
kD 0.6426 0.8069 0.0563 
kI 0.5970 0.5568 -0.0954 

Table 7. Tuning rules for kP, kD and kI when sM  = 2.0 

 
┣ ┤ 

1 

1.0 if 0.2τ <  
1.1 if 0.60.2 τ <  

1.2 if 0.6  τ  

Table 8. Tuning rules for ǌ and Ǎ when sM  = 2.0 

7.2 Example: Heat exchanger temperature control 
A chemical reactor called "stirring tank" is depicted in Fig. 12. The top inlet delivers liquid to 
be mixed in the tank. The tank liquid must be maintained at a constant temperature by 
varying the amount of steam supplied to the heat exchanger (bottom pipe) via its control 
valve. Variations in the temperature of the inlet flow are the main source of disturbances in 
this process. 
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Fig. 12. Stirring Reactor with Heat Exchanger 

The process can be modelled adequately by FOPDT models as shown in the Fig. 13. 
 

 
Fig. 13. Open loop process model 

The transfer function 

 
-14.7se

G(s) =
21.3s + 1

 (38) 

models how a change in the voltage V driving the steam valve opening effects the tank 
temperature T, while the transfer function 

 d

-35se
G (s) =

25s + 1
 (39) 

models how a change d in inflow temperature affects T.  
The control problem is to regulate tank temperature T around a given setpoint. From         
Eq. (32), the normalized dead-time of the process (38) is obtained as 0.4083 which implies 
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that we can utilize the proposed tuning rules. From tuning table 5 and 6, the following 
FPOID can be obtained for the case of sM  = 1.4 

 
1.2

1.21
11.7527 1 7.2300 1

11.7527 0.3923 1c

s s

s s

 


G (s) = 0.3511  (40) 

And for the case of sM  = 2, from tables 7 and 8 we have    

 
1.1

1.12
11.3467 1 8.3116 1

11.3467 0.4509 1c

s s

s s

 


G (s) = 0.1400  (41) 

Simulation results are presented in Fig. 14. It is assumed that a load disturbance is applied at 
t=500 seconds, and the disturbance rejection of both controllers are verified. Simulations 
also show that the transient states of both controllers are approached. 

9. Conclusion 

In this chapter, some of the well-known tuning methods of FOPID controllers are presented 
and several illustrative examples, verifying the effectiveness of the methods are given. 
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Fig. 13 Closed response of heat exchanger system and disturbance rejection of controllers     
(a) 1cG (s) (b) 2cG (s)  

Simulations have been carried out using MATLAB/SIMULINK software via Ninteger 
toolbox. After discussion on fractional calculus and its approximation methods, the Ninteger 
toolbox is introduced briefly. Then optimization methods, Ziegler-Nichols tuning rules and 
a new tuning method were introduced. We have considered control of pH neutralization 
process, high-order process, Non-Minimum phase process and temperature control of heat 
exchanger as case studies. In spite of extensive research, tuning the parameters of a FOPID 
controller remains an open problem. Other analytical methods and new tuning rules may be 
further studied. 
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