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Abstract

Nanowires (NWs), due to their unique highly anisotropic characteristics, hold a great prom-
ise to be used in wide technological fields, such as building blocks for data storage and 
memory, advanced scanning probes, and biotechnological applications. In addition, given 
the high sensitivity to their environment, NWs can be used as sensor for a number of appli-
cations. The fabrication and electrical characterization of NW‐based devices can be achieved 
after proper placing of NWs between electrodes, which represents one of the major chal-
lenges in this field. The dielectrophoresis (DEP) method can be used to trap electrically neu-
tral NWs by the application of an alternating electric field between a pair of electrodes. Here, 
we present a systematic study of DEP parameters as well as electrodes geometry for NW 
deposition. This method presents a suitable protocol for deposition in a useful and coherent 
fashion of post‐growth electrodeposited NWs and further electrical characterization. This 
can be used for investigation of the fundamental transport properties of individual NWs 
and fabrication of NW‐based devices, such as sensors and field‐effect transistors.

Keywords: nanowire, dielectrophoresis, electrically-induced manipulation, electrical 

characterization

1. Introduction

Nanowires (NWs) represent adequate elements for electronic devices that require ultra‐low 
power consumption, given their low current levels and high sensitivity they usually exhibit 

[1–5]. Their one‐dimensional geometry, as well as unique possibilities for engineering of 
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magnetic, electric and optic properties, make them to be promising nanostructures for a vari-
ety of applications, including chemical and biological sensors [6, 7], field‐effect transistors 
[8], advanced scanning probes and magnetic sensors [9], light‐emitting diodes [10], lasers 

[11] and photodetectors [12, 13]. Furthermore, NWs can be synthesized through a number of 
techniques, such as metal-organic epitaxy [14], focused‐ion‐beam (FIB) [8], focused‐electron‐
beam‐induced deposition (FEBID) [15], electron beam lithography [5] and electrodeposition 

[16, 17], yielding to unique attributes, such as particular crystallographic properties, geom-

etry and axial/coaxial heterostructures [18].

However, despite significant advances that have been made in NWs synthesis and devices 
characterization, post‐growth manipulation and placement of single NWs in a coherent and 
useful fashion remains one of the major challenges to fabricate and study the electrical trans-

port properties of NW‐based devices [19–21], especially the ones made of a single NW. So far, 
numerous techniques have been proposed to realize NW‐based devices from already existing 
NWs assembly, such as atomic force microscopy nanomanipulation [22], Langmuir‐Blodgett 
films [23], fluidic‐directed assembly [24], dry‐transfer printing [25], although with relatively 

low NW yield for precise positioning of functional system [18].

Alternatively, NWs suspended in a dielectric electrolytic solution can be manipulated through 

electric fields [1, 5, 26–31]. When an electrically neutral NW is subjected to a non‐uniform 
electric field, the electric charges redistribution within the NW as well as in the solid‐liquid 
interface builds up an electric dipole moment [32]. Thus, as the Coulomb forces on either sides 
of the dipole can differ in direction and intensity, a net force is exerted on the NW, which is 
known as the dielectrophoretic force [19, 27–32]. The force direction depends on the relative 
polarizabilities of the electrolyte and of the NW, inducing the latter move towards or against 
the region of higher electric field intensity. Such motion of nanoparticles is termed as dielec-

trophoresis (DEP) [19, 20, 26–32]. DEP has a tremendous advantage over the aforementioned 
techniques, as it relies on the possibility of working with NWs of a wide range of conductivities 
as well as arbitrary substrates including those that require low-temperature processing such as 

flexible substrates [18]. Since DEP directly depends on the dielectric properties of the particles 
and diluting medium, as well as the nanoparticles geometry, it allows high process selectivity 

[18, 32]. Moreover, large electrode arrays can be properly defined by lithography such that 
DEP can take place concomitantly in a large number of electrodes, leading to high throughput.

However, to fully realize these capabilities, DEP must be carefully controlled to ensure that 
wires are precisely placed at desired locations. Therefore, it is necessary to determine the rel-
evant parameters that affect DEP experiment and how to control them. In this work, nickel 
nanowires (NiNWs) with length of around 4 µm and 35 nm of diameter, obtained by electro-

deposition into pores of anodized alumina membrane and further dispersed in a dimethyl-
formamide (DMF) electrolytic solution, were manipulated by DEP in order to make electrical 
contact between a pair of electrodes. Electrodes geometry and DEP electrical parameters were 
varied to evaluate the NiNW deposition efficiency by this technique. The materials for NW and 
diluting medium presented in this work were arbitrarily chosen to provide a proof‐of‐concept 
for the reader, though a selection of several NW materials and diluting medium is provided 
as well. In addition, COMSOL simulation supports experimental results on NWs deposition.
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2. Dielectrophoresis

2.1. DEP theory

The electric force induced by non‐uniform electric fields on polarizable and anisotropic 
nanoparticles can be used to properly align and trap individual liquid-suspended nanopar-

ticles at predefined locations of a substrate. This force, termed as the DEP force, uses AC 
electric fields to selectively move neutral nanoparticles (e.g. NiNWs) dispersed in a dielectric 
diluting medium (e.g. DMF) (Figure 1a) [26, 32]. It relies on the polarizability differences 
between the NW and the DMF. The electrodes shape yields to a non‐uniform electric field, 
which is proportional to the applied voltage. It creates a net force on the NW that exceeds the 
viscous force between the NW and the fluid, inducing a preferential NW movement towards 
the electrodes gap (Figure 1b). Although the discussion presented in this work considers only 
NW as example of particles, the analysis also applies to other anisotropic particles such as 
nanotubes, nanorods or sheets.

This force can be expressed by [5, 30, 33]

    F  DEP   =   1 _ 8   π  ϕ   2  L  ε  DMF   Re  {  K }    ∇ |  E   |     2    (1)

where ϕ and L represent, respectively, the NW diameter and length, Re{} is the real term and 

K(ω) the Clausius‐Mossoti factor—or the so‐called complex polarization factor—expressed 
as function of electrical permittivities of NiNW and DMF (respectively,   ε  

NiNW
    and   ε  

DMF
   = 36.7  ε  

0
   , 

where   ε  
0
    is the electrical permittivity of vacuum) [5]:
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Figure 1. (a) Schematic of the DEP experiment. Adapted with permission from [33]. Copyright 2015 by American 

Vacuum Society. (b) DEP mechanism, in which the electric‐field gradient induces attraction forces on the nanowire 
towards the gap between electrodes.
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The imaginary component of the complex permittivity,   ε   *  , depends on the conductivity,  σ , and 

the applied field angular frequency,  ω :

   ε   * (ω) = ε − j   σ __ ω   . (3)

Thus, the real‐term frequency‐dependent factor of the DEP force is given by

   Re{K} =   
 ω   2   (   ε  DMF    ε  

NiNW
     −    ε  DMF  

2   )    +   (   σ  DMF    σ  
NiNW 

   −    σ  DMF  
2   )   
    _________________________________   

 ε  DMF  
2    ω   2  +  σ  DMF  

2  
    . (4)

The complex polarization factor's dependence on the permittivity introduces a relationship 
between the dielectrophoretic force and the frequency of the applied field. Eqs. (5) and (6) 
present the high‐ and low‐frequency limits, respectively:

  ω → ∞   :  Re  {  K }    =   
 ε  

NiNW
     −    ε  DMF   _________  ε  DMF  

    (5)

   ω → 0  :  Re{K} =   
 σ  

NiNW 
   −    σ  DMF   _  σ  DMF  

    . (6)

At the high‐frequency limit, the DEP force is determined by the relative permittivity of the NW 
and the DMF, while at low frequencies the force will be a function of their relative conduc-

tivities. Within this frequency range, the transition between those two regimes is evidenced 
by plotting the DEP force against frequency. Inserting the appropriate NW and diluting liq-

uid electrical conductivities (respectively,   σ  
NiNW

   = 1.4  ×    10   7     Ω   −1    m   −1   and   σ  
DMF

   = 2.5  ×    10   −4    Ω   −1    m   −1  ) in 

Eq. (4), one may calculate the frequency‐dependence of FDEP , where a reduction of DEP force 
is observed for frequencies higher than 100 kHz (Figure 2a).

At 500 kHz and 1 MHz, the force approximately decreases by one and two orders of mag-

nitude, respectively. However, this model does not consider fluid dynamics effects, such as 

Figure 2. (a) Real part of the complex polarization factor (proportional to FDEP), as function of frequency, for NiNW 
diluted in DMF medium, showing force reduction for frequencies above 100 kHz. Adapted with permission from [33]. 

Copyright 2015 by American Vacuum Society. (b) DEP force as function of the ratio between electrodes gap length and 
NW length, showing that the attraction force is maximized in the minimum of the force curve. Adapted with permission 
from [35]. Copyright 2012 by American Chemical Society.
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AC electroosmosis [20]. For the electrostatics parameters of NiNW and DMF, this effect can 
reduce the force for frequencies above 1–10 kHz [19], as will be discussed in the next sec-

tion. Other effects also act on the NW, such as viscous and frictional forces, fluid flow and 
NW‐surface interactions [5, 34]. Therefore, the DEP force needs to overcome those effects in 
order to effectively perform deposition. Additionally, the DEP force will always depend on 
the ratio between the electrodes gap and NW lengths (Figure 2b), as this ratio influences the 
electric field lines density covering the NW and thus the applied torque [35]. The DEP force is 
maximized (attraction force, see in Figure 2b) for a ratio of around 0.8, since the electric field 
gradient and strength effects are the largest for this ratio [36]. For a smaller gap, the DEP force 
decreases because, despite that the electric field applied at the gap centre remains constant, 
it is reduced around the entire NW length. On the other hand, for a larger gap, the DEP force 
also decreases, simply because the electric field around the NW is less intense [5, 35, 36]. In 

this work, for NiNWs length of (4 ± 1) µm, we used a gap length of (2.5 ± 0.3) µm, yielding a 
ratio of (0.6 ± 0.2), which is near the maximum DEP force condition.

Furthermore, Eq. (1) exhibits a quadratic dependence of DEP force with the applied voltage, 
which increases the amount of deposited NWs in the gap region [5, 33]. In this work, we fixed 
the peak‐to‐peak voltage (VPP) to 3 V, since it produces a reasonable DEP force without over-

heating and consequently damaging the NiNWs during DEP process.

Finally, although we have presented DEP analysis for NiNWs dissolved in a DMF solution, 
one might be interested in experiments involving NWs composed of different materials. Thus, 
we present Table 1, which provides an overview of reported parameters from the literature 
that optimizes DEP force.

Nanowire material Medium Potential (V) Frequency (kHz) Electrode gap (µm) Electric field (V µm⁻1)

Au Methanol 0.97 150 2 0.485

Au Methanol 10 >100 2 5

Au-biotin Methanol 0.18 1000 2 0.09

ZnO Ethanol 5 1000 6–10 0.833–0.5

ZnO Ethanol 5 1000 4 1.25

Ag Ethanol 0.1 5 4 0.025

Ag or Au H
2
O or EtOH 0.2 100 30 0.00667

Rh rods Acetone 10 Unknown 5–30 2–0.333

CNTa Acetone 45 Unknown 5–30 9–1.5

p‐Si Benzyl alcohol 110 10 40 2.75

Si IPAb and H
2
O 0.35 0.5 2 0.175

aCNT, carbon nanotube.
bIPA, isopropanol.

Table 1. Overview of optimized parameters reported in literature for DEP alignment of different types of NW (adapted 
from [19]).
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2.2. AC electroosmosis

Under the influence of an AC electric field, electrolytes on planar microelectrodes exhibit 
fluid flow tangential to the electrode surface. The Coulomb force generated from this electric 
field on the solution interfacial charges (Figure 3a) leads to fluid flow along the electrode 
surface away from the gap in a process termed AC electroosmosis [20, 37]. This effect is 
triggered by applying an alternating potential difference of the order of kHz at low volt-
ages (around 1 V) to each pair of electrodes. It has been exploited in microfluidics to pump 
fluids in microcapillaries where surface forces preclude traditional pumping by pressure 
differentials.

The physical mechanism responsible for driving the flow relies on non‐uniformities in the AC 
electric fields at the gap region. They produce an electric force on the surface‐bound interfa-

cial charges, yielding a non‐zero time‐averaged electroosmotic slip velocity at the electrodes 
surface [38]. The AC electroosmotic effect can produce fluid velocities from hundreds of µm/s 
up to a few mm/s in some cases [20, 37]. It should be noted that this fluid flow is distinct from 
the one originated from electro‐thermal effects, which are found at higher frequencies and 
higher electrolyte conductivities [38].

For symmetrical, coplanar microelectrode gaps such as those reported in this work, AC elec-

troosmosis produces fluid flow along the electrode surface directed away from the centre 
of the electrode gap. The average fluid velocity near the electrode surface is given by [20, 

37, 38]

Figure 3. (a) Surface‐bound interfacial charges (spheres), induced by electrodes, interact with the tangential component 
of electric field (curved lines), thus moving the fluid along the electrode surface away from the electrode gap. Field 
lines originating from the positively charged electrode and ending on the negatively charged one represent the force 
experienced by positive charge (negative charge experiences force in opposite direction). This force leads to fluid flow 
along the electrodes away from the gap. Adapted with permission from [20]. Copyright 2007 by American Chemical 

Society. (b) Average velocity of the fluid obtained for V
0
 = 3 VPP for several distances from the electrodes gap centre. Inset: 

Frequency working range utilized in this work, in which the average velocity decreases about two orders of magnitude 
between 100 kHz and 1 MHz for any distance, d.
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where d is the position along the electrodes surface with its origin at the gap centre, V
0
 is the 

applied voltage between electrodes, η = 0.92 mPa s the electrolyte viscosity and the dimen-

sionless frequency Ω is given by

  Ω = ωd   
 ε  DMF   ____  σ  DMF  

     π __ 
2
   κ , (8)

where κ = (15 nm)⁻1 is the reciprocal of electrolyte Debye length for induced double charge 
on the electrodes. Eq. (7) gives a bell‐shaped profile for the frequency dependence of the 
velocity. The average velocity is small at both low and high frequencies. In the former 
case, most of the electric field relies in the interfacial charged layer between the electrode 
and the electrolyte, preventing the tangential field to extend very far into the solution. 
In the latter, the interfacial charged layer is thin because the charged species in the elec-

trolyte are not fast enough to follow the rapidly changing polarities of the electrodes. 
On the contrary, at intermediate frequencies, the velocity can be considerably large [37]. 

Figure 3b shows average velocities of DMF for d = 500 nm, 1 µm, 3 µm and 10 µm from 
the electrodes gap centre, at 3 V. For these DEP conditions, the fluid velocity at the gap 
region will range from a few nanometres to tens of millimetres per second, depending on 
the frequency, which produces additional forces on the NWs and thus considerably influ-

ences NWs deposition.

3. Efficiency evaluation of DEP: a case study

In the next sections, DEP efficiency was evaluated for NiNW trapping on Pt electrodes, chosen 
due to the low‐oxidation rate and relatively low‐electrical resistivity that allows further two‐
wire electrical transport measurements on a single isolated NW. The DEP parameters, such as 
voltage and frequency, were varied in order to optimize the number of NWs that make con-

tact between the electrodes, for which statistical evaluation was performed. The total electric 
field distribution over the gap area was simulated using COMSOL Multiphysics simulation 
tool to support experimental results.

3.1. Electrodes fabrication

Pt electrodes were defined on a SiO
2
/Si structure. First, a 300 nm‐thick SiO

2
 layer was grown 

on an n+‐type Si (1 0 0) wafer (electrical resistivity of 1–10 Ω cm) by wet thermal oxidation in 
a conventional furnace, in order to act as a dielectric layer (Figure 4a). Then, photolithogra-

phy was performed to define the electrodes region. An 80 nm‐thick Pt layer was sputtered 
by a physical vapour deposition system, and lift‐off process was carried out to define elec-

trodes (Figure 4b). Three different electrode geometries were fabricated to evaluate the effect 
of electrode shape on DEP force, further denominated 1 (rectangular extremities), 2 (circular 
extremities) and 3 (narrow extremities) (Figure 5).
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Figure 4. Schematics of experimental procedures: (a) dielectric layer formation on top of n+‐Si wafer by thermal oxidation; 
(b) electrodes definition by photolithography and lift‐off; (c) NiNW deposition on electrodes by DEP experiment. 
Adapted with permission from [33]. Copyright 2015 by American Vacuum Society.

Figure 5. Schematics (top), optical microscopy (centre) and total electric field simulations, using COMSOL Multiphysics 
tool (below) of the three geometries tested for the Pt electrodes. The 20 µm line was taken for evaluation of the electric 
field profile for each geometry, as presented in Figure 8. Reprinted with permission from [33]. Copyright 2015 by 

American Vacuum Society.
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3.2. NiNWs fabrication and DEP experimental procedure

NiNWs of 4 ± 1 µm‐long and 35 ± 5 nm of diameter were fabricated via pulsed electrodepo-

sition into anodized alumina membrane [16, 17]. A 1 M NaOH chemical etching solution at 
24°C under agitation was employed to release the NWs from the porous alumina membrane. 
They were then cleaned with isopropanol and rinsed with deionized water in order to remove 
organic remains and further dispersed in DMF to avoid NWs clusters formation. The NiNW 
deposition was performed by DEP (Figure 4c), conducted with a HP 8116A pulse/function 
generator configured with 3 VPP and null offset. The sinusoidal signal was generated for a 
frequency range between 50 kHz and 1 MHz. Before DEP process, the solution (concentration 
of ca. 108 NiNW mL⁻1) was sonicated for 120 s at room temperature, in order to uniformly dis-

perse the NiNWs in the DMF. Then, 1 µL solution volume was placed in the gap region and 
the DEP parameters were applied on each pair of electrodes during 60 s. The DMF excess was 
immediately rinsed with deionized water and dried with N

2
. For each set of DEP parameters, 

the experiment was repeated ca. 100 times to ensure statistical reliability.

Visual inspection of the gap region by scanning electron microscopy (SEM) was used to evaluate 
the DEP efficiency for the three electrode geometries and the frequency range used (Figure 6). An 

experiment in which at least one NiNW was deposited—and made electrical contact with a pair 
of electrodes—was considered as success. For each geometry and frequency, we normalized the 
number of successes by the total number of experiments. Thus, it was possible to evaluate the effi-

ciency percentage of NiNW deposition (Figure 7a) and the average number of deposited NiNW 
for the successful cases (Figure 7b), as a function of the DEP frequency and electrode geometry.

Figure 6. SEM analysis of NiNWs deposited on Pt electrodes for (a) geometry #1, (b) geometry #2 and (c) geometry #3, 
after DEP experiment (VPP = 3 V, frequency = 100 kHz (upper row) and 600 kHz (lower row)). Reprinted with permission 
from [33]. Copyright 2015 by American Vacuum Society.
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First, it should be noted that DEP and AC electroosmosis might be considered as competing 
mechanisms for NWs deposition between electrodes. While DEP force is the main mechanism 
for NW trapping, AC electroosmosis, which occurs simultaneously to DEP, can induce fluid 
turbulence in the electrodes gap region, thus reducing the probability of success as well as 
the number of trapped NiNWs. Therefore, as expected from both Eq. (4) and fluid dynamics 
effects predictions, the DEP efficiency at 10 kHz and 1MHz was almost null, obtaining success 
only for geometry 1 (8% and 16%, respectively). For frequencies close to 10 kHz, the average 
AC electroosmosis velocity near the gap is relatively high (Figure 3b) and this turbulence 

prevents the DEP force to trap the NiNW towards the electrodes. On the other hand, for fre-

quencies close to 1 MHz, the DEP force is about two orders of magnitude lower than the one 
in the range of kHz (Figure 2a).

Furthermore, the maximum efficiency obtained for geometry 1 was 85% at 100 kHz, while 
an efficiency of 60% was reached at 600 kHz. On the other hand, the DEP process was less 
efficient for geometries 2 and 3, both with the maximum value of 50% obtained for 600 kHz. 
This discrepancy may be assigned to electric field homogeneity over the electrodes gap, 
which is larger for geometry 1 than for geometries 2 and 3. The electrode areas are smaller 
in geometry 2 and 3 cases, which could create inhomogeneities and thus reduce the trap-

ping effect in the gap region. Moreover, the maximum efficiency obtained for geometries 
2 and 3 at 600 kHz still represents the frequency region that simultaneously maximizes the 
DEP force and minimizes the electroosmosis effect. On the other hand, for geometry 1, the 
larger electrode area increases the probability of success and more NiNWs are captured 

during DEP process. Figure 8 presents the simulated total electric field intensity along a 20 
µm transversal cross‐section in the gap region, indicated in Figure 5. We assume that the 

product between the peak height, h, and its full‐width half‐maximum, σ, is related to the 

deposition efficiency. The decreasing product value for geometry 1 to 3 is in agreement with 
the obtained efficiency results.

Figure 7. Charts of (a) deposition efficiency and (b) average number of deposited NiNW, obtained for DEP experiment as 
a function of electric field frequency, for the three electrodes geometries. Reprinted with permission from [33]. Copyright 

2015 by American Vacuum Society.
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Typically, several NiNWs were simultaneously deposited during the successful experiments, 
with an average number ranging from 1.0 to 8.7. Interestingly, for each investigated geom-

etry, the maximum number of deposited NiNWs was not reached for the frequency yielding 
the highest efficiency. For geometry 1, only 3.4 NiNWs were deposited at 100 kHz (85% of 
efficiency), while a peak of 8.7 ones was attained at 600 kHz (60% of efficiency) (Figure 7). This 

result may also be attributed to the crossover between DEP and AC electroosmosis mecha-

nisms. While the DEP force is expected to be maximized at around 100 kHz, the average fluid 
velocity near the gap is estimated to be close to the maximum peak value (about hundreds 
of micrometres/s), which limits the number of NiNWs making contact. On the contrary, at a 
frequency of 600 kHz, the average electroosmosis velocity reduces almost two orders of mag-

nitude—compared to 100 kHz—yielding to less turbulence in the gap region and, therefore, a 
larger number of NiNWs making electrical contact between electrodes.

The situation is similar for geometries 2 and 3, but inverting the frequencies for which the effi-

ciency and number of deposited NiNWs were maximized. The larger number of deposited 
NiNWs even for lower efficiency frequency may be attributed to the distortion of the electric field 

Figure 8. Total simulated electric field amplitude profile for the 20 µm transversal line shown in Figure 4 for the three 
geometries, indicating the trapping efficiency to be related to the product between the peak height and its full‐width 
half‐maximum. Reprinted with permission from [33]. Copyright 2015 by American Vacuum Society.
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in the electrodes gap created by the first deposited NiNW, reducing the DEP force on the remain-
ing NiNWs dispersed in the DMF solution and thus reducing the number of NiNWs present at 
higher frequencies. As shown in Figure 9, the electric field intensity in the gap region decreases 
abruptly when the first NiNW makes contact between electrodes, as the electric charges present 
in the metallic electrodes mainly flows through the NW. However, geometry 1 still presents a 
larger area, which favours more NiNWs to be present at 600 kHz, as aforementioned.

Figure 9. Total electric field simulation (using COMSOL Multiphysics) (top) and curves representing a 50 µm‐long 
cross‐section transversal line to the electrodes pair in the gap centre (bottom) for (a) geometry 1, (b) geometry 2 and (c) 
geometry 3. For all geometries, the total electric field substantially decreases when the first NW makes contact, reducing 
the probability for the second NW to make contact as well.
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Globally, geometry 1 is the most efficient for DEP of NiNWs, as one can obtain efficiency up to 
85% (for 3 VPP and 100 kHz). However, our aim, when using DEP process, is to evaluate the trans-

port properties of a single NiNW or only a few of them. Thus, a reasonable result is obtained 
when only a few NiNWs are present between electrodes. Therefore, geometries 2 and 3 reach 
ideal average values of NiNW (2.7 and 2.0, respectively, for 600 kHz), still with 50% of efficiency.

3.3. Electrical characterization of a single NiNW isolated by DEP

In order to evaluate the adequacy of DEP protocol for building single NW‐based devices or 
studying fundamental properties of isolated NWs, electrical current‐voltage (I‐V) measure-

ments were obtained with a Keithley 2400 source meter by applying current (without exceed-

ing 1 nW of power to avoid damaging NiNWs due to heat dissipation) while measuring 
voltage with a two‐wire setup. Parallel equivalent resistance as a function of the number of 
deposited NWs was measured and presented in a logarithm scale (Figure 10a). The linear fit 
slope of −1.0 ± 0.1 Ω NiNW−1 is in good agreement with the ideal case (−1 Ω NiNW−1) indicat-

ing that all the NWs made proper electrical contact after DEP process. This was accomplished 
due to metal‐like behaviour of both the electrode and the NW. It is worth to mention that 
the NiNW resistance is about two orders of magnitude larger than the electrodes and cables 

resistance as well as the contact resistance between the metallic NW and electrodes, making 
it possible to use a two‐wire set‐up for this electrical characterization. However, for processes 
that require DEP of semiconductor and oxide‐based NWs as well as carbon‐based nanostruc-

tures, post‐annealing processes are usually required to make proper electrical contact and thus 
reduce the contact resistance [39, 40]. Alternatively, one may perform DEP of NW using four 
electrodes in a 4-probes measurement setup for contact resistance subtraction.

In addition, the electric resistivity of one single NiNW,  ρ , was measured as a function of tem-

perature, T, using a Physical Property Measurement System (PPMS), in the range of 2–300 
K (Figure 10b), showing metallic behaviour, as expected. The residual resistivity value of a 
single NiNW is   ρ  

0
    = 27 µΩ cm, which is in good agreement with the ones with similar dimen-

sions found in literature [17, 33].

Figure 10. (a) Equivalent parallel resistance versus number of parallel‐deposited NiNWs and (b)  ρ  x T curve of one single 
NiNW, showing metallic behaviour and a residual resistance of 27 µΩ cm at 2 K. Adapted with permission from [16]. 

Copyright 2013 by Brazilian Microelectronics Society.
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4. Conclusion

This work presented DEP trapping of NiNWs between Pt electrodes defined by photo-

lithography and lift‐off. It consists of a powerful protocol for building unique and use-

ful devices. The deposition efficiency and average number of NiNWs were evaluated as 
a function of the electrodes geometry and DEP frequency. Moreover, the influence of AC 
electroosmotic fluid flow (as a cross‐over mechanism with DEP) could be observed in the 
mismatch between the frequencies for the largest NiNWs deposition efficiency and the 
largest number of deposited NiNWs. The maximum deposition efficiencies for square elec-

trodes were 85 and 60% for 100 and 600 kHz, respectively, for averages of 3.4 and 8.7 depos-

ited NiNWs. On the other hand, the efficiency was maximized at 600 kHz for the circular 
and narrow geometries, with value of 50% and averages of 2.7 and 2.0 NiNWs, respectively. 
This behaviour can be attributed to electric field inhomogeneities and lower trapping area 
over the gap present between electrodes in these geometries. For the square electrodes, 

since it presents a larger electrode area, it captures more NiNWs during DEP process and 
increases the probability of success, even with electric field intensity slightly lower than cir-

cular and narrow geometries. Adequate individual isolated NiNW electrical characteriza-

tion was allowed by the successful DEP experiment of metallic NWs on the top of metallic 
electrodes. Additionally, post‐annealing processes may be required for improving contact 
resistance of semiconductor and metal‐oxide NWs as well as carbon‐based nanostructures 
to metallic electrodes.

Finally, the DEP process seems to be a promising feature to evaluate fundamental properties 
of individual NWs as well as to build NW‐based sensor devices, since they can be manipu-

lated and isolated with relatively high efficiency. Thus, their individual electrical, thermal 
and/or optical output signals (in response to the environment stimulus) can be further pro-

cessed. In addition, NiNWs present ferromagnetic properties, which allow their low current 
levels to be controlled through magnetic fields. Thus, they can be thought as an alternative 
for single‐NW magnetic sensors as well as a promising alternative to the traditional Si‐based 
MOSFET devices.
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