
Jun Xu
National University of Singapore

Singapore

1. Introduction

Most physical systems have only limited states to be measured and fed back for system
controls. Although sometimes, a reduced-order observer can be designed to meet the
requirements of full-state feedback, it does introduce extra dynamics, which increases the
complexity of the design. This naturally motivates the employment of output feedback, which
only use measurable output in its feedback design. From implementation point of view, static
feedback is more cost effective, more reliable and easier to implement than dynamic feedback
(Khalil, 2002; Kučera & Souza, 1995; Syrmos et al., 1997). Moreover, many other problems are
reducible to some variation of it. Simply stated, the static output feedback problem is to find
a static output feedback so that the closed-loop system has some desirable characteristics, or
determine the nonexistence of such a feedback (Syrmos et al., 1997). This problem, however,
still marked as one important open question even for LTI systems in control engineering.
Although this problem is also known NP-hard (Syrmos et al., 1997), the curious fact to
note here is that these early negative results have not prevented researchers from studying
output feedback problems. In fact, there are a lot of existing works addressing this problem
using different approaches, say, for example, Riccati equation approach, rank-constrained
conditions, approach based on structural properties, bilinear matrix inequality (BMI)
approaches and min-max optimization techniques (e.g., Bara & Boutayeb (2005; 2006); Benton
(Jr.); Gadewadikar et al. (2006); Geromel, de Oliveira & Hsu (1998); Geromel et al. (1996);
Ghaoui et al. (2001); Henrion et al. (2005); Kučera & Souza (1995); Syrmos et al. (1997) and the
references therein). Nevertheless, the LMI approaches for this problem remain popular (Bara
& Boutayeb, 2005; 2006; Cao & Sun, 1998; Geromel, de Oliveira & Hsu, 1998; Geromel et al.,
1996; Prempain & Postlethwaite, 2001; Yu, 2004; Zečević & Šiljak, 2004) due to simplicity and
efficiency.
Motivated by the recent work (Bara & Boutayeb, 2005; 2006; Geromel et al., 1996; Xu & Xie,
2005a;b; 2006), this paper proposes several scaling linear matrix inequality (LMI) approaches
to static output feedback control of discrete-time linear time invariant (LTI) plants. Based on
whether a similarity matrix transformation is applied, we divide these approaches into two
parts. Some approaches with similarity transformation are concerned with the dimension
and rank of system input and output. Several different methods with respect to the system
state dimension, output dimension and input dimension are given based on whether the
distribution matrix of input B or the distribution matrix of output C is full-rank. The other
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approaches apply Finsler’s Lemma to deal with the Lyapunov matrix and controller gain
directly without similarity transformation. Compared with the BMI approach (e.g., Henrion
et al. (2005)) or VK-like iterative approach (e.g.,Yu (2004)), the scaling LMI approaches are
much more efficient and convergence properties are generally guaranteed. Meanwhile, they
can significantly reduce the conservatism of non-scaling method, (e.g.,Bara & Boutayeb (2005;
2006)). Hence, we show that our approaches actually can be treated as alternative and
complemental methods for existing works.
The remainder of this paper is organized as follows. In Section 2, we state the system and
problem. In Section 3, several approaches based on similarity transformation are given. In
Subection 3.1, we present the methods for the case that B is full column rank. Based on
the relationship between the system state dimension and input dimension, we discuss it in
three parts. In Subsection 3.2, we consider the case that C is full row rank in the similar way.
In Subsection 3.3, we propose another formulations based on the connection between state
feedback and output feedback. In Section 4, we present the methods based on Finsler’s lemma.
In Section 5, we compare our methods with some existing works and give a brief statistical
analysis. In Section 6, we extend the latter result to H∞ control. Finally, a conclusion is given
in the last section. The notation in this paper is standard. Rn denotes the n dimensional real
space. Matrix A > 0 (A ≥ 0) means A is positive definite (semi-definite).

2. Problem formulation

Consider the following discrete-time linear time-invariant (LTI) system:

x(t + 1) = Aox(t) + Bou(t) (1)

y(t) = Cox(t) (2)

where x ∈ Rn, u ∈ Rm and y ∈ Rl . All the matrices mentioned in this paper are appropriately
dimensioned. m < n and l < n.
We want to stabilize the system (1)-(2) by static output feedback

u(t) = Ky(t) (3)

The closed-loop system is

x(t + 1) = Ãx(t) = (Ao + BoKCo)x(t) (4)

The following lemma is well-known.

Lemma 1. (Boyd et al., 1994) The closed-loop system (4) is (Schur) stable if and only if either one of
the following conditions is satisfied:

P > 0, ÃTPÃ − P < 0 (5)

Q > 0, ÃQÃT − Q < 0 (6)

3. Scaling LMIs with similarity transformation

This section is motivated by the recent LMI formulation of output feedback control (Bara
& Boutayeb, 2005; 2006; Geromel, de Souze & Skelton, 1998) and dilated LMI formulation
(de Oliveira et al., 1999; Xu et al., 2004).
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3.1 Bo with full column-rank

We assume that Bo is of full column-rank, which means we can always find a non-singular

matrix Tb such that TbBo =

[

Im

0

]

. In fact, using singular value decomposition (SVD), we can

obtain such Tb. Hence the new state-space representation of this system is given by

A = Tb AoT−1
b =

[

A11 A12
A21 A22

]

, B = TbBo, C = CoT−1
b (7)

The closed-loop system (4) is stable if and only if

Ãb = A + BKC is stable

In this case, we divide it into 3 situations: m = n − m, m < n − m, and m > n − m. Let

P =

[

P11 P12
PT

12 P22

]

∈ Rn×n, P11 ∈ Rm×m, P12 ∈ Rm×(n−m) (8)

For the third situation, let

P12 = [P
(1)
12 P

(2)
12 ], P11 =

[

P
(1)
11 P

(2)
11

P
(2)T
11 P

(3)
11

]

(9)

where P
(1)
12 ∈ R(n−m)×(n−m) and P

(1)
11 ∈ R(n−m)×(n−m).

Theorem 1. The discrete-time system (1)-(2) is stabilized by (3) if there exist P > 0 defined in (8) and
R, such that

⎧

⎨

⎩

Φ(Θ1) < 0, m = n − m
Φ(Θ2) < 0, m < n − m
Φ(Θ3) < 0, m > n − m

(10)

where ε ∈ R,

Φ(Θ1) =

[

ATΘ1 A − P ∗
RC + [P11 P12]A −P11

]

< 0 (11)

Θ1 =

[

0 0
0 P22 + ε2P11 − εP12 − εPT

12

]

, (12)

Θ2 =

⎡

⎣

0 0

0 P22 − ε

[

P12
0

]

− ε[PT
12 0] + ε2

[

P11 0
0 0

]

⎤

⎦ ,

Θ3 =

[

0 0

0 P22 − εP
(1)T
12 − εP

(1)
12 + ε2P

(1)
11

]

.

Furthermore, a static output feedback controller gain is given by

K = P−1
11 R (13)

Proof: Noting that
(BKC)TP(BKC) = CTKTP11KC,
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PBKC =

[

P11
PT

12

]

KC

(5) is equivalent to

([P11 P12]A + P11KC)TP−1
11 ([P11 P12]A + P11KC)

−AT

[

P11
PT

12

]

P−1
11 [P11 P12]A + ATPA − P < 0

(14)

Considering that

P −

[

P11
PT

12

]

P−1
11 [P11 P12] =

[

0 0
0 P22 − PT

12P−1
11 P12

]

For the first situation m = n − m, consider the following inequality:

(P12 − εP11)
TP−1

11 (P12 − εP11) ≥ 0 (15)

or equivalently
PT

12P−1
11 P12 ≥ εPT

12 + εP12 − ε2P11 (16)

(14) is equivalent to
[

AT
Θ0 A − P ∗

P11KC + [P11 P12]A −P11

]

< 0 (17)

where

Θ0 =

[

0 0
0 P22 − PT

12P−1
11 P12

]

Using the fact (16), we have Θ0 ≤ Θ1, and consequentially, Φ(Θ0) ≤ Φ(Θ1). Hence if (11) is
satisfied, (5) is satisfied as well.
For the second situation, let the inequality

([

P12
0

]

− ε

[

P11 0
0 0

])T [

P11 0
0 I

]−1 ([

P12
0

]

− ε

[

P11 0
0 0

])

≥ 0 (18)

where
[

P12
0

]

∈ R(n−m)×(n−m) and
[

P11 0
0 I

]

∈ R(n−m)×(n−m). Note that (18) is equivalent to

PT
12P−1

11 P12 ≥ ε

[

P12
0

]T

+ ε

[

P12
0

]

− ε2
[

P11 0
0 0

]

(19)

For the third situation, noting that

(
[

P12 0
]

− εP11)
TP−1

11 (
[

P12 0
]

− εP11) ≥ 0 (20)

we have
[

PT
12
0

]

P−1
11

[

P12 0
]

≥ ε

[

PT
12
0

]

+ ε
[

P12 0
]

− ε2P11 (21)

(21) implies

PT
12P−1

11 P12 ≥ εP
(1)T
12 + εP

(1)
12 − ε2P

(1)
11 (22)
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Hence we complete the proof.

Remark 1. If ε ≡ 0 is set , then Theorem 1 recovers the result stated in (Bara & Boutayeb, 2006). We
shall note that ε actually plays an important role in the scaling LMI formulation in Theorem 1. If ε ≡ 0,
Theorem 1 implies AT

22P22 A22 − P22 < 0 and P22 > 0, i.e., the system matrix A22 must be Schur
stable, which obviously is an unnecessary condition and limits the application of this LMI formulation.
However, with the aid of ε, we relax this constraint. A searching routine, such as fminsearch (simplex
search method) in Matlab ©, can be applied to the following optimization problem (for a fixed ε, we have
an LMI problem):

min
ε,P,R

λI, s.t. Φ(Θ) < λI (23)

The conservatism of Theorem 1 lies in these relaxations (15) or (16) on (5). To further relax the
conservatism, we may choose a diagonal matrix △ = diag{ε1, ..., εm}, ε i ≥ 0, instead of the single
scalar ε. For example,

PT
12P−1

11 P12 ≥ PT
12△+△P12 −△P11△ (24)

Then we shall search the optimal value over multiple scalars for (23).

Remark 2. In (Bara & Boutayeb, 2006), a different variable replacement is given:

P2 = P22 − PT
12P−1

11 P12 (25)

in (8). However, it is easily proved that these two transformations actually are equivalent. In fact, in
(8), we have P11 > 0 and P2 > 0 since P > 0. Based on (17), we have

⎡

⎣

AT

[

0 0
0 P2

]

A − Λ0 ∗

P11KC + [P11 P12]A −P11

⎤

⎦ < 0 (26)

where

Λ0 =

[

P11 P12
PT

12 P2 + PT
12P−1

11 P12

]

= P (27)

Hence, for the above three situations, we have an alternative condition, which is stated in the
following lemma.

Theorem 2. The discrete-time system (1)-(2) is stabilized by (3) if there exist P11 > 0, P2 > 0, P12
and R with P defined in (27), such that

⎧

⎨

⎩

Υ(Λ1) < 0, m = n − m
Υ(Λ2) < 0, m < n − m
Υ(Λ3) < 0, m > n − m

(28)

where ε ∈ R,

Υ(Λi) =

⎡

⎣

AT

[

0 0
0 P2

]

A − Λi ∗

RC + [P11 P12]A −P11

⎤

⎦ ,

Λ1 =

[

P11 P12
PT

12 P2 − ε2P11 + εP12 + εPT
12

]

,
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Λ2 =

⎡

⎣

P11 P12

PT
12 P2 + ε

[

P12
0

]

+ ε[PT
12 0]− ε2

[

P11 0
0 I

]

⎤

⎦ ,

Λ3 =

[

P11 P12

PT
12 P2 + εP

(1)T
12 + εP

(1)
12 − ε2P

(1)
11

]

.

Furthermore, a static output controller gain is given by (13).

Proof: We only consider the first case. Replacing P2 and R by P22 and K using (25) and (13), we
can derive that (28) is a sufficient condition for (5) with the P defined in (8).

3.2 Co with full row-rank

When Co is full row rank, there exists a nonsingular matrix Tc such that CoT−1
o = [Il 0].

Applying a similarity transformation to the system (1)-(2), the closed-loop system (4) is stable
if and only if

Ãc = A + BKC is stable

where A = Tc AoT−1
c , B = TcBo and C = CoT−1

c = [Il 0].
Similarly to Section 3.1, we can also divide this problem into three situations: l = n − l,

l < n − l and l > n − l. We use the condition (6) here and partition Q as Q =

[

Q11 Q12
QT

12 Q22

]

,

where Q11 ∈ Rl×l.

Theorem 3. The discrete-time system (1)-(2) is stabilized by (3) if there exist Q > 0 and R, such that

⎧

⎨

⎩

Γ(Θ̄1) < 0, l = n − l
Γ(Θ̄2) < 0, l < n − l
Γ(Θ̄3) < 0, l > n − l

(29)

where ε ∈ R,

Γ(Θ̄i) =

[

AΘ̄iA
T − Q ∗

(A[Q11 Q12]
T + BR)T −Q11

]

,

Θ̄1 =

[

0 0
0 Q22 + ε2Q11 − εQ12 − εQT

12

]

,

Θ̄2 =

⎡

⎣

0 0

0 Q22 + ε2
[

Q11 0
0 0

]

− ε

[

Q12
0

]

− ε[QT
12 0]

⎤

⎦ ,

Θ̄3 =

[

0 0

0 Q22 + ε2Q
(1)
11 − εQ

(1)T
12 − εQ

(1)
12

]

,

Q
(1)
11 and Q

(1)
12 are properly dimensioned partitions of Q11 and Q12. Furthermore, a static output

feedback controller gain is given by
K = RQ−1

11 (30)
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Proof: We only prove the first case l = n − l, since the others are similar. Noting that
(BKC)Q(BKC)T = BKQ11KTB and BKCQ = BK[Q11 Q12], (6) is equivalent to

(A[Q11 Q12]
T + BKQ11)Q

−1
11 (A[Q11 Q12]

T + BKQ11)
T

−A

[

Q11
QT

12

]

Q−1
11 [Q11 Q12]A

T + AQAT − Q < 0
(31)

Using the fact that

Q −

[

Q11
QT

12

]

Q−1
11 [Q11 Q12] =

[

0 0
0 QT

12Q−1
11 Q12

]

we infer that stability of the close-loop system is equivalent to the existing of a Q > 0 such
that

[

AΘ̄0AT − Q ∗
(A[Q11 Q12] + BKQ11)

T −Q11

]

< 0 (32)

where

Θ̄0 =

[

0 0
0 Q22 − QT

12Q−1
11 Q12

]

Since
(Q12 − εQ11)

T Q−1
11 (Q12 − εQ11) ≥ 0 (33)

or equivalently,
QT

12Q−1
11 Q12 ≥ εQT

12 + εQ12 − ε2Q11 (34)

It follows that (29) implies (32). Hence we complete the proof.

Remark 3. How to compare the conditions in Theorem 3 and Theorem 1 remains a difficult problem.
In the next section, we only give some experiential results based on numerical simulations, which give
some suggestions on the dependence of the results with respect to m and l.

3.3 Transformation-dependent LMIs

The result in this subsection builds a connection between the sets L, Kc, Ko, K̃c and K̃o, which
are defined as follows. Without causing confusion, we omit the subscript o for Ao, Bo and Co

in this subsection.
L = {K ∈ Rm×l : Ā stable} (35)

i.e., the set of all admissible output feedback matrix gains;

Kc = {Kc ∈ Rm×n : A + BKc stable} (36)

i.e., the set of all admissible state feedback matrix gains;

Ko = {Ko ∈ Rn×l : A + KoC stable} (37)

i.e., the set of all admissible observer matrix gains. Based on Lemma 1, we can easily formulate
the LMI solution for sets Kc and Ko. In fact, they are equivalent to following two sets
respectively:

K̃c = {Kc = Wc2W−1
c1 ∈ Rm×n : (Wc1, Wc2) ∈ Wc} (38)
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and
Wc = {Wc1 ∈ Rn×n, Wc2 ∈ Rm×n : Wc1 > 0, Ψc < 0} (39)

where Ψc =

[

−Wc1 AWc1 + BWc2
Wc1AT + WT

c2BT −Wc1

]

.

K̃o = {Ko = W−1
o1 Wo2 ∈ Rn×l : (Wo1, Wo2) ∈ Wo} (40)

and
Wo = {Wo1 ∈ Rn×n, Wo2 ∈ Rn×l : Wo1 > 0, Ψo < 0} (41)

where Ψo =

[

−W1o Wo1A + Wo2C

ATWo1 + CTWT
o2 −W1o

]

.

Lemma 2. L �= ∅ if and only if

1. K̄c = Kc
⋂

{Kc : KcYc = 0, Yc = N (C)} �= ∅; or

2. K̄o = Ko
⋂

{Kc : YoKo = 0, Yo = N (B′)} �= ∅.

In the affirmative case, any K ∈ L can be rewritten as

1. K = KcQCT(CQCT)−1; or

2. K = (BT PB)−1BT PKo.

where Q > 0 and P > 0 are arbitrarily chosen.

Proof: The first statement has been proved in Geromel et al. (1996). For complement, we
give the proof of the second statement. The necessity is obvious since Ko = BK. Now we
prove the sufficiency, i.e., given Ko ∈ K̄o, there exists a K, such that the constraint Ko = BK

is solvable. Note that for ∀P > 0, Θo =

[

BT P

YT
o

]

is full rank, where Yo = N (BT). In fact,

rank(ΘoYo) = rank(

[

BTPYo

In−m

]

) ≥ n − m. Multiplying Θo at the both side of Ko = BK we have

[

BTPKo

YT
o Ko

]

=

[

BTPBL
0

]

Since BTPB is invertible, we have K = (BTPB)−1BTPK0. Hence, we can derive the result.

Lemma 3. L �= ∅ if and only if there exists Ec ∈ Rn×(n−l) or Eo ∈ Rn×(n−m), such that one of the
following conditions holds:

1. rank(Tc =

[

C

ET
c

]

) = n and C(Ec) �= ∅; or

2. rank(To =
[

B Eo
]

) = n and O(Eo) �= ∅.

where
C(Ec) = Wc

⋂

{(Wc1, Wc2) : CWc1Ec = 0, Wc2Ec = 0}

O(Eo) = Wo

⋂

{(Wo1, Wo2) : BTWo1Eo = 0, ET
o Wo2 = 0}

In the affirmative case, any K ∈ L can be rewritten as

1. K = Wc2CT(CWc1CT)−1; or

2. K = (BTWo1B)−1BTWo2.

148 Discrete Time Systems

www.intechopen.com



Proof: We only prove the statement 2, since the statement 1 is similar. For the necessity, if there
exist K ∈ L, then it shall satisfy Lemma 1. Now we let

Wo1 = P, Wo2 = PBK

Choose Eo = P−1Yo, Yo = N (BT). It is known that
[

B Eo
]

is full rank. Then we have

BTWo1E = BTYo = 0, ETWo2 = YT
o BK = 0

For sufficiency, we assume there exists Eo such that the statement 2) is satisfied. Notice that
Wo1 > 0 and the item Wo2 in Ψo can be rewritten as Wo1W−1

o1 Wo2.

W−1
o1 Wo2 = To(T

T
o Wo1To)

−1TT
o Wo2 = B(BTWo1B)−1BTWo2 (42)

since To is invertible and BTWo1E = 0, ETWo2 = 0. Hence, W−1
o1 Wo2 can be factorized as

BK, where K = (BTWo1B)−1BTWo2. Now we can derive (5) from the fact Ψo < 0. Thus we
complete the proof.

Remark 4. For a given To, since T−1
o To = In, T−1

o B =

[

Im

0

]

and T−1
o E =

[

0
In−m

]

. Similarly, For

a given Tc, CT−1
c =

[

Il 0
]

.

Theorem 4. L �= ∅ if and only if there exists Tc or To, such that one of the following conditions holds:

1.
W̃c �= ∅, W̃c = {Ŵc1 ∈ Rn×n, Ŵc2 ∈ Rm×n : Ŵc1 > 0, Φc < 0} (43)

where

Â = Tc AT−1
c , B̂ = TcB, Ŵc1 =

[

Wc11 0
0 Wc22

]

,

and
Ŵc2 =

[

Wc21 0
]

, Wc11 ∈ Rl×l, Wc22 ∈ R(n−l)×(n−l), Wc21 ∈ Rm×l,

Φc =

[

−Ŵc1 ÂŴc1 + B̂Ŵc2
Ŵc1ÂT + ŴT

c2B̂T −Ŵc1

]

;

2.
W̃o �= ∅, W̃o = {W̌o1 ∈ Rn×n, W̌o2 ∈ Rn×r : W̌o1 > 0, Φo < 0} (44)

where

Ǎ = T−1
o ATo, Č = CTo, W̌o1 =

[

Wo11 0
0 Wo22

]

,

and

W̌o2 =

[

Wo21
0

]

,

Wo11 ∈ Rm×m, Wo22 ∈ R(n−m)×(n−m), Wo21 ∈ Rm×r,

Φo =

[

−W̌o1 W̌o1Ǎ + W̌o2Č

ǍTW̌o1 + ČTW̌T
o2 −W̌o1

]

.

In the affirmative case, any K ∈ L can be rewritten as

1. K = Wc21W−1
c11; or
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2. K = W−1
o11Wo21.

Proof: We also only consider the statement 2) here. The sufficiency is obvious according to
Lemma 3, hence, we only prove the necessity.
Note that

[

−W̌o1 W̌o1Ǎ + W̌o2Č

ǍTW̌o1 + ČTW̌T
o2 −W̌o1

]

= T T
o

[

−Wo1 Wo1A + Wo2C

ATWo1 + CTWT
o2 −Wo1

]

To

where To =

[

To 0
0 To

]

. Hence, we can conclude that

W̌o1 = TT
o Wo1To, W̌02 = TT

o Wo2

Since the system matrices also satisfy

BTWo1E = 0, ETWo2 = 0

which implies
BTT−T

o W̌o1T−1
o E = 0, ETT−T

o W̌o2 = 0 (45)

Let

W̌o1 =

[

Wo11 Wo12
WT

o12 Wo22

]

, W̌o2 =

[

Wo21
Wo23

]

With the conclusion from Remark 4, (45) implies

Wo12 = 0, Wo23 = 0

Hence we have the structural constraints on W̌o1 and W̌o2. Using the results of Lemma 3, we
can easily get the controller L. Thus we complete the proof.

Remark 5. The first statements of Lemma 3 and Theorem 4 are corollaries of the results in Geromel,
de Souze & Skelton (1998); Geromel et al. (1996). Based on Theorem 4, we actually obtain a useful
LMI algorithm for output feedback control design of general LTI systems with fixed Ec and/or Eo. For
these LTI systems, we can first make a similarity transformation that makes C = [I 0] (or BT = [I 0]).
Then we force the Wc1 and Wc2 (or Wo1 and Wo2) to be constrained structure shown in Theorem
4. If the corresponding LMIs have solution, we may conclude that the output feedback gain exists;
otherwise, we cannot make a conclusion, as the choice of Ec or Eo is simply a special case. Thus we
can choose a scaled Ec or Eo, i.e., ǫEc or ǫEo to perform a one-dimensional search, which converts
the LMI condition in Theorem 4 a scaling LMI. For example, Φc in (43) should be changed as Φc =
[

−Ŵ1c AŴc1 + εBŴc2
Ŵc1AT + εŴT

c2BT −Ŵ1c

]

.

All the approaches in this section require similarity transformation, which can be done
by some techniques, such as the singular value decomposition (SVD). However, those
transformations often bring numerical errors, which sometimes leads to some problems for
the marginal solutions. Hence in the next section, using Finsler’s lemma, we introduce some
methods without the pretreatment on system matrices.
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4. Scaling LMIs without similarity transformation

Finsler’s Lemma has been applied in many LMI formulations, e.g., (Boyd et al., 1994; Xu
et al., 2004). With the aid of Finsler’s lemma, we can obtain scaling LMIs without similarity
transformation.

Lemma 4. (Boyd et al., 1994) The following expressions are equivalent:

1. xT Ax > 0 for ∀x �= 0, subject to Bx = 0;

2. B⊥T AB⊥
> 0, where B⊥ is the kernel of BT, i.e., B⊥BT = 0;

3. A + σBT B > 0, for some scale σ ∈ R;

4. A + XB + BT XT
> 0, for some matrix X.

In order to apply Finsler’s lemma, several manipulation on the Lyapunov inequalities should
be done first. Note that the condition (5) actually states V(x(t)) = xT(t)Px(t) > 0 and
∆V(x) = V(x(t + 1))− V(x(t)) < 0. The latter can be rewritten as

ξTPξ < 0, ξ = [xT(t) xT(t + 1)]T,P =

[

−P 0
0 P

]

(46)

Define ζ = [xT uT]T. It is easy to verify:

ξ = Mpζ (47)

[K − 1]Npζ = 0 (48)

where

Mp =

[

I 0
A B

]

, Np =

[

C 0
0 I

]

(49)

That is
(46) s.t. (47)-(48) (50)

Now based on the statements 1) and 4) of Finsler’s Lemma, we can conclude that (50) is
equivalent to

MT
pPMp + NT

p

[

KT

−I

]

X T +X
[

K −I
]

Np < 0 (51)

for some X . Now we let
X T = [εZ̃T ZT ] (52)

where ε is a given real scalar, Z = [zT
1 , zT

2 , · · · , zT
m]

T ∈ Rm×m and Z̃ ∈ Rn×m. Note that Z̃ is
constructed from Z with n rows drawing from Z, i.e., Z̃ = [zT

1̃
, zT

2̃ , · · · , zT
ñ ]

T, where zT
ĩ

, 1 ≤

ĩ ≤ m is a vector from Z. Since n ≥ m, there are some same vectors in Z̃. Now we define

W = ZK = [wT
1 , wT

2 , · · · , wT
m]

T (53)

and
W̃ = Z̃K = [wT

1̃ , wT
2̃ , · · · , wT

ñ ]
T (54)

where wT
ĩ

, 1 ≤ ĩ ≤ m is a vector from W. Then (51) can be transferred into following LMI:

MT
pPMp +

[

ε(CTW̃T + W̃C) ∗
WC − εZ̃T −(ZT + Z)

]

< 0 (55)
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Since ZT + Z > BT PB ≥ 0, Z is invertible, K = Z−1W.

Theorem 5. The discrete-time system (1)-(2) is stabilized by (3) if there exist P > 0 and Z, W, such
that (55) is satisfied for some scalar ε. Furthermore, the controller is given by K = Z−1W.

The conservatism lies in the construction of Z̃, which has to be a special structure. Z̃ can be
further relaxed using a transformation Z̃ = εẐZ, where Ẑ ∈ Rn×m is a given matrix. In
Theorem 5, the condition (5) is applied. Based on the condition (6), we have the following
Lemma.

Theorem 6. The discrete-time system (1)-(2) is stabilized by (3) if there exist Q > 0 and Z, W, such
that

MqQMT
q +

[

ε(W̃TBT + BW̃) ∗
WTBT − εZ̃ −(ZT + Z)

]

< 0 (56)

where

Mq =

[

I A
0 C

]

,Q =

[

−Q 0
0 Q

]

(57)

is satisfied for some scalar ε. Furthermore, the controller is given by K = Z−1W.

Proof: The condition (6) can be rewritten as

[

I

(BK)T

]T

MqQMT
q

[

I

(BK)T

]

< 0 (58)

Since
[

I

(BK)T

]T [

(BK)
−I

]

= 0, (58) can be rewritten as

[

(BK)
−I

]⊥

MqQMT
q

[

(BK)
−I

]⊥T

< 0 (59)

Now applying Finsler’s lemma, we have

MqQMT
q +

[

(BK)
−I

]

X +X T

[

(BK)
−I

]T

< 0 (60)

for some X = [εZ̃ Z]. Similar to (52), we construct Z̃ from Z with its columns. Hence we have
(56), which is a sufficient condition for (6). Thus we complete the proof.

Remark 6. The proof of Theorem 6 is based on the equivalence between 1 and 2 of Finsler’s lemma. It
also provides an alterative proof of Theorem 5 if we note that (5) is equivalent to

[

I
KC

]T

MT
pPMp

[

I
KC

]

< 0 (61)

Remark 7. Except for the case that m = 1 for Theorem 5 and l = 1 for Theorem 6, the construction of
Z̃ is a problem to be considered. So far, we have no systematic method for this problem. However, based
on our experience, the choose of different vectors and their sequence do affect the result.

The following simple result is the consequence of the equivalence of 1 and 3 in Finsler’s
Lemma.
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Theorem 7. The discrete-time system (1)-(2) is stabilized by (3) if there exist P > 0 and K, such that

[

−P − εĀ − εĀT + ε2 I ĀT

Ā P − I

]

< 0 (62)

where ε ∈ R.

Proof: It is obvious that inequality (42) holds subject to [Ā − I]ξ = 0. Now we apply the
equivalence between 1 and 3 of Finsler’s lemma and obtain

P − σ[Ā − I]

[

Ā
−I

]

=

[

−P − σĀT Ā σĀ
σĀ P − σI

]

< 0 (63)

for some σ > 0. Note that −ĀT Ā < −εĀT − εĀ + ε2 I, (63) can be implied by
[

−P + σ(−εĀT − εĀ + ε2 I) σĀT

σĀ P − σI

]

< 0 (64)

By redefining P as 1
σ P, we can obtain the result.

Remark 8. Inequality (51) is also equivalent to

MT
pPMp − σNT

p

[

KT

−I

]

[

K −I
]

Np < 0 (65)

for some positive scalar σ. Hence, we have

MT
p P̃Mp − NT

p

[

KT

−I

]

[

K −I
]

Np < 0 (66)

where P̃ =

[

−P̃ 0
0 P̃

]

, P̃ = σ−1P. Using the fact that (K − K0)
T(K − K0) ≥ 0, we may obtain an

iterative solution from initial condition K0, where K0 may be gotten from Lemma 5.

5. Comparison and examples

We shall note that the comparisons of some existing methods (Bara & Boutayeb, 2005; Crusius
& Trofino, 1999; Garcia et al., 2001) with the case of ε = 0 in Theorem 1 has been given in
(Bara & Boutayeb, 2006), where it states that there are many numerical examples for which
Theorem 1 with ε = 0 works successfully while the methods in (Bara & Boutayeb, 2005;
Crusius & Trofino, 1999; Garcia et al., 2001) do not and vice-versa. It also stands for our
conditions. Hence, in the section, we will only compare these methods introduced above. The
LMI solvers used here are SeDuMi (v1.3) Sturm et al. (2006) and SDPT3 (v3.4) Toh et al. (2006)
with YALMIP Löfberg (2004) as the interface.
In the first example, we will show the advantage of the scaling LMI with ε compared with the
non-scaling ones. In the second example, we will show that different scaling LMI approaches
have different performance for different situations. As a by-product, we will also illustrate the
different solvability of the different solvers.
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Example 1. Consider the unstable system as follows.

Ao =

⎡

⎢

⎢

⎢

⎢

⎣

0.82 0.0576 0.2212 0.8927 0.0678
0.0574 0.0634 0.6254 0.0926 0.9731
0.0901 0.7228 0.5133 0.2925 0.9228
0.6967 0.0337 0.5757 0.8219 0.9587
0.1471 0.6957 0.2872 0.994 0.5632

⎤









⎦

Bo =

⎡

⎢

⎢

⎢

⎢

⎣

0.9505 0.2924
0.3182 0.4025
0.2659 0.0341
0.0611 0.2875
0.3328 0.2196

⎤









⎦

Co =

[

0.5659 0.255 0.5227 0.0038 0.3608
0.8701 0.5918 0.1291 0.3258 0.994

]

This example is borrowed from (Bara & Boutayeb, 2006), where output feedback controllers
have been designed. For A22 from A, it has stable eigenvalue. In this paper, we compare the
design problem with the maximum decay rate, i.e.,

max ρ s.t. ÃTPÃ − P < −ρP

Note that in this example, m < n − m. With ε = 0, i.e., using the method in (Bara & Boutayeb,
2006), we obtain the maximum ρ = 0.16, while Theorem 1 gives ρ = 0.18 with ε = −0.09.
However, Theorem 5 only obtains a maximum ρ = 0.03 with a choice of Ẑ = [I2 I2 0]T.
Note that the solvability heavily depends on the choice of ε. For example, when ε = 0.09 for
Theorem 1, the LMI is not feasible.
Now we consider a case that A22 has an unstable eigenvalue. Consider the above example
with slight changes on Ao

Ao =

⎡

⎢

⎢

⎢

⎢

⎣

0.9495 0.12048 0.14297 0.19192 0.019139
0.8656 0.28816 0.67152 0.01136 0.38651
0.5038 0.46371 0.9712 0.93839 0.42246

0.13009 0.76443 0.47657 0.54837 0.4089
0.34529 0.61187 0.15809 0.46639 0.53536

⎤









⎦

We can easily verify that A22 from A has one unstable eigenvalue 1.004. Hence, the method
in (Bara & Boutayeb, 2006) cannot solve it. However, Theorem 1 generates a solution as

K =

[

−0.233763 −0.31506
−3.61207 0.376493

]

. Meanwhile, Theorem 5 also can get a feasible solution for

ε = −0.1879 and K =

[

0.9373 −0.4008
1.5244 −0.7974

]

. Theorem 4 via a standard SVD without scaling

can also obtain K =

[

−0.3914 −0.3603
−2.3604 −1.1034

]

using (43) or K =

[

1.4813 0.5720
−3.7203 −1.8693

]

using (44).

Example 2. We randomly generate 5000 stabilizable and detectable systems of dimension n =
4(6, 6, 6, 7, 7), m = 2(3, 1, 5, 4, 3) and l = 2(3, 5, 1, 3, 4).
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T 1 T 3

SeDuMi 5000 4982
SDPT3 4975 5000

Table 1. Different solvability of different solvers

T 1α T 3 4.2.2β 6.3.3 6.1.5 6.5.1 7.4.3 7.3.4

Y Y 4999 4999 4994 4996 4998 4998
Y N 1 0 2 3 1 1
N Y 0 1 4 1 1 1
N N 0 0 0 0 0 0

Superscriptγ: Y (N) means that the problem can (not) be solved by the corresponding theorems. For
example, the value 4 of third row and third column means that in the random 5000 examples, there are 4
cases that cannot be solved by Theorem 1 while can be solved by Theorem 3.

Table 2. Comparison of Theorem 1 and Theorem 3

Hence we can use Theorem 1 and Theorem 3 with ε = 0 to solve this problem. Note that
different solvers may give different solvability. For example, given n = 6, m = 3 and l = 3,
in a one-time simulation, the result is given in Table 1. Thus in order to partially eliminate
the effect of the solvers, we choose the combined solvability result from two solvers in this
section.
Table 2 shows the comparison of Theorem 1 and Theorem 3. Some phenomenons (the
solvability of Theorem 1 and Theorem 3 depends on the l and m. When m > l, Theorem 1
tends to have a higher solvability than Theorem 3. And vise verse.) was observed from these
results obtained using LMITOOLS provided by Matlab is not shown here.

6. Extension to H∞ synthesis

The aforementioned results can contribute to other problems, such as robust control. In this
section, we extend it to H∞ output feedback control problem. Consider the following system:

x(t + 1) = Ax(t) + B2u(t) + B1w (67)

y(t) = Cx(t) + Dw (68)

z(t) = Ex(t) + Fw (69)

We only consider the case that B2 is with full rank and assume that the system has been
transferred into the form like (7). Using the controller as (3), the closed-loop system is

x(t + 1) = Âx(t) + B̂w
= (A + B2KC)x(t) + (B1 + B2KD)w

(70)

We attempt to design the controller, such that the L2 gain sup ‖z‖2
‖w‖2

≤ γ. It should be noted
that all the aforementioned scaling LMI approaches can be applied here. However, we only
choose one similar to Theorem 1.
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Theorem 8. The discrete-time system (67)-(69) is stabilized by (3) and satisfies H∞, if there exist a
matrix P > 0 defined in (8) and R, such that

⎧

⎨

⎩

ℜ(Θ1) < 0, m = n − m
ℜ(Θ2) < 0, m < n − m
ℜ(Θ3) < 0, m > n − m

(71)

where ε ∈ R, Θi is defined in Theorem 1,

ℜ(Θi) =
⎡

⎢

⎢

⎣

−P11 RC + [P11 P12]A RD + [P11 P12]B1 0
∗ ATΘi A − P ATΘiB1 ET

∗ ∗ BT
1 ΘiB − γI FT

∗ ∗ ∗ −γI

⎤





⎦

(72)

Proof: Following the arguments in Theorem 1, we can see that (71) implies

ℜ(Θi) =

⎡

⎣

ÂTPÂ − P ÂTPB̂ ET

∗ B̂T PB̂ − γI FT

∗ ∗ −γI

⎤

⎦ < 0 (73)

Using bounded real lemma (Boyd et al., 1994), we can complete the proof.

7. Conclusion

In this paper, we have presented some sufficient conditions for static output feedback control
of discrete-time LTI systems. Some approaches require a similarity transformation to convert
B or C to a special form such that we can formulate the design problem into a scaling
LMI problem with a conservative relaxation. Based on whether B or C is full rank, we
consider several cases with respect to the system state dimension, output dimension and
input dimension. These methods are better than these introduced in (Bara & Boutayeb, 2006)
and might achieve statistical advantages over other existing results (Bara & Boutayeb, 2005;
Crusius & Trofino, 1999; Garcia et al., 2001). The other approaches apply Finsler’s lemma
directly such that the Lyapunov matrix and the controller gain can be separated, and hence
gain benefits for the design. All the presented approaches can be extended to some other
problems. Note that we cannot conclude that the approaches presented in this paper is
definitely superior to all the existing approaches, but introduce some alternative conditions
which may achieve better performance than others in some circumstances.
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Kučera, V. & Souza, C. E. D. (1995). A necessary and sufficient condition for output feedback

stabilizability, Automatica 31(9): 1357–1359.
Löfberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB, the CACSD

Conference, Taipei, Taiwan.
Prempain, E. & Postlethwaite, I. (2001). Static output feedback stabilisation with H∞

performance for a class of plants, Systems and Control Letters 43: 159–166.
Sturm, J. F., Romanko, O. & Pólik, I. (2006). Sedumi: http: // sedumi.mcmaster.ca/, User

manual, McMaster University.
Syrmos, V. L., Abdallab, C., Dprato, P. & Grigoriadis, K. (1997). Static output feedback - a

survey, Automatica 33(2): 125–137.
Toh, K. C., Tütüncü, R. H. & Todd, M. J. (2006). On the implementation and usage of SDPT3 - a

MATLAB software package for semidefinite-quadratic-linear programming, version
4.0, Manual, National University of Singapore, Singapore.

Xu, J. & Xie, L. (2005a). H∞ state feedback control of discrete-time piecewise affine systems,
IFAC World Congress, Prague, Czech.

Xu, J. & Xie, L. (2005b). Non-synchronized H∞ estimation of discrete-time piecewise linear
systems, IFAC World Congress, Prague, Czech.

Xu, J. & Xie, L. (2006). Dilated LMI characterization and a new stability criterion for polytopic
uncertain systems, IEEE World Congress on Intelligent Control and Automation, Dalian,
China, pp. 243–247.

157Output Feedback Control of Discrete-time LTI Systems: Scaling LMI Approaches

www.intechopen.com



Xu, J., Xie, L. & Soh, Y. C. (2004). H∞ and generalized H2 estimation of continuous-time
piecewise linear systems, the 5th Asian Control Conference, IEEE, Melbourne,
Australia.

Yu, J. (2004). A new static output feedback approach to the suboptimal mixed H2\H∞

problem, Int. J. Robust Nonlinear Control 14: 1023–1034.
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