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1.  Introduction 

Nowadays hydrodynamic lubrication analysis involves sophisticated models that use a 
large number of variables. For instance the evaluation of temperatures, which directly 
determine the viscosity of the lubricant fluid and hence its load carrying capacity, has 
become a standard procedure and the related analysis type is referred to as 
ThermoHydroDynamic  (THD) analysis. ThermoElastoHydroDynamic (TEHD) models introduce 
a further enhancement in lubrication analysis by including the simulation of bearing 
deformations due to mechanical loads and/or thermal effects.  
TEHD lubrication is an interdisciplinary field including structural, thermal, thermo-elastic 
and hydrodynamic simulations. Hence it requires a multi-physic approach that should be 
based on a well-rounded discretization technique capable of simplifying the simultaneous 
management of different interconnected models, which must exchange data between 
themselves.  This task is well-accomplished by the Finite-Element Method (FEM), an overall 
discretization technique particularly suited for problems with complicated integration 
domains and non-smooth solutions. 
A TEHD model of a kinematic pair simulates the thermal and mechanic interaction among 
the lubricant film and the lubricated solid members. As far as the fluid film sub-model is 
concerned, it must rely on the mass and energy conservation principles. The separation of 
the fluid (cavitation) in the divergent film region and the presence of feed grooves on 
bearing surfaces encumber the formulation of the conservation principles especially in the 
finite-element perspective and require special modelling techniques. 
The present chapter is aimed to provide the theoretical foundation of FEM mass- and 
energy-conserving models as well as to report their application to the THD and/or TEHD 
analysis of different bearing types. Author’s original contributions to the simulation 
methods are explained. They include the FEM groove-mixing theory, the SUPG stabilization 
of the conservation equations and the "quasi-3D" approach to the thermal problem. The 
theoretical construct is useful to enable the analysts to manage the models and to 
understand the responses. The application examples are relevant to both journal and axial 
bearings with fixed and tilting pads, in order to demonstrate the high flexibility of the 
method. With few modifications the presented method can be applied to the design of 
several types of bearings in both steady and dynamic loading conditions. The scope of the 
paper is anyway limited to the analysis of steadily-loaded bearings working in laminar 
lubrication regime.  
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2. State-of-the-art 

Modern lubrication analysis methods enable us to assess bearing performances with high 

accuracy. By taking advantage of detailed THD simulations the maximum deviation 

between experimental findings and numerical predictions for white metal temperatures 

may be less than 3-4°C (Banwait & Chandrawat, 1998).  

TEHD analysis is compulsory in order to achieve sufficiently reliable results for highly 

loaded journal bearings (Bouyer & Fillon, 2004), tilting pad journal bearings (Chang et al., 

2002), thrust bearings (Brugier & Pasal, 1989) and dynamically loaded supports (i.e. big end 

bearings of connecting rods for automotive engines) (Piffeteau et al., 2000). TEHD analysis 

may also be convenient in the case of journal bearings with stiff housing (i.e. for 

turbomachineries) in order to avoid assumptions about the effective clearance in working 

conditions. 

FEM is more and more often used in lubrication analysis (Booker & Huebner, 1972; Bonneau 

& Hajjam, 2001). A FEM version of the classic groove-mixing theory (Robinson & Cameron, 

1975) is explained in the following. It has been developed by formulating the energy balance 

for the supply grooves at the element level, in order to deal with all of the lubrication 

problem details in finite-element terms. 

Suitable stabilization techniques are compulsory in lubrication analysis to solve by means of 

FEM the energy and the cavitation equations, whereas they rule parabolic and hyperbolic 

differential problems, respectively. The Streamline Upwind Petrov-Galerkin (SUPG) 

technique (Kelly et al., 1980; Tezduyar & Sunil, 2003), applied by the author to both 

problems, is fully explained in the following. Although more straightforward upwinding 

techniques have been initially proposed by other authors (Kumar & Booker, 1991), SUPG is 

more general, as it does not depend on the element type. 

As convection is the main mechanism of heat exchange in the lubricant film, oil 

temperatures and flows are directly related. Hence a consistent treatment of the thermal 

problem demands an equally reliable model of film hydrodynamics.  

In this perspective the FEM mass-conserving algorithms developed in the last decade by 

researchers (Kumar & Booker, 1991; Bonneau & Hajjam, 2001) are an essential tool to 

provide the accurate estimate of the lubricant flow needed by THD and TEHD analysis 

methods. A mass- and energy-conserving FEM model has been presented by Kumar & 

Booker (1994). The resulting algorithm is fast as it turns the three-dimensional (3D) thermal 

problem in a two-dimensional (2D) one by solving the energy equation averaged across the 

film thickness and by assuming adiabatic walls. Afterwards such a method has been 

enhanced in a previous work (Stefani & Rebora, 2009), where it is incorporated in a 

complete 3D TEHD simulation and it is completed with boundary conditions consistent 

with the continuity of mass and energy throughout the integration domain.  

To this purpose the temperature variation across the film thickness is calculated by fitting 

the temperature profile with a fourth-order polynomial (quasi-3D approach) and the above-

mentioned groove-mixing theory is employed. In such an arrangement the algorithm has 

shown good agreement with experimental results.  The computational cost is still reasonable 

and the algorithm is very flexible and well-suited to different bearing types and geometries. 

Consequently the model can serve as the basis for codes dedicated to bearing design and 

verification for industrial purposes. 
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3. Basic equations 

3.1 Thin film mechanics equations 

In kinematic pairs working in hydrodynamic and elastohydrodynamic lubrication regime, 
the lubricant action is exerted through a thin film between two members (with facing 
surfaces 0 and 1) in motion at velocity V0 and V1, respectively (Fig. 1).  
The following usual "Reynolds hypotheses" are assumed. The lubricant is Newtonian and it 
flows in laminar regime in the narrow clearance between the two members, with no-slip 
conditions at the walls. The film curvature yields negligible effects. 
 

 

Fig. 1. Reference system O(x, y, z) and flow between the two surfaces 0 and 1 moving with 
velocity V0={U0, V0, 0} and V1={U1, V1, 0} 

The velocity distributions of the fluid into the film thickness can be obtained from the Navier-
Stokes equations, simplified by means of the above-mentioned assumptions and integrated 
with suitable boundary conditions (the fluid velocity at the surfaces 0 and 1 are V0 and V1, 
respectively). After velocity is substituted in the continuity equation, its integration in a 
columnar element of fluid (Fig. 1) with height H = H1 – H0 and rectangular basis dx · dz 
provides the thin film mechanics equation, also referred to as Reynolds generalized equation, 
(Dowson, 1967). At time t, for a full film of compressible fluid developed in a rectangular 
domain, where a cartesian coordinate system O(x, y, z) is fixed, it states 

 ( ){ } ( )1 1 0 0 1 0

p p
g g U H U H f U U H

x x z z x t
ρ ρ ρ ρ

∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ = − − − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (1) 

where the hydrodynamic pressure p as well as the fluid density ρ are independent of the y 
coordinate and 
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g i i i
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= − ⎪⎭
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= ∫  (3) 

www.intechopen.com



 New Tribological Ways 

 

454 

The lubricant viscosity μ (eq. (3)) is variable along the film thickness (with the y coordinate) 

as well as in the bearing surface (with the x and z coordinates).  
Although equation (1) is time dependent, it is not referred to as the equation of the thin film 
dynamics, as inertia and volume forces are negligible in a thin film. Hence the reference 
frame O(x, y, z) can be chosen regardless of whether it is inertial or not.  
In order to express eq. (1) in a form useful for bearing analysis, the plane y=0 is assumed to 
lie on the surface 0. Therefore equations of surfaces 0 and 1 become H0 = 0 and H1 = H, 
respectively. In addition, let O(x, y, z) be fixed to surface 0, namely surface 0 is steady in this 
reference frame. Hence, if U is the relative velocity between surface 1 and surface 0, the 
kinematic terms in eq. (1) are U0=0 and U1=U.   
These assumptions simplify the thin film mechanics equation as follows 

 ( ) ( )p p
g g U H f H

x x z z x t
ρ ρ ρ ρ

∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ = − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (4) 

Equation (4) may be used for analysis of journal bearings, when their geometry and 
operating conditions enable Reynolds hypotheses to be fulfilled. As curvature effects are 
neglected the x axis is set in circumferential direction (x = R ϑ, where R is the shaft radius).  
In order to avoid the simulation of moving grooves, the surface where feed holes and/or 
lubricant supply grooves are machined is chosen as surface 0. Usually surface 0 and surface 
1 lie on the bush and the journal respectively, as in the case of rotor journal bearings, 
submitted to steady loads and fed through suitable grooves in the bushing. In big end 
bearings of connecting rods for internal combustion engines, working under dynamic loads, 
the feed holes are machined in the crankshaft. Hence the sleeve wall may be chosen as 
surface 0 only if it houses a circumferential groove. Otherwise surface 0 is chosen on the 
journal, and U becomes the velocity of the bearing with respect to the journal. Nevertheless, 
as this chapter focus more specifically on rotor bearings, the reference surface 0 for radial 
bearings will be always on the sleeve in the following. Consequently, if ω is the shaft 
rotation speed (with respect to the bearing), U = ω R.  

The relative surface velocity U (or ω) may either depend or not depend on the x (or ϑ) 
coordinate as for journal bearings submitted to either dynamic or steady loads, respectively. 
In the former case such a dependency yields higher order infinitesimal in eq. (4) and it can 
be neglected in the simulation of the thin film mechanics. 
The resulting form of the thin film mechanics equation for journal bearings is 

 ( ) ( )2

1 p p
g g H f H

z z tR
ρ ρ ω ρ ρ

ϑ ϑ ϑ
∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ = − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (5) 

In the annular domain, where the lubricant film develops in the case of thrust bearings, the 
coordinate frame used to locate a generic point Q (Fig. 3) is the cylindrical coordinate system 
O(r, y, ϑ). An analogous integration of the Navier-Stokes and continuity equations in the 
reference frame O(r, y, ϑ),  leads to 

 ( ) ( )1 1g p p
gr H f H

r r r r r t

ρ
ρ ω ρ ρ

ϑ ϑ ϑ
∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ = − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (6) 

By taking advantage of a conformal mapping technique (Wang et al., 2003), in agreement 
with the coordinate transformation z = R ln(r/R) (R is the inner pad radius, shown in Fig. 3), 
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the end face of the thrust bearing can be transformed from its annular (physical) domain to a 
rectangular (computational) domain. Accordingly, by substituting r=R exp(z/R) in equation 
(6), it is turned into the following form 

 ( ) ( ) ( )2

1
g p H f H

t
ρ ω ρ ρ

ϑγ
∂ ∂

⎡ ⎤ ⎡ ⎤∇ ∇ = − +⎣ ⎦ ⎣ ⎦∂ ∂
i  (7) 

where ∇={∂/(R ∂ϑ), ∂/∂z}={∂/∂x, ∂/∂z} is the gradient operator and γ=γ (z)=exp(z/R) is 

the conformal mapping operator. In the computational domain (ϑ, z), for γ=1 equation (7) is 
the same as the thin film mechanics equation for journal bearings (eq. (5)). Hence equation 
(7) is the universal thin film mechanics equation for journal and thrust bearings, provided 

that γ=1 for journal bearings and γ=exp(z/R) for thrust bearings. If the fluid viscosity is 
considered constant across the film thickness and equal to the local mean viscosity (the one 

calculated at the cross-film averaged temperature), equations (2) can be easily integrated 

 
( )3

2

12

f H

g H μ

= ⎫⎪
⎬

= ⎪⎭
 (8) 

By means of substitution of eq. (8) into eq. (7), the universal Reynolds equation for journal 
and thrust bearings is obtained 

 ( ) ( )
3

2

1

12 2

H
p H H

t

ωρ ρ ρ
μ ϑγ

⎡ ⎤⎛ ⎞ ∂ ∂
∇ ∇ = +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
i  (9) 

3.2 Film thickness equations 

As TEHD models take into account the deformations (due to both mechanical and thermal 
actions) of the two members of the pair, in order to calculate the film thickness H, the 
relative displacement of the two facing surfaces must be known.  

Let di be the displacement of a point on the surface i (i = 0, 1) in the normal direction 
(roughly the y direction for both the walls).  Such a direction becomes radial in the case of a 
journal bearing, due to the curvature of the x axis. For very compliant bearings (i.e. for 
connecting rod applications) di is the radial component of the displacement deprived of the 

rod rigid body motion, i.e., the mean displacement among points located on the sleeve 
surface. As explained in the previous paragraph, the reference frame is put on surface 0 and, 
precisely, in its real (deformed) configuration. This clarification implies that the equations of 

surface 0 and 1 can be expressed respectively by H0 = 0 and H1 = H = h + d1 − d0, where h is 
the ideal film thickness measured between the surfaces in undeformed state.  The present 
paragraph deals with the assessment of the ideal film thickness h, while thermoelastic 
displacements di are focused in paragraph 5.5. 
Starting from a cylindrical (complete) journal bearing (Fig. 2) with no misalignment, the 

classical expression for the ideal film thickness, obtained by neglecting higher order 
infinitesimal terms, is h= cb + e · cos θ, where cb is the small radial clearance and e is the 
journal center eccentricity ObOj (the norm of the vector e). As it evaluates h in the reference 

system O’(x’, y’) fixed to the center-line (the dash-dotted line in Fig. 2) that moves together 
with the journal, the above-mentioned classical expression is not suitable to deal with TEHD 
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analysis by means of FEM. Indeed, structural models can only evaluate the displacements of 
discrete points (nodes) on the bearing surface localized in a reference frame fixed to the 
bush. Hence the ideal film thickness equation must be also referred to a coordinate system 

fixed to the bearing, i.e. the reference frame O(x, y) shown in Fig. 2, by means of the 
following equation 

 cos sinb X Yh c e eϑ ϑ= + +  (10) 

where the journal center location is given by the Cartesian coordinates (eX, eY) in the 
reference frame Ob(X, Y) fixed at the geometrical center of the shell. 
 

 

Fig. 2. Cylindrical pair (complete journal bearing) with ideal (rigid) members and reference 
systems 

In a tilting pad thrust bearing assembly (Fig. 3), the geometrical center overlaps the origin of 

the reference system O(r, y, ϑ) used for the thin film mechanics equation (6). Hence O(X, Z) 

and its polar counterpart O(r, ϑ) are the references employed to measure the coordinates 
that rule the relative position of the assembly members. By moving their origin in the pivot 
  

 

Fig. 3. Tilting pad-collar pair (thrust bearing) with ideal (rigid) members and reference 
systems  
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Pi of the ith pad, the reference frame Pi(xPi, zPi) shown in Fig. 3 is obtained (the zPi axis is 
oriented in radial direction), in order to easily express the ideal film thickness at pad i as 

 ( ) ( )sin cosi p ri Pi i Pi Pih h r r rϑδ ϑ ψ δ ϑ ψ⎡ ⎤= − − + − −⎣ ⎦  (11) 

where the coordinate pair  (rPi, ψPi) gives the polar location of the pivot that supports the ith 

pad, δri and δϑi are the tilt angles of pad i around the radial axis zPi and the tangential axis xPi 

respectively (for line-contact pivots  δϑi  =0), hP is the film thickness at pivot.  

By substituting r =  γ(z) R and/or ϑ = x/R in eqs. (10) and (11), the relevant ideal film 
thickness expressions in the mapped (computational) thin film domain O(x, z) are obtained. 

3.3 Kinematic pairs motion equations 
When the time history of the external load acting on the bearing is given instead of the 
relative position of the pair members, the resulting problem is referred to as indirect problem 
instead of direct problem. The indirect problem requires more relations than the sole thin film 
mechanics equation in order to determine the pressure field evolution, once the viscosity 
distribution is known by solving the energy equation. The additional relations are the 
equations of motion for the (moving) members of the kinematic pair.  
One of the most effective iterative methods for solving the indirect problem (the coupled 
thin film mechanics and motion equations with the relevant initial and boundary 
conditions) is based on the Newton-Raphson procedure and it is explained, for different 
type of bearings, in many papers (i.e.: Chang et al., 2002).  
Steadily loaded bearings are analyzed by means of the same method as dynamically loaded 
ones, whereas the mass-conserving approach (paragraph 4.1) retains the transient terms of 
eq. (7). In such a case, the simulated transitory evolving from an arbitrary initial condition is 
not meaningful, and only the steady conditions, reached after a sufficient number of time 
steps, are considered simulation results.  
Unfortunately the resort to rotational equilibrium equations, which are simpler than 
momentum of momentum ones and might be sufficient to produce the fictitious transitory 
needed to reach the steady state, may cause the iterative procedure not to converge. Hence, 
rotational equilibrium equations are disregarded in the following and angular inertia is 
treated as a stabilization parameter for steady-state analyses. 
Let F = {FX, FY, 0} be the external load acting on the moving member of the pair. 
In the case of a journal bearing (Fig. 2), the equilibrium equations of the journal are 

 

2

2

cos 0

sin 0

X

Y

F p d

F p d

ϑ γ

ϑ γ
Ω

Ω

⎫+ Ω =
⎪⎪
⎬

+ Ω = ⎪
⎪⎭

∫

∫
 (12) 

where Ω is the mapped domain (the union of the pad domains in a thrust bearing assembly) 
and γ2 dΩ = γ2 dx dz is an infinitesimal element of the physical domain. Equation (12) holds 
for steadily loaded and also dynamically loaded journal bearings, i.e. in a connecting rod big 
end bearing the inertia force acting on the journal is carried by the crankshaft bearing. In the 
case of a tilting pad thrust bearing (Fig. 3, FX=0), the collar equilibrium implies 

 2 0YF p dγ
Ω

− Ω =∫  (13) 
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while the momentum of momentum equations for the (frictionless) ith pad motion are 

 

( )

( )

2
2

2

2
2

2

2
sin 0

2
cos 0

t t t t
ri ri ri

Pi zPi

t t t t
i i i

Pi Pi xPi

p R d I
t

p R r d I
t

ϑ ϑ ϑ

δ δ δγ ϑ ψ γ

δ δ δ
γ ϑ ψ γ

−Δ − Δ

Ω
−Δ − Δ

Ω

⎫− +
− − Ω − = ⎪

Δ ⎪
⎬

− + ⎪⎡ ⎤− − Ω − =⎣ ⎦ ⎪Δ ⎭

∫

∫
 (14) 

where IxPi and IzPi are the (mass) moment of inertia around the xPi and zPi axes, respectively, 
or the stabilization parameters of pad i. 

4. The mass-conserving lubrication model 

4.1 Integration domain and basic assumptions 

Mass conserving cavitation models are based on the so-called JFO theory for moderately 
and highly loaded bearings, which assumes an infinite number of streamers in the cavitated 

region. Fig. 4 shows the thin film (mapped) computational domain Ω which is divided into 

an active (or pressurized) region Ωa and an inactive (or cavitated) region Ωc in such a way 

that Ω = Ωa ∪ Ωc. Let Γe be the external boundary of Ω, Γc the boundary between active and 

inactive film regions, Γe1 the eventual portion of Γe that bounds the active film region and 

Γe2 the remaining part so that Γe = Γe1 ∪ Γe2. The unit vectors na and nc denote the outwards 

normals respectively to Ωa and Ωc.  
 

 

Fig. 4. Integration domain 

It is assumed that the lubricant behaves like an incompressible fluid when hydrodynamic 
pressure build is allowed, and like a fictitious gas-liquid mixture with variable density and 
constant kinematic viscosity when cavitation occurs and pressure can be considered 
constant (p = pc), so that mixture density ρ and viscosity μ are related to liquid density ρL 
and viscosity μL by  

 
L L

μ ρ
μ ρ

=  (15) 

The complete film region (ρ = ρL) includes Ωa and in some cases, the part of Ωc where 
pressure cannot rise and density is going to decrease, due to the divergence of the film, 
while the incomplete film region (ρ < ρL) is a portion of Ωc.  
For the applications at the hand, the lubricant density ρL is considered constant and the 
lubricant viscosity μL is assumed to depend solely on film temperature. In order to 
approximate the temperature-viscosity dependence of the lubricant in a range of 
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temperature that is quite narrow but still reasonable for steadily-loaded bearings, the 
following simple equation is often used  

 ( )0 0expL L T Tμ μ β⎡ ⎤= − −⎣ ⎦  (16) 

where μL0 is the lubricant viscosity at the reference temperature T0 and β a viscosity-
temperature coefficient. By taking into account the assumptions about the lubricant 
behavior, the universal thin film mechanics equation (7) becomes 

 ( ) ( ) ( )2
0L

L Lm g p H f H
t

ρ ρ ρ
γ

∂
⎡ ⎤ ⎡ ⎤Δ = ∇ ∇ − ∇ − − =⎣ ⎦ ⎣ ⎦ ∂

Ui i  (17) 

where U = {ω R, 0} is the relative velocity, Δm the residual mass flow (per unit area) and 

 
1 0

2
2 1 0

/

/

L L L

L L L L L

f i i f

g i i i g ρ ρ

= = ⎫⎪
⎬

= − = ⎪⎭
 (18) 

with 

 
0

s
H

Ls
L

y
i dy

μ
= ∫  (19) 

Equation (17) ensures the continuity of the mass, by imposing that the difference between 
the lubricant flow into and out of the columnar element shown in Fig. 1 balances the 
variation of the mass per unit time in the same volume. The mass flow through the walls of 
the columnar element (per unit length) is 

 ( )L L
L

g p
H f

ρ
γ ρ

γ
∇

= − + −m U  (20) 

4.2 Classic Kumar and Booker type differential formulation 

Assuming ρ = ρL on region Ωa and p = pc on region Ωc, the simulation of both the film 
regions may be performed by means of eq. (17), which becomes an elliptic equation in the 

unknown pressure p on Ωa and a hyperbolic equation in the unknown density ρ on Ωc. The 

method for determining the partitioning of region Ω takes advantage of a complementarity 
principle (Murty, 1974; LaBouff & Booker, 1985) that allows dividing the complete active 
from the complete inactive region, where pressure p and density derivative ∂ρ/∂t are 
calculated, respectively. Afterwards a time integration technique is used to compute the 
density ρ of the film in such a way that the incomplete inactive region extent is immediately 
determined at each time step (Kumar & Booker, 1991). 

4.3 Bonneau and Hajjam type differential formulation 

An alternative formulation (Bonneau & Hajjam, 2001) turns out to be more accurate than the 
classic one in the case of dynamic loading conditions. In this approach the gas film content is 
defined as 

 ( )LHν ρ ρ= − −  (21) 
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Expressing the thin film mechanics equation (17) in terms of such variable yields 

 ( )2
1 1 0L LL

L L L

f fH
m g p H

H t H t

ρ νρ ρ ν
γ

⎡ ⎤ ⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞Δ = ∇ ∇ − ∇ − − − ∇ − − =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
U Ui i i  (22) 

Equation (22) must be integrated with the following constraints 

 
0

0
c a

c c

and p p on

p p and on

ν
ν

= > Ω ⎫
⎬= ≤ Ω ⎭

 (23) 

that match the requirements of both regions Ωa and Ωc mentioned in the previous 
paragraph. 

4.4 JFO cavitation conditions 

The classic Jakobbson, Floberg and Olsson (JFO) conditions (Floberg & Jakobsson, 1957; 

Olsson, 1965) impose the continuity of the flow through the cavitation boundary Γc. They 

can be obtained by means of the flow balance suggested by Fig. 5, where VΓ denotes the  
 

 

Fig. 5. Mass flows through the moving cavitation boundary 

velocity of the moving boundary of  Γc, crossed by the hydrodynamic mass flows min and 
mout, respectively leaving and entering the active film. Both such flows can be computed on 

the basis of eq. (20), particularized for Ωa and Ωc. Therefore mass continuity through Γc is 
ensured by the equation 

 

( )

( )( ) ( ) 0

L

L L
L L L

H

g
H f p H

ρ ρ γ

ρ
γ ρ ρ γ ρ ρ

γ

⎫• − • − − • =
⎪

⎡ ⎤ ⎬
= − − − ∇ − − =⎢ ⎥ ⎪

⎣ ⎦ ⎭

in c out c Γ c

Γ c

m n m n V n

U V ni
 (24) 

where all of the variables must be assessed on the boundary Γc. In this form, the JFO 
boundary conditions can be coupled with eq. (17) that is the Kumar and Booker’s 
formulation. 
In another way, in terms of the gas film content variable, by taking advantage of eq. (21), the 
same condition can be written 

 1 0L L Lf g
p

H

ρ
γ ν

γ
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪− − + ∇ • =⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
Γ cU V n  (25) 

which is the boundary condition on Γc for the Bonneau and Hajjam’s formulation of the 
mass conserving lubrication problem. 
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4.5 Strong differential hydrodynamic problem 

The strong form of the differential problem is solved by finding the unknown pressure and 

gas content fields (respectively p and ν) that fulfill eq. (22) on Ω together with the relevant 

constraints eq. (23), the corresponding cavitation boundary conditions on Γc (eq. (25)) and 

the essential boundary conditions ν = νe, p = pe on Γe. 

4.6 Weak integral hydrodynamic problem 

The film domain Ω is suitably discretized by a finite element mesh with n nodes. The 
differential equations must be turned into discrete systems of integral relationships 
employing the weighted residual method. Integration must be performed in the physical 

domain, which infinitesimal area is γ2 dΩ = γ2 dx dz. Let Wi be a weighting function 

associated with node i. After taking into account the different integration regions in Ω, the 
integral strong form of the problem can be expressed by the weighted equation 
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for i = 1 to n, together with the constraint eq. (23) and the essential boundary conditions on Γe. 
Applying the divergence theorem (eq. (A1), see appendix) and the Reynolds transport 
theorem (eq. (A2)) to the strong form (eq. (26)) yields 
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that considers the generic case shown in Fig. 4, where Ωa is bounded by Γc and a portion Γe1 
of the external boundary. In such case the essential boundary conditions must be consistent, 

namely the gas film content has to vanish on Γe1. The relationship 
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holds for whatever field vector F is chosen, as evidenced by Fig. 4. Therefore, by taking into 

account eq. (28), equation (27) for Γe = Γe1 ∪ Γe2, Ω = Ωa ∪ Ωc and ν = 0 on Γe1, is turned into 

the relation 
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The lubricant flow, given by eq. (20), can be expressed in terms of the variable ν instead of ρ 

by means of eq. (21) as follows 
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Then, by evidencing the expression of the flow (eq. (30)) and assuming that the external 

boundary is fixed with reference to surface 0 (VΓe = 0), equation (29) becomes 
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Equation (31) together with the constraint eq. (27) and the essential boundary conditions on 

Γe completely defines the hydrodynamic problem in weak formulation. It allows to 

implicitly fulfill the continuity boundary conditions on Γc (eq. (25)), which are embedded in 

Eq. (31) as just proved. The corresponding strong form of the problem is the Bonneau and 

Hajjam type differential formulation presented at paragraph 4.3.  

By a numerical point of view the transient term in cavitated region can be evaluated as 

follows 
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t t

i i iW d W d W d
t t t

ν ν νν γ γ γ
−Δ

Ω Ω Ω

∂ − ∂
Ω ≅ Ω ≅ Ω

∂ Δ ∂∫ ∫ ∫  (32) 

where νt-Δt is the gas film content calculated at the previous time step. 
Substitution of eqs. (32) and (21) in eq. (31) yields 
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By means of eq. (33), which is roughly equivalent to eq. (31), the hydrodynamic problem is 

solved in the unknowns p, ∂ρ/∂t (instead of p, ν), as explained in paragraph 4.2.  The 
corresponding strong form of the problem is the Kumar and Booker type differential 
formulation presented at paragraph 4.2.  
Due to the different integration schemes, the two types of weak formulations are not 
numerically equivalent.  

4.7 FEM formulation and stabilization 

The weighting functions are usually chosen according to Galerkin method when elliptic 

problems are involved, i.e. Wi = Ni, where Ni is the shape function of node i. The same 

expedient produces wiggles when the hyperbolic part of eq. (31) is solved in Ωc. Stabilization 

can be performed by means of the streamline upwind / Petrov-Galerkin (SUPG) method, 

which is element-independent and, in addition, sharply simplifies numerical implementation 

in comparison with the classical upwinding methods (Bathe, 1996). 

In the present case, SUPG stabilization is achieved by adding numerical diffusion only along 

x direction. Hence, by introducing the usual finite element approximations for the unknown 

fields variables (p = pj Nj , ν = νj Nj), equation (31) can be written in synthetic form as 

 0p e t t
i ij j ij j i iM K p K M Mν ν −ΔΔ = + + + =  (34) 

where 
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 (35) 

In eq. (35), ∆t is the time step, Ht-∆t and ν t-∆t are respectively the film thickness and the gas 

film content calculated at the previous time, and τSUPG is the stabilization parameter 

 up upSUPG sτ α β Δ
=

su
 (36) 

where αup, βup are dimensionless coefficients used to control the added diffusion, Δs is the 

length of the finite element along the streamwise direction, and us the convective flow 

velocity. In eq. (36) the term on the right hand side has the effect of weighting the convection 

operators towards the upstream direction. 
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In order to solve eq. (34), the following set of values is used in eq. (36): αup = 1, βup = 0.5, Δs = 

Δx (element length along the x direction) and us ≈ U / 2, whereas the convective flow in the 
cavitated region moves in x direction with the mean surface velocity.  
Some authors (Fatu et al., 2006) assume that viscosity is independent of cross film direction 

y in the cavitated region so that fL/H  = 0.5 in Ωc. 

5. Fast energy-conserving thermal models 

5.1 2D model 
A simplified energy conservation equation for thin fluid films was derived by averaging in 
the cross-film direction the classic 3D energy equation (Kumar & Booker, 1994). Although 
the resulting 2D model is very fast by a computational point of view, it is unable to assess 
the temperature gradient ∂T/∂y at the walls, which must be considered adiabatic. By 
applying the conformal mapping defined in paragraph 3.1, the 2D energy equation is turned 
into the following relation 

 ( )2

1
0m

m m m

Tc
q K H T H T c H H

t
ρ ρ

γγ
∂

Δ = ∇ ∇ − ∇ − + Φ =
∂mui i  (37) 

where the subscript m denotes a variable averaged in the transverse direction of the film y, 
Δq the residual heat flow (per unit area), u = {u, v, w} the lubricant velocity vector, K the 

thermal conductivity of the lubricant film mixture, c the specific heat and Φ the power 
dissipation density function. 
Equation (37) ensures the continuity of the energy, by imposing that the net heat exchanged 
by the columnar element of fluid shown in Fig. 1 balances the variation of internal energy 
and the heat dissipation in the same volume. The heat flow through the walls of the 
columnar element is 

 m

H
K T

γ
= − ∇q  (38) 

The conduction in the oil film plane (x, z) is not taken into account in the original equation 
devised by Kumar & Booker, as the problem solution is dominated by convection. The 
conductive term has been introduced in eq. (37) only for numerical convenience, in order to 
take advantage of SUPG stabilization (paragraph 5.3). 

5.2 Quasi-3D model 

Equation (37) can be modified in order to take into account the heat flux from the lubricant 
film into the two members of the pair. In this case, the heat absorbed by the film is equal to 
the difference between the viscous dissipation and the total heat exchange. 

Therefore, the following equation is used in the thin film region Ω 

 ( ) 0 12
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m m m

Tc
q K H T H T c H H q q

t
ρ ρ

γγ
∂

Δ = ∇ ∇ − ∇ − + Φ − − =
∂mui i  (39) 

where q0 and q1 are the heat transfers (per unit area) to surface 0 and 1, respectively. 
They are calculated by obtaining the temperature gradients at the walls, in the hypothesis 
that the temperature profile across the film thickness is a fourth-order polynomial. 
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According to the procedure explained in detail in the previous reference work (Stefani & 
Rebora, 2009), the five coefficients of this polynomial can be calculated by:  
a) equating the film temperature at the walls with the temperatures T0 and T1 calculated by 

the heat conduction equations on surface 0 and 1 respectively; b) imposing that the average 

temperature in the y direction is equal to Tm, namely the unknown of eq. (39). The resulting 

heat exchange at the wall surfaces is 
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where T’’0 and T’’1 are the derivatives ∂2T/∂y2 at the surfaces 0 and 1, respectively.  
They can be obtained by projecting the 3D energy equation on both the kinematic pair 

surfaces. Particularly in steady-state conditions (∂T/∂t=0,  ∂H/∂t=0), under the further 

assumptions that the temperature on surface 1 does not depend on the x coordinate 

(∂T1/∂x=0), evaluating the 3D energy equation on surfaces 0 and 1 yields respectively  
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 (41) 

The hypothesis ∂T/∂x=0 on surface 1 is extensively adopted in the analysis of journal 

bearings, where the shaft rotation flattens the circumferential variations of temperature 

(Kucinski et al., 2000). An analogous phenomenon may occur in thrust bearings due to the 

collar rotation. 

The hypothesis ∂T/∂t=0 complies with the analysis of steadily loaded bearings. It is also 

sufficiently realistic in the simulation of dynamically loaded bearings, as the variations of 

temperature distribution in the bearing structure over one load cycle are not very significant 

in comparison with film temperature changes (Kim & Kim, 2001). Nevertheless, equation 

(41) does not take into account the heat convection due to squeeze and it must be modified 

to deal with dynamic loading conditions. In addition a full transient thermal analysis 

(∂T/∂t≠0) requires special techniques (Fatu et al., 2006). 

Equation (41) implicitly includes the velocity boundary conditions u = 0 for y = 0 as well as 

v = γ U dH/dx, w=0 for y = H, so that the derivatives T’’0, T’’1 become independent of heat 

convection.  Such a deduction, proved in the previous reference work (Stefani & Rebora, 

2009) dealing with journal bearings, has been extended to thrust bearings by taking 

advantage of the reference system choice (paragraph 3.1).  

5.3 FEM formulation and stabilization 

The following SUPG-stabilized integral form of eq. (39) (and eq. (37) as particular case) is 

here proposed 
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In eq. (43) Tmt-Δt is the (averaged) film temperature calculated at the previous time and K is 

the following diffusivity matrix 
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τ τ

τ τ

⎡ ⎤+
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where C is a reference clearance value. Specifically C=cb for complete cylindrical journal 

bearings (eq. (10)) and C = hPref (reference film thickness at pivots) for thrust bearing 

assemblies (eq. (11)). As in the last case the film thickness at pivot hP is a variable and a fixed 

parameter for all the time steps is required in the stabilization procedure, a suitable reference 

thickness at pivot hPref is chosen (i.e. for most thrust bearings a good value of hPref is 50 μm).  

In order to avoid wiggles in the temperature distributions retrieved from eq. (42), the τSUPG 

stabilizing parameter is calculated by means of eq. (36), with αup=1, βup=0.5, and us=⏐um⏐.  
 

 

Fig. 6. Streamline across a 4-node isoparametric finite element, where Oe(ξ, η) is the element 
reference system and G is a Gauss point 
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As the integrals in eq. (43) are evaluated by means of the 2-points Gauss quadrature, the length 

Δs in eq. (36) is calculated along the streamline across every Gauss point G, as shown in Fig. 6. 
Since convection typically dominates diffusion along the flow direction, the added 
streamwise diffusion does not compromise the accuracy of the solution in this direction. In 
addition no deleterious cross-stream diffusion is added. 

5.4 FEM groove mixing theory 

If the region Ωg is the projection in the (x, z) plane of the gth groove fed with supply oil at 
temperature Ts, the average film temperatures TmΩg and TmΓg are assumed to be uniform 

throughout Ωg and its boundary Γg, respectively.  The proposed algorithm is based on the 
simple idea that the residuals of the integral energy equations calculated at nodes belonging 
to the grooves must be involved in the calculation. This enables us to assess the entry 
temperature, which experimental evidence suggests is higher than the oil-feed temperature. 
An approximated energy balance provides the additional equation needed to evaluate the 
unknown entry temperature TmΓg. 

Ni being the ith shape function, n the number of the nodes in Ω, ng  the number of the nodes 

in Ωg, and nbg the number of nodes lying on the groove boundary Γg, the energy-balance 

equation for the oil flows that mix in Γg is given by 

 
( )

( )

2

1 1

1
0

ng n
i g i i m g si ig g g

nbg g
i i i m g si

N q d N d c N d T T

Q Q c M T T

γ γ γ Γ= =Ω Γ Γ

Γ=

Δ Ω + Γ + Γ − =

= Δ + Δ + Δ − =

∑ ∑∫ ∫ ∫
∑

q n m ni i
 (45) 

where Δqg and ΔQig are the local and the integral residual at node i, respectively, of the 

energy balance in the groove domain Ωg, described below. In eq. (45) ΔQi and ΔMi are the 
weighted residual (calculated at node i) of the energy and thin film mechanics equations 

integrated in Ω according to eqs. (42) and (34), respectively.  Ωg is not a thin film region and 

therefore it is not a part of the integration domain Ω. Hence in  Ωg the specific energy 

balance equation at node i is required to conserve energy and to determine TmΩg 

 2 0g
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Ω
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In eq. (46) Δqg evaluates the net heat flow in the region Ωg, calculated by 

 0 0 12g gm g g gq H q qαΔ = Φ − −  (47) 

where Hg is a groove equivalent thickness, Φg is the groove power dissipation density 

function, α0 is the ratio between the effective conductive area of the grooves (lying on 
surface 0) and their total area projected on surface 0 and 1, and q0g, q1g are the heat flows 

exchanged with the surface 0 and 1, respectively, in the region Ωg; q0g and q1g are given by  
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 (48) 
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Equation (48) has been obtained by combining eqs. (40) and (41). Hence, eq. (48) does not 
hold for a thick film in a general case, but remains valid if the groove hydrodynamic 
behavior is simulated as an equivalent Couette flow (in laminar regime with negligible body 
forces) into a gap of uniform thickness Hg with each wall at uniform temperature. In this 
hypothesis, if the relevant shear stress is denoted by τg, the groove power dissipation 
density function Φg at the walls and its mean value Φgm are given by 
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where the friction factor λ characteristic of the groove type, is defined by 
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Application of the FEM groove mixing approach to the study of different types of grooves is 
made possible by means of a reasonable choice of the characteristic parameters λ and Hg. 
The Wendt (Wendt, 1933) and the surface drag losses (Khonsari & Booser, 2008) empirical 
formulas have been used to assess the friction factor λ for journal and thrust bearings, 
respectively. 

5.5 Structural and thermal simulation of the pairs 
Steady-state elasticity and heat conduction equations must be solved in the structures of the 
kinematic pair members to assess the displacements due to mechanical as well as thermal 
actions and the temperature of the bearing surfaces due to heat dissipation in the lubricant 
film. By taking advantage of the related problem linearity as well as of FEM condensation 
procedures, the thermoelastic displacements di and the thermal fields Ti of the two surfaces 
(i=0, 1) are obtained by means of linear operators, which numerical counterparts are 
represented by suitable vectors and matrices. They may be calculated in a preprocessing 
phase, by means of a separate (commercial) FEM code, i.e. Ansys, which is very flexible and 
suitable to perform complex operations thanks to the APDL language.  
The displacements due to mechanical actions dmi and due to thermal dilatation dti are 
evaluated separately, so that di=dmi+dti. 
In order to compute mechanical displacements dmi  (in the y direction) of the two surfaces 
(i=0, 1), the following linear expression is used 

 m me m
i i id d C Ap= +  (51) 

where dmei is the additional displacement due to external mechanical actions, Cmi is the 
compliance operator of the structure and A is a suitable area operator. 
A typical external action is the bolt preload in connecting rod journal bearings, which leads 
to the dmei contribution.  For journal bearings the displacement direction is radial and the 
mean displacement of the bearing surface must be subtracted (paragraph 3.2). The 
assumption dm1=0 is very usual for both journal and thrust bearings, as shaft and collar are 
much stiffer than bush and pads. Details about the calculation procedure can be found in 
many papers (i.e.: Bonneau & Hajjam, 2001).   
In order to compute the thermal field Ti on the two surfaces (i=0, 1), the linear equation is  
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 e
i e i i iT T T S Aq− = +  (52) 

where Te is the external temperature, Tei is the temperature field due to essential boundary 
conditions on a part of the thermal model, and Si is referred to as thermal sensitivity 
operator. Te is the bulk temperature of the air surrounding the structure, whereas heat 
convection boundary conditions are used to model the heat exchange with the environment. 

Essential boundary conditions on the groove surface (T0=Ts on Ωg) may be useful in order to 
simulate the heat exchange between cold lubricant and hot metal, which is influential when 
Ts value is not much higher than Te. In such a case Tei must be computed, unless the 
temperature Te and Ts are assumed to be equal as in the plain bearing studied in the 
reference work (Stefani & Rebora, 2009). The same paper deals with the procedure required 
to calculate the tensors for the discretization of eq. (52), except Tei. 
In order to compute thermal displacements dti (in the y direction) of the two surfaces 
(i=0, 1), the linear expression is 

 t te t
i i i id d C Aq= +  (53) 

where dtei is the additional displacement due to essential temperature boundary conditions, 
Cti is the thermal compliance operator. In eq. (53) dtei is the displacement due to the 
temperature field Tei discussed above. The assessment of Cti is discussed in the above-cited 
reference work, where it is expressed as the product of two tensors, evaluated in separate 
thermal and structural analyses. Indeed Cti may be also estimated directly by resorting to 
coupled-field solid elements. 

6. Application examples 

6.1 Journal bearing 

In order to show the degree of reliability of the above-explained methods, a comparison 

among experimental and numerical results is presented for the two-axially grooved journal 

bearing studied by Lund (Lund & Tonnesen, 1984). Extensive bibliography, simulation 

details, assumed bearing data and boundary conditions are reported in the reference work 

(Stefani & Rebora, 2009).  Fig. 7 shows the trends of the temperature T0 (on the bush surface) 

along the bearing centerline for a shaft rotation speed of 5000 rpm and an external load of 

5600 N. The responses of the 2D THD model and the quasi-3D TEHD model (with α0=5 in 

eq. (47)) are compared.  

Particularly, the 2D model (dotted line) strongly underestimates the experimental 
temperature, as explained in the reference work. The dash-dotted line is obtained by 
assuming, in agreement with the reference and the Lund’s work, that the temperature of the 

effective area 2 α0 Ωg exchanging heat with the oil film is constant and equal to the supply 
oil temperature Ts (hypothesis A). Such an assumption means that T0=Ts is imposed in eq. 
(48), but the groove surface temperature in the thermal model is free (Te0=0 in eq. (52)), so 

that the dash-dotted line exceeds Ts=50°C in the groove regions (85°≤ϑ≤95° and 265°≤ϑ≤275°) 
in Fig. 7.  Although such response seems to be realistic by the physical point of view, as a 
limited variation of the white metal temperature through the groove region is expected, the 
hypothesis A requires different assumptions in different sub-models. Differently the solid 

line has been obtained by imposing T0=Ts in Ωg coherently in all of the sub-models 
(hypothesis B). In the present bearing study, the supply temperature is greater than the  
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Fig. 7. Centerline temperatures on the bearing surface calculated by means of the 2D model 

and the quasi-3D model (two-axial groove journal bearing, ω=5000 rpm, FX=5600 N) 

external temperature (Ts=50°C, Te=20°C) and, therefore, the thermal simulation requires the 
calculation of the term Te0 in eq. (52) in order to fulfil hypothesis B. Accordingly T0=Te has been 

imposed on Ωg while calculating the corresponding sensitivity matrix (term S0 in eq. (52)). 
The adoption of either hypothesis A or B enables the heat exchange between the structure of 

the bush and the lubricant in the grooves to be simulated. The lack of such modelling detail 

causes, in the present case, a bush peak temperature overestimation of roughly 10°C. 

Although hypothesis A yields a better temperature trend than hypothesis B, it leads to an 

underestimation of the journal temperature that is evident in the cited Lund’s paper too. A 

comparison among journal temperature results is reported in Table 1, where axially 

averaged values are calculated for the one-dimensional journal sub-models adopted in the 

quasi-3d analyses (see the reference paper for details).    

 

 
Experiment 

(Lund & Tonnesen) 
Quasi-3D 

(hypothesis B) 
Quasi-3D 

(hypothesis A) 
Lund 

calculation 

T1 [°C] 77.8 78.7 74.5 73.1 

Table 1. Journal temperatures: experimental vs. numerical results (average values) 

6.2 Thrust bearing 

Another comparison among experimental and numerical results is presented for the tilting-
pad thrust bearing studied by Glavatskikh, who published accurate experimental results 
(Glavatskikh, 2001). This publication also furnishes the bearing data needed by the analyses. 
The thermal and the thermoelastic behavior of the thrust bearing is taken into account (in 

the quasi-3D analysis) by means of a 3D model of the pad and 2D axisymmetric model of 

the shaft-collar assembly (Fig. 8). The choice of an axisymmetric collar model complies with 

the assumption ∂T1/∂x=0 (paragraph 5.2). 
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Fig. 8. Finite element models of the thrust pads and the shaft-collar assembly 

In the pad thermal and thermoelastic models, used to calculate the thermal sensitivity S0 (eq. 
(52)) and the thermal compliance Ct0 (eq. (53)) respectively, convective heat transfer 
boundary conditions are assumed for all of the thrust pad surfaces except the babbitt face 
(surface 0) where the nodal heat flows are applied.  
Analogous temperature boundary conditions are adopted for the collar (in Fig. 8 the red 
lines locate the convective surfaces) and, in addition, symmetry (natural) boundary 
conditions are reasonably assumed in order to model only a quarter of the shaft, as the test 
rig is made by two opposite thrust bearings. The heat transfer coefficient and the bulk 
temperature are set to 50 W m-2 °C-1 and 20°C, respectively, for all of the pad and shaft-collar 
convective surfaces.  
Different displacement boundary conditions are imposed in the assessment of the thermal 
compliance Cti and the structural compliance Cmi (eqs. (53) and (51), respectively).  
In the former case, the outer surfaces of both the thrust pad and the shaft-collar assembly are 
left free to expand and only the in-plane displacements of a suitable number1 of nodes lying 
on these surfaces have been constrained to avoid ill-conditioning. In the latter case, a small 
portion of the pad bottom surface around the pivot has been constrained from moving and, 
in addition, the radial displacements of all of the pad nodes located on the outer and inner 
diameters are constrained.  The collar is assumed to be much stiffer than the pad (Cm1=0) 
and for both the pads and the collar no external mechanical action is considered 
(dme0=dme1=0 in eq. (51)). The shaft-collar symmetry constraint is enforced in the 
thermoelastic model by locking the axial displacement of all of the nodes lying on the 
symmetry line (Fig. 8).  
As the metal on the bottom of the groove cavity (the carrier ring) is not simulated, the 
lubricant in the inner groove region is assumed to remain, on the average, at the supply oil 

temperature (TmΩg=Ts), while the groove boundary mean temperature TmΓg is still an 
unknown of the problem. Consequently, no essential temperature boundary conditions on 

the groove surface Ωg are required on both thermal and thermoelastic models (Tei=dtei=0 in 
eqs. (52) and (53)). 
The universal Reynolds equation (eq. (9)) has been used to obtain the results reported below 
for 1 MPa specific load (FZ=26130 N) and Ts=40°C supply temperature. Radial tilt of pads is 

neglected (δϑi=0). For the quasi-3D model, the coefficient α0 (eq. (47)) is increased from 0 to 5 
when the rotation speed decreases from 3000 rpm to 1500 rpm, as the heat transfer in the 

                                                 
1 4 nodes for the pad 3D model, 3 nodes for the shaft-collar 2D model 
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grooves is more efficient at low speed, when the lubricant flow rate entering the fully 
flooded pad inlet is low in comparison with the (constant) flow rate supplied to the test rig.  
Fig. 9 shows the variation with the shaft rotation speed of the pad (surface 0) temperature 

T75/75, assessed at a location r75=R+0.75 (Re-R), ϑ75=ϑLi+0.75βi (Fig. 3), of the collar (surface 1) 
temperature T75 at the location r=r75, and of the shaft temperature Ts at the location r=0 (on 
the pivot plane). For the 2D model, which does not evaluate wall temperatures, only the 

mean film temperature at the point (r75, ϑ75) is reported in Fig. 9. Again, in comparison with 
the reference experimental results, the 2D model strongly underestimates the temperatures, 
while the quasi-3D model ensures a good level of reliability. In the same Fig. 9 the calculated 
oil flow rate M is also given. The oil flow rate supplied to the test rig is 15 l/min. Excess 
flow, beyond what is needed hydrodynamically, acts to provide overall cooling to the 

bearing. Therefore the assumed variation of α0 with the rotation speed is well-justified. 
 

 

Fig. 9. Pad (T75/75), collar (T75), shaft (Ts) temperature and calculated flow rate (M) 

The corresponding variations of the power loss P and of the film thickness at the pad inlet 
and outlet (h1 and h3, respectively) are given in Fig. 10. The temperature underestimation of 
the 2D model leads to unreliable predictions of the film thickness.  
Fig. 11 a) compares the experimental and theoretical (quasi-3D model) circumferential 

variations of pressure p25 and p75 evaluated at r25 and r75, respectively, for ω=3000 rpm. By  

removing the constraint δϑi=0, the differences between theoretical and experimental peak 
pressures increase. For the same rotation speed, Fig. 11 b) shows the pressure distribution 
calculated by means of the quasi-3D model on the 6 pads of the bearing. The maximum 
value of this distribution is 2.4 MPa, which is very close to the peak of the experimental 
pressure p75 (2.3 MPa). 
The overall agreement between numerical and experimental results might be further 
improved by taking into account the variation of the viscosity across the film thickness.  
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Fig. 10. Power loss (P) and film thickness at pad inlet (h1) and outlet (h3) 
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Fig. 11. Hydrodynamic pressure for ω=3000 rpm: a) circumferential variations (p25, p75); b) 
pressure field computed by means of the quasi-3D model 

7. Conclusion 

A general-purpose FEM approach to the TEHD analysis of hydrodynamic bearings has been 
described, focusing on the theoretical aspects, whereas the relevant numerical procedures 
are reported in a large number of papers. Particularly, the most used FEM formulations of 
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the mass-conserving lubrication problem have been proved, while an original approach to 
the thermal problem has been explained.  
The numerical examples show how the quasi-3D approach has enhanced the reliability of 
the mass- and energy-conserving lubrication analysis proposed by Kumar and Booker.  
Indeed, TEHD models are very sensitive to boundary conditions, which choice is 
particularly difficult in all of the multi-physics simulations. 
Future work will adapt the devised method to detailed transient analyses and it will further 
extend the model flexibility by including advanced turbulent lubrication theory.  

8. Appendix 

Let f and F be scalar and vector-valued functions respectively. A variant of the divergence 
theorem states 

 ( )f f d f d
Ω Γ

∇ + ∇ Ω = Γ∫ ∫F F F ni i i  (A1) 

where Γ is the boundary of Ω oriented by the outward-pointing unit normal n. 

If VΓ is the Eulerian velocity at the boundary Γ, the Reynolds transport theorem generalizes 
the Leibniz’s rule to multidimensional integrals as follows 

 ( ) f
f d d f d

t tΩ Ω Γ

∂∂
Ω = Ω + Γ

∂ ∂∫ ∫ ∫ ΓV ni  (A2) 
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