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Abstract

In order to make an autonomous robot system more adaptive to human-centered envi-
ronments, it is effective to let the robot collect sensor values by itself and build controller 
to reach a desired configuration autonomously. Multiple sensors are often available to 
estimate the state of the robot, but they contain two problems: (1) sensing ranges of each 
sensor might not overlap with each other and (2) sensor variable can contain redundancy 
against the original state space. Regarding the first problem, a local coordinate defini-
tion based on a sensor value and its extension to unobservable region is presented. This 
technique helps the robot to estimate the sensor variable outside of its observation range 
and to integrate regions of two sensors that do not overlap. For a solution to the sec-
ond problem, a grid-based estimation of lower-dimensional subspace is presented. This 
estimation of manifold allows the robot to have a compact representation, and thus the 
proposed motion generation method can be applied to the redundant sensor system. 
In the case of image feature spaces with a high-dimensional sensor signal, a manifold 
estimation-based mapping, known as locally linear embedding (LLE), was applied to an 
estimation of distance between robot body and an obstacle.

Keywords: robot motion generation, redundant sensors, limited observation range, 
manifold by constraint

1. Introduction

Robotics is gathering attention for various applications such as autonomous navigation 
and manipulation of objects. It is highly expected that autonomous robots can act closer 
to humans, for example, in household environment. In reality, however, it is still very dif-
ficult to make those robots achieve various tasks in environments, which are not specifically 
structured for the robots. One of the reasons for this is that processes of recognition and 
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motion generation are all specifically designed according to individual specific cases. In 
unstructured environments, robots have to adapt to various changes of conditions in both 
recognition and motion control processes, which requires reconstruction of software by the 
human designers.

One possible approach to this problem, which might be promising but not straightforward, is 
to let the robot learn to build its representation for task execution based on its own experience 
(for example, discussed in the context of developmental robotics [1, 2]). In this approach, 
task-specific designs are omitted in recognition processes, which is quite different from the 
conventional robotics, where objects, robots, and environments are described by their coor-

dinates (typically Cartesian) in world coordinate systems. For example, a mobile robot can 
achieve a navigation task based only on its information of distance sensors, while distance 
sensor information is normally converted to position of the robot based on its environmental 
map in simultaneous localization and mapping (SLAM) applications [3–5].

When we try to build a framework to allow an autonomous robot to build a state space for 
motion generation, the idea of manifold where only local coordinate systems are defined and 
relations among them are described is suitable for the purpose. The reason is that one kind of 
sensor does not provide thorough information about the robot system and its environment, 
and multiple sensors are often required to cover various situations, whereas relations among 
multiple sensor signals are not known in advance. Thus, an application of approximating 
manifold for robot motion generation is presented in this chapter.

First, an integration of multiple sensor spaces is presented. The proposed integration method 
is based on an idea that the system dynamics is continuous over a sensor signal space with 
respect to the control input. Redundant sensor signals are mapped onto a lower-dimensional 
subspace using a simple grid-based parameterization method, which was applied to a naviga-

tion problem of a mobile robot equipped with several distance sensors measuring distances 
to a wall. Second, an application of locally linear embedding (LLE) [6] to mapping from a 
high-dimensional image feature space to a low-dimensional space in robotic motion planning 
task is presented. No prior knowledge on the robot appearance is used in the method, and it 
was shown that the obtained low-dimensional space reflected the spatial relation between the 
robot hand and the object.

2. Integration of multiple sensor spaces with mapping to manifold

In this section, a motion generation method using an integration of multiple sensor spaces is 
presented. Multiple sensors are often required to realize thorough understanding about the 
environment, but they often do not overlap with each other; in the case of visual recognition 
as an example, occlusion and restriction of the viewing range often cause an incomplete state 
identification. In the case of tactile and proximity sensors, their detection ranges are limited 
and provide useful information only in limited cases, when they are close to objects or envi-
ronments. On the other hand, occlusion often occurs when the sensor is close to an object. 
Robots can identify their surroundings by integrating multimodal sensors, but it causes a 
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problem of integrating information of multiple different sensors whose detection ranges do 
not overlap among each other.

A standard way to integrate multiple sensor information in robotics is to rely on sensor mod-

els and calibrations, but they require a preparation cost by human designers. For realizing 
highly adaptive autonomous robots, following properties are required:

• Integration of multimodal sensor spaces, each of which has its specific sensing range (pos-

sibly not overlapping with each other).

• Relying only on sensing and actuating information of the robot itself, without using world 
coordinate system models.

A motion generation framework based on multiple sensors with limited sensing ranges has 
been presented in [7]. In order to integrate two sensor spaces, an idea of extending a sen-

sor space was proposed, borrowing an idea from diffusion-based learning [8, 9]. The char-

acteristic of the proposed framework is that it can generate desired trajectory and motion 
without a problem-specific knowledge. It is known that the similar class of problems has 
been discussed using partially observable Markov decision processes (POMDPs) [10–13]. The 
proposed framework does not take the noise or perceptual aliasing into account, but the pro-

posed framework is simpler.

2.1. Problem definition of motion generation with multiple sensors

Let  x ∈ X  denote the state of the robot system, where  X ⊂  ℝ   n   denotes the state space. Observation 
vectors are denoted by  s ∈  s    

(1)  , … ,  s    
(h)   ∈  s    (h)   , where h denotes the number of sensors and   S    

(i)   ⊂  ℝ   n   

denotes the observation variable space for sensor i. The control input (motor command) to the 
system is denoted by  u ∈  ℝ   n  . The dynamics of the system is expressed as

   x   ̇  = F (x) u, F (x)  ∈  ℝ   n×n ,  (1)

where  F (x)   is a smooth function, which will be approximated locally. Each sensor’ sens-

ing range is limited.   X    
(i)   ⊂ X  denotes a subset of state space where sensor i is in its sensing 

range. Mapping from   X    
(i)    to   S    

(i)    is assumed to be injective and smooth, where all mappings are 
unknown. It is also assumed that there is no noise in the observation and the robot can judge 
whether each sensor is in its sensing range.

The task of the robot is to move from an initial configuration   x  
start

    to   x  
goal

   , where the information 
of the target configuration is given as an observation vector sensed at   x  

goal
   . That is, the target 

sensor value is given to the robot as   s  
goal

   (h)     where j satisfies   x  
goal

   ∈  X    (j)   . As indicated in Figure 1, a 

single sensor does not cover both   x  
start

    and   x  
goal

   , nor is it guaranteed that the sensing range of one 
sensor does not overlap with that of another sensor. Thus, the robot must find a trajectory that 
goes through a subset of the state space where no sensor signal can be observed.

The second aspect of the problem is that observation variable itself contains redundancy. Let 
m denote the dimension of the observation variable and the redundancy means m > n, which 
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is depicted in Figure 2 with the case m = 3 and n = 2. The observation variables are constrained 
on a two-dimensional manifold. Knowing the fact of constraint on a manifold, lower dimen-

sion can be obtained by approximating the manifold.

2.2. Integration of multiple sensor spaces

The robot first acquires the mapping from the control input to an observation vector by col-
lecting samples by random motion within each sensor’s detection range. The basic idea of 
the integration is to first extend the mapping from outside the sensing range as indicated in 
Figure 3. The robot repeats motion in and out of the sensing range and compares the resultant 
observation and a predicted observation. That is, the robot estimates the observation using the 
information of its sequential motion and the input-observation mapping.

Figure 1. Motion from a sensing range of a sensor to another range.

Figure 2. Redundant sensor information and constraint on a manifold.
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The process of extension of a sensor space can be understood as a construction of a “virtual” 
observation space. The virtual observation space overlaps with another sensor space. When a 
task to reach a destination is given to the robot, it generates a motion from the current sensor 
space to the other sensor space including the destination, which is based on the representa-

tion of the virtual observation space. This framework basically works on the basis that the 
dimensions of the sensor spaces are equal. To relax the condition, we also discuss the way to 
deal with a case of redundant sensor space where an observation vector has higher dimension 
than the state vector.

2.3. Dimension reduction of the observation vector

Dimension reduction of sensor variable is based on a grid-based parameterization, as shown 
in Figure 4. Basic idea of the parameterization is similar to an active contour model used in 
image processing [14]. The nodes in a two-dimensional grid fit along the surface of samples 
by minimizing an energy representing closeness to the samples. By extending and fixing the 
nodes on the ends of the grid to the end of samples, iterative updates minimizing the energy 
lead the grids to fit the samples while spreading to cover the sample region. Once the lower-
dimensional grid is created, it is used to parameterize the original sensor signal by another 
vector, in the example case, in two-dimensional vector.

2.4. Motion generation by integrating two observation spaces

Using the extrapolation of Jacobian in the observable region to outside the viewing range, vir-

tual observation variables can be obtained. As shown in Figure 5, the robot starts motion from 
a viewing range of sensor i. The target is given as a variable of sensor j. Using the extrapola-

tion, the closest grid in the virtual sensor space of sensor i can be calculated. First, the robot 
is controlled to aim at the grid in the virtual sensor space using Jacobian of sensor i. After it 

Figure 3. Estimation of Jacobian of observation variable dynamics outside observation range of a sensor.
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reaches the viewing range of sensor j, it switches to the Jacobian of sensor j to finally reach the 
precise target position in the space of sensor j.

2.5. Simulation results

Consider a mobile robot with five proximity sensors, as shown in Figure 6. The robot is 
equipped with three proximity sensors on the front of its body that are grouped as sensor 1. 
The robot has two proximity sensors on its right side. They are grouped as sensor 2. A wall 
that has an infinite length is located in the environment. Each proximity sensor provides a 
value that is proportional to the distance to the wall. When the distance is longer than its sens-
ing range, the wall cannot be detected. This situation is assumed to be detected by the robot. 
The control input to the system is the angular velocities of the two wheels.

Figure 4. An example of a grid-based parameterization of sensor space with three-dimensional sensor variable. Input in 
the three-dimensional space is mapped onto a two-dimensional vector.

Figure 5. Motion generation by integrating two observation space, starting from a sensor space aiming at another sensor 
space and finally reaching the target.
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In this problem setting, the relative position of the robot to the wall can be expressed by two 
parameters; its distance to the wall and its relative orientation to the wall. When the robot is 
moving parallel to the wall, sensor 2 detects the configuration of the robot. In this case, sensor 
1 is out of its sensing range. Sensor 1 provides configuration information when the robot is 
facing the wall. However, in this case, the observation variables   s    (1)   =   [ s  1    s  2    s  3  ]    

T   are redundant for 
the purpose of specifying the 2-DOF configuration relative to the wall. The mapping method 
of manifold is applied to the space of sensor 1. The radius of the wheels is 0.02 (m), and the 
distance between the two wheels is 0.04 (m). The initial state of the robot is set where the 
robot faces perpendicular to the wall at a distance of 1 (m), and final destination of the robot is 
specified so that the robot comes close to the wall where only sensor 2 is in its detection range.

Figure 7(a) shows samples of the observation variables of sensor 1, which was obtained 
by the offline random data collection. The three-dimensional vectors are distributing on a 

Figure 6. Mobile robot navigation problem where five distance sensors are available to detect a relative configuration 
against a wall.

Figure 7. Collected sensor variables with three distance sensors (a) and estimated two-dimensional manifold based on 
the samples (b).
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Figure 9. Trajectory of the mobile robot in the world coordinate view.

two-dimensional surface of the redundancy described above. Nodes of the approximation sur-

face were initially located around the center of the samples. The approximation surface obtained 
by the proposed method is depicted in Figure 7(b), where the nodes correspond to crosses on the 
curves. It can be confirmed that the nodes covered the samples by spreading and fitting them.

The trajectory obtained by the proposed method in the observation variable spaces is shown 
in Figure 8. The line drawn on the approximation surface in Figure 8(a) indicates the initial 
part of the trajectory in the observation variable space for sensor 1, where a circle in the figure 
indicates the initial configuration. Figure 8(b) shows the trajectory drawn in the space of sen-

sor 1 obtained by the proposed dimension-reduction method. Figure 8(c) shows the last part 
of the trajectory in the space of sensor 2.

The trajectory generated in the world coordinate by the robot is depicted in Figure 9. The line 
of y = 0 indicates the wall. The initial configuration of the robot is apart from the wall and it 

Figure 8. Realized trajectories of the robot in sensor space 1 (a), virtual sensor space of sensor 1 (b), and the viewing 
range of sensor 2 (c).
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finally reached the target configuration, directing parallel to the wall. It can be seen that there 
is an intermediate part in the trajectory, where none of the distance sensors were detecting the 
wall, as drawn in thick lines in the trajectory.

It was assumed in the proposed method that the robot knows the dimension of the state 
vector. This problem can be resolved by applying statistical methods such as principal com-

ponent analysis (PCA) [15], which allows to detect the appropriate dimension of the robot 
system’s dynamics. Though PCA is a linear framework, which is valid only in the case where 
linear dimension reduction can be applied to the whole state space, nonlinear extensions of 
the dimension-reduction methods have been also developed, such as Kernel PCA [16] and 

ISOMAP [17]. The surface-approximation scheme applied in this chapter for the dimension-
reduction problem can be replaced to other nonlinear mapping methods, which will be one 
of our future works.

3. Manifold learning approach toward constructing state 

representation for robot motion generation

Monocular and stereo cameras are widely used as external sensors for robot systems. In the 
real-world application of robot systems, however, measurement of 3D configurations of 
objects suffers from the following difficulties:

1. 3D configuration measurement, in general, inherently requires precise measurement of the 
shape of an object, but the whole shape of an object cannot be measured directly because 
the process is normally unilateral.

2. It is very important for object manipulation of a robot that the spatial relation between a 
robot and an object is precisely identified. But while the robot hand is approaching to the 
object and getting close to it, occlusion is very likely to occur.

3. In real applications, objects very often deform by contact with the robot, which requires spe-

cific model for mathematical analysis. But it is difficult to precisely model the deformation.

In the research field of developmental robotics, measurement of the 3D configuration in the 
world coordinate is not regarded as a sole way to represent the state for a robot. If a robot can 
build a suitable representation of its environment based by its own way, the total process of 
robot recognition and motion generation will be freed from the problems mentioned above 
(e.g., see [18] as a learning approach).

Thus, an approach to the interest of building a representation of a robot from images for 
motion planning and control in an adaptive way without any predefined knowledge [19] 

is presented in this section. To consider relation between the robot and its environment, 
image features based on scale invariant feature transform (SIFT) [20] are used. As a related 
research, an image feature-based learning of robot behavior was presented [21]. However, 
it did not deal with relation between an object and the robot with a quantitative representa-

tion. In the presented method, a manifold learning method is applied to acquisition of state 
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Figure 10. Experimental setup of a humanoid robot with an object (left). Images and SIFT keypoints extracted as circles 
with different scales indicated by circles (right).

representation. It allows not only to classify state of the robot but also to evaluate closeness to 
a certain situation. In addition, it is verified that the representation acquired by the method is 
used for motion generation of collision avoidance.

As a means of manifold learning, locally linear embedding (LLE) [6] is used. The manifold 
learning is suitable because the system dynamics property can hold only in a local region in 
the problem of robot motion generation. A vector generation based on SIFT features matching 
is proposed for the application of LLE to deal with the problem that keypoints of SIFT are not 
consistently observed throughout the image sequences. The proposed method is evaluated 
using a humanoid robot with real images after verification of LLE state representation genera-
tion with simulated images.

3.1. Problem definition of manifold learning from an image

Figure 10 shows images obtained by CCD camera attached at the head of a robot. These 
images are input to the system. Humanoid robot NAO [22] is considered in the experiment. 
The images contain part of the body (arm) of the robot, an object that has possibility to contact 
with the robot, and other objects that are not affected by the robot motion (background). 
Shoulder roll joint and shoulder pitch joint are controlled, while other two joints are fixed 
throughout the experiment. This implies that the motion of the robot arm is constrained on a 
plane that is vertical to optical axis of the CCD camera.

The right hand of Figure 10 also shows image features extracted from the images as depicted 
by circles. Keypoints of SIFT are used as image features. No explicit knowledge on properties 
of image features is assumed in the problem. That is, the robot does not have label informa-
tion of the object, backgrounds, or robot’s body in the image in advance. The robot collects 
images while moving its arm randomly. Position of the object is also differed irrelevantly to 
the configuration of the robot arm.
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The objective for the robot is to construct a space that provides the following utilities:

1. Estimation of closeness between its hand and the object

2. Prediction of collision between its hand and the object

The first utility allows the robot to plan its motion so that its hand does not to come too close 
to the object while the robot tries to reach some configuration, avoiding collision with obstacles. 
The second utility is expected to contribute to the ability to predict collision prior to its motion by 
integrating it into other techniques, for example, prediction of robot’s hand in the image space.

3.2. Manifold learning based on SIFT image features

Manifold learning by LLE is applied to the vectors represented by positions of SIFT key-
points. Each keypoint contains 128-dimensional feature vector that is used to classification 
and matching to the keypoints in other image frames. By the matching process, a keypoint can 
be tracked through multiple image frames given that it is extracted in those images. However, 
in the application of robot motion sequence, each feature vector corresponding to a keypoint 
is not consistent through sequences of image frames. The arm, which consists of serial links, 
inevitably changes its posture while it is moving toward a certain configuration. By assuming 
that each keypoint tracks a certain part of the arm, we proposed a method for matching and 
labeling using self-organizing map (SOM) [23].

Although feature vectors of a keypoint differ by the change of the robot’s configuration in 
the image frames, it is likely that those feature vectors in images with small differences in 
image pixel level are similar. By using topological neighbor of SOM generated by image pixel 
information, correspondence between keypoint labels can be found. By finding correspon-
dence between neighbor nodes, labels that correspond to the same part of the real world are 
integrated into one label.

3.3. Motion generation based on manifold learning

Dynamic programming with discrete state representation [10] is applied for motion generation. 
The state for motion generation is defined by the joint angle space. The discrete state is given 
by discretizing the joint angles of the robot two-dimensional grids. Actions are defined as four 
directional transitions from a grid to its adjacent grids. Reward is defined as 0 for reaching 
the desired configuration, −100 for colliding with the object, and −1 at every step otherwise. 
Collision with the object is predicted using the obtained LLE representation as described below.

3.4. Simulation results

We first tested basic property of LLE in conditions similar to the experimental problem set-
ting. Virtual keypoints were generated as shown in Figure 11(a). As an assumption, an object 
and the robot hand is captured in an image frame with the size of 400 × 400 [pix]. There were 
10 keypoints to be detected on the object, 10 on the robot hand, and 5 in the background. Both 
the positions of the object and the hand were varied randomly with uniform distribution. 
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Total number of images was 1000. Number of keypoints was 25. To simulate matching error 
of keypoints, position information of 10% of the keypoints in the data vector was removed.

The result of mapping by LLE is depicted in Figure 11(b).   Y  
1
   ,   Y  

2
   , and   Y  

3
    in the figure correspond to 

low-dimensional vector y and hence they do not have units. The colors of the points denote dis-

tances between the object and the hand in the corresponding images, where the original distance 
information in pixel with maximum 550 pixel was converted to 64 levels. It can be seen in the fig-

ure that one direction in the feature space reflects the distance between the object and the hand.

3.5. Experiment of LLE mapping and motion generation with real images

The three-dimensional mapping constructed by the proposed method is depicted in Figure 12. 
Each point, indicated by a circle or a cross, indicates a vector obtained by converting the image 
feature vector by LLE. A cross denotes an image corresponding to a situation where the hand 
contacts with the object. A circle denotes an image without any contact. It can be seen that in 
the space, crosses are concentrating around a certain region. Distance between the object and 
the hand, however, could not be clearly seen in the obtained map.

For verification, some test images that are independent from the training process of LLE map-

ping generation were mapped onto the generated space. Test samples are drawn by boxes in 
the figure. Corresponding images are also displayed. It is observed that the image with its robot 
hand, the most distant from the object, is located in the space at the furthest position from the 
region of the dense crosses. Images with its hand closer to the object are located also closer to 
the “contact” region. But there is a jump at the last step to contact with the object into the region 
with dense crosses. Thus, the spatial relation between the hand and the object was reflected to a 
certain level, but not directly reflecting the distance between the hand and the object in the real 
world.

Classification of collisions was also evaluated based on the generated map information. Using 
the mapping collision between the hand and the object was predicted by whether an image 
is included in the sphere whose center is the average of the samples indicated by the crosses. 
The optimal radius was set as r = 0.74, which was found empirically so that the discrimination 

Figure 11. Simulated keypoints (a) and result of LLE with distance information between robot hand and object (b).
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performance was the best. The classification result is shown in Table 1. For comparison 
between linear and nonlinear methods, a linear mapping was also implemented. The clas-
sification result based on the mapping principal component analysis (PCA) is depicted in 
Table 2. It can be seen that nonlinear mapping brought conspicuous difference of classifica-
tion performance.

A sequence of snapshots of motion generated by DP is shown in Figure 13. Grid sizes for 
the discrete state space were set as 8 × 12. Collision was predicted by a correct recognition 
result for images adopted in Table 1. (1) in the figure denotes the initial configuration of the 
robot hand. The tip of the hand is located above the object in (11), corresponding to the target 
configuration. It can be seen that the robot hand could reach a destination while avoiding 
collision with the object, given that an appropriate evaluation of closeness (or collision) to the 
object is achieved.

Figure 12. LLE mapping by real images with test samples.

Collision (%) No collision (%)

Recognized as collision 95/115 (82.6) 111/617 (18.0)

Recognized as no collision 20/115 (17.4) 506/617 (82.0)

Table 1. Prediction of collision with LLE.

Collision (%) No collision (%)

Recognized as collision 63/115 (54.8) 132/617 (21.4)

Recognized as no collision 52/115 (45.2) 485/617 (78.6)

Table 2. Prediction of collision with PCA.
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4. Conclusion

Two kinds of application of manifold were presented in this chapter. In the first application, 
coordinate systems obtained from sensor signals are directly used for motion control of the 
robot. In the second application, an intermediate representation, spatial relation between the 
robot hand and the object, was built using a manifold learning method. One important advan-
tage of these approaches, in comparison with the end-to-end motion learning approaches such 
as deep learning (e.g., [24]), is that we can analyze and evaluate the obtained representation. 
In order to apply the approach of manifold learning to more complex robot motion problems, 
it will be required to consider multiple resolutions, disappearance of features (as discussed 
in [25]), multiple relations among variables (e.g., discussed in [26]), and connecting different 
modalities with discontinuous dynamics (such as contact and noncontact switching).
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Figure 13. Snapshots of motion a motion sequence achieved by the proposed motion generation.
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