

Prognostic value of ultrasonographic study and monitorization of intracranial hemorrhage in acute stroke unit.

M. Rico¹, L. Martinez-Rodriguez², D. Larrosa¹, L. Benavente¹, E. López-Cancio¹, M. González Delgado¹ J. Calvo³, S. Calleja¹. ¹Hospital Universitario Central de Asturias, Neurology, Oviedo, Spain. ²Hospital Fundación de Jove, Neurology, Gijón, Spain. ³Hospital Universitario Central de Asturias, Radiology, Oviedo, Spain.

Background and Aims:

Several studies have proved a good correlation between measurements performed by transcranial duplex sonography (TDS) and standard techniques (brain CT or ICP monitorization) in the scope of intracerebral haemorrhage (ICH). However, prognostic value of this parameters has been scarcely investigated. The aim of this study was to evaluate the prognostic value of measurements performed by TDS in ICH patients, as well as the variations of these parameters over time.

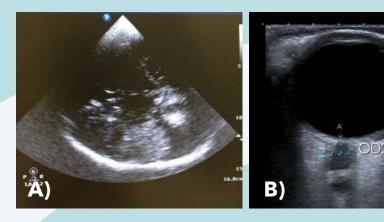


Figure 1. A) Deep ICH visualized by TDS. Axial cut. B) Enlarged optic sheath nerve measured by orbit TDS

Methods:

Consecutive patients with spontaneous ICH admitted to a stroke unit were recruited. TDS was performed within 12 hours of baseline CT and up to 3 control studies were scheduled every 24 hours. Included neurosonological markers were: hematoma volume (HV), midline shift (MLS), III ventricle diameter, pulsatility index (PI) and mean velocity (MV) in both MCAs and mean thickness of both optic nerve sheaths (MTONS) (Figure 1). Correlation of HV and MLS between CT and TDS was analyzed, using an intraclass correlation coefficient (ICC), if the time between both was less than 2 hours. Crude logistic regression analysis was performed to evaluate the prognostic value of measurement in the first TDS in ICH. As prognostic variables we evaluated early neurologic deterioration (END) and death during hospitalization (DDH). ROC analysis was used to evaluate the discriminative value of MTONS.

Results:

33 patients were included (Table1).Correlation analysis between measurements performed by CT scan and TCD performed within 2 hours (n=12) was good regarding both HV (ICC=0.93) and MLS (ICC=0.82). Crude logistic regression analysis showed an association of HV, MLS, mean velocity in ipsilateral MCA and MTONS with both END and DDH (Table 2). After adjustment for age and baseline NIHSS, MTONS>0.535 cm (Se 87,5%; Sp 73.9%) was independently associated with DDH (OR=8.5, p<0.001) (Figure 2). No prognostic value of the variation of any of these variables was found.

Conclusions:

TDS has an excellent correlation with CT. TDS may be used as a complementary tool in ICH. We found some prognostic neurosonological markers in patients with ICH. MTONS larger than 0.535 cm was an independent predictor of DDH.

Table 1: clinical and hematoma characteristics

Characteristics		Bibliography
Men (N°) (%)	26 (78)	1. Camps-Re Granell E, Ca L, Martínez-D
Age (Me) (IQR)	74 (67-80)	Alonso D, Delgado-Meo Duplex So
Baseline mRS 0-2 (N°) (%)	26 (79)	Outcome Intracerebral Am J
NIHSS score (Me) (IQR)	9 (5-13)	Aug;38(8):15 2. Pérez ES,
Lobar ICH (N°) (%)	11 (33)	Rubiera M, dúplex sonoc hyperacute
Left ICH (N°) (%)	16 (48)	hemorrhage. 2009;40:987- 3. Rajajee V,
Right ICH (N°) (%)	15 (45)	JJ, Jacobs ultrasound fe
Hypertension (N°) (%)	20 (61%)	raised intr Neurocrit Dec;15(3):50
Previous ICH (N°) (%)	2 (6)	
Anticoagulants (N°) (%)	13 (39)	Acknowled present v
Antiplatelets (N°) (%)	7 (21)	possible th awarded Neurosono
HV ml (Median) (IQR)	16.9 (6.6-34.1)	(SONES)

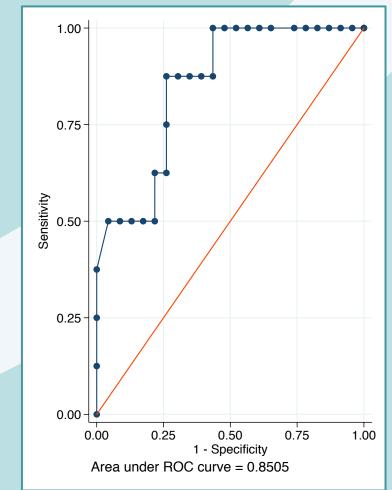

enom P, Méndez J, asoni F, Prats-Sánchez Domeño A, Guisado-Martí-Fábregas J, deros R. Transcranial onography Predicts following an Hemorrhage. AJNR Neuroradiol. 543-1549 Delgado-Mederos R, et al. Transcranial graphy for monitoring intracerebral Stroke

Table 2: variables associated with END and DDH

-90 Vanaman M, Fletcher TL. Optic nerve for the detection of tracranial pressure. Care. 2011 06-15.

the <u>igements</u>: work has been nanks to the grant by the Spanish Society blogy

Figure 2: area under ROC curve for MTONS and DDH

	END (n=8)	No END (n=25)	р	DDH (n=8)	No DDH (n=25)	р
Age (mean)(DS)(yr)	70 (11)	81 (8)	0.027	70.1 (11)	83.3 (7.7)	0.015
Baseline NIHSS (mean) (DS)	8 (5)	11(5)	0.286	9 (5)	13 (7)	0.120
HV (mean) (DS) (mL)	67 (34)	31 (28)	0.03	72.3 (34)	31.8 (27.2)	0.024
IIIV diameter ^(mean) (DS) (mm)	0.57 (0.2)	0.53 (0.2)	0.667	0.58 (0.2)	0.53 (0.2)	0.544
MLS (mean) (DS) (cm)	0.34 (0.3)	0.11 (0.1)	0.022	0.33 (0.3)	0.12 (0.1)	0.028
MTONS (mean) (DS) (cm)	0.6 (0.1)	0.48 (0.1)	0.016	0.6 (0.1)	0.47 (0.1)	0.012
Ipsilat MCA PI (mean)(DS)	1.5 (0.4)	1.1 (0.3)	0.055	1.5 (0.3)	1.1 (0.3)	0.032
Contralat MCA PI ^(mean) (DS)	2.1 (2)	1.1 (0.3)	0.118	2.3 (2)	1.1 (0.3)	0.055
lpsilat MCA MV (mean) (DS) (cm/seg)	32 (14)	47 (16)	0.040	32 (15)	47 (15)	0.046
Contralat MCA MV (mean) (DS) (cm/seg)	34 (20)	43 (11)	0.145	29 (17)	45 (12)	0.042