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Abstract

In recent years, video surveillance systems have been playing a significantly important
role in the human safety and security field by monitoring public or private areas. In this
chapter, we have discussed the development of an intelligent surveillance system to
detect, track and identify potentially hazardous events that may occur at level crossings
(LC). This system starts by detecting and tracking objects on the level crossing. Then, a
danger evaluation method is built using hidden Markov model in order to predict
trajectories of the detected objects. The trajectories are analyzed with a credibility model
to evaluate dangerous situations at level crossings. Synthetics and real data are used to
test the effectiveness and the robustness of the proposed algorithms and the whole
approach by considering various scenarios within several situations.

Keywords: video surveillance system, tracking and recognition, level crossing, hidden
Markov model (HMM)

1. Introduction

Improving safety at level crossing (LC) became an important academic research topic in the

transportation field and took increasingly railway undertaking concerns. European countries

and European projects try to upgarde level crossing safety which is quite weak today. These

projects, like SELCAT “Safer European Level Crossing Appraisal and Technology” [1], has set

up some databases of accidents at European level. United States presents very well equipped

level crossing with advanced means for sensing and telecommunication [2]. Selectra Vision

Company in Italy [3] has developed a surveillance system for detecting obstacles in the moni-

tored area of a level crossing using a 3D laser scanner. Nevertheless, developing a new LC safety
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system which allows quantifying the risk within the LC environment and transmitting it to road

users, rail managers and even train drivers still is the main focus for technical solutions.

One of the objectives of the proposed work is to perform a video analysis-based system in order

to evaluate the degree of danger of each detected and tracked moving object at level crossing.

The first step of our proposed video surveillance system starts by robustly detecting and

separating moving objects crossing the LC. Many approaches are used in the literature to

detect objects in real time; examples are Independent Components Analysis [4], Histogram of

Oriented Gradients [5], Wavelet [6], Eigen backgrounds [7], kernel and contour tracking [8, 9]

or Kalman and particle filters [10, 11]. However, these techniques require further development

to distinguish between detected objects.

That is why our approach consists of detecting all moving pixels based on a background subtrac-

tion approach. To obtain separated objects, we propose a model based on clustering the detected

pixels, affected bymotion, by comparing a specific energy vector associated to each target. Finally,

the tracking of each pixel detected within a moving object is achieved by using a Harris corners-

based optical flow propagation technique, followed by a Kalman filtering-based rectification.

The second step is focused on predicting trajectories of the detected moving objects such as to

avoid potentially dangerous level crossing accident scenarios (vehicle stopped at LC for exam-

ple). Gaussian mixture model (GMM) [12], hidden Markov model (HMM) [13], Hierarchical

and Couple Hidden Markov Model [14, 15] are usually used for representing and recognizing

objects’ trajectories. However, these methods need a high number of statistical measures to be

accurate. Using a real-time hidden Markov model, the degree of dangerousness related to each

object is instantly estimated by analyzing each object’s trajectory considering different sources

of danger (position, velocity, acceleration…). All the information obtained from the sources of

danger is fused using Dempster-Shafer technique [16]. Figure 1 illustrates the synopsis of the

proposed video surveillance security system.

Figure 1. Synoptic of the video surveillance security system installed at Level crossing.
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The remaining of the chapter is organized as follows. Section2 is dealing with object detection

and separation. In Section3, the tracking process is developed. Section4 describes the proposed

method for evaluating and recognizing dangerous situations in a level crossing environment.

In Section5, some evaluation results are provided based on typical accident scenarios played in

a real level crossing environment. Finally, in Section6, some conclusions and short-term per-

spectives are provided.

2. Object detection and separation

In this section, a method has been developed to detect and separate moving objects in the level

crossing surveillance zone. This method starts by detecting pixels affected by motion, by using

background subtraction technique as a preprocessing phase; each image processed at each

step, a subtraction from the background image is carried out. The main aim of this procedure is

to extract the moving pixels in the current image (Figure 2b). Furthermore, a subtraction from

the previous image is also carried out in order to obtain the moving pixels situated on the

edges of the object. (Figure 2c). The procedure continues by determining in the current image

the required targets. A target in the image is defined by a set of connected pixels affected by

motion. A bounding box is then associated for each group of connected pixels (Figure 3).

Each created bounding box may belong to an existing target extracted from the previous

frame, or representing a new target extracted from the current frame (Figure 3). The intersec-

tion between all created bounding boxes in the current frame and those representing the

targets extracted from the previous frame is analyzed in order to determine the number and

the shape of all moving objects (targets) in the current frame; a bounding box created from the

current frame is considered as a new target if and only if it does not intersect any existing

bounding box representing a target extracted from the previous frame. On the other case, if a

bounding box created from the current frame intersects existing targets, an iterative separation

method is applied. During each iteration, a pixel in the current bounding box should be

assigned to one of the existing targets.

The pixels clustering process starts by defined two energy vectors. The first energy vector

Ei
target, initialized to zero, is concerned with each existing target number i. This energy is then

updated iteratively. The second energy vector Ei
pixel is defined for each pixel located at the

position ðx,yÞ with respect to the target number i. This energy is expressed as follows:

Figure 2. Detection of moving pixels. (a) Current image. (b) Detected moving pixels. (c) Moving pixels situated in the

contour of the objects.
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For each iteration, the pixel ðx, yÞ is assigned to the target that provides the maximum number

of closest components between the energy vectors Ei
pixel and Ei

target, if the pixel ðx, yÞ is assigned

to the target number p. The energy vector E
p
target is then updated as follows:
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p
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where N is the number of pixels in the target number p, before adding the pixel ðx, yÞ. Figure 4

shows the results of the multiobjects separation method.

Figure 3. Bounding boxes extraction.

Figure 4. Multiobjects separation result. (a) Original frame with five moving objects. (b) Objects separation result.
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3. Event tracking

3.1. Objects tracking

Once the targets are extracted from the current frame, the objective is to develop a dense optical

flow computation algorithm to track them. We firstly estimate the optical flow of Harris points

using an iterative Lucas-Kanade algorithm [17]. We consider that these particular points have a

stable optical flow. The optical flow for every pixel of the detected objects is then estimated by

propagating the optical flow of Harris points using a Gaussian distribution. The mean and

standard deviation of the distribution are taken as the mean and standard deviation of the Harris

points’ optical flow [19]. The results of the optical flow propagation process are then processed

by Kalman filtering to correct the optical flow of all the pixels of the detected objects [18, 19].

The tracking process is tested and evaluated in [18, 19]. Figure 5 shows an example of multiobjects

tracking by combining the objects detection and separation method, and the tracking process.

3.2. Optical flow–based object segmentation

Given a target, the objective is to partition it into multiple rectangular boxes representing

different regions based on optical flow of its pixels. To achieve that, we use a recursive algorithm,

which compares neighboring pixels to extract regions in which the pixels have a homogeneous

optical flow. Only regions with a significant size are conserved (determined experimentally in

dependence of the camera’s view around the level crossing area and the resolution of the

camera). Figure 6 presents optical flow–based segmentation results for a moving object tracked

in an image sequence. In order to predict the normal (supposed) trajectories, the extracted

regions are represented by the gravity centers of the boxes surrounding them. Then, each specific

trajectory should be linked to the gravity center of its extracted region.

3.3. Ideal trajectory prediction

Let us consider, thanks to optical flow, an extracted region. When we consider the center of the

region, two trajectories could be defined: current ideal trajectory and predicted ideal trajectory.

The current ideal trajectory corresponds to the trajectory that the center of the region should

follow to avoid potential dangerous situations (Figure 9). The predicted ideal trajectory corre-

sponds to the trajectory that should be followed to come back toward the current ideal

trajectory (Figure 7). A statistical approach based on a hidden Markov model (HMM) is

Figure 5. Tracking process: from right to left.
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proposed to predict the new ideal trajectory: the predicted ideal trajectory of the considered

region center at time instant t (state qt: initial state of the HMM) is constructed from the states

ðqtþ1,…, qtþtf
Þ generated by the HMM using Forward-Backward, Viterbi and Baum-Welch

algorithms [20, 21]. We also associate to the considered region center the four following

parameters: velocity ðV tþ1,…, V tþtf Þ, acceleration ðatþ1,…, atþtf Þ, orientation ðotþ1,…, otþtf Þ,

position ðptþ1,…, ptþtf
Þ and the distance ðDtþ1,…, Dtþtf Þ from the region center to the current

ideal trajectory.

Figure 8 shows the general architecture of the proposed HMM and how the predicted ideal

trajectory is performed from the considered region center.

As shown in Figure 8a, the random hidden state variable qt corresponds to the position of the

considered region center at time t. The random observation variable ut represents simulta-

neously the acceleration, orientation, velocity and position of the considered region center at

time t. attþ1 represents the transition probability from state qt to state qtþ1, and bt represents the

distribution of the observation at time t.

As illustrated in Figure 8b, given the velocity vector Vt

!
at time t, calculated from optical flow,

the state qtþ1 in the HMM is reached from the state qt with a probability of 1. Given the

acceleration, orientation and velocity at time t, the velocity Vtþ1

�!

at time tþ 1 is then predicted.

Figure 6. Segmentation of an object using optical flow procedure.
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Figure 7. Ideal trajectory prediction by using HMM.

Figure 8. Schematic representation of the HMM for ideal trajectory prediction. (a) HMM model. (b) Trajectory prediction

model.
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As illustrated in Figure 8b, we next define a circle C. The center of the circle C is the end point

of the velocity vector Vtþ1

�!

and the radius of this circle is the maximum absolute acceleration.

4. Evaluation of the level of dangerousness (recognition of dangerous

situations)

On the basis of the previous steps, we present in this section a method to evaluate and

recognize potential dangerous situations when a moving object is detected within the moni-

tored area of a level crossing.

To analyze the predicted ideal trajectory, various sources of dangerousness are considered

based on Dempster-Shafer theory [16]. This theory combines the dangers produced by the

different sources in order to obtain a measure of the degree of danger.

For each region center, five sources of danger are considered: acceleration, orientation, velocity,

position and distance between the predicted and the current ideal trajectories. A mass assign-

ment is then defined for each source of danger. Let mi be the belief mass related to the danger

source number i. The belief masses are defined as follows:

The mass assignment m1 (position) is computed from the distance between the predicted

position ptþtf
at time instant tþ tf and the barrier of the level crossing:

m1 ¼
jPd � 0:5j

0:5
ð3Þ

Pd ¼

ð
d
tf
c

�∞

GdN ,σdðxÞdx σd ¼
ffiffiffiffiffiffiffiffiffiffi

Dmax

p

dN ¼ 0 ð4Þ

where GdN ,σdðxÞ is a Gaussian distribution of the variable x. dN ¼ 0 and σd are, respectively, its

mean and standard deviation. Dmax is the maximum distance that an object can traverse in the

image. d
tf
c is a function given as follows:

d
tf
c ¼

W if Dp

!
: V

tf
c

!
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!
: V
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Ds
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0 if inside prohibited zone
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�
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D�
p

�!
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1
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1
Dpy
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ð8Þ
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where Dp

!
¼ ½Dpx

Dpy �
T is the distance from the region center to the barrier of the level

crossing. V
tf
c

!

is the velocity of the considered region center at time tf . The parameter W

depends on the position of the region center in the level crossing zone (inside or outside a

prohibited LC zone). More the value of d
tf
c is greater than zero more the belief mass m1 will

increase (degree of dangerousness increments).

The mass assignment m2 (velocity) is computed from the difference between the predicted

velocity V
tf
c at time instant tf and a prefixed nominal velocity VN.

m2 ¼
0:01 if ðV

tf
c � VNÞ ≤ 0

Pv � 0:5

0:5
if ðV

tf
c � VNÞ > 0

8

<

:

ð9Þ

Pv ¼

ð

V
tf
c

�∞

GVn ,σv ðxÞdx σv ¼
VN

4
ð10Þ

where V
tf
c is the velocity of the considered region center at time tf . VN represents the maximal

velocity that a target can reach in the image. GVn ,σvðxÞ is a Gaussian distribution, with a mean

equal to VN and a standard deviation equal to σv.

The mass assignment m3 (orientation) is computed by comparing the angle of the predicted

velocity V t at time instant t and the angle of the current ideal trajectory.

m3 ¼
jPo � 0:5j

0:5
ð11Þ

Po ¼

ð

o
tf
c

�∞

GoN ,σoðxÞ dx σo ¼
2�π

7
ð12Þ

where o
tf
c is the velocity orientation of the considered region center at time tf . ON is the

orientation of the current ideal trajectory. GoN ,σoðxÞ is a Gaussian distribution, with a mean

equal to ON and a standard deviation equal to σo.

The mass assignment m4 (acceleration) is computed from the difference between the predicted

accelerations at and atþtf at time instants t and tþ tf respectively.

m4 ¼
0:01 if ða

tf
c � aNÞ ≤ 0

Pa � 0:5

0:5
if ða

tf
c � aNÞ > 0

8

<

:

ð13Þ

Pa ¼

ð

a
tf
c

�∞

GaN ,σaðxÞ dx σa ¼
aN
4

ð14Þ
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a
tf
c ¼

V
tf
c � V ti

c

n�Tmisejour
ð15Þ

where a
tf
c is the acceleration of the considered region center at time tf . aN represents the

maximal acceleration that a target can reach in the image. GaN ,σaðxÞ is a Gaussian distribution,

with a mean equal to aN and a standard deviation equal to σa.

Finally, the mass assignment m5 (distance) is computed from the distance between the

predicted position ptf at time instant tf and the current ideal trajectory:

m5 ¼
jPD � 0:5j

0:5
ð16Þ

PD ¼

ðDtf

�∞

GDN ,σDðxÞ dx σD ¼ 2�Vn DN ¼ 0 ð17Þ

where Dtf is the the distance between the predicted position ptf of the considered region center

at time tf and the current ideal trajectory. GDN ,σDðxÞ is a Gaussian distribution, with a mean

equal to DN ¼ 0 and a standard deviation equal to σD.

Once the degrees of dangerousness are computed for the five sources, Dempster-Shafer [16]

combination is used to determine the degree of danger related to the considered region center:

Danger ¼ Dempster� Shaf erðm1, m2, m3, m4, m5Þ ð18Þ

To determine the degree of danger of the target, we take simply the maximum value among

the degrees of danger of all regions composing the target.

5. Video surveillance experimental results

To validate our work, we apply the proposed dangerous situation method on four typical

accidental scenarios. These scenarios, registered at a level crossing in the north of France

(Mouzon), correspond to real situations occurred in LC accidents (dangerous situations: vehicle

zigzagging between the closed half barriers, presence of obstacle in the level crossing and

pedestrian crossing level crossing area). Each analyzed scenario includes a sequence with more

than 500 frames. Table 1 presents the datasets and materials used in the analysis of our method.

5.1. Experimental methodology

In the framework of this chapter, we determine a pure quantitative degree of dangerousness

from different scenarios identified at level crossing (see Eq. (18)). This system is able to detect

potentially dangerous situations occurring at the LC both in the two cases (states of the

barriers): barriers opened or barriers closed.
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In the case of closed barriers, when train approaching, we provide a level of dangerousness

(see Eq. (18)), between 0 and 100%, which could be transmitted all the time to the drivers

approaching the level crossing (LC). We could also send additional security advices when the

level is greater than a threshold (for instance 75%). In any situation, the presence of any kind of

moving objects between the barriers is not allowed. So, the velocity of cars or moving objects

should decrease to zero when approaching the LC.

In the case of opened barriers, the surveillance system is working as well. Vehicles or moving

objects could traverse the level crossing zone but they couldn’t stop on the LC. In case of

detection of dangerous situations, we can send information like: barriers open with a pedes-

trian, a vehicle or an object stopped on the rails.

Table 2 shows different situations that are taken into account by the system to measure the

level of dangerousness. In both cases, it all depends on the way of the rail transport operator

wants to monitor the LC. For the moment, the final system was not integrated in the daily

management of a level crossing. So, when the system will be integrated in a rail network, we

Number of

images analyzed

Processing power Number of images

analyzed per second

States of the

barriers

Test site

Sequence 1 (Vehicle

zigzagging LC)

520 Intel Core i5 – 2.67

GHz/3.7GB

7–10 Barriers closed Mouzon-France

Sequence 2

(Presence of obstacle

on LC)

1015 Intel Core i5 – 2.67

GHz/3.7GB

7–10 Barriers opened Mouzon-France

Sequence 3

(Vehicles stopped on

LC)

1380 Intel Core i5 – 2.67

GHz/3.7GB

7–10 Barriers opened Mouzon-France

Sequence 4

(Pedestrians crossing

LC)

1325 Intel Core i5 – 2.67

GHz/3.7GB

7–10 Barriers closed Mouzon-France

Table 1. Dataset and materials.

Closed barriers Opened barriers

Position of objects inside the LC zone (between the

barriers)

Not allowed Allowed

Velocity of objects inside the LC zone (between the

barriers)

Presence of objects not allowed Different from zero

Acceleration of objects inside the LC zone

(between the barriers)

Presence of objects not allowed Different from zero and positive

Position of objects outside the LC zone (near the

barriers)

Allowed only on the right side of

the road

Allowed only on the right side of

the road

Velocity of objects outside the LC zone (near the

barriers)

Close to zero Different or equal to zero

Acceleration of objects outside the LC zone (near

the barriers)

Close to zero or negative

(deceleration)

Different or equal to zero

Table 2. Situations allowed for open and closed barriers.
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could imagine that the measure of the level of dangerousness will be validated qualitatively by

the rail safety experts.

5.2. Scenarios of accident analyzed by the system

Vehicle zigzagging between two closed barriers of LC (Figure 9): In this scenario, a vehicle is

approaching the LC, while the barriers are closed. The vehicle crosses the LC, zigzagging

between the closed barriers (Figure 9). The purple lines in Figure 9 represent the current ideal

trajectory of the center of each extracted region from the object. The white points in the figure

represent the instantly predicted displacement of the center of the extracted regions. As shown

in Figure 9, if a detected vehicle is approaching the LC and using an abnormal trajectory, the

degree of danger is going to increase gradually to reach 70%. Then, when the vehicle enters the

LC, this degree continues to grow until reaching 100%. The level of danger begins to decrease

when the vehicle is moving away from the LC (Degree of danger DV1 ¼ 40%).

Vehicle stopped (Figure 10): In this scenario, a vehicle crosses the level crossing while the

barriers are open (Figure 10). Suddenly, the vehicle stops inside the dangerous zone and

becomes a fixed obstacle. After a while, the vehicle moves and leaves the LC. Concerning

danger evaluation, the degree of dangerousness related to the detected vehicle increases when

it moves toward the level crossing. It reaches 46% during the crossing of the zone of danger.

When the vehicle stops in the zone of danger, the stationary is detected and the degree of

dangerousness takes a value of 100%. When the vehicle begins to leave the LC, the level of

danger decreases progressively.

Queuing across the rail level crossing (Figure 11): In this scenario, a first vehicle stops just after

the dangerous zone. Sometime later, two other vehicles find themselves blocked behind the

first vehicle, which is motionless. This situation leads to a queue of cars inside the LC

(Figure 11). When the two vehicles detected inside the LC are stopped inside the zone of

danger, their degree of dangerousness increases progressively and reach their maximum

(100%). When the two vehicles restart moving, the degree of dangerousness drops to 46% and

decreases gradually, as the vehicles leave away the level crossing.

Pedestrians’ scenario (Figure 12): In this scenario, three pedestrians (P1, P2 and P3) are walking

around the level crossing zone as the barriers are closed. Pedestrian P1 is moving toward the

zone of danger (Degree of danger DP1 ¼ 26%), while pedestrian P2 is crossing is crossing the

level crossing area (DP2 ¼ 100%), and Pedestrian P3 is stopped on the middle part of the level

crossing near from the rails (DP3¼ 100%). After a moment, pedestrian P1 arrives near pedestrian

P2, and they are stopped on the rails of the LC, taking into account that the stationary inside the

level crossing is always detected by the system. So, the degree of dangerousness related to the

pedestrian P1 increases progressively from DP1¼ 26% and reaches their maximumDP1¼ 100%

on the rails. At the end of the scenario, pedestrian P2 is leaving the level crossing zone (Degree of

danger DP2 decreases to 11%), when pedestrian P1 is moving toward the stopped pedestrian P3.

A vehicle passing near from the LC is also detected in this scenario (DV ¼ 13%).

As a conclusion of these tests, the measure of the prediction system that calculates the level of

dangerousness for each moving or stopped object around the LC is able to detect different kind

of dangerous scenarios in the case of closed or opened barriers (vehicle zigzagging, stopped

Motion Tracking and Gesture Recognition86



Figure 9. Vehicle zigzagging. DV1 represents the degree of danger associated with the vehicle.
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Figure 10. The presence of obstacle (vehicle) in the level crossing. DV1 represents the degree of danger associated with

the vehicle.
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Figure 11. The presence of stopped vehicles line on the LC. DVi represents the degree of danger associated with the

vehicle number i. DP represents the degree of danger associated with a pedestrian outside the LC zone.
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Figure 12. Three pedestrians walking around the level crossing area.

Motion Tracking and Gesture Recognition90



vehicles, pedestrians around the LC). Then, this system proves his effectiveness as a measure

of the level of dangerousness but it also requires to be validated qualitatively after installing

this system definitely on a rail transport.

6. Conclusion

Detection of moving objects is an important and basic task for video surveillance systems, for

which you can define the initial position of the moving objects in a surveillance scene. However,

the detection and separation of the moving objects process become difficult when the objects are

close to each other in the scene. In our approach, we propose a method to completely separate

the corresponding pixels of each defined target. One of the other objectives of this project is to

develop a video surveillance system that will be able to detect and recognize potential dangerous

situation around level crossings. Different typical LC accident scenarios (e.g., presence of obsta-

cles, zigzagging between the barriers, stopped cars line) acquired in real conditions are experi-

mentally evaluated by applying the proposed dangerous situation recognition system.
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