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PREFACE 

When first starting out, it was thought this effort would possibly result in a journal 

article, but it grew as underlying social patterns were observed, and subsequent equa-

tions supporting further investigation were derived. The decision to provide the book 

as open access under copyright was made for two reasons. The first being that getting 

time from the academic community for review and interaction has proven extremely 

difficult, so being open access may improve the opportunity for academic interaction 

from students and possibly professors. Second, being open access allows for anyone 

to have access, particularly students from diverse backgrounds who have the energy 

and sense of adventure to consider new ideas. In return, I ask and encourage those 

reading this book to provide constructive comments relating to necessary corrections 

or to provide ideas for further development and potential collaboration. The objective 

is improvement, not laurels or stones. 

This book provides the basis for a repeatable and testable quantitative approach to 

the analysis of hierarchal social systems. To that end, beginning with the derivation 

of the modified Weber’s Law and Fechner’s Law, an algebraic structure is carefully 

developed ultimately leading to the definition of a social algebraic Abelian group in 

Chapter 6. Defining an Abelian group is not the end of this effort; it is instead the foun-

dation on which to begin. Whether all of the equations and theorems throughout this 

book stand the test of time, at least they are testable, and more importantly, they may 

be corrected when necessary and further developed as we learn more. As an analyst 

with 30 years of applied operational experience, there are no illusions that improve-

ments and corrections to this work will not be identified. Irrespective of professional 

embarrassments that may arise from reader reviews, experience dictates that anything 

of potential worth must eventually be placed at the mercy of the reader if improvement 

is to occur. It is the diverse view and expertise of the reader that can make the most 

significant contributions, and, unlike the author, the reader has not invested 4 years 

of his or her life on the subject which can lead to an inherent bias or blindness toward 

certain areas of this book. Please consider all of these factors as you read. 



 

 

Preface xiii 

The reason for devoting 4 years to reading and developing the ideas contained 

within this title is simple. History continues to repeat itself, and if we are to progress 

as a species toward something ultimately resembling a civilized society, we need to 

understand why this repetition occurs and how to break the seemingly continual cycle 

of war, famine, and social displacement. Technology alone will not solve these prob-

lems. Our species is a primitive species with a significant amount of social evolution 

necessary before we may claim the title of being civilized, and, in the meantime, we 

need to find ways to increase the likelihood of our survival as a global community 

until we are able to sustain peaceful coexistence without conscious effort. 
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INTRODUCTION 

This is a book written for advanced undergraduate and graduate university students 

having an interest in crossing the academic boundaries of social psychology, psycho-

physics, political economics, information theory, signal detection theory, and various 

disciplines of mathematics along with a desire to constructively consider alternative 

social structures, such as Elinor Ostrom (1990) proposed and defined within closed 

social systems relying on limited resources. Earth is a closed social system relying on 

limited resources. It is a large ball, with water and a thin currently breathable atmo-

sphere, surrounded on all sides by the vacuum of space. Given the growing politi-

cal polarization of nations, the dynamic demographics due to disasters (pandemics 

included) and conflicts, and the emerging climate crisis which will amplify those 

disasters and conflicts, it would seem appropriate to systematically consider both the 

continued stability of existing social structures and alternative nonnormative social 

structures. This book only considers western social systems (Mann, 1969, p. 349) and 

their structures as a basic algebraic social subgroup (Herstein, 1999, pp. 41 & 51). 
Incorporating social systems of other cultures is critical, but well beyond the capabil-

ity of this author, existing data, and this initial effort. 

Once past this introduction, a brief but necessary foundation based on psychophys-

ics and cognitive dissonance theory (Festinger, 1957) is provided. Weber’s and Fech-

ner’s Laws are constructively modified to reflect empirical data near absolute sensory 

threshold. With these provided as the mathematical foundation, the model evolves 

further in Chapters 2 and 3, maturing in Chapter 3 using field experiment data involv-

ing queues. Data sets from past laboratory and field experiments having an underlying 

queue-like structure are then modeled in Chapter 4 to compare empirical probability 

of reaction with theoretical probability of reaction as a function of sensation magni-

tude (Festinger, 1957, p. 181) for a given stimulus and social situation. The result is 

nothing more than an operational form of Kurt Lewin’s general behavior model con-

cept (Burnes and Cooke, 2013, pp. 412–413) where: 

Dissonance sensation magnitude = f (average person, social situation, stimulus) 

DOI: 10.4324/9781003325161-1 
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 2 Introduction 

for a to-be-defined function f. The model developed here, thereby defining such a 

function f, is unlikely to be the end to mathematical development in this area; in fact, it 

would be disappointing if it were. Instead, it is considered a bold alternative approach 

to years of qualitative theories that may or may not build upon each other toward a 

common goal (Pettigrew, 1986) or which can be tested in a manner supporting accu-

rate evaluation of cause and effect (Funder et al., 2013). More importantly, it proposes 

a basic algebraic subgroup – that I shall enjoy labeling a social subgroup – which, if 

the model is sufficiently general, may be improved upon and expanded to better rep-

resent not only western social systems but eventually all interacting social systems as 

well. In effect, it offers a new way to consider basic interactive group dynamics based 

on Fechnerian psychophysics and cognitive dissonance theory while addressing and 

not excluding Stevens’ power law (Stevens, 1957). 

With so much time put into this effort, the recurring question in my mind has been 

whether it will be useful or not. The answer to this question is if it may be used to 

make the world a better place through a better understanding of social interaction, 

then it is useful. If it turns out to not be useful to the audience, even then I will have 

learned an extraordinary amount and am personally satisfied. But, if it is abused by 

those who seek power and status for their own benefit, then should this be published? 

This would seem to be the dilemma that confronted Kurt Lewin in his 1939 article 

(Lewin, 1939/1997): 

It is a commonplace of today to blame the deplorable world situation on the 

discrepancy between the great ability of man to rule physical matter and his 

inability to handle social forces. This discrepancy in turn is said to be due to 

the fact that the development of the natural sciences has by far superseded the 

development of the social sciences. 

No doubt this difference exists, and it has been and is of great practical signifi-

cance. Nevertheless, I feel this commonplace to be only half true, and it might 

be worthwhile to point to the other half of the story. Let us assume that it would 

be possible suddenly to raise the level of the social sciences to that of the natural 

sciences. Unfortunately, this would hardly suffice to make the world a safe and 

friendly place to live in. Because the findings of the physical and the social sci-

ences alike can be used by the gangster as well as by the physician, for war as 

well as for peace, for one political system as well as for another. (loc. 1469, with 

permission from the American Psychological Association) 

The self-serving politician, many of the elite in every society, or the gangster’s use 

of the social sciences has and still occurs. Though the empirically based results in 

this book are stimulating, they merely give a mathematical form to what is already 

being put into daily use by politicians, our social and economic elite who influence 

the information we receive, and organizational behaviorists who, like the alchemists 

of old, work for the social and economically elite to increase their wealth. By giving 

quantitative form to existing behavior, what has been done in relative darkness is now, 

partly at least, brought out more clearly into the light of day. Furthermore, given the 

condition of this world as it exists today, both socially and environmentally, there 

is critical need in the near term for new tools and thoughts to create, consider, and 
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systematically investigate informed alternative approaches which may better direct 

our social energies toward a sustainable future. That is the motivation and intended 

objective of this book. 

With that in mind, when reading the contents contained here, do not read the equa-

tions as a means to solve some exercise problem in a textbook. Instead, view them as 

a means to frame and dissect the basic social interactions taking place and consider 

how they may further develop to allow for the analysis of more complex social sys-

tems. It is difficult to know where to go from here, but selecting an interesting location 

in social space and just moving forward as proposed have their advantages for the 

adventurous. 

References 
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1 
SOCIAL PSYCHOLOGY AND 
PSYCHOPHYSICS 

Laying the Foundation 

Thomas Pettigrew, protégé of Gordon Allport, wrote a compelling commentary in 

1986 regarding the scope of investigation being pursued by theoretical social psy-

chologists (Pettigrew, 1986, pp. 169–171). Allusion was made to the multitude of 

theories in social psychology such as cognitive dissonance theory, attribution theory, 

social impact theory, contact theory, social identity theory, and the list goes on. A few 

of the many questions resulting from his expose are whether social psychological 

theories are exclusive to one another, whether they correct, and, if combined, do they 

support a greater understanding of how we interact within a social system? If they 

are correct and do support a greater understanding, then how do we prove it across 

the many situations and cultures? These thoughts identify the need to reconsider how 

both theory and models are being used – a reconsideration that leads to addressing 

the difficulty of proving and combining much of the existing theoretical work within 

social psychology – one which encompasses the greater context of various existing 

social situations but directly addresses the need and means to go beyond theories and 

models which may work within western culture but may not be representative of other 

equally important cultures. Though it seems progress has been made since 1986 when 

Thomas Pettigrew wrote his expose, the field of social psychology still seems to lack a 

common testable integrated structure on which to build upon and support major cross-

cultural advances in the field. The goal of this book is to propose an approach to meet 

the need, a quantitatively testable and methodical approach which may offer a means 

toward the investigation of increasingly complex social systems in both western and 

ultimately non-western cultures. 

What is proposed as a starting point, harkening back to Kurt Lewin and his Field 

Theory while relating results to psychophysics as presented by Gustav Fechner and 

Stanley Stevens, is a systematic mathematical approach to quantitatively model social 

interaction within social groups operating as basic social systems. The proposed 

model developed here addresses behavior in the form of mean probability of reac-

tion as a function of the specific social situation and given social event. It is based 

on group member social position, while currently constrained to associated western 

DOI: 10.4324/9781003325161-2 
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Social Psychology and Psychophysics 5 

social norms due to lack of data from other cultures. The approach is derived initially 

from quantitative data resulting from past independent field experiments conducted 

in New York City and documented in Milgram et al. (1969), Milgram et al. (1986), 

Schmitt et al. (1992) and supplemented by data from the Stanley Milgram Papers (MS 

1406), Manuscripts and Archives, Yale University Library. What is to be the basis 

for this proposed social model is one of the most fundamental of western embryonic 

social systems (Mann, 1969) – the first come, first served queue. 

As in abstract algebra, where a proper subgroup possesses some or all of the math-

ematical operations of the group it operates within (Herstein, 1999, p. 51), if a basic 

social system existing within a larger more complex social system is mathematically 

representable, then the potential exists to use that basic mathematical representation 

to better understand the more complex social system surrounding it. This in turn could 

lead to further mathematical development and afford the opportunity for various exist-

ing social psychological theories to identify with common parts of a greater theo-

retical whole, thus allowing for more significant advances by systematically weaving 

various related research efforts into a larger tapestry, creating a more comprehensive 

and dynamic scene instead of being restricted to the view of many seemingly unre-

lated parts (Becker, 1934, p. 399). 

1.1 Proposing an Objective for Social Psychology 

As in trying to define sociology (Lenski, 2005, p. xiii), there may be some difficulty 

in trying to accurately define social psychology and why it is important. In defining 

social psychology, Charles Stangor noted at the beginning of his teaching career the 

challenge of trying to convey to his students a coherent structure in which to place 

the many topics of social psychology (Stangor et al., 2014, p. ix). A strict definition of 

social psychology will not be pursued here since that would extend beyond the scope 

of this effort and likely create a needless distraction. Fortunately, most definitions for 

social psychology revolve around how we react to and are influenced through social 

interaction with others, and that is enough if only one extra detail is added. As Kurt 

Lewin noted (Lewin, 1935/1997, p. 107), to understand how others affect us, it is nec-

essary to include the background or social situation in which the interactions of inter-

est are occurring. Even with the inclusion of social situation into the definition, a clear 

objective still seems to be lacking as to why social psychology is being pursued or 

how results obtained will be made useful to the general population who have and con-

tinue to expect tangible benefits from efforts by those of the academic community. To 

address this perceived shortfall and establish the context of this work, a single typed 

sentence on a piece of scratch paper attributed to Stanley Milgram is resurrected. 

In the Stanley Milgram Papers (MS 1406), Manuscripts and Archives, Yale Univer-

sity Library, there exists a single sheet of paper having one typed sentence with correc-

tions. The paper indicates, assuming Stanley Milgram typed it, that he may also have 

been considering the objective of the social sciences, and possibly social psychology 

in particular. On it is the sentence (Stanley Milgram Papers, MS 1406, Series No. 2, 

Box 24, Folder 8, with permission), “Do the social sciences have anything of value 

to offer the world that can help preserve peace and prevent wars.” In that question 

is a core objective, one that I think every definition of social psychology should be 



 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

6 Social Psychology and Psychophysics 

including. If we continue to more accurately model social interaction in a quantita-

tive, data-driven, and repeatable fashion, maybe the social, political, and economic 

sciences can better work together in improving approaches for conflict resolution and 

the identification of parameters supporting long-term stability after a conflict. One 

proposed supporting pillar of this objective is the work of economist Elinor Ostrom 

(Ostrom, 1990) who considered the development of theories for explaining and antici-

pating behavior under a multidisciplinary multi-tier framework as being one of the 

core challenges toward establishing sustainable social–ecological systems (Ostrom, 

2012, pp. 69–70). 

Every objective needs a strategy to get there. The strategy proposed here is to 

begin at the basic level by quantitatively defining and modeling social interaction 

within the fundamental social system of a western queue. The queue has an estab-

lished set of social norms necessary for controlling conflict and a simple means of 

monitoring to maintain group integrity (Mann, 1969, p. 349). If the simple social 

system defined by Mann (1969, p. 349) for a given culture may be modeled, and that 

social system is representative of at least part of the culture and its social norms, 

then it is argued and demonstrated in Chapter 4 that the model may be applied to 

related group situations not involving a queue – but which have an underlying 

queue-like structure with similar social norms. Since it cannot be overemphasized, 

this is not to imply non-western queues or their associated social systems are unim-

portant or cannot be modeled, but that they have not been studied to the extent of 

western queues (Gillam et al., 2014). Non-western queues have dissimilar social 

norms reflecting the history and culture which they reside within (Gandhi, 2013), 

but these variations must be reflected in any large-scale theory that is eventually 

directed toward facilitating the ultimate goal of global stability. Bringing this all 

together, if we can achieve the necessary means to accurately monitor and, through 

model validation with increasing social complexity, establish rules of governance 

in which all can agree to in an effort to maintain group integrity (Ostrom, 1990), 

then stability may eventually be possible. 

Before stepping through the basic quantitative model derivation for the queue as a 

social system, some background theories in social psychology must be provided and 

concepts introduced. Let us begin with a quick overview of relevant work and theories 

from Ernst Weber, Gustav Fechner, Kurt Lewin, Leon Festinger, and Stanley Stevens. 

1.2 Cognitive-Dissonance-Based Definitions and 
Social Axioms 

Field theory, influenced by Gestalt psychology, was developed by Kurt Lewin over 

a period of 25 years beginning in the 1920s. Briefly, his theory postulates the pos-

sibility to understand, predict, and identify the basis for changing individual and 

group behavior by identifying the psychological forces influencing an individual’s 

or a group’s behavior at a specific point in time. As it developed under Lewin, field 

theory shifted toward the analysis and modification of group behavior. It is argued 

by Burnes and Cooke (2013) that the decline of field theory after Lewin’s death in 

1947 was due mainly to his pursuit of mathematical rigor at the expense of practi-

cal relevance. This pursuit, it is further argued, tilted the balancing act necessary 



 

 

  

 

 

 

 

 

 

  

    

 

 

 

 

 

 

 

Social Psychology and Psychophysics 7 

to maintain methodological soundness while remaining useful to the operational 

practitioner (Burnes and Cooke, 2013, p. 409). What follows in this book relies 

on a set of basic mathematical tools taken from calculus, probability theory, set 

theory, queueing theory, detection theory, and information theory. Effort will be 

placed on maintaining a balance between mathematical rigor and practical relevance 

for the general reader, but in the end, if something cannot be quantified, it cannot 

be measured, and if it cannot be measured, it cannot be tested and compared; so 

familiarity with some basic and advanced applied mathematical tools beyond the 

traditional and controversial hypothesis testing approaches is necessary (Wasser-

stein and Lazar, 2016). 

An important equation by Lewin, providing a framework which with modifica-

tion is presented here, is the person–situation interaction equation (Lewin, 1940/1997, 

p. 187; Burnes and Cooke, 2013, pp. 412–413), 

Behavior = f [person, social situation, stimulus]. 

The original variable environment has been replaced with social situation to be 

clearer. Additionally, the variable stimulus is added since we will be interested in mod-

eling probability of reaction to any relevant social stimulus interpreted as a deviation 

from accepted social norms or beliefs for the given social situation (Lewin, 1944/1997). 

If the person is in a group, then the behavior of other members in the group is also part 

of this behavior equation, but it is felt that combining it with social situation as done 

here reduces confusion until the exact meaning is clarified in Chapter 3. 

As noted in Burnes and Cooke (2013), a person has multiple identities depending 

upon what group he or she is a member of at the time, and each group identity has 

its own social norms or beliefs. So, as Hogg and Terry (2000) argue, in what may 

be viewed as a more detailed and structured approach, people will react to relevant 

environmental stimuli as appropriate to the social norms of the group they are in at the 

time. If they do not, then they are considered deviant to some degree, resulting in pen-

alties up to and including exclusion from the group (Hogg and Terry, 2000, p. 127). 

So, if we accept that group or individual behavior is a function of the group’s social 

norms, social situation, and relevant social stimuli, the work of Leon Festinger may 

now be introduced. 

Leon Festinger did his graduate work under Kurt Lewin at the University of Iowa, 

obtaining his PhD in 1942 on child behavior. One of his major works is the theory of 

cognitive dissonance (Festinger, 1957) which builds on the work of Kurt Lewin. Dis-

sonance as used here involves an individual’s emotional discomfort or tension brought 

about by any internally or externally initiated deviation from a group’s social norms 

of which the affected individual currently considers his or herself a member. Three 

concepts introduced by Festinger are of significance here: 1) His two hypotheses of 

cognitive dissonance; 2) the concept that dissonance from a social stimulus is a func-

tion of its relevance to the situation and its extent deviation from cultural/social mores 

(see also Brauer and Chekroun, 2005); and 3) the implications of group identity and 

member interaction regarding the magnitude of dissonance felt and subsequent social 

pressures to reduce it. Making use of these concepts in a quantitative setting will 

require the introduction of a social space. 



 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 Social Psychology and Psychophysics 

To operate within a mathematical framework requires a defined space. In Euclid-

ian space, we have integers as a subgroup of real numbers which are a subgroup of 

imaginary numbers which are all part of complex space. To model social behavior, 

we will use the term social space in a manner consistent with that provided by Pitirim 

Sorokin (Sorokin, 1959, pp. 4 & 6) and Kurt Lewin (Lewin, 1939/1997, p. 58). To 
create the algebraic foundation for social space, we must provide adequate definitions 

and then state necessary axioms, where axioms are statements assumed as true (Smith 

et al., 2015, p. 28). Keeping in mind that any group member can be operating within 

multiple groups (subgroup of a larger group for instance) at any one time, the basic 

definitions to begin with are: 

Definition 1. Social Situation: With slight modification, this is interchangeable 

with the term “background” as used by Lewin (1935/1997, p. 107). He indicates 

every action one performs within a specific social situation is determined by 

that situation. He goes on to clarify how interpretation may vary based on the 

social situation, where a statement or a gesture which may be quite appropriate 

between group members in a one social situation may be out of place or even 

insulting to group members in another. Our frame of reference depends on our 

culture and the social situation we are in, and that frame of reference dictates 

how we should react to relevant social stimuli that we are aware of at the time. 

Definition 2. Social Norms: Shared beliefs, feelings, and reactions among group 

members perceived as appropriate for the given social situation. For a given situ-

ation, McDonald and Crandall (2015) indicate social norms provide an expecta-

tion by group members regarding what is appropriate behavior within the group 

context. Social norms should be consistent with associated cultural values. 

Definition 3. Social Space: Group interaction of two or more people conforming 

to social norms associated with the situation(s) they are acting within at the 

time. Disturbances in social space result from group members experiencing one 

or more relevant social norm deviations for the given situation they are in. 

Definition 4. Social Relevance: Any event, for a given social situation and time, 

which is within the realm of content matter to which an individual or group is 

affected by or concerned with to some level – up to and including direct and 

immediate impact. Social distance as used by Sorokin (1959, pp. 4–7) and All-

port (1979, pp. 38–39) is a somewhat synonymous term. 

Definition 5. Extent Social Deviation: The importance of unwanted consequences 

(Cooper, 2007, loc 2491) caused by a social deviation contradicting expected social 

norms or accepted beliefs of group members within a specific social situation. 

Definition 6. Social Dissonance: An individual’s emotional discomfort or tension 

brought about by experiencing, observing, or learning of an event exhibiting some 

amount of social deviation from accepted norms and having some level of relevance 

for the social situation in which the affected individual(s) involved are currently in. 

Definition 7. Consonance: A pleasant or agreeable feeling brought about by lack 

of dissonant events for the given social situation. 

Definition 8. Cohesion: This is a term discussed by Festinger (1957, p. 180) and 

may be described as the strength of social attraction felt between group mem-

bers based on the cumulative importance of their shared social norms. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Social Psychology and Psychophysics 9 

Definition 9. Social Noise: Any sensed information inhibiting the correct interpre-

tation or reaction to the social event for the given social situation. 

Definition 10. Reaction: Occurs when a group member, anticipating overall dis-

sonance reduction as a result, makes the choice to perform a normatively appro-

priate (for the situation) dissonance reducing social action. 

Sometimes dissonance cannot be immediately reduced when constrained by a restrain-

ing force (Lewin, 1997, pp. 101, 291, 316), and assuming cognitive adjustment to the 

situation is not acceptable. Once a choice does present itself in such a circumstance, 

where the existing dissonance may be reduced or removed at acceptable risk, then 

there will be a high probability of reaction to reduce the dissonance that is commen-

surate with the risk involved. A wonderful story, as communicated by the great Greek 

historian Plutarch, adds color to this concept, including Definitions 6 and 10: 

Chiomara, the wife of Ortiagon, was captured with the other women when the 

Asiatic Gauls were defeated by the Romans under Manlius. The centurion into 

whose hands she fell took advantage of his capture with a soldier’s brutality 

and did violence to her. The man was indeed an ill-bred lout, the slave both of 

gain and of lust, but his love of gain prevailed; and as a considerable sum had 

been promised him for the woman’s ransom, he brought her to a certain place 

to deliver her up, a river running between him and the messengers. When the 

Gauls crossed and after handing him the money were taking possession of 

Chiomara, she signed to one of them to strike the man as he was taking an 

affectionate leave of her. The man obeyed and cut off his head, which she took 

up and wrapped in the folds of her dress, and then drove off. When she came 

into the presence of her husband and threw the head at his feet, he was aston-

ished and said, “Ah! my wife, it is good to keep faith.” “Yes,” she replied, “but 

it is better still that only one man who has lain with me should remain alive.” 

Polybius tells us that he met and conversed with the lady at Sardis and admired 

her high spirit and intelligence. 

(Plutarch, n.d., p. 465) 

Using the definitions as presented and building on the ideas of Lewin (1997) and 

Festinger (1957, pp. 3, 11–18, 66, 124–125, 177–181) within the context of this work, 

social axioms in social space, or statements assumed to be true, may now be provided: 

Axiom 1. Dissonance creates psychological discomfort in a subject, leading the 

subject to find a means for reducing the discomfort through some combination of 

appropriate social action for the given situation, selective information process-

ing, or group member support/action. Pressure to reduce dissonance in a person 

monotonically increases as the magnitude of his or her dissonance increases. 

Axiom 2. While reducing existing dissonance, subjects will actively try to avoid 

social actions, information, or non-supportive group members which might 

cumulatively add to the existing dissonance. 

Axiom 3. For a given social situation and group member position in social space, 

the more relevant a socially deviant event is to the subject’s social position in 



 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

10 Social Psychology and Psychophysics 

social space, the greater the magnitude of dissonance (localized disturbance in 

social space) felt by the group member. 

Axiom 4. For random variables R, E, and S, a given social situation, and a group 

member’s position in social space, the greater the extent social deviation E from 

an accepted social norm having relevance R to the individual of interest, the 

greater the magnitude of the individual’s social dissonance S, such that S = R·E. 

Axiom 5. For a given social situation, group member position in social space, and 

dissonant causing event, increasing group member social cohesion will increase 

the dissonance magnitude of the event for its members. 

For example, in the social queue situation of a culture where one of the mores (Festinger, 

1957, p. 14) or social norms is first-come, first-served, if a person external to the group 

intrudes ahead of a queue member already in queue, the queue member experienc-

ing the dissonant event may try to reduce his or her dissonance by rationalizing the 

intrusion (i.e., maybe the queue member rationalizes that he or she is a friend of the 

person ahead, or that the intruder satisfactorily explained his or her need to the member 

who was cut in front of). If the intrusion has no reasonable explanation supporting a 

queue member’s attempts at dissonance reduction, then one or more of the members 

experiencing dissonance from the intrusion may try to modify the situation by react-

ing against the intruder. It may also be that remaining silent is best if an action is more 

likely to increase dissonance above that already felt, such as when the affected queue 

member’s personal safety is a concern if he or she were to react. In the latter case, as 

supported by Jarcho et al. (2011, p. 465) and Martinie et al. (2013, p. 681), making 

the choice of not reacting to avoid confrontation or to maintain personal safety can 

be a means to reduce dissonance in itself. Furthermore, as discussed generically by 

Festinger (1957, pp. 177–202), observation of other group member reactions influ-

ences the observing individual’s probability of reaction within the group. To demon-

strate this, it is shown in Chapter 3 how queue members behind and queue members 

ahead of a specific queue member of interest – up to the intrusion point – play a major 

role in determining the probability that a specific queue member reacts to an intrusion 

for a given social situation. 

1.3 Bibb Latane’s Social Impact Theory 

Bibb Latane and John Darley are famous for their “Stages of Helping” analysis that 

assisted in understanding the then reported inaction of 38 witnesses to the murder 

of Katherine “Kitty” Genovese in 1964. The stages of helping Latane and Darley 

developed include noticing the event, interpreting the event, assuming responsibility, 

selecting an appropriate reaction, and then intervening. Though the number of wit-

nesses to the Genovese murder has since been reduced through further investigation, 

the model stands on its own. This model, produced by Latane and Darley, has been 

further confirmed through experiments, most famously using subjects under various 

scenarios in a room filling with smoke (Latane and Darley, 1968). Results from this 

experiment demonstrate that subjects used other members in the room to interpret if 

action was necessary or not. It was found that when a subject was alone in a room 

filled with smoke, he or she would report the smoke 75 percent of the time within 3 
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minutes. If there were two passive confederates in the room with the subject, where 

the confederates without the subject’s knowledge were instructed beforehand not to 

react, then the subject reported smoke only 10 percent of the time even after 6 minutes 

of smoke was overtly and continuously introduced into the room. We will observe 

later that this is similar to what happens in a queue, where queue members standing 

between the subject member of interest and the intruder are made use of by the sub-

ject member of interest to help interpret the situation. In particular, if queue members 

standing between an intruder and the subject queue member are passive (buffers as 

termed by Milgram), then the subject queue member is much less likely to react, even 

in a high-importance limited resource queue. Thirteen years later, Latane (1981) pro-

vides a second and more critical paper addressing social impact theory. In this paper, 

he establishes the concept which ultimately leads to the development of the social 

queue model introduced here. It is at this point, after introducing his results in social 

impact theory, that mathematical development of a social queue model will begin. 

The theory of social impact addresses how other individuals for a given situation 

may affect the behavior of a subject member of interest. In an example, Latane (1981, 

p. 345, Fig. 2C) uses Milgram’s data on the drawing power of crowds (Milgram et al., 

1969). In this experiment, Milgram had student confederates of different size groups 

stand on a New York City sidewalk while looking up at a building. At the same time, 

passers-by were being observed and recorded by experimenters in the building to 

determine, post experiment, the proportion of those that looked up as a function of 

confederate group size. The article noted experiment anomalies, plotted results, did 

an analysis of variance, and then summarized the results. In 1981, Bibb Latane incor-

porated data from this and other experiments using his version of Stanley Stevens’ 

power law, as proposed in 1957. His intent was to demonstrate how a power-law-like 

function relates to the impact others have on the individual in the same social situa-

tion. In Milgram’s drawing power of crowds’ experiment, Latane proposed a power 

function to represent the percentage of passersby looking up versus the number of 

confederates in a group standing and continuously looking up from a city sidewalk. 

Instead of deriving a density and cumulative distribution function for the data, Latane 

(1981) appears to have decided to be representative only in his use of the power func-

tion. This important factor aside, what he did in this article was a brilliant step in the 

right direction. Before continuing with this story and its analysis though, we need to 

go back to the nineteenth-century development of psychophysics by Gustav Fechner 

and then leap forward to Stanley Stevens’ work of the mid-twentieth century and his 

power law as used by Latane. 

1.4 Weber’s Law and Fechner’s Law 

Psychophysics has been a contentious field of study since Gustav Fechner derived 

what is now called Fechner’s Law in the mid-nineteenth century. Prior to Gustav 

Fechner’s derivation, Ernst Weber, through experimentation during the early nine-

teenth century, was able to demonstrate that as the stimulus intensity I increases 

for any stimulus that may be sensed by one or more of the five senses, the change 

in stimulus intensity ΔI required for a person to just notice the difference is pro-

portional to the reference intensity. This difference is termed the just noticeable 



 

 

 

 

 

  

  

 

 

 

 

    

   

 

 

 

 

 

 

 

12 Social Psychology and Psychophysics 

difference (JND). With the proportionality constant (k), known as Weber’s frac-

tion, Weber’s law is stated as: 

∆I
∆I k= ⋅ I or equivalently = k.

I 

Consistent with Weber’s law, Fechner was able to attain his goal of establishing 

a relationship between sensation magnitude s and stimulus intensity by assuming 

for any stimulus I the associated JND results in a constant value for the associated 

change of sensation magnitude ∆s. One of only three possible functions (logarith-

mic, linear, or exponential) could support a constant ∆s  for each change in stimu-

lus intensity resulting in a JND, and that was the logarithmic function. From this 

Fechner derived what is now termed Fechner’s Law (Chaudhuri, 2011, pp. 9–13; 

Gescheider, 1997, Loc. 263), 

s K= ⋅ log ( )I . 

Note that K as used by Fechner is a constant, but not considered the same constant as 

the k  in Weber’s law. A more general form (Ekman, 1964; Dzhafarov and Colonius, 

2011, p. 7; Holman and Marley, 1974, p. 197) introduces constants a  and x0. The 

meaning of x0 will be developed shortly and used throughout the remainder of this 

chapter as a necessary means to incorporate what will be termed social noise. 

Sensation magnitude s a  K log ( I + x0 )= +  ⋅ . 

Framing this as a sensation magnitude difference equation (Richardson, 1954), 

we have 

 I + x n+1 0∆s = s log . Equation 1.1 s −  = ⋅Kn n+1 n   I + x n 0 

These are the traditional statements of Weber’s Law and Fechner’s Law, but there 

are known problems with Weber’s Law at intensity values near absolute threshold 

(Gescheider, 1997, Loc. 93), where absolute threshold is defined as the smallest 

amount of stimulus intensity necessary to produce a sensation. What is observed, 

using Weber’s Law as stated, is that A 
I
I is not constant when near absolute thresh-

old as Weber’s Law would predict, but instead is a monotonic decreasing function 

as stimulus intensity increases above absolute threshold as shown in Figure 1.1. 

What is observed in Figure 1.1, instead of being constant, is a function that quickly 

converges toward a constant value as stimulus intensity increases above absolute 

threshold. Likewise, Fechner’s Law has theoretical implications, but until now, 

little apparent practical application. To really understand the development of both, 

and then begin to apply Fechner’s Law in a form consistent with Equation 1.1 to 
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FIGURE 1.1 Traditional Form of Weber’s Law Demonstrating the Nonconstant Error Near Absolute 
Threshold Using Miller (1947) Raw Acoustic Data. 

real-world applications, we will derive Weber’s Law and then Fechner’s Law from 

scratch using the well-understood and successfully applied acoustic sonar equation. 

1.5 Weber’s Law Revisited 

Gescheider (1997, loc. 161) indicates a modification of Weber’s Law which more 

closely corresponds to empirical data and is given by: 

∆ϕ 
= k with a and k constant, and ϕ, is stimulous intensity.

ϕ + a 

In the same paragraph, he notes that the significance of a  has not been determined 

but that it may represent sensory noise. In this section, using existing nomenclature 

within this book by replacing φ with stimulus intensity I  and a  with noise N , a 

theoretical derivation is produced showing why for an actual stimulus intensity I  plus 

some potentially fluctuating sensory noise with intensity value N , Gescheider (1997, 

loc. 161) is in fact correct in his postulation. In other words, if I  is replaced by I N+ 
in Weber’s Law, then it will be shown by example that Weber’s Law is correct for all 

stimulus intensity values such that 

∆I 
= k with k constant and, mean value N.

I N+ 

To explain why Gescheider is correct, consider the passive sonar equation from 

underwater acoustics. This is a well-developed physical science problem and pertains 
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directly to the problem Miller (1947, pg. 612) encountered. The passive sonar equa-

tion in decibels is given by 

   I N 
10 ⋅ log  − ⋅10 log   = TL +DT −DI.

 I   N 
 ref   ref  

(Urick, 1983, p.22) 

Let Iref  represent unit reference stimulus intensity, and Nref  represent unit refer-

ence noise intensity such that Iref = Nref . Transmission loss (TL) , in decibels, is 

the reduction in specific signal intensity as the signal propagates through the medium. 

Detection threshold (DT )  in decibels is the minimum signal intensity at which an 

observer may correctly detect a signal from the noise. In this example, 50 percent of 

the time will be used. Directivity index ( DI )  in decibels represents the ability to 

reduce surrounding noise. With these variables loosely defined, we can now address 

the problem encountered in the traditional form of Weber’s Law – that of typically 

assuming stimulus intensity is separate from the noise it is observed within. 

As the stimulus signal intensity I0  increases from zero to some intensity I1 within the 

existing background noise, it will be detected 50 percent of the time at an intensity level 

above the surrounding noise floor for a given detection threshold DT . Therefore, what 

the operator hears when listening for the signal is not just the signal intensity I  but signal 

intensity plus noise intensity or I + N. Broadband detection threshold as related to the 

experiment by Miller (1947) is a function of probability of detection pd and probability 

of false alert pfa, both of which are needed to define the detection index d, bandwidth 

B, and duration T of the target signal pulse. Hence, establishing broadband detection 

threshold, or any detection threshold for that matter, is independent of signal and noise 

intensity. Though adjustable for any detection probability, some example approximations 

for broadband detection threshold for pd = 0 5.  include 

DT = ⋅5 log d( )− ⋅5 log T( ⋅B) 
(Burdic, 1984, p.417), 

or using a more recent modeling approach 

−1 DT =10 ⋅ log10 erfc (2 ⋅ p fa ) − ⋅5 log10 (T ⋅B) 
(Ainslie, 2010, p.597). 

Given the laboratory setup of Miller’s experiment, we can let TL + DT − DI = c *, where 

c * is a sample mean for components based on stimulus and environment (situation). The 

passive sonar equation using signal plus noise may now be written as 

 +   I N  N 
10 ⋅ log10   − ⋅10 log10  

unit of reference unit of reference    
 I N+  * = ⋅10 log10   = c . 
 N  
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Where “unit of reference” is the same for both I N and N, and recalling the relation, + 

 x for x, y ∈R+ ,  log ( )x − log ( )y = log   .
 y 

log x( )
10Further recalling that 10 = x, the passive sonar equation may be converted 

from decibels to stimulus intensity for comparison with Weber’s Law. This conversion 

results in 

c * 
I N+ ( 10)= 10 > 1 for both I  > 0 and N > 0.
N 

Setting I0 = 0, let I1 represent the absolute intensity threshold for base noise intensity 

N0 . Define ∆I = + N − I + N = − 0. Let the initial signal intensity added I ( ) I1 1 0 0 0 1 
to the background noise intensity, given by I + N , be detectable 50 percent of the 1 0 
time by an operator for some acceptable false alarm rate, then 

AI1 + =
AI1 + N0 I1 + N0 (c *

10) .1 = =10
N N N0 0 0 

Let us now maintain the intensity level at I1 and find the value I2 such that 

∆I = I − I  where ∆I + N  is detectable 50 percent of the time above the newly 2 2 1 2 1 
established noise floor N = +I N . From this we have1 1 0 

AI + N I - + +I I N I + N c
2 1 2 1 1 0 2 0 = ( )10= = 10 .
N I + N I + N1 1 0 1 0 

The sample mean c as applied here acknowledges the new noise floor N = +I N1 1 0 
may not be distributed in exactly the same way as the base noise floor N0 since I1 
may provide a more localized noise spectrum density. To demonstrate the progression 

one iteration further, let ∆I = I − I  where ∆I + N  is detectable 50 percent of 3 3 2 3 2 
the time above the noise floor which is now N2 = I + N0. Then2 

cAI3 + N2 I3 + N0 ( 10)= = 10 ,
N I + N2 2 0 

In Nn−1 In + N0 ( )  or in general ∆ +
= = 10 

c 
10 Equation 1.2 

N I + Nn−1 n−1 0 

where I  I I and N  = I + N for integer n  ∆ = −  ≥ 2.n n n−1 n−1 n−1 0 
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c( 10)Using 10 , a mean value, we can now solve for the more accurate version of 

Weber’s Law: 

c∆In + Nn−1 ∆In ( )
= +1 10 10= or

N Nn−1 n−1 

c∆I (n 10)= 10 −1 for integer n ≥ 2. 
Nn−1 

c( 10)
For some positive real value k = 10 -1, 

c 
10) AIn AIn10( 1 = = k for integer n ≥ 2.- =

N I + Nn-1 n-1 0 

This is the modified and empirically accurate version of Weber’s Law discussed in Ges-

cheider (1997, loc. 161), Engen (1971, pg. 18), and Stevens (1957, p. 173) which results 

in the ratio being constant (or nearly so since sample means are still random variables) as 

intended instead of monotonic decreasing when near absolute threshold. 

The general relationship of the Modified Weber’s Law for all values of I is then 

∆I ∆In n−1k = = where Nn−1 = In−1 + N0 for n  ≥ 2 Equation 1.3 
N Nn−1 n−2 

Going back to Miller (1947), Miller used a white-noise generator to produce a rela-

tively uniform (+5db) broadband noise ranging from 150 to 7000 Hz. The absolute 

threshold for the noise intensity corresponds to 10 dB (Miller, 1947, pp. 609–612). 

The noise was then intermittently increased to various intensity levels for 1.5 seconds 

and then reduced to the original sensation intensity level ( I + N )  multiple times 1 0 
until adequate data was collected to determine the signal level 10 ⋅ log  ( I + N )10 ∆ 0 
above ( I + N )  at which probability of correct detection of the signal increase is 1 0 
50 percent for some acceptable false alarm rate. Once the intensity level above the 

I + N  was determined that met the detection criteria, then I + N became the1 0 2 0 
next noise floor and the process was repeated. In his experiment, Miller (1947, p. 612) 

derived the Weber fraction value k = 0 099 using the traditional form of Weber’s . 
Law. Under the traditional form, this corresponds to 

I − I I  I ∆ n ∆ ∆= −1 0  099= . , so 10 ⋅ log10   = 10 ⋅ log10 ( . ) = 00 41. .1 099 
I I In n  n  

The value 0.41 being the same value as quoted in Miller (1947, p. 612) for the highest 

intensities. Data from Miller (1947) as it pertains to this discussion is provided in Table 1.1. 
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TABLE 1.1 Results in Decibels (dB) from Miller (1947, p. 612, Table 1) – Sensation Level and Random 

Noise SM Columns Raw Data 

n = 1 2 3 4 5 6 7 8 9 10 11 12 

10 ⋅ log ( ) = 3 db 5 10 15 20 25 35 45 55 70 85 100
10 In 

( I l
10 . log10 | A l = 3.2 db 2.1 1.17 .66 .55 .54 .50 .44 .50 .47 .48 .40 

( In l 

Using the Weber-fraction k = 0 099 with the Modified Weber’s Law of Equation 1.3,. 

∆I I − I I  N n+1 ∆ n ∆ 0k 0 099 or = 0 099 ⋅ +1 +1. Equation 1.4= = = . .  N I + N I  I n n 0 n n 

As sensation intensity increases above the absolute threshold noise floor, unifor-

mity of the noise may or may not change. To avoid this question while not going 

too far up the sensation level curve, values for n = 2 are used from Table 1.1 to 

calculate N0 . 

2 1. 5 I  ( with I = 10Given10 ⋅ log10 
∆ 2 1. ,  then I∆ = I2 ⋅10 10) ( 10).2 = 

 I2 

Substituting this into Equation 1.4 to solve for N0  and canceling out I2 results in 

2 1. )  ( 10I I ⋅10 − I N∆ 2 2 0 . − =1 = 0 6218 = 0 099. ⋅ +1
5 

 leading to
I2 I2  ( )  10 10 

5( 10)N0 = 5 2808 ⋅ I2 = . ⋅ = 16 7 .. 5 2808 10 . units of intensity 

To show Equation 1.3 represents Weber’s fraction for all intensities while acknowledg-

ing sample mean variations and fluctuations due to noise, we must show 

I∆ −1
I − I I∆ n n= ≅ .0 099.
I + N 16 7.n 0 1+ 

In 
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TABLE 1.2 Traditional and Modified Weber’s Law Using Miller (1947, p. 612, Table 1 Raw Data) 

Empirical Results for Comparison with Gescheider (1997, Figure 1.4) 

n = 1 2 3 4 5 6 7 8 9 10 11 12 

10 ⋅ log  In = 10 ( )

 I ∆10 ⋅ log =10  In 

3 

3.2 

5 

2.1 

10 

1.17 

15 

.66 

20 

.55 

25 

.54 

35 

.50 

45 

.44 

55 

.50 

70 

.47 

85 

.48 

100 

.40 

∆I In+ ≡1 ∆ − =1
I In n 

∆I I − In+1 ∆ n≡
N I + Nn n 0 

1.09 

.116 

.62 

.099 

.31 

.116 

.16 

.107 

.14 

.116 

.13 

.126 

.12 

.121 

.11 

.107 

.12 

.122 

.11 

.114 

.12 

.117 

.10 

.096 

.
10
0 32 −1

Using n  = 1 as an example, = .0 116. 
16 7. 

1+ 
0 3.

10 
Values, reflecting Gescheider (1997, Figure 1.4), which transform Miller’s data contained 

in Table 1.1 into the traditional Weber’s Law ∆I I , are given in Table 1.2. The last n+1 n 
row of Table 1.2 uses Equation 1.4 with results based on the relation 

 I 
log10 

∆
  I log ( ) In 10 nI = I ⋅10 and I = 10 .∆ n n 

Figure 1.2 compares the Gescheider (1997, Figure 1.4) transformation of Miller’s 
n+1data using the traditional form of Weber’s Law 

∆I = k  against values derived using In 
n+1Equation 1.4, 

∆I = k.
I N+ 0n 

What led to the results in Miller (1947) and independent work by Engen (1971, 

p. 17) was that noise was not added to the reference intensity value in the denomi-

nator as developed here. In Miller’s case, the value for N was from external and 

internal operator intrinsic noise. In Engen’s experiment, the noise was in the form 

of weight of the body part and associated muscles along with operator intrinsic 

internal noise. As will be shown, in general, noise is not limited to just physical 

properties – it is related to social properties as well. One example of social noise 

is uncertainty in how to interpret the social situation being observed due to social 

ambiguity resulting from possible alternate interpretations. This concept is impor-

tant to psychophysics, but, more importantly, it is a critical point to understand 

before further developing the modeling approach within this book. We will end this 

chapter with a general derivation of Fechner’s Law using what has been developed 
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FIGURE 1.2 Modified Weber’s Law Versus Results Compared to Gescheider (1997, Figure 1.4). 

so far and then briefly touch on an important and more recent approach in psycho-

physics, the power law. 

1.6 Fechner’s Law Revisited 

Given the derivation of the Modified Weber’s Law, we now consider Fechner’s Law, 

which, though not necessarily dependent on Weber’s Law as indicated by Dzhafarov 

and Colonius (2011, p. 2), must be consistent with it. Using Equation 1.3 and adding 

1 to both sides, 

c∆I I + N (n+1 n+1 0 10)+ =1 =10  = k +1 for n ≥ 0 and I0 = 0.
N I + Nn n 0 

The logarithmic function has already been shown to be the necessary function, but 

let’s go through a simple derivation and assume we are starting with an unknown func-

tion f. Label the term Asn m,  as subjective dissimilarity. Making use of Equations 1.1 

and 1.2 with K ∈ R+ , we begin with 

( I + N ln 0subjective dissimilarity As = K . f | l for n ≥ m, and nn m, ∈ Z0 .n m  I + N, 
( m 0 l 

As demonstrated in Equation 1.2, and postulated by Fechner (Dzhafarov and Colonius, 

2011, p. 5; Levine and Shefner, 1991, pp. 18–19), subjective dissimilarity is constant 

between I + N and I  + N when both are separated by a JND. From this, we n 0 n−1 0 
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can state in a manner similar to Shepard (1981, p. 42), that ∆sn n−1 = ∆sn n, −2 = C ,, −1 
a constant. Therefore, 

( I + N l
K f. = As| n 0 l n m,I + N( m 0 l 

= As + As + + Asn n, -1 n- -1,n 2 m+1,m 

( I + N l ( I + N ln 0 m+1 0K f   K f= . + + .| l | lI + N I + N( n-1 0 l ( m 0 l 
= -n m . . f k  +1 using Equation 1 2. .( ) K ( ) s 

Using Equations 1.2 and 1.3, we can also show for n, m ∈Z0 , and n m ,≥ 

I + N I + N I + N I + N n-mn 0 n-1 0 m+1 0 n 0.  = = (k +1) .
In-1 + N0 In-2 + N0 Im + N0 Im + N0 

Combining these two results leads to 

−  I + N I 1 + N I + N  n m   n 0 n− 0 m+1 0K ⋅ f k +1 K f ⋅ ( ) = ⋅     I + N I + N I + N n−1 0 n−2 0 m 0 

n−1  Ii+1 + N0 = ⋅  fK ∑ i m   =  I + N i 0 

= n − m ⋅ ⋅ f k  +1( ) K ( ) = ∆sn m, , 

which is linearly increasing as n − m increases.( ) 

As determined by Fechner and recreated by Dzhafarov and Colonius (2011, pp. 1–7), 

the functional relation f satisfies the Third Cauchy Equation, also termed the logarithmic 

Cauchy functional equation (Efthimiou, 2010, p. 84). Hence, 

In + N0∆s = ⋅  (n m) ⋅ ⋅ ( )1K log = − K log k +n m, 
I + Nm 0 

m n and I < I if 0 < ∆s≤ m n n,m 

where n, m ∈Z0 , m ≥ 1, and K ∈R+ . Equation 1.5 

Equation 1.5, equivalent to the subjective magnitude discussed in Shepard (1981, 

p. 48) if α = 0  and to Equation 1.1, is a generalized representation of Fechner’s 
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Law that is used throughout the remainder of this effort. Basically, when Im = 0, 

Equation 1.5 is indicating the subjective magnitude an observer senses when compar-

ing expected normal background behavior N0 with some level of socially deviant 

behavior I N0. For any fixed m n , Equation 1.5 is an increasing function as nn + < 
increases. Fechner’s Law, as derived here and alternatively developed by Dzhafarov 

and Colonius (2011, pp. 3, 6), does not require reliance on JNDs. To demonstrate this, 

consider the following theorem and its corollary. 

Theorem 1.1: Define I − I = JND. Given a real number wheren n−1 pn 
In−1 < pn ≤ In , n ≥ 3 

I + Nfor Asn n, -1 = K . log n 0 = K . log (k +1)
I + Nn-1 0 

there exists pn-1 where In−2 < pn−1 ≤ In−1 such that 

p + N
∆sn n, −1 = ⋅K log n 0 = ⋅K log ( )k +1 . 

pn−1 + N0 

Proof: A direct proof will be used. Based on the Modified Weber’s Law, adding 1 

to each side of Equation 1.3 leads to 

∆I I + Nn n 0 
k 1 so that I = (k + ) ⋅( In−1 + N − N0.+ =1 = +  n 1 0 )

Nn−1 In−1 + N0 

Select any p where I < p ≤ I , and let p = (k +1) ⋅( p + N )− Nn−1 n−2 n−1 n−1 n n−1 0 0 
noting that it is clear that In−1 < pn ≤ In. Substituting these two values into 

Equation 1.5 leads to 

pn + N0 ( (k +1) .( pn-1 + N0 ) l
K . log = K . log | l pn-1 + N0 ( pn-1 + N0 l 

= K . log (k +1) = Asn n, -1. 

Corollary 1.1: Let p ∈R such that 0 p I , n ∈Z+< <  . Then,n 

p N  I +0 n 0K l⋅ og = ⋅ ⋅ g k +1 − ⋅ og + 
K n lo ( ) K l  N 

N p N0 + 0 
In + N0∆sn, K log= 0 − ⋅ . 
p + N0 
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Proof: As a simple direct proof, 

I + N I + Nn 0 n 0K . log K log- .  
N0 p N0+ 

p N0 In + 0K log K +1 - .K log= . +
= . .n log ( )k N 

+N0 p N0 
I + N

= Asn,0 - .K log n 0 .
p N0+ 

The implication of Theorem 1.1 and Corollary 1.1 is that the general stimulus intensity 

value p can exist between JNDs without loss of generality or application. 

In 1957, the same year that Leon Festinger published his theory of cognitive dis-

sonance, Stanley Stevens wrote an article (Stevens, 1957) that reinvigorated the field 

of psychophysics through the introduction of experimental procedures termed scaling, 

allowing the experimenter to directly relate stimulus intensity and subject sensation. 

Out of this work, the power law theory was proposed – to either build upon or replace 

Fechner’s Law of the previous century. If s is the sensation magnitude experienced 

by the subject, k  the scaling constant (similar in function to Weber’s fraction), I  the 

stimulus intensity, and b the stimulus specific exponent, then the power law is given 

by (Chaudhuri, 2011, pp. 13–14; Gescheider, 1997, Loc. 5110): 

b
s k I= ⋅  . 

It is worth noting Ekman’s (1959) observation that inserting a constant c , which must 

be experimentally determined along with the exponent b, improves the power law’s 

accuracy for small values I  so that 

b
s k I c( ) .= ⋅  + 

If the value for c  is associated with noise N , then this begins to look familiar. In his 

article, Stevens’ (1957) basic thesis was to demonstrate that there is a general psy-

chophysical law relating an individual’s subjective response magnitude to a stimulus 

magnitude and that this law indicates that equal stimulus ratios produce equal sensa-

tion ratios (Stevens, 1957, p. 162). It is not my intent, nor is it my place due to lack of 

expertise, to wade further into the morass of articles and arguments that have resulted 

within the academic community since, but one article in particular is worth noting 

before going to Chapter 2 where a relationship between Fechner’s Law and Stevens’ 

power law is provided. 

Ekman (1964) wrote a one-page article to try and focus on the growing contro-

versy over whether the power law is the new “true” psychophysical law or whether 

it is just another version of Fechner’s Law. As he demonstrated mathematically, if 

Fechner’s Law is used to describe the relation between two dissimilar stimuli, then 
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combined they can be represented by the power law. Otherwise, Ekman (1964) argues, 

if used to describe the relationship between the sensation magnitude variable and a 

stimulus variable only, the power law is the “true” psychophysical law. Ekman’s final 

advise was that instead of trying to solve the controversy immediately, the community 

needed to learn more through experimentation and model development (Fagot, 1975) 

before making any final determinations. At the writing of this book, and given recent 

literature, it would seem that the discussion has been ongoing since. 
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2 
MILGRAM’S DRAWING POWER OF CROWDS 
AND SOCIAL IMPACT THEORY 

By social impact, I mean any of the great variety of changes in physiological states and subjec-

tive feelings, motives and emotions, cognitions and beliefs, values and behavior, that occur in an 

individual, human or animal, as a result of the real, implied, or imagined presence or actions of 

other individuals. 

Bibb Latane (1981, p. 343) “The Psychology of Social Impact” 

(with permission from the American Psychological Association) 

We now have the basic tools to build on Latane’s (1981) Social Impact Theory and his 

( )  . 0 24.
proposed power function I N = 0 46 ⋅N  used to model results from Milgram 

et al. (1969), where, using Latane’s nomenclature, N (units of intensity I as used here) 

represents the number of confederates in the crowd looking up at the building. Fig-

ure 2.1 contains the raw summary data used in Milgram et al. (1969), obtained from 

the Stanley Milgram Papers (MS 1406), Manuscripts and Archives, Yale University 

Library. The power function employed by Latane (1981) is depicted in Figure 2.1 as 

well. To analyze and understand the underlying process leading to results, instead of 

using Latane’s proposed power function, we need to identify an actual probability 

density and associated cumulative distribution function (CDF) for this data. To do this, 

we begin with Axioms 3 and 4 provided in Chapter 1, which state the unit stimulus 

sensation magnitude value s of a dissonant-causing event is a function of the event’s 

relevance to the observer and its extent of social deviation. 

2.1 Sensation Magnitude Probability Mass Function 

Let the level of relevance of any event be defined as an independent continuous ran-

dom variable R. Furthermore, let us define the extent social deviation of an event as 

the independent continuous random variable E. If the two are considered separately, 

then we must ask what is the relevance, and what is the extent of social deviation 

for an event in any given social situation? The following personal experience by this 

author provides an example of the concept: 

DOI: 10.4324/9781003325161-3 

https://doi.org/10.4324/9781003325161-3
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FIGURE 2.1 Latane (1981) Social Impact Power Function Compared to Milgram et al. (1969) Raw 
Summary Data (Stanley Milgram Papers (MS 1406), Manuscripts and Archives, Yale 
University Library) with Copyright Permission Obtained from the Alexandra Milgram 
Estate. 

While in queue at a grocery store, five people were behind me and three in front. 

Immediately in front was a seemingly nervous teenage girl with nothing in her 

hands except a cell phone on which she frequently sent short texts. That she 

was in our group and directly in front of me made her relevant, and that she had 

nothing in her hands to buy made this a minor social deviation from the accepted 

western social norm that if waiting in queue to buy something, you should have 

something to buy. Both her relevance and apparent social deviation were inde-

pendent of one another. 

Now having my attention (Fiske and Taylor, 2017, p. 64), I noticed her fur-

tively look two or three times in the direction of an older man a few queues over. 

This was again a minor deviation from accepted social norms in that typically 

people in one queue are not particularly concerned with observing a specific 

member of another queue. These two slightly dissonant events concerning the 

queue member were cumulative, and my interest further increased as a result. 

Additional unrelated observations (i.e., background social noise) were occur-

ring at the same time but were minor – just observations with no real signifi-

cance attached. It was not until the teenage girl moved up to being next in queue 

to the automated interface that the full extent of the social deviation unfolding in 

front of me became apparent. As she moved up in position, she sent another text. 

The man she had looked at earlier and an older woman I had not noticed previ-

ously broke out of two nearby queues. The man, with groceries in hand, came 

over to join her, pushing his way past those in my queue. It was the combination 

of her relevance to me, and observations of minor social deviations that led to 

certainty of what was happening. The associated surge in extent social deviation 
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for the given situation led to my less than pleasant verbal confrontation with the 

man. My confrontation reduced my dissonance and hopefully helped enforce the 

maintenance of queue group integrity. 

If, as a group member, I am only aware of moderate-to-highly relevant events, or mod-

erate-to-high-extent social deviations of social norms, then I would have been uncer-

tain as to whether the family was gaming the system (as they were, and admitted) 

or whether the young lady was just holding the man’s place in queue while he went 

to get an additional item – which is a more acceptable social action in America and 

less likely to cause a reaction (Schmitt et al., 1992, pp. 812–813). In the latter case, 

I would have reduced my dissonance by giving the man and young lady the benefit 

of the doubt and just assumed she had been holding his place as he went back to get 

something. If this could be translated into a survival scenario, where one group meets 

another in a region within which they compete for food, such an incorrect assumption 

could prove detrimental. 

It seems that to optimize for our survival, we would need to place the same level 

of importance on low relevance/extent social deviation events as with high relevance/ 

extent social deviation events. If in fact, we are somehow able to view less relevant or 

socially deviant observations to be as likely as highly relevant observations or socially 

deviant observations, then we must expect to determine and appreciate the role that 

information encoding (optimizing for efficiency), memory (history/experience), and 

attentional selection (pattern recognition) play (Fiske and Taylor, 2017, pp. 64–65) in 

this process. We start in this chapter with information encoding. 

Hypothesis 2.1: Through the evolutionary process, the human species, and likely 

other species, inherently apply an optimal probability mass function/distribution 

for both relevance and extent social norm deviation during the mental encoding 

process to maximize information gained from an event in social space and thus 

enhance chances of survival. 

2.1.1 Mental Encoding and the Discrete Uniform Probability 
Mass Function 

Let’s begin by discussing how the brain distributes the probability of a two-alterna-

tive forced choice experiment, with no feedback, in the absence of information (sig-

nal). From there, we will move to the more complex example of a three-alternative 

forced-choice experiment without feedback to show how signal detection theory 

and psychophysics combine to resolve what would seem an otherwise inexplicable 

result in signal detection theory alone. These two examples do not offer proof that 

humans apply the uniform probability mass function to relevance and social devia-

tion during normal social conditions (standard signal), but they do offer examples of 

sensory perception in single dimensional cases (i.e., tone, mass) resulting in nearly 

discrete uniform densities when only a single-type signal with no feedback is pro-

vided within an experiment requiring the subject to make one of n ∈{2 3, } forced 

choices to identify the type of signal (i.e., loud/soft, light weight/standard weight/ 

heavy weight). 
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Prior to beginning, it is important to understand that signal detection theory 

addresses four conditions, correct detection of a target signal (hit), not detect-

ing a target signal when it is present (miss), correct rejection of a signal that is not 

the target signal, and false classification of a non-signal as a target signal (false 

alarm). In the following two experiments we consider, when the standard inten-

sity is the same as the comparative intensity, detection index equals zero, and 

n −1 p falseclassification p hit = 1. In essence, there is only probability of (  ) ⋅ ( ) + ( )
correctly identifying the target signal or incorrectly identifying the target signal (false 

classification – alternate choice). As a result, when standard and comparative intensi-

ties are equal (ambiguous signal), given n alternative choices, the probability of any 

of the n choices occurring will be shown to be uniformly distributed. 

2.1.2 Tone Perception – Two-Alternative Forced Choice 
Experiment (No Feedback) 

In an experiment which supports the prospect of a discrete uniform probability mass 

function under specific conditions, Tanner et al. (1967) used two amplitudes (deci-

bel levels) of the same tone on subjects without providing feedback or information 

on the frequency of occurrence of the louder tone, which when correctly identified 

was defined as a “hit.” The purpose was to compare these results, and the variation 

introduced with those from what was then other recent experiments conducted by 

independent investigators. The result of importance here was that their subjects, in 

a two-alternative forced choice paradigm with no feedback, perceive the probability 

of occurrence of the loud and soft tones to approximate a discrete uniform prob-

ability mass function when the actual probability of occurrence of the loud tone is 

extremely low. 

Though further investigation is warranted as indicated by Hautus et al. (2022, 

p. 99), it seems that if there is no feedback in the two-alternative forced choice regime, 

subjects will act as though the schedule being used is from a [discrete] near uniform 

density with bias against the most frequently presented stimuli. So, when the target 

signal is very infrequent, the subject perceives the target signals to be nearly uni-

formly distributed with the nontarget signals. This is consistent with signal detection 

theory when the detection index is zero and with psychophysical measurement when 

the signals are the same (Holman and Marley, 1974, p. 197). It will be shown shortly 

that this can also occur in the three-alternative forced choice environment when no 

feedback is provided. 

Viewing this in a more intuitive manner from the standpoint of social interaction, if 

less emphasis is given to more frequently occurring events and more emphasis to less 

frequently occurring events, then as a species we are geared toward more efficiently 

identifying behavior that is not considered normal. Otherwise, we become preoccupied 

or emotionally saturated with low relevance and low extent socially deviant events 

which, as an example, occur frequently in major cities. This may be why citizens liv-

ing in dense urban environments have a greater tolerance for socially deviant behav-

ior and focus more on their own social groups and less on others outside their social 

group (Milgram, 1970, pp. 1461–1462; Steblay, 1987, p. 352). From an evolutionary 

and possibly an information theoretic standpoint, our brains may be encoding social 
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information into a uniform or near uniform density, which per information theory is a 

maximum information or maximum entropy distribution (Stone, 2015, p. 121). 

On a final related note, to maximize entropy, it has been shown that optimal encod-

ing of visual stimuli for flies and humans, having bounded neuronal output voltage 

(−20mV to 20mV), results in a uniform probability mass function (Stone, 2015, 
pp. 199–202; Laughlin, 1981). Therefore, from an evolutionary standpoint, this would 

seem another indication that transforming nonuniform information into uniform input 

may have a role in detecting and internally encoding social stimuli. 

2.1.3 Mass Perception – Three-Alternative Forced Choice 
Experiment (No Feedback) 

The design of the experiment by Tanner et al. (1967) limited a subject’s choice to 

two options, either the tone heard was thought louder or softer. An interesting pair of 

related experiments were conducted by Fernberger (1913) and Arons and Irwin (1932). 

In both experiments, the subjects had to choose one of three alternatives. Using two 

subjects, Fernberger (1913) conducted an experiment using seven pair of weights of 

identical size placed on a rotating table. The subject was seated with his right forearm 

supported by a stationary table so that the hand was free to move from the wrist down. 

The rotating table, obscured by a screen from the subjects view, would be turned 

so that each weight would sequentially be placed below the hand. For each pair of 

weights and specified period, the subject would first lift the standard weight having a 

mass of 100 grams. The subject would then put down the first weight, pause a speci-

fied and consistent amount of time measured by a metronome, then lift the second 

weight of the pair and determine if the weight were “lighter”, “equal to/doubtful”, or 

“heavier” than the first weight. The various second weights, randomized but equally 

likely over the course of the experiment, had masses of 84, 88, 92, 96, 104, and 108 

grams. In all, 2800 trials were performed for each of the six weight pair combinations. 

Table 2.1 provides the summary results. 

Nineteen years after publication of Fernberger (1913), at the beginning of the Great 

Depression, Arons and Irwin (1932) at University of Pennsylvania made an interesting 

modification to Fernberger’s experiment. Instead of having subjects compare various 

weights against a standard, some heavier and some lighter, weights were used that all 

fell within 20 milligrams of the standard weight of 100 grams (i.e., not a noticeable 

difference). As a result, in this particular experiment there were no false hits, and there 

Table 2.1 Summary Data: Based on 2800 Trials of Each Weight Pair (Fernberger, 1913) with Permission 

from the American Psychological Association 

Standard Weight = 100 grams. 
Second Weight = 

Lighter Equal to Heavier 

84 grams 0.9629 0.0307 0.0064 

88 grams 0.8536 0.1210 0.0254 

92 grams 0.6189 0.2500 0.1311 

96 grams 0.3911 0.3489 0.2600 

104 grams 0.0561 0.1435 0.8004 

108 grams 0.0161 0.0568 0.9271 
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were no correct rejections. The instruction given to each subject was to judge each pair 

of weights and determine if the second was lighter, equal to, or heavier than the first, 

which in this case was the standard weight. As in Fernberger’s experiment, subjects 

did not receive feedback on their accuracy during the trials. 

Using this procedure, six subjects conducted a total of 5,500 trials, with subject 

results documented in sets of 50 trials. One subject performed 2,500 trials, another 

subject performed 1,000 trials, and the remaining four subjects performed 500 trials 

each. Each subject should be considered an independent random variable. Assume a 

Normal (Gaussian) population as done in Green and Swets (1988, p. 409), then cal-

culate the sample standard deviation σ using all 110 sets of 50 trials from the Arons 

and Irwin (1932) data set. A sample mean is taken using the averaged results for each 

subject as provided in Table 2.2, and an approximate 95 percent confidence interval is 

supplied based on the combined sample standard deviation σ ≅ 0 095 .. 
Although the confidence intervals are large, Table 2.2 sample mean results indicate 

that when the standard mass is always introduced first, subjects tend to equalize the 

frequency of the three possible responses with increasing bias toward the responses 

“equal to” and “heavier.” Figure 2.2 displays the psychometric functions based on the 

combined data from Fernberger (1913) and Arons and Irwin (1932), where 100 grams 

was used as the standard mass introduced prior to the comparative mass for each 

trial. The common standard deviation of σ = 6 09 used in this evaluation is the aver-. 
age of the “Lighter” (σ L = 6 33 ) and “Heaver” (σ H .. = 5 85 ) variances supporting a 

Gaussian least squares fit. 

Typically, it would be expected that the “Equal” curve would cross the cumulative 

probability of 0.5 at 100 grams. Instead, it crosses at about 97.14 grams. This results 

from a known phenomenon in psychophysics called time-error, or time-order error, 

whose discussion of and explanation are best left to the expertise of Pratt (1933), Green 

and Swets (1988), Hautus et al. (2022), and Hellstrom and Rammsayer (2015). For 

our needs, when two stimuli of the same type and intensity are presented in sequence 

with some time interval between them, time-order error causes the first stimulus to 

seem lower in intensity than the second more recent stimulus. Figure 2.2, based on 

data from Fernberger (1913) and Arons and Irwin (1932) data using a least squares fit 

with a normal density function, demonstrates this psychophysical phenomenon with 

the point of subjective equality (PSE) at 97.14 grams or the weight at which the com-

parative stimulus appears to the subject as being equal to the standard stimulus which 

TABLE 2.2 Arons and Irwin (1932, Tables III and IV) Trial Data with the Standard and Second Weight the 

Same. With Permission from the American Psychological Association 

Both Standard and Second Weight = 100 grams Lighter Equal to Heavier 

Subject 1: Based on 2,500 Trials 0.263 0.316 0.422 

Subject 2: Based on 1,000 Trials 0.257 0.349 0.394 

Subject 3: Based on 500 Trials 0.160 0.256 0.584 

Subject 4: Based on 500 Trials 0.028 0.450 0.522 

Subject 5: Based on 500 Trials 0.208 0.396 0.396 

Subject 6: Based on 500 Trials 0.292 0.160 0.548 

Sample Mean: (Combined Sample σ ≅ 0 095. ) 0.20 0.32] 0.48 

~95% Confidence Interval (Assume Gaussian): [0.13, 0.28] [0.25, 0.40] [0.40, 0.55] 
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FIGURE 2.3 A More Intuitive View of Fernberger (1913) and Arons and Irwin (1932) Results Using 
a Gaussian Density Function with μ = 100 grams (Standard Mass) and σ = 6.09. 

was always presented first. The proportion of judgment results shown in Figure 2.2 

are well within the 95 percent confidence intervals for each alternative as provided in 

Table 2.2. Using the same approach for other masses, it also shows a very close cor-

relation with Table 2.1 sample mean results. 

Based on the common standard deviation of 6.09 and relying on the Gaussian prop-

erty Φ −x 1 Φ x with −∞ (actually 0 < < ∞ , Figure 2.3 provides another (  ) = −  ( )  ) x 
way in which to interpret what is occurring with the Fernberger (1913) and Arons and 

Irwin (1932) data. For this set of experiments, the interval of uncertainty is off center 

due to the standard mass of 100 grams being introduced first in every trial. It is in the 

interval of uncertainty that the subject perceives the standard mass and the compara-

tive mass to be statistically equal. 

A similar experiment conducted by Guilford (1954, pp. 136–137), but with only 700 

trials total and an unknown number of subjects, basically removes the time-order error 

bias observed by Fernberger (1913) and Arons and Irwin (1932) by equally switching 

which mass comes first, the standard or the comparative mass. In this experiment, the 

standard mass is 200 grams, and the comparative masses range from 185 grams to 

215 grams in steps of 5 grams. Assuming the hand is hanging down with the forearm 

supported as described in Fernberger (1913), the mass of my hand in such a position 

is approximately 150 grams – understanding the variance based on the individual and 

manner in which the forearm is supported exists. Let’s begin with my noted hand mass 

as an initial noise value. To achieve psychological equivalence, with modification to 

account for noise, and applying the relation theory approach as discussed in Shepard 

(1981, p. 42), we have 

n−1
 I + N  n−12

In =   ⋅( I1 + N )− N = (1+ k ) ⋅( I1 + N )− N ,
I + N 1  
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(Upper Limen − PSE )
where noise N ~ 150 grams, k = ,

PSE N+ 
and n ∈ Z+ 

. 

For a more intuitive understanding, compare this to development leading up to and 

including Equation 1.5. 

Now, the first thing to do is find a ballpark figure for the nonnegative integer n using 

Arons and Irwin (1932) and Fernberger (1913) data that gets us to the standard mass 

of 200 grams as used in Guilford (1954). Using I = 94 28. grams, I2 = 97 14. grams1 
from Figure 2.2 and N = 150 grams, 

 200 gr +150 gr 
ln 
 94 28 gr +150 gr . 

n − =  = 30 89.1 ≅ 31. 
 97 14. gr +150 gr 

ln  
. 94 28 gr +150 gr  

Using the Arons and Irwin (1932) and Fernberger (1913) “Lighter” data which had 

a Gaussian least squares fit of 0.0012, and given the “Heavier” mean mass was 100 

grams, we will find values for I2 and N such that 

 I2 + N 
3 1− 

I3 = 100 gr =   ⋅(94 28. gr + N )− N , and 
94 28 gr + N.  

32−1
 I + N 

I32 = 200 gr =  2 
 ⋅(94 28 gr + N )−. N. 

 94 28 gr + N . 

Having two equations and two unknowns, the result is, 

I = 97 12319. grams, and N = 146 127. grams.2 

The point of subjective equality (PSE) value, the original I2 value shown in Figure 2.2, 

is then adjusted from 97.14 grams to 97.1232 grams. We may now find the lower and 

upper limen values I30 and I32 for the Guilford (1954) experiment based again on rela-

tion theory while accounting for noise such that 

31−1 
97 12319 gr + .  . 146 127

I31 =   ⋅(94 28 gr +14 . ). 6 127 
94 28 gr + .. 146 127  

146 127. = 195 96 grams.− . 
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I = 200 00 grams32 . . 

33−1 
97 12319 gr + .  . 146 127

I33 =   ⋅(94 28 gr +14 . ). 6 127 
94 28 gr + .. 146 127  

146 127. = 204 09 grams.− . 

Although the Guilford (1954) data only had 100 trials per comparative mass and an 

unknown number of subjects, this derivation shown in Figure 2.4 does suggest an 

interesting result based on the revised data resulting from relation theory. Using the 

values I31, I32, and I33 as the psychometric function Gaussian means, and assuming 

a common standard deviation σ = 9 40  based on a least squares fit of the empiri-. 
cal data, when the order of the standard mass is switched equally with that of the 

comparative mass as Guilford did in his experiment, the proportion of judgments are 

nearly uniform across the three alternative choices. As an aside, Weber’s fraction for 

this set of three independent experiments is found to be 0.0238 for the transition from 

“lighter” to “heavier.” 

Guilford (1954, p. 137) evaluated the data four different ways. In one of the four 

methods, he made use of normal graphic probit paper. Analyzing the data in that man-

ner, Guilford derived a Lower Limen Value of 196.2 grams with σ = 9 6. , a PSE of 

200.2 grams, and an Upper Limen Value of 204.3 grams with σ = 10. With the minor 

difference in standard deviation values, Guildford’s psychometric function mean val-

ues are exactly the same as derived here if shifted 0.2 grams to the left. As with the 

Arons and Irwin (1932) data, Figure 2.5 provides a more intuitive way to consider the 

results using the Guilford (1954) data. 

FIGURE 2.4 The Two Psychometric Functions Based on Fernberger (1913) and Arons and Irwin 
(1932) Upper and Lower Limen Values Using Guilford (1954, p. 136) Results to 
Calculate the Standard Deviation Based on a Least Squares Fit. The Psychometric 
Function for “Equal” is Derived from the “Lighter” and “Heavier” Psychometric 
Functions and Assumes the Same Variance σ2. 
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FIGURE 2.5 More Intuitive View of Guilford (1954) Results Using a Gaussian Density Function 
with μ = 200 grams (Standard Mass) and σ = 9.40. 

Consider now two or more socially deviant events of the same type and intensity 

occurring within a short but observable interval of time. It may be that time-order 

error as experienced by Fernberger (1913) and Arons and Irwin (1932) is also pres-

ent when comparing the intensity of such social events. It will be seen later that this 

concept is subjectively addressed in cognitive dissonance theory and quantitatively 

modeled in Chapter 6. The preceding experiments also support the hypothesis of a 

uniform probability mass function in one dimension for the three-alternative forced 

choice paradigm when the standard and comparative signals are the same but equally 

switched in their presentation sequence. Tanner et al. (1967) demonstrated the same 

in their two-alternative forced choice experiment in the absence of ordered pairs and 

hence time-order error considerations. It is not out of the question then to consider the 

possibility that in the absence of a specific target signal and time-order in social space, 

where everyone in a given social situation is generally behaving per expected social 

norms, each human member in that situation is independently and uniformly encod-

ing social deviations in one dimension, and social relevance in another – some more, 

some less, but on average in a consistent and predictable manner for the given social 

norms in which the social situation occurs. We will now carry this thought forward in 

developing the necessary probability density function. 

2.2 Deriving the Unit Sensation Magnitude Probability 
Density Function 

We assume it is true from Axioms 3 and 4 that there are two random variables gener-

ating an observer’s dissonance sensation magnitude, namely relevance R and extent 

social deviation E of observed event(s) based on the observer’s social norms and 

social situation within which the event(s) occur. 

Proposition 2.1: The random variable representing relevance R of a social event 

for a given social situation is bounded below by zero, and above by one. 
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Proof: Relevance must be bounded below by zero since a social event is either 

relevant to some degree or it is not (i.e., zero relevance). Now, using proof by 

contradiction, assume relevance of a social event is not bounded above. Given 

that relevance is not bounded above, then for any event A having immediate 

impact on an individual or group, there is some event B that is more relevant 

based on impact to an individual group member for a given social situation. 

Let A be the termination of the individual or group through some immediate 

means. Since the individual or group now no longer exists, there is nothing that 

can have a greater impact on the individual or group, hence B cannot exist. By 

contradiction, relevance of a social event is bounded below by zero, and above 

by some finite value. Since A is an arbitrary constant, set A = 1. 

Before moving on to Proposition 2.2, a historical account by Cassius Dio, the son of a 

Roman senator who lived about 1,800 years ago, should be told to make the point that 

the most egregious forms of social deviation all seem to fall into the dark bin of arbi-

trary gruesome death. It also indicates that Augustus Caesar might have been aware 

of some of the concepts as now contained in cognitive dissonance theory (Dio, 1917). 

This same year Vedius Pollio died, a man who in general had done nothing 

deserving of remembrance, as he was sprung from freedmen, belonged to the 

knights, and had performed no brilliant deeds; but he had become very famous 

for his wealth and for his cruelty, so that he has even gained a place in history. 

Most of the things he did would be wearisome to relate, but I may mention that 

he kept in reservoirs huge lampreys that had been trained to eat men, and was 

accustomed to throw to them such of his slaves as he desired to put to death. 

Once, when he was entertaining Augustus, his cupbearer broke a crystal goblet, 

and without regard for his guest, Pollio ordered the fellow to be thrown to the 

lampreys. Hereupon the slave fell on his knees before Augustus and supplicated 

him, and Augustus at first tried to persuade Pollio not to commit such a mon-

strous deed. Then, when Pollio paid no heed to him, the emperor said, “Bring 

all the rest of the drinking vessels which are of like sort or any others of value 

that you possess, in order that I may use them,” and when they were brought, he 

ordered them to be broken. When Pollio saw this, he was vexed of course; but 

since he was no longer angry over the one goblet, considering the great number 

of others that were ruined, and, on the other hand could not punish his servant 

for what Augustus also had done, he held his peace. This is the sort of person 

Pollio was, who died at this time. Among his many bequests to many persons he 

left to Augustus a good share of his estate together with Pausilypon, the place 

between Neapolis and Puteoli, with instructions that some public work of great 

beauty should be erected there. Augustus razed Pollio’s house to the ground, on 

the pretext of preparing for the erection of the other structure, but really with the 

purpose that Pollio should have no monument in the city; and built a colonnade, 

inscribing on it the name, not of Pollio, but of Livia [wife of Augustus]. 

(pp. 339–343) 

The important concept to focus on in this story, which leads us into the next proposi-

tion, is that of breaking the crystal goblets and the anxiety this caused Vedius Pollio. 
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Even though it is certain this caused the slave a certain amount of anxiety as well, it is 

Vedius Pollio’s reaction that is of interest. In this situation, the first cup that is broken 

angers Vedius Pollio. After Augustus has the remaining cups broken, the breaking of 

one cup becomes minor in comparison to the cumulative effect, and Vedius Pollio can 

do nothing against Augustus Caesar, nor could he stop him from having the glasses 

broken. Additionally, if Vedius Pollio were to still desire throwing the slave to the 

lampreys then he might further consider what else Augustus would do in response that 

could be even worse (see Axiom 2, Chapter 1). As a bystander, years safely distant 

from the event and from Augustus, what Augustus did was clever and would indicate 

a keen understanding of human psychology if the story is accurate. 

Proposition 2.2: The extent social deviation E for a single unit social stimulus and 

situation is bounded. If more than one-unit social stimulus is applied simultane-

ously or near simultaneously, then the extent social deviation may eventually 

exceed existing bounds and be considered unbounded. 

Proof: (Unit Stimulus) Extent social deviation must be bounded below by zero 

since something is either a social deviation for a given situation, or it is not (i.e., 

zero extent social deviation). As a proof by contradiction, assume extent of 

social deviation for a unit stimulus is not bounded above. Assuming no inhibi-

tions or uncertainty of interpretation by the group member observing the devi-

ation, let some event A represent the greatest deviation from social norms for 

the given situation that a given group member can comprehend, and in which 

the member or group would not tolerate. Since extent social deviation is not 

bounded above, there must exist some event B having a greater extent social 

deviation than A. But since A represents the worst deviation from social norms 

for the given situation that a given group member can comprehend at the time, 

then B cannot exist since it has not manifested itself historically or through 

experience by any member. In other words, until B manifests itself, event A 

is the perceived upper bound of social deviation for a given social situation. 

Hence, by contradiction, social deviation for a given social situation is bounded 

below by zero, and above by some finite value. 

(Multiple Stimuli) Assume an extent deviation A occurs multiple times 

simultaneously. An example being a soldier seeing multiple friends being 

killed in war within just a few seconds as they try to take a new tactical posi-

tion as ordered. Then if A represents the extent deviation of one friend being 

killed in action, two friends being killed in action at the same or nearly same 

time would exceed A. Therefore, in this case, A is not bounded. 

The first situation, that of a unit stimulus, will be addressed first since it is the most 

intuitive. With that done, and the theory developed, the situation with unbounded 

stimuli may then be addressed. 

Proposition 2.3: Per Axiom 4 and Propositions 2.1 and 2.2, a unit (i.e., single) 

stimulus sensation magnitude resulting in social dissonance experienced by an 

observer is bounded. 
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Proof: Using Propositions 2.1 and 2.2, define the bounded range of the random 

variables R and E by 0 < R < 1 and 0 ≤ ≤ d with d +E ∈R . Consider events 

that are socially dissonant with some density based on the random variable 

for unit stimulus sensation magnitude S. Since R and E are independent, per 

Rohatgi (1976, p. 141) and Glen et al. (2004, pp. 452–453), S is bounded below 

by 0 and above by d such that 

S R= ⋅E→ (0, d ]. 

The random variable S is undefined at zero since that would include all observ-

able or known events not socially dissonant (i.e., everything else). Hence, unit 

stimulus sensation magnitude is bounded below and above. 

With the necessary propositions now in place, but prior to developing and introduc-

ing the density function for social dissonance, it is important that we visit the highly 

relevant work of Sherif and Sherif (1956) and of Zipf (1948). 

In their discussion on the formation of group norms, Sherif and Sherif (1956, 

pp. 170–171) state Axioms 4 and 5 in alternative form. While assuming relevance 

to the group, they sum up their view by observing that toleration of a social norm 

deviation decreases with the norm’s increasing importance. In effect, this presents 

an inverse relationship between tolerated behavior and dissonance sensation magni-

tude. Zipf (1948, loc. 10890), when providing samples of Congressional action, also 

determined that legal penalties are inversely related to the frequency of the crime. He 

more importantly ends with the observation that if high-magnitude social disturbances 

were frequent, they would eventually destroy the social system experiencing them. If 

magnitude of disturbance as used by Zipf is replaced with sensation magnitude, then 

combining the work of Festinger, the Sherifs’, and now Zipf, we may conclude that 

as sensation magnitude of any relevant socially deviant event increases, so should the 

penalty (pressure imposed) by the group against the instigator. As a result, the unit 

stimulus sensation magnitude value s should be represented by a density function such 

that s has an inverse relationship to frequency of occurrence, given effective penal-

ties (pressure) by the group are commensurate with the extent social deviation and 

relevance as perceived by group members. 

With this we will prove our next theorem. 

Theorem 2.1: Given Proposition 2.3, unit stimulus sensation magnitude random 

variable S with values s s, ∈ 0, d = 1] = R = s f s| ( ) > 0} where Rs is the 0 1  ( s {
range of S, and the associated density function fs, constrained by 

1. f s( ) ≥ f s1 ≥ 0  for 0 < s < s ≤ d ;S 0 S ( )  0 1 
2. f d = 0; and S ( )  
3. f s( )ds =1∫ 0 

d 
+ S 



f sS 1( )

f sS 1( )

s s d0 1< <
s s0 1

for all s0
f s dS 0 0⋅( ) =

f s s f sS S0 1 0+( ) = ( ) ⋅

f s s f sS S0 1 0⋅( ) = ( )+
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1 d 
is f sS ( ) = ⋅ ln


   based on the Cauchy equation meeting these criteria. 

d  s 
Proof: Given the half open unit stimulus sensation magnitude value s ∈(0, d = 1], 

it must be shown that only one of the four Cauchy family of equations satisfy 

the three stated criteria in the Theorem. The four Cauchy equations are: 

1. The Linear Cauchy functional equation: f s  s  ) = f s  + f s ( + ( ) ( )S 0 1 S 0 S 1 
2. The Exponential Cauchy functional equation: f s  s  S ( 0 + 1 ) = f s0 ⋅S ( )

fS s1( )  
) f s3. The Logarithmic Cauchy functional equation: f s s  ( ⋅ = ( )+S 0 1  S 0 

fS s1( )  
) f s  f s 4. The Power Cauchy functional equation: f s s  ( ⋅ = ( ) ⋅ ( )S 0 1  S 0 S 1 

Given the constraints, it may be concluded that f s  d )  is undefined underS ( 0 + 

1. Thelinear Cauchy equation since s0 + > d; and d 

2. Theexponetial Cauchy equation since s 0 + >d d.  
The remaining two possible Cauchy equations to be analyzed are:  

3. The logarithmic Cauchy equation: 

a. It is certainly true that f (s . s ≥ f ( ) ≥ f s  since s s. <) s ( )S 0 1  S 0 S 1  0 1

. <  < < , making it possible for f s s  = f s  + f s . It 
1 0 1  S ( )s0 s d S ( ⋅ ) ( )0 S 1 

is also true that f s d  f s  S ( ⋅ = 0 + f d  fS ( )s0 0 S ( )0 ) S ( ) ( ) = S + = f s0 . 

4. The power Cauchy equation: 

a. f s s  ( ⋅ = ⋅ ( )  is false for s d  since f s  ⋅ d 0) f s  f s ( ) 1 = ( ) =S 0 1  S 0 S 1 S 0 

for all s0 

d  s 
implying ∫ + fS  ⋅ d ds = 00  d  . 

The only Cauchy equation that possibly meets the three constraints is the logarithmic 

∫0 
d

Cauchy equation. It remains to find the function f sS ( ) such that 
+ f s ds( )  =1 .S 

This may be determined through simple integration. Since 

1 1 
a ln s ds a Ls ln s - s= . .  ( ) LL0+ ( ) L L0+ 

lim a LL1 ln 1 1L -  .  a LLs . lln s - LL) =1.= ( . .  ( ) - L ( )  s 
s-0 

1ln ( s )
Where lim L s ln s L = s ln ( )- .  ( )L 0  is found by noting − ⋅  s = . Using L’Hopital’s 

s-0 L 1 
s

Rule, 
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−
d 
ln ( )s −

1 

lim − ⋅s ln ( )s  = lim ds = lim 
1 
s 

s→0  
s→0 d 1 s→0 − 

2ds s s 
= lim s = 0 
s→0 

Therefore a, − =1, or equivalently a = −1. 

 1 1  1Substituting −1 for the variable a, fS ( )s = −  ⋅1 ln( )s = ln  and ∫ + ln  ds = 1.
  0  Hence, s s 

1 d  d  1 d 
ds =1, therefore f  s = ⋅ ln   , 0< ≤⋅ ∫ +

ln  S ( )   s d  .
d 0  s  d  s  

Let us now consider the development of the density function in Theorem 2.1 from 

another direction by assuming from previous arguments that R (relevance) is an inde-

pendent standard uniform random variable, and E (extant social deviation) is a uni-

form random variable such that 0 < < d . Next, assume that if a socially deviantE 
event is not relevant to the group or groups an individual identifies with at the time, 

then there is no increase in dissonance to the individual. Likewise, if a relevant event 

occurs that does not deviate from social norms of the group or groups the individual 

identifies with at the time, then no increase in dissonance will occur for the individual. 

Making use of Rohatgi (1976, p. 141), we can now prove our second theorem. 

Theorem 2.2: Given independent uniformly distributed random variables R and 

<  and 0 < < d , and domain element s R  > }E with 0 R < 1 E ∈ S = {s f s| ( ) 0 , 

the probability density function associated with the random variable S, repre-

1 d 
senting frequency of occurrence is f sS ( ) = ⋅ ln

 
. 

d  s  
Proof: Direct proof may be performed using Pham-Gia and Turkkan (2002) with 

S = ( )1 1  ⋅β ( ), and then converting for a nonstandard uniform density asβ , 1 1  
was done in Theorem 2.1, or the more straightforward approach by Rohatgi 

(1976, p. 141) may be used, 

d 1 1  1 d 
f s = ⋅ dx = ⋅ ln

 
, 0 s d.S ( ) ∫ s   < ≤

d x d  s  

1 d 
The density function f sS ( ) = ⋅ ln


 derived in Theorem 2.1 and in Theorem 2.2 

d  s  
supports the arguments presented by Sherif, Zipf, and Festinger. 

1 d 
The probability density function f sS ( ) = ⋅ ln


 and its associated CDF, 

d  s  
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will be used to begin model development by converting data from Milgram et al. 

(1969) so as to determine Asn,0 as defined in Equation 1.5 – the change in sensa-

tion magnitude s of a passerby as a function of number of people in the crowd of 

confederates looking up versus no crowd. We will then consider the results and their 

implications with regard to information theory and the necessary shift from uniform 

to exponential encoding in the presence of multiple simultaneous stimuli of the same 

type. The chapter ends by proposing a simple relationship between Fechner’s Law 

and the power law – demonstrating, in this application at least, that equivalence exists 

under exponential encoding. 

2.3 Psychophysical Solution to Milgram’s 1969 Drawing 
Power of Crowds Experiment 

Information theory seems to play a key role in how external stimuli are optimally 

encoded for transmission and processing to the brain when observed. The derived sen-

sation magnitude probability density function pertains to the bounded variable hav-

ing bounded unit stimulus sensation magnitude s ∈(0, d ] . Given experimental data 

shows probability of reaction increases with crowd size, we might infer that sensa-

tion magnitude increases as well. We must therefore consider what happens from an 

encoding standpoint not only for a single stimulus, but when we are simultaneously 

exposed to a potentially unbounded number p ∈ Z0
 of unit stimuli of the same type 

as well. Letting sP = ∆sp,0  (Equation 1.5), when p units of stimuli are introduced to 

the observer at the same time, then lim f s( )→∞  for some function f such that P 
p→∞ 

sP ∈ 0,∞) . For the crowd-gathering experiment, this would equate to an infinite size 

crowd of confederates looking up at the building. Obviously, there are only a finite 

number of confederates that will fit on a city block while still allowing passersby, but 

the concept and therefore the question remain. According to information theory, such 

an unbounded situation results in encoding the information using an exponential distri-

bution (Ben-Naim, 2017, pp. 105–106) to maximize Shannon’s Measure of Informa-

tion (of which entropy is a subset), not the two uniform distributions which led to the 

logarithmic sensation magnitude probability density function derived in Section 2.2 for 

the bounded case. In this section, we will derive probability of looking up as a function 

of crowd size for both cases, discuss the meaning, select one of the two cases presented 

along with the rationale for doing so, and move forward into modeling the queue which 

uses what is derived here for the foundation of a more comprehensive and interesting 

quantitative social model. 

2.3.1 Encoding: Uniform Distribution as the Basis 

Returning to Figure 2.1, after five trials and 232 observations, Milgram et al. (1969) 

found the probability of a passerby looking up to be 0.425 if only one confederate on 
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the sidewalk is looking up at the building. Why the average of the five trial-means was 

used for each crowd configuration instead of an unbiased estimator or stratified sample 

mean is not critical to this discussion or the original paper, but to maintain continuity 

with the original paper and Latane (1981), the average of the five-trial means for each 

of the six crowd-gathering conditions as originally evaluated will be used. To do other-

wise would imply a stratified random sampling approach which without understanding 

the original trial environment and experimental design would be hard to justify. 

Definition 2.3: Let the random variable S apply to a single unit observation of 

a given socially deviant event and its relevance to an individual for the social 

situation in a noiseless environment. Then sp is the sensation magnitude value 

when p units of the same stimulus intensity are present under uniform density 

encoding and an independent random variable for social noise N0 such that 

 + 
0 ≤ sP = ⋅S ln 

p N0 
 ≤ d , p ∈Z0 , and N0 ∈R 

 N0  
1where ≤ N < ∞. 

e −1 0 
Equation 2.1 

When n observations with the same number of units p are used each time under 

the same conditions (i.e., situation and stimuli), but with different individuals so 

as to allow a sample mean, then the term sP  is used and is defined as, 

1 n  p N  + 0,isP =  ⋅ ∑ Si ⋅ ln  constrained by sP ∈RS under unifform 
n i=1  N0,i  

encoding. 

For clarification, we assume the same stimulus intensity p is observed each time by 

each individual, but that each individual has varying values of N0 at the time of obser-

 p N+ 0 

N0 

 
vation. This results in ln being a random variable since it is a function of

 

 

the random variable N0. 

1 
= =Definition 2.4: Define the sample mean s s1  for N .0 

e -1 

Using Definition 2.3, to map the probability of a passerby looking up (given one con-

federate standing on the sidewalk looking up) into density space based on the probabil-

ity density function proven in Theorems 2.1 and 2.2, let’s begin by setting d = 1 from 

Theorem 2.2 and take the inverse of the cumulative density function F s( ) 0 425 ,= .S 1 
where probability of reaction value 0.425 is the mean probability for a passerby to 

look up (i.e., react) if one confederate is looking up. Then 
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TABLE 2.3 Empirical sP Values Using Theorem 2.1 and its Inverse CDF with d = 1. Empirical Data 

Derived from the Stanley Milgram Papers (MS 1406) 

Crowd Condition p = 1 p = 2 p = 3 p = 5 p = 10 p = 15 

Empirical Probability F sS P( )  0.425 0.584 0.634 0.786 0.761 0.857 

−1Empirical s = F F s P S  S P ( ) 0.145 0.241 0.278 0.422 0.394 0.515 

−1 −1 sknowing F  F s( ) = F F  ( )S  S 1  S S 1 

= s we have using d, , =1,1 

1
F − (0 425. ) = s = 0 145 so that F s  S 1 . S ( )1 

= 0 145 ⋅ − ln (0  145.  = 0 425.. 1 . 2 ) 

The remaining values for s p, > 1 , are calculated for crowd size p ∈{2 3 5 10 15}, , , ,P 
in a similar manner and provided in Table 2.3. 

Equation 2.1 is in the form of Equation 1.5, supported by Corollary 1.1. For an 

unknown reason, the calculated values for conditions p ∈{ , }5 10  are just at the edge of 

their respective 95 percent confidence intervals (Devore, 1987, p. 253) from the sample 

mean results (Figure 2.1). It is noted in the original typed results from Stanley Milgram 

Papers (MS 1406, Box 24, Folder 3) that some passersby were looking up both before 

and after they entered the defined observation area where data was collected. Addition-

ally, nowhere is it stated in the remaining papers what the environmental conditions were 

during each observation or what the time of day was (i.e., morning or evening rush hour, 

lunch, etc.). Whether any of these caused the wide variations observed in conditions 

p ∈{ , }5 10  is unknown, and after 50 years since the experiment was conducted, the 

one remaining author does not recall. As for those passersby who looked up, or stood and 

looked up, it is assumed for now that their impact was minimal in relation to the confed-

erate crowd size. The data as available just does not support a more analytic argument. 

 +p N  
To show s = ⋅S ln 

 N 
0 


is an adequate model for this social situation, wep   

0 
must determine both the value for social noise N0 and the sample mean unit stimu-

lus sensation magnitude value s  of Definition 2.4 based on the six trial conditions. 

 p N0+ 
N0 

Since S and No are independent of one another, so are S and ln . Hence,
 


 p N    p N   +   + 0 0E S ln⋅ = E S  E l     [ ]⋅  n  . Using the Strong Law of Large 

N N    0   0  
1

Numbers, with < N < ∞ , there exists a geometric mean N0 such that for Ni 
e −1 0 
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∑ ∑
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independent identically distributed random variables drawn from each instance of N0 

associated with each reacting and nonreacting individual member, 

n n  + p N0  1 1  
E l n  = lim  ⋅ + − ⋅  ln N ( ) ( )
  N0  n n 

ln p Ni 
n i

   i=1 i=1  

1 
 n 

i 1 
∏
= 

( +p Ni )
n 

 
 

 
 
 

− ln(N0 )lnlim 
 


 

= . 
n→∞ 

1 
1Since E N  ) = ⋅ 

n
N ≥

 n
N 

 n
( 0 n ∑ i 


∏ i 

i=1 i=1 

 p N+ 0= N0 , noting ln 
 is a convex function of 

 N0 

N 0 , and that by induction E ln ( p + N0 ) ≥ ln( p + N0 ) , then by 

appllying Jensons′ Inequality, 

  + + p N0    p N0E ln  ≥ ln 
 N   N  0  0 

 p  
= ln +1 

 N0 

( 
(

( 

    0 0 

1
E N  E N  

For p, a constant in the given social situation, assume for simplification 

p N  p N+ +E l n  ≅ ln  since N0  exists as the denominator of both. We 
 N   N  0  0 

can now move forward to approximate the sample mean of s, designated s  per Defi-

nition 2.4, where as per Equation 2.1, 

)  +p E Np 0
ln ln≥

)
+

 

 


 

= .
)0 0 

 p + N  1 sp ≅ ⋅s ln 0 , integer p ≥ 0 and < N0 < ∞. Equation 2.2  N  e −10 

E ln
p N

N n
ln p N

n
ln N

n
i

n

i

i

n+










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

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Finding the sample mean unit sensation magnitude s  requires the development of 

three theorems before an analysis of Milgram’s crowd data is possible. 

Theorem 2.3: Given N0 ), i j, ∈Z+ 
, and s d ,, a ∈(0,∞ < 

 i + N 0ln  j a  N  i a +  0  +  s ⋅ln   ⋅ = ⋅s ln   = si if and only
 a  

ln 
 j + N   a 0
  N 0 

if N0 = a. 
. 

Proof: The proof in both directions will be a direct proof. Addressing the back-

ward direction first, if N0 = a then clearly 

i a  +
ln  +   i a+j a  a   

s l⋅ n ⋅ = ⋅s ln = s .    i
 a   j a+   a ln 

 a  

The forward direction is a little more complicated. 

 i + N 0ln   j + a  N  + 0  i aIf s ⋅ln ⋅ = ⋅s ln    a  
ln 

 j + N0   a  
  N0  

 i + N0   i a+ ln ln    N0   a 
then = . 

 j + N0   j + alnln     a  N 0 

This is clearly true for N0 = a. To show this is the only case in which the relation is 

true, consider the derivatives of the left side as a function of N0  such that 

d  i + N0  −i d  j + N0 ln = and ln   d N  N0  N0 ⋅ +i N ) d N0  0 0 ( 0 N 
− j

= 
N0 ⋅( j + N0 ) 
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Since 

 i + N0   j + N0 lim ln 0 and lim ln 0, then 
N →∞  N  = 

N →∞  N  = 
0 0 0 0 

L Hospital s Rule may be used so that′ ′ , 
 i + N  d  i + N 0 0ln ln 
   N  d N N0 0 0lim = lim = 

N0 →∞ 

 j + N0 


 N0 →∞ d 


 j + N0 




ln ln 
 N  d N  N 0 0 0 

−i 

N ⋅ +  Ni0 ( 0 )
lim . Applying the rule again,
N

0 
→∞ − j 
N0 ⋅ +j N0( ) 

d
i ⋅ ( j + N )0

d N i0lim = . 
N

0 
→→∞ d j

j ⋅ (i + N )0
d N0 

Similarly, conditions for use of L’Hopital’s Rule apply as N0 → 0  since 

 i + N0   j + N0 lim ln  = ∞ and lim ln  = ∞. 
N0 →0  N0  N0 →0  N0  

d  i + N  −i0ln   ⋅ +  )d N  N  N (i N0 0 0 0So lim = lim 
N →0 d  j + N  N →0 − j

0 0 0 

d N 
ln  N  0 ( j N0 )N ⋅ +0 0 

i ⋅ +j N( 0 ) i j⋅ 
= lim = = 1. 

j i⋅ + N j i⋅N
0 
→0 ( 0 ) 

For uniqueness of N0, strictly increasing monotonicity must be shown to prove a one-to-

( , δ ∈( , ,one correspondence such that for any a ∈ 0,∞) 0 a) ∆∈(0,∞) ,and i ≠ j, 
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+
  
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 i   i  i a+ ln 1 ln 1s ln [a −δ ]
+  ⋅    [a + ∆]

+ 
   a  si   i 

1 < < = < < ,
 j   j + a  s j  j  j⋅s lnln 1   ln 1 a −δ ]

+   a   a + ∆]
+ 

 [   [  
forr i  > j. 

+ +
In other words, assigning the functions f g, :R → R , it must be shown that 

 i + N 0ln
f (N0 )  N0  

) = is strictly increasing for all N0 ∈(0,∞)
g (N  j + N 0 0ln 

 N0  

and i > j. 

To do this, first note that the functions f and g are both differentiable on the open 

interval (0,∞) , and that, 

 i + N0   j + N0 f (N0 ) = lim ln  = 0 and lim ln 
 = 0. 

N0 →∞  N0  N0 →∞  N0 

Also note that, 

d  j + N0  − jg ′ = ln = < 0 for all j > 0 and d N ⋅ + N0  N ( j N0 )0 0 

N ∈ ∞( ),0 0 .. 

Under these conditions, and using (Pinelis, 2002, Proposition 1.1 (1)), 

′ f ′  f if is increasing on(0,∞) , then > 0 on(0,∞). 
g ′  g  

In other words, if
 f ′ 




 
> 0 over the open interval, then the ratio of the two functions 

g 
f and g is strictly increasing over the open interval (0,∞). Since, 
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  
⋅ ⋅ −  

0 ( )d  f ′ i j  i( j)
= 

2 
> 0 for all i > j and N ∈ 0,∞ .

dN0  g ′  (i j  j⋅ + ⋅N )0 

′
f ′  f 

then is increasing on (0,∞) and   > 0. 
g′  g  

f (N )
Therefore 0 is strictly increasing as N increases on the 

g (N0 ) 0 

open interval (0,∞). 

Similarly, using (Pinelis, 2002, Proposition 1.1 (2)), 

′ f ′  f if is decreasing on (0,∞) , then < 0 on (0,∞) , 
g ′  g  

, ,it may be shown in the same manner that for any δ∈(0, ,a) ∆ ∈(0 ∞) and i < j , the 

ratio of the logarithms is strictly decreasing for all a∈(0, ∞)  such that 

 i   i  i a+ ln 1 ln 1s ⋅ ln
 [a −δ] +

  a  si  [a + ∆] + 
 i1 > > = > > ,

 j   j + a s j  j  js ⋅ lnln 1   ln 1 
 [a −δ] + 

 a  [a + ∆] + 
 

for i < j. 

 i + N 0ln   j + a  N  + 0  i aHence s ⋅ln   ⋅ = ⋅s ln   = si if and only if N0 = a.
 a  

ln 
 j + N   a 0 
  N 0 



Corollary2.3: For i, j ∈P where 
P ∈{elements representing simultaneous units of stimuli} 

and i  j, for the same social situation, if 
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s i s i1< i < if i > j or 1> i > if i < j, 
s j j s j j 

then for an expected value E[S], there exists a unique solution for N0 supporting 

Theorem 2.3. 

Proof: This is derived directly from the proof of Theorem 2.3. 

Before proceeding, the concept of dissonance versus relevance and extent social 

deviation needs further discussion. When a group member observes a socially 

deviant event, that member will associate some relevance to it and some extent 

social deviation based on the immediate impact the event has on the member and 

extent in which the member identifies with the social norms of the group at the 

time. Individuals have different perceptions based on experience, but in what will 

be assumed a relatively cohesive group, all group members should experience some 

similarity of interpretation of relevance and extent social deviation within bounds. 

Let us assume for some specific social event e and given social situation that each 

member perceives the event’s relevance R within the bounds 0 < a ≤ R ≤ a ≤ 11 e 2 
and extent social deviation 0 < c ≤ E ≤ c ≤ d . Uniformly distributed intervals1 e 2 
are assumed for a a ] [  1 2  0,d ] . Defining S = e ⋅ E[ , c c  ( e  as the random1 2 , , ]⊆ R e 
variable representing dissonance for the particular social event and situation, then 

Var S( )e ≤Var S( ) . 

Theorem 2.4: 

Let P = {observed units of simultaneous stimuli of the same type}, and 

n O( p )  be the number of observations for each condition p P . Assume all ∈ 
sk , k P,  satisfy Corollary 2.3, and that the same social situation with geo-∈ 
metric mean social noise N0  is known for the dissonance-causing event having 

random variable Se. Given Var S( ) ≤Var S( ) , then for some ε > 0,
e 

kif s ( ) = 1 
⋅ ∑  s 

then P N s N E S ≥ε
0 ( )0 − ( )e P k P∈  k + N0 ln  N 0 

≤ 
Var ( )S 

. 
max( )pε2 ⋅∑  n O( )k=1 p 

where P  is thecardinality of P. 

 k + N  
Proof: As per Equation 2.2, we have sk = ⋅s ln 0 where each sk  con-  N 0 

 k + N 0
sists of multiple n O( )  observations of sk = ⋅S ln , so thatk   N 0 
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sk 
∑n O( )k 

sk 
s N = = .( )0  k + N   k + N 0 0ln n ( )O ⋅ ln  k   N   N 0 0 

In general, for P ≥ 2 , 

1 ∑n O( ) sk 1 s 
s (N ) =  ⋅ ∑  k =  ⋅ ∑  k .0 

P P k P   k +k P∈  k + N0  ∈ N0  
n O ⋅ ln ln( )k     N   N 0 0 

Therefore, using the weak law of large numbers and Chebyshev’s 

Inequality (Pishro-Nik, 2014, pp. 378–379), and knowing that 

1 2 1  1 1 
2

2( ) ∫ ⋅ 
  ∫ ⋅ 

   = 0 111 0 049Var S = x ln dx − x ln dx . − 0..25 = . is
0  x  0  x  

finite, for a given social situation and some form of deviation from expected 

social norms, 

Var ( )S Var ( )Se
p s E S | ε ≤ .. (N0 ) − [ ]e ≥  ≤ 

ε2 ⋅ ∑  n O  ) ε2 ⋅ ∑  n O  )p∈P ( p p∈P ( p 

We now have the necessary tools to estimate the value N0
. 

Theorem 2.5: Define two sets 

P = {observed units of simultaneousstimuli of thesame type}and 

Pm = 


 

element pair (m, k) : 
sm 

sk 

satisfying Corollary 2 3. ,  k ≠ m, and m, k ∈P


 

. 

Assume for all k m∈ P , n O  n O  ) . For the same social situation, ( k ) ≅ ( m 
socially deviant event, based on Theorems 2.3 and 2.4, there exists a unique 

1
N0 , ≤ N < ∞  such that if0

e −1 

  m + N   
 sk ⋅ln 0 

1  N0  1 s  k∑ sm − 
Pm 

⋅ ∑ = 0 then s (N0 ) = ⋅ ∑ P k + N0    k + N (m k, )∈Pm∈P m k P  0∈ln Pm  0  0>0 
 

 N  
 

ln 
 N  



 

 

  

 


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is an unbiased estimator of s  as a function of N0. 

Proof: Using Theorem 2.4, as n Op ( )→∞ , P E S[ ]e − s (N0 ) ≥ε → 0∑ p P∈  

for any ε > 0  and finite Var S( ) . Given 

 +    m N   m + N0 0E S l⋅ n E S l⋅ n e    = [ ]e   N   N  0  0 

for some unique N , per the Strong Law of Large Numbers 

n Om( )∑ Si=1 e i, sm → E S[ ]  ( ) .as n O → ∞
n O   e m( ) =

 + Nm 0ln 
m 

 N 0 

Hence, based on Theorem 2.4, 

  m + N  
0 sk ⋅ ln 

1  N  0 ∑ sm − ⋅ ∑ 
→ 0 

 k + N m∈P  
Pm (m k, )∈P

m 
0 

P
m 

>0  
ln 

 N0  
 

as n O  )→∞, and P > Pm .( m 

Therefore, for some N0, such that 

 m+N s ⋅ln ( )k 
0 

 N ∑ sm − 1 ⋅ ∑ 0 

 = 0,
k+N0m∈P  

Pm (m k, )∈P ln 
N ( )

>0  m 
0 Pm 

⋅ ∑ ( 
s 

)
1 kthen s (N0 ) = P k+N

k P ln 0∈ 
N0 

is an unbiased estimator for the sample mean s (N0). 

Example application: Using Table 2.3 values for s k  from the crowd-gathering 

experiment, we solve for s (N0)  using Theorem 2.4 by varying N0  while apply-

ing Theorem 2.5. 

The first step is to define the sets P and P  such thatm 



 

 

  


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P = {1 2 3 5 10 15,, , , ,  }. 

P = {(1 2, ,) (1 3, ,) (1 5, ,) (1 1, 0 1 15) (, , )},1 

P
2 = {(2 1, ,) (2 3, ,) (2 5, ,) (2 1, 0) (, 2 15, )}, 

P
3 = {(3 1) (3 2, ,) (3 5) ( , 0) ( , )}, ,  , , 3 1  , 3 15 , 

s 
P5 = (5 1, , 5 2) (5 3, ,  5 15 } : (5 10)∉ P{ ) ( , ,  ) ( , ) , 5 since 

5 
s 10 

0 422. 
= > 1, 
0 3. 994 

s 
P10 = 10 1 10 2, ,  , , 10 3 10 15)} : (10 5  P{( ) ( ) ( , ,) ( , , )∉ 10 since 

10 
s 5 

394 
= 0.3 < 1, and 
0422 

P = 15 1 15 2  15 3 1, ,  , , 15 1015 {( , ,) ( , ,) ( ) ( 5 5) ( , )}. 

To apply Theorem 2.5, note from Figure 2.1 that n(O1) = 232, n(O2) = 212, 

n(O3) = 211, n(O5) = 222, n(O10) = 268, and n(O15) = 279 are all approxi-

mately equal. 

1
For some real number value £ N <¥  , with 1 being a good starting point,0 

e-1 
iterate the value for N0  into the summation equation until the sum equals as close to 

zero as you want to go (using a spreadsheet makes this easier). As per Theorem 2.5, 

to find N0  solve for 

  
 

1  m + N  s 0 k ∑ 
sm − ⋅ln = 0. 


⋅ ∑Pmm∈P  N0 (m k, )∈Pm ln 

 k + N0  


>0  
 N Pm  0  

Summing over all values of m ∈ P and Pm such that |Pm| > 0 for the crowd-gathering 

experiment, 



 

 


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 


1 1 N . 0 278 .+  0 241 . 0 4220 0 145 − ln + +. ⋅ 
 

⋅ 
5 N  2 + N   3 + N   5 + N 0 0 0 0 ln ln ln 
  N   N   N  0 0 0 

 


0 394. 0 51. 15 + + 10 + N  15 + N 0 0ln ln 
 N0   N0  

 

1  2 + N 0+ 0 241− ⋅ ln. 
5  N0  

 
 

. 0 3940 145. 0 278 0 422. . . + + +
 1+ N   3 + N   5 + N  10 + N 0 0 0 0 ln ln ln ln 
  N   N0   N   N  0 0 0 

 


0..515 +
15 + N0   

ln 
 N0  


 

1  3 + N 0+ 0 278 − ⋅ ln. 
5  N0  

 
 

. 0 3940 145. 0 241 0 422. .⋅ + + +
 1+ N   2 + N   5 + N  10 + N 0 0 0 0ln ln ln ln 

 N   N   N   N  0 0 0 0 

 


0.5515 + 15 + N 0ln 
 N0  


 
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1  5 + N 0+ 0 422 − ⋅.  4  N 0 

  
  

. 0 5150 145. 0 241 0 278. . ⋅ + + + 1+ N   2 + N   3 + N  15 + N  0 0 0 0 ln ln ln ln         N0   N0   N0   N0    

1 10 + N 0+ 0 394 − ⋅. ln 4  N 0 

  
  

. 0 5150 145. 0 241 0 278. . ⋅ + + + 1+ N   2 + N   3 + N  15 + N  0 0 0 0 ln ln ln ln          N   N0   N   N   0 0 0  

1 15 + N 0+ 0 515 − ⋅ ln. 
5  N0  

  
 

0 145 0 241 0 278 . 0.394. . . 0 422 3 ⋅ + + + + .
 1+ N   2 + N   3 + N   5 + N  10 + N  0 0 0 0 0 ln ln ln ln ln  
  N   N0   N   N   N   0 0 0 0  

Summing all six calculations using the value N0 .  results in= 0 6299 
−0 0109 + 0 0113 − 0 0070 + 0 0714. − 0 0583 − .. . . . 0 0065 = 0 0. .  

To find s (N0 )= s , using Theorem 2.5, 

 
 

0 145. 0 241. 0 278 0 422. . s (0 6299 =  + + +. )  1+ N   2 + N   3 + N   5 + N 0 0 0 0 ln ln ln ln         N   N   N   N  0 0 0 0 

 


0 394 0 515.. 1+ + ⋅ = 0 162..10 + N  15 + N  60 0ln ln     N   N0  0  
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This ends the example application of Corollary 2.3 and Theorems 2.3, 2.4, and 2.5. 

From Equation 2.2, using s = 0 162  and N0 .. = 0 63, Figure 2.6 displays the 95 

percent confidence intervals about the empirical data, Latane’s (1981) psychosocial 

power law as the dashed line, and the theoretical values in probability space using 

F s( ) with d = 1 as the solid line.S p 
Calculated values for sp  and FS s( )  along with the associated 95 percent confi-p 

dence intervals are provided in Table 2.4. 

 p + . 
Based on the derived example values, using s = 0 162 ⋅ ln 0 63

 and trans-.p  
 0 63 . 

forming it to probability space result in a mean square error value of 0.00126 for 

FIGURE 2.6 Depicting Equation 2.2 Where s . N0 = 0 63 , and d = 1, Latane’s Function = 0 162 , . 
Compared to Milgram’s Empirical Mean Probability of Looking Up Values by Crowd 
Size within 95 Percent Confidence Intervals. 

TABLE 2.4 Confidence Intervals Using Milgram’s Empirical Data Compared to Calculated Results 

Crowd Condition p = 1 p = 2 p = 3 p = 5 p = 10 p = 15 

95% Confidence Interval 

Empirical Probability (Stanley 

Milgram Papers, MS 1406) 

 p + N 0sp = s ⋅ ln 
  = 
N0 

(.34, .51) 

0.425 

0.154 

(.55, .62) 

0.584 

0.231 

(.58, .69) 

0.634 

0.283 

(.71, .87) 

0.786 

0.354 

(.64, .88) 

0.761 

0.457 

(.81, .91) 

0.857 

0.519 

For d  =1, F s =S p( ) 0.442 0.570 0.640 0.722 0.815 0.859 
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the six conditions. With that, and all values falling within the 95 percent confidence 

bounds, the operational efficacy of Theorem 2.5, using independent empirical data for 

this social situation, has been shown to be adequate under uniform encoding. 

2.3.2 Encoding: Exponential Distribution 

As noted at the beginning of Section 2.2, the problem with Equation 2.1 is that 

as p gets larger and tends toward infinity (i.e., p → ∞), so does sp such that for 

some N ≥ 1 0 
e −1 

p N+ 
lim sP = ⋅S ln 0 →∞. 
p→∞ N0 

Clearly, this is not a bounded case leading to a logarithmic solution via the Cauchy 

Equations. Neither is this supported under optimal uniform density encoding based 

on information theory. If all assumptions and proposed theory to this point are cor-

rect, it would seem that an alternate functional approach is needed. Based on the four 

Cauchy functional equations and their associated criteria, the alternative must involve 

the exponential distribution with sensation magnitude esp. Alternatively, to maximize 

Shannon’s Measure of Information, and to maintain simplicity, we must have (Ben-

Naim, 2017, pp. 105–106) 

g es d es 1and es ⋅ g es d  es 1.∫0 
∞ ( p ) ( p ) = ∫0 

∞ 
p ( p ) ( p ) = 

Probability of reaction is then represented by the general exponential cumulative dis-

tribution function (CDF): 

∫
es

p

g esp d esp = P ES esp =GES esp0 ( ) ( ) ( ≤ ) ( ) 
p N

0
+ 

es ln− ⋅  
N −es

p= − e = −1 e . Equation 2.31 0 

TABLE 2.5 Empirical esp Values Derived Using the Inverse Exponential Distribution; Empirical Data 

Derived from the Stanley Milgram Papers (MS 1406) 

Crowd Condition p = 1 p = 2 p = 3 p = 5 p = 10 p = 15 

Empirical Probability (Ap) 0.425 0.584 0.634 0.786 0.761 0.857 

es ln= −   −1 A p  p  
0.553 0.877 1.005 1.542 1.431 1.945 
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Using the same approach as was used in Section 2.3.1, we can derive esp , the sample 

mean of esp, by manipulating Equation 2.3 to obtain the inverse exponential distribution 

−1    es = G G (es ) = −ln 1− G (es ) .p ES ES p ES p   

Using the esp  values from Table 2.5 and designating es as the unit stimulus sensation 

1
magnitude under exponential encoding when N = , we should find that0 

e −1 

1+ N  
es1 = es ⋅ 0  0 553. ,

 N0  

 2 + N  
es = es ⋅ ln 0  0 877,. and so on.2  N0  

As in Section 2.3.1, based on Equation 2.2, this leads to showing that 

 p + N 0esp = es ⋅ ln for p ∈P as defined in Theorem 2 5. .  
 N0  

To calculate es , Theorem 2.5 is again used, but instead of sp  under uniform encod-

ing, the exponentially based esp  values from Table 2.5 are used. For observed stimuli 

condition set P = {1 2 3 5 10 15,, , , ,  } , we must solve for N0 such that 

  
 

1  m + N  es 0 k ∑ es − ⋅ln ∑ = 0m Pmm∈P  
 N0  ⋅

(m k, Pm 
 k + N0  )∈ ln 

>0  N Pm  0  

This results in N0 = 0 6095 and es (0.6095 = .588. Using. = es ) 
p + 0 6095  . 

es = 0 588 ⋅ ln.p  
 0 6095 . 

and transforming it into probability space results in a mean square error value of 

0.0011 for the six conditions when compared to empirical data from Milgram’s 

crowd-gathering experiment. Table 2.6 demonstrates that both the cumulative distri-

bution functions F s( ) and G esp )  are exceptionally close to one another andS p ES ( 
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TABLE 2.6 Summary Table of Findings and Comparison with Empirical Data. Empirical Data Derived 

from the Stanley Milgram Papers (MS 1406) 

Crowd Condition p = 1 p = 2 p = 3 p = 5 p = 10 p = 15 

95% Confidence Interval 

Empirical Probability 

Theoretical Uniform 

F sS p( )  

(.34, .51) 

0.425 

0.443 

(.55, .62) 

0.584 

0.571 

(.58, .69) 

0.634 

0.641 

(.71, .87) 

0.786 

0.722 

(.64, .88) 

0.761 

0.815 

(.81, .91) 

0.857 

0.860 

Theoretical Exponent 

G (esES p ) 
es = −ln 1− G es 

P  ES p( ) 

0.435 

0.571 

0.575 

0.856 

0.649 

1.046 

0.729 

1.306 

0.814 

1.681 

0.852 

1.910 

to the empirical results. Using difference equations, proving one or the other as the 

correct CDF with this data is not possible based on the large credibility intervals. The 

importance of using GES (esp )  is apparent though as sp , es → ∞. p 
Since F s( ) is bounded, there exists some finite value sp, say sp = U, whichS p 

for any given situation and number of stimuli present, lims → F s  = 1 0. . In 
p U S ( )p 

the case of the unbounded esp, limes
p →∞GES (esp ) = 1 0. . The implication under 

F s( ) is that after reaching a reaction probability of 1, which is difficult to compre-S p 
hend in some situations, a decreasing probability of reaction with increasing stimulus 

results, eventually becoming negative. With a choice before us, one that is shown to 

be so close as to be unverifiable without a significant amount of data, the exponential 

encoding approach is chosen. This allows flexibility by not requiring a bounded sensa-

tion magnitude, but, more importantly, it is much easier to work with mathematically, 

and it leads to an equivalence relation with the power law. It is my opinion, based on 

data, that both play a role, but that is for others who are more capable to confirm or jus-

tifiably refute. It may be from an evolutionary standpoint that bounded sensation mag-

nitude served its purpose well with limited stimuli, but as human group sizes increased, 

an unbounded but equally efficient information processing approach was needed. 

As has already been assumed, let us now clarify in more detail the need for a noise 

floor. A noise floor is defined here as the lowest possible social noise intensity N0. 

Given Equation 2.2, a value of N0 = 0 is not defined, so there must be some value of 

N0 > 0 at which the noise intensity cannot go below. Theoretically, if there is no social 

noise or inhibitions when observing a unit-stimuli, we should sense that 

1+ Ne 1+ Nees ⋅ ln = es,or that ln = 1
Ne Ne 

1+ N0 1
ln =1implies N  = 0

N0 e −1 
1 0  582+ . 

es ln 
es .= 0 582 .. so that1− e 

− ⋅  
0 582 =1− e− 
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If we can assume s 1  and es1  are bounded above by s  and es , respectively, then 

N = 1 0 582  should be the absolute lower bound for noise intensity. Such a= .e
e −1 

noise level would indicate certainty (possibly complete understanding) of the socially 

deviant behavior with no inhibitions for a member’s overt reaction. Now, the next 

question to answer is whether noise values change under encoding translation. This 

leads to an interesting relation that will be useful when comparing results between 

exponential encoding to uniform encoding. 

From 

 p N+   n N+ 0   p N 
∆sp n, = ⋅s ln − ⋅s ln  = ⋅s l   , n p0 n + 0 ≤ 

N N +n N 0   0   0  

we observe that the constant unit stimuli sensation magnitude s for the situation and 

person may be divided out or multiplied by another constant, but that the values within 

the natural logarithmic functions must remain for the relationship with the data to be 

true. Given this observation, we may now reconsider our use of d = 1 in Theorem 2.2. 

Assume that relevance r is scaled as before so that r ∈ (0 1, ). If we make the big 

assumption – which may be correct and is certainly more interesting (and easier) – that 

R E S E⋅ = = S , then using Theorem 2.2 and previous results for s  and es , and for 

e R ,∈ E 

∈( es 

 = ( 0 5882. 


 = ( , .  = 3 6354.e 0, 0, 0 3 6354], so that d . 

s 0 1618. 

If we want to minimize the overall error between the logarithmic and exponential den-

sity functions, then e ∈ (0 3 79] . As a final and very interesting alternative, instead, .  
of e ∈ ( , ] 0 3  76174] so that d = 3.76174,0 1  as we initially started with, we use e ∈ ( , .  
then, 

1   1  1− ln 0 61803,or the inverse of⋅     = .
3 76174. 3 76174.  
thee golden ratio. 

Given how many times the inverse of the golden ratio comes up here and in other 

psychological experiments (Gross and Miller, 1997; Benjafield and Adams-Weber, 

1976), the last is worth further analytic and investigative effort for the future. For now, 

to minimize average error between the two densities, the interval used for e will be 

(0 3 79, .  ] . Using this interval, for any sensation magnitude value sp  under logarith-

mic encoding, the density and cumulative density functions are 
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1 3 79 sp   sp  .f s( ) = ⋅ ln and F s( ) = ⋅ 1− ln  . Equation 2.4S p S p  3 79 sp .   3 79 . 3 79 . 

Until more data is available, or a relationship with any existing proven theory can be 

made, Equation 2.4 should be considered an approximation when translating from uni-

form to exponential encoding and vice versa. In the end, the most accurate transforma-

tion from es  to s  is what is of interest since this provides access when working with 

exponential encoding to the sample mean unit stimulus sensation magnitude s S (rel-= e 
evance random variable multiplied by expected social extent deviation random variable 

within the given situation and event) and thereby allows a standard approach for compar-

ing stimuli of various types in various social situations for people of various cultures. We 

may also use values obtained for es  to compare with Stevens-measured exponent power 

law values derived from physical stimuli, such as the smell of heptane with a measured 

exponent of 0.6 (Stevens, 1975, p. 15). In this case, the exponents for heptane (0.6) and 

the crowd-gathering experiment (0.589) are similar in their sensation magnitude. 

2.4 Fechner’s Law and the Power Law 

It has already been shown that Latane’s (1981) psychosocial power law is not a CDF 

as was needed. Whether it is appropriate as a density function for the crowd-gathering 

data is now considered. Stevens (1975, pp. 13–14) – using his nomenclature – indicates 

that by taking the natural logarithm of 

ψ = ⋅k φβ , weobtain 

ln(ψ) = ln(k · ϕ β ) = ln(k) + β · ln(ϕ) for stimulus magnitude ϕ. 

0Setting ln (ψ p ) = esp , k = 1, β = es , and ln(ϕ) = ln p + N 
, the equivalent power

N0 
law function for the crowd-gathering experiment in power space may be stated as 

 p + N  es 
ψp = 0 . Equation 2.5 

 N0  

Through further equivalence modification of Equation 2.5, we obtain 

es es
 p + N   1  es0ψp = = ⋅( p + N0 ) . 
 N0   N0 
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This form of Stevens power law is of the same form as derived by Zwislocki (1965, 

Eq. 204, p. 84). The cumulative probability distribution function G ln ψ  mayES  ( )  
be used with Stevens power law by simply noting that 

es 
−ln(ψ ) −es  N  1p p 0G ln ψ = − e = − e 1ES  ( p ) 1 1 = −   = −1   p + N  ψ0 p 

Equation 2.6 

It is important to recognize that the inverse relation predicted by Sherif and Sherif 

(1956, pp. 170–171), Zipf (1948, Loc 10890), and Festinger (1957, p. 18) is again 

present. As stimulus intensity increases, dissonance sensation magnitude increases, 

and the pressure to reduce the dissonance (a.k.a. probability of reaction) increases. As 

a final check, using the crowd-gathering result with two confederates who are looking 

up, comparing the power law density function of Equation 2.5 with Equation 2.3, as 

expected we get 

0 589.
 2 0  6095+ . ψ 2 == 



 

2 354. , so 
0 6095. 

0 589. 
.−ln(2 354)  0 6095. 

GES ln (2 354  = −1 e 1   = .. ) = −  0 575.   2 0  6095 + . 

As should be expected, this is the same result derived using es  based on exponential 

encoding and Fechner’s Law as shown in Table 2.6. As used here, and as argued inde-

pendently by Shepard (1981, pp. 35–48), it would seem that the power law is merely 

a transform of Fechner’s Law under exponential encoding in probability space for 

the applications as presented, which could explain Stevens’ (1975, p. 13) observation 

that the exponent β seems to be a function of the type of stimulus. Finally, we may 

conclude the power law-like approach that Latane (1981) used was for conceptual 

purposes only, and for that along with his other significant achievements he is greatly 

appreciated and respected by this author. It is hoped this work builds on and adds 

something to his Social Impact Theory, as it is certainly a result of it. 

2.5 Summary 

This finishes the development of the basic mathematical structure. Having built on the 

work of Bibb Latane, the next step is a quantitative analysis of simple social systems 

through further development which builds on this basic structure. For this develop-

ment to occur, we explore data from two experiments, both involving the western first 

come first-served queue. The first experiment for analysis was performed by Schmitt 

et al. (1992). This experiment provides the numerical key that unlocks data from the 
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second and more socially complex 1978 field experiment performed by Stanley Mil-

gram’s graduate students and documented in Milgram et al. (1986). 
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3 
REVISITING MILGRAM’S 1978 “RESPONSE 
TO INTRUSION INTO WAITING LINES” 
EXPERIMENT 

This analysis shows that cost alone cannot account for all our results; there is an underlying 

structure to the situation, linked to the linear spatial configuration of the queue. 

Milgram et al. (1986, p. 688), with permission 

from the American Psychological Association 

Dr. Stanley Milgram was prodigious at creating or facilitating the design and implemen-

tation of what are nothing less than brilliantly devised experiments. One of those experi-

ments, conducted by his graduate students in the spring of 1978 and published shortly 

after his death (Milgram et al., 1986), relates to how queue members in typical New York 

locations react to a simultaneous intrusion by one or two student confederate members. 

Experimental trials were performed 20 or more times for each of six distinct conditions 

(zero, one, or two non-reacting buffers, and one or two intruders) using 17 locations in 

New York City where queues regularly formed. Data contained in Milgram et al. (1986) 

along with summary data and three of the original 1978 graduate student reports from 

the Stanley Milgram Papers (MS 1406) allow further analysis and model development 

to continue from the previous chapter. Results of this effort, using exponential encod-

ing, lead to a significantly expanded and coherent interpretation of social interaction and 

structure within the linear spatial configuration of the queue as a social system. 

3.1 Establishing an Analytic Model of Intragroup Social Impact 

Six years after the article by Milgram et al. (1986) is published, Schmitt et al. (1992) 

publish an equally important paper further exploring the queue as a social system. The 

importance of this paper is that it provides a critical complement to the 1986 paper by 

Stanley Milgram et al. The paper by Schmitt et al. involves four studies − three were 
attitudinal questionnaires, and the fourth was a field experiment conducted at New 

York’s Grand Central Station. It is the fourth study – the field experiment – that will 

be made use of. 

DOI: 10.4324/9781003325161-4 

https://doi.org/10.4324/9781003325161-4


 

    

 

 

 

 

 

 

 

  

  

  

  

 

 

66 Revisiting Milgram’s 1978 Experiment 

In the fourth study, Schmitt et al. (1992) collect data consisting of 120 observations 

(four conditions with 30 observations each). Schmitt and his team use three control 

factors in this field experiment to focus specifically on the individual queue member 

who is intruded in front of by a student confederate. The control factors, designed to 

minimize influence from queue members near the member of interest, are: 

1. All observations are from a single social situation – Grand Central railroad station 

ticket counter, New York City. 

2. There is always a confederate in queue ahead of the intrusion point to eliminate 

reaction from members ahead of the intruder. 

3. In the high social obligation case, two people in queue behind the member of 

interest are confederates who join the queue right after the member of interest 

joins. 

In addition to the three control factors, Schmitt et al. (1992) consider four intrusion 

scenarios (i.e., conditions). The four scenarios in their field experiment are: 

1. A confederate intruding in front of the last queue member in queue (illegitimate/ 

low social obligation). 

2. A confederate intruding in front of the third from the last member in queue (ille-

gitimate/high social obligation). 

3. A confederate joining the queue in front of the last queue member in queue, while 

acting as a friend to the student confederate who is in line ahead of the queue 

member (legitimate/low social obligation). 

4. A confederate joining the queue in front of the third-to-last queue member in 

queue, while acting as a friend to the student confederate who is in line ahead of 

the queue member (legitimate/high social obligation). 

Reaction by the queue member of interest, directed at the intruder, falls into one of 

three reaction categories directed at the intruder. The reaction categories, used also 

by Milgram et al. (1986), are indirect objection (i.e., body language or indirect com-

ments), direct verbal objection, or physical action used to gain the attention of and 

eject the intruder. Probability of reaction for each condition is shown in Table 3.1. 

Findings from this and the Milgram intrusion data to be presented is that the greater 

the sensation magnitude representing the group member of interest’s dissonance, the 

TABLE 3.1 Probability of a Reaction, Given the Experimental Condition (Schmitt et al., 1992, p. 813 

Table 1) with Permission from the American Psychological Association 

Experimental Condition P(Reaction) = 

Illegitimate Intruder 

Low Social Obligation 0.366 

High Social Obligation 0.600 

Legitimate Intruder (Acts as Friend) 

Low Social Obligation 0.100 

High Social Obligation 0.133 
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greater the probability of direct verbal and physical reaction by that group member.  

This is an area of study that could go further in clarifying the severity of an individual’s  

response as a function of increased dissonance. To continue, beginning with the two  

illegitimate experimental conditions, the probability of the queue member of interest  

reacting when no one is behind him or her is 0.366, compared to 0.6 when there are two  

people behind the member of interest. We have observed that Fechner’s law provides  

an excellent representation of how, in the crowd-gathering experiment, the number of  

confederates looking up influences the reaction probability of an observer. It has also  

been argued (Dehaene et al., 2003,  2008) that the human brain perceives nonsymbolic  

numbers on a logarithmic scale, so it may be conjectured that some variation to the  

generalization of Fechner’s Law given in Equation 2.2 will apply to the number of  

queue members behind the member of interest. To use Fechner’s Law under exponen-

tial encoding as defined in Equation 2.3, and to account for queue members behind the  

member of interest, an additional concept from cognitive dissonance theory (Festinger,  

1957, pp. 183–185) must now be introduced – that of group attraction.  

The data showed, again, that the greater the [group member] attraction to the 

group, the greater was the degree to which the members tried to influence one 

another. In other words, the greater the magnitude of dissonance, the stronger 

the attempt to reduce this dissonance by changing the opinion of the person who 

disagreed. 

 Leon Festinger (1957, p. 185, with permission 

from Stanford University Press) 

 If group attraction is based on strength of belief in the group’s social norms, and  

the person who disagreed now becomes the intruder who is now part of the group,  

then any uncertainty regarding group attraction must become part of the social queue  

equation. Letting group attraction be synonymous with group cohesiveness, the more  

cohesive the group, the greater the pressure on its members to react to dissonant-

causing deviations of group social norms. In ad hoc groups formed for a specific  

purpose, members not familiar with one another may be less certain regarding intra-

group attraction. A group-based noise random variable NUA is used to account for  

this uncertainty of attraction. Let p m, ∈Z0
 where m  represents the intensity, or 

number of people behind the queue member of interest, and p  the number of intrud-

ers. Building on Equation 2.3, there exists a function x(m ) in the format of Equation  

1.4 such that  

( ) ( )
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Now, instead of number of confederates looking up as in the crowd-gathering experi-

ment, we are interested in number of confederates intruding and the number of members 

behind the queue member of interest who the intruder cuts in front of. With that distinc-

tion, let us try an approach similar to what was done in Chapter 2 using Table 3.1 data. 

For illegitimate intrusions, the geometric mean for uncertainty of attraction NUA 
may be derived using the low and high social obligation cases in Table 3.1 by invert-

ing Equation 3.1, the CDF G (es ), such thatES P,M 

IllegitimateHigh social obligation −ln( .− ) 0 916.1 6  
= = = 

Illegitimate Low social obliga ln 1− 366)ation − .( .  0 456 

1+ N   2 + N 0 UAes ⋅ln ln e ⋅ 
 ⋅  N0  NUA   2 + NUA 2 009 = = ln e ⋅. . 

1+ N0   0 + NUA   NUA  
es ⋅ln  ⋅ln e ⋅ 

 N0   NUA  

Solving for NUA results in NUA = 1.147. The sensation magnitude sample mean esp
for this given social situation and set of social norms may be obtained using the ille-

gitimate low social obligation condition where, 

illegitimate (il) case sensation magnitude es = -ln (1- 0.366)il,1, 0 

= 0.456. 

For the two illegitimate (il) cases, using Equation 3.1, we now have, 

−0 456. ⋅ln( )eGES (esil, ,1 0 ) 1 e = . , and= −  0 366 

+ .  2 1 147
− . ln e ⋅0 456⋅   . 

il = −   1 147  = . .GES (es , ,1 2 ) 1 e 0 6  

which are the original values. Since the illegitimate and legitimate cases are for the 

same social situation and social norms, we will assume for now until more data comes 

along that group noise caused by uncertainty of attraction in the legitimate case is the 

same. Now, using the value NUA = 1.147, we can determine an average for legitimate 

high and low social obligation sensation magnitude using Table 3.1 data to obtain a 

more accurate sample mean for legitimate (le) intrusion sensation magnitude esle, ,1 0, 

(le) low social obligation esle, ,1 0 = −ln(1− 0 1 = .. )  0 105. 

Converting (le)highto(le)low social obligation; 
-ln( - 0 133)1 . 

= = .0 071.esle, ,1 0  2 + .  1 147ln e ⋅
 1 147. 
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For the legitimate case, we then have the average, 

. + .0 105 0 071(le) low social obligation esle 1 0 = = ., ,  0 088.
2 

Therefore, for the two legitimate cases 

-0 088. .ln( )eGES (esle, ,1 0 ) 1 e= -  
. , whichis within the95%credibility intervald= 0 084 

(.036, .258). 

 

 

+ .2 1 147- ⋅ln e. 



.0 088 
.1 147GES (esle, ,1 2 ) = -1 e 

= . , 95% credibility interval0 162 which is within the 
(.054, .298). 

Given only a single intruder, there is currently insufficient information to calculate 

unit stimulus sensation magnitude es  and social noise N0 for either the illegitimate or 

legitimate case. 

With Equation 3.1, representing amplification of social pressure on the queue 

member of interest to react as a function of members in queue behind him or her, and 

with esil, ,1 0 and NUA derived using Grand Central railroad station data, we are ready 

to analyze the more complex Milgram et al. (1986) intrusion data, consisting of 17 

locational social situations, the use of one or two intruders, various numbers of queue 

members behind the member of interest, and having from zero to two non-reacting 

confederate buffers between the intruder and queue member of interest. 

3.2 Milgram’s “Response to Intrusion Into Waiting Lines”: Reaction 
Summary and Associated Social Situations 

Before analyzing Milgram’s intrusion experiment, its structure and the social situ-

ations from which the data was taken must be clearly understood. Three graduate 

student reports graded by Dr. Milgram in 1978 were found at Stanley Milgram Papers 

(MS 1406), Manuscripts and Archives, Yale University Library, along with supple-

mentary raw summary data. The student reports and supplementary data clarify how 

the experiment was conducted and what was learned. In a few instances, data was 

found that is otherwise not available in the published article by Milgram et al. (1986). 

Sadly, few members of the larger experiment team are still alive, and those that are do 

not have the 126 coding data observation sheets (see example in Appendix A) which 

would allow for a more straightforward analysis of the overall set of experiments. 

These data sheets had information on every trial, including location of each observa-

tion, date, time, how each queue member reacted as a function of queue position, and 

how many queue members were in each observed queue. As a result, to address the 

latter, queueing theory is applied (or abused for the pure at heart) in Appendix A to 

approximate the actual mean length of the Condition 4 queue. The Condition 4 queue, 



 

 

 

 

  

 

    

  

TABLE 3.2 Original 1978 Raw Summary Reaction Data by Condition and Position. Note that Milgram 

et al. (1986) Data Takes Precedence When Any Differences are Present 
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in 17 of its 23 trials, clearly extends beyond what is available in the raw summary 

data, which ends at the fifth queue member position behind the point of intrusion. 

The law of total probability and the chain rule from Bayesian statistics are heavily 

employed to approximate group statistics that cannot otherwise be evaluated directly 

due to the absence of coding data. All of this is to say that, as we wade into the math, 

the approach requires some assumptions which are implemented in a transparent and 

methodical manner. It is up to the reader to evaluate their merit in trying to do the best 

with what data exists. To allay any fears, this chapter will not finish with the statement, 

“more data is needed.” It will end with a complete model prototype allowing quantita-

tive evaluation against additional social experiments with a queue-like structure for 

either disproving or further validating the model as derived. This hopefully begins to 

address what Thomas Pettigrew was looking for in his reassessment commentary of 

social psychological theory (Pettigrew, 1986, pp. 169–195). 

The upcoming calculations focus predominantly on data contained in both Milgram 

et al. (1986, p. 685, Table 3.2) and the Stanley Milgram Papers (MS 1406), Manu-

scripts and Archives, Yale University Library, student experiment reports of Raymond 
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Toledo, David Nemiroff, and Christina Taylor who were graduate students under Stan-

ley Milgram in 1978. Also used from the Stanley Milgram Papers (MS 1406) are four 

pages of rough notes written in preparation for the line intrusion experiment by then 

graduate student Joyce Wackenhut, raw summary queue member line position reaction 

data for each of the six conditions (individual trial data not available), and summary 

data regarding queue locations for each of the six conditions. After presenting pertinent 

summary data from the experiment as a function of experiment condition, the order 

of analysis taken for each of the six conditions is performed to support derivation 

of necessary values and additional analytic tools. Analysis begins with Condition 1, 

composed of 22 trials from a total of eight different queue locations. In Condition 1, a 

single confederate intruder is observed entering a line at a position (termed queue posi-

tion zero) having typically five or less queue members after the intrusion point. Each 

queue member position after the intrusion point is labeled as position (+1), (+2), (+3), 
(+4), and (+5). Queue members forward of the intrusion point are labeled as positions 

(−1), (−2), (−3), and (−4) and are not analyzed given the additional variables which 

cannot be accounted for such as did they even notice. Both Milgram et al. (1986) and 

Schmitt et al. (1992) provide more detailed discussion on the latter but neither reach a 

definitive conclusion. 

Table 3.2 is consolidated from the original 1978 raw summary data obtained 

from Stanley Milgram Papers (MS 1406). Any reaction by the queue member of 

interest directed at the intruder is counted as a reaction. For example, “Condition 1: 

( )1 Q(1+ −  0 *)” indicates number of reactions from the Condition 1 set of obser-

vations having a single intruder “1,” with no members “0” between the intruder 

and the member of interest who is therefore at the (+1) position, and with various 

numbers “*” of queue members behind the member of interest. In this case, of the 

22 observations, 8 of the 22 queue members at the (+1) position react directly to the 

intruder. As another example, Condition 4:( )3 Q(+ −  2 2 *) indicates probability of 

reaction resulting from two simultaneous intruders “2,” by queue member position 

(+3) (i.e., two intermediate queue members fill the (+1) and (+2) positions in front 

of the position of interest), with various numbers “*” of queue members behind the 

position of interest. Of the 22 trials where two intruders simultaneously intrude at 

position (0), the (+3) position queue members with two queue members between 

themselves and the two intruders are observed to react twice out of 22 observations. 

Looking at Table 3.2 for Condition 4: (+1), it is readily apparent there are more 

reactions in this condition than for Condition 1: (+1). As importantly, the severity 

of reactions in Condition 1: (+1) is mostly verbal disapproval or verbal ejection. 

In Condition 4: (+1), the severity of member reaction moves up predominantly to 

verbal and physical ejection of the intruders. This could be due to the number of 

queue members behind the queue member of interest, it could be due to the number 

of intruders, or it could be due to the social situation (i.e., importance or limited 

availability of the queue resource commodity). As we will discover shortly, it is due 

to all three. Basically, as sensation magnitude increases, so does member aggres-

sion. This supports Axiom 1 and the quote by Festinger (1957, p. 18, with permis-

sion from Stanford University Press), “The strength of the pressures to reduce the 

dissonance is a function of the magnitude of the dissonance.” Something similar is 

obviously occurring in the queue as in the crowd data experiment. As seen in the 

crowd-gathering data, the larger the crowd that deviates from a social norm, the 



 

 

	 	 	 	 	 	 	 	 	 	 	
 

 TABLE 3.3 Queue Experiment Locations and Frequency of Use by Condition 
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greater the dissonance felt by the observer and the greater the pressure on average 

to look up and reduce the dissonance. 

Indication has been provided that the queue’s social situation plays a role in the 

queue member’s sensation magnitude resulting from an intrusion. This supports the 

person−situation interaction equation (Lewin, 1997, p. 187; Burnes and Cooke, 2013, 
pp. 412–413). To lay the foundation for this claim, locations and situations of queues 

are listed in Table 3.3 by Condition. Focus should be placed on the social situation, not 

the location. For instance, we may ask if waiting in line for a train ticket, having a rela-

tively strict time schedule, is the same as waiting in line for a snow cone on our way 
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home. It is hypothesized here that limited resources (i.e., time to get the desired train 

before it departs, selection of a “good” seat when boarding a bus, time available to 

make a bet on your favorite horse before the race starts) are of greater importance and 

hence result in greater extent social deviation caused by an intruder than compared to 

queues with abundant or relatively unlimited resources (i.e., time, snow cones, stamps 

at the post office, passport ID, etc.). Those queues proposed as higher unit stimulus 

sensation magnitude queues include the five gray shaded locations of Table 3.3 which 

include the bus terminal, airport, ticket rail, and off-track betting locations. On the 

other hand, the 12 queue locations above the gray shaded area in Table 3.3 support 

queues waiting for relatively unlimited resources in a more relaxed setting. For exam-

ple, Condition 1 encompasses eight different locations, where 12 observations are in 

potentially high and 10 are in potentially low-unit stimulus sensation magnitude situa-

tions. Alternatively, 18 of 23 queue observations for Condition 4 are in the potentially 

high-unit stimulus sensation magnitude ticket rail queue at Grand Central Terminal, 

the same location as the data from Schmitt et al. (1992). With this background, we are 

now ready to begin quantitative analysis of the data. 

3.3 Milgram’s “Response to Intrusion Into Waiting Lines”: Analysis 
and Model Development 

We begin here with the tools developed and values derived from Schmitt et al. (1992), 

which allow us to begin quantitative evaluation of the Milgram et al. (1986) experi-

ment. Using results derived from Schmitt et al. (1992) for esil,1 and NUA, the single 

intruder sensation magnitude value for low sensation magnitude queues is derived 

using Condition 1: ( )+ − (11 Q 0 *). This in turn should support derivation of the 

two-intruder high- and low-unit sensation magnitude sample mean using Condition 

4: ( )1 Q(2+ −  0 *). If Corollary 2.3 is met, the results from these two conditions 

and associated situations may then be applied to the remaining queue conditions to 

improve sample mean values and validate model predictions regarding impact of 

queue members between the intruder(s) and position of interest. Once complete, a 

spreadsheet incorporating the final model and all conditions simultaneously is used to 

fine tune results using the mean least squares method. With that complete, comparison 

between theoretical predictions versus empirical results is made against the 95 percent 

credibility intervals based on empirical results. 

3.3.1 Condition 1: (+1)-Q(1|0|M) Probability of Reaction 
Calculation 

Table 3.4 represents data from Condition 1 of Milgram et al. (1986). The associated 

analysis focuses on this data. For now, define N as the number of queue members 

between the intruder(s) and the position of interest. The number of queue members 

m M  behind the position of interest is found in the macro variable Q P N M  of∈ ( | | ) 
Table 3.4. This variable also identifies the associated fraction of trials in which this 

configuration exists as a function of queue member position. To understand how the 

data was obtained, consider Q( |1 0 0| ) at position (+1). There were 22 trials observed, 

yet in position (+2) there were only 14 trials having members in that position. That 



	 	 	 	
 

 

 

 

 

 TABLE 3.4 Condition 1 Empirical Data 

1
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means that there were 22 − 14 = 8 trials out of 22 with zero queue members behind 

the (+1) position of interest. For position (+3), there were 9 trials out of 22 where the 

(+3) position had a member in it. Since the (+2) position had 14 trial observations 

with a member in it, that means there were 14 – 9 = 5 trials where there were no queue 

members behind the (+2) position (i.e., Q( |  | ) = 5 /14). The same process is used1 1 0 
to obtain the remaining values. 

Let us start with the proposed sample mean sensation magnitude value esil, = 0.4561 
for illegitimate intrusions and uncertainty of attraction NUA = 1.147 as was derived 

from the Schmitt et al. (1992) data. Since the illegitimate intrusion data was obtained 

at the Grand Central Terminal ticket counter, the result applies to high-unit stimulus 

sensation magnitude queues. Define es = es = 0.456 as the sensation mag-H , ,1 0  H ,1 
nitude value for high (H) unit sensation magnitude queues with one intruder, zero 

members between the intruder and position of interest, and zero members behind 

the position of interest. Similarly, define the low (L) queue unit sensation magnitude 

value as esL. Given esH = . = 1 147. , with Condition 1: (+1) results, we0 456, N,1 UA 

are now able to derive esL m using:, ,1 

 m + N  
es , ,  = es , ⋅ln e ⋅ UA 
L m1 L 1  NUA  

Together, using the chain rule and the law of total probability for Condition 1: (+1), 
we obtain the probability of reaction at the (+1) queue position P R+1) for unit sensa-( 
tion magnitude esI , I ∈{ , }. The probability of P(esI ) is obtained from Table 3.3.L H 
Using the probability of queue member position P m( ) = Q( | | ) from Table 3.41 0 m 
where m M = 0 1 2 3 4 ,∈ { , , ,  , }  

P(R ) = ∑ ∑ P (ES ≤ es ,es ,m)+1 I m1 I, ,  
I∈{ ,L H}m∈M 

= ∑ ∑ GES esI ,1,m ) ⋅P (esI |m) P m( ⋅ ( )  
I ∈ L H  M, m{ } ∈ 
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 1+N0   m+NUA−es ln ln e ⋅ 
 

I   ⋅   N   N  
= 1− e 

0 UA ∑ ∑   
I ∈ , m M{L H  } ∈    
P esI | m  P m  .⋅ ( ) ⋅ ( )  

For our purposes P R+1), the probability of reaction at the (+1) position, may be( 
stated as 

P R+1 = ∑ ∑ P ES ≤ esI m, ,1 ,esI ,Q( ) ( )1 0 m  
I ∈ H L, m∈{ } M 

= ∑ ∑ GES (esI , ,1 m ) ⋅ P esI | Q ( )1 0 m   
I ∈ H L, m∈ 

⋅ P Q (1 0

{ } M 

m)  

The Condition 1:(+1) probability of reaction may now be calculated using Tables 

3.3 and 3.4. Since no remaining experimental data exists to do otherwise, we will 

necessarily assume throughout this and subsequent analyses that the proportion of 

high and low unit stimulus sensation magnitude queues is independent of m, implying 

P esI |Q (1 0| |m) = P[esI ]. 

− . 12 es Trials  8 0 456 HP ES ≤ esI m, ,1 , esH ,Q (1 0 0) = −(1 e ) ⋅  ⋅   22 Trials   22 

= 0 073. 

  + .1 1 147 − . ln e⋅0 456⋅ 
. 12 P ES ≤ esI m1 , esH ,Q 1 0 1) = 1− e  1 147  

 ⋅
  ⋅


 

5 

 

, ,  ( 
  22 22
  

= 0 065. 

  + .2 1 147 − . ln e⋅0 456⋅ 
  12  2 1 147P ES ≤ esI , ,1 m, esH ,Q (1 0 2) = 1− e .  ⋅

  ⋅

   22 22

  
= 0 030. 
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  + . 3 1 147− . ln e⋅0 456⋅ 
 1 147  12 0 P ES ≤ es , es ,Q (1 0 3) = 1− e .   ⋅

 
 ⋅

 I m1 H, ,    22 22
  

= 0 0. 

  + .  4 1 147
− . ln e⋅0 456⋅ 

. ⋅ 12P ES ≤ esI m, ,1 , esH ,Q (1 0 4) = 1− e  1 147  
 

 

 ⋅

 7 
  22 22

  
= 0 118. 

To match P R  ) = 0 364 from Condition 1: (+1), a spreadsheet calculation( 8 = .+1 22 
was done to find that esL, ,1 0  = 0.114. Using esL, ,1 0  = 0.114, we continue with 

−0 114 10esL Trials  8 .P ES ≤ es , es ,Q 1 0 0   = −1 e ⋅ ⋅, , I m1 L ( ) ( )     22 Trials   22 

= 0 018. 

  + .1 1 147 − . ln e⋅0 114⋅ 
  10  5 1 147P ES ≤ esI m1 , esL ,Q (1 0 1) = 1− e .  ⋅


 

 ⋅

 , ,    22 22

  
= 0 017. 

  + .2 1 147 − . ln e⋅0 114⋅ 
. 10 P ES ≤ esI m1 , esL ,Q 1 0 2) = 1− e  1 147   ⋅

 
⋅
 

2 
, ,  ( 

  22 22
  

= 0 008. 

  + .  3 1 147
− . ln e⋅0 114⋅ 

.  
⋅ 10P ES ≤ esI m, ,1 , esL ,Q (1 0 3) = 1− e  1 147   
 

 ⋅

 0 


 

  22 22
  

= 0 0. 

  4+1 147 . − . ln e⋅0 114⋅ 
  .   ⋅ 10 7 1 147 P ES ≤ esI m, ,1 , esL ,Q (1 0| | 4) = 1− e 

  ⋅
 

  22 22
  

= 0 036. 
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From this, and accounting for round-off error, 

P R+ = P ES ≤ es 1 ,esI ,Q 1 0  ( )1 ∑ ∑  I m, ,  ( | | m) 
{ } MI ∈ H L, m∈ 

 m  = 0 364= G es P es ⋅ P Q  1 0| |  .∑ ∑ ES ( I , ,1 m ) ⋅ ( )I  ( ) 
{ }I ∈ H L, m∈M 

Condition 1: (+1) has now been used to systematically determine a sample mean for 

the low sensation magnitude value esL, ,  = 0.114. That there are only two categories,1 0  
low- and high-unit stimulus sensation magnitude queues, is probably overly simplis-

tic, but we need to begin somewhere, and having a dividing line between limited 

resource (ticket and time) and perceptually unlimited resource is a good starting point. 

3.3.2 Condition 4 – Probability of Reaction Calculation for Q(2|0|M) 

To find the sensation magnitude value for a New York City queue with two intrud-

ers, we begin with Condition 4: (+1). From Schmitt et al. (1992), the evaluation of 

the sample-mean sensation magnitude for Grand Central Terminal using 60 trials was 

esH , ,  = 0.456 with NUA = 1.147. From Section 3.3.1, using Condition 1: (+1) it1 0  
was found that 

1+ N 0es ⋅lnH  1+ N  N0 es esL, ,1 0 = esL ⋅ln 0 so esL = H ,
 

= 
N0 4 0. 4.0 

esH , ,2 0and in similar manner es = .L, ,2 0  4 0. 

With Condition 4: (+1) results provided in Table 3.5, there is enough information 

now to solve for esH , ,  in a New York City high-unit stimulus sensation magnitude2 0  
queue situation using data from Milgram et al. (1986). The approach taken, using 

the same process as for Condition 1: (+1), is simple. Since the low-unit stimulus 

sensation magnitude queue is one-quarter the value of the high unit stimulus sen-

sation magnitude queue, all that needs to be done is to find the value for esH , ,2 0, 
using a spreadsheet, such that after simultaneous summation of the equations, the result 

P R( +1 ) = 0.870 is reached. Once the value for esH,2,0  is derived, if Corollary 2.3 is 

met, then the geometric mean N0 and sample mean value es (N0 ) may be derived, 

given values for both es and es  have been successfully determined.H , ,2 0  H , ,1 0  
Before proceeding, the “Notes” section of Table 3.5 should be reviewed along with 

Appendix A to understand the rationale and mathematics behind approximating the 

actual Condition 4: (+1) queue length in which 17 trials had m M∈ , m ≥ 4 per the 

summary data. As with Condition 1, let m M∈ = {0 1 2 3 11 3., ,  , ,  } represent the ele-

ments of the set M containing the various number of queue members behind the queue 

member of interest. 



 

 TABLE 3.5 Condition 4 Empirical Data 








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By spreadsheet, based on the following equations, it is found that esH , ,2 0  = esH ,2 
esH ,2= . , the equations1 005 and esL, ,2 0  = esL ,2 = = 0 251. . As a function of esH ,24 0. 

used in the spreadsheet supporting a simultaneous solution are 

P ES ≤ esI , ,2 m ,esH ,Q (2 0 0)  

−1 005 19 esH Trials  0 .= −1 e ⋅ ⋅ = 0 0.( )     23 Trials   23 

  + . 1 1 147− . ln e⋅1 005⋅ 
 .  19 11 147 P ES ≤ esI , ,2 m, esH ,Q (2  0 1) = 1− e  ⋅

  ⋅

   23 23

  
= 0 029. 

P ES ≤ es ,es ,Q (2 0 2)I , ,2 m H 

  + .2 1 147 − . ln e⋅1 005⋅ 
 .  19 21 147  = 1− e  ⋅

  ⋅

  = 0 062.

  23 23
  

P ES ≤ es ,es ,Q (2 0 3)I m2 H, ,  

  + .3 1 147 − . ln e⋅1 005⋅ 
  19 3 1 147= 1− e .   ⋅

  ⋅

  = 0 097.

  23 23
  
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 P ES ≤ es ,es , (2 0 11 3. ) I , ,2 m H Q  
  11 3. +1 147.   . ⋅ ln e−1 005 ⋅    19 17  .= 1− e 1 14. 7 

 ⋅

  ⋅


  = 0 590

23 23 
  

P ES ≤ esI m2 ,esL ,Q 2 0 0   , ,  ( ) 

−0 251.  4 esL Trials  0 = −1 e ) ⋅ ⋅  = 0 0.(    23 Trials   23 

P ES ≤ es 2 ,es ,Q (2  0 1)I m, ,  L 

  + .  1 1 147
− . ln e⋅0 251⋅ 

  4  1 1 147= 1− e .  ⋅
  ⋅


  = 0 003.

  23 23
  

P ES ≤ es 2 ,es ,Q (2 0 2)I m, ,  L 

  2+1 147 .
− . ln e⋅0 251⋅ 

. 4  = 1− e  1 147  
 ⋅

  ⋅

 

2 
 = 0 006.

  23 23
  

P ES ≤ es 2 ,es ,Q (2 0 3)I m, ,  L 

  + .  3 1 147
− . ln e⋅0 251⋅ 

. 4  = 1− e  1 147  
 ⋅

  ⋅

 

3 
 = 0 010.

  23 23
  

P ES ≤ es 2 ,es ,Q (2 0 11 3. )I m, ,  L 

 11 3. +1 147  .
− . ln e⋅0 251⋅ 

 . 7 4 171 14   = 1− e  ⋅
  ⋅

 
 = 0 074.

  23 23
  
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Assuming homogeneity of high- and low-dissonance magnitude queues as before and 

accounting for round-off error in the aforementioned, 

P R = ∑ ∑ P ES ≤ es , ,2 ,es ,Q 2 0 m)( )+1  I m  I  (  
I ∈ H L, m∈{ } M 

= G es P es ⋅ P Q  m) = . 0 870∑ ∑ ES ( I , ,2 m ) ⋅ ( )I  (2 0  
I ∈ H L, m∈{ } M 

esH, 2 1 005 2.Unfortunately, = = 2 2. > . Hence, as per Corollary 2.3, there is no fea-esH,1 . 10 456 

sible solution for N0 and hence for es (N0 )  using Condition 4: (+1) data. It is worth 

mentioning that had one less (+1) reaction occurred from those 23 observations, the 

resultant sensation magnitude would have been esH , = 0.813, and Corollary 2.32 
would have been met. 

Experiments take time to collect data, and for this experiment, the stress placed on 

the graduate students as intruders was significant – in some cases leading to feelings 

of nausea right before the intrusion. More data for this Condition would have reduced 

the credibility interval and should have brought the sensation magnitude value back 

within the Corollary 2.3 required region allowing for a feasible solution of N0. But we 

should be grateful for what we have, and Condition 4: (+2) data will be extremely 

useful later. 

Returning to our current problem, to find a feasible solution for N0 and hence for 

es (N0 ) , the only remaining option is to derive esH ,2 from Conditions 5 and/or 6 

and determine if either or both meet Corollary 2.3 requirements. To do so, we must 

first derive the impact of the nonreactive buffer for Condition 2 using esH , = 0.456,1 
which is supported by 60 observations from Schmitt et al. (1992) and 12 observations 

from the Condition 1: (+1) data. 

3.3.3 Impact of Nonreacting (NR) Confederate Buffers: Deriving z(|UI|) 
Using Conditions 2: (+2), 5: (+3), and 6: (+3) 

Condition 2: (+2), 5: (+2), and 6: (+3) queues are chosen for the following reasons: 

1. They are consistent with the raw data from Stanley Milgram Papers (MS 1406) 

and Milgram et al. (1986). 

2. No extrapolation is required to determine the number of members behind the posi-

tion of interest as was needed in Condition 4. 

3. All queue members between the intruder(s) and position of interest are nonreac-

tive confederate student buffers. 

4. Each of the three conditions has an empirical probability of reaction greater than 

zero. 

So far, intermediate queue members between the intruder(s) and the position of inter-

est have not been considered. For p P and m M , let us now replace N by defining∈ ∈ 
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UI as the set containing ordered queue position reaction Ri  or non-reaction NRi  infor-

mation for each intermediate queue member at queue position +i =1 2, ,…, UI , 

where N UI 
( )  

=  is the cardinality of UI. Equation 3.1 currently considers the null set 

= 0 in which case P R  
UI ) indicates the (+1) position ofUI = { } ≡∅⇒ UI ( + +1 

interest probability of reaction or P R+1).( 
Now we will develop Equation 3.1 further to address UI > 0. By observation of 

Table 3.2, probability of reaction decreases with each succeeding member position 

of interest after the intrusion point, regardless of whether each intermediate queue 

member reacts or does not react. Focusing only on non-reacting NRi intermediate 

queue members for the moment, for some function z UI ), p > 0, and m ≥ 0, we 

observe GES esp m, , z ( UI 
( 

)  decreases as UI  increases. Furthermore, if UI = 0, 

then GES esp m. , 0z ( ) =GES (esp m, ). It will be assumed for an infinite number of 

intermediate queue members UI →∞ that probability of reaction in a queue at the posi-

tion of interest tends to zero such that GES esp m, , z ( UI ) = 0 as UI →∞. Finally, 

) = 0.if there are no intruders (i.e., p = 0), probability of reaction G es0,m , z ( UIES 

Then for any given nonnegative integers p UI, , and m, constraints on GES esp m, , 

z ( UI )  are summarized as 

0 = G es , z ( UI ) 
= lim GES esp m, , z ( 

ES 0,m 

{NR , NR ,…, NR } ) 1 2 i 
i→∞ 

≤ GES esp m, , z ( UI ) ≤ GES esp m, , z ( )0  
= GES (esp m, ). 

In words, the subject of interest is obtaining information from each intermediate 

position group member between him or her and the intruder. Those intermediate 

members who react indicate to the subject of interest that deviation from a social 

norm likely occurred. Their reaction, as judged by the next further observing inter-

mediate member in queue, will range from either being sufficient or insufficient, the 

latter possibly warranting some further level of reaction. Those intermediate mem-

bers who do not react indicate to the subject of interest that the social deviation was 

acceptable to them, or at least not sufficient to warrant a reaction as far as they were 

concerned. Each reaction or non-reaction by an intermediate queue member may be 

viewed as an increment of dissonance-reducing information made use of by the sub-

ject of interest to reduce uncertainty prior to making the choice of whether or not to 

react. When uncertainty of choice surrounding an event exists, it is hypothesized that 

dissonance-reducing information directed at relieving the uncertainty will reduce the 

event-induced dissonance. 

When social events occur that are not congruent with how we believe people should 

act, based on our social norms for the given situation, then we experience emotional 

discomfort and associated dissonance. If the social event is ambiguous within the 



 

 

  

 

 

 

 

 

	 	 	 	 	 	 	 	 	 	 	

 

 

 

 

=

82 Revisiting Milgram’s 1978 Experiment 

given social situation, then we experience uncertainty and must make a choice regard-

ing what action or nonaction provides the best opportunity to reduce the associated 

dissonance. Information is sought to make the best choice, and as Festinger (1957, 

pp. 177–202) indicates, the social group offers the best means for dissonance reduc-

tion by providing the necessary support from other group members who share similar 

social norms. Since the information we seek as per Axiom 1 is to reduce dissonance 

for the given socially deviant event and social situation, those in our particular social 

group, sharing common social norms, would offer the most reliable and pertinent 

sources of information concerning how to interpret the event and whether sufficient 

action has been taken. 

We are focused on the ambiguous socially deviant event which creates uncertainty 

in how to respond to the given situation (Clark and Word, 1972). Reaction is one way 

to gain information and reduce dissonance; and observation of others in the group 

is a lower risk approach (see Axiom 2, Chapter 1). As a result, when not in the (+1) 

position, dissonance-reducing information pertinent to the generated uncertainty is 

required and probably desired when choosing which action increases the likelihood of 

successful dissonance reduction. 

Using the concepts and nomenclature from Klir (2006, p. 7), the amount of A 

Priori uncertainty associated with the deviant social event occurring within a group 

having established and accepted social norms is UPr . After uncertainty-based disso-

nance-reducing information associated with reducing UPr has been obtained by the 

subject of interest through observing the non-reactions NRi  of intermediate group 

members, some residual A Posteriori uncertainty will likely remain. Denote this 

remaining A Posteriori uncertainty as UPo. Define the uncertainty-based dissonance-

reducing information set as UI = ∅  0 ,NR1, NR2 , ,… NRUI } in which UIi ∈UI{ 
UI

such that UI0 =∅, UI1 = NR1, and so on. Then i=0 
UIi as the union of uncertainty-

based information obtained through observing UI  intermediate member non-reactions, 

keeping in mind that ∅ = 0. The total amount of uncertainty-based information gained 

as a function of uncertainty reduction is given by, 

( A Priori uncertainty) − ( A Posteriori uncertainty) = UPr −UPo 

UI 
= UI .ii=0 

This is equivalent to (Smith et al., 2015, pp. 99(d) & 106(e)), 

CUI UI UI CU = U − UI = U ∩ UI = U ∩ UI .Po Pr Pr ii=0 i Pr (i=0 i ) i=0 

It has recently been demonstrated that attitude change during the decision process 

begins before a choice is made, not after as traditionally believed, indicating that 

dissonance reduction and spreading of alternatives are already occurring during the 

decision process. Furthermore, it appears that the person making the choice seeks 



 

  

  

	 	 	 	 	 	 	 	 	 	 	 	 	

 

 

 

 

 

  

Revisiting Milgram’s 1978 Experiment 83 

positive features that are distinctive to one of the choice alternatives (Kitayama et al., 

2013; Jarcho et al., 2011). Festinger also implies that dissonance reduction begins to 

occur while making the choice (Festinger, 1962, pp.93 & 95; Axiom 1). These stud-

ies lead to the argument that uncertainty-based information is required to reduce dis-

sonance caused by an ambiguous socially deviant event. Furthermore, for the queue 

situation, the most appealing choice appears to be non-reaction to an intrusion since 

it offers minimal risk of negative consequences. If that is the case, then the subject of 

interest should be focusing his or her uncertainty-based information search on non-

reaction from the intermediate queue members, indicating legitimacy and a reduced 

need for confrontation with the intruder by the subject of interest. We will shortly 

observe that both arguments are supported by experimental data. 

When the intrusion occurs, there is the initially induced dissonance and resulting 

need to reduce it. To reduce dissonance in ambiguous situations, and not increase it 

due to an error (e.g., embarrassment or offense), reliable dissonance-reducing infor-

mation is needed on which to base a choice regarding whether the dissonance-causing 

event is legitimate or illegitimate. Before making the choice as to whether to confront 

the intruder, uncertainty-based information is desired to reduce the situational uncer-

tainty. If the choice ultimately made is in error, then embarrassment (Miller, 2001) 

and/or justifiable confrontation may ensue. Regarding the (+1) position of interest, 

uncertainty-based information is limited to any immediately preceding social interac-

tion and/or questioning the intruder as to why he or she entered the queue at that posi-

tion. The initial uncertainty UPr prompts the need for information on which to base 

a choice of reaction or no reaction and thus reduce dissonance. It is therefore argued 

that UPr is independent of the uncertainty-based information sought to reduce uncer-

tainty by the subject of interest. It may then be stated for position (+1) that, with no 

intermediate queue members providing information, 

UI =0 CP(R+1)º P(UPo )= P(UPr Çi=0 UIi )= P(UPr ) 

º GES (esp,m ). 

If infinite (i.e., exhaustive) uncertainty-based information is obtained before making 

the choice of reaction or no reaction in response to the socially deviant event, then 

uncertainty has been eliminated so that U
Po - 0 as UI →∞. This unlikely real-world 

situation leads to 

( ( UI =∞P   UI =∞U ) =   P U  ∩ Po Pr UIC = 0 implying U =   UI .i=0   i ) Pr i=0 i 

Taking this approach indicates that uncertainty-based information pertains only to the 

uncertainty created by the social norm deviation. In other words 

UI UI i ⊆  UI ≥ i  U 
=0 Pr for 0.
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For the case where 0 < UI < ∞, independent of the member of interest, uncertainty-

based information is obtained from intermediate queue members immediately after 

the intrusion, and in the absence of attitude inoculation, 

UI UIUI = P U  P  UIP U( ) = P U   i
C 

0 
C 

Po ( Pr  =0 i ) ( Pr ) . (i= i ) 
Cwith the implication that lim P (UI UI ) = 0.ii=0UI →∞ 

We already know that if UI = ⇒UI { }, where no non-reacting intermediate0 = ∅0 

queue members exist between the intruder(s) and subject of interest, then in the absence 

of any group uncertainty-based information 

UI =0 CP UIi ) = 1.(i=0 

To put this all together, we start with the Chain Rule, 

UI UI -1 C UI -(i+1) CCP UI = P (UI UI ).| UI(i=0 i ) ∏i=0 -i j=0 j 

Viewing each of the UI  non-reacting intermediate queue members as intensity incre-

ments of uncertainty-based information which the subject of interest uses in determin-

ing whether to react or not, and applying Equation 1.5, we have for UI ≥ 1, 

UI - +i 1-1 C ( ) CP (UI UI )|  jUI -i j=0∏i
UI 
=0 

-1 L ( UI - i + noise lLUI P Lk . ln= ∏i=0 | UI i 1 + noise- +( ) l
lLL
L . 

LL ( 

In the context of this work, Melamed et al. (2019, p. 2) would imply that when an 

intruder becomes part of the queue group, this creates a disagreement between the ini-

tial queue members and the intruder, generating uncertainty as a result. By conform-

ing to queue group member opinion, a subject of interest within the original queue 

group reduces his or her uncertainty. Referring to Festinger (1962, p. 95), the terms 

uncertainty and cognitive dissonance are interchangeable for the given condition. To 

further make this argument, FeldhamHall and Shenhav (2019, pp. 3–4) relate uncer-

tainty with negative affective reactions. Harmon-Jones et al. (2015, p. 185) using 

their action-based model suggest that an individual’s negative affective state of dis-

sonance is aroused when cognitions with action implications are aroused. Maikov-

ich (2005) uses the radicalization process in terrorist organizations to create a link 

between cognitive dissonance, low tolerance for uncertainty, and those who resort to 





 2+noise  1+noise  
−z( )  − ⋅k ln  −k⋅  k ln 
2  1+noise   noise G (esp m, ) ⋅e =GES (esp m  ) ⋅e ⋅eES , 

  2+noise  1+noise 
− ⋅k ln +ln    

  1+noise   noise =GES (esp m, ) ⋅e 
  2+noise 

− ⋅k ln  
  noiise =GES (esp m, ) ⋅e . 







n| l


 

CP R+ = G es . P UI +1 ES p m, i iUI =0 

- i + noise lLUI -1 L ( UI 
= GES ( )esp m, .∏i=0 P Lk . ln| UI i 1 + noise- +( ) l

lLL
L . 

LL ( 

)  for the random variable Z isFor UI = ∅ ,NR , 2 … NR N , P Z > z UI{ 1 NR , ,  }  (0 
defined as 

1   UI i noise − +  UIP Z  z UI > ( ) =∏ 0 
−
P k ln⋅

i=  UI − +(i 1)+ noise    

UI ( )) ( ) (
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violent terrorism. Beasley (2016, pp.  7, 10–11) notes that conditions which involve  

uncertainty and violation of expectations (which would include social norms) are par-

ticularly prone to produce dissonance in an individual. Finally, Randles et al. (2015,   

p.  706) provide an interpretation of their findings indicating that dissonance may lead  

to uncertainty. It seems the academic community has been consistently indicating  

some link between cognitive dissonance and uncertainty since 1962. Additionally,  

uncertainly reduction begins before the choice is made, or in this case, the choice of  

reacting or not reacting. 

What has been shown so far is that 

Where the probability function P Z >  z U( I ) is just the survival function indi-

cating the probability a subject of interest has not yet reacted based on the amount 

of uncertainty-based information available at the time. For the constraints provided, 

and the derivation of P Z >  z U( I ), application of the negative exponential (Efthi-

miou, 2010, p. 83) for  P Z >  z U( I ) is appropriate. As an example, using UI = 2 

and the function z U( I ) when applied to the standard negative exponential,

Constraints may be shown to have been met using the example GES (esp m, ) ⋅e−z( ) 2
 and 

a proof via induction, assuming 0 < noise < ∞, so that for both k > 0 and 0 < noise 
< ∞, 

P Z z UI P k ln
UI i noise

UI i noisei

UI
> ( )  = ⋅

− +

− +( )+








=

−∏ 0

1

1












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Accounting for the independence of certain random variables, this allows deriva-

tion of probability of reaction for some specified uncertainty-based information set 

UI = ∅ ,NR , NR … NR 
N

, ,  }, UI ≥ 0, and given values es , ,p and m, such that{ 0 1 2 

( )
P ES ≤ es , Z z UI  =G es ⋅e p m, > ( ) ( ) −z UI 

 ES p m, 
Equation 3.2 

es
p m, −z UI(1 − ) ( )= − e ⋅e 

With 

UI −1 
− +i noise 

z UI( ) = k ⋅ ln
 UI 

for UI ≥1,∑  UI (i 1)+ noise − +  i=0  
e ( ) = 0.else z UI 

The random variables ES and Z are independent if the number of members behind 

the position of interest and do not depend on UI . With that, we now have the tools to 

derive the variables k and noise for the function z (UI ) . 
Using data from Table 3.6, we may now evaluate Condition 2 using Equation 3.2. 

Using esL, . and esH , = 0 456, as derived from Schmitt et al. (1992) and= 0 114 .1 1 

  UI +noise 
− ⋅k l n 

  noise lim G eES esp m
UI

,
→∞

( ) ⋅
  UI +noise 

( )
− ⋅k l n 

 noise
= ≤0 G esp m p⋅ ≤e G 

ES ES ( )es .,m,,



 

  

 

 

 

 

4

9

7
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⋅
−z( )1

Condition 1: (+1) of Milgram et al. (1986), we begin by deriving GES esI m1 ) e( , ,  
for Condition 2 position (+2). The derivation process is the same as for Conditions 1 

and 4 at position (+1) using the Law of Total Probability while incorporating Equation 

3.2 with UI = {NR }⇒ UI = 1 and P UI = NR 1. It is worth repeating( { +1}) = +1 

due to lack of experimental raw data, homogeneity with regard to m of high (H) and 

low (L) unit stimulus sensation magnitude queues must be assumed. 

P ES ≤ es , es ,Q ) ⋅P Z  > ( (11  0   z UI ) I m, ,1 H  

−.456 19 esH Triials  9  −z( )1= −1 e ⋅  ⋅
 

e( )    ⋅ 
24 Trials  24   

−z( )1 
0 109 ⋅e= . 

P E S ≤ esI m, ,1 , es ,Q (111) ⋅P Z > z U( I ) H  
  + .11 1  147  − . ln e⋅0 456⋅  
1  1 147.   ⋅ 

19 
 
6 
 ⋅ 

−z( )1= − e  ⋅
 

e  24   24   
  

⋅ −z( )1= 0 104. e 

P E S ≤ esI m , es ,Q (11  2  P Z z UI) ⋅  > ( ) 
  + .1  
 , ,1 H 

2 1  147 − . ln e⋅0 456⋅   4  1 147.   ⋅
19   −z( )1= − e  ⋅

 
e1    ⋅   24   24  

  

⋅ −z( )1= 0 079. e 

P E S ≤ esI m , es ,Q (11 3  P Z z UI) ⋅  > ( ) 
  3 1+ .1471   
 , ,1 H 

− . ln e⋅0 456⋅  
. 

 19   1 147  5  −z( )1= − e ⋅  ⋅

  ⋅1 e   24   24  

  

⋅ −z( )1= 0 107. e 

P ES ≤ es , ,  , es ,Q (11  0  P Z > z UI( ) I m1 L ) ⋅  

−0 114  5esL Triials  9  z 1
= −1 e . ) ⋅  ⋅

 
 ⋅ 

− ( )(  e 
 24 Trials   24  

−z( )1 
0 008 ⋅e= . 



 

⋅

⋅

⋅

>


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P ES ≤ esI m, ,1 , esL ,Q (111   P Z z UI) ⋅  > ( ) 
  + .1 1 1  147 − . ln e⋅0 114⋅
 

 
1 147.   5  6  −z( )1= − e  ⋅  ⋅


  ⋅1 e  24   24   

  

⋅ −z( )1= 0 009. e 

P E S ≤ esI m , es ,Q (11  2  ⋅P Z z UI)  > ( ) 
  + .1 
 , ,1 L 

2 1  147  − . ln e⋅0 114⋅    1 147.   ⋅ 
5 

 
4  −z( )1= − e  ⋅

 
e1  ⋅   24   24  

  

⋅ −z( )1= 0 007. e 

P ES ≤ es , , , ,Q (11 3 P Z > z U( I ) I m1 esL ) ⋅  

  + .1 3 1  147 − . ln e ⋅ 
. 

 5 0 114⋅
  1 147  5  −z( )1= − e ⋅  ⋅


  ⋅1  24 24 

e 
      
  

⋅ −z( )1= 0 010. e 

Accounting for round-off error in the aforementioned and as before assuming 

P es | Q (1 0 m) = P[es ],I I 

P R  ) = ( 2P R  )( +UI +1 + 

= P ES ≤ es , es ,Q (11  m) P Z > z UI( )∑ ∑   I m, ,1 I  ⋅  
I H{ ,L m  M∈ } ∈ 

−z( )1= ∑ ∑ GES (es ) ⋅P (esI ) ⋅P Q  (11  m) ⋅eI , ,1 {NR m
1
},  

∈{ , } ∈I H L m  M 

−z( )1= 0 433 ⋅. e 
4 

= = 0 167 (empirical result ).. 
24 

0 167−z( )1 .
e = = . ,or z  ( )1 = −ln 0 386) = 0 952. .0 386 ( .  

.0 433 



∈

2

P R  = P ES ≤ es , ,2 , es ,Q (2 2  m)( +3 ) ∑ ∑   I m  I 
I H m M∈{ } ∈ 

⋅P Z  > z UI( ) = ∑ ∑ GES (es , ,2 )I m  
I∈ H m∈M 

 
{ }  

−z( )2 −z( )2⋅P ( )I ⋅P Q (2 2es ) ⋅e = . ⋅m 0 731 e 

3 
= = 0 150 (empirical result ).. 
20 

− z( )2 0 150.
As before e = = . ,or z  ( )2, 0 205 

.0 731 
= −ln ( . ) =1 585.0 205 . 

 TABLE 3.7 Condition 5 Empirical Data 
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With z(1) derived, we may now evaluate Condition 5, which also has a single buffer 

as Condition 2, and check for repeatability using a queue experiencing two simultane-

ous intruders. 

Applying z ( )1 = 0.952  as derived, in the same manner as Condition 2, it is found  

by spreadsheet calculations that es H ,2 = 0.  780 and es L  = 0.195,2  when the total 

probability of reaction equals 4 
20 (i.e., 0.200) for Condition 5: (+2), see Table 3.7.  

The sample mean of esH , 2 = 0.780 is a feasible solution with Conditions 1 and 2 as 

per Corollary 2.3. We can now move to Condition 6 and get an approximate value  

for z(2). If z(1) and z(2)  meet Corollary 2.3 requirements, then Theorem 2.5 may  

be applied to calculate a noise value related to member interpretation of intermediate  

member reactions. Table 3.8 summarizes the necessary Condition 6 reaction data as  

a function of position. 

The same approach as Condition 2 and 5 is used for Condition 6: (+3) but using  

esH , = 0.7802  (note: there are no low sensation magnitude queues in this condition). 

Given UI = {NR+ ,1  NR+ 2 } and that P U( I ) = 1, the result is,



 TABLE 3.8 Condition 6 Empirical Data 
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It may also be observed that Corollary 2.3 applies since  z( )2 
1< = 1 .585 2

z ( )1  0 .952  < . 

As expected, a logarithmic approach to modeling presents itself as predicted from 

the derivation of z( N )  by noting that for two confederate nonreactive buffers, 

( )  ≅ ( ) + ( ) ⋅ ( )  0 952 ln(e ⋅ 2) = 1 612.z 2 = 1 585. z 1 z 1 ln 2 = . ⋅ . 

Hence, a feasible value exists for a noise term from the data related to a member’s  

ability to observe and interpret the non-reactions of other group members closer to  

the dissonant-causing event. In this case, non-reaction by a queue member imme-

diately behind the intrusion point provides information to other queue members.  

Non-reaction implies to others that the intrusion did not appear to be a significant  

deviation of group norms and therefore is likely to be of low-sensation magnitude.  

The member immediately following may use this information to reduce his or her  

uncertainty as to what occurred and thereby determine whether to react or not  

react. 

In the example of two nonreactive queue members immediately behind the intru-

sion point, the amount of uncertainty as measured in probability space by queue 

members in subsequent positions is about one-fifth (i.e.,  e
−z( ) 2 = 0.205) of the ini-

tial amount. The uncertainty-based information noise variable NUI  may be noise  

interfering with obtaining uncertainty-based information, or it may be a constant.  

If noise increases, the ability of the member of interest to interpret and make use of  

information through observation of pertinent members decreases. Described in this  

way, it would seem NUI  and NUA should be positively correlated, given members in  

attractive (i.e., cohesive) groups would be better able to interpret one another’s reac-

tions toward any deviation of group social norms. 

Given the values for z(1) and z(2) meet Corollary 2.3 requirements, Theorem 2.4 

and Theorem 2.5 may be applied to find NUI  and es (N ) , respectively. The value
UI

of NUI  supporting, 
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  
0 952.. ln 

 
 
  

1 585.. ln 
 

 
 

0 952 -. 1 585. -+ 

1+ NUI 
 NUI 

2 + NUI 
 

UI 

2 + NUI 
 NUI 

1+ NUI 
 

UI 

 
 
 

 

ln 

 
 
 

 

 
 
 

 

ln 

 
 
 

 

    
N N 

= 0 

is NUI = . = .1 553 . Using NUI 1 553  with Theorem 2.4 results in 

 

 

 
 
 

 

= 1 195. . 1 0 952. 1 585. es (NUI ) = . + 

 

2    1+ NUI 
 

UI  
2 + NUI 

 
UI 

ln ln
N N 

From this, we have 

1 1  553.  
z ( )1 1  915. ⋅ ln

+ 
= . ;= 0 952 

 1 553.  

2 1  553.  
z 2 =1 915 ⋅ ln =1 585.( )  . 


+ 

 . 
 1 553.  

−z ( )1 −0 952 −z ( )1.
Stated in probability space, e = e = 0 386, or 1− e = 0 614.. . 

The probability 0.614 is extremely close to a very familiar value. The value 0.618 is 

the inverse of the Golden Ratio. In operations research, the value 0.618 is used in the 

Golden Section search to optimize speed of finding the maximum value of a unimodal 

function (Winston, 1987, pp. 545–549) with minimal computational effort. Referring 

to Tanner et al. (1967, p. 352), based on a least squares fit of the data, probability of 

the observers identifying the sound as the target sound approaches the inverse Golden 

Ratio as the probability of the target sound being introduced approaches 1. Benjafield 

and Adams-Weber (1976) provide a hypothesis leading to even more interesting and 

potentially pertinent results. Let positive events be associated with a non-reaction indi-

cating acceptable behavior by group members, and let negative events be associated 

with a reaction to indicate unacceptable behavior under those same norms. Benjafield 

and Adams-Weber (1976, pp. 13–14) hypothesize that socially deviant behaviors 

become most noticeable when compared to the acceptable background of non-deviant 

behaviors when the proportion of negative events (social deviation) divided by the 

proportion of positive events (group-accepted behavior) tends to the Golden Section 

value of 0.618. 

In summary, for |UI| nonreactive buffers between the intruder(s) and the (+|UI| + 1) 
− (

position of interest, e z UI ) may be expressed for the New York queue as 



P (R+3) = ∑ ∑ P  ES ≤ esI m, ,1 ,es      I ,Q (1 2 m) ⋅ P Z I   > z (U )
I ={H L, } m M∈ 

== ∑ ∑ G (es −z ( )2
  I    ES , ,1 m ) ⋅ P[ esI ]⋅ P Q (1 2 m) ⋅e

I ={H L, } m M∈ 

= 0.063.. 

The result of 0.063 for Condition 3: (+3) is well within the 95 percent credibility 

interval of (0.0, 0.133). We now have all the mathematical tools, when combined with 

Equation 3.3, to analyze empirical data for Conditions 1 and 4 at the (+1) positions 

and for Conditions 2, 3, 5, and 6 at the positions just after their respective nonreactive 

buffers. To solve for the remaining Conditions and positions requires addressing those 

intermediate members who react between the intruder(s) and position of interest. 

 

 UI + . 1 553
−1 915 ln. ⋅  

z UI− ( )  1 553 .
e = e Equation 3.3 

where all elements in UI arre nonreacting. 

 TABLE 3.9 Condition 3 Empirical Data 
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With Equation 3.3 available, Condition 3 data shown in Table 3.9 may now be analyzed. 

Using esH 0.456 0.114,1 =   and esL,1  =  from Condition 1, and applying the same

process as demonstrated for Conditions 1 and 6 while using values from Table 3.9, 

we obtain, 

3.3.4   Impact of Reacting Members: Deriving y(|UI|)  
Using Condition 4: (+2) 

Experiments and data collection are difficult, and the intrusion experiment by Stanley 

Milgram and his graduate students in 1978 was even more so. Though the experiment 

and the data are nothing less than outstanding, there are always lessons learned that 
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should be documented for others to build on. It is also important to understand the 

data. To this end, in his 1978 student report, graduate student David Niemeroff wrote 

the following (Stanley Milgram Papers (MS1406), with copyright permission from 

the Estate of Alexandra Milgram): 

We can observe with 2 intruders and no buffers nearly all the lines objected. 

Interestingly, in this condition the only two lines that did not object were the two 

information booth lines at Grand Central station. 

This clearly refers to Condition 4 since there are two intruders and no buffers. David 

Niemeroff further notes that these two lines were the fastest and also the most amor-

phous, alternating their topology every minute or so between that of a straight line or 

a cluster as is sometimes seen at a bus stop (Stanley Milgram Papers, MS 1406, Box 

101, Folder 136, pp. 8–9). This indicates the ambiguity of queue position status. It 

also indicates potential confusion of roles and responsibilities for maintaining group 

boundaries separating those in queue from those not in queue. The importance is that 

being amorphous leads to position uncertainty, social uncertainty (embarrassment if 

wrong to react), and greater uncertainty of attraction. It is suggested here that the 

information booth was not representative when viewed within the context of all the 

other queue locations detailed in Table 3.3. 

In 1978, when preparing for the experiment, graduate student Joyce Wackenhut 

defined the queue in her planning notes as a clearly defined social structure. In his 

translation of Parsons (1951), Mann (1969, p. 349) provides the properties of a social 

system of which he states the queue is an embryonic representative. He states that 

three properties of any social system are: (1) two or more members occupying dif-

ferentiated statuses or positions and performing differentiated roles; (2) some orga-

nized pattern governing the relationships of the members, describing their rights and 

obligations with respect to one another; and (3) some set of common norms and val-

ues, together with various types of shared cultural objects and symbols. As a lesson 

learned, queues like the information booth queue as described by David Niemeroff 

are not well-differentiated or defined social systems and should be avoided for queue 

analysis. 

Condition 4: (+1) has the most reactions (20 out of 23) of any (+1) position for the 

six conditions. This makes it an excellent candidate to derive y(1) using Condition 4: 

(+2) results by replacing z(1) for UI = {NR+1} with y(1) for UI = {R+1} in Equa-

tion 3.2. Given David Niemeroff’s report, it is apparent there are 21 observations of 

interest here, and of those 21, 20 had reactions at the (+1) position. Of those 21 obser-

vations, there were 10 reactions at the (+2) position. With that simple observation, we 
− y n( )

can guess up front that e− y( )1
 will be somewhere around 0.5. Ultimately, once e 

is obtained in a mathematically traceable manner, all remaining Conditions at posi-

tions beyond (+1) may be theoretically calculated using Equation 3.2 where the set 

UI now may contain any ranked combination of reacting and non-reacting members. 

Using the Law of Total Probability with Equation 3.2, while now accounting for 

the possibility of a reactive or nonreactive intermediate queue member, and assuming 

as before, based on lack of available information that P es | Q (2 1 m) = P (es ),I I 
results in, 



 

 

)

r

,

⋅

7

−

7
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P R 2 ) = ∑ ∑ ∑ GES ( I m, ,( + es 2 )
r R NR∈{ + , + I H L m M{ ,1 1} ∈ } ∈ 

⋅P (es ) ⋅P Q (2 1m) ⋅H ( )r ⋅P r( ) ,I  +2 

− y( )1defining H+2 ( )r ⋅P ( )r = e ⋅G ( , ,2 +1esI m  ) 
if r= R else H ( )r ⋅P ( )r+1  +2  

− ( )1= e z 1− G es , ,2 ) , if r  = NR+1.( I m+1  

Knowing esH , . , but for this situation using esH ,2 1 005  as derived for2 = 0 780 = . 
− y( )1

Condition 4: (+1) to solve for e  under the same conditions, we may now solve 
− y( )for e 1

 in the following manner using Condition 4: (+2): 

∑ P ES ≤ es , es ,Q (2 1 0) ⋅ H ( )r ⋅ P( )r I m2 +2 
r ∈{R ,NR } , ,  H 

+1 +1 

−1.0005 19 esH Trials 1 = − e  ⋅1 ⋅( )    23 Trials   23 

 −z ( )1 − y( )1 ⋅ e ⋅ 
1− G (esH ,2,m ) + e ⋅G (esH m2, ),  

  + .1 1 147− . ln e⋅1 005⋅
  

1 147  − y( )1.= 0 0228. . ⋅e + e⋅ 0 386 
 

  1+1 147  . −1 005⋅ln e. ⋅ 
.   1  1 147 

  − y( )⋅ − e = 0 0017. + 0 01831 . ⋅e 
   

∑ P ES ≤ esI m, ,2 ,esH ,Q (2 11) ⋅ H+2 ( )r ⋅ P( )r 
r∈{R ,NR }+1 +1 

  1+1 147 .005−1.0 ⋅ln e⋅ 
  1 147.   ⋅

19
 ⋅ 2  = 1− e      23  23

  

 −z ( )1 − y( )1 ⋅ e ⋅ 
1− G (esH m, ,  ) + e ⋅G (esH m2 )2 , ,  

2 1 14 
1 147 . −1 005. ⋅ln(e⋅2+1 147. ) − y( )1 −1 005. ⋅ln(e⋅ + . 7 ) = 0 0578 ⋅ . 86 ⋅e . + ⋅ −  1 147. 0 38 e 1 e

 ( ) 
− y( )1= 0 003 + 0 050⋅ e. . 



 

−

1

−


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∑ P ES ≤ es , es ,Q (2 1 2) ⋅ H ( )r ⋅ P( )r I ,2,m H +2 
r∈{R+1,NR+1} 

  2+1 147 .
−1.0005⋅ln e. .  19 

= 1− e  1 147  ⋅ 
 ⋅ 3  

     23  23
  

z 1 y 1⋅ e− ( ) ⋅ 1−G (esH , ,2 m ) + e− ( ) ⋅G (esH , ,2 m ) 
  

  3+1 147  3+1 147.    
   

. −1 005. ⋅ln e⋅ −1 005 ln e. ⋅ ⋅   1 147  y 1  .     . − ( )   1 147= 0 0934. ⋅ 0 3. 868 ⋅e + e ⋅ −1 e  
     

− y( )1= 0 0036 + 0 0840 ⋅e. . 

∑ P ES ≤ es , ,2 , esH ,Q (2 110 3. ) ⋅H +2 ( )r ⋅ P( )r I m  
r∈{R +1,NR +1} 

  10 3. +1 147.  −1 005⋅ln e. ⋅ 
= 1− e 

 1 147.   ⋅
19

 ⋅
17  

     23  23
  

 −z ( )1 − y( )1 ⋅ e ⋅ 
1−G (esH m, ,2 ) + e ⋅G (esH m, ,2 ) 

 11 3+1 147.    11 3. 1 147  
  

 . + .  −1 005. ⋅ ⋅ −1 00 ⋅ ⋅ln e . 05 ln e    1 147  y 1  . . − ( )  1 147   = 0 5. 888 ⋅ 0 386. ⋅e + e ⋅ −1 e  
     

⋅ − y( )1= 0 0076. + 0 5. 6688 e 

∑ P ES ≤ esI m, ,2 , esL ,Q (2 1 0) ⋅H +2 ( )r ⋅ P( )r 
UI ∈{R 1,NR+1}+ 

−0.251  4 esL Trials 1 = − e  ⋅1 ⋅( )    ⋅ 
 23Trials   23 

−z ( )1 − y( )1⋅ e ⋅ 1− G (esH ,2,m ) + e ⋅G (esH m, ,2 ) 
  

  + .    1+1 147   
   

1 1 147 .
−0 251ln e⋅ −0 251ln e. ⋅ . ⋅ ⋅    .  1     1 147 − y( )   1 147. . . ⋅ −= 0 0017 ⋅ 0 386 ⋅e + e 1 e  

     
− y( )1= 0 0004. + 0 0006 ⋅e. 
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∑ P ES ≤ es ,2. ,esL ,Q (2 11) ⋅ H ( )r ⋅ P( )r I m  +2 
UI ∈{R ,NR }+1 +1 

 + .   1 1 147
−0.251⋅ln e⋅  . 1 147   4  2    ⋅ = 1− e ⋅     23 Trials  23

  

 −z ( )1   − y( )1 ⋅ e ⋅ 1− G (es ) + e ⋅G (es )  H m2, ,  H m2, ,   
  +2 1 147. − . ⋅0 251 ⋅ln e   1 147. = 0..0051⋅ 0 386. ⋅e 

− ( )y 1+ e 
 

  +2 1 147.   − . ⋅0 251 ⋅ln e  1 147.   ⋅ 1− e  
   

1⋅ − y( )= 0 0012 + 0 00200 e. . 

∑ P ES ≤ es ,es ,Q (2 1 2) ⋅ H ( )r ⋅ P( )r I , ,2 m L +2 
UI ∈{R ,NR }+1 +1 

 + .   2 1 147
−0.251⋅ln e⋅  .  4  3 1 147 = 1− e  ⋅  ⋅    23Trials  23

  

 −z ( )1   − y( )1 ⋅ e ⋅ 1−G (es , ,2 ) + e ⋅G (esH m2 )H m  , ,  
  + . 3 1 147

−0 251. ⋅ln e⋅
  1 147.  − y( )1= 0. ⋅ 0 386 e009 . ⋅ + e 
 

  3+1 147.   −0 251. ⋅ln e⋅ 1 147   . ⋅ 1− e  
   

⋅ − y( )10 002. + 0 0039 e= . 



 

   

   

 

 

⋅e



−


8

Revisiting Milgram’s 1978 Experiment 97 

∑ P ES ≤ esI m2 , esL ,Q (2 110 3. ) ⋅ H+2 ( )r ⋅ P( )r , ,  
UI ∈{R ,NR }+1 +1 

  10 3. +1 147.  −0 251⋅lne   . ⋅ 
  1 147   4 

⋅
17 .= 1− e ⋅      23Trials  23

  
z 1 y 1⋅ e− ( ) ⋅ 1− G (esH m, ,2 ) + e− ( ) ⋅G (esH m2 ) = 0 0724., , 

  11 3. +1 147.    11 3. +1 147.    
   

−0 251⋅ln e − . ⋅ln e⋅. ⋅ 0 251     1 147.  − y( )1  1 147  . ⋅ 0 386 ⋅e + e ⋅ − e. 1  
     

⋅ − y( )1= 0 0120 + .. 0 0414 e 

Now add the terms just calculated and equate the sum to the empirical result of 0.435 repre-

senting the Condition 4: (+2) empirical probability of reaction to obtain, 

− y( )1 − y( )1 
0 0314 + 0 7693 ⋅e = . , or e  = 0 5246. . 0 435 . 

Which solves to y(1) = 0.645. For now, making the rather large assumption that 

noise, assuming that is what it is, caused by uncertainty of interpretation is the same 

as that for z(1) given both are in the same social situation, we obtain, 

+1 553 .0 645  UI. 
y UI ) = ⋅ ln(  

1 1  553  + . 1 553. ln 
 1 553 . 

Equation 3.4 UI +1 553.  
= 1 298 ln. ⋅   , for UI 

1 553.  
+= {R R  ,… R ∅ , n ∈, , ,  } Z .

n n−1 1 

−z ( )1 − y( )1
Like the value obtained for e , the value obtained for e  has potential sig-

nificance as well. In the queue, the binary information obtained is either a reaction 

directed at the intruder or non-reaction. In information theory, the amount of uncer-

tainty-based information obtained is maximized (highest entropy) when the probabil-

ity of either binary event is 0.5 (Stone, 2015, pp. 33–38). Interpreting this, it may be 

that as a species, we minimize effort to confirm that everything is normal socially 

but maximize information intake when a confirmed social deviation event occurs. It 

seems that a significant amount of information theory is woven into this process, and 



)
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it is felt that those who have expertise in this area would likely find further investiga-

tion fruitful. It is also possible, given the values derived for z(1) and y(1) and their 

potential interpretation, that NUI  may be a constant, and a very interesting one if with 

more data it is found that 

1+ N 1+1 553UI .1 618 since = 1 644.→ . is rather close to
N 1 553UI . 

the Goldern Ratio already. 

As has been observed in the intrusion data from this chapter, some of the intermediate 

queue members react, while others do not. This fact requires a generalization which 

may be found by considering n = UI ∈Z0
 and the set UI = ∅ ,UI ,UI … UIn{ 0 1 2 , ,  } 

where each UI ∈{R , NR } with i ∈Z0 , 0 ≤ i ≤ UI −1  so thati+1 i+1 i+1 

This is equivalent to, 

UI − +i noise 
∑ UI 

= 

−1 
k UI ⋅ln− i o  ( i+1 )  UI − +i 1 +noise( )H UI = eUI +1 ( )  

Equation 3.5 

for UI ≥1, and H ∅ =1, with k R  = .1 298+1 ( )  ( i+1) 
and k NR = .1 915.( i+1 ) 

Using Equation 3.5, UI = ∅ ,UI ,UI , ,  , UI ∈{R , , and m members{ 0 1 2 … UIn } +i NR+i} 
behind the subject of interest having |UI| intermediate queue members between him or 

her and the intruder(s), define, 

P R  +1,UI ) = G (esp m, ) ⋅ H (UI )( + UI UI +1 

⋅ P UI ,UI ,UI … UI ,, ,( UI UI −1 UI −2 1) 
so that for all possible combinations of UI, 

H UI p k UI ln
UI i noise

UI i noise
UI i

UI
i+ =

−
+( ) = ( ) ⋅

− +

− +( )+



∏1 0

1

1
1


















∅ =

,

.recalling 0
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 P R  ) =∑ G (esp m, ) ⋅ H (UI )( + UI +1  UI +1  

⋅ P UI ,UI ,UI … UI ,∅), , 1( UI UI −1 UI −2 

 })using G  esp m  ) ⋅ H (UI −{RUI ( , UI −{R +1}UI  

for P  (R |UI ,UI −2 , ,UI1,∅) , and…UI UI −1 UIU 

 }) 1− G (esp m, ) ⋅ H (UI −{NRUIUI −{NRUI +1}  

for P  ( NR |UI ,UI −2 , ,… UI1,∅)UI UI −1 UUI 

and so on until all the elements of UI have been addressed. 

To provide an example of this process, consider the situation where two queue 

members stand between the intruder(s) and member of interest at queue position 

(+3). Let the number of members behind the (+3) position be given as m. Given 

UI = {UI , UI ,∅ , the probability of the member of interest reacting, P R 3 ),+2 +1 } ( + 
given all possible combinations of UI is found by calculating, 

LP (R+3 ) = E G (esp m, ) . H UI 1 ( )UI L
L P UI+ . ( )L 

G es , ) . H (R , NR ,O) . LG es , 1 . H 2 ( NR ,O L= ( p m  +3 +2 +1 ( p m+ ) + +1 )L L 
. -L
L1 G (es , +2 ) . H+ ( )O L

L + G (es , ) H+3 (R+2 , R ,O)p m  1 p m  +1 

L es . H+2 R ,O L . LG esp m+2 . H ( )L G esp m  ). G ( p m, +1 ) ( +1 ) ( , ) +1 O + ( ,L L L L 

( . -L ( H ( NR ,O)L. H+3 NR+2 , NR+1,O) 1 G esp m, +1 ) . +2 +1 LL 
. -1 G ( + ( ) + G ( p m  
L esp m, +2 ) . H 1 O L es , ) . H+3 ( NR+2 , R+1,O)L L 

. - G (es , 1 ) . H+2 (R+1,O)L . LG (esp m, +2 ) . +1 ( )L1 H O L .p m+L L L L 

The full process may be demonstrated in the relatively straightforward calculation of 

Condition 6: (+4) probability of reaction. Noting that esH  occurs with probability of 

1 in Condition 6, and that 

+ .  0 1  147 
es = . ⋅ ln e ⋅ 0 7800 780 .H p, =2,m=0   = 

 1 147.  






(


⋅

P
Q 2 31 (R 4 | R+3, NR+2 , NR+1 )( ) + 

=G (esp=2,m=1) ⋅H+4 ({R+3, NR+2 , NR+1}) 
{ ⋅ (⋅G (esp=2,m=2 ) ⋅H+3 ( NR+2 , NR+1}) P NR+2 , NR+1 ) 

  + .   2 1  553+ . 3 1  553 
− 1 298. ⋅ 1 915⋅lnln + .    −1 269   + .   1 553. . 2 1 553= −(1 e ) ⋅e 

 2 1  553+ . − . ⋅ln1 915
( )  −1 567.  .1 553 ⋅ − e ⋅e = 0 0171 . 

= −( )

= = + + +

−

G H NR NR P NR NR

e

esp m2 2 3 2 1

1 269
1

,

.
− ⋅

+
+







+ ⋅

+




e

ln ln1 298
3 1 553

2 1 553
1 915

2 1 553

1 553
.

.

.
.

.

.












−
− ⋅

+







⋅ −( ) ⋅ =1 0 017
1 567

1 915
2 1 553

1 553e e
ln

.
.

.

. .

 

 








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+ .  1 1  147 
es = 0 780. ⋅ ln e ⋅ . = 1 269H p, =2,m=1 

 . 1 147 

+ .  2 1  147 
es = . ⋅ ln e ⋅ 1 567.0 780 .H p, =2,m=2   = 

 1 147.  

10Using Table 3.8 with Q (2 31) = , resulting in p = 2, m =1, and noting for Condi-
17 

tion 6 that P(NR+2, NR+1) = 1, 

P
Q 2 31 (R 4 | NR+3, NR+2 , NR+1 )( ) + 

=G (esp=2,m=1) ⋅H+4 ({NR+3, NR+2 , NR+1}) 
1 ⋅ NR , NR })⋅ −G (esp=2,m=2 ) H+3 ({ +2 +1  

  + .3 1  553 − . ⋅1 915 ln 
 1 553 −1 269.  .

P NR , NR = −1 e ⋅e⋅ ( +2 +1 ) ( )   

  + .  2 1  553
− . ⋅1 915 ln −1 567  1 553. . ⋅ − − e ⋅e = 0 076 .1 1( ) . 

  

7
Similarly, from Table 3.8, we have Q (2 3 0) = , so

17 

−−
− ⋅

+

















−

( ) ⋅

⋅ − −( )

1 269
1 915

3 1 553

1 553

1 567
1 1

.
.

.

.

.

e

e

ln

⋅⋅
















=
− ⋅

+







e
ln1 915
2 1 553

1 553 0 076
.

.

. . .

⋅⋅

Similarly, from Table 3.8, we have Q 2 3 0 7( ) = , so



 
( )( )

 2 12 1++ ..553553  −− ⋅ 


11.. 915915 ⋅ lnln 
⋅ −⋅ − −− ee−−  11.. 269269 ⋅⋅ee  11.. 553553  1 1 ==

1 1 00 .
 

059.059  


. .

  

   

   

 

{

(
0

3

P
Q( )2 30 (R+4 | NR+3, NR+2 , NR+1 ) 

=G (es 2 = ) ⋅H+4 ({NR , NR+2 , NR })p= ,m 0 +3 +1 

 ⋅ −1 G (esp ) ⋅H ({NR , NR }) =2,m=1 +3 +2 +1  
  + . 3 1  553 

ln

PQ(2 3 0) (R+4 | R+3, NR+2 , NR+1) 
= G (esp=2,m=0 ) ⋅ H+4 ({R+3, NR+2 , NR+1}) ⋅G (esp=2,m=1) 

−0 780.⋅ H+3 ({ +2 , NR+1}) ⋅ P (NR+2 , NR+1) = −1 e )NR ( 
  3 1 553.   2+1 553 + .

− 1 298. ⋅ln +1 915⋅ln       2 1 553 1 55. 3   .+ .   −1 269⋅e ⋅ −  
. 

(1 e ) 
 2+1 553. −1 915 ln. ⋅   1 553. ⋅e 

= 0.0012. 

Condition 6: +4 P R = ⋅ P R + ⋅ P R( ) ( ) 10 ( )
17
7 ( )+4 Q(2 31) +4 Q(2 3 0) +417 

1 710 
= ⋅0 093 + ⋅ . = 0 084.. 0 071 .

17 17 

P R NR NR NR

G H NR NR NRes

Q

p m

2 30 4 3 2 1

4 3 2 12 0

( ) + + + +

+ + + += =

( )

= ( ) ⋅
| , ,

, ,, {{ }( )
⋅ − ( ) ⋅ { }( )



= = + + +1 2 1 3 2 1G H NR NResp m, ,

+  

( )( ) − ⋅− 11.. 915915 ⋅ 
( )

  
⋅⋅P NP N( RR N −−−−

++ + .
 12 1R e . , 12 NR ) = − 0 7801 = − e 0 780, +  ⋅⋅ee   11.. 553553 

3 1 553.
ln
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Besides becoming increasingly cumbersome, this process is likely to degrade in 

accuracy further from the intrusion point due to factors such as decreased likeli-

hood of observing the intrusion, the observing member of interest missing the reac-

tion of some of the intermediate members, or possibly the experimenter mistaking 

some reactions which seem possible for Condition 4: (+1) which was busiest from 

a queue member reaction standpoint. This approach does work quite well for the 

data evaluated, particularly for empirical reaction probabilities greater than 0.1, but 

further validation is necessary with possible improvements as additional data sets 

become available. Using this and previous mathematical modeling tools already 

presented, we can now solve for N0  and es (N0 ) using already derived Condition 

1: (+1), 2: (+2), 5: (+2), and 6: (+3) sensation magnitude results and H(UI) from 

Equation 3.5. 

⋅⋅
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3.3.5 Estimating esH,1,0 and esH,2,0 

Using Condition 1: (+1) and Condition 2: (+2) for esH , ,  values and Condition 5:1 0  
(+2) and Condition 6: (+3) for esH , ,  values based on H(UI), we have what is needed2 0  

to derive values for N0  and es (N0 )  using Theorems 2.4 and 2.5. Conditions 1 and 2 

involve a one-unit stimulus, and Conditions 5 and 6 involve two-unit stimuli. They are 

combined respectively to form the set P = {1,2}. In other words, 

⋅ . + ⋅ .22 0 455 24 0 455 es = = . and es0 455H ,1 H ,246 
⋅ . + ⋅ .20 0 78 20 0 78 

= = 0 78. .
40 

Since the cumulative sample size of Conditions 1 and 2 is comparable with Conditions 

5 and 6 (i.e., 46 versus 40 respectively), we can better justify applying Theorem 2.5 

to find N0  such that 

  




 

 
 
 

 

  1 0 780.
. .  1+ N0 

N0 
0 455. - ln 

  1  2 + N0 
 N0 

ln 

 
 
 
 



0 780. - ln 
 
 

2 + N0 
N0  

 

 
 
 

 

 1 0 455. 
= 0+ . .

1 
ln 

 
 
1+ N0 
N0 

TABLE 3.10 Summary of Empirical Versus Theoretical Results for Schmitt et al. (1992) and Milgram et al. 

(1986) Field Experiments with Permission from the American Psychological Association 

Condition Position # Obs. Field Experiment 95% Credibility Theoretical Reaction 
in Queue Reaction Probability Interval Probability 

Illegitimate High (+1) 30 0.600 (0.422, 0.755) 0.599 

Illegitimate Low (+1) 30 0.366 (0.054, 0.298) 0.366 

Condition 1 (+1) 22 0.364 (0.197, 0.572) 0.364 

1 (+2) 14 0.143 (0.043, 0.405) 0.170 

1 (+3) 9 0.0 (0.000, 0.259) 0.100 

Condition 2 (+2) 24 0.167 (0.068, 0.361) 0.167 

2 (+3) 15 0.0 (0.000, 0.171) 0.104 

Condition 3 (+3) 20 0.0 (0.000, 0.133) 0.063 

Condition 4 (+1) 23 0.870 (0.676, 0.952) 0.817 

4 (+2) 23 0.435 (0.255, 0.633) 0.401 

4 (+3) 22 0.091 (0.028, 0.280) 0.252 

Condition 5 (+2) 20 0.200 (0.082, 0.419) 0.200 

5 (+3) 15 0.0 (0.000, 0.171) 0.094 

Condition 6 (+3) 20 0.150 (0.054, 0.363) 0.150 

6 (+4) 17 0.118 (0.036, 0.347) 0.084 
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Solving this for social noise in a New York City queue results in N0 = 2 056. The. 
.value for es (2 056) is then, 

  
 1 0 455. 0 780. 

es (2 056) = ⋅  + = ..  1 148. 
2 1 2  056+ .   2 2  056+ .  ln ln      2 056.   2 056  . 

TABLE 3.11 Summary Results of Unit Sensation Magnitude Values by Situation 

_
Social Situation es 

_
Illegitimate Intrusion – Low-Unit Stimulus Sensation Magnitude esl = 0.2869 _
Crowd-Gathering (CG) Experiment – New York City Sidewalk escg = 0.5890 _
Illegitimate Intrusion – Grand Central Rail Ticket Counter esh = 1.1477 

FIGURE 3.1 Empirical Results from Milgram et al. (1986) and Schmitt et al. (1992) versus Theoretically 
Derived Results for the Same. 
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Therefore, it should be no surprise using N0 = 2 056 that. 

In probability space, when applying these results, N0 = 2 056, and the derived values. 
for H(UI) to Conditions 1: (+1), 2: (+2), 5: (+2), and 6: (+3) a mean square error 

of 0.0000018 is obtained. This is anticipated but stated to emphasize when viewing 

Table 3.10 that social queue model parameters were trained on these four conditions and 

positions. Additional conditions and positions from Milgram et al. (1986) having field 

experiment reaction probabilities greater than zero could have been used, but these four 

met Corollary 2.3 requirements and have used the fewest assumptions in their theoretical 

calculation. Hence, it is felt that their use represents the best that can be obtained with the 

empirical data available. 

The values have been established for esH , esL. N0
, NUA 

, NUI 
, with the functions 

GES(esp,m) and H(UI) defined for use in creating the theoretical reaction probabilities 

contained in Table 3.10. All trial configurations fall within their 95 percent credibility 

intervals. The variable values as shown here are used to calculate the Table 3.10 theo-

retical reaction probability calculations. 

esH = 1 148 esL .. = 0 287; 

N0 = 2.056, Nua = 1.147 Nui = 1.553 (possibly constant); 

m N
UA  +

−es ⋅ ln e⋅
p   N

UA 
G (es = −) 1 eES p,m 

 UI − +i noise 
−∑ i

UI 

=0 

−1 
k(UIi+1 ) ⋅ ln UI − +i 1 +noise( )  

and H UI = UI +1 ( ) e 

where k(Ri+1) = 1.298 and k(NRi+1) = 1.915. 

Table 3.11 provides a summary of unit stimulus sensation magnitude values derived 

so far as a function of the social situation. We have already shown that es ≅ ⋅4 esL.H 
The unit sensation magnitude from the crowd-gathering experiment indicates an integer 

relation as well, namely es ≅ ⋅2 es ≅ ⋅4 es . Whether odd coincidence, or an indi-H CG L 
cation of the existence of JNDs, more data in varying situations would be required to gain 

greater clarity. Until then, Table 3.11 highlights a possible pattern, providing yet another 

potential direction for investigation. 

Empirical results from the field experiments conducted by Milgram et al. (1986) 

and Schmitt et al. (1992) are compared to theoretical results as developed in this 

es and

es

H

H

,

,

. .

.

1
0

0

2
0

0

1 148
1

0 455

1 148
2

= .
+

=

= .
+

ln

ln

N

N

N

N





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
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chapter. Figure 3.1 provides a visual depiction of how the two sets of results compare, 

keeping in mind that a good portion of the empirical reaction probabilities greater 

than 0.1 were used in determining model variable values. This indicates nothing more 

than a very good start, with necessary improvements anticipated. Finally, as a marker 

supporting future effort and comparison, a linear regression performed on the two sets 

indicates a very strong direct relationship between empirical and theoretical results 

overall. Note the Pearson’s r(13) value of 0.9774 with p < 0.001. 

With the tools in place and the very strong correlation of calculated results versus 

empirical results from the two independent queue intrusion experiments, we are now 

ready to venture outside the queue to determine if the model as derived has any opera-

tional utility for social systems that may be transformed into a queue-like hierarchical 

process. Before doing so, it would be useful to summarize the findings and provide some 

thoughts on the results before proceeding. 

3.4 Summary 

Mathematical tools, developed in Chapters 1, 2, and 3, are to be carried forward for 

evaluation against more socially diverse situations that go beyond the queue as a 

basic social system. As indicated at the beginning of this book, modeling the queue 

as a social system provides a means to understand a particular social subgroup based 

on its social norms. With this understanding, we may be able to better interpret more 

complex social interactions within the culture of interest, in the present case the west-

ern culture with its own social norms, and build on what is developed here. Chapter 4 

will begin to consider social scenarios outside of the queue, scenarios which may be 

transformed into a queue-like process for analysis. 

3.4.1 Observations 

There are three observations to be made before continuing. The first is the potential 

progression of development and structure of the derived model as presented. The sec-

ond involves additional thoughts regarding the Golden Ratio and its appearance in the 

Milgram et al. (1986) data. The third and final observation is how modeling of the 

social queue may also apply to more complex social situations, such as may be found 

in politics and political identification. These are all observations highlighted for future 

consideration as more is learned about human brain development and operation, and 

more experimental data having an underlying queue structure becomes available. 

As the first observation, the model as derived may represent three distinct stages of 

complexity. The first, under uniform encoding, accommodates a finite number of social 

stimuli and accounts for group pressure to support enforcement of social norms. Uniform 

encoding may have been all that was necessary in prehistoric times with relatively small 

bands of hunter-gatherers (Dunbar and Sosis, 2018). As human populations grew and 

became concentrated in city states, the transition from uniform encoding to exponential 

encoding may have become necessary as a result of social evolution. The transition allows 

for the existence of infinitely many stimuli and just as many group members to amplify 

the sensation magnitude caused by the stimuli. The third and final stage is represented by 
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the development of an independent means to gain uncertainty-based information through 

member reactions that reduce uncertainty. When combined, it seems human evolution 

may have shifted or may be shifting focus from individual organism survival to group 

organism survival enhancements. In other words, the group functioning as a larger organ-

ism has a better chance of survival than that of the individual. Maybe this is reading 

too much into what has been observed during model development, but it does seem to 

warrant further consideration, given the work on multilevel selection theory by Wilson 

(2015, pp. 47–48) and Cheng (2020). 

Equation 3.5 brings us back to Stanley Stevens’ power law and the second observa-

tion. What seems logical in exponential space may seem more interesting in power 

space. In this case, recalling the Golden Ratio equals 1.618, and that its inverse is 

0.618, consider that 

4
 1 618.  4 −z( )3 
  = (0 618 0 146. ≅ e = . ;. ) = 0 127 
1 1  618 + . 

3
 1 618.  3 −z( )2 

. ) = 0 205   = (0 618 0 236. ≅ e = . ; 
1 1  618.+  

2
 1 618.  2 −z( )1 

. 0 386.  = (0 618) = 0 382. ≅ e = 
1 1  618.+  

These observations remind us of Benjafield and Adams-Weber (1976) and Gross 

and Miller (1997) and their hypothesis that the Golden Section plays a role in 

human processing of information. Applying this to Arons and Irwin (1932), in their 

experiment, they had subjects indicate if a second subsequent weight was lighter, 

the same, or heavier than a standard weight provided for comparison. In all cases, 

without the subjects knowing, the second weight was the same as the standard 

weight, based on 2,500 trials, subject H indicated with a 0.2628 probability the 

second weight was lighter, with a 0.3156 probability the second weight weighed 

the same, and with a 0.4216 probability the second weight was heavier. Interest-

ingly enough 

0 4216. 
= 1 604 ≅ 1 618.. . 

0 2628. 

For the third observation, if the postulate is correct that observation of group member 

reactions is performed by the member of interest to reduce uncertainty regarding the 

severity of the event, and given that most queues in Milgram et al. (1986) having a 

theoretical probability of reaction of about 0.1 or less had no reactions directed at the 

intruder during the experiment, then if four group members in sequence immediately 

behind the intrusion point do not react, no one remaining behind those four are likely 

to react. This is shown by, 
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2 2 2 2
 1 618 1 1 618+ .   2 1  618. + . .   +   3 1  618 
  ⋅  ⋅  ⋅ 
1 1  618+ .   2 1  618+ .   3 1  618.   + . + 4 1  618 

2
 1 618.  −z( )4 =   ≅ e = 0.00874 
 + .4 1  618  

−z( )5
This should certainly be true after the fifth member resulting in e = .0 064. This 

supports the localized nature of reactions as commented on in Milgram et al. (1986, 

pp. 688–689) and indicates that multiple members become involved, implying that it 

is not up to just one or two members to inform the rest of the group. What this also 

means is that if three of four levels of hierarchy responsible for informing the remain-

der of the group do not react intentionally for whatever purpose, they can for the most 

part control uncertainty-based information used by the other in-group members they 

are responsible to. Control of information, by reaction, non-reaction, or other means, 

relates to control of perception and how a cohesive group interprets an event. If the 

larger group is not cohesive, then consider the more cohesive and smaller subgroups 

whose members will depend on the social attractiveness of the leaders they choose 

within a hierarchical structure for interpretation of the event. 

If social leaders can form and control a highly attractive (i.e., cohesive) group of 

members who share similar views, then the group and its beliefs can become self-

perpetuating as alluded to by Festinger (1957, pp. 186–187, with permission from 

Stanford University Press), 

What is more, the degree to which the persistent deviant was rejected was greater 

in the high attraction than in the low attraction groups. In other words, there 

was evidence that reduction of dissonance was attempted through rejection of 

the person who voiced disagreement and that the extent to which this occurred 

depended upon the magnitude of the dissonance created by this disagreement. 

This chapter finishes the queue model derivation. To investigate possible applications 

of this model in more complex social situations, we now move outside of the queue 

and consider social systems that may be transformed back into a queue-like social 

structure, some of which have already been alluded to. To be a little mischievous, 

this transformation approach will be termed the queue transform, given it transforms, 

in appropriate cases, one social system into another. This is similar in nature to the 

Constant-Q transform used in signal processing used to transform data series informa-

tion into the frequency domain where the information is more meaningfully and easily 

evaluated. 
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4 
APPLYING THE QUEUE TRANSFORM 

[O]ur social actions are steered by the position in which we perceive ourselves and others within 

the total social setting. 

Lewin, (1945/1997, p. 51) with permission 

from the American Psychological Association 

The theoretical basis for quantitatively modeling the western first come, first serve 

queue was derived in Chapters 1–3. The objective in this chapter is to consider the 

applicability of the derived model against slightly more complex basic social systems 

with underlying queue-like structures. In mathematics, this would be comparable to 

the Erlang density function with its underlying Markovian structure. Since the queue 

is just one of many subgroups in social space, it is not intended nor is it likely to rep-

resent all social systems – only a very few simple ones. What is of interest is what it 

can represent. This chapter evaluates various social psychology experiments utilizing 

social systems with underlying queue-like structures. Those that have such a structure 

will be defined as being queue transformable. 

Field and laboratory experiments are used in this chapter for their controlled sit-

uations and documented results by professional social psychologists. Some of the 

experiments are more controversial than others, but they all offer insight into efficacy 

of the queue transform. The queue transform is applied to these experiments to find 

which are explainable under the transform and which are not. The intended result is 

a better understanding of how and when the queue transform may be applied. The 

format used in the analysis of each experiment is background and scenario, original 

conclusions, application of the queue transform, and discussion of queue transform 

results. Experiments evaluated under the queue transform along with their authors 

are: 

1. Variations of the Obedience Study – experiments by Milgram (1963, 1965a, 1965b) 

2. Lady and a Flat Tire – a field experiment by Bryon and Test (1967) 

DOI: 10.4324/9781003325161-5 

https://doi.org/10.4324/9781003325161-5
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3. Smoke from a Vent – an experiment by Latane and Darley (1968). 

4. Lady Needing Help – an experiment by Latane and Rodin (1969) 

5. Accident Victim – an experiment by Clark and Word (1972) 

6. Theft of Beer and Money – Experimental design lessons learned from two experi-

ments by Latane and Elman (Latane and Nida, 1981) and Latane and Darley (1969) 

To derive theoretical results for the non-queue social systems with queue-like structure, 

using what has been developed up to this point as a foundation, a proposition must 

be introduced. In preparation, define the group member social space K such that 

P(K) = 1. Maintaining the nomenclature of Klir (2006, p. 7), let U K  repre-Pr ⊆ 
sent the uncertainty caused by a socially deviant stimulus which a subject of interest 

might react to for the given social situation. Then P(UPr) = GES(esp,m) represents 

the a-priori probability of reaction based on the level of uncertainty felt by the sub-

ject of interest. As in Chapter 3, let UI represent the set of uncertainty-based infor-

mation provided by group members as observed by the subject of interest who is 

also a member. Now let U K  represent the posterior uncertainty felt by thePo ⊆ 
subject of interest after observing and incorporating uncertainty-based information 

from other members of his or her group. Define this posterior probability of reaction 

P U( Po ) = GES (esp m, ) H UI (UI ) . As per basic set theory, assuming dissonance-+1 

reducing information UI = ∅{ , NR1, NR 2,..., NR UI }, it was shown in Chapter 3 that| |  
for subject member of interest probability of reaction P UPo ),( 

c
UI UI UI ∩ = U −  UI j = UPr ∩

 UI j = UPr UPo Pr j=1  j=1   j=1
UI cj 


  and 

  UI UIc 
P U ∩ UI c 

Pr  j=1
UI j  = GES (esp m, ) ⋅ P ( j=1 j )   

−es ,= − e p m  ⋅(1 ) H UI( )UI +1 

This brings us right back to a slightly more general form of Equation 3.2. To reiterate 

UI c
from Chapter 3, P ( UI j ) = H UI (UI )  is the proportion of uncertainty-based+1j=1 
dissonance-reducing information available to remove prior uncertainty caused 

by the observed stimulus event for the given social situation. An example case is depicted 

in Figure 4.1, where U = U − 3 NR . The correspondence with Klir (2006,Pr Po i=1 i 

p. 7) has now been sufficiently developed to introduce a general proposition to address 

more complex social systems having underlying queue-like structures using some of the 

nomenclature Klir developed (i.e., an effort is being taken throughout to recognize related 

efforts for further investigation as desired). 

Proposition 4.1: Model for Basic Social Systems with Underlying Queue-like 

Structures 
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FIGURE 4.1 Conceptual Depiction of Uncertainty and Uncertainty-based Information in Situational 
Social Space. 

Define the reaction group as the subjects of interest and any confederates that the 

subjects of interest consider equally likely to react. Assumptions currently made 

for model use are, 

1. The social situation is infrequent (no pattern) and ambiguous. 

2. That there are one or more simultaneous independent groups (IG), each with 

independent UI, which share the same k subject(s) of interest, the same social 

situation, social norms, social stimulus/stimuli p, and any amplification mem-

bers m relating to esp m  ., 

3. Uncertainty-based information is independent of prior uncertainty. 

4. Subjects of interest and pertinent group members must have physical or visual pres-

ence with one another to gain verifiable reaction/non-reaction uncertainty-based 

information. 

5. Amplification of sensation magnitude occurs when the subject of interest iden-

tifies with and feels responsibility toward group members m who model (e.g., 

social priming) the expected social behavior and/or would consider it the sub-

ject of interest’s role to react to the stimuli. 

6. All k naive subjects of interest are considered equally capable of reducing or 

eliminating the social deviation by reaction. 

7. The dissonance-causing social situation concludes when at least one of the k 

naive subjects of interest react to the social stimulus/stimuli. 

8. If all k subjects of interest are close friends (i.e., not strangers), then 

k approaches 1. 
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Given these assumptions, the general equation representing probability of at least 

one of k subject members of interest reacting P(R) in the group is given by, 

k
    UIP ( )R P UPo = − −  Pr ( j=1 = ( ) 1 1 P U ∩  UI c j )
   IG    

k
   UI c= −  − P ( )UPr ⋅ P (1 1 UI ) j=1 j 
  IG   Equation 4.1 

k
   UI c1 1 G es= − −  ⋅ P UI j ES ( p,m ) ( =1 )j    IG  

Proof: The following is a direct proof which assumes all stated associated assump-

tions are met. For each of the k subjects of interest, each uses the other for uncertainty 

information to reduce his or her own dissonance. Given IG, the number of indepen-

dent groups, with Upr the same for each group under Assumption 2, and assuming 

each of the k subjects of interest are strangers to one another and hence independent, 

the probability of one or more of the subjects of interest reacting P(R) is, 

k 

P R = P 
k

U = −  1 P U ( )  (i= i Po, ) 1 ∏ 
 − ( i Po, )1  

i=1 

k
   UI c1 1 GES (esp,m ) ⋅ P ( UI j ) = −  −  

j=1    IG  

The implications of Proposition 4.1 are significant. In essence, the more indepen-

dent social groups a subject of interest identifies with through various social means, 

whose members are experiencing the same socially deviant event, the greater the 

probability of a reaction to create change leading to the reduction of the emotional 

discomfort caused by the dissonance-causing event affecting them. How this may 

relate to change and adaptation in an increasingly chaotic environment (Hubler and 

Pines, 1994, p. 343) caused by increasing uncertainty through active agents who either 

provide strategic active accurate information or misinformation is a branch topic that 

is beyond the scope of this effort but certainly has the potential for further exploration 

in an open forum. 

Finally, for a social group composed of long-term friends, it will be shown in 

Section 4.4 that it is as if there is only one subject of interest (i.e., this is equivalent to 

k = 1 in Equation 4 1. ). Realistically, this is not a completely practical assumption, 

given variations in each individual’s social background, but for small groups of two 

or three close friends, the actual differences in their social parameter sets directing 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114 Applying the Queue Transform 

perception, interpretation, and reaction to various social stimuli are assumed to over-

lap sufficiently so as to provide a good approximation. 

4.1 Variations of the Obedience Study 

Background and Scenario: Milgram (1963, 1964, 1965a, 1965b, Experimental design 

synopses and results with permission from the Estate of Alexandra Milgram and SAGE 

Publishing). This is Dr. Stanley Milgram’s most famous set of experiments, and quite 

possibly his most controversial. After the Second World War, the world was appalled 

by and questioned how anyone could do what the Nazis did from 1933 to 1945, where 

millions of innocent civilians were slaughtered on command. What was learned from 

his obedience experiments is unsettling at best. Certain controversial aspects of this set 

of experiments have been touched upon by Patton (1977) and others, but historical data 

would tend to support the results that Stanley Milgram reports. The experiment begins 

with an advertisement for volunteers from around the local region, stating only that Yale 

University is conducting a scientific study on memory and learning. Necessary quali-

fications are listed along with the statement that if accepted into the study, volunteers 

will receive payment in the amount of $4.50. At the end of the advertisement, volunteers 

provide their contact information under the agreement that they want to participate in 

the study. Already, at this point in the process, a choice has been made whether to par-

ticipate or not participate, and as Patton (1977) indicates, a study such as this may be 

more attractive to those looking for acceptance or, alternatively, desiring to be affiliated 

with a Yale University study given its associated academic prestige. This is important, 

since once the choice is made, the potential volunteer will begin to find additional rea-

sons or information to internally enhance the importance of participation in the study in 

an effort to reduce any concerns about the choice taken, in effect, solidifying the choice 

made (Festinger, 1957, pp. 32–34) and making it more difficult to reverse later. This may 

imply that a subgroup of the overall population volunteered, but the world is made up of 

subgroups, so the insight provided in these experiments is still important. 

In the original base-line experiment, after being accepted into the study, a naive subject 

and trained confederate were paid to perform what they were told was a study regarding 

the effects of punishment on memory. The subjects were told the money was theirs to keep 

no matter what happened after they arrived at the Yale University laboratory. Once there, 

the confederate was always chosen as the learner in what appeared to the naive subject as 

a random selection process. The subject of interest therefore became the teacher under the 

direction of the experimenter. 

The baseline remote learner experiment (Milgram, 1963) has the learner in an adja-

cent room from the teacher and experimenter. The remote learner is strapped to a chair 

with electrodes, then attached, and is instructed to provide the correct response to word 

pairs provided by the teacher. If the learner responds incorrectly, the teacher provides 

a shock to the learner via an apparatus in front of him or her consisting of 30 switches, 

starting at 15 volts, and in 15-volt increments ending at 450 volts. After a wrong answer 

and shock, the teacher moves to the next word pair and administers the next higher volt-

age if the learner answers incorrectly. At 300 volts, which ends the group of switches 

labeled “Intense Shock” on the teacher’s machine, the learner pounds on the wall and 

does not answer any further questions. At this point, the teacher is instructed by the 



 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

  

 

 

 

  

 

  

 

 

 

 

Applying the Queue Transform 115 

experimenter to consider no response as a wrong answer. At 315 volts, which begins 

the group of switches labeled “Extremely Intense Shock” on the teacher’s machine, the 

learner again pounds the wall, after which no further pounding is heard. The switches 

were divided and labeled into a total of seven groups starting with “Slight Shock” and 

ending with “Danger: Severe Shock.” The final two switches after the “Danger: Severe 

Shock” group were marked “XXX.” In fact, there was no shock to the learner, but the 

teacher (naive subject) from all appearances did not know that. 

During the process, if the naive subject in the role of teacher expresses 

discomfort or unwillingness to continue the experiment, the experimenter, in a 

calm but firm tone, instructs the teacher to continue in a graduated authoritative 

response (Milgram, 1963, p. 374). Apparently, the experimenter was sometimes 

more forceful in prompting the teacher to continue (Ofgang, 2018), possibly tak-

ing some liberty in the scripted graduated responses provided, but the structure 

of the procedure remains the same. 

Eight variations (conditions), with 40 trials each, of the obedience experiment were 

performed by Dr. Milgram with the same basic structure. 

1. Baseline: Remote learner as described in Milgram (1963, pp. 375–376) 

a. There were 14 defiant naive subjects out of 40 defying the experimenter and 

refusing to continue before reaching the maximum of 450 volts, five of which 

refused to go above 300 volts. 

b. In a prior pilot study, in the absence of any protest from the learner, virtually 

all naive subjects reached 450 volts (Milgram, 1965b, p. 61). 

2. (Remote learner) Voice feedback from learner heard by naive subject and 

experimenter. Learner begins to grunt at 75 volts, begins to verbally declare pain 

of shocks at 120 volts, shouts to be let out and continues to declare pain begin-

ning 150 volts leading to agonized screams beginning 270 volts, states refusal to 

respond further at 300 volts, and remains silent after 315 volts (Milgram, 1965a, 

Table 4.1 Base-line, 1965b, footnote 6). 

a. There were 14 defiant naive subjects out of 40 defying the experimenter and 

refusing to continue before reaching the maximum of 450 volts, a total of 7 

refused to go above 150 volts, 8 above 195 volts, and 11 above 300 volts. 

3. (Remote learner/two obedient confederates) Voice feedback from learner with two 

confederate teacher assistants backing the experimenter’s directions while assisting 

the naive subject who administers the shocks (Milgram, 1964, 1965a, Table 4.1). 

a. There were 11 defiant naive subjects out of 40 defying the experimenter and 

refusing to continue before reaching the maximum of 450 volts, 9 of which 

refused to go above 300 volts. 

4. (Remote learner/two disobedient confederates) Voice feedback from learner with 

two confederates assisting the naive subject. The first confederate assistant protests 

and refuses to continue the experiment at 150 volts, the second at 210 volts, with 

both taking a seat elsewhere in the room as the experiment continues (Milgram, 

1964, 1965a, Table 4.1). 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

116 Applying the Queue Transform 

a. There were 36 defiant naive subjects out of 40 defying the experimenter and 

refusing to continue before reaching the maximum of 450 volts, labeled “XXX,” 

13 of which refused to go above 195 volts and 31 refused above 300 volts. 

5. (Learner in visual proximity) Learner is 1.5 feet from naive subject with voice 

feedback. Experimenter is also in the same room (Milgram, 1965b, p. 62). 

a. There were 24 defiant naive subjects out of 40 defying the experimenter 

and refusing to continue before reaching the maximum of 450 volts, labeled 

“XXX.” 

6. (Learner in touch proximity) Naive subject holds learner’s hand down on shock 

plate after 150 volts with experimenter in the room (Milgram, 1965b, p. 62) 

a. There were 28 defiant naive subjects out of 40 defying the experimenter 

and refusing to continue before reaching the maximum of 450 volts, labeled 

“XXX.” 

7. (Remote learner and remote experimenter) Remote learner provides voice 

feedback. Experimenter either leaves the laboratory after giving instructions and 

continues further communication by phone or is never seen and provides instruc-

tions by tape recording (Milgram, 1965b, p. 65). 

a. Does not meet assumption 4 of Proposition 4.1. Not analyzed. 

8. (Remote learner) Voice feedback, experimenter in the room with naive subject in 

an alternate social situation. The experiment was conducted outside of the Yale 

campus in a sparsely decorated three-room office suite in a run-down commercial 

building in the town of Bridgeport under the guise of a private firm conducting 

research for industry (Milgram, 1965b, p. 70). 

a. There were 21 naive subjects out of 40 defying the experimenter and refusing 

to continue before reaching the maximum of 450 volts, labeled “XXX.” 

Original Observations and Conclusions: In his original article addressing the base-

line experiment, Milgram (1963) relays two findings and 13 features that are thought 

important in explaining the obedience observed. The first finding is that 26 subjects 

abandoned a fundamental moral rule not to hurt another person against his or her 

will. All that was required for this abandonment was instructions from an author-

ity having no special powers to enforce his commands. The second finding was the 

observed high level of tension experienced by the subjects. In this case it might be 

argued that choosing between two conflicting social norms led to increasing dis-

sonance, one generated by the apparent need to follow directions from an authority 

for what seemed a just cause and the other by the apparent harm being caused to the 

learner. Of the 13 features discussed, the one that is most pertinent to this effort is the 

ambiguity of the situation as perceived by the teacher for what seemed a legitimate 

situation and good cause in a closed environment (Milgram, 1963, pp. 377–378). 

The variations as discussed in Milgram (1964, 1965a, 1965b) are more interesting 

and spill over into a two-group dynamic: one group that violates a social norm for 

the cause of science at a prestigious institution and the other that upholds the social 

norm of doing no harm to another human. In trying to understand and convey what 
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he was seeing, Stanley Milgram elaborates on the group affiliation aspect in Milgram 

(1965a, pp. 131–134). Using the queue transform here, many of the same conclusions 

are reached. Finally, in reflection, Stanley Milgram provides his view at the end of the 

article summarizing his obedience experiments, and although all is worth quoting, the 

first two sentences are provided here. 

The results, as seen and felt in the laboratory, are to this author disturbing. They 

raise the possibility that human nature, or – more specifically – the kind of 

character produced in American democratic society, cannot be counted on to 

insulate its citizens from brutality and inhumane treatment at the direction of 

malevolent authority. 

(Milgram, 1965b, p. 75, with permission from SAGE Journals) 

Application of the Queue Transform: Before proceeding, the source of dissonance 

must be defined. In all cases, the source of dissonance is the conflict between two 

group social norms felt by the naive subject. The first group is represented by the 

experimenter, a group member of a large and prestigious academic institution that is 

perceived to be conducting an experiment for an important cause. The second is the 

larger community group of which the naive subject is a member, a group that has the 

social norm that it is wrong to harm others. It is the naive subject making the choice 

at each shock level as to whether to administer shock, and it is that choice, based on 

group identification and resultant uncertainty information, that regulates the disso-

nance within the naive subject. 

Condition 1 analysis: Given the inverse relationship between tolerated behavior and 

dissonance magnitude (Zipf, 1948, loc. 10890), since it is considered sadistic to hurt peo-

ple with electric shocks, assume in the absence of the experimenter that the naive subject 

would stop administering shocks with probability near 1 prior to reaching 450 volts, such 

that G (es , ) = 1. Now, with the experimenter as a non-reacting group member betweenES 1 0 

the learner as an abstraction in the other room and the naive subject, the probability of 

defying the experimenter who is providing uncertainty information {NR+1}  is, 

1+1 553. −1 915 ln. ⋅ 
 1 553.GES es1 + }, ) = GES (es1 0 ) ⋅e( ,{NR 1 0  , 

1+1 553.
−1 915 ln. ⋅ 

 1 553= e . = .0 386. 

Using the empirical probability of 14
40 = 0 35 that the naive subject actually defies the. 

experimenter, the 95 percent credibility interval is (0.222,0.506) which 0.386 is well 

within. As an observation to keep in mind as we continue, it is possible that the actual 

probability of a naive subject actually stopping the experiment in the absence of the 

experimenter before reaching 450 volts is, 

0 35.
G (es , ) = = 0 907ES 1 0 . 

0 386. 
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Condition 2 analysis: The learner is still an abstraction verbally protesting from the 

other room while the experimenter is in the room with the naive subject, possibly 

interpreting the learner’s protests for the teacher (Latane and Nida, 1981, p.309). In 

this situation, nothing is different from the base-line condition from the standpoint of 

cumulative probability, so it is not surprising that Conditions 1 and 2 results are the 

same but now with a 95 percent credibility interval of (0.255,0.46) based on 80 trials. 

Combining trials with Condition 1 would indicate GES (es1 0 ) < 1, possibly closer to , 
0.9 as the maximum likelihood estimator would suggest. 

Conditions 3 and 4, with two confederate teacher assistants, are much more inter-

esting. The naive subject labeled Teacher 3 in Milgram (1964, p. 138) remains respon-

sible for administering the electric shock. Since the two confederates have no role in 

stopping the electric shock, they may be viewed as group members only. Stanley Mil-

gram also considered this as likely for both Condition 3 and 4 experiments (Milgram, 

1965a, pp. 132–134). 

Condition 3 analysis: Since the two confederates back the experimenter, there is no 

alternative group for the naive subject to transition to, and therefore the empirical result 
11 

.of = 0 275  should be within the credibility interval bounds of Condition 1 and 2
40 

results. It may also be argued the two confederates add cognitive elements (Festinger, 

1957, pp. 21–28) to the naive subject supporting social norm violation within the exper-

imenter group. It is argued here the two confederates increased the social noise N0 
somewhat thus reducing the probability of reaction (defiance) slightly. Whether bias was 

inserted by the confederates or not, the impact was not statistically significant. 

Condition 4 analysis: Given Axioms 1 and 2, the naive subject will select the most 

appealing group when the choice presents itself, with the unchosen alternative group 

becoming the out-group (Tajfel and Turner, 2004, p. 284). As the confederates sequen-

tially express their concern about the experiment to the experimenter, then remove 

themselves from the experiment by taking a seat at the side of the room, the naive 

subject observes a number of social factors at play. As Milgram (1965a) noted, the first 

is that there are minimal consequences, if any, for ending participation, and doing so is 

not unusual since the two confederates did it. It was also observed that the continued 

presence of the confederates after leaving could cause embarrassment to the naive sub-

ject if he or she continues the shocks, thus causing further dissonance and conflicting 

with Axiom 2. By the two confederates leaving the team, the naive subject must also 

assume full responsibility for his or her actions. At this point, the naive subject has two 

groups to choose from – one supporting the social norm of do no harm to others, the 

other having the social norm of allowing harm to another for the sake of science. 

Noting naive subject reaction is localized around the voltage at which some form 

of protest by the learner occurs (Milgram, 1963, 1965a) and using Condition 2 for a 

comparison without confederates, 

P (Condition 2 defies ≤ 195 volts) = 8 
= 0 2.

40 trials 

1+1 553. − . ⋅1 915 ln
 −es ,  1 553  

1 0   .1 e ⋅= −  e
  
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Based on this, for Condition 2, es1,0 = 0.73 at 195 volts. For Condition 4, when one 

confederate refuses to continue the experiment, the theoretical probability of defiance 

should be, 

  1+1 147.  −0 73. ⋅ln e⋅   1 147.  P (Condition 4 defies ≤ 195 volts) 1 e  ⋅0 386. = 0 268= −  . 

  

13
The empirical value was = 0 325. with a 95 percent credibility interval of

40 trials 
(0.201,0.481) within which the theoretical prediction falls comfortably, implying the 

naive subject is still using the experimenter for uncertainty information. Similarly, 

P (Condition 2 defies < 450 volts) = 14 
= 0 35.

40 trials 

1+1 553. − . ⋅1 915 ln −es1 0,   . 
1 5531 e ⋅= −  e

  

From this, es1,0 = 2.375 at 435 volts. Then, 

  2+1 147 .
2 375⋅ln e⋅− .    1 147.  P Condition 4 defies < 450 volts 1 e = .( ) = −  0 992  

  
, or 

−2 375.P Condition 4 defies < 450 volts 1 e = .( ) = −  0 907. 

The Condition 4 empirical probability of defiance is 
36 

= 0 9. 0. What this 
40 trials 

implies is, if only 90 percent (0.907) of the naive subjects even consider stopping, 

as seems to be the case in all conditions to this point, or even without considering 

the confederate members, if all naive subjects consider stopping as an option, the 

experimenter is no longer considered a group member to the naive subject and is no 

longer used for uncertainty information. The naive subject has in effect shifted with 

the two confederates to the community group where the social norm of do no harm is 

followed. 

Conditions 5 and 6 analysis: Both are basically the same, with possibly a little 

more intense discomfort in Condition 6 since the naive subject is holding the learner’s 

hand down on the shock plate. In both conditions, the learner is visible and in the 

same room, creating a two-group social situation. The first group is the same as the 

Condition 2 group. The second group now uses the learner as the source of uncertainty 



 



.


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information and the experimenter as the cause of the naive subject’s dissonance. It is 

proposed that the naive subject found the learner’s protests in front of the experimenter 

to be a means of dissonance reduction, much like that of a queue member in front 

of the subject member of interest reacting to an intrusion. This interpretation would 

imply that a naive subject’s dissonance caused by leaving the experimenter group is 

greater than remaining and using the learner to protest the experiment (Axioms 1 and 

2). We then have, 

   
UI c P ( )R = −1 1−G ES (es1 0, ) ⋅ P   ( UI1 )j=1   IG∈ NR ,R }   { 1 1   

c c= GES (es1 0, ) ⋅ P (NR1 ∪ R1 ) 
1+1 553 1+1 553.   . . ln−1 915⋅ −1 298. ⋅ln     1.5553   1 553. = G es ⋅ e + eES ( 1 0, )  

 
1 1.553 1+1 553 +  .

−1 915. ln 1 298⋅ln⋅ − .    .   .  1 553 1 553−e  
 

[0 386 . 0 386 0 525]= 0 907. ⋅ . 8 + 0 525 − . ⋅ . 
0 907 ⋅0 708 = 0 642.= . . . 

The Condition 5 visual proximity result of 0.6 has a 95 percent credibility interval of 

(0.45,0.74). The Condition 6 touch proximity result of 0.7 has a 95 percent credibility 

interval of (0.545,0.819). The theoretical result of 0.642 falls well within both. It is 

mentioned for future consideration that the 0.6 value may be lower due to increased 

social noise/ambiguity, given some abstraction is still possible in the visual proximity 

situation. 

Condition 8 analysis: Recall that the experimenter is no longer associated with a 

laboratory at Yale University but instead is a private contractor conducting research 

for industry. Interpretation is not possible here without an alternate condition for the 

same social situation. As two possibilities, based on the previous experimental condi-

tions evaluated at the Yale laboratory, it would seem the remote learner is either now 

part of the naive subject’s group and is providing uncertainty information, conflicting 

with assumption 4, or the sensation magnitude has actually decreased for some reason, 

possibly due to location or other factors. If the first, then 

1 1  553.  + 
1 298⋅ln− . 

 1 553 .
P Condition defies < 450 volts .( 8 ) = 0 907 ⋅e 

  

= 0 907. ⋅0 525 = .. 0 476 
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For this experiment, the empirical probability was 
21 

= 0.525 with a 95 per-
40 trials 

cent credibility interval of (0.374,0.671) with the theoretical explanation being well 

within the credibility interval. Otherwise, if the social situation has changed the sensa-

tion magnitude somehow, then the new es1,0 value would be −ln (1 0  525− . 0 744 ,) = . 
not the es1 0 = 2.375 found at Yale. Given that there are no further experiments for , 
this social situation from which to better understand the results, it would seem that 

this will remain an enigma for now under the queue transform and given assumptions. 

Discussion of Queue Transform Results: This was a complex set of experiments, 

but, given today’s social environment, well worth considering. It is clear from these 

experiments and from real-world events that when combining an authority figure from 

a respected institution, tailored uncertainty information, and the right social situation, 

there is in fact an impact on behavior. It is clear that Patton (1977) had some poten-

tially valid arguments regarding the obedience experiments, but history as data would 

indicate that Stanley Milgram highlighted an underlying structure of human behavior 

that needs to be acknowledged and dealt with if social stability is to ever be achieved. 

Results from Conditions 1 through 6 would seem to indicate either 10 percent of 

the sample population has some anti-social challenges to address, or 10 percent saw 

through the cover story of the experiment. Overall, the six experiments successfully 

evaluated would indicate we are defined by the group(s) we identify with. Further 

analysis of experiments such as these and others should improve application of this 

model. 

4.2 Lady and a Flat Tire 

Background and Scenario: This experiment by Bryon and Test (1967, pp. 401–403, 

Experimental design synopsis and results with permission from the American Psycho-

logical Association) was intended to study the use of social models and their effect on 

altruistic behavior. As an example, children are more inclined to donate to a charitable 

organization if they see an adult model do so first. In this case, the model used was a 

man helping a woman fix her flat tire by the side of a road in a residential area of Los 

Angeles, California. Two conditions were evaluated, the first condition involving a 

confederate standing by her 1964 Ford Mustang with a flat rear tire and an inflated tire 

leaning visibly against her car. The second condition involved the same scenario, but 

with a model car stationed along the side of the same road 440 yards before the woman 

needing help with her flat tire. The model car was raised by a jack with a young female 

confederate watching a male confederate change the tire. The location of both cars was 

chosen so that there was no opportunity to avoid passing both the model car and the 

woman needing help. The experiment was performed on two consecutive Saturdays, 

using the same two periods of time for data collection each day resulting in a total of 

four events. Each event involved 1,000 vehicles passing by. Effort was made to mix up 

the locations to exploit changing traffic patterns. Defining a reaction as a vehicle pull-

ing over to help the young lady, the results are: 

Condition 1: With Model (Day 1: 1345–1515 and Day 2: 1630–1730) – 2,000 

opportunities, 58 reactions 
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Condition 2: Without Model (Day 1: 1600–1700 and Day 2: 1400–1530) – 2,000 

opportunities, 35 reactions 

Original Conclusions: It was noted that the time of day had little impact on aid 

provided. The general belief provided was that observing the helping behavior 

served as a reminder of the social norm that we should help one another. 

Application of the Queue Transform: Since the confederate who is ostensibly in 

need of help is standing by the side of the road with the tire propped against her car, 

a passerby might think she was waiting for help already on the way. If she did not 

seem in distress, which she did not appear to be, then ambiguity is introduced as to 

whether she needs help. With situational ambiguity introduced, Proposition 4.1 may 

be applied. To apply the queue transform, assume the following: 

1. A passerby does not stop to help if a car in front of him or her does, implying all 

uncertainty-based information is from intermediate non-reacting cars. 

2. Having observed the model situation, and that the lady in distress is within sight 

of the model, the subject of interest feels increased responsibility to react. This 

results in m = 1 for the “with model” condition. 

3. Assume (speed ·12.5 seconds) equals driver scanning distance. California 

Department of Motor Vehicles states that drivers should scan 10 to 15 seconds 

of driving distance ahead (California Driver Handbook, 2020, p. 42). Australian 

guidance is similar in stating that drivers should scan ahead 12 seconds (Scan-

ning for Hazards, 2022). 

Using Equation 4.1 with IG = 1 and m = 1 when the model is within visual sight of the 

subject of interest leads to, 

58 −es1 1, −z( UI )P (R | with model = = 0 029. = −1 e ⋅e , and )
2000 ( ) 
35 −es1 0, −z( UI )P R | no model = = 0 0175. = −1 e ⋅e .( ) ( )2000 

This could be solved directly since there are two equations and two unknowns (i.e., es1 
and |UI|), but let us find the value for m in the “with model” for the sake of argument 

by solving for |UI| in an independent manner. 

Since we do not know if females are equally likely as males to help, or what the 

proportion of males to females is that drive by, the sensation magnitude es1 0 for this , 
must be an average value of the two. P(R) will be the average probability a subject 

pulls over for this given social situation. Given there are a total of 2,000 cars passing 

by over a total of 150 minutes for each condition and that residential speed limits are 

25 miles per hour (mph) unless otherwise posted (California Driver Handbook, 2020, 
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p. 41), then the number of cars in the quarter mile (0.25 miles) between the model car 

and lady in distress is calculated in the following manner, 

2000 cars cars 
0 25 miles ⋅ = 0 25 miles ⋅32 = 8 cars.. . 

2 5. hrs ⋅ 25 mph mile 

Based on the third assumption, the subject scans 12.5 seconds ahead at a speed of 12.22 

yards per second or a decision-making scanning distance of 152.7 yards. There will 

152.7 yards
then be an average of ⋅8 cars = 2.78  cars between the subject of inter-

440 yards 
est and the lady in distress when she enters the subject of interest’s decision-making 

scanning distance. Using |UI| = 2.78 to derive the no-model condition for es1 0 leads to , 

 2 78+1 553. .
−1 915 ln35 (1 e−es1 0, )⋅ 

. ⋅
 1 553.  

,= −  e or
2000 

 2 78 1  553+ ..  
1 915. ⋅ln 

 1 553. −es 35 ⋅e 
1 0, . , so tha1− e = = 0 125 at es1 0 

2000 , 

= −ln 1 0  125. 0 134.( − ) = . 

It is proposed that the model condition (confederate man helping confederate woman) 

enforces the social responsibility of the subject in much the same manner as queue 

members behind the member of interest. The subject has just observed the model and 

is now observing whether the cars in front of him or her pull over to help. If none of 

the cars ahead pull over to help, and the subject car feels the good Samaritan at the 

model car is part of his or her group and situation, the probability the subject car pulls 

over is now, 

 . + .  2 78 1  553  
. ⋅ln−1 915   −es

1,m  1 553.  P R model( | ) = − − −1 e ⋅e1 1  ( )  
   

 m 1 147    2 78 1  553. + . + . −0 134⋅ln e⋅ −1. ⋅ln. 915   1 .   e 1 553  1 147  .= − e ⋅
  
  

58 
. = .= 0 029 

2000 
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Solving for m results in 

1 
.  0 1402  .1 147 . 0 134 

m = ⋅ −1 147 = 1 232 ≅ 1.. . 
e 0 1402 − 0 029  . . 

Going back now and using m = 1 under assumption 5 of Proposition 4.1 results in 

  + .    2 78 1  553. + . 1 1  147 
− . ⋅ln e⋅ −1.9915⋅0 134 ln     1 147.  1 553 P R model| ) = − e   .( 

1 

⋅e 

   
0 1959 ⋅0 1402. = 0 027 = . . 

With an empirical result of 0.029, the 95 percent credibility interval for the “with 

model” condition is (0.023,0.037), indicating that the theoretical result of 0.027 is 

well within the accepted interval. Given the large sample size for this experiment, if 

we use NUA = 1.0, we obtain the theoretical result of 0.0282 indicating NUA = 1.0 is 

potentially more accurate than NUA = 1.147 for this situation. 

Discussion of Queue Transform Results: The basic reaction probability without 

the model and without observing others is 1 – e–0.134 = 0.125. This seems rather 

low, but then we do not know what level of social noise is involved. The relevance 

to the subject of interest in this situation is small, given that the subject does not 

know the woman, she is very likely not in his or her immediate (personal) social 

group, there is potential legal or physical danger when stopping to help a stranger, 

she does not seem in distress, and her situation has no impact on the subject other 

than some possible amount of guilt for not stopping. Given the experiment was 

conducted in a residential section of Los Angeles, the resultant desire to avoid 

interaction may also be higher than if the experiment were conducted in a rural 

town (Milgram, 1970). 

It is interesting to note in this field experiment that there are drivers both ahead and 

behind the subject, and there is the model. Drivers ahead and within scanning range 

of the subject are used as sources of uncertainty information, but drivers behind the 

subject do not influence his or her probability of reaction, indicating the subject of 

interest, unlike in a queue, does not perceive cars behind him or her as group members 

possibly due to the anonymity afforded by driving in a car, or the perception is that 

those on the road do not expect others to help. 

The model seems to represent drivers who identify in varying degrees with a group 

having the social norm of assisting others or at least assisting a lady in distress. These 

drivers may consider the Samaritan assisting the woman at the model car as a group 

member, now behind them, who may judge their reaction or, worse, may end up hav-

ing to react if the subject does not. Not stopping could cause the subject to feel as 

though he or she is not supporting this group’s social norms. 
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4.3 Smoke From a Vent 

Background and Scenario: Latane and Darley (1968, Experimental design synopsis 

and results with permission from the American Psychological Association). In the 

original New York Times 1964 version of the Kitty Genovese murder article, 38 people 

overheard her struggle and eventual murder without responding or calling the police. 

Although many of the original details surrounding that brutal, early morning murder 

of 28-year-old Kitty Genovese in New York City were not entirely accurate (McFad-

den, 2016), the original story created strong interest as to why people may or may not 

help another in distress. In their pursuit to understand this, Latane and Darley (1968) 

conducted an experiment where a mixture of naive subjects and nonreactive confeder-

ates were placed in a waiting room and directed to fill out a survey. While filling out 

the survey, non-toxic smoke created by the experimenters was streamed (puffed) into 

the room through a wall vent. The probability of reaction metric was simple, either the 

naive subject went to find a staff member within 6 minutes to report smoke entering 

the room, or the subject remained in the room filling out the survey. The experiment 

was conducted using three experimental conditions provided in Latane and Darley 

(1968, pp. 217–218): 

Condition 1: (24 trials) Probability of reaction by one naive subject was 0.75 

(18/24). 

Condition 2: (10 trials) Probability of reaction by one naive subject and two non-

reacting confederates in the room was 0.1 (1/10). In this experimental condition, 

sometimes both confederates were in the room when the naive subject arrived, 

sometimes they arrived after the subject, and sometimes one confederate arrived 

before and one after the subject arrived (Latane and Darley, 1970, p. 47). 

Condition 3: (8 trials) Probability of reaction by at least one of three naive sub-

jects was 0.38 (3/8). 

Smoke coming from the vent is the unexpected deviation from what should occur 

for the social situation as described. Given the increasing probability of reaction as a 

function of time, sensation magnitude associated with the event is also likely influ-

enced by its duration. In leading up to their description and discussion of results for 

this experiment, Latane and Darley (1968, p. 216) hypothesize that after observing an 

event, but before acting, a bystander will determine if action is required basing part of 

that decision process on how others around him or her are reacting. 

Original Conclusions: After presenting their findings, alternative hypotheses were 

offered as to why results over the three conditions occurred as they did. The summary 

conclusion, based on this experiment and previous studies performed, was (Latane 

and Darley, 1968, p. 221) that a bystander is influenced by the presence of others, 

either through their influence, or by the bystander passing responsibility to those 

around him or her. 

In what will be seen as important later, it was also concluded (Latane and Darley, 

1968, p. 221) that the relationship between bystanders may be important. 
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These subjective observations do not explain in a quantitative manner why only 

one-out-of-ten naive subjects responded in the Condition 2 experiment, nor do they 

explain the relationship between Conditions 1 and 2, and 1 and 3, but it does turn out, 

as we shall see, that knowing the personal relationship between bystanders is very 

important. Latane and Darley (1968) do note that the Condition 2 result may possibly 

be used to derive the probability of at least one of the three naive subjects in Condition 

3 reacting. Their result was 1 – (1 – 0.1)3 = 0.27, which means little, given only eight 

trials were performed resulting in a 0.38 probability of reaction and an incredibly large 

95 percent credibility interval of (0.14, 0.70). 

Application of the Queue Transform: Dehaene et al. (2008, p. 1218) state that 

Americans, when shown several dots, count the dots linearly up to about ten, but then 

exhibit a significant logarithmic component of estimation for sets of dots greater than 

ten. In Chapter 3, it was observed that in a queue, two people between the intruder(s) 

and member of interest were treated logarithmically by the member of interest. The 

member of interest may have counted them as two people, but internal processing of 

the information based on social impact appears to be logarithmic. Since the assump-

tions for Proposition 4.1 are met, we may apply the queue transform to the experiment 

of Latane and Darley (1968). 

Condition 1, a single naive subject in the room, is the baseline for this set of experi-

ments. After 6 minutes, the theoretical sensation magnitude for a single stimulus 

(smoke from vent) is, 

es1 0, = −ln ( − . ) =1 38631 0 75 . 

Condition 2, having two non-reacting confederates in the room as an ad hoc group, is 

equivalent to two confederates ahead of the member of interest in a queue having the 

same unit social stimulus magnitude and social noise as Condition 1. The confeder-

ates are now sources of uncertainty information, just as intermediate queue members 

would be. From this, the Condition 1 result may be applied while introducing two 

non-reacting queue members between the stimulus and the member of interest. Using 

Equation 4.1 with IG = 1 and k = 1 results in, 

2 1  553.  +
−1 915 ln

(1− e−es1 0, ) ⋅e−z( )2 = 0 75 ⋅e 
. ⋅ 

 1 553. 
 = 0 154.. . 

Given only ten trials were conducted in the Condition 2 experiment, resulting in a 

sample mean probability of reaction of 0.10, the theoretical result of 0.154 is well 

within the 95 percent credibility interval of (0.023,0.413). 

Condition 3 has three naive subjects who react independently to a common stimu-

lus (i.e., IG = 1, k = 3) who use the other two members for information. Applying 

Equation 4.1 leads to, 

P R  = −  − −1 1
 

1 ees1 0, ⋅e−z( )2 
 
k 
= −  − .

3( )  ( ) 1 (1 0 75 ⋅0 205. ) 
= 0 394. 

  
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Recalling the Condition 3 empirical result of 0.38, the theoretical Condition 3 result 

based on the Condition 1 baseline is almost exact using Proposition 4.1. Given a base-

line condition as was provided by Condition 1 of this experiment, the queue transform 

under Proposition 4.1 seems to adequately model and explain the empirical results 

obtained in Latane and Darley (1968). What remains to be addressed is the observa-

tion that probability of naive member reaction increases with time. 

Discussion of Queue Transform Results: There is no known raw data supporting 

the figure in Latane and Darley (1968, p. 218) so data from their probability of reac-

tion over time is visually approximated for the Condition 1 (single naive subject) and 

provided in Table 4.1. 

What is interesting is the plot of column es ( )t  from which Figure 4.2 is cre-1 0, 
ated. As can be observed, the slope is basically linearly increasing until the time 

when no more reactions occur (i.e., 3.5 minutes). In this case, sensation magnitude 

for Condition 1 is increasing at an average rate of 0.4 per minute. The question to 

pose now is whether this increase is from clarifying what the social deviation actually 

is, assuming relevance remains constant, or possibly the social noise is decreasing 

through the integration of observation over time using some mental process similar to 

what is done in narrowband acoustic signal processing. 

Latane and Darley (1968, p. 219) note that the median latency for the Condition 

1 naive subject to notice smoke entering the room was five seconds; yet, it is over 2 

minutes before 50 percent of the subjects report the smoke. Social noise has to do 

with noticing the event and accounting for any social inhibitions that may impact the 

desire to react. In Condition 1, as the subject is alone, there would be no inhibitions 

by other social group members as Latane and Darley (1968, pp. 216–219) discuss for 

Conditions 2 and 3. It is instead likely there is a delay in reporting just to confirm the 

event is prolonged and that it will be there when the person it is reported to investi-

gates (i.e., subject of interest desiring to avoid embarrassment). 

A simple puff of smoke for one or two seconds could be anything, and, if it did not 

return, then there would be little immediate reason to report it. Typically, in Condition 

1, the subjects investigated the smoke by sniffing it, waiving their hands in front of 

it, feeling its temperature, etc. After a few more moments of hesitation, the subjects 

who did report the smoke would calmly walk out and alert a staff member (Latane and 

Darley, 1968, p. 217). This indicates that the subject’s evaluation of the event occurred 

over time, with a growing concern leading to increasing dissonance. Sensation mag-

nitude of the event eventually levels off even as the event continues. Data from the 

experiment and/or the experience/creativity of the author are insufficient at this point 

to come up with a mathematically justifiable explanation. 

TABLE 4.1 Probability Naive Subject Reports Smoke vs Time, Latane and Darley (1968, p. 218) 

Minutes t = Condition 1: Probability of Report GES (es1,0 ) es1,0 ( )t = −ln 1 − GES (es1,0 ) 

1 0.375 (9/24) 0.462 

2 0.542 (13/24) 0.780 

2.5 0.625 (15/24) 0.981 

3.5 0.750 (18/24) 1.386 

0.750 (18/24) 1.386 6 
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FIGURE 4.2 Sensation Magnitude as a Function of Time from the Introduction of Smoke to 
Probability of Subject Reacting. 

4.4 Lady Needing Help 

Background and Scenario: Latane and Rodin (1969, Experimental design synopsis 

and results with permission from Elsevier Publishing) further explore the effects of 

social influence by others in the immediate vicinity when someone is observed or 

heard to need help. In this experiment, the impact on helping is evaluated as a func-

tion of whether a pair of students in various conditions will react and help a lady in 

distress. The importance of this experiment is that it evaluates the reaction of naive 

subjects who are friends, possibly relating to experiments indicating urban dwellers 

are less likely to assist than rural dwellers (Milgram, 1970). 

The social stimulus in all four conditions is the same. Subjects who volunteered 

to evaluate games for market research are met by a female representative, who is a 

confederate in the experiment, and taken to a testing room where they fill out a survey. 

The representative goes into the next room which is accessible from the testing room. 

Four minutes after she leaves, and while the student is still filling out the survey, she 

turns on a high-fidelity tape recorder in the other room. What the subject(s) in the 

other room hears is a loud crash and scream indicating the representative fell while 
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getting something. They then hear moans indicating she cannot get the shelf off her. 

After about 130 seconds, if there was no intervention, the representative would limp 

out and ask the subjects about the noises and if they heard them. 

Four conditions are evaluated under this scenario. They are, 

Condition 1: (26 trials) One naive subject is greeted and fills out the questionnaire 

alone in the testing room. 

Condition 2: (14 trials) One naive subject and one nonreactive confederate are 

greeted and taken to the testing room where they fill out the questionnaire. 

Condition 3: (20 trials) Two naive student strangers are greeted and taken to the 

testing room where they fill out the questionnaire. 

Condition 4: (20 trials) Two naive student friends are greeted and taken to the 

testing room where they fill out the questionnaire. Since not mentioned in this 

experiment, it is worth noting that in the study by Clark and Word (1972), the 

pair of friends used in that experiment had been friends for an average of 3 

years. 

Original Conclusions: Results from the experiment by condition and fraction of sub-

jects who react as a function of time are provided in Table 4.2. Probability of reaction 

fractional values remain constant after 110 seconds until the experiment ends at 130 

seconds. 

Final conclusions by the study authors concerning this experiment indicate that 

social inhibition effects may be somewhat general even under various social situations 

(i.e., smoke-filled room, a lady in distress, etc.). It has been shown now in multiple 

experiments that bystanders are less likely to react if other bystanders are present, 

with the nature of the bystander (i.e., confederate or stranger) effecting how likely the 

probability of reaction is. In this experiment, a nonreactive confederate is the greatest 

inhibitor, an independent stranger capable of reacting provides a moderate reduction 

in probability of at least one of the subjects reacting, and a friend the least amount 

of inhibition when a second subject considers reacting to an ambiguous but potential 

emergency. Results also point to why larger cities, filled with strangers, may be less 

safe than smaller towns from the standpoint of getting aid if in distress. In small towns, 

people tend to know one another, or at least feel a sense of common community. It is 

then possible that in small towns, even though they may not all be friends, they are not 

likely to feel like strangers when experiencing an ambiguous and emotionally uncom-

fortable situation together. Additionally, it is anticipated that group cohesiveness is 

greater in small towns, amplifying dissonance caused by a social deviation when other 

town members are in visual proximity. 

Application of the Queue Transform: As was done for the smoke-filled room, we 

must first find the baseline sensation magnitude es1 0  sample mean. As per Table 4.2, , 
after 70 seconds, the probability of reaction for a single naive subject in this situation 

stabilizes at 18 = 0.6923. Therefore,
26 

.es = −ln 1 0  6923. ) =1 179.1 0, ( − 



 

 

  

   

 

 

130 Applying the Queue Transform 

TABLE 4.2 A Lady in Distress Experiment Probability of Reaction Versus Time P(R, t) Data Approximated 

from Latane and Rodin (1969, pp. 193–195, Figures 4.1 and 4.2) 

10 20 30 40 50 60 70 80 90 100 110 
sec sec sec sec sec sec sec sec sec sec sec 

Condition 1: Subject alone P(R,t) 0 6 11 16 17 17 18 18 18 18 18 
26 26 26 26 26 26 26 26 26 26 26 

Condition 2: Subject w/ confederate P(R,t) 0 0 1 1 1 1 1 1 1 1 1 
14 14 14 14 14 14 14 14 14 14 14 

Condition 3: Two naive strangers P(R,t) 0 0 1 1 3 5 5 6 7 7 8 
20 20 20 20 20 20 20 20 20 20 20 

Condition 4: Two friends (naive subjects) 0 2 7 12 14 14 14 14 14 14 14 
P(R,t) 20 20 20 20 20 20 20 20 20 20 20 

As per Proposition 4.1, the probability of the naive subject reacting P(R) in Condition 

2 of this study, given that the confederate will not react (i.e., NRConf = 1.0 is 

−es
1 0, −z( )1

P R( ) = − e ⋅e = 0  692. ⋅0 386 = .(1 ) . 0 267. 

This seems much larger than the value of 0.071 for a naive subject and confederate 

combination at 130 seconds. Keeping in mind though that there were only 14 trials 

conducted in Condition 2, the theoretical result falls well within the 95 percent cred-

ibility interval of (0.016,0.319). On the regression plot, the empirical 0.071 result 

almost appears as an outlier, once again indicating the need to plan for more trials in 

an effort to reduce credibility intervals to something more meaningful. 

Using Proposition 4.1 on Condition 3 of this study, the theoretical probability of at 

least one of the two naive strangers reacting is 

2 
1 2

P R  = −  − −1 1  (1 e ) ⋅e 
= −  − . ) = 0 463.( )   es

1 0, −z( )  1 (1 0 267 .  

The empirical result for Condition 3 based on 20 trials is 0.40. The associated 95 per-

cent credibility interval is (0.218,0.615) indicating that the theoretical result of 0.463 

using the Condition 1 baseline value for es1 0 = 1.179 is well within the credibility ,
interval. 

Up to this point, we have found that when one or more confederates or strangers 

are involved, the queue transform has satisfactorily matched empirical results. It is 

assumed that this is the case since those two conditions reflect the conditions modeled 

for the queue as a social system. Having two naive friends in this situation offers a 

new social dynamic, given the strong personal relationship which implies similarity 

of perception, interpretation, and reaction (Parkinson et al., 2018). In addition, Latane 

and Rodin (1969, pp. 197, 200–201) postulate the following regarding the two friends’ 

condition: 
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1. Unlike with strangers, friends are less likely to fear embarrassment between them. 

a. It was found in Zoccola et al. (2011, p. 927) that the desire to diffuse respon-

sibility to a stranger to avoid embarrassment or responsibility exists and fol-

lows the queue transform model. Since mentioning an embarrassing fact, in 

this case (Zoccola et al., 2011) to the confederate interviewer results in mak-

ing a choice, it is proposed that dissonance is involved and that Axiom 2 of 

Festinger (1957) pertains (i.e., avoid increasing the dissonance). 

2. Friends are less likely to misinterpret each other’s non-reaction than they may 

with strangers. It was noted by the experimenters that friends seemed better able 

to convey their concern and plan of action both nonverbally and verbally to one 

another. 

3. Friends are less likely to pass responsibility of action to another friend thereby 

reducing diffusion of responsibility to the other participant. 

4. In Condition 2, 14 percent of the subjects reported a moderate degree of influ-

ence by the other’s presence, 30 percent reported the same in Condition 3, and 

70 percent reported the same in Condition 4 which involved the two naive 

friends. 

To theoretically evaluate Condition 4, where two friends are the naive subjects, we 

need only apply Proposition 4.1 and note that no uncertainty-based information is 

gained by observing the friend. Quantitatively stated, 

−es
1 0, .−1 179 

P R( ) = − e 1 e = .(1 ) = −  0 692. 

The empirical probability of reaction for Condition 4 was 0.7, so the nearly identical 

theoretical result is within the 95 percent credibility interval of (0.478,0.854) based on 

14 reactions out of 20 trials. 

Discussion of Queue Transform Results: Use of Proposition 4.1 in this social 

situation further supports the assumption that friends perceive, interpret, and react 

to social stimuli similarly for a given social situation as suggested by the work of 

Parkinson et al. (2018). This might be carried further when comparing rural reac-

tions (closer-knit social groups) to urban reactions (more diverse social groups with 

varying social norms). 

4.5 Accident Victim 

Background and Scenario: Clark and Word (1972, Experimental design synopsis 

and results with permission from the American Psychological Association) build on 

the work of Latane and Darley by comparing results from situations with no ambi-

guity to those where ambiguity is present in an experiment designed to focus on the 

role of social influence among participating group members. It is the second exper-

iment with ambiguity that is of interest here. The procedure in both experiments 

was that while the student subjects were filling out their questionnaire as directed 
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by the experimenter, a victim posing as a university maintenance employee – who 

the students had seen in the hallway when reporting to the experiment – would 

enter the room carrying a ladder and venetian blind. Passing the subjects, he would 

enter an adjacent room and could be heard working through the closed door. Three 

minutes after the maintenance man entered the adjacent room, he would push the 

ladder against the wall and then onto the floor while pulling down the venetian 

blinds and making it sound as if he fell. 

The experiment with ambiguity consisted of two variations, a low ambiguity and 

high ambiguity event. In the low-ambiguity event, the maintenance man, after the 

staged accident, would groan and call for help for 75 seconds with decreasing loud-

ness. In the high-ambiguity event, there was no groaning or calling for help, only the 

crash of the ladder, venetian blinds, and sound of the maintenance man falling to the 

floor. In both experimental events, students are seated in a room at a table approxi-

mately 15 feet from the door which allows access to where the maintenance man was 

working. Maximum observation time for a reaction by the student is 75 seconds, after 

which the experiment is terminated. There were three student conditions, all involving 

naive students. The three conditions follow: 

Condition 1: (10 trials) A single naive student is seated at the table filling out 

the questionnaire. The seat selected is the one closest to the door in which the 

maintenance man went through. 

Condition 2: (10 trials) Two naive students are seated at the table filling out the 

questionnaire with one student being about two feet further from the door than 

the seated student closest to the door. 

Condition 3: (10 trials) Five naive students are seated at the table filling out the 

questionnaire. Three of the five student members are even further from the door 

than the other two who are placed in the same position as Condition 2. Clark 

and Word (1972, p. 397) indicate the five-person group was actually on average 

a 4.5-person group. 

The response times and probability of reaction, which included either getting up and 

checking on the maintenance man in the adjacent room or going to inform staff, are 

contained in Table 4.3. 

TABLE 4.3 Mean Reaction Time and Probability of Reaction for the Second 

Experiment (Clark and Word, 1972, p. 397, With Permission from the 

American Psychological Association) 

Condition Composed of 10 Trials Each High-Ambiguity Event 
Delay, Reaction Probability 

Condition 1. Single Naive Student at the Table P(R) = 0.3 

Condition 2. Two Naive Students at the Table P(R) = 0.2 

Condition 3. Five Naive Students at the Table P(R) = 0.4 
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Since there are only ten trials for each event condition, the credibility intervals are 

large, making meaningful model analysis difficult. The low-ambiguity event is not 

addressed in this analysis since all probabilities of reaction equal 1. All that may be 

surmised from the low-ambiguity event is that the sensation magnitude was relatively 

high, possibly due to lower social noise caused by significantly decreased ambiguity 

of the situation resulting from the maintenance man groaning. The high-ambiguity 

event though offers some potentially meaningful insight. 

Original Conclusions: Clark and Word (1972) considered what might happen if the 

modeling approach taken were to consider each student as acting completely indepen-

dently, as Latane had done in previous experiments. As a result, for the two-student 

condition 

1 – (1 – 0.3)2 = 0.51, 

and for the five-student condition 

1 – (1 – 0.3)5 = 0.832. 

The two-student result is just within the 95 percent credibility interval of 

(0.06,0.518). The five-student result is well outside of its associated 95 percent 

credibility interval of (0.167,0.692). Hence, Clark and Word concluded that stu-

dents were not acting independently, and in both cases the students had an inhibit-

ing influence on one another. 

Application of the Queue Transform: Using Proposition 4.1, we have for the single 

naive student as the baseline case, 

1 0 3) = .es = −ln ( − . 0  3567.1 0, 

For Condition 2, accounting for each student (stranger) gaining uncertainty-based 

information from the non-reaction of the other and applying the baseline result to 

this independent group of two subjects results in at least one student’s probability of 

reacting as 

2
 es

1 0, −z( )1  2 
1 1 (1 e ) ⋅e 1 (1 0 3 0 386 = 0 218.− − −  = − − . ⋅ . ) .

  

This result is basically the same as the empirical result of 0.2 and is well within 

the 95 percent credibility interval of (0.06,0.518). Using this same approach for 

the five-person (i.e., on average 4.5-person group), it is apparent that something 

new is happening. 

The probability of one student reacting after observing four non-reacting students is 

4 1  553  + .
−1 915 ln 

es
1 0, −z( )4 . ⋅ 


 
1 553  .(1− e ) ⋅e = 0.3 ⋅e = 0.0261. 
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For Condition 3, the probability, under Proposition 4.1, that at least one of the five 

students reacts is then, 

5( es
1 0, −z( )4 5− − −  ) = − − 0 0261 .1 1 1( e ) ⋅e 1 1( . ) = 0 124. 

As Table 4.3 indicates, the empirical probability of reaction is 0.4. The theoretical 

probability of reaction of 0.124 is therefore not within the 95 percent credibility inter-

val of (0.167,0.692), indicating it unlikely that Proposition 4.1 used in this manner 

represents what is occurring socially. 

Recall that Clark and Word (1972) state for the five-person group that three of the 

five were placed even further from the door than the other two. They were concerned 

about this, certainly from the standpoint of reaction time as they discussed, but possibly 

for other reasons that were not discussed. It is not clear how much farther away from 

the two students closest to the door the remaining three were placed, possibly leading to 

two spatially distinct groups, with one group closer to the door than the other. This might 

occur where the group of two is on one side of the table, and the second group of three is 

on the other side. So far, we have shown it is unlikely that the five students were equally 

influenced by one another as they seem to have been in the two-person group. Instead, it 

is hypothesized from this analysis that two distinct and independent subgroups formed 

assuming they were sufficiently separated within the room. 

Consider this alternative, where the two students closest to the door adhere to Prop-

osition 4.1 as they did in the two-student condition, but in this case without regard for 

the other three students further away and seemingly in a physically distinct location 

from the other two. Under this assumption, the three students furthest from the door 

act as an independent group without regard for the two students closest to the door. 

Another way of stating this is that the two students closest to the door form one group, 

and those furthest from the door form another, with each group being independent and 

not having the same subjects of interest as required by assumption. Modifying Equa-

tion 4.1 to accommodate this leads to 

 1 1  553.  
2 
 2 1  553.  

3+ +
−1 915. ln −1 9 ⋅ln⋅ .915     1 553.    1 553   .

1 1 0 3 ⋅e ⋅ − . ⋅e− − . 1 0 3 
   
   
    
1 0  782. ⋅0 827 = −  . 

= 0 354.. 

This alternative is also well within the 95 percent credibility interval. Without know-

ing the actual placement of students, there may be other variations to consider, but this 

alternative model provides the closest value to the empirical 0.4 result and therefore 

is the most likely until more detailed information is obtained, if ever, regarding the 

experiment’s placement of students in the room. 
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Discussion of the Queue Transform Results: To continue hypothesizing, though 

fun, would be fruitless given the size of the credibility interval and the lack of detailed 

experimental conditions. Desired data for any future experiments would include time, 

event, placement of students, and clearly defined placement positions of students who 

reacted. What can be stated with some confidence for the five-student case is that each 

student does not rely equally on the other students for uncertainty-based information, 

and the five students do not coalesce as a traditional social queue based on distance 

from the door (calculations were done separately). Additionally, it seems that group 

pressure, found in a socially attractive/cohesive group, is not present in this situation. 

Given the results of this and previous experiments, a hypothesis is provided. 

Hypothesis 4.1: When in an ad hoc group, having no group-specific social norms 
which lead to expectation for those closer to the stimulus to react, there is little-
to-no group pressure that leads to the amplification of sensation magnitude 
beyond what each group member feels individually. 

It is important to note the words, “having no group specific social norms.” The group 

as defined here solely exists to individually fill out a questionnaire. Helping a mainte-

nance man who may have fallen (ambiguous) is not necessarily a social norm which 

requires enforcement by a group member. In western culture, this situation does 

require alerting staff or others who identify with group occupancy in the building and 

then possibly helping the maintenance man if the subject feels qualified (Sorokin’s 

contractual society) – hence, there is further potential ambiguity. 

4.6 Theft of Beer and Money (Design of Experiment 
Lessons Learned) 

Background and Scenario: Two experiments are considered in this final analysis sec-

tion. The first is an experiment by Latane and Elman (Latane and Darley, 1970, 

pp. 70–74, Chp. 8; Latane and Nida, 1981, pp. 311, 314–315) involving the staged 

theft of money. The second experiment by Latane and Darley involves the staged theft 

of a case of beer from a liquor store, presented in (Latane and Darley, 1969, 1970, 

pp. 74–77; Latane and Nida, 1981, pp. 311, 314). 

In the first experiment, two conditions were evaluated (Latane and Nida, 1981, 

p. 314) with associated data in Table 4.4. 

Condition 1: (25 trials) One naive student volunteer. 

Condition 2: (16 trials) Two naive student volunteers. 

TABLE 4.4 Summary Results for the Theft of Money Experiment – Data from Latane and Nida (1981, 

with Permission from the American Psychological Association) 

Assumes all Students Observed the Event Total Number of Trials Immediately Reported Theft 

Condition 1: Single Naive Student Observer 25 6 of 25 (0.24) 

Condition 2: Two Naive (Pair) Student Observers 16 3 of 16 (0.188) 
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Application of the Queue Transform: Assuming all students noticed the event, for the 

Condition 1 single naive student who spontaneously reports the theft as the baseline 

case, 

6 
Spontaneous Report: es1 0, = −ln


1−  = 0 2744.. 
 25  

We may now use Proposition 4.1 to obtain the theoretical probability of reporting 

from the Condition 2 student pairs, 

2 
.P R = −  − −1 1

 (1 e−0 2744 ) ⋅e−z( )1  = −  − . )2 = 0 178.( )   1 (1 0  0931 .
  

The theoretical result of 0.178 is almost identical to the empirical result of 0.188 and 

well within the 95 percent credibility interval of (0.066, 0.434), making it likely that 

all subjects observed the theft. 

The second experiment involves the staged theft of a case of beer from a liquor 

store. This is actually a clever field experiment. Unfortunately, the experimenters did 

not quantify the number of paired subjects who were friends but instead made a sub-

jective assessment while providing no justification. Finally, and as critical for our pur-

poses, the probability of a customer reporting the theft for each of the four conditions 

was not provided in either reference. If this data becomes available in some useable 

form in the future, this would be an interesting analysis to further evaluate the reaction 

impact when two naive friends are the subjects. 

TABLE 4.5 Summary Results from Chapter 4, Sections 4.1 through 4.6, not Including Baseline Condition 

Results 

Chapter 4 Experiments: Reference and Condition Empirical 
Reaction 

Theoretical 
Reaction 

Probability P (R) Probability P (R) 

Milgram (1963) – Condition 1 0.350 0.386 

Milgram (1965a, 1965b) – Condition 2 0.350 0.350 

Milgram (1964, 1965a) – Condition 3 0.275 0.350 

Milgram (1964, 1965a) – Condition 4 0.900 0.907 

Milgram (1965b) – Condition 5 0.600 0.642 

Milgram (1965b) – Condition 6 0.700 0.642 

Bryon and Test (1967) – Condition 2 0.029 0.027 

Latane & Darley (1968) – Condition 2 0.100 0.154 

Latane & Darley (1968) – Condition 3 0.380 0.394 

Latane & Rodin (1969) – Condition 2 0.071 0.267 

Latane & Rodin (1969) – Condition 3 0.400 0.463 

Latane & Rodin (1969) – Condition 4 0.700 0.692 

Clark & Word (1972) – Condition 2 0.200 0.218 

Clark & Word (1972) – Condition 3 (Assuming 0.400 0.354 

Two Independent Groups) 

Latane & Nida (1981) – Condition 2 0.188 0.178 
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FIGURE 4.3 Empirical Results Compared to Theoretical Results for Queue and Non-Queue Social 
System Examples. 

4.7 Cumulative Summary of Queue Transform Results 

Table 4.5 provides summary results for experiment conditions analyzed in Sections 

4.1 to 4.6, excluding baseline condition results used for initializing the queue trans-

form for the given experiment. Figure 4.3 includes data from Tables 3.9 and 4.5 with 

a resulting Pearson’s r(27) value of 0.9762 with p < 0.001. 
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5 
FROM THE QUEUE TO THE COMMONS 

Thus, the queue seems to be a social system in which position must be earned, and one can only 

earn it through waiting. 

R. J. Toledo, May 29, 1978, Stanley Milgram Papers (MS 

1406, Box 101, Folder 138 with permission from the Estate of Alexandra Milgram) 

High status or other disproportionate benefits must be earned. 

Wilson et al. (2013, p. S22, with permission from Elsevier Publishing) 

Direct consequences for this work so far have been to establish a relationship between 

Fechner’s Law and the power law and to provide the ability to accurately model west-

ern queues and propose a rough modeling approach for some basic queue-like social 

system experiments within the western culture. These are academically significant in 

themselves, but otherwise are just parlor tricks if there is no intention of applying this 

work to something more meaningful. To this end, and as a starting point, let’s consider 

the queue as a common-pool resource system (Ostrom, 1990, p. 90) and apply the 

queue transform to quantitatively model the utility of certain design principles and 

how they apply in maintaining stability of the queue. To fall into the category of a 

CPR, one or more resource units offered in a queue must be subtractable (rival good) 

yet available to all in the community of intertest (non-excludable). If a queue can be 

shown to represent a common-pool resource system, then the queue transform may 

be applied to operationally demonstrate the importance of certain design principles 

necessary to facilitate social stability in the queue. Consequently, it may then provide 

a window for looking into the larger social system in which the queue as a social sys-

tem resides. Applying and building on the psychophysics-based queue transform to 

analyze more complex western social systems using core design principles for social 

stability as a starting point might be useful in beginning to address the vision Elinor 

Ostrom (2012, pp. 68–71) had of creating a multidisciplinary multiple-tier framework 

in which to analyze social–ecological systems. 

DOI: 10.4324/9781003325161-6 
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5.1 The Common-Pool Resource 

The focus of this chapter is on types of goods and services necessary for meeting our 

day-to-day and long-term social needs. In this context, goods and services that meet 

our social needs will be defined as social resources. These social resources in turn 

extend from rival to non-rival social resources, which in turn extend from exclud-

able to non-excludable (Fisher et al., 2009, p. 647). If a resource is rival, then if part 

of the resource is used, less exists for use by others in the community. If a resource 

is excludable, then its use may be restricted to certain individuals in the community. 

Elinor Ostrom (2005) indicates four basic types of resources: toll goods (predomi-

nantly non-rival and excludable), public goods (predominantly non-rival and non-

excludable), private goods (predominantly rival and excludable), and common-pool 

resources (predominantly rival and non-excludable). One further level of distinction 

is that within each of these categories there are two components – the resource sys-

tem and the resource unit (Ostrom, 1990, p. 30). It is the resource system that allows 

access to the desired resource unit, such as a parking garage allowing access to a finite 

number of parking spaces and spaces closer to the exit being more desirable. Barkin 

and Rashchupkina (2017) discuss the gray areas which can exist when distinguish-

ing between these four categories, and how a category may change based on the way 

it is viewed. It may be that one particular category shares some similarity to one or 

more of the remaining three, or that a complete shift in category may occur based on 

what resource unit is being considered. A definition of common-pool resource, seem-

ingly to have been settled on beginning with Ostrom et al. (1994), and as used more 

recently in Ostrom (2002, p. 1317), is that common-pool resources are systems having 

resource units that renew at a limited rate so that one person’s use subtracts from the 

number of resource units available to others in the system. With the basic compo-

nents and definition identified, let’s now consider the train ticket queue in terms of a 

common-pool resource. 

To frame the train ticket queue as a common-pool resource in a socially representa-

tive manner, let’s consider two hypothetical and geographically separate communities 

each relying on their single train that leaves once a day. In these two communities, the 

community member who obtains a seat on a train using the queue as a resource system 

is equated with obtaining a means for incrementally improving the member’s long-term 

prosperity. Let the first community have what we will label an ideal queue. In the ideal 

queue, train tickets are affordable by everyone in the community. Tickets at this com-

munity’s ticket booth begin to be sold to those in the first-come first-served queue 20 

minutes before each daily train departure. At the end of the twenty-minute period, sales 

are discontinued for the day, and each member’s position is adjusted for the next day 

based on what benefit to the community each provided that day or has shown the poten-

tial to provide. In the second community, there are two social subgroups – a higher-

class subgroup and a lower-class subgroup. The higher-class subgroup has the legal 

right to intrude at the front of the queue without any social repercussions, while those 

in the lower-class subgroup follow the rules of the first community but may or may not 

be able to afford the ticket depending on circumstances at the time – if and when they 

ever reach the ticket server. If unable to afford the ticket after having reached the ticket 
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server, the lower-class member in the second community must return to the end of the 

queue and start over again. In these two hypothetical communities, time in queue and 

ability to obtain a ticket are the two interconnected social resource units of interest. 

If a member in either community earns higher status and thus position in the queue 

(i.e., greater prestige) through providing above normal benefit or promise of benefit 

to the community (Cheng, 2020, p. 238; Ostrom, 1990, p. 96), then those displaced 

behind him or her consider this a legitimate intrusion and appreciate the benefit the 

community member provides, thereby reducing their dissonance. In the second com-

munity, if a dominant higher-class member intrudes (enters) at the front of the queue, 

then all lower-class community members lose time and must wait a little longer based 

on service time at the ticket server and any subsequent intrusions that may occur by 

other higher-status members. Work related to this type system indicate that the second 

community’s social resource system has reduced the social stability compared to the 

first (Cheng, 2020, p. 239; Wilson, 2015). 

As a simple quantitative example demonstrating the impact of intrusion, consider 

a queue whose single server has an exponentially distributed mean service time of 

two minutes and that twenty community members are waiting in queue to obtain a 

train ticket for a train that leaves in twenty minutes. Using the Erlang Type k density 

function (Gross and Harris, 1985, pp. 171–172), the probability that the queue member 

in the kth position gets his or her ticket before the train leaves, designated Pk (ticket) is 

k20min (. /5 min)P (ticket) = 
)

⋅( )x k −1 ⋅e−(0 5. /min)⋅xdxk ∫0 (k −1 ! 

Therefore, the probability the first queue member obtains his or her ticket before the 

train leaves is almost guaranteed at P1 (ticket) = 0.99995. The probability of the 

second member getting a ticket before the train leaves is P2 (ticket) = 0.99947. 

The probability of the tenth member getting a ticket before the train leaves is P10 

(ticket) = 0.5358, and the probability of the twentieth member getting a ticket before 

the train leaves is P20 (ticket) = 0.0033. If, while waiting in line, an intrusion occurs, 

then the probability of obtaining a ticket is decreased for all members behind the intru-

sion point. For example, when an intrusion occurs at the front of the queue, the tenth 

member now becomes the eleventh member having probability P11 (ticket) = 0.4107. 

Hence, by just one intruder taking a position ahead of the tenth member, the probabil-

ity of the now former tenth member obtaining a ticket has been significantly reduced. 

Basically, time in queue and queue position (status) are interchangeable (Zhou and 

Soman, 2003, p. 521). The higher the queue status, the less time in queue and the more 

likely that a ticket is obtained that day leading to greater opportunity. 

In general, if members had been waiting for an ice cream cone, the members behind 

the intrusion point would lose time as a resource unit but still have access to an ice 

cream cone. If an intrusion occurs while waiting for the train ticket, the probability 

of a member obtaining a ticket along with the opportunity that the ticket provides is 

reduced. If the member fails to get a ticket, he or she loses both time and opportunity 
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that day. There are many similarities between this example and day-to-day life, with 

history as data providing this theme repeatedly. We are born with certain gifts or capa-

bilities that could benefit the community if the desire exists to apply them, given the 

opportunity exists to employ them. Ideally, we work to improve our status in the queue 

through benefitting the community and waiting in an effort to increase the probability 

of obtaining the desired ticket and opportunity it affords. If we miss the chance, we 

try again. Others though, for whatever reason, may either intrude near the front of the 

queue or walk to the front of the queue due to inherited status – status that may or may 

not have been earned. The intruder or the higher-status member who offers no benefit 

to the community may then be considered a free-rider. Time and the ticket to greater 

opportunity are then woven together in this manner, so as a community member, the 

objective is to make the resource system equitable, meaning each member earns his 

or her position in queue that day through merit or potential benefit to the community 

based on fair and quantifiable metrics. 

In the first community, time and tickets as a function of time are rival non-excludable 

resource units. In the second community, time is rival and non-excludable, but as a 

function of time tickets may be viewed as rival but excludable. Hence, in all or part, 

the queue resource system falls under the definition of a common-pool resource. Eli-

nor Ostrom (1990, pp. 69–75, 90, 136) identified eight design principles that a social 

community/group must meet to support equity and optimize the chance for resource 

system stability within the social group sharing the CPR. Traditional CPR examples 

are fish harvested from a specific lake which is shared by a community, community-

owned land used for grazing of its cattle, a community’s use of its forest for wood, or 

irrigation communities relying on an equitable distribution of water. The eight design 

principles, identified by Ostrom, have since been further analyzed and modified (Wil-

son et al., 2013, p. S22). In summary, for community members to increase the stabil-

ity of their resource system within the context of this work while maintaining the 

traditional structure presented in Wilson et al. (2013, p. S22, With permission from 

Elsevier Publishing), they should: 

Design Principle 1) Maintain and clearly define resource system boundaries. 

Design Principle 2) Require that appropriation of rival resource units be com-

mensurate with benefits each member provides to the resource system and 

community as a whole (i.e., status must be earned). 

Design Principle 3) Ensure that resource system members are able to make 

and modify rules (social norms) through consensus. 

Design Principle 4) To avoid a tragedy of the commons (Hardin, 1968), estab-

lish the capability to efficiently monitor the rival resource units against free-

riding and exploitation within the community relying on the resource system. 

Design Principle 5) Have a means of applying community-accepted graduated 

sanctions against free-riding and other appropriator violations. 

Design Principle 6) Establish conflict resolution mechanisms within the resource 

system that are efficient and acceptable to the community using it. 

Design Principle 7) Have the right to modify the resource system structure to 

accommodate local and/or changing circumstances. 
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Design Principle 8) Establish constructive (effective) coordination with other 

critically linked resource systems that are necessary for the proper opera-

tion of the community’s resource system. 

Cox et al. (2010) provide a thorough independent meta-analysis of empirical stud-

ies following the governance process proposed by Ostrom and, in doing so, identify 

design principles from these eight having the greatest positive impact on resource 

system stability. Three of the design principles, principles 1, 2, and 4, rank highest 

in maintaining resource system stability based on the metrics used. The remainder, 

though important, seem to address external coordination and internal rules necessary 

to support these same three design principles. Additionally, the effectiveness of design 

principle 4 is dependent on design principle 1 (recall the information booth queue of 

Chapter 3). Therefore, subsequent focus of quantitative analysis of design principles 

will for now be placed on design principles 2 and 4. 

Though based on CPRs such as irrigation systems, communal forests, inshore fish-

eries, and grazing land (Ostrom, 1990, pp. 20–21), it is argued by Wilson et al. (2013) 

that these principles may have a wider application for addressing nearly any situation 

where members of a nested CPR must cooperate and coordinate to achieve common 

goals within a larger and necessarily interactive horizontal and/or vertical social sys-

tem. The queue as a CPR is one such nested, albeit very basic social system. 

Since position in queue relates directly to mean waiting time in queue and probabil-

ity of obtaining a ticket, time in queue will be the only resource unit to be addressed. 

Though the ticket being sought through use of the queue may be viewed as a private 

good where payment for the good excludes its use from those who do not or cannot 

pay, it is time in queue that allows access to the good being sought which in itself a 

subtractable resource unit since every human lives for a finite amount of time. Time in 

queue, waiting, is another form of payment and means to gain status toward increas-

ing the probability of reaching the desired train ticket. But a community member 

will wait only so long before leaving or reacting when the resource system is per-

ceived to provide an unfair and unequal distribution of resources (Tajfel and Turner, 

2001, pp. 98–99, 2004, p. 287). If that is the situation, access to the ticket has become 

unreliable or nonexistent, and the queue as a resource system will collapse for the 

lower-class members in the second community if too many higher-class community 

members exist within that same community. 

5.2 The Queue as an Open-Access Common-Pool Resource 

The queue as a basic social system is a continuum of the larger social community 

of which the queue members belong, sharing certain social norms important to and 

accepted by the community. Members do not leave their community or its norms when 

entering the queue but instead adjust their identity as pedestrians, motorists, parents, 

students, or some other social group member with specific social norms to that of a 

queue member adhering to a subset of social norms and identity consistent with that 

of the larger community in which they reside. Hence, since it has been shown that the 

social queue can be reliably modeled for the given data, and if it may be shown to meet 
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the eight design principles, then larger more complex social communities may eventu-

ally be modeled, at least in part, and analyzed for stability. 

In Ostrom (1990, p. 48), the definition of open-access CPR is carefully laid out. Let 

us begin by equating the parlance of the open-access CPR environment with that of 

the western queue environment. Resource units at a train station are waiting time in 

queue, or equivalently probability of obtaining a ticket based on queue status. Appro-

priators of the resource units in our example are the community queue members wait-

ing for the tickets they wish to obtain from the ticket server. Provisioning by queue 

members comes in the form of time in queue, monitoring and maintenance of queue 

integrity, and monetary payment (always affordable or not always affordable) to 

the ticket server by the queue member. Let’s now look at the queue as a CPR from 

the quantitative standpoint to better understand the implications of the eight design 

principles and how the two hypothetical communities discussed may relate to larger 

more complex social systems. 

5.2.1 Design Principle 1 – Clearly Defined Resource System Boundaries 

A strong group identity helps create social boundaries. How strongly we identify with a 

social group may best be measured by the strength of attraction we have for being part 

of the group versus for individuals in the group (Stangor, 2016, p. 24). In other words, 

if joining the group provides a benefit to the individual, then it is attractive. Whether 

the perceived benefit is from increased self-esteem or the ability to obtain a desired 

resource that would otherwise be more difficult to obtain, individual benefit is gained 

by joining the group as a member. Once an individual enters the western social queue 

for a train ticket, he or she may now obtain the desired train ticket assuming sufficient 

time and tickets are available. In doing so, he or she now identifies as a queue member 

who should adhere to the associated social norms and provisioning efforts necessary to 

maintain queue structure and stability. If the desired benefit is not realized by the mem-

ber, the member then must make a choice through comparison of existing and available 

alternative resource systems while accounting for risks in remaining versus transition-

ing to any alternative (i.e., emigration to another queue as an example). 

Boundaries of the resource system could refer to geographic boundaries, physical 

boundaries, or social boundaries. The physical and social boundary of a queue is based 

on whether you are a waiting member of the queue, defined by being in a hierarchical 

line of members, or whether you are outside of the queue and therefore not a mem-

ber. Being in queue implies you are part of a social group (i.e., community) having a 

defined and understood social order for reaching the server and obtaining the desired 

resource (Schmitt et al., 1992, p. 815; Kuzu, 2015). In the ideal western first-come 

first-served queue, assuming no intrusions or higher-class members are able to enter 

at the front of the queue, the community member with the highest order in queue is 

served next, and the person with the lowest order in queue is served last from the set 

of currently existing community members. 

Expected social queue behavior (western social norms) implemented to maintain 

the social and physical boundary of the queue and its subsequent group attraction 

include: 
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1. Entrance into the queue from the community having access to it is at the end of the 

existing queue member order. 

2. Queue members are expected to maintain integrity of the group by maintaining a 

clearly defined boundary between queue group members and nonmembers. This 

is managed by maintaining close proximity and a linear hierarchical order. 

3. Queue members expend time to obtain a specific resource. If a member is not in 

queue for that resource, then the member does not belong in the queue and should 

not obtain the resource. 

Based on this, when properly maintained, the queue resource system has a clearly 

defined physical and social boundary. 

5.2.2 Design Principle 2 – Proportional Appropriation and Provision 

For the queue resource system example, appropriation comes in the form of obtaining 

the desired train ticket from the ticket server. Provisioning (effort) comes in the form 

of monetary payment to the ticket server for the ticket resource unit sought, expend-

ing time resource units waiting in queue, and any additional individual member effort 

expended in maintaining queue group social norms. The latter is indicated since addi-

tional external security to maintain queue integrity ultimately comes at a cost to the 

queue members through an increase in ticket prices. In other words, if you want the 

ticket at the existing low price, you must pay for it in three different ways (i.e., pay-

ment, waiting, and maintenance of queue integrity). If community members or sub-

group members are unable to obtain a ticket in reasonable time, or if social norms of 

the queue are unable to be maintained, then attractiveness of being a member of that 

queue resource is reduced, possibly, to the point of completely losing its attractiveness 

to affected queue group members. 

Queue benefits versus provisions lead to attractiveness or unattractiveness of the 

queue. This may seem rather obvious, but it gets to the heart of many problems that 

occur in the real world. If a ticket is excludable, and if there is only one train that sup-

ports each specific community, then whoever controls the price of the train ticket may 

increase their price until it becomes more beneficial to higher class members, leading 

lower-class community members to find an alternate means of obtaining the desired 

ticket – if one exists. Overcharging may be viewed as a form of free riding, unneces-

sarily increasing the ticket price for greater profit without providing commensurate 

benefit to the community, while restricting tickets to only those who can afford to pay 

for them. 

The second form of provisioning is that of waiting in queue and maintaining your 

relative position. To leave the queue and expect to return to the same relative position 

are not acceptable social norms unless they are agreed beforehand with the queue 

members behind. This is a matter of equity. If the other members need to wait in line, 

then the member wanting to leave and return is implying he or she has better things 

to do and should not have to waste time waiting but instead return when it is his or 

her turn to be served. On the other hand, if this were a common practice, then queue 

boundaries would not exist, and those entering the queue would not know who was 
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ahead of them or how long the wait might be. The latter situation in western cultures 

could easily end in numerous emotional reactions. 

The third and final form of provisioning is maintaining integrity of the queue. By 

forming a queue resource system, the boundary is established by each member getting 

behind the next in order of arrival. This approach makes it practical for queue mem-

bers to determine when someone is trying to intrude into the queue by entering it at 

some point other than the very end. In the event that an intruder appears and tries to 

cut into the queue ahead of others already waiting, it is up to the members at the point 

of the intrusion, if counter to existing queue resource system social norms, to react and 

either expel the intruder or at least embarrass him or her to exact a cost for their not 

abiding by the social norm. This does come at a potential cost to the queue member(s) 

who react, in the form of stress if confrontation occurs, potential embarrassment if 

misinterpretation of the situation occurred, or physical harm at the extreme. 

The following comments are made to clarify the role and need for members to 

expend effort (provision) in defending the queue from intrusion (free riding) when 

necessary and for minimizing delays that may impact those behind by subtracting 

from their time resource units. 

1. Once in the queue, you do not move from your position in the social queue group 

to displace the position of others ahead of you. If no plausible explanation or com-

munity benefit is understood to warrant the change in position, then this may indi-

cate many things to the remaining queue members, including social inequity – that 

the violator believes without justification that his or her time is more important 

than those he or she has jumped ahead of. 

2. Defending against intrusion is a provision expected of queue members when the 

intrusion event occurs. This is emotionally uncomfortable to the defending queue 

member but is necessary to maintain integrity of the queue and to avoid loss of 

subtractable resources (time/position in queue). 

3. When service is complete for the current member being served, the member at 

the top of the queue order (next in line) immediately steps up to be served by the 

server. Delay in doing so, such as not preparing ahead of time for a quick trans-

action, is not appreciated and wastes time resource units of the remaining queue 

members. 

Hence, there is a process and expectation that benefits of appropriation are propor-

tional to the costs of provision. 

5.2.3 Design Principle 3 – Modify Rules Through Consensus 

In maintaining the social norms and boundary of the social queue, members may on 

occasion have to modify rules or create rules for special circumstances. Since main-

taining attractiveness of the social queue is paramount to members, they should have 

a say in how rules may be modified. Helweg-Larson and LoMonaco (2008, pp. 2380, 

2388–2390) provide an example where queue members waiting in queue for U2 rock 

concert tickets generally preferred to make rule modifications on their own. Doing so 
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maintains group identity through group member participation and results in maintain-

ing attractiveness of the group to the group members. In some situations, it was noted 

that queue members would prefer third-party enforcement to act for them, thereby 

freeing the queue members from embarrassing and possibly emotionally difficult situ-

ations of confrontation with an intruder (see Axiom 2 from Chapter 1). In some man-

ner though, this third-party security comes at a cost (money, reduced effectiveness, 

etc.), and members of the group must be able to support that cost and also see it is 

beneficial to them. 

Hence, when modification to the rules is deemed necessary by queue group mem-

bers, members in queue do have the option for collective-choice arrangements. 

5.2.4 Design Principles 4 and 5 – Monitoring Access to the Resource and 
Effective Sanctions Against Violators 

The social queue provides a low-cost (measured in effort) approach to monitoring 

access to the resource via the queue. In western queues, the default social norm has 

traditionally been first-come, first-served. To clarify how this could be violated and 

how effectively it may be monitored, consider the example where someone not in the 

queue enters the queue at the front (next to be served). That person has not waited, 

nor has he or she helped to maintain the social norms of the queue group while wait-

ing. In effect, the intruder is an outsider who has not provided the necessary provision 

to the queue group and therefore falls into the category of a free-rider. Free-riders 

are those that benefit from the group’s resource but do not help in maintaining that 

resource. As more free-riders enter the group, the attractiveness of the group decreases 

for those members who support the norms of the group and maintenance of its social 

boundaries. 

To quantify the train ticket queue example, consider queue group members who 

need a ticket for a train leaving in twenty minutes. The existing members have been 

waiting in line, which is a cost to them. They are maintaining the social norms of the 

group which entails confronting intruders and through the social cost of self-restraint 

by not jumping ahead of others. If we assume a simple queue for our purposes, where 

the single server has a Poisson distributed service rate ( μ) and the arrival rate (λ2) of 

members into a single server queue with their interarrival time exponentially distrib-

uted (i.e., resulting in an M/M/1 queue), then the mean waiting time (Wq2), including 

member time in service, for the members incurring the social cost of the first-come 

first-served queue is (Gross and Harris, 1985, p. 77): 

1
W =q2 u - x2 

If the mean service rate is μ = 60 customers per hour, and the mean interarrival 
60 minutes 

time of members into the queue is every 90 seconds, then x = = 402 
1.5 minutes customers per hour. This results in a mean waiting time of 
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1 1
Wq = = of an hour =3minutes.

(60 − 40) / hour 20 

Now consider what happens if intruders enter non-preemptively at the front of the 

queue, behind the member currently being served, with arrival rate λ1. In this situa-

tion, where the intruders might represent higher status (higher priority) individuals 

with head of the queue privileges, then everyone waiting in line behind the front queue 

position will have to wait longer. Consider what happens when λ1 = 5 high-priority 

“intruders” enter every hour. Then (Gross and Harris, 1985, p. 199) 

letting λ = λ1 + λ2 = 40 + 5 = 45, 

the higher status “intruders” have a mean waiting time of, 

x 45
W = = = 0.82 minutes.q1 u u x( ) 60.(60 - ). -  51 

Lower status queue members though now have a mean waiting time of 

x 45
W = = = 3.3minutes. q2 ( u x- .) ( u x- 1) (60 - 45) (. 60 - 5) 

Some people learn more quickly than others, and some care more about social norms 

than others, so as in law enforcement, social enforcement should allow for graduated 

sanctions by queue members based on an intruder’s age, nature of offense, and fre-

quency of offense. As observed in Milgram et al. (1986), and displayed in the lower 

half of Table 3.2, sanctions varied from no reaction to physical ejection of the intruder 

based on the situation in which the offense took place. With regard to increasing sanc-

tions based on frequency of offense, Oberholzer-Gee (2006) demonstrated in a field 

experiment that an intruder buying his way into the queue was allowed the first time 

but firmly rejected the second to the point where after 15 trials the experiment was 

stopped as it was deemed to be too physically dangerous. Using this data, the probabil-

ity of more severe sanctions increases with the importance of the queue resource (i.e., 

nature of offense) or frequency of the offense. From an importance standpoint, arguing 

in a similar manner as Helweg-Larson and LoMonaco (2008, p. 2389), those queue 

members waiting for a train ticket likely place greater importance on that resource 

than those members waiting in queue for their turn for a resource provided by a bank 

or token booth having basically unlimited resources and negligible time constraints 

(unless in queue just before closing – this would be a good experiment for the brave). 

Define a free-rider here as one who does not expend effort to maintain social norms 

or time in queue as other norm-abiding members do to gain access to the resource, 

but still expects access to the resource (Ostrom, 2005, pp. 24, 79–80, 262). As the 
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number of successful intrusions by free-riders increases per hour, the attractiveness of 

the queue diminishes for those group members who wait in queue and try to enforce 

the first-come first-served western social norm. If the social norms become unen-

forceable, then referring to Design Principle 1 and 2, it is likely that the norm-abiding 

queue members will try to alter the resource system to their advantage. In the worst-

case scenario, if Design Principles 4 and 5 were to fail, queue members would no 

longer find the queue beneficial to them and would either leave or revolt. This result 

may be referred to as a tragedy of the commons. 

Hence, low-cost monitoring of access into the queue is possible, but adequate sanc-

tions must be enforceable by queue members or their hired surrogates, as monitors, 

for the purpose of enforcing membership requirements and maintaining attractiveness 

of the queue. 

5.2.5 Design Principle 6 – Conflict Resolution Mechanisms 

Addressing Design Principle 6 for a queue environment offers an interesting inter-

pretation of queue member reaction as a function of position relative to the intrusion 

point. It has already been shown how the probability of member reaction decreases as 

number of members UI  between the intrusion point and position of interest increases. 

As the queue transform indicates, reactions by each of the UI  queue members ahead 

of the position of interest reduce the probability of reaction at the position of interest. 

From this, it may be interpreted that reactions are the means of internal conflict resolu-

tion addressing the social norm deviation caused by the intrusion. Since typically, the 

resource the queue member is waiting for is not required for survival, if no reaction 

occurs, resolution may come about through queue members accepting the intrusion as 

acceptable for some reason. If reaction does occur, then resolution may come about 

through queue members appreciating that the intruder was appropriately embarrassed 

or ejected by those queue members who reacted, who were close by, and who best 

understood the extent of the infraction. If the importance of the queue’s resource being 

sought is in fact important to survival or well-being, then expect more violent member 

reactions where resolution relies with increasing probability on social group (queue) 

expulsion and/or personal injury (Zipf, 1948, loc 10850–10916; Helweg-Larson & 
LoMonaco, 2008, p. 2389). 

Hence, for a queue, localized member reaction to an apparent social norm deviation 

and the resultant uncertainty information provided to the other members are a form of 

conflict resolution for the queue community. If there is conflict between queue mem-

bers, typical experience indicates that the members closest to the situation will assist 

in resolving the conflict through providing information that substantiates one or the 

other’s claim. 

5.2.6 Design Principle 7 – Right to Modify Resource System Structure 

A first-come first-served queue organizes under conditions that we take for granted, 

given that its basic nature and that its formation for various resources are common in 

the western culture. When equity of resource distribution is expected based on waiting 
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time, the queue has been the means for citizens in western nations to obtain the desired 

resource while maintaining the western expectation of equality between citizens. The 

queue as a system has been modified in some cases over time based on circumstance 

or as a means to improve efficiency – one example being where each new member 

takes a ticket when entering a resource system thereby alleviating the requirement for 

a physical queue. This in turn alters enforcement responsibility to the server, where 

only the next member in queue is served based on the member having a ticket with the 

number next to be served. 

Hence, in western communities, the queue resource system can be modified and 

accepted by queue members under circumstances that benefit the community mem-

bers using the queue. 

5.2.7 Design Principle 8 – Effective Coordination Between 
Interconnected Resource Systems 

What must be addressed first is how the queue fits into and interacts with a larger social 

system. To do this, consider the queue for train tickets and the train company which is 

providing the desired transportation resource for queue members who obtain a ticket. If 

there were no train, there would be no reason for the ticket queue to exist. The queue is 

a social group (Mann, 1969), and the train company could be considered a social group. 

Combined, both create a larger and interrelated social system. Coordination for selling 

tickets at the server must occur with the train company since selling unlimited tickets 

for a limited number of seats would cause emotional discomfort to the customer who 

bought a ticket but was unable to get his or her train that day as desired. 

Hence, the train company and the server of the queue selling the ticket resource 

for the train transportation resource have first-order relevance to one another and 

must coordinate, otherwise, one or the other or both are no longer attractive to the 

queue group members. There are obviously many additional interrelationships that 

are required to support feasibility and operation of this resource system, but the train 

company and ticket resource system are sufficient to clarify the concept. 

5.3 Mapping Complex Social Commons to the Western 
Queue Social Commons 

We have observed that experiments discussed in Chapter 4 demonstrate social sys-

tems with underlying queue-like structures, which in most cases (when the necessary 

experiment details are available) may be transformed/mapped in a manner that allows 

the use of the queue transform. Likewise, we have just shown that the western social 

queue meets the eight design principles necessary for maintaining a stable commons 

environment. The next step is to use the queue transform for mapping appropriate 

parts of more complex queue-like social resource systems into the queue environ-

ment. One such resource system is the irrigation canal commons which is widely 

written about from many parts of the world. The analysis of such a social system goes 

beyond the intended effort of this book, but in evaluating the South African irrigation 

community and its external support system in Dzindi, for instance, it becomes readily 
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apparent why the commons has been failing over the last two decades. Underlying 

culture must be accounted for, and no social resource system is an island in itself 

(Design Principle 8) but instead is part of a larger interacting whole. If the parts act in 

a coherent supportive process, then each survives and thrives. If there is disharmony 

between certain parts of the whole, then the overall system will flounder to the extent 

that social disharmony is experienced as a result. 

It is proposed that the last five chapters have possibly begun to address the vision 

of Elinor Ostrom as she stated it in (Ostrom, 2012, pp. 69–70) and as introduced 

in the first chapter. With that done, it remains to define an algebraic social space 

as qualitatively alluded to by Lewin (1997) and Sorokin (1959). An algebraic social 

space allows for the construction of more complex theorems and supporting analytical 

structures, which may in turn improve opportunities for reliable, testable, and repeat-

able quantitative analysis of larger social systems. The ultimate goal is for a system-

atic means toward better understanding the importance of certain social variables and 

from that how to improve the social stability of our commons. With an algebraic social 

space defined at the group level, we will then finish with an historical example of how 

what has been learned may be applied. 
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6 
AN ALGEBRAIC GROUP IN SOCIAL SPACE 

We have gone from deriving the modified version of Weber’s and Fechner’s Law, to 

the power law, making use of both to show that the social queue and related social 

experiments with queue-like structure may be explained through their use, and, finally, 

that the social queue resource system is a social commons with a governance structure 

similar to that proposed by Elinor Ostrom. We finish here by showing that the social 

queue transform is an algebraic system satisfying the four group axioms and the addi-

tional axiom necessary to form an abelian group – the four group axioms plus the 

commutativity axiom of addition. Herstein (1999, p. 41) indicates that any nonempty 

set having an operation satisfying the four group axioms is a group, or for our pur-

poses, a social group. Though Ring and Field axioms may be pursued by others, group 

axioms are sufficient to introduce the concept without wading into the full complexity 

of abstract algebra and further exceeding the limited capabilities of this author. 

The benefit of introducing the concept of a social group as an algebraic system is 

that such a system is necessary if the social and mathematical sciences are to build a 

systematic and testable process for modeling the dynamics of complex social systems 

(social dynamical systems). With that said, let us return to Leon Festinger’s cognitive 

dissonance theory to introduce one more concept before turning to show that the social 

queue transform satisfies the five axioms of an algebraic abelian group. 

6.1 Dissonance Reduction as a Function of Time 

Leon Festinger (1957, pp. 18–24) notes that when dissonance arises from a relevant 

social event deviating from one or more social norms, then there is a functional rela-

tionship between the strength of the pressure to reduce the dissonance and the mag-

nitude of the dissonance. As discussed earlier, this is basically what Sherif and Sherif 

(1956) and Zipf (1948) determined as well. Festinger’s arguments in support of his 

statement indicate he is not implying normalization of the deviation as a means to 

reduce dissonance but physical or perceptual modification of the stimuli causing the 

dissonance as implied in Equation 2.6 and discussed in Festinger (1957, pp. 20–21). 
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Now, consider a queue member who takes a train from New York’s Grand Cen-

tral station to his hometown in New Haven Connecticut every weekday at 5:00 p.m. 

after work. Let us ask ourselves what difference in probability of reaction might 

occur for this social situation if our queue member, now existing in two identi-

cal universes, experiences two simultaneous intruders in the first universe and two 

intruders separated by one month in the second. The argument being presented is 

that if the member’s sensation magnitude caused by an intruder were cumulative, 

with no dissipation over time, then the probability of reaction by our commuting 

queue member toward the two intruders in the first universe, and the second intruder 

in the second universe, should be identical. Yet, if that were the case, seasoned 

Grand Central Station queue members (i.e., experiencing intrusions on a regular 

basis) in the (+1) position experiencing a single intruder should react with probabil-

ity 1 if sensation magnitude were cumulative. We have seen empirical evidence to 

indicate that is not the case. 

It would seem then that for a given social situation, we either reduce dissonance-

causing events by appropriately reacting to the stimulus or through selective percep-

tion (interpretation). It is argued that stimuli which are significantly separated in time 

will result in a lower sensation magnitude than closely spaced or simultaneous stim-

uli. As a final thought before moving on, it is possible that normalization of deviant 

behavior may occur over time, assuming others in the group we identify with feel the 

same way. It is argued that by being exposed to repetitious low relevant events, ini-

tially considered deviant but resulting in minimal impact to the observing individual, 

can become normalized over time. This is a possible explanation for city dwellers and 

what appears to be their increased tolerance for diverse cultures and views. 

6.1.1 First-Order Derivation of Dissonance Reduction as 
a Function of Time 

In the simplest case for the relationship proposed by Festinger (1957, pp. 18–24), 

assume pressure to reduce the dissonance is proportional to magnitude of the disso-

nance with some mean proportionality constant λ. It is possible that λ is a function of 

the associated sensation magnitude. Other than assuming λ is constant though leads 

to a nonlinear differential equation that may or may not have a closed-form solution. 

Without known data to support otherwise, assume for now that λ is constant and a 

function of the social situation. Finally, assume an individual is able, over time, to 

reduce the stimulus causing dissonance to zero without resorting to active modifica-

tion of the social environment. Based on these simplifying assumptions, 

dI 
= -x. I wherex> 0  

dt 

since for x= 0 change in dissonance with time is not possible 

When the dissonance-causing stimulus I is introduced at time t1, the solution to this 

first-order homogeneous differential equation is, 
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x(t t- 1− ⋅  )stimulus intensity I(t)= I ⋅e for t ≥ t1. 

In social situations where there is no acceptable choice for dissonance reduction, or 

for whatever reason dissonance cannot be fully eliminated due to a restraining force 

(Lewin, 1997, pp. 101, 291, 316), such as portrayed in the earlier account by Polybius 

of Chiomara, wife of Ortiagon, the individual will reach a certain level of dissonance 

and be unable to reduce the dissonance any further. To address this more complex 

situation, let  be the lowest level to which an individual is able to reduce his I∞,1  
or her dissonance over a long period of time. Assuming the dissonance was caused 

by a single socially deviant event in a given social situation at time t1 having stimulus 

intensity I1(t1) leads to 0 ≤ I∞,1 ≤ I1( )t1 . Then the more general form of the equa-

tion representing stimulus intensity as a function of time may be derived using: 

dI ( )t1 = − λ⋅ I t( ) − I∞, .
 1 1   1dt 

The solution to this more generalized first-order differential equation is: 

− ⋅ −(t t
1I t = I∞  + I t1 1( ) − I ⋅e f t t11( )   ,1 

  ∞,1

 

λ )
or ≥ . 

It is not clear how to address I∞,n   for multiple social events within the same social 

situation having the same type of stimuli. That must be left for future experiments 

or a more experienced author who has a valid argument for justifying the approach. 

Instead, to keep things manageable, let’s settle for now on assuming = 0  forI∞,n 
all such events experienced by an observer. 

Theorem 6.1: Assume that each stimulus or simultaneous set of stimuli, all being of 

the same type, may be treated independently. Assume also that pressure to reduce 

dissonant-causing social stimuli to zero is proportional to magnitude of the dis-

sonance with proportionality constant λ. For a given social situation and set of 

independent stimuli of the same type arriving at various times, with n ∈Z+  and 

initial stimulus intensities represented by In introduced at times t1 ≤ t2 ≤ . . . ≤ tk 

≤ . . . ≤ tn, the addition of stimulus intensities in a queue-like system is given by: 

n−1  
n  n ∑ i n  i  

− ⋅ −λ (t t ) ≥ n nI t( ) = I + I t( − t ) ⋅e for t t  Equation 6.1 
  i=1  
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Proof: This proof is performed by induction, starting with the introduction of the 

first stimulus or stimuli having initial stimulus intensity I1 at time t1, such that 

− ⋅ −(t tλ )
I t  I e  for t ≥ t .( ) = ⋅  1 
1 1 1 

At time t2, a second stimulus is introduced with initial intensity I2 so that for 

t ≥ t2 ≥ t1, 

- . -(t t
2
) - . -x(t t

1
)

I t( )  = I .e 
x + .eI2 2 1 

− ⋅  −( t − ⋅ −λ t2 1)  λ (t t2 )= I + ⋅e ⋅e for t ≥I t .2 1 2  

Similarly, 

λ (t t3 ) λ (t t ) λ ( 1− ⋅ −  − ⋅ − 2 − ⋅ −t t )I t = I ⋅e + I ⋅e I e3( ) 3 2 + ⋅1 

 − ⋅ −λ (t t2 ) − ⋅  −λ (t t1)  − ⋅ −(t t )λ3 3 3= I + I e + ⋅  ⋅e⋅ I e3 2 1  

3 1− 
− ⋅  −λ (t t ) − ⋅ − )λ (t t= I3 + ∑ Ii ⋅e 3 i  ⋅e 3 for t ≥ t3

  i=1  

Assume that this holds for stimulus intensity Ik(t) which is introduced to the same 

individual at time tk, then for k ∈Z+ , 

k−1 λ t t ) λ (t t
k

− ⋅  −
k i )( − ⋅ −

I t( ) = I +∑ I e⋅  ⋅e for t ≥ t .k k i k 
 i=1   

It remains to show that for Ik+1(t),t ≥ tk+1 

λ (t tk +1− ⋅ −  )I ( )t = I ⋅e + I t( )k+1 k+1 k 

k−1 − ⋅ −(t t  ) − ⋅  − ) λ (t−λ λ (t t  − ⋅  t )k +1 k i k= I 1 ⋅e + I + I e  ⋅ek k ∑ i ⋅ + 
 i=1   

k−1 − ⋅ −(t t + ) − ⋅λ (t 1 −tk ) − ⋅ t + −ti ) λ (t t += I ⋅e λ k 1 + I ⋅e k + + I e⋅ λ ( k 1  ⋅e− ⋅ − k 1)k+1 k ∑ i 
 i=  1 



 

 

 

 

+

w


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k − ⋅ −λ (t tk +1) − ⋅λ (tk+1 −ti ) − ⋅ −λ (t tk+1)= I ⋅e + ∑ I e⋅  ⋅ek+1 i
  i=1  

k  
− ⋅ − k+ )− ⋅λ (tk+1 −ti ) λ (t t  1= Ik+1 + ∑ Ii ⋅e  ⋅e for t ≥ tk+1

  i=1  

Therefore, by induction, 

n−1 λ (t t
i
) λ (t t− ⋅ − − ⋅ − )

I t( ) = I + I e⋅ n ⋅e n for t ≥ t .n  n ∑ i  n 
 i=1   

To end this section, using Theorem 6.2, given the same type stimuli and social situa-

tion, the sensation magnitude for n discrete events may be stated as, 

n−1  I ( )t + N   I  ( )t + N i+1 0 n 0∑ es ⋅ ln   = es ⋅ ln   where I0 ( )t = 0 . 
I t( ) + N Ni=0  i 0   0  

The result demonstrates that sensation magnitude under the given conditions is addi-

tive, leading to the next step of defining the algebraic social group in social space. 

6.2 The Queue Transform as an Algebraic Abelian Group 

The term “social space” has been bantered about since at least the late 1800s. Some 

credit though should be given to Pitirim Sorokin in his qualitative discussion and use 

of social space as mentioned in Section 1.2. What this section does is quantitatively 

define an algebraic group in social space K. The importance of this is that a methodi-

cal process is defined which allows for both theoretical and quantitative evaluation 

for confirmation or rebuttal, and, if confirmed, it creates a mathematical foundation in 

social space on which to expand. 

Consider a specific socially deviant event that occurs in a defined social situation, 

with mean unit sensation magnitude es  and geometric mean social noise intensity N0 
for that event. Using In(t) as defined, Equation 6.1 leads to the next definition. 

Definition 6.1: Assume that for the same social situation, social noise N0 , and 

stimulus type, with I0(t) = 0, group member social space K, and a mean subjec-

tive dissimilarity ∆s t K at time t, thatn,k ( ) ∈ 

  I  ( )t + N  n 0  0  
∆sn k, ( )t = ⋅s ln   : ,n k ∈Z , t ≥ 0 with t ∈R  ∈K . 
  I t( ) + N0 k   



 

 

 

 

   

 

    

 

   


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It is important to note that using d = 3 76  from Theorem 2.2 and as demon-. 
strated in Equation 2.4, where e ∈ [0,d], 

 In ( )t + N0   In ( )t + N0 ∆sn k, ( )t = ⋅s ln   ≅ es ⋅ ln   = ∆esn k, ( )t . 
I t( )  + N I t( )  + N k 0   k 0  

The latter indicates that uniform encoding and exponential encoding may be inter-

changed in this definition and subsequent definitions/theorems based on whether we 

operate in nonnegative bounded unit sensation magnitude log space or nonnegative 

unbounded unit sensation magnitude exponential space. 

Definition 6.2: For k n q, ,  ∈ Z0
, ∆sn q, , ∆rk n, , ∆yk q, ∈ K , addition in group 

member social space is allowed under the following conditions, 

∆sn q, + ∆rk n, = ∆yk q, 

∆sn k, + ∆rk q, = ∆yn q, . 

Theorem 6.2: Assume the same social situation and stimulus type. Also assume, 

without loss of generality, that N0  is constant for each subsequent intrusion. 

Let k m n q ∈Z0
 and ∆sn q, , ∆rk n, , ∆yk q,,  , ,  ∈ K , then the queue transform, 

supported by field axioms for addition and multiplication in the real number 

system, meets the five algebraic group axioms (GA) of an abelian group as 

defined by Herstein (1999, pp. 40–43) under the operation of logarithmic addi-

tion. Using Definitions 6.1 and 6.2, 

GA 1) (Closed under Addition): If ∆rk n, , ∆sn q, ,∈ K  then ∆rk n, + ∆sn q, ∈ K . 

Similarly, 

if ∆rk q, , ∆sn k, ,∈ K  then ∆rk q, + ∆sn k, ∈ K . 

GA 2) (Commutative): ∆rk n, + ∆sn q, , = ∆sn q, + ∆rk n, . 

GA 3) (Associative): (∆r , + ∆sn q, ) + ∆yq m  = ∆r , + (∆sn q, + ∆y , ) .k n , k n q m  
GA 4) (Identity): There exists an e ∈ K such that ∆sn k, e e ∆sn k, = ∆sn k,+ = + 

for all ∆sn k, ∈ K 

GA 5) (Inverse): For every ∆s ∈ K , there exists ∆r ∈ k  such that
n k, q n,

∆s + ∆r = ∆r + ∆s = e .n k, q n, q n, n k, 

Proof: By direct proof, 

GA 1) To prove ∆rk n, + ∆sn q, ∈ K . Proving ∆rk q, + ∆sn k, ∈ K  may be shown 

in a similar manner and is therefore left to the reader. 



 

  

 



0

+

+

+

 I  ( )t + N 
∆r + ∆s = ⋅s ln + ⋅s lnk n, n q, 

k 0
I  ( )t + N n 0  

  I  ( )t + N   
= ⋅s  ln k 0 + ln  I  ( )t + N  n 0   

 I  ( )t + N k 0= ⋅s ln  
I  ( )t + N q 0   
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 I  ( )t + N  n 0 
I  ( )t + N q 0   

I  ( )t + N  
n 0 .I  ( )t + Nq 0  

 
∈ 

I  ( )t + Nk 0But s ⋅ ln  
 

 
 

K by definition; hence, ∆rk n, + ∆sn q, ∈ K .
I  ( )t Nq + 0 

GA  2) To prove ∆rk n, + ∆sn q, = ∆sn q, + ∆rk n, : 

 I  ( ) + N   I  ( )t + N 
k t 0 n 0∆ + ∆s = ⋅s ln   + ⋅s ln  rk n, n q, I  ( )t + N  I  ( )t + N  n  q 0 0    

 I  ( ) + Nk t 0= ⋅s ln   , and 
 I  ( )t + N  q 0  

 I  ( )t + N   I  ( )t + N n 0 k 0 .∆s + ∆r = ⋅s ln   + ⋅s lnn q, k n,  I  ( )t + N I  ( )t + N q 0   n 0  
 I  ( )t + N  
  

k 0= ⋅s ln  
I  ( )t + N q 0   

Hence, ∆r + ∆s = ∆s + ∆r .k n, n q, n q, k n, 

GA 3) To prove (∆rk n, + ∆sn q, ) + ∆yq m, = ∆rk n, + (∆sn q, + ∆yq m, ) : 

 I  ( )t + N k 0(∆rk ,n + ∆sn q, ) = ⋅s ln   , so 
 I  ( )t + N  q 0  

 I  ( )t + N   I  ( )t + N k 0 q 0(∆rk n, + ∆sn q, ) + ∆yq m, = ⋅s ln   + ⋅s ln  I  ( )t + N I  ( )t + N q 0   m 0  

 I  ( )t + N  
  

k 0= ⋅s ln  I  ( )t + N m 0  . 



 

   

  

  

0
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Similarly, 

 I  ( )t + N    I  ( )t + N k 0 n 0∆rk n, + (∆sn q, + ∆yq m, ) = ⋅s ln   +  s ⋅ ln  
I  ( )t + N I  ( )t + N n 0    q 0  

 I  ( )t + N0  
+ ⋅s ln 

q 
I  ( )t + N m 0   

 I  ( )t + N   I  ( )n t + N0 k 0= ⋅s ln + ⋅s ln   I  ( )t + N I  ( )t + N n 0   m 0  
 I (k t) + N0 

= ⋅s ln . I  ( ) + N m t 0  

Hence 

 I  ( )t + N k 0(∆rk n, + ∆sn q, ) + ∆yq m, = ⋅s ln  I  ( )t + N m 0  
= ∆rk n, + (∆sn,q + ∆yq m, ) . 

GA 4) To prove there exists an e ∈ K such that 

∆s e e ∆s = ∆s ∈ K .+ = + for all ∆s
n k, n k, n k, n k, 

Using the same approach as in GA 1), we must find a value q ∈ Z0 such that 

 n t + N0 I  ( )
∆rk ,n + ∆sn,q = ∆rk ,n + ⋅s ln   = ∆rk ,n . 

I  ( )t + N q 0   

Based on Definitions 6.1 and 6.2, q must equal n. Therefore, relying on the field 

axioms for multiplication, 

∆s e e ∆s = ∆s for all ∆s ∈ K+ = + .n k, n k, n k, n k, 

GA 5) To prove for every ∆sn k, ∈ K , there exists an ∆rq n, ∈ K  such that 

∆s + ∆r = ∆r + ∆s = e , where we have already shown that e = 0.n k, q n, q n, n k, 



 

 

 

 

0

k

I


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   I t( ) + N I tn ( ) + N0 q 0∆sn k, + ∆rq,n = ⋅s ln   + ⋅s ln  
I t( ) + N I t( ) + N k 0   n 0  

 I t( ) + N q 0= ⋅s ln   but 
 I t( ) + N  k 0  

 I t( ) + N q 0 s ⋅ ln   = 0 if and only if 
 I tk ( ) + N  0  

q = k so that ∆sn k, + ∆rk ,n = = e .0 

Hence, having already proven commutativity, for every ∆s ∈ K , there exists
n k, 

an ∆r ∈ K such that ∆s + ∆r = ∆r + ∆s = e .q n, n k, q n, q n, n k, 

The remainder of this section will discuss the implications and examples of each item 

proven in Theorem 6.2 in the context of a queue. With that, consider a queue having 

ten members, where the member position of interest is third from the front. As a result, 

there are two members ahead of the member of interest and seven members behind 

the member of interest. Until an intruder arrives, the queue is operating as members 

believe it should, so n = 0 and the stimulus intensity In = I0 = 0 . Based on what 

commodity the members are waiting for in queue, and based on the social situation, 

the mean queue unit sensation magnitude is s̄ . Mean noise for the particular social 

situation is N0 . As before, it is assumed the subject member of interest does not react 

in an attempt to modify the social environment. 

Group Axiom 1 Example: At time t1, an intruder arrives and steps in front of the 

member of interest causing initial stimulus intensity I1. At t2 = 5 minutes, two addi-

tional simultaneous intruders join the queue between the member of interest and the 

first intruder resulting in a cumulative stimulus intensity at time t t  2 ( ) . The≥ 2  of I t  
initial stimulus intensity of the two simultaneous intruders has intensity I2. Then, as 

per Theorem 6.1, 

⋅ − ⋅ −λ (t 5 min)
I t( ≥ 5 min) = I + I (5 min) e2  2 1  

The sensation magnitude at time t2 = 5 min of the second intrusion is: 

 I (5 min) + N   7 + N   I (5 min) + N 1 0 UA 2 0s ⋅ ln ⋅ ln e ⋅ + ⋅s ln    
 N0   NUA 

  I1 (5 min) + N0  
 7 + N   I (5 min) + N   7 + N UA 2 0 UA⋅ ln e ⋅ = ⋅s ln ⋅ ln e ⋅ .      N  N  N UA  0  UA 
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For sensation magnitude at time t ≥ t2, 

 I (t ≥ 5 min) + N0   7 + NUA 2s ⋅ ln ⋅ ln e ⋅   N  N  0  UA 

 I (5 min) + N   7 + N 2 0 UA≤ ⋅s ln ⋅ ln e ⋅ .   N  N  0  UA 

Group Axion 2 will be skipped since it is trivial. 

Group Axiom 3 Example: Building on the Group Axiom 1 example, a third single 

intruder now arrives at time t3 = 15 min and steps into the queue between the member 

of interest and the first three intruders. The first two intruder events were calculated to 

have a cumulative stimulus intensity at time t of I t( ≥ 5 min). Now, with the third2 
event resulting in a fourth intruder into queue, the cumulative stimulus intensity at 

time t ≥ 15 min as per Theorem 6.1 is 

 3 1− 
− ⋅  −(t t ) − ⋅ −λ (t t

3 )I t( ≥15 min) = I t( ) = I + I e⋅
λ 

3 i ⋅e .3 3  3 ∑ i  
 i 1  =  

The sensation magnitude now felt by the member of interest at time t3 = 15 min is 

 I2 (15 min) + N0   7 + N UAs ⋅ ln ⋅ ln e ⋅   N  N  0  UA 

 I3 (15 min) + N0   7 + NUA 
+ ⋅s ln ⋅ ln e ⋅  

 I2 (15 min) + N0   NUA  

 I (15 min) + N   7 + N 3 0 UA= ⋅s ln ⋅ ln e ⋅ .   N  N  0  UA 

With sensation magnitude at time t ≥ t3 = 15 min we have, 

 I (t ≥15 min) + N   7 + N 3 0 UAs ⋅ ln ⋅ ln e ⋅   N  N  0  UA 

 I (15 min) + N   7 + N 3 0 UA≤ ⋅s ln ⋅ ln e ⋅ .   N  N  0  UA 
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Group Axiom 4 Example: If at time tn+1 > tn , the queue member of interest experi-

ences no additional stimulus intensity, the equivalent expression would be, 

 I t( ) + N   7 + N n n+1 0 UAs ⋅ ln ⋅ ln e ⋅   N  N  0  UA 

 I t( ) + N   7 + N n n+1 0 UA+ ⋅s ln   ⋅ ln e ⋅
I +1 + N  N  I tn n( ) 0 

 
UA

 

 n n   NI t +1 + N  7 + UA ( ) 0= ⋅s ln ⋅ ln e ⋅ .   N  N  0  UA 

Interpretation: In this case, no additional intruders have entered the queue, and none 

have left the queue. In effect, nothing has changed between time tn and tn+1 except the 

reduction in dissonance brought about by the increment of time tn+1 − tn . 
Group Axiom 5 Example: This final axiom leads into a subtraction of stimulus 

intensities (intruders) from the social situation. For this example, assume that a total of 

n intruder groups (i.e., one or more simultaneous intruders) have entered the queue at 

various times. If at time tn+1 all of the intruders turn around, apologize to the member 

of interest, and then leave, we will assume for this extreme case that dissonance previ-

ously experienced by the member of interest due to the intruders is reduced to zero. 

We then have, 

I t  +1 + N   N( ) 7 + n n  0 UA  
s ⋅ ln ⋅ ln e ⋅   N  N  0  UA 

 N   7 + N 0 UA+ ⋅s ln   ⋅ ln e ⋅ = 
 I tn n( )+1 + N0   NUA  

 I t( ) + N   7 + N n n+1 0 UAs ⋅ ln   ⋅ ln e ⋅ s
N  N  − 

 0  UA 

 I t( + N0  7 + N n n  1) +  UA⋅ln   ⋅ ln e ⋅ 0. 
 

= 
 N0  NUA 

Interpretation: What dissonance might exist after the intruders leave would not be 

from their breaking a social norm, but from trying to interpret what just happened 

and why. So, one source of dissonance removed might result in another form of dis-

sonance, which in this case would likely be much smaller in magnitude. 
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6.3 Potential Implications of Ambiguity Reduction, Cumulative 
Dissonance, and/or Reevaluation of the Social Situation 

In Section 6.1 it was assumed that N0  remains constant as each subsequent intruder 

or intruders enter the queue ahead of the member of interest. In reality, as intruders 

continue to enter ahead of the member of interest within the waiting time of the queue, 

it will become readily apparent to the queue member that he or she is being taken 

advantage of in a methodical manner. With this individual reduction in social noise 

(i.e., reduction of ambiguity and/or uncertainty), the cumulative effect, and/or possi-

bly a reevaluation of the social deviation observed, the sense of moral outrage result-

ing from this clear violation of a social norm would increase based on our equation 

for sensation magnitude and the role that N0  plays. Oberholzer-Gee (2006, pp. 438) 

conducted an ad hoc field experiment in 2002 that demonstrates this concept quite 

dramatically. Whether the increase in probability of reaction he experienced was due 

to decreased noise based on reduced ambiguity, increased sensation magnitude due to 

reinterpretation of the social deviation, the cumulative effect of stimuli, or some com-

bination of all three could not be ascertained from the data. Future design of experi-

ments allowing for the necessary data would be of interest in quantitatively validating 

or disproving this last hypothesis and theorems within this chapter. 
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7 
HISTORY AS DATA 

Without a fair, orderly, and efficient method of allocating resource units, local appropriators 

have little motivation to contribute to the continued provision of the resource system. 

Dr. ElinorOstrom, 1990, p. 33, with permission Cambridge University Press 

A significant amount of material has been covered in the previous six chapters. 

Much of it is grounded in established theory and supported by empirical data. More 

importantly, it can either be proven or disproven, and, if disproven, improved upon 

or discarded as more information is gained. This is possible through the quantita-

tive and testable structure now available for investigating certain aspects of social 

psychology in a more systematic quantitative manner. Additionally, through the use 

of the proposed algebraic social space, theoretical manipulation of our social envi-

ronment may be accomplished for certain social situations and then tested in field 

experiments or eventually evaluated against historical data. It is not envisioned that 

everything as presented here is fully mature, but that through further experimental 

results and academically diverse views, the maturity of concepts and equations may 

be improved. In essence, it is believed that this work allows for a more systematic 

approach toward evaluating certain aspects of social psychological theories and their 

possible interrelationships. 

This final chapter considers the perennial issue of social status involving domi-

nant groups and subordinate groups (Tajfel and Turner, 2001, p. 98). As proposed by 

Ostrom (1990), status should be the reward for significant contributions to the com-

munity and should therefore be conferred by the community based on the risk taken 

and resultant benefit provided to the community. There are two extremes though that 

seemingly elude a social solution. The first involves those that do not or cannot con-

tribute to the community and are in essence free-riders by either choice or fate. The 

second involves those that accumulate wealth beyond any reasonable measure in rela-

tion to the relative wealth of the community, yet the community and common resource 

units are needed to create that particular wealth. Without putting wealth back into the 
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community in the form of social benefit and supporting infrastructure that allows the 

wealth, then the wealthy in effect become free-riders. Too much of either extreme 

leads to the eventual collapse of the resource system. How to control the accumula-

tion of wealth and consumption of resource units while still adequately rewarding 

those who take greater risks or expend greater effort for the benefit of the community 

is the key question. In terms of governance, Design Principles 2 (Appropriation and 

provision) and 4 (Monitoring the resource) appear to be the first-order elements for 

understanding and investigating the implications and eventually finding a solution to 

controlling the effect of free-riding and its negative impact on the stability of a social 

commons. Our focus in this chapter is directed at a defined community with those 

in high status who do not provide adequate provision for the community resource(s) 

they consume and enjoy. To pursue this concept, viewing history as data, let’s consider 

social events leading to the revolution of 1848 within the German Confederation. 

7.1 The German Confederation and Social Events Leading 
to Its 1848 Revolution 

There seems to be differing opinions as to what led to the 1848 revolution within 

the German Confederation, with a good summary and interesting economic analysis 

provided by Berger and Spoerer (2001, p. 295) as to what they believe the decid-

ing event was. When trying to understand historical events, or current events from a 

historical perspective, it is rare that a single explanation exists as to why something 

unfolded with reaction ultimately occurring the way it did. History leading up to an 

event provides the context of any social situation. Similarly, community members 

within the developing social situation, when applicable, use associated past history 

as passed to them to recognize and help interpret current social events and appropri-

ate reactions to those events. We have observed over the past few chapters that when 

one or more beliefs regarding what should be differs from what is, dissonance occurs, 

and as the dissonance increases, the pressure to react and reduce that dissonance also 

increases. Therefore, instead of looking for a single cause leading to a reaction, we 

need to understand what led to increasing community (i.e., German Confederation) 

pressure for change by focusing on the development of the social situation within the 

community of interest, understanding the evolving social norms, and finally consider 

through firsthand accounts what event or events facilitated transforming the social 

pressure into social reaction or, in this case, revolution. Once this is complete, then 

the application of the queue transform will be considered as a possible but currently 

limited quantitative means of explanation. 

It will be shown, using historical data to develop a sense of the social situation pro-

moting the German Confederation’s revolution of 1848, that the primary event con-

verting existing social pressure into revolution as witnessed by those who were there 

at the time was the February 1848 French Revolution. Supporting this thesis requires 

a historical backdrop of associated events starting with the Napoleonic Wars ending 

in 1814, insurrections in the German Confederation immediately after the 1830 Paris 

Revolution, external competition and the growth of internal industries requiring the 

need for unification of the Confederation states, the general Evangelical Synod of 
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1846 (Jensen, 1974), the United Diet of 1847 using letters from the Earl of Westmo-

reland, combined with Carl Schurz’s autobiography (Schurz, 1907), and the bad crop 

years and food riots of 1845 through 1847 (Gailus, 1994). With these backdrops in 

place, evaluation and interpretation of emigration data from 1825 through 1849 are 

performed as an additional means to understand how and why the revolution occurred 

when it did (Pfaff and Kim, 2003). To effectively make the argument, a more compre-

hensive definition for revolution must first be developed, a definition that goes beyond 

the traditional Merriam-Webster definition. To this end, a definition for our purposes 

will be developed based on the more thorough primary source observations of Karl 

Marx (Marx, 1851, October 25) and John Maynard Keynes (Keynes, 1919). 

7.1.1 Defining Revolution as a Tragedy of the Commons 

Karl Marx famously provided a post analysis of the 1848 French Revolution and its 

aftermath in 1852 (Marx, 1852). He similarly provided a more detailed post analysis 

of the German Confederation’s 1848–1849 revolution – published through multiple 

articles from 1851 to 1852 for the New-York Daily Tribune while in London – as part 

of a series covering events in Europe which were later combined (Marx, 1912). In his 

25 October 1851 New-York Daily Tribune article addressing the German revolution 

of 1848, Marx states, “Everyone knows nowadays that whenever there is a revolution-

ary convulsion, there must be some social want in the background, which is prevented 

by outworn institutions from satisfying itself” (Marx, 1851, October 25, p. 6). He goes 

on to state in this same article, 

That the sudden movements of February and March 1848 were not the work 

of single individuals, but spontaneous, irresistible manifestations of national 

wants and necessities, more or less clearly understood, but very distinctly felt by 

numerous classes in every country, is a fact recognized everywhere.

 (Marx, 1851, October 25, p. 6) 

It is critical to note that Marx was focused on the national perspective of wants and 

needs, which is equivalent to the community of interest and its resource systems, and 

not on any individual wants and needs. This distinction will be emphasized when we 

consider emigration data. 

Sixty-eight years later, after the First World War, John Maynard Keynes provided 

additional insight into what supports a revolution and therefore how it may be fur-

ther defined. Keynes, an official representative of the British Treasury at the Paris 

Peace Conference up until 7 June 1919, resigned his position in protest against the 

Treaty of Peace and the conditions it imposed upon the defeated German Republic. 

In his prescient book written that same year, presenting logical arguments against the 

terms of the Treaty of Peace, Keynes supplemented Marx’s statement on the cause of 

revolution by noting a belief at the Paris Peace Conference that, “The only safeguard 

against Revolution in Central Europe is indeed the fact that, even to the minds of men 

who are desperate, Revolution offers no prospect of improvement whatever” (Keynes, 

1919, loc. 2818). The reference is to the fact that both Germany and Russia were being 
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blocked from economic recovery by the Allies after the war, the Allies believing this 

approach would reduce the risk of revolution and a subsequent union between Ger-

many and Russia (Keynes, 1919, loc. 2795). What was imposed on Germany therefore 

was not an internal injustice that might be remedied through internal revolution but 

an external injustice that as Keynes foresaw, “will affect everyone in the long-run, 

but perhaps not in the way that is striking or immediate” (Keynes, 1919, loc. 2821). 

The Treaty of Peace in effect was an externally imposed feudal system, and Keynes 

understood the implications this could have for Germany. 

Taking these two perspectives into account, revolution will be defined as a national 

level social reaction caused by sufficient social pressure resulting from unmet 

national level wants and needs. It must be a social reaction which offers sufficient 

prospect for improvement against political institutions (i.e., Axiom 2) that otherwise 

deny the social wants and needs of its citizens. To show there is no contradiction for 

the extreme case, if survival is at stake for those already revolting, the revolution will 

exist based on the belief that it is the only option which offers a chance for improve-

ment to those already involved. 

7.1.2 Establishing and Legitimizing Representation as a Group 
Social Norm 

Though applicable in general, for states within the German Confederation, the basis 

of unrest during the 1830 to 1833 insurrections and the more famous revolution of 

1848–1849 evolved from the unmet social wants and needs of its citizens. The driving 

force behind the insurrections and revolution is argued to be the belief that unification 

of the German states under a representative constitution would improve social and 

economic conditions. A representative constitution had been promised to Prussians in 

1813 by King Frederick William III in preparation for the final set of military cam-

paigns that led to defeating Napoleon (Marx, 1851, October 28; Schurz, 1907). After 

Napoleon’s defeat in 1814, a German Confederation consisting of 38 independent 

states was established, controlled by nobility, and loosely tied together under the Fed-

eral Act of 1815 supporting protection of the Confederation and its nobility (Deutsche 

Bundesakte, 1815). The promise of a representative government was still just a prom-

ise, as was that of an 1815 promise for a free press, both of which were later incorpo-

rated into law in 1820 which were either subsequently revoked or implemented in a 

meaningless manner (Marx, 1851, October 28). This desire for a representative gov-

ernment continued after 1820 by those advocating for unification and representation, 

as did the desire to maintain the existing Confederation by many within the Prussian 

civil service, many of whom were aristocrats who benefitted from the existing politi-

cal institution and the resources it provided to them. 

The seed of this dichotomy began to clearly emerge after Prussia’s defeat by Napo-

leon in 1806, thus bringing the Holy Roman Empire to an end. Being defeated by 

Napoleon, Prussia, through many of its Ministers, recognized that changes to the 

social structure were needed – in particular, the feudal system had become bankrupt, 

nobility had become free-riders, and the institution of serfdom needed to be elimi-

nated in order for peasants to cultivate their own land and develop a sense of national 
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identity with the fatherland. It was believed this in turn could be used to build an army 

of peasants willing to fight for their land and their country as envisioned by academ-

ics such as Ernst Moritz Arndt, a well-traveled history professor who originated from 

peasantry, those in the military such as then middle-rank officer Carl von Clausewitz 

and his mentor Prussian General Gerhard Johann David von Scharnhorst (Gagliardo, 

1969, Chp. 8), and some in the Prussian Ministry such as the lawyer and anonymous 

publisher Friedrich von Coelln, who was highly critical of the free-riding nobility and 

who noted among many other injustices: 

At the beginning of the feudal system, the noble knight who paid no taxes was 

inexpensive since he fought for the state with great valor, while the serf’s war 

services were not nearly as significant. Now, however, the serf is forced to go to 

war on his own and also has to pay land taxes. This is not right. 

(Coelln, 1807, p. 31) 

Through defeat by Napoleon, humiliation, and the resulting national dissonance, 

sufficient pressure for social change to address an identified need had finally been 

achieved. 

To begin addressing necessary change, King Frederick William III signed The 

Prussian Reform Edict on 9 October 1807 which introduced land ownership reform 

and abolished serfdom in Prussia. This was quickly replicated in the remaining states. 

The Edict, though in more words, basically states the ruling nobility has no other 

choice than to grant individual freedom to its serfs if it wants to survive (William III, 

1807/1902, pp. 27–30). The Prussian Reform Edict and the ensuing social change led 

to the envisioned advantage during the Wars of Liberation against Napoleon in 1813 

and 1814. The edict, though successful in its intended purpose, also led to land specu-

lation and an unintended crash of the land market in 1821 due to foreign improve-

ments in agricultural production which lowered prices (Burgdorfer, 1931, p. 342), lack 

of credit for improvements or purchasing of land (Frederiksen, 1894), and peasants 

who were unprepared or unable to compete having to leave their land. This was the 

beginning of the Agrarian Crisis, a time of uncertainty for many (Gagliardo, 1969, 

Chp. 8), and after food prices began to increase, a precursor to insurrections from 

1830–1833 which may be viewed as the source of collective memory and a trial run 

for the revolution of 1848–1849. 

It is shortly after the Paris Revolution of July 1830 that planned large-scale 

insurrections within the German Confederation began. The first public disturbance 

reported by the British envoy George William Chad in Frankfurt to the British For-

eign Secretary, George Hamilton-Gordon, the 4th Earl of Aberdeen, involves a riot 

in Hesse-Darmstadt that immediately disbursed on the arrival of soldiers. George 

Chad attributes the riot to the increasing price of bread resulting from anticipation 

of war (Chad, 1830, Frankfurt, September 9). In another 11 September 1830 letter 

from Frankfurt by George Chad to the 4th Earl of Aberdeen, a possible insurrection in 

Brunswick is noted, and on 22 September 1830 a disturbance in Carlsruhe, in Wurt-

temberg near the border with Baden, occurs due to Wurttemberg signing a commercial 

treaty with Prussia (Chad, 1830, Frankfurt, September 11 and 22; Bavarian thaler, 
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1829). In the most telling of the string of letters, the 29 September 1830 letter from the 

British envoy John Milbanke in Frankfurt to the Earl of Aberdeen describes how close 

the insurrections, in parts of Hesse, were to becoming a revolution within the state 

of Hesse. In fact, the Hesse government began creating a constitution modeled after 

that of France’s (Milbanke, 1830, Frankfurt, September 29). Finally, Milbanke notes 

that between events in Brussels and uprisings in the German states, the opportunity 

for revolution within the German Confederation was real (Milbanke, 1830, Frankfurt, 

September 29). 

Unrest in many of the German Confederation States continued seemingly uncoor-

dinated throughout 1831. Rioting by the lower class was attributed to economic griev-

ances that included taxation and the price of bread (needs), but leadership (uncertainty 

information) was provided by the upper middle class, particularly in the southwestern 

states (Sperber, 1989). The British envoy Thomas Cartwright sent a report on 16 Janu-

ary 1831 concerning an insurrection in Gottingen directed at obtaining a representa-

tive constitution. On 17 February 1831, he noted in his letter that King Ludwig of 

Bavaria issued an edict to regulate the press (contrary to Design Principle 4 and the 

need for monitoring) in an effort to prevent further disturbances in that state, and after 

mentioning additional disturbances and potential plots, he ends the year with his letter 

concerning Prussia and Austria’s combined efforts to severely limit the press which 

they view as a dangerous weapon wielded by the Liberal Party (Cartwright, 1831, 

Frankfurt, November 23). The disturbances and unrest continue into 1832 and, from 

the Diet’s viewpoint, reach a peak the middle of that year. In May of 1832, a large 

festival, the largest of many smaller such festivals held in the southern Rhineland over 

the previous 2 years, occurred around Hambach Castle in Neustadt an der Weinstraße, 

which is just west of the Rhine River in what was then part of Bavaria and northwest 

of Stuttgart. Termed the Hambach Festival, it attracted thousands of people over the 

four-day period 27 to 30 May. This quasi-revolutionary gathering was brought about 

through a longer-term opposition political campaign, unjust taxation, tariff policies, 

exacerbated by a series of poor harvests. Johann August Wirth, a radical democratic 

journalist, spoke out during the festival, stating much as Friedrich von Coelln had 20 

years earlier that the German Confederation’s 34 states (i.e., principalities) were being 

exploited by nobility that who were not providing benefit to their community (Wirth, 

1832). He went on to lambast the absolutist alliance of Prussia, Austria, and Russia 

and decried how the three were responsible for maintaining their monarchies while 

preventing surrounding countries from gaining their liberty and any reasonable form 

of governmental institutions. What was most interesting was his foretelling of how 

Germany may one day become a democratic government through the people accord-

ing to their needs (Wirth, 1832). Shortly after the Hambach Festival, and partially in 

response, the Confederal General Assembly of 1832 promulgated the Six Articles of 

28 June 1832 and then the Ten Articles of 5 July 1832 (Six and Ten Articles, 1832). 

The Six and Ten Articles were a reaction by nobility to the Paris Revolution of 1830, 

subsequent riots and insurrections in the Confederation, and the Hambach Festival. In 

the Six Articles, the Confederal General Assembly more firmly enforced allegiance 

of the Confederation states to the Confederation and its Constitution. The Ten Arti-

cles were instead directed at repressing opportunity for future citizen-riots within the 
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Confederation. The most noteworthy of these ten articles may be summarized as: 1) 

government approval was now required for distribution of non-German Confederation 

newspapers less than 20 pages [meant to stop distribution of foreign pamphlets]; 2) all 

political associations or non-customary popular assemblies and festivals are prohib-

ited; and 3) military assistance from surrounding states may be requested against large 

popular movements. It is Article 6 of the Ten Articles (Six and Ten Articles, 1832) 

that creates a police state atmosphere, enforcing repression and collective memory as 

discussed in Pennebaker and Banasik (1997), a collective memory and strengthening 

of group cohesion that is put to use by advocates for a representative government over 

the following 16 years. 

It is Articles 4 and 6 of the Six Articles that were considered by the British envoy 

in Frankfurt to present the greatest threat to Confederation state sovereignty as origi-

nally provided in the Federal Act of 1815 under Article 2 (Deutsche Bundesakte, 8 

Juni 1815). In the Six Articles, Article 4 removes protection for the independence and 

inviolability of individual German states (Six and Ten Articles, 1832), of which the 

southwestern German States were most likely to react against removal of such a pro-

tection, given their historical independence from Prussia under Napoleon. Article 6 of 

the Six Articles (Six and Ten Articles, 1832) completes this coup de grace by stating 

legal interpretation of the Confederal and Final Act would be up to the German Con-

federation through the Federal Assembly, which was basically under the control of 

Prussia and Austria. 

Thomas Cartwright wrote two lengthy letters analyzing the Six Articles for Vis-

count Palmerton. He was concerned that the wording may be construed by the inde-

pendent states as an attempt by Prussia and Austria to gain greater control over their 

countries, control far exceeding what was agreed to in the original Federal Act of 

1815. From his analysis, he made two very astute observations. The first, in his 25 

June letter, was that the southwestern states of the Confederation might revolt (Cart-

wright, 1832, Frankfurt, June 25). The second, in a letter written on 16 July 1832, adds 

to the first by stating that some of the more liberal states, particularly the southwest-

ern Confederation states, might turn to France if their state liberties are significantly 

threatened (Cartwright, 1832, Frankfurt, July 16). 

In effect, the German Confederation through Prussia and Austria was becoming 

overly repressive against other states, to include the southwestern states of Baden, 

Wurttemberg, and Bavaria, that otherwise desired independence and a certain level 

of individual freedom as was introduced during the French occupation under Napo-

leon between 1806 and 1813 and which they were loath to relinquish. Alternative 

concepts for governance in the Confederation were obviously in existence as evi-

denced through certain insurrections (Cartwright, 1833, Frankfurt, April 5), with the 

government actively trying to control their spread. But alternatives to the Confed-

eration, while being repressed in speech, were also being pursued in commerce. By 

the mid-1820s, custom unions (i.e., Zollverein) were being established between cer-

tain states to promote trade, an indirect approach toward German political unity and 

a process which had certain economic benefit for the slowly expanding industrial 

merchants within the German Confederation States (Dusseldorfer Zeitung, 1843). 

After the Paris Revolution in 1830 and resultant insurrections within the German 
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Confederation, further repressive measures led to fewer liberties for the citizens and 

the press, a direction counter to King Frederick William III’s past promises of a rep-

resentative constitution and a free press. Yet, the emerging industrial sector needed 

unification to further grow and compete, and unification required a national level 

government. The belief by commoners and industry leaders alike, of what should be 

and what they were observing, was steadily diverging from what nobility in the Ger-

man Confederation were willing to offer. 

What had been lacking up until 1840 was a cohesive national consciousness of 

what the social problems were and what was needed to resolve them. A national-level 

consciousness was required to create the national-level cohesion necessary to risk 

a mass protest against the existing political institution, and a coherent mass protest 

required leadership. In 1840, the Prussian King Frederick William III died, and his 

son Frederick William IV, who assumed the throne, would unintentionally provide 

that cohesion and national leadership. It was also in 1840 that the Rhine Crisis came 

about when France, having ultimately been humiliated in July 1840 by Russia, Prus-

sia, Austria, and England in its bid to expand influence into North Africa, reasserted 

its territorial claim to the Rhine River as an internal politically face-saving measure. 

Past historical evaluations of the Rhine Crisis of 1840 have indicated that this was 

a significant event which led to increased German nationalism and allusions of uni-

fication (Vanchena, 2000). More recent evaluations of this event indicate that there 

was little, if any, impact on an already preexisting German nationalism, particularly in 

the Rhineland (Sedivy, 2016; Brophy, 2013). Instead of nationalism, what Karl Marx 

believed created a unifying force within Germany beginning 1840 was the growing 

momentum toward industrialization. He argued that industrialization and its resul-

tant trade required a national system to support it, something that was nearly impos-

sible under the existing fragmented structure called the German Confederation (Marx, 

1851, October 25, p. 6). 

It is likely that the bourgeoisie were growing restive prior to 1840, based on the 

expanding trade agreements between states, particularly via Prussia under King Fred-

erick William III. With his death, and his son assuming the throne, who was believed to 

be more progressive than his father, it may be argued that this belief further promoted 

thoughts of German unification and the long promised representative constitution. An 

article published in the Dusseldorfer Zeitung in September 1843 clearly defined the 

same problem that Marx identified in his 1851 article, namely, a fractured system that 

was unable to support a growing commercial sector (Dusseldorfer Zeitung, 1843). 

Social pressure for unification and a representative constitution were building, but 

instead of fully supporting both, King Frederick William IV attempted to discretely 

retain a feudal structure while trying to maintain the appearance of being progressive 

and reducing the social pressure (Hahn, 2001, loc. 1003). Two important Prussian 

assemblies created by William IV to foster this appearance were the general Evangeli-

cal Union in 1846 and the United Diet in 1847. Though recommendations from both 

assemblies were provided and ultimately ignored by William IV – as they did not sup-

port what he wanted – both allowed provincial religious and political leaders to gather 

at the state level and define the problems that existed within Prussia. As importantly, 

these deliberations made their way to the national public through the pulpit and the 
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press (Schurz, 1907, p. 72; Howard, 1846, Berlin, October 17), even if what the press 

wrote had to be read out loud to those who could not afford a newspaper or were 

unable to read (Sperber, 1994, p. 175). 

As background, after Prussia’s defeat by Napoleon in 1808, in an effort to promote 

unity within Prussia, the Prussian Ministry of the Interior assumed what was then to be 

temporary control of religion within Prussia. This placed schools and churches under 

the provincial government. In 1817, along with promising an eventual national or 

general synod, King Frederick William III decreed the Evangelical Union, officially 

combining Lutheran and Calvinist churches into a state church. In an attempt to fur-

ther this forced religious unity, King Frederick William III wrote a new confessional 

policy in 1828 that was to address differences in existing confessional disagreements 

within the state church. What this lacked was a compromise addressing in any lasting 

manner the differences that existed between Lutheranism and Calvinism, differences 

which only the promised national or general synod could have successfully resolved 

(Jensen, 1974, pp. 142–144; Design Principle 3). As the desire for a representative 

constitution grew, so did the desire for a national synod to resolve differences within 

the State Church. With the death of King Frederick William III, there was renewed 

hope that King Frederick William IV would fulfill the promise of his father. This hope 

seemed to be validated in 1844 when William IV called up synods at the provincial 

level within Prussia (Jensen, 1974, pp. 142–144). The same year, Karl Marx, not shar-

ing that hope, wrote of William IV’s effort as nothing more than pretending to be pro-

gressive while still promoting the old feudal system with himself as its leader (Marx, 

1844, p. 4546). In 1846, King Frederick William IV called up a general Evangelical 

Synod of Prussia, expecting the synod to support his views and his desire to establish 

an episcopal reorganization on the basis of the Anglican model (Jensen, 1974, p. 149). 

The British envoy Henry Howard, concerned that discontent from political and reli-

gious issues were building on each other, observed this interleaving with regard to the 

national synod (Howard, 1846, Berlin, June 17). In the end, the King did not obtain the 

support he desired – the synod was disbanded and their recommendations to the King 

ignored. Although any disagreements that may have existed between various leaders, 

clergy, and laity in the Church with the King might not have reached the press, those 

disagreements certainly carried over into the pulpits of Prussia and beyond (Howard, 

1846, Berlin, October 17). Wilhelm Weitling, formally a tailor journeyman-turned 

activist author, was well received by the working class from which he had his roots 

(Hahn, 2001, loc. 1102). Shortly after parting ways with Karl Marx, he summed up the 

religious and political connection in 1847 by stating, 

Church and state have agreed rather to instruct the people in belief, than by 

belief raise them to knowledge. They have progressed so far as to protect reli-

gious freedom or free belief, but the freedom on knowledge is led by mammon 

with a golden line, and every day shortened by it.

 (Weitling, 1847, pp. 13, 66, 76, 97) 

In their own way, both Weitling and Marx had agreed that the state-controlled church 

was not legitimate, but Weitling rebelled through interpretation of the Bible, showing 
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the state as it existed was corrupt along with the church that supported it. Marx in 

typical manner just took an editorial bulldozer to both. In their own way though, they 

both agreed that the common man was just as close to God as nobility, if not closer, 

given the wealth and egocentric lives of much of the feudal nobility who went so far 

as to claim their mandate was from God, likely in an effort to justify their position and 

community status (Tajfel and Turner, 2001, p. 98). These views, and those of a similar 

nature expressed by so many others up to this point, show the danger of a combined 

church and state, all leading back to the observation made by Henry Howard. After the 

failure of the Evangelical Synod to support William IV’s wishes, the United Diet was 

called up a year later by King Frederick William IV in 1847 to again make it appear he 

was meeting the other promise made by his father William III while hoping it would 

support his needs, which, as Karl Marx points out, was a loan to the government for 

supporting the construction of a Prussian railway. The United Diet ultimately refused 

to grant the loan and, instead, asked King Frederick William IV to fulfill his father’s 

promise (Marx, 1851, October 28, p. 6). 

The United Diet had been King Frederick William IV’s answer to keeping the 

promise his father had made in 1813, which was to establish a representative govern-

ment. The British envoy to Berlin described this as the intent of the new King in his 

18 June 1842 letter (Hamilton, 1842, Berlin, June 18). The United Diet, first held 

in April 1847, was the Committees of the states (Prussian provinces) by any other 

another name. In his opening speech, the King explained why he did not grant a con-

stitution, indicating it would be unacceptable to Prussia and something he would not 

condone (Earl of Westmoreland, 1847, Berlin, April 11). He ended his speech noting 

that if the United Diet proved useful, he would call them together frequently. The 

United Diet was not just composed of conservative absolutists though, it contained 

a spectrum of political viewpoints, many of which were dissatisfied by the limited 

scope of the United Diet. Further dissatisfaction by a majority of the United Diet came 

about through their having noted that the Prussian ordinance in 1820, signed by the 

late Prussian king, established a periodical assembly of the General States, hence it 

was felt it should not be up to King Frederick William IV, now that an assembly was 

established, to determine when the assembly was to meet and for what purpose (Earl 

of Westmoreland, 1847, Berlin, April 15). The United Diet finished July 1847. A let-

ter from the British envoy in Berlin painted the results of the first sitting as positive, 

a viewpoint that differs with that of what Karl Marx offered (Marx, 1851, October 

28, p. 6), though both agree that the United Diet had not met the King’s expectations 

(Howard, 1847, Berlin, July 14). What is significant is what the Earl of Westmoreland 

communicated to Viscount Palmerston on 25 June 1847, toward the end of the United 

Diet’s deliberations. In his letter, he noted how the country had followed the delibera-

tions, and, as importantly, how the United Diet through its deliberation process created 

national-level figures for leadership supporting a representative government (Earl of 

Westmoreland, 1847, Berlin, June 25). 

Carl Schurz, then an activist and student at the university in Bonn, looking back in 

retirement as one of many who emigrated to America after the revolution of 1848, and 

who subsequently rose to become a United States Senator, noted basically the same 

thing when he wrote in 1907, 
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The United Diet could indeed not resolve, but only debate and petition. But that 

it could debate, and that its debates passed through faithful newspaper reports 

into the intelligence of the country – that was an innovation of incalculable con-

sequence. The bearing of the United Diet, on the benches of which sat many 

men of uncommon capacity and liberal principles, was throughout dignified, 

discreet, and moderate. But the struggle against absolutism began instantly, and 

the people followed it with constantly increasing interest. 

(Schurz, 1907, p. 73) 

Carl Schurz further captures the mood in Bonn during the sitting of the United Diet 

by noting that everyone listened to the words from Diet members such as Camphau-

sen, Vincke, Beckerath, and Hansemann. Many of these United Diet members would 

reappear a year later during the revolution as members of the National Assembly. To 

create the mood, Karl Marx noted in 1851 that the bourgeoisie via the United Diet had 

shown a rupture with the Government and that a revolution by the bourgeoisie was 

impending (Marx, 1851, October 28, p. 6). Much of the bourgeoisie and middle-class 

now had a common understanding through dialogue of what was needed and through 

the Evangelical Synod and United Diet, how a representative constitutional govern-

ment could function to meet those needs. With increasing social pressure for unifica-

tion, freedom of the press, trial by jury, and a liberal constitution, the bourgeoisie and 

middle-class only needed a final coalescing event, one that would provide the social 

cohesion to support a reaction. This can also be said for the lower-class workers and 

peasants, but the social pressure from their particular social needs and wants began to 

increase starting 1845 with the first bad crop year. 

There had been food riots and disturbances in the past, but it was the 1840s which 

constituted the predominance of food riots within the German Confederation, hav-

ing reached a climax in 1847 – the same year the United Diet was first held – with 

a total of about 200 disturbances involving a total of 100,000 participants (Gailus, 

1994, p. 172). The increasing number of food-related riots is attributed to the accel-

erating cost of wheat beginning in mid-1845, reaching a peak mid-1847, after which 

a good harvest that year began to reduce the cost of wheat, household expenditures 

(Berger and Spoerer, 2001, p. 303), and hence social pressure in the lower-classes. 

The largest number of food riots that year occurred in the Confederation States of 

Prussia (fewer in the western provinces of Rhineland and Westphalia), Bavaria, and 

Wurttemberg. In Berlin for example, 11 days after the opening of the United Diet, a 

food riot occurred. To quell the unrest, the military was brought out armed to patrol 

the streets the remainder of the night. Out of this incident, about 300 people were 

arrested with 107 of those taken to court (Gailus, 1994, p. 172). The British envoy 

in Vienna stated in a June 1847 letter that the population in general, to include many 

of high nobility, men of letters, the learned professions, and the Burghers, appeared 

discontented with the government as it was (Lord Ponsonby, 1847, Vienna, June 15). 

From this, it is apparent there are many citizens of various classes within the German 

Confederation whose social wants and needs are not being met. Those social wants 

and needs differed by class, as did the pressure to resolve them, but at the present 

social state, it would only take a common catalyst which all subgroups (i.e., classes 
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other than nobility) with unmet social wants and needs could identify with, to create 

the proper conditions for not only a riot or revolt, but also a revolution, given the 

current repressive regime, poor economic conditions, and past promises for a repre-

sentative constitution. 

7.1.3 Amplification of Social Dissonance 

From an economic point of view, numerous manufacturing firms failed during the 

years 1846 to 1848, with lack of credit being cited as the main cause. For example, 

investment in railways was reduced, seriously impacting the metals and mining indus-

try. Based on their economic analysis, Berger and Spoerer conclude that the agrar-

ian crisis led to an emerging industrial crisis leading into 1848 (Berger and Spoerer, 

2001, p. 306). Though the economic analysis is excellent and the data persuasive, it 

is argued here that the industrial crisis, or manufacturing shock as they label it, was 

just one more variable adding to increasing pressure for reaction and change within 

the German Confederation. Ultimately, it is the observations made by German citizens 

and British envoys at the time and immediately after the February 1848 French revolu-

tion that will be used in determining what they believe to have initiated the German 

Confederation’s revolution of 1848. Before addressing that aspect though, one final 

variable is introduced for consideration – that of emigration and the amplification of 

discontent it may have had on the general population of the German Confederation 

during the bad crop years of 1845 to 1847. 

Related to revolution is emigration, where emigration is defined here as an indi-

vidual’s reaction based on the magnitude of unmet social wants and needs, cost and 

risk to emigrate versus the cost, risk, and likelihood of national pressure that leads to 

successful political institutional improvements (once again Axiom 2 appears in this). 

As alluded to in previous chapters, this is equivalent to changing queues if the original 

queue is moving so slowly or is so dysfunctional that a member feels it is unlikely that 

his or her needs will not be met within the necessary time available. Beyond just the 

individual, increasing emigration (changing queues) signals to those who remain in 

country (in the original queue) that there is increasing general discontentment with the 

political system (resource system). In effect, this creates awareness of shared griev-

ances motivating reaction by those who remain – leading potentially to insurrection 

or revolution assuming a sufficient social pressure and density of discontented citi-

zens who remain in country exist (Pfaff and Kim, 2003, pp. 406–409). Emigration 

data, calculated for the decade leading up to the German Confederation’s revolution 

in 1848, is shown in Figure 7.1. It is estimated that about 90 percent of emigrants 

from the German Confederation emigrated to the United States during this period 

(Burgdorfer, 1931, p. 332). Viewing Figure 7.1, the emigration rate from 1825 to 1831 

indicates either high emigration risk or low unmet social wants and needs, possibly 

due to good crop years and low food prices most of these years (Burgdorfer, 1931, 

p. 342), when compared to data from 1832 to 1844. Because of the commercial cri-

sis in the United States starting in 1837, the risk of emigrating to America increases 

significantly, implying the emigration rate would likely have been higher otherwise. 

Once the European crop failure began in 1845 and the commercial crisis had ended in 
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FIGURE 7.1 German Emigration by Year, Beginning 1825 through 1849, with Major Historical 

Events for Possible Correlation with Emigration Rate. 

the United States, the yearly emigration rate increased until by 1847 it had quadrupled 

as compared to the average rate from 1832 through 1844. In just 3 years, 1845 through 

1847, about one-half percent of the entire population of the German Confederation 

had emigrated. The reduced emigration rate beginning in 1848 with the revolution 

might be interpreted as a result of now decreasing food prices, and/or possibly result-

ing from national anticipation of political improvement, maybe even the long prom-

ised representative constitution and free press. What is important is that the recent and 

significantly increased emigration rate that peaked in 1847, when combined with the 

nationally published discussions out of the United Diet, also in 1847, created a com-

mon awareness of discontent. A shared social tension was now in place, a feeling that 

something was needed to address the social needs and wants identified by emigrating 

neighbors and representative citizen members of the United Diet. All of this added to 

the uncertainty information on which the community would validate its belief of what 

should be, and then base its decision regarding whether to react or not react based on 

what currently is. 

Beyond emigration as a means to amplify social dissonance related to the German 

Confederation’s failure of governance are the underground clubs and various social 

groups at the time. As Festinger (1957, p. 177) has noted, interaction within a mem-

ber’s appropriate social group (since there are usually many) can be an important 

means for increasing or reducing social dissonance. In doing so, the group is confirm-

ing the beliefs of the particular member. This and supporting public debate all con-

tribute to reducing the social noise ( N0) whereas the risk involved adds to that noise. 

With risk and public opinion now well established within the German Confederation, 

what is necessary for a reaction to occur at this point is just one final social push, or 

amplification, from a neighboring country and its citizens that many within the Ger-

man Confederation identified with as a group member. 

7.1.4 The Amplifying Event and Group Member Reaction 

Word of France’s revolution reached Bonn university student Carl Schurz near the end 

of February 1848 as he was studying in his upstairs room. He recalls that upon hear-

ing the news, he ran down the stairs to the market-square in Bonn where the student 
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societies usually gathered, and that day they quickly gathered to understand what the 

revolution meant for them. He states, 

But since the French had driven away Louis Philippe and proclaimed the 

republic, something of course must happen here, too. Some of the students had 

brought their rapiers along, as if it were necessary at once to make an attack or 

to defend ourselves. We were dominated by a vague feeling as if a great outbreak 

of elemental forces had begun, as if an earthquake was impending of which we 

had felt the first shock, and we instinctively crowded together. 

(Schurz, 1907, p. 75) 

The next day, as they further spoke among themselves and with strangers they met on the 

street, he recalls that they concluded the day had arrived for, “establishment of ‘German 

Unity’ and the founding of a great, powerful national German Empire” (Schurz, 1907, 

p. 76). In a similar initially defensive manner, after word reached leadership within the 

German Confederation that a revolution in France had taken place on 24 February 1848, 

the Federal Diet convened in Frankfurt to consider what defensive actions the Confed-

eration should take in case France were to attack its borders along the Rhine. 

This reaction by the Federal Diet was a precautionary measure, but given the relatively 

recent experience with Napoleon and then the Rhine Crisis, it was a response that can 

easily be appreciated. Beyond just the fear of attack, Frederick Orme, the British envoy 

in Frankfurt, noted in his 2 March 1848 letter the impact the French Revolution was hav-

ing on Germany and in particular the southwestern states that more readily identify with 

France (Orme, 1848, Frankfurt, March 2). This observation may have been influenced 

by at least one petition that had already been submitted, as Friedrich Hecker recalled, 

with demands from the citizens and residents of Mannheim to the Second Chamber 

(Constitutional Charter, 22 August 1818) of the Baden Assembly on 26 February 1848. 

The petition noted that France had just been transformed by its revolution and that the 

German people had the right to demand prosperity to include education and freedom for 

all classes of society, regardless of birth or class. It went on to state that the time for long 

deliberations was past, what the people wanted had already gone through the press and 

proper legal representatives (i.e., implying it was fit to send as a petition to the Second 

Chamber), and that measures for adoption needing emphasized were 

1) Creating a citizen’s militia and with free elections for its officers. 

2) Absolute freedom of the press. 

3) Jury courts modeled after those in England. 

4) Immediate creation of a German parliament. 

(Hecker, 1848, p. 18) 

After realizing by 10 March 1848 that it was unlikely France would attack the Con-

federation, and that the social reaction instigating change had become irresistible, 

the Federal Diet began deliberating in secret on the establishment of the long-prom-

ised German national parliament (Orme, 1848, Frankfurt, March 10), a concept that 

would quickly evolve into what would become the National Assembly in Frankfurt. 
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Finally, as one further attestation as to what triggered the March 1848 revolution in 

the German Confederation, in his 28 October 1851 New-York Daily Tribune article, 

Karl Marx states, 

In Prussia, the Bourgeoisie had been already involved in actual struggles with 

the Government, a rupture had been the result of the “United Diet;” a Bourgeoi-

sie revolution was impending, and that revolution might have been, in its first 

outbreak, quite as unanimous as that of Vienna, had it not been for the Paris 

revolution of February. – That event precipitated everything 

(Marx, 1851, October 28) 

Carl Schurz; Dr. Friedrich Hecker and his associates; the Federal Diet; the British 

envoys in Frankfurt, Berlin (Earl of Westmoreland, 1848, Berlin, February 29), Ham-

burg (Hodges, 1848, Hamburg, March 6), Dresden (Forbes, 1848, Dresden, March 4), 

Hanover (Bligh, 1848, Hanover, March 24), Vienna (Viscount Ponsonby, 1848, Vienna, 

March 1), Stuttgart (Malet, 1848, Stuttgart, March 2), and Munich (Milbanke, 1848, 

Munich, March 4); and Karl Marx, all attributed the March revolution within the Ger-

man Confederation to the French revolution. The earlier crop failure, pressures on the 

guilds created by a growing industry, the industrial crisis, and a dysfunctional form of 

governance certainly would have increased the social needs and wants of Confedera-

tion members – but heightened social needs and wants do not start a revolution, they 

are merely a requirement. Reaction in the form of revolution arising from increasingly 

unmet social needs and wants requires a national-level vision of necessary political 

institutional improvement based on social identity and norms (preferred traits and com-

mon beliefs) which must evolve and be accepted over time. Not a class vision, nor just 

an individual’s vision of what could be perceived as a chance for improvement, but a 

national vision – all at a level of risk the participating citizens were willing to accept. 

The basic stage had been set for revolution within the German Confederation by 

the end of 1847. Nobility had shown and continued to demonstrate a lack of concern 

for anything but themselves, and their mandate from God was viewed with decreasing 

authenticity if it ever had any to begin with. The citizens of the German Confederation 

had been promised a representative constitution at the inception of the Confederation 

by King Frederick William III, only to be teased with the concept by his son who had 

his own personal agenda which was demonstrated to not involve the creation of a rep-

resentative government. The insurrections of 1830–1833 created a collective memory 

of the Paris Revolution as having led to local insurrections in the German Confedera-

tion, so revolution after the February 1848 French revolution could be considered and 

justified based on the memory of those who had been young at the time but who were 

older and in positions of influence by 1848 (Pennebaker and Banasik, 1997). The 

general Evangelical Synod of 1846 and the United Diet of 1847, both held within 

Prussia, provided a Confederation-level vision of what could be achieved while also 

showing that dissention was allowed (i.e., acceptable risk). Finally, the food riots of 

1847 demonstrated to the lower-class how their voices could be heard and that break-

ing of the law offered risk, but less risk than posed by possible starvation at the hands 

of an incompetent government. In the end, France revolted against its King on 24 
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February 1848, finally pushing citizens within the German Confederation to choose 

between the national identity they desired to be part of or continue to serve under a 

government that did not represent who they were or address what they wanted. The 

revolution eventually failed, but the community-wide reaction is what was of inter-

est. In effect, the experimenter of Stanley Milgram’s obedience experiments was dis-

obeyed (Milgram, 1965), and citizens of the German Confederation revolted based 

on their French European group members they could better identify with politically. 

7.2 Response to Intrusion Into Waiting Lines and the German 
Confederation’s Nobility 

As Friedrich von Coelln had recognized on or before 1807, nobility had become a 

free-riding social subgroup within what was basically a semi-Feudal German Confed-

eration. Their subgroup identity was distinct from the community from which their 

wealth and power was derived, and a hierarchical structure existed within this sub-

group. The community’s view of nobility as free-riders persisted from at least 1807 

and likely grew leading up to the 1848 revolution as evidenced by Johann August 

Wirth’s commentary in 1832, an article in the Dusseldorfer Zeitung (1843), along 

with the multiple articles by Karl Marx and others. Viewed within the structure of 

a queue, free-riding nobility are those that intrude into the queue at the front, offer 

relatively little or no benefit to the community commensurate with resources which 

they consume, and thus reduce opportunity (resources) for the other queue members 

already in queue who are not of noble blood. As the various offspring of nobility and 

their relations proliferate, the problem is further exacerbated due to established social 

norms of the nobility which lead to placing their relations in positions of influence, 

which in turn increases the priority intrusion rate for rival resources. If the intrusion 

is infrequent, then tempers of those impacted within the lower-class community flare, 

then pass away over time. If such events become so frequent so as to impact the abil-

ity of those who have gained status in the lower class and have been waiting in queue 

to gain access to the desired resource (food, housing, education, wealth, power, etc.), 

then the intrusions and resultant dissonance begin to accumulate, possibly reaching 

equilibrium at a still acceptable level of discomfort, or at the extreme, ending in lead-

ing or supporting revolution as the final solution if the emotional discomfort and asso-

ciated pressure to react reach sufficient magnitude. 

As a generic example, consider a hypothetical situation where, every day, a citizen 

reads in the newspaper or discusses in his or her club how nobility is committing 

some variety of yet another social deviation. To make this simple, assume that various 

deviations identified each day have the same stimulus intensity, say one unit, and asso-

ciated unit sensation magnitude of 1. If the meantime to decay for the various social 

deviations is also assumed the same for each stimulus type, say λ = 3 days₋1 , then 

the resultant stimulus intensity approaches equilibrium which, using Equation 6.1, is, 
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Under the given simplifying assumptions, and assuming the group members to which 

this information is directed listen to nothing else, this results in a unit sensation mag-

nitude of, 

3 528 + N  . 0= ln .es3 528.  N0  

Social cohesion also plays a role, as do the number of group members in a hierarchi-

cal system who amplify the sensation magnitude of their leaders. But the example is 

clear in that all that is needed for leadership to increase the probability of reaction 

by community members is to accurately monitor on a regular and frequent basis the 

social deviations as perceived within the community member social subgroup they 

represent. This is an argument for the importance of Design Principle 4 and factual 

unbiased monitoring of events within the community. When monitoring panders to the 

belief of a subgroup in the community or the viewpoint desired at the time by those 

of higher status whose concern is to maintain or increase their status, then community 

resources are at risk. It is this reason that dictators, autocrats, and the like resent a free 

press and do what they can to nullify it, beginning with calling it fake and making use 

of the uncertainty information effect, particularly through non-reaction UI = {NR1}, 

which, as Chapter 3 has shown, is more effective at reducing probability of reaction 

than UI = {R1}. 

The German Confederation’s nobility isolated themselves from the people who 

financially supported them. Nobility legally avoided taxes. Those of nobility often 

had mistresses and associated scandals in an otherwise religious community, and they 

were often on vacations at expensive resorts that the general populace could not imag-

ine and could only hear rumors of, and yet nobility did nothing to benefit the commu-

nity. These and other transgressions were counter to the beliefs of their citizens and, 

when continually brought to light by a free or at least semi-free press allowed for an 

equilibrium of stimulus intensity to develop for that stimulus (e.g., free-riding nobil-

ity and dysfunctional governance). From this, it is possible that cognitive dissonance 

from various associated stimuli, supporting in some way the need for unification and 

general public representation, was additive. This is where social space becomes com-

plicated, possibly leading into a multidimensional vector field, and where much work 

remains in developing the theoretical underpinnings for future and more comprehen-

sive analyses. 

7.3 The Obedience Experiment and the German Confederation’s 
Revolution of 1848 

From Chapter 4, recall the Condition 4 obedience experiment where two confeder-

ates sequentially disobey the experimenter (Milgram, 1965). In this particular experi-

ment, the first confederate disobeys the experimenter when the naive subject (teacher) 

reaches 150 volts, thus prompting over 25 percent of the naive subjects out of the 40 

trials conducted to disobey at that voltage or shortly after. In its most simplistic form, 

the German Confederation beginning March 1848 may be equated with the naive 
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subject at 150 volts, and the revolution in France beginning February 1848 as the first 

confederate defying the experimenter. It is argued that the political festivals, newspa-

per editorials, expanding industrialization, the General Synod, the United Diet, and 

emigration all helped enforce beliefs and reduce social noise so that the populace of 

the German Confederation better understood why the previously promised representa-

tive government was needed. Thus, a concept introduced in 1813 under King William 

III solidified into a belief by 1847 of what should be which led to the associated dis-

sonance caused by a divergence between belief of what should be and what was. The 

means for establishing a representative government had been demonstrated through 

the United Diet; now all that was needed was an added push to react, or, in this case, 

a confederate group member supporting a reaction based on the belief of what should 

be done, given the social norms (belief) of the German community. 

As indicated, the stimulus intensity for unification developed over time, but ampli-

fication of the associated sensation magnitude within the German Confederation is 

argued to have occurred immediately before the Confederation’s revolution. Switzer-

land had just had a minor civil war leading to improved governance in late 1847, and 

Italy was in the process of revolution when France began its 1848 revolution. This 

implies the possibility of three examples of countries in revolt, with France having the 

(
|
( 

greatest commonality of factors and identity with members of the German Confedera-

l
l
l 

tion, particularly its southwestern states. Assume that the concept of cross-modality 

matching (Stevens, 1975, pp. 33–34) may be applied in this case between a queue 

intrusion stimulus and the stimulus caused by free-riding of the nobility, then if unit 

sensation magnitude comparable to an illegitimate intrusion may be argued to exist, 

such that es = 1 148, then to achieve a greater than 50 percent probability of reaction. 
when just considering France as a confederate model, then noise N0 would have to be 

less than or equal to 2.22. From this, if N0 ≤ 2 22 and the potential cumulative effect. 
on stimulus intensity of social deviations by the nobility over time is not yet accounted 

for, the general model proposed for probability of revolution could be bounded by, 
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0 5 < P (Revolution | French Revolution) < 0 846. . 

 1+0 582.   1+1 147 .
−1 148. ⋅ln ⋅lne⋅  1  0 582.   1 147  .= − e for N0 = ≅ 0 582.1 .

  e −1 
   

1
Where N0 ≅ = 0 582.  might be approached if social noise had been reduced to 

e −1 
the minimum due to festivals, via reporting by the semi-free press, the General Synod, 

the United Diet, emigration, and lack of strong disincentives (risk) from the Monar-

chy. For comparison purposes, the noise level for a Grand Central station queue was 

found to be about N0 = 2.056. Given the uncertainty involved and the limited risk of 
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confrontation, there would seem to be comparisons, with the possibility that social 

noise was lower for most of the German citizens in 1848 than for those New Yorkers 

in 1978 waiting in queue. A 50/50 chance for revolution is not good odds, and any-

thing above that is just a reaction waiting to happen. Sans revolution though, it would 

also be interesting to examine the relationship between lower sensation magnitude 

levels and emigration. 

7.4 Final Remarks 

Design principles 2 (earned status) and 4 (unbiased monitoring by the community and 

free-riding) were clearly violated from at least 1807 to 1848 in what was to become, 

and what became the German Confederation beginning in 1815. Given that the moni-

toring of nobility continued to occur even when the free-press was repressed, that 

nobility had increasingly become free-riders, and that the system of governance did 

not address the wants and needs of the general populace, the German Confedera-

tion, being a community with clearly defined boundaries, was a commons doomed 

to eventual failure. It was an outdated, outworn institution based on the feudal struc-

ture, which in the end was unable to satisfy the needs of its citizens as they in turn 

observed and tried to compete with the emerging industrial nations around them. Yet, 

the nobility resisted necessary changes to the political and social structure. They were 

wealthy, they had power, the resource system was working well for them, and as a 

means to reduce dissonance, as a group with its own identity, they likely convinced 

themselves that this is the way it should be. A decrease in status for them would appear 

to cause greater emotional discomfort than dealing with occasional insurrections, and 

as per Axiom 2, nobility would thus be more than willing to accept the occasional 

insurrection. 

Throughout history, the question arises as to how rich is rich enough, and if a 

person is working, why should they be poor and barely able to survive? German 

workers in the southwestern region of the Confederation were asking and debating 

this question in 1848 (Esselen, 1848, pp. 37–40), and the question is being asked 

in many countries around the world now. Typically, wealth brings along power and 

status from which the wealthy may then influence legislation and social perception 

to maintain or increase their wealth via the media and political representatives they 

control. But to what end? Is it a competition to be the wealthiest person alive at the 

expense of those who are getting the work done to create that wealth? It is fair that 

the wealthy gain their wealth through the use of community-purchased infrastructure 

without paying sufficient contributions supporting the very same infrastructure – the 

educational infrastructure being a prime example. It may also be asked if the gover-

nance structure is distributing tax revenue in a way that best benefits the long-term 

welfare of the community as a whole. A systems level approach needs to be taken 

when addressing social needs and wants of the community, else resources are not 

optimally used. To enable this approach, the community must participate, it must 

be educated, and it must be interested enough to pursue these questions and force 

necessary change when required, since those relying on the status quo to remain in 

power do not want to lose their status (position in queue) as that creates dissonance 

for them. 
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From a more fundamental view, we live in a closed system, and there are only so 

many resources on which to base our survival. As with cattle, if too many exist in a 

closed pasture relying on a rival resource, they will all starve. Going to another planet 

(pasture), when eventually possible, might work for a few, but not for the masses left 

behind, and in the end, if we do not learn to live properly on this planet, then we will 

just go to another and start the cycle over again. A solution needs to be found by all 

communities on this planet, and that is where we all must find common beliefs leading 

to a common goal. As King William III discovered, dictating a belief to the citizens 

is not effective. Identifying common beliefs though relies on common and accurate 

information, and that is the difficulty we face in an age of instant communication with 

varying levels of reliability and access by community members. Community members 

may currently select the information they want to hear in order to reduce their own 

dissonance, or the information they hear is limited or slanted based on what those in 

power want them to hear. 

Accurate information heard by all enables citizens of a commons, with adequate 

education, to understand the problem and reach a consensus on the rules they want to 

follow for maintaining stability of their resource system. If they are not able to reach 

consensus, then stability will not be achieved. In all cases, the basic problem is that all 

citizens must see an issue of interest as a social deviation, and they must understand 

and appreciate its relevance. Otherwise, we as humans tend to react only when the 

problem is hitting us directly across the face, and that leads us back to the need for 

improved education which in turn allows us to perceive past patterns as they relate to 

current events, appreciate science as it should be practiced, read about and debate our 

differences, and, as a result, better focus on questions that reduce social noise and pur-

sue reactions as a community that more effectively addresses demanding issues. With 

escalating social alterations due to climate change, more frequent pandemics due to 

increasing population density, the information explosion resulting in a contest where 

we either make use of it or are used by it, population shifts from wars and famines, and 

as their impact becomes more relevant to all in our shared social commons, it seems an 

appropriate time to consider a more participatory and equitable form of governance, a 

stable form that mitigates disruptive and often horrific oscillations between the vari-

ous forms of governance which have been experienced to date. To do this, though, we 

need to understand and address what seems to be a basic human need for status and 

how best to identify and reward status to those deserving of it, based on how they ben-

efit the community and how to monitor and swiftly remove that status when benefit to 

the community is no longer provided. 

We have history as data. Lessons learned from the past do not have to be repeated 

if they are actually learned from and passed on in a meaningful manner. Lessons 

learned can also involve approaches to social governance that worked well for a time, 

with the need then to understand what eventually led to their failure. Three examples 

for consideration to start the process are from the Old Testament (NIV Bible, 2011, 1 

Samuel 8), Imperial China’s civil service examination system which promoted some 

amount of equity, and the ancient democracy of Greece (Ober, 2015). It is not enough 

to learn of and debate historical events, which is the process for data collection and 
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validation, but the data must be placed within a framework supporting systematic 

analysis of complex social structures to clarify why events unfolded as they did. With 

cause and effect identified, patterns emerge, and patterns lead to further quantitative 

modeling. Mistakes will be made in developing such a process, mistakes have prob-

ably been made in this book, but that is how we learn and grow. Up to this point, and 

one of the reasons for expending effort to write this is that we seem to be stagnating 

from a social development standpoint. Maybe Sorokin (1985) was correct in his cyclic 

view of societies, but we need to eventually break the cycle if it does exist in order to 

grow as a world community. 

Basic mathematical tools and social concepts have been proposed here that may 

potentially allow expansion into more socially complex areas of social space such as 

those described before. By expanding the boundaries of social space, further math-

ematical development will ensue. Use history as social data. Use it to further develop 

and validate tools and theory presented to this point in an effort to systematically 

expand on their application. This is where collaboration across academic disciplines 

is critical since the limited view and capabilities of a few clearly limit the speed of 

progress as compared to what is deemed necessary, given our current global social 

situation. The end goal of this effort should be to determine if there is a way to achieve 

and sustain a stable social commons (i.e., stable node) on this planet other than relying 

on another 100,000 years of human evolution. With that, let us all make a sustainable 

and peaceful social commons our goal, as the alternative, based on history, is never 

pleasant. 
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APPENDIX A 

Deriving Minimum Queue Length Based 
on Milgram et al. (1986) Data 

The accuracy of a model is only as good as the model and the data from which it is 

derived. The data presented in Milgram et al. (1986) is what was necessary for their 

article, and even that limited amount of data is greatly appreciated. Unfortunately, 

what is really needed are the original coding sheets used by the graduate students to 

log raw data for each intrusion event. Figure A.1 provides the only known example 

of a completed coding sheet from the Milgram et al. (1986) intrusion experiment con-

ducted in 1978 by his graduate students. 

Figure A.1 information is as follows: 

1. Condition 2 Coding Sheet for Team A: 

a. 1 Buffer – Christina Taylor and 1 Intruder – David Nemiroff 

b. Observer Recording Data – Ronna Kabatznick 

2. Location: Ticket Line at Grand Central Station, New York City 

3. Date and Time: 5 May 1978 at 4:05 p.m. 

4. Intrusion Point: Three members ahead (one male, two females), five members 

behind (two females, three males) including confederate female buffer. Total 

queue length of eight including confederate buffer. 

5. Reactions: 

a. Line position 5/Position (+2) verbal ejection of intruder 

b.	 Line position 3/Position (−1) verbal disapproval to intruder 
c. Line position 6/Position (+3) verbal disapproval to others – not counted as 

reaction since not directed at intruder as per Milgram et al. (1986) 

6. Qualitative Notes Recorded by Observer: 

a. Line position 5/Position (+2) “Hey buddy, the line forms in the rear.” 

b.	 Line Position 3/Position (−1) “What’s this? I’d like to get in here?” 
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FIGURE A.1 Original Condition 2 Coding Sheet from the 1978 Intrusion Experiment. 

It is important to note that the coding sheet can record the queue position, reaction, 

and sex of 12 queue members, with overflow information in the last column to the 

right. After reading Milgram et al. (1986), it might be assumed that the number 12 was 

selected as the cutoff point so that data could be collected to either support or counter 

the findings of Harris (1974, p. 564) where all lines used in her experiment were at 

least 12 persons long. This is not the case though as the following statement indicates, 

Following completion of our experiment, we learned of a study by Harris (1974) 

on the frustration-aggression hypothesis (Dollard et al., 1939) that used experi-

mental techniques similar to our own. 

(Milgram et al., 1986, p. 684, with permission 

from the American Psychological Association) 

This is important to point out since it implies that queue length selection for any given 

situation could still be based on random selection. Since Milgram et al. (1986) only 

provides information to queue position (+4), and the raw data sheets from the Stan-

ley Milgram Papers Manuscripts and Archives, Yale University Library, only provide 

queue position data out to position (+5), what random selection allows for is another 

means to systematically obtain approximate minimum queue length data (behind the 

position of interest) which is required in the case of Condition 4 in Milgram et al. 

(1986). Given more data exists in the raw data sheets, for consistency, it is the raw data 

that is used in the calculations contained in this Appendix. 
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A.1 Basic Queueing Theory and the M / Ek / 1 Queue 

The focus of this analysis will be on Condition 4, which has three to four members 

ahead of the intrusion point, and of the 23 trials conducted, 17 of the trials had mem-

bers out to at least queue position (+5). This indicates that there were likely several 

queue members consistently beyond queue position (+5), which are not accounted for. 

It was shown using data from Schmitt et al. (1992) that the number of queue mem-

bers behind the position of interest is critical to modeling probability of reaction by the 

member at the position of interest. An analytic means is therefore needed to systemati-

cally approximate the number of queue members behind the position of interest, who 

are otherwise not accounted for. Based on the approach developed and documented 

in this appendix, only Condition 4 warrants modification. Condition 4 went from a 

Q (2 0 4) to Q (2 0 11 3. ), and Condition 6 will remain the same since it otherwise 

only would have gone from Q (2 2 2) to a Q (2 2 2 1. ). All remaining Conditions 

from Milgram et al. (1986) remain unchanged on the basis of available data regarding 

number of members behind the position of interest and their probability. Therefore, 

Condition 4 being the most significant will be used to demonstrate the technique and 

to document the approach. All other conditions used the same approach but differed 

only to accommodate number of buffers and unique data pertaining to each of their 

trial results for the given Condition. 

To begin, envision yourself joining a line (a queue) in a grocery store at the end 

of a five-member queue, including the member currently being served. There is a 

server at the cash register, which processes the groceries each member is buying, 

sums up the total cost, bags the groceries, and then takes payment from the queue 

member being served. Once the queue member being served has paid and all the 

groceries bagged, then that member leaves the queue. The queue member who was 

immediately behind him or her is now served next with the process beginning all 

over again. 

After waiting in line for 1 minute, another person joins the queue at the end: three 

minutes later another, and then 2 minutes later a third so that there are now three queue 

members behind you when you reach the server at the cash register. In this situation, 

the sample mean arrival rate ( )λ  is calculated from three arrivals divided by six min-

utes, or λ = 0 5. arrivals per minute. Since your arrival, the five members originally 

ahead of you were served over the six-minute period, so the sample mean service rate 

µ is five members served divided by the six minutes required to process them all.( )  
This results in a single server sample mean rate of µ = 0 8. 3 queue members served 

per minute. If the arrival rate had been greater than the service rate, then the line would 

grow infinitely long over an infinite amount of time, or people would just end up leav-

ing the line for a faster one – the latter being more likely. 

The Poisson distribution often represents or approximates the specific occurrence 

of arrival times in many natural examples. In heuristic terms, the postulates that point 

toward justifiable use of the Poisson distribution for arrival rate in the queue are (Bhat-

tacharyya and Johnson, 1977, p. 157): 

1. Independence: The number of events that occur in one period does not affect the 

number of events that occur in another period (i.e., arrivals are independent). 
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2. Lack of clustering: Two or more events (arrivals) cannot occur at the same time 

(i.e., two people cannot occupy the same space at the same time). 

3. Rate: The average number of events (arrivals) per unit time is a constant, denoted 

by λ, and λ does not change with time assuming a homogenous situation (i.e., 

same conditions and social situation). 

What makes the Poisson distribution even more attractive mathematically is that the 

distribution of time between arrivals is exponentially distributed. This represents a 

simple embedded Markov process which makes model development much easier. It is 

not necessary to provide equations since the Poisson distribution is well known, and 

discussing the attributes of the Markov process is not necessary, other than to indicate 

it allows use of differential-difference equations, the type we will be demonstrating 

the development of shortly. 

Typically, a person acting as a server at the ticket-counter or grocery store takes an 

average amount of time to process a queue member – with variation based on the num-

ber of items being purchased and the preparedness of the queue member being served. 

Conversely, if the server is a machine such as Ticketron or a modern ATM, then there 

will be a mean service time with some variation depending on the person using the 

machine. So, though service times exist that are exponential, most will be more sym-

metrical in nature. The Erlang Type k distribution provides this necessary versatility in 

representation and is still as mathematically tractable as the exponential distribution. 

As the integer value for k increases, the Erlang distribution becomes more symmetri-

cal. As k →∞, the Erlang becomes deterministic with mean value u 
1  (Gross and Har-

ris, 1985, pp. 171–172). Since the sum of k independently and identically distributed 

exponential random variables, all with mean 
k. 
1 
u , yields an Erlang Type k distribution, 

the Erlang Type k retains some Markovian properties that can be taken advantage of. 

It is not the intention to turn this appendix into a minor course on queueing theory, 

but to provide the steady-state difference equations necessary to calculate the prob-

ability pn of n queue members in an M E /1 queue at any moment or, in this case, / k 
the probability of n queue members behind the position of interest. Gross and Harris 

(1985, p. 175) provide the steady-state difference equations, leaving their solution to 

the reader. This appendix will spare the reader that effort. Define pn i as the probabil-,
ity of n queue members being behind the position of interest at any one time, where 

each member is transitioning from, transitioning to, or remaining in the ith phase of a 

k-phase service process. 

0 = −λ ⋅ p0 + k ⋅µ ⋅ p11, solves for p11, ( p0 ) 
0 = − (λ + kµ ⋅ p1,i + ⋅ ⋅ p1 1,i+ solves for p1 1  1i+ ( p , ) 1≤ ≤  −  ) k µ , i ( i k 1) 

0 = − (λ + kµ) ⋅ p + ⋅k µ ⋅ p + λ ⋅ p solves for p ( p , p )1,k 2 1, 0  2 1, 1,k 0 
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then, for n ≥ 2 and 1 ≤ ≤ −i k  1, 

0 = − (λ + kµ) ⋅ pn i, + ⋅k µ ⋅ pn i, +1 + λ ⋅ pn−1,i 

solves for pn i, +1 ( pn i, , pn−1,i ) 
0 = − (λ + kµ) ⋅ pn k, + ⋅k µ ⋅ pn+11, + λ ⋅ pn−1,k 

solves for pn+11, ( pn k, , pn−1,k ) 
It is known that the probability of the queue being empty at any moment is p0 1 

u
.= - x 

Using an Erlang Type 2 as an example, the steady-state difference equations yield: 

λ λ + ⋅2 µ
p = ⋅ p ,and p = ⋅ p ,11, 0 1,2 1,1 

2 ⋅µ 2 ⋅µ 
so p = p + p1 2, ;1 11, 

(λ + ⋅2 µ ) ⋅ p − ⋅λ p1 2, 0
p = ,and p2 1, 2 2,

2 ⋅µ 
(λ + ⋅2 µ ) ⋅ p − ⋅λ p2 1, 11,= , so po = p + p ;2 2,1 2,2

2 ⋅µ 

(λ + ⋅2 µ ) ⋅ p2 2, − ⋅λ p1 2,
p = ,and p31, 3 2,

2 ⋅µ 
(λ + ⋅2 µ ) ⋅ p − ⋅λ p31, 2 1,= , so p = p + p ;3 3,1 3,2 

2 ⋅µ 

The pattern continues, which fortunately we only need to calculate out to p3 at most 

for the Conditions with no buffers and since the member of interest does not need to be 

addressed – he or she is always present. As an example, for Condition 4 (no buffers), p0 
represents the probability of no one behind the position of interest, p1 is the probability 

of one person behind the position of interest, and so on. Then 1− ( p0 + p1 + p2 + p )3 
is the probability of four or more members behind the position of interest that should 

in a perfect world equal Q( | | )  17  if the arrival rate and service rate were known,20 4  = 23 

Q( |20| )4 was accurate, and the queue system was actually an M/E2/1. But there lies the 

main problem: we do not know the arrival rate or the service rate, or even what Erlang 

Type k distribution best fits the service distribution. What we do know, going back 

to Condition 4 as an example, is Q( | | ),Q( | | )201 ,Q( | | ),Q 203 ,and Q 2200  202  ( | | )  ( |04| ), 
and that is enough. 
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It was given p0 1 
u

. We really do not need to know both λ and μ but only= - x 

2
their ratio P = x . With this, we want Q( | | )  po ρ u  200  − ( ) to be as small as possible 

by varying ρ. 

Likewise, 

2
Minimize Q( | | )  p ρ  as a functionof ρ ,where201 − 1 ( ) 

λ λ + ⋅2 µ
p ρ = ⋅ p( )  + ⋅ p1 0 11,

2 ⋅µ 2 ⋅µ 
ρ ρ + 2 

= ⋅ p ρ + ⋅ p( )  ( p [ ]ρ ).0 1,1 0
2 2 

Using this, we just continue 

2
LQ (2 0 2) - p ( )ρ L , LQ (2 0 3  - p3 ρ L) ( )L2

,L 2 L L 

L 3 Land LQ (2 0 4  1  ρ .- -) ( E pn ( ))L 

2 

n=0 LL 

Once we have a value for ρ that provides the best fit to the empirical data under the 

assumption k = 2, then from (Gross and Harris, 1985), we can find the mean number 

of queue members L behind the position of interest. Where for an Erlang distribution 

of Type k, 

k +1 λ2 λ k +1 ρ2 
L ( )ρ = ⋅ + = ⋅ + ρ.

k µ µ λ ) µ 2k (1− ρ )2 ⋅( − 

94In the case of Condition 4, the best fit for Erlang Type 2 is P = 100  having a least-

squares fit of 0.019. This results in an estimated mean number of queue members 

behind the position of interest of 

2 1+ 0 94
2 .

L (0 94) = ⋅ 0 94 12members.. . = 
4 (1 0 94− . )

+ 

Having derived the steady-state difference equations up to an Erlang Type 10 (it does 

get tedious and really is not significantly different beyond k = 10), the best fit overall 

occurs using an Erlang Type 10 with P = 95.2  having a least-squares fit of 0.007 and a
100 

value for mean number of members behind the position of interest L = 11.3 such that 
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10 +1 . 2
0 952 

L (0 952 ⋅ + 0 952 = 11 3members. ) = . . . 
20 (1 0  952− . ) 

This is an approximation only, but as evidenced by the other Conditions, it tends to 

be relatively accurate. Based on simulation, the standard deviation is in the region of 

about 1.5 queue members for 20 observations. So, what the actual value that would 

have been recorded on the experiment coding sheet may have been a little less or a 

little more. Making use of the mean value seemed fair, given the liberties already 

taken to get this far. 

As a final note in this appendix, the author visited Grand Central Station in May 

of 2019. After collecting 30 minutes of data, the representative service time distribu-

tion for a single ticket counter was Erlang Type 5. That is not to say that a Type 5 

should have been used instead of a Type 10 for Condition 4, but assuming similarity 

in general process between 1978 and 2019, use of an Erlang distribution would appear 

appropriate. It may also be argued that the mean queue length was about twice as long 

for 17 of the 23 Condition 4 queues compared to what was observed in 2019, implying 

the tellers at the ticket counter probably operated in a more hurried fashion as would 

the customers, thus reducing variance and making the process somewhat more deter-

ministic (i.e., possibly explaining the Type 5 observed in 2019 instead of the Type 10 

which the 1978 date alludes to). 
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GLOSSARY OF VARIABLES AND NOTATION 

e ∈[0, d ] Extent social deviation of social event 

E Independent random variable for extent social deviation such that 

e R∈ E 
es ∈[0, ∞) Unit stimulus sensation magnitude under exponential encoding 

ES Independent random variable for unit sensation magnitude such that 

es ∈ RES 
es Sample mean value of the independent unit stimulus sensation mag-

nitude random variable ES under exponential encoding 

esp Sensation magnitude value for p stimuli “units” having unit stim-

uli sensation magnitude es in social noise N0 under exponential 

encoding 

esp m  Sensation magnitude value for p stimuli “units” having unit stimuli, 
sensation magnitude es in social noise N0, and m queue members 

behind the member position of interest under exponential encoding
f sS ( )  Probability density function of the random variable S under uniform 

encoding 

F s( ) Cumulative distribution function (CDF) representing the probability S p,m 
of reaction based on sensation magnitude value sp m under uniform,
encoding 

GES (esp m, ) Cumulative distribution function (CDF) representing probability of 

reaction based on sensation magnitude value esp m under exponen-,
tial encoding 

H (UI ) Proportion reaction probability is reduced based on observed uncer-UI +1 
tainty information UI 

I0 Absolute stimulus intensity 

I or In Stimulus intensity ≥ absolute stimulus intensity, with n > 0 
ΔIn Change in stimulus intensity ∆ =  −I I −In n n 1 
k P  Indicates a variable k is not an element of the set P∉ 
K Group member social space 
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N0 

Ne 

Nn 

N0 

NUA 

NUA 
p 

PSE 

r ∈[0 1, ] 
R 

RX
R 
R+ 

s ∈(0, d ] 

S 

s 

sp 

sp m, 

Δsn 
Δsn,m
UR 

y UI( ) 
Z 
Z0 

Z+ 

z UI( ) 

Background social noise intensity random variable 

Minimum social noise intensity for unit stimulus intensity p such 

that Ne = e− 
p 
1 

Social noise intensity above background with N = In + N0n 
The geometric mean of the background social noise intensity random 

variable N0 

Social uncertainty of attraction intensity random variable (i.e., cohe-

sion noise) 

The geometric mean of an uncertainty of attraction random variable 

Real valued general stimulus intensity, typically represented in this 

work as positive integer units of stimuli (e.g., number of people in a 

crowd looking up) 

Point of subjective equality 

Relevance value of social event 

Independent random variable for relevance r RR∈ 
∈Range of the random variable X such that x RX = {x f  ( )x > 0}.X 

All real numbers 

All real numbers greater than zero 

Unit stimulus sensation magnitude value under uniform encoding of 

group member social dissonance with zero social noise intensity Ne 

such that s {s r e  | r ∈[ , ]and e  ,d ]}−{ }∈ = ⋅ 0 1  ∈[0 0 
Independent random variable for unit stimulus sensation magnitude 

s R∈ S 
Sample mean value of the unit stimulus sensation magnitude random 

variable S 

Sensation magnitude value for p stimuli “units” having unit stimuli 

sensation magnitude S in social noise N0 under uniform encoding 

Sensation magnitude value for p stimuli “units” having unit stimuli 

sensation magnitude S in social noise N0 and m queue members 

behind the member position of interest under uniform encoding 

Unit change in sensation magnitude sn−sn−1 
General change in sensation magnitude sn−sm 

Uncertainty reduction (aka, uncertainty-based information), Chapter 3 

y UI ) = H (UI ) when all elements of uncertainty information( UI +1 

UI are observed to react 

All integers 

All nonnegative integers 

All positive integers 

z UI ) = H (UI ) when all elements of uncertainty information( UI +1 

UI are observed to be nonreactive 
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