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Abstract

Wind turbine plants are complex dynamic and uncertain processes driven by stochastic
inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal
and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both mod-
elling and control become challenging problems. On one hand, high-fidelity simulators
should contain different parameters and variables in order to accurately describe the main
dynamic system behaviour. Therefore, the development of modelling and control for
wind turbine systems should consider these complexity aspects. On the other hand, these
control solutions have to include the main wind turbine dynamic characteristics without
becoming too complicated. The main point of this chapter is thus to provide two practical
examples of development of robust control strategies when applied to a simulated wind
turbine plant. Experiments with the wind turbine simulator represent the instruments for
assessing the main aspects of the developed control methodologies.

Keywords: wind turbine simulator, data-driven and model-based approaches,
fuzzy identification, online estimation, robustness and reliability

1. Introduction

Wind turbine plants represent complex and nonlinear dynamic systems usually driven by sto-

chastic inputs and different disturbances describing gravitational, centrifugal and gyroscopic

loads. Moreover, their aerodynamic models are uncertain and nonlinear, while wind turbine

rotors are subject to complex turbulent wind fields, especially in large systems, thus yielding to

extreme fatigue loading conditions. In this way, the development of viable, robust and reliable

control solutions for wind turbines can become a challenging issue [1].

Usually, a model-based control design requires an accurate description of the system under

investigation, which has to include different parameters and variables in order to model the

most important nonlinear and dynamic aspects. Moreover, the wind turbine working conditions
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can produce further problems to the design of the control method. In general, commercial

codes are not able to adequately describe the wind turbine overall dynamic behaviour; usually,

special simulation software solutions are used. On the other hand, control schemes have to

manage the most important turbine dynamics, without being too complex and unwieldy.

Control methods for wind turbines usually rely on the signals from sensors and actuators,

with a system that connects these elements together. Hardware or software modules elaborate

these signals to generate the output signals for actuators. The main task of the control law

consists of maintaining safe and reliable working conditions of the wind turbine, while achiev-

ing prescribed control performances and allowing for optimal energy conversion, as shown

e.g. in recent works applied to the same wind turbine model considered in this chapter [2].

Today’s wind turbines can implement several control strategies to allow for the required perfor-

mances. Some turbines use passive control methods, such as in fixed-pitch, stall control machines.

In this case, the system is designed so that the power is limited above rated wind speed through

the blade stall. Therefore, the control of the blades is not required [1]. In this case, the rotational

speed control is proposed, thus avoiding the inaccuracy of measuring thewind speed. Rotorswith

pitch regulation are usually used for constant-speed plants to provide a power control that works

better than the blade stall solution. In these machines, the blade pitching is controlled in order to

provide optimal power conversion with respect to modelling errors, wind gusts and disturbance.

However, when the system works at constant speed and below rated wind speed, the optimal

conversion rate cannot be obtained. Therefore, in order to maximise the power conversion rate,

the rotational speed of the turbine must vary with wind speed. Blade pitch control is thus used

also above the rated wind speed [1]. A different control method can introduce the yaw regulation

to orient the machine into the wind field. A yaw error reference from a nacelle-mounted wind

direction sensor system must be included in order to calculate this reference signal [3].

Regarding the regulation strategies proposed in this chapter, two control design examples are

described and applied to a wind turbine system. The wind turbine model exploited in this

chapter is freely available for the Matlab® and Simulink® environments and already proposed

as benchmark for an international competition regarding the validation of fault diagnosis and

fault-tolerant control approaches [2].

In particular, a first data-driven method relying on a fuzzy identification approach to the

control design is considered. In fact, since the wind turbine mathematical model is nonlinear

with uncertain inputs, fuzzy modelling represents an alternative tool for obtaining the mathe-

matical description of the controlled process. In contrast to purely nonlinear identification

schemes, see, e.g. [4], fuzzy modelling and identification methods are able to directly provide

nonlinear models from the measured input-output signals. Therefore, this chapter suggests to

model the wind turbine plant via Takagi-Sugeno (TS) fuzzy prototypes [5], whose parameters

are obtained by identification procedures. This approach is also motivated by previous works

by the same authors [6].

Regarding the second model-based strategy presented in this chapter, it relies on an adaptive

control scheme [7]. Again, with respect to pure nonlinear control methods [8], it does not

require a detailed knowledge about the model structure. Therefore, this chapter suggests the

implementation of controllers based on adaptive schemes, used for the recursive derivation of
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the controller model. In particular, a recursive Frisch scheme extended to the adaptive case for

control design is considered in this study, as proposed, e.g. in Simani and Castaldi [9], which

makes use of exponential forgetting laws. This allows the online application of the Frisch

scheme to derive the parameters of a time-varying controller.

Finally, the chapter is organised as follows. Section 2 recalls the wind turbine model considered

for control design purposes. Section 3 addresses the data-driven scheme exploited for the deriva-

tion of the fuzzy controller, proposed in Section 3.1. On the other hand, the model-based control

design is considered in Section 3.2, based on its mathematical derivation also described in Section

3. The achieved results and comparisons with different control strategies are outlined in Section 4.

2. Wind turbine simulator model

This section outlines the wind turbine model, whose sampled inputs and outputs will be used

for the proposed control designs, as shown in Section 3.

The wind turbine system exploited in this chapter uses a nonlinear dynamic model representing

the wind acting on the wind turbine blades, thus producing the movement of the low-speed

rotor shaft. The higher speed required by the electric converter is produced by means of a gear

box. The simulator is described in more detail, e.g. in Odgaard et al. [10]. A block scheme of the

wind turbine simulator considered in this chapter is represented in Figure 1.

Both the generator speed and the generator power are controller by means of the two control

inputs representing the generator torque τg(t) and the blade pitch angle β(t). Several signals

can be acquired from the wind turbine simulator. In particular, the signal ωr(t) represents the

rotor speed measurement, whereas ωg(t) represents the converter velocity. Concerning the

electric generator, τg(t) refers to its required torque, which is controlled by the converter.

Therefore, this signal represents the measurement of the torque setpoint, τr(t). The aerody-

namic model defining the aerodynamic torque provides the τaero(t) signal, which is a nonlinear

function of the wind speed v(t). This measurement is very difficult to be acquired correctly, as

described in Odgaard et al. [10].

The aerodynamic model reported in Figure 1 is described as follows:

τaero tð Þ ¼ Cp β tð Þ;λ tð Þ
� � rAv3 tð Þ

2ωr tð Þ
(1)
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Figure 1. Scheme of the wind turbine process.
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where the variable r represents the air density and A is the effective rotor area. Another

important variable is represented by the so-called tip-speed ratio, which is defined as

λ tð Þ ¼
ωr tð ÞR

v tð Þ
(2)

with R the rotor radius. Cp(�) represents the power coefficient that is normally represented via a

two-dimensional map [10]. The expression of Eq. (1) allows the computation of the signal

τaero(t), by means of the estimated wind speed v(t), and the measured β(t) and ωr(t). Due to

the uncertainty of the wind speed, the estimate of τaero(t) is considered affected by an unknown

measurement error, which justifies the robust approaches described in Section 3. Moreover, the

nonlinearity represented by the expressions of Eqs. (1) and (2) motivates the required reliable

and robust control approaches suggested in this chapter.

A two-mass model is exploited to describe the drive-train system, while the hydraulic pitch

system is modelled as second-order transfer function [10]. Moreover, the generator dynamics

are described as a first-order transfer function. More details regarding the considered simula-

tor are in Odgaard et al. [10]. Under these assumptions, the complete state-space description of

the wind turbine model has the form of Eq. (3):

_xc tð Þ ¼ f c xc tð Þ; u tð Þð Þ

y tð Þ ¼ xc tð Þ

�

(3)

where u(t) = [β(t), τg(t)]
T and y(t) = xc(t) = [Pg(t),ωg(t)]

T are the control inputs and the monitored

output measurements, respectively, as shown in Figure 1. Pg(t) is the generator power mea-

surement, whereas fc(�) represents the continuous-time nonlinear function that will be approx-

imated via discrete-time models from N sampled data uk and yk, with the sample index k = 1, 2,

…N, as presented in Section 3. Finally, the model parameters and the map Cp(β,λ) are chosen

in order to represent a realistic turbine [10].

As described in Odgaard et al. [10], the baseline controller developed for this wind turbine

system works in two normal operating conditions, namely, the region 1 corresponding to the

power optimisation (partial load) and the region 2 of constant power production (full load).

The partial load working condition (also known as working region 1), the optimal wind-power

conversion is achieved without any pitching of the blades, which are fixed to 0�. In this case,

λ is constant at its optimal value λopt that is defined by the maximal value of the power

coefficient map Cp when β = 0. Therefore, this working condition is completely defined by

setting τg = τr (i.e. the generator torque is equal to the reference one) with pitch angle β = 0.

The reference torque τr shown in Figure 1 can be written as

τr ¼ Koptω
2
r (4)

where:

Kopt ¼
1

2
rAR3 Cpmax

λ3
opt

(5)

with Cpmax
the maximal value of Cp, related the to λopt, i.e. the optimal tip-speed ratio.
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When the power reference is achieved and the wind speed increases, the controller can be

switched to the control region 2 (full load condition). In this zone, the control objective consists

of tracking the power reference Pr, obtained by regulating β, such that the Cp is decreased. In a

traditional industrial control scheme, usually a PI controller is used to keep ωr at the prescribed

value by changing β; the second input of the controlled is τg.

The baseline controller considered in this chapter was implemented with a sample frequency

at 100 Hz, i.e. Ts = 0.01 s. In full load conditions, i.e. in region 2, the actuated input β is

controlled via the relations of Eq. 6 [10]:

βk ¼ βk�1 þ kp ek þ kiTs � kp
� �

ek�1

ek ¼ ωgk � ωnom

(

(6)

with the sample index k = 1, 2,…,N. The parameters for this PI speed controller are ki = 0.5 and

kp = 3, with sampling time Ts = 0.01 s, as reported in [10].

To control the further input τg shown in Figure 1, a second PI regulator is used, in the form of

Eq. (7):

τrk ¼ τrk�1 þ kp ek þ kiTs � kp
� �

ek�1

ek ¼ Pgk � Pr

(

(7)

The parameters for this second PI power controller are ki = 0.014 and kp = 447� 10�6 [10].

Finally, note that in region 1 (partial load, below the rated wind speed), the wind turbine is

regulated only by means of the torque input τg(t). In this situation, the blade pitching system is

not exploited to achieve the optimal power conversion. On the other hand, in region 2 (full

load, above the rated wind speed), the wind turbine control regulates both the blade pitch

angle β(t) and the control torque τg(t). The wind turbine Simulink® simulator considered in this

work includes also saturation blocks limiting the values of these control signals and their rates.

3. Data-driven and model-based designs

This section describes the two approaches considered in this chapter for obtaining the control

laws by using data-driven and model-based methodologies. Once a suitable mathematical

description of the monitored process is provided, the derivation of the controller structure is

sketched in Section 3.1 for the fuzzy approach, whereas Section 3.2 proposes a different

method relying on an adaptive technique.

The first method proposed in this chapter for the derivation of the wind turbine controller is

based on a fuzzy clustering technique to partition the available data into subsets characterised

by linear behaviours. The integration between clusters and linear regression is exploited,

thus allowing for the combination of fuzzy logic techniques with system identification method-

ologies. These tools are already available and implemented in the Matlab® Fuzzy Modelling and
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Identification (FMID) toolbox recalled below [5]. This study proposes the use of TS fuzzy pro-

totypes since they are able to model nonlinear dynamic systems with arbitrary accuracy [5]. The

switching between the local affine submodels is achieved through a smooth function of the

system state defined exploiting the fuzzy set theory and its tools.

In more detail, the fuzzy estimation scheme relies on a two-step algorithm, in which the

working regions are first defined by exploiting the data fuzzy clustering tool, i.e. the

Gustafson-Kessel (GK) method [5]. On the other hand, the second step performs the identifi-

cation of the controller structure and its parameters using the estimation method proposed by

the same authors in Simani et al. [6]. This estimation approach can be considered as a general-

isation of the general least-squares method for hybrid models.

Under these assumptions, the TS fuzzy prototypes have the form of the model of Eq. (8):

ykþ1 ¼

PM

i¼1

μi xkð Þyi

PM

i¼1

μi xkð Þ

(8)

where yi ¼ aTi xþ bi, with ai the parameter vector (regressand) and bi is the scalar offset. x = xk

represents the regressor vector, which contains delayed samples of the signals uk and yk.

The antecedent fuzzy sets μi that determine the switching among the different submodels i are

estimated from the data clusters [5]. The consequent parameters ai and bi are identified from

the data by means of the methodology proposed in Simani et al. [6]. This identification scheme

exploited for the estimation of the TS model parameters has been integrated into the FMID

toolbox for Matlab® by the authors. This approach is preferable when the TS model of Eq. (8) is

used as predictor, since it derives the consequent parameters via the so-called Frisch scheme,

developed for the errors-in-variables (EIV) structures [6].

Once the description of the monitored process is obtained in the form of Eq. (8), the data-driven

approach for the design of the fuzzy controller proposed in this chapter is presented in Section 3.1.

The second approach exploited for obtaining the mathematical description of the wind turbine

system under investigation is based on a recursive methodology, which will be used for the

design of the second control strategy presented in Section 3.2. An online version of the batch

Frisch scheme estimation methodology summarised above is recalled in the remainder of this

section for estimating the parameters of dynamic EIV models. For the derivation of the adapta-

tion law, an online bias-compensating algorithm is also implemented. Thus, the online Frisch

scheme estimation is generalised to enhance its applicability to real-time implementations.

Moreover, by means of an exponential forgetting factor included in the adaptation law, the

algorithm is able to deal with linear parameter-varying (LPV) structures that are exploited in

connectionwith themodel-based design of the adaptive control scheme, presented in Section 3.2.

Thus, the considered scheme is proposed for the online identification of the process modelled

by the following transfer function G(z):
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G zð Þ ¼
A z�1
� �

B z�1ð Þ
¼

b1 z
�1 þ…þ bnb z

�nb

1þ a1 z�1 þ…þ ana z
�na

(9)

where ai, bi, na and nb represent the unknown parameters and the structure of the model,

defining the polynomials A(z�1) and B(z�1), while z is the discrete-time complex variable.

The parameter vector describing the linear relationship is given by

θ ¼ a1…ana b1…bnb
� �T

(10)

whose extended version is defined as in Eq. (11):

θ ¼ 1 θT
� �T

(11)

An equivalent expression of the considered relations is obtained by using vector and matrix

notations, in the form of Eq. (12):

ψT
k θ ¼ 0 (12)

where the regressor vector ψk is defined as

ψk ¼ �yk � yk�1…� yk�na
uk�1…uk�nb

h iT

(13)

where the subscript k denotes the sample index.

The Frisch scheme provides the estimates of the measurement errors affecting the input and

output signals uk and yk, i.e. σu and σy, and θ for a linear time-invariant dynamic system. Note

that the polynomial orders na and nb in the relation of Eq. 9 are assumed to be fixed in advance.

From the Frisch scheme method, the following expression is considered:

Σψ � Σ~ψ

�

θ ¼ 0
�

(14)

where the noise covariance matrix is given by

Σ~ψ ¼
σy Inaþ1 0

0 σu Inb

" #

(15)

which are approximated by the sample covariance matrix over N samples:

Σ~ψ ≈

1

N

X

N

k¼1

ψkψ
T
k (16)

Thus, the Frisch scheme aims at providing suitable noise variances σu and σy such that

Σψ � Σ~ψ

��

results to be a matrix singular positive semidefinite as it is rank-one deficient. On
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the other hand, the system represented by the expression of Eq. (14) can be solved, and θ

represents its solution.

The expression of Eq. (17) is determined:

εk θ
� �

¼ A z�1
� �

yk � B z�1
� �

uk (17)

while the so-called sample autocovariance is defined in the form of Eq. (18):

rεh,N ¼
1

N

X

N

l¼1

εl θ
� �

εlþh θ
� �

(18)

where the subscript h in Eq. (18) indicates a time-shift.

The online control development requires a recursive estimate of the model parameters

represented by the vector θk of Eq. (9), while the input and output data uk and yk acquired online

by the dynamic process of the wind turbine system. In fact, the adaptive control law computed

at time step k is based on the recursive estimate of a model of the process, which is derived

exploiting the dynamic data up to the sample k. In this way, the algorithm of the Frisch scheme

defined by the expressions of Eqs. (14), (16) and (18) is expressed by means of an online scheme.

Note that the expressions of Eqs. (16) and (18) are required in their recursive form. Therefore,

while the derivation of the online form of the covariance matrix update is easily obtained as in

the form of Eq. (19):

Σ~ψk ¼
k� 1

k
Σ~ψk þ

1

k
ψkψ

T
k (19)

the formulation of the autocovariance expression rεh, k can be obtained recursively for 1 ≤ l ≤ k

only if the approximated expression of Eq. (20) is considered:

εl θk

� �

≈ εl θl

� �

(20)

for l < k. In this way, only the residual εk θk

� �

has to be computed at time step k using the lagged

data in the vector ψk and the updated estimate θk of the model parameters. The online

computation of the expression of the autocovariance matrix of Eq. (21):

rεh,k ¼
k� 1

k
rεk,k�1 þ

1

k
εk θk

� �

εkþh θk

� �

(21)

can be achieved using only the vector εkþh θk

� �

at each time step. The initial values θ0, Σ~ψ0 and

rε0, h for the recursive algorithm are equal to the variables of the classic Frisch scheme batch

procedure.

Since variations of system properties have to be tracked online, in order to cope with time-

varying systems, this chapter considers a further modification of the recursive estimation

scheme. This point can be achieved by placing more emphasis on the more recent data, while
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forgetting the older ones. Therefore, the methodology represented by the expressions of

Eqs. (19) and (21) with the approximation of Eq. (20) is implemented by including the so-

called exponential forgetting factor. This is achieved in practice by defining the new expres-

sions of the sample covariance and autocovariance matrices in the form of Eq. (22):

HΣ
~ψk

¼ ω δð ÞΣ~ψk

hεh,k ¼ ω δð Þrεh,k

(

(22)

where ω(δ) is a scaling factor that coincides with k when no adaptation is introduced. In this

way, the updated expressions have the form:

HΣ
~ψk

¼ 1� δð ÞHΣ
~ψk�1

þ δψkψ
T
k

hεh,k ¼ 1� δð Þhεh,k�1 þ δεk θk

� �

εkþh θk

� �

8

<

:

(23)

with 0 < δ < 1 representing the forgetting factor. Thus, the adaptive Frisch scheme algorithm is

implemented via Eq. (23) in three steps. First, θ0, Σ~ψ0 and rε0,h with h ≤na are initialised. More-

over, at each recursion step, bymeans of rεh, k, the noise variances σu and σy are computed. Finally,

at each recursion step, θk is determined by solving Eq. (14) via the expression of Eq. (23). In this

way, the vector θk contains the estimates of the model parameter derived at the step k.

The results achieved by the online identification method recalled in this section were obtained

in the Matlab® and Simulink® environments as summarised in Section 4.

Finally, once the parameters θk of the discrete-time linear time-varying model of the nonlinear

dynamic process of Eq. (3) have been computed at each time step k, the adaptive controller is

derived as summarised in Section 3.2.

3.1. Data-driven fuzzy controller derivation

This section describes the derivation of the fuzzy controller model. Once a reasonably accurate

fuzzy description of the considered benchmark has been available, as described above, it is

used offline to directly estimate the nonlinear fuzzy controllers. As already remarked, this

design procedure differs from the approach proposed in Simani [11]. In fact, the control design

proposed in this chapter relies on the so-called model inverse control principle, which is solved

suing the fuzzy identification approach recalled above.

With reference to stable fuzzy systems, whose inverted dynamics are also stable, a nonlinear

controller can be simply designed by inverting the fuzzy model itself. Moreover, when model-

ling errors and disturbances are not present, this controller is able to allow for exact tracking

with zero steady-state errors. However, modelling errors and disturbance effects are always

present in real conditions, which can be tackled by directly identifying the controller model

(i.e. the inverse controlled model) using the FMID approach. Differently from Simani [11], a

robust control strategy is thus achieved by minimising a cost function, which includes the

difference between the desired and controller outputs, and a penalty on the system stability. In

general, a nonconvex optimisation problem has to be solved, which hampers the direct
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application of the proposed approach. However, the optimisation scheme described in Simani

et al. [6] can be exploited, which is based on a parametrised search technique applied at a

higher level to formulate the control objectives and constraints.

In this way, the estimated controller based on the inverse process model and approximated via

a fuzzy prototype is able to describe the complete behaviour of the monitored plant in its

different working conditions (i.e. partial and full load situations). In fact, the rule-based fuzzy

inference system of Eq. (8) has been derived for modelling the wind turbine dynamic process

of Eq. (3) in its equivalent discrete-time form of Eq. (24):

ykþ1 ¼ f xk; ukð Þ (24)

And, in particular, the TS fuzzy representation has the form of Eq. 25:

ykþ1 ¼

P

M

i¼1

μ
mð Þ
i x

mð Þ
k

� �

a
mð Þ
i x

mð Þ
k þ b

mð Þ
i

� �

P

M

i¼1

μ
mð Þ
i x

mð Þ
k

� �

(25)

The current state xk = [yk ,…, yk� n + 1, uk� 1,…, uk� n + 1]
T and the input uk represent the inputs

that drive the model of Eq. (25). Its output represents the prediction of the system output at the

next sample yk + 1. The model of Eq. (25) requires the estimated membership functions μ
mð Þ
i , the

state x(m) and the parameters a
mð Þ
i and b

mð Þ
i of the controlled system, which are denoted by the

superscript (m).

Therefore, the input uk generated by the control law feeds the monitored process such that its

output yk + 1 asymptotically follows the desired (reference) output rk + 1. This behaviour is

obtained using the inverse model principle, represented by the expression of Eq. (26):

ukþ1 ¼ f�1 xck; rk
� �

(26)

that is a nonlinear function of the vector xck and the reference rk.

However, in general, with reference to Eq. (26), it is difficult to determine the analytical expres-

sion of the inverse function f�1(�). Therefore, the methodology proposed in this chapter

suggested to exploit the identified fuzzy TS prototype of Eq. (25) to provide the particular state

x
mð Þ
k at each time step k. In this way, from this mapping, the inverse mapping ukþ1 ¼ f�1 x

cð Þ
k ; rk

� �

is directly identified the form of Eq. (8), if the controlled system is stable, and in particular in the

form of Eq. (27):

ukþ1 ¼

P

M

i¼1

μ
cð Þ
i x

cð Þ
k

� �

a
cð Þ
i x

cð Þ
k þ b

cð Þ
i

� �

P

M

i¼1

μ
cð Þ
i x

cð Þ
k

� �

(27)
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where the state x
cð Þ
k ¼ x

mð Þ
k ; rk�1;…; rk�nþ1

h iT
and the reference rk signal represent the inputs of

the identified controller model. The model of Eq. (27) contains the estimated membership

functions μ
cð Þ
i and the parameters a

cð Þ
i and b

cð Þ
i of the identified controller model, which are

denoted by the superscript (c).

In this way, the series connection between the controller model (i.e. the identified inverse

process model) and the process model itself should lead to an identity mapping as in Eq. (28):

ykþ1 ¼ f x
mð Þ
k ; uk

� �

¼ f x
mð Þ
k ; f�1 x

cð Þ
k ; rk

� �� �

¼ rkþ1 (28)

where rkþ1 ¼ f x
mð Þ
k ; uk

� �

for a proper value of uk. However, the expression of Eq. (28) holds in

ideal conditions. However, the model-reality mismatch and measurement errors are properly

managed by means of the fuzzy modelling scheme recalled in Section 3. In this way, the

difference ∣rkþ1 � f x
mð Þ
k ; uk

� �

∣ can be made arbitrarily small by a suitable selection of the model

parameters, i.e. the fuzzy membership functions μ
cð Þ
i , the number of clusters M and the

regressand a
cð Þ
i and b

cð Þ
i .

Moreover, the fuzzy model of the process is used for providing the state vector x
mð Þ
k . Therefore,

the state of the fuzzy controller x
cð Þ
k is updated using the process model state x

mð Þ
k and the

reference input rk. These computations are performed using standard matrix operations, thus

making the algorithm suitable for real-time implementations [12].

As already remarked, the effects of the model uncertainty and disturbance lead to a different

behaviour of the model with respect to controlled process, thus resulting in a mismatch between

the process outputs yk and their references rk. This mismatch can be compensated by means of

the online mechanism described by the expressions of Eqs. (25) and (27). These issues motivate

the model-based strategy relying on the adaptive algorithm proposed in Section 3.2.

Note finally that the fuzzy controller proposed in this section will replace the baseline wind

turbine regulator of Section 2.

3.2. Model-based adaptive controller derivation

This section describes the model-based adaptive control strategy used in connection with the

online estimation scheme presented above. In more detail, with reference to the wind turbine

system recalled in Section 2, adaptive controllers for processes of the second order (na = n = 2)

are designed. Moreover, the considered adaptive controllers are based on the trapezoidal

method of discretisation.

With reference to Eq. (9), the transfer function of the time-varying controlled system with

na =nb =n = 2 is considered, whose parameters estimated using the online identification appr-

oach recalled above:
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θk ¼ ba1;ba2;bb1;bb2
h iT

(29)

Note that the subscript k for model and controller parameters will be dropped in order to

simplify equations and formulas.

The control law corresponding to the discrete-time adaptive controller in its difference form of

Eq. (30):

Δek ¼ ek � ek�1

uk ¼ Kp Δek þ
Ts

TI

Δek
2

	 

þ uk�1

8
<

: (30)

with ek representing the tracking error, with ek = rk� yk, and rk the reference (setpoint) signal. Ts
is sampling time. The controller parameters Kp and TI are here time-varying and derived from

the online model parameters in the vector θk. The control law can be represented also in its

feedback formulation as described by Eq. (31):

uk ¼ q0 ek þ q1 ek�1 þ uk�1 (31)

where the new controller variables q0 and q1 (or Kp and TI) are derived from the relations of

Eq. (32):

q0 ¼ Kp 1þ
Ts

2TI

� �

q1 ¼ �Kp 1�
Ts

2TI

� �

8
>>><

>>>:
(32)

where the parameters Kp and TI are functions of the (time-varying) critical gain and the critical

period of oscillations, respectively, KPu
and Tu:

Kp ¼ 0:6KPu
, TI ¼ 0:5Tu (33)

that depend on the time-varying model parameters in the vector θk. In particular, when

considering a second-order model described by its (time-varying) parameters ba2, ba1, bb2 and

bb1, the variables KPu
and Tu required by the Ziegler-Nichols method can be computed at each

time step k from the following relations:

KPu
¼
ba1 � ba2 � 1

bb2 � bb1

Tu ¼
2πTs

arccosγ
, with γ ¼

ba2bb1 � ba1bb2
2bb2

8
>>><

>>>:
(34)

In this way, the adaptive discrete-time linear controllers of Eq. (30) or (31) are designed on the

basis of the time-varying linear model of Eq. (9) estimated via the online identification scheme

from the data of the nonlinear wind turbine process of Eq. (3).
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Finally, Section 4 will show the achieved results regarding the design and the application of the

adaptive controller to the data from the wind turbine benchmark.

4. Simulation results

This section presents the simulation results achieved with the proposed data-driven and model

methods relying on both the fuzzy modelling technique oriented to the identification of the

fuzzy controller model and the adaptive control strategy using the online estimated models.

The simulations achieved with these regulators are summarised in the following.

Regarding the fuzzy modelling and identification method, the GK clustering algorithm

recalled in Section 3 exploits a number M = 3 of clusters and delays n = 2. These variables were

applied for clustering the first data set consisting of {Pgk,ωgk, βrk}. A number of samples k = 1, 2,

…,N were considered with N = 440� 103. The same number of clusters and shifts were

exploited for clustering the second data set {Pgk,ωgk, τgk}. After this procedure, the structures

of the TS prototypes were derived for each output yk equal to Pgk and ωgk. In this way, the 2

continuous-time outputs y(t) = [ωg(t), τg(t)] of the wind turbine continuous-time model of

Eq. (3) are approximated by two TS fuzzy prototypes of Eq. (8).

The performances of the fuzzy models that are derived using the procedure described above

can be evaluated using the so-called Variance Accounted For (VAF) parameter [5]. In particu-

lar, the TS fuzzy model reconstructing the first output has a VAF index bigger than 90%,

whereas for the second one, it was higher than 99%. This means that the fuzzy prototypes are

able to describe the behaviour of the controlled process with very good precision. These

estimated TS fuzzy models have been used for the derivation of the fuzzy controllers and

applied to the considered wind turbine benchmark.

Two (multiple input single output) MISO fuzzy controller models with two inputs and one

output have been used for the compensation of the blade pitch angle β(t) and the generator

torque τg(t). By using the inverse model principle, they were estimated exploiting the method-

ology recalled in Section 3.1. Again, the GK fuzzy clustering method has led to 2 fuzzy

regulators applied to the data sets {βrk,Pgk,ωgk} and {τgk,Pgk,ωgk}, respectively, with M = 3

clusters and n = 3 lagged signals.

The controller performances were verified and validated via extensive simulations by consid-

ering different data sequences generated via the wind turbine simulator. Table 1 reports the

Recursive algorithm parameter Value

θ 0ð Þ [0.1, 0.15, 0.20, 0.25 0.30, 0.35]T

Σ~ψ 0ð Þ 10�1 I7

δ 0.995

Table 1. Initialisation parameters of the adaptive algorithm.
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values of the percent Normalised Sum of Squared tracking Error (NSSE%) index defined in

Eq. (35):

NSSE% ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

k¼1

rk � yk
� �2

P

N

k¼1

r2k

v

u

u

u

u

u

u

t

(35)

Noting that in partial load operation (region 1), the performance is represented by the com-

parison between the power produced by the generator, yk =Pgk, with respect to the theoretical

maximum power output, rk =Pr. On the other hand, in full load operation (region 2), the

tracking error is given by the difference between the generator speed, yk =ωgk, and its nominal

value, rk =ωnom. The achieved results show the good properties of the designed fuzzy control-

lers, as represented also in Figure 2.

Figure 2 depicts the signal representing generator speed ωg(t) in bold grey line with respect to

its desired value ωnom in dashed black line. It can be noted that in full load conditions, the

fuzzy controllers derived via the data-driven approach lead to tracking errors smaller than the

wind turbine baseline governor recalled in Section 2. In fact, as shown in Figure 1, the baseline

regulator is working in the interval 2200s < t < 3300s. On the other hand, the fuzzy controllers

are exploited during the interval 3300s < t < 4400s, when the tracking error is much lower.

With reference to the second model-based design approach using adaptive solutions, the two

outputs Pg(t) and ωg(t) of the wind turbine continuous-time nonlinear model of Eq. (3) were

approximated by two second-order time-varying MISO discrete-time models of Eq. (9) with

two inputs and one output. Using these one LPV prototypes, the model-based approach for

determining the adaptive controllers recalled in Section 3.2 was exploited and applied to the

wind turbine benchmark of Section 2. Thus, according to Section 3.2, the parameters of the

adaptive controllers were computed online. In particular, for each output, two second-order

(na =nb = 2) time-varying MISO prototypes were identified, and the adaptive regulator param-

eters in Eq. (30) or (31) were computed analytically at each time step k.

2500 3000 3500 4000
156

158

160

162

164

166

168

(t)g

[rad/s]

4400

Set-point

Figure 2. Generator speed (bold grey line) ωg(t) and its reference (dashed black line) ωnom.
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Also in this case, with reference to the adaptive controller structure of Eq. (30) or (31), the

parameters of the online controllers were tuned via the Ziegler-Nichols rules, applied to the

LPV models. In this way, if both the model online parametric identification and the regulator

tuning procedure are exploited, the parameter adaptation mechanisms should lead to good

control performances.

The experiments with the adaptive regulators were simulated in the same situation of the

fuzzy controllers. In this case, three online regulators were exploited for the compensation of

both the blade pitch angle β(t) and the generator torque τg(t), in region 1 and region 2. The

adaptive algorithm described above runs with initial values for its parameters reported in

Table 1.

With reference to the model-based adaptive approach, Figure 3 depicts the setpoint ωg(t) in

bold grey line with respect to its desired value ωnom in dashed black line. By considering the

full load working conditions, the adaptive regulators have replaced the wind turbine baseline

governor at t ≥ 3300s.

Also for the case of the adaptive regulators, Figure 3 highlights that the model-based approach

leads to interesting performances.

In order to analyse the performance of the proposed adaptive strategy, Table 2 reports also the

NSSE values computed for these controllers.

According to the simulation results summarised in Table 2, good tracking capabilities of the

suggested adaptive controllers seem to be reached, and they are better than the fuzzy regulators.

2500 3000 3500 4000
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163
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164

4400

(t)g

[rad/s]
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Set-point

Figure 3. ωg(t) tracking capabilities in full load conditions with adaptive controllers.

Controller type Partial load (%) Full load (%)

Fuzzy controller 37.17 17.85

Adaptive controller 28.73 13.67

Table 2. Controllers in partial and load operations: NSSE% values.
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5. Conclusion

The chapter addressed two control examples for a wind turbine dynamic simulator, since it

was proposed as benchmark representing a complex dynamic system driven by stochastic

disturbances and uncertain load conditions. Moreover, the aerodynamic models of these

processes are nonlinear, thus making their modelling a challenging problem. Therefore, the

design of control strategies for these complex processes has to consider these aspects. In this

way, the chapter analysed the design of two data-driven and model-based control methodolo-

gies, which represented viable, reliable and robust control schemes for the proposed wind

turbine benchmark. Experiments with the wind turbine simulator were the practical instru-

ments for assessing the most important characteristics of the developed control methodologies.

The obtained results showed that the considered solutions represent viable, robust and reliable

control applications to real wind turbine systems.
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