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Abstract

Energy storage systems (ESSs) can enhance the performance of energy networks in mul-
tiple ways; they can compensate the stochastic nature of renewable energies and support 
their large-scale integration into the grid environment. Energy storage options can also 
be used for economic operation of energy systems to cut down system’s operating cost. 
By utilizing ESSs, it is very possible to store energy in off-peak hours with lower cost and 
energize the grid during peak load intervals avoiding high price spikes. Application of 
ESSs will also enable better utilization of distributed energy sources and provide higher 
controllability at supply/demand side which is helpful for load leveling or peak shaving 
purposes. Last but not least, ESSs can provide frequency regulation services in off-grid 
locations where there is a strong need to meet the power balance in different operating 
conditions. Each of the abovementioned applications of energy storage units requires 
certain performance measures and constraints, which has to be well considered in design 
phase and embedded in control and management strategies. This chapter mainly focuses 
on these aspects and provides a general framework for optimal design and operation 
management of battery-based ESSs in energy networks.

Keywords: energy storage system, microgrid, optimal design and control, renewable 
energy integration, optimization

1. Introduction

Nowadays, due to the increased operation and maintenance cost and issues related to trans-

portation of fuels, conventional ways of power generation are no longer an optimal  solution. 
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With more concerns about environmental footprints and global warming together with 

the steady progress in green technologies, renewable energy resources (RESs) are deemed 

to be key enablers for sustainable energy development, cost-effective operations, and pol-
lutant emission prevention. The use of RESs in an integrated framework with different 
energy sources not only enhances the system efficiency at different levels (e.g., energy gen-

eration, transmission, and distribution) but also improves the energy supply reliability and 

allows empowering of consumers in the different locations (such as suburban districts, 
countrysides, and remote/islanded areas). Additionally, with the complementary character-

istics of energy storage systems (ESSs) and hybridization of energy systems, it is possible 

to offer more affordable and reliable source of power and introduce more controllability  
to the generation mix. More importantly, with the application of ESSs, the issues related to  

unpredictable nature of RESs (mainly solar and wind energy sources) can be resolved,  

and a smooth-running power supply can be guaranteed. On the other hand, implementation 

of an integrated energy system supported with ESSs allows energy saving at different scales. 
By proper charging/discharging of the ESSs, we can economically benefit from dispatching 
cheaper energy sources during peak load hours and saving excess energy during low-demand 

periods. It is noteworthy that the term “ESS” could have different definitions; however, in this 
chapter we are talking about a “commercially available technology that is capable of absorb-

ing energy, storing it for a period of time, and thereafter dispatching the energy” [1]. It should 

be also noted that the system operation can be further improved if demand response pro-

grams (DRPs) are considered in energy management portfolio. DRPs will incentivize the users 

to reduce their energy consumption over peak times or to shift part of their consumptions to 

other time intervals for matching energy supply [2]. However, a good DRP should have two 

primary features: the first feature is defined as the adaptability to different consumers with dif-
ferent dispositions toward the DRP, and the second one is defined as the adjustability to time 

preferences of consumers. This means that each consumer should be able to easily shift his/her 

demand from the high-price hours to the favorite hours according to his/her lifestyle [3]. With 

this introduction on advantages of renewable energy integration and reliable backup through 

energy storage options, this chapter discusses different battery-based ESS (BESS) technologies 
and presents potentials of BESS in distribution systems. Moreover, different design criteria 
and methodologies for ESS sizing and planning are proposed, and a general framework for 

optimal operation management and control of BESSs in energy networks is developed.

2. Criteria and methodologies for battery sizing and planning

This section provides an overview of criteria and methods that should be used to optimally 

size and use a battery energy storage system (BESS) for different applications.

2.1. Battery technologies

A battery is constituted of electrochemical cells connected in series, parallel, or both in order 
to obtain the desired capacity and voltage output. A cell consists of a set of two  electrodes 
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(oxidizer and reducer) in contact with an electrolyte and converts chemical energy into 

electric energy (and vice versa for rechargeable cells) [3–5]. Since the end of the eighteenth 

century with the development of the Volta pile, “voltaic pile,” numerous designs of batter-

ies have been invented (with different electrode materials, electrolytes, casings, separators, 
management systems, etc.). Hundreds of systems have been created, but almost 20 of them 

are currently commercialized (mainly derived from lead, zinc, nickel, or lithium materi-

als) [6]. As presented in Figure 1, electrochemical cells can be classified into three main 
families:

• Flow batteries (also called redox flow batteries) are based on two electrolytes stored in ex-

ternal tanks. The electrolytes are pumped into an electrochemical cell in order to produce 

electricity. The energy density depends on the size of the tanks, and the power density 

depends on the rate of chemical reactions occurring in the electrochemical cell. These bat-

teries can be fast to recharge by changing the electrolytes. In general, the chemical reactions 

are reversible.

• Primary batteries cannot be easily and efficiently recharged so they are usually only 
discharged once and discarded. They are often used in portable electric devices such as 

 lighting, cameras, toys, and also in-home automation sensors (e.g., smoke and movement 

detectors). They offer a good energy density and a good shelf life.

• Secondary batteries are rechargeable and can perform a large number of cycle charge/
discharge (100–1000). The market of rechargeable batteries comprises a very wide range 
of applications such as powering portable electronic devices, electric vehicles, storing 

surplus of energy from photovoltaic systems, etc. Since 1990, the average growth rate 

of rechargeable battery pack market is 5% per year [7]. For decades, lead-acid batteries 
(such as valve regulated and sealed) have been leading, by far, the global market of 

rechargeable batteries. Since the end of the 1990s, lithium-ion batteries have been gradu-

ally preferred to nickel-cadmium (Ni-Cd) and nickel-metal hydride (Ni-MH) batteries 

Figure 1. Main different electrochemical technologies.
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in portable devices [7]. The historical development of the main battery chemistries and 
the key issues to create sustainable batteries with always higher performances are well 
presented in Ref. [8].

In this chapter, the analysis will be focused on secondary batteries, especially on lead-acid and 
lithium-ion batteries, the most popular technologies (because of an attractive price for the first 
cited and because of high performances in terms of energy and power densities for the latter). 
The main useful characteristics of a BESS, when selecting a technology, are listed below:

• Response time: a BESS has to charge/discharge in a given period (e.g., fast response time 

from milliseconds to seconds is needed to remove power fluctuations inherited from re-

newable source production).

• Capital cost: depending on the application, different costs are useful to be considered such 
as the cost of rated power (€/kW), the cost of rated capacity (€/kWh), and the cost on the 

long run (€/(cycle kWh)).

• Operation and maintenance (O&M) cost: every BESS has its proper O&M requirements. It 

is difficult to find a clear trend in the literature because it is highly dependent on the loca-

tion (labor costs) and on the age of the facility.

• Specific energy (Wh/kg) and specific power (W/kg): enables to know the BESS weight that 

achieves power and energy requirements of the application. Energy and power densities, 

respectively, in Wh/l and W/l, are other metric representative of the volume aspect.

• Cycling lifetime (number of cycles): maximum number of cycles that the BESS can 

perform.

• Calendar lifetime (years): maximum shelf life of the BESS.

• Cycle efficiency (%): also named round-trip efficiency, the energy discharged by the BESS 
is lower than the energy initially charged into it. This parameter can be measured by calcu-

lating the ratio between energies discharged to the energy charged E
out

/E
in
. This calculation 

should not take into account self-discharge.

• Self-discharge: due to parasitic chemical reactions, the charges stored in the BESS decrease. 

This process can be accelerated or slowed not only by external conditions (e.g., tempera-

ture, humidity) but also by operating conditions (e.g., state of charge (SOC) of the battery, 
previous rate of charge, etc.).

• Operating temperature (°C): some parameters such as the efficiency, the available capac-

ity, and the lifetime depend on the operating temperature range of the BESS.

• Environmental impact and safety: the extraction of the main components and manufac-

turing processes of batteries have different impacts on the environment from a technology 
to another. These impacts can be expressed as an energy consumption or a mass of GHG 

emissions [9]. The toxicity of some materials and the stability of the battery (e.g., thermal 
runaway of lithium batteries with cobalt-based cathode) can be a crucial issue depending 
on the application.
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• Maturity: a strong scientific background is behind mature technologies which benefit from 
numerous user experiences. Only incremental improvements are expected. In comparison, 

a new technology is evolving fast thanks to breakthrough advances.

2.2. Potentials of BESS in distribution systems

Grid-scale storage facilities through the world have been gathered in a large database from 

the US DOE [10]. A full description is given for most of them such as the date of creation, the 

location, the technology, the rated capacity, the rated power, the use cases, a picture of the 

project, etc. It appears that the global storage resource is small (the operational maximum 

power storage is around 170–180 GW, corresponding to less than 1% of our energy produc-

tion). The main storage technology (in terms of rated power) is by far pumped hydro (~96%), 
but electrochemical projects are the most numerous (nearly 1000) and represent nearly 2% 
of the total rated power. As listed in [10–12], a BESS can provide numerous benefits such as:

• Environmental: integration of renewable sources (the variability of these sources threatens 

the grid stability), replacement of diesel generators (in off-grid sites), pollution reduction 
(by reducing peak demand often met with harmful and costly plants), etc.

• Societal: electricity supply in remote areas, reliability improvement (possibility to main-

tain the grid stability or operate separately from the utility in a so-called islanded mode), 

duration of outages decreased (ESS can perform a black start), etc.

• Economic: energy cost decrease (due to electric energy time-shift that enables to buy cheap 

energy and then sell and/or use it when it is expensive), the use of expensive thermal power 

plant diminution (with advanced energy management strategies), electric peak demand flat-
tening, power factor correction, transmission and distribution (T&D) investment deferral, etc.

Every actor of electricity from the end user to the utility operator may find one or more ben-

efits to install a BESS facility [12]. Indeed, potential synergies might be achieved, for example, 

by charging batteries during off-peak demand and discharging during peak; energy cost may 
decrease (because energy is bought cheap and sold expensive); energy losses (I2R) can be 

reduced (less power in transmission lines during on-peak demand); pollution may be reduced 

(because in general cleaner power plants are used for the supply of baseload demand), and 

T&D deferral or life extension of the utility can be fulfilled because it mainly depends on the 
level of the peak demand. Two typical use cases are illustrated in Figure 2, where (a) repre-

sents the use of energy storage in order to reduce the peak demand. In this case, the power 

plant responsible for the baseload generation will increase its production in order to charge 

the BESS (in general the cost and the pollution related to this plant are the lowest compared 

to the other plants that are used to meet the peak demand). During peak demand, the energy 

comes from the BESS which replaces costly and high-pollutant power plants. Case (b) rep-

resents a typical power production from a solar photovoltaic (PV) plant during a sunny day 

which is not correlated with the demand profile. The BESS is charging when there is a surplus 
of energy in order to ensure the stability of the grid (unintentional injection of renewable 

power is not allowed), and it is discharging when the cost of energy is high (i.e., flattening the 
energy peak demand in the morning and in late afternoon).
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2.3. Criteria

The following criteria help to quantify the benefits brought by a BESS associated to renewable 
sources such as solar PV panels and wind turbines (WT).

Figure 2. Typical use cases of a BESS, (A) peak shaving and load leveling and (B) integration of renewable sources.
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First of all, the reliability of the distribution system can be assessed by Eqs. (1) and (2):

• Loss of power supply probability (LPSP) is defined as the ratio of energy deficit to the load 
demand for a given period [13]:

  LPSP (t)  =   
 ∫ 

 t  0  
  

t

     E  deficit   (t)  dt

 _______________ 
 ∫ 

 
t
  
0

  
  

t
     E  

load
   (t)  dt

    (1)

• Level of autonomy (LA) is derived from the ratio of the hours that exhibit a loss of load 

(H
LOL

) to the total hours of operation (H
TOT

) [13]:

  LA = 1 −   
 H  

LOL
  
 ____ 

 H  
TOT

  
    (2)

Concerning the economic issue, the BESS can be analyzed by calculating the annualized cost 

of system (ACS). The formulation (3) is derived from [14, 15] in which the annual cost of a 

renewable plant (PV or WT) with batteries is calculated. In these studies a replacement cost 
is added in the calculation of ACS because the duration of the project is often based on the 

lifetime expectancy of renewable sources which is longer than battery lifetime:

  ACS =  C  cap   × CRF +  C  
O&M

    (3)

where Ccap is the initial capital cost of the BESS (€), CRF is the capital recovery factor defined 
in Eq. (4) to calculate annual equal payments over the lifetime of the BESS based on the initial 

capital cost, and C
O & M is the annual cost of operation and maintenance (€):

  CRF =   
 i  
r
     (1 +  i  

r
  )    n 
 _______ 

  (1 +  i  
r
  )    n  − 1

    (4)

where i
r
 is the interest rate (between 5% and 10% for such projects [16]) and n is the BESS 

lifetime (years).

Another popular metric used in renewable plants is the levelized cost of energy (LCOE) which 

indicates the total cost of energy (generally per kilowatt-hour) by taking into account the cost 
of all equipment involved in energy production over their entire lifetime. It can be adapted to 

BESS by using the annualized discharged energy E
dis

, as proposed in Eq. (5):

  LCOE =   ACS ____ 
 E  

dis
  
    (5)

A good criterion to take into account the environmental aspect is the PV self-consumption 

Eq. (6) that can be highly improved by the integration of a BESS. A high PV self-consumption 

implies a good use of the PV source and a local use of produced energy (transmission losses 

are reduced). In case of grid-connected system, some energy is exchanged with the grid, E
DU

 

is the energy directly used from the PV installation to the load, E
BC

 is the PV energy used to 

charge the BESS, and E
PV

 is the total energy produced by the PV installation:
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  s =   
 E  
DU

   +  E  
BC

  
 _______ 

 E  
PV

  
    (6)

Other criteria can be taken into account such as the life cycle analysis (LCA) which aims at 

assessing the environmental impact of a device by taking into account four life stages that 

are manufacturing, transportation, use, and end of life. A life cycle inventory (LCI) analysis, 

only focused on the manufacturing of different batteries, is presented in Ref. [9]. In such stud-

ies, some data are difficult to obtain and are often estimated (especially those concerning the 
manufacturing processes which are fast evolving due to improvements of technologies).

2.4. Optimization techniques

Several optimization techniques are available for the sizing and the planning of renewable 

energy-based systems [17]. Some popular software tools such as Hybrid Optimization Model 

for Electric Renewables (HOMER) and Hybrid Power System Simulation Model (HYBRID2) 

both developed by the National Renewable Energy Laboratory (NREL), United States, and 

Hybrid Optimization using Genetic Algorithm (HOGA) developed in the University of 

Zaragoza, Spain, are presented in Ref. [17] to simulate and optimize any microgrid configu-

ration. Nevertheless, in order to have the highest flexibility in terms of modeling and opti-
mization, other classical tools are commonly used such as MATLAB and General Algebraic 

Modeling System (GAMS).

In optimization problem, the objective function can be mono-objective (e.g., cost of the entire 

installation during 20 years) or multi-objective (e.g., a combination of reliability, cost, and 

environmental impact). Very often, the cost function of a multi-objective problem is defined as 
a weighted sum of multiple criteria that can be expressed in different quantities. In this case, 
some arbitrary weighting coefficients are necessarily introduced, and the difficulty is to deter-

mine their right value. For example, if the cost function, expressed in euros per year, evaluates 

the yearly cost of a BESS in a microgrid, what equivalent cost (in euros per kilogram) should 

be associated to the greenhouse gas (GHG) emissions induced by the production, use, and 

end of life of batteries? This cost depends on environmental and social impacts that are not 
globally standardized and are fluctuating from a year to another, whereas the mass of GHG 
emissions is a fixed value. In this sense, the Pareto representation is very practical because 
each objective is expressed in the most appropriate quantity and defines its own axis.

In Ref. [18], a robust mixed-integer linear programming (RMILP) is proposed to minimize 

the cost of the system. In order to take into account uncertainties such as renewable produc-

tion, load demand, or costs, a stochastic simulation can be achieved through the generation 

of multiple Monte Carlo scenarios. Heuristic and meta-heuristic optimization techniques are 

very popular to find the optimal solution among a large number of solutions while using the 
least computational resources. Two multi-objective problems combining genetic algorithms 

and Pareto representation are presented in [19, 20]. This method is very promising because a 

large number of feasible solutions are analyzed and a set of optimal solutions, best trade-off 
between all criteria, are obtained.
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3. Modeling of a BESS

In order to simulate the system, a model of BESS has to be defined. In the literature, BESS 
models developed for the sizing and the scheduling are simple with a few parameters 

(e.g., nominal capacity, cycle efficiency, maximum number of cycles, etc.) in order to limit 
the complexity of the problem.

3.1. Instantaneous characteristics

The state of charge (SOC) of the BESS is the parameter related to the number of charges stored 

in the battery (a SOC of 100% means that the BESS is fully charged, whereas it is considered 
to be empty at 0%). In [21–23], the online estimation of SOC named “coulomb counting” is 

proposed. This method is based on the measurement of current and takes into account the 

coulombic efficiency (ampere-hour efficiency):

  SOC (t)  = SOC (t − 1)  +  η  
Ch

     
 I  
Ch

   (t)  ∙ Dt
 _______ 

 C  
n
   (t) 

   −   
 I  
Dis

   (t)  ∙ Dt
 ________ 

 η  
Dis

   ∙  C  
n
   (t) 

    (7)

where η
Ch

 and η
Dis

 are, respectively, the charge and discharge coulombic efficiencies of the 
BESS (in Ref. [21], the coulombic efficiency is considered equal to 1 during the discharge and 
smaller than 1 during the charge, due to unwanted side reactions). I

Ch
(t) and I

Dis
(t) are the 

current level at the charge and discharge, respectively. C
n
(t) is the nominal capacity of the 

BESS. It is to notice that the nominal capacity of the BESS is decreasing all along the lifetime 

of the BESS; this point will be explained in the next section.

Another variable widely used in the literature is the depth of discharge (DOD) which describes 

the emptiness of battery (complement of the SOC). Battery manufacturers often provide the 
maximum number of cycles that a battery can perform for different DODs, as depicted in 

Figure 3:

  DOD (t)  = 1 − SOC (t)    (8)

In order to model the effect of other operating conditions (e.g., C-rate and temperature) on the 
BESS behavior, the SOC can be formulated by introducing the concept of equivalent current. 

Three technologies of batteries have been tested in Ref. [24], exhibiting both the effect of the 
C-rate and the temperature on the available discharged capacity. Indeed, it has been empiri-

cally formulated by Peukert for lead-acid batteries at the end of the nineteenth century that 
the discharged capacity is related to the C-rate. The main issue is that this relation is given 

for a constant level of current during all the discharge conditions (not representative of real 

conditions). In [25], an improved method is proposed for management of lithium-ion batter-

ies, but the model is difficult to parameterize because it needs a lot of experimental tests to be 
adapted to the BESS. Usually, a BESS operates at low C-rate in renewable power plants, and 

the temperature can be assumed to be constant. This is why the state of health (SOH) is the 

main parameter taken into account in sizing and planning studies.
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3.2. Lifetime analysis

Due to irreversible reactions, the active material is decreasing, and the electrode interfaces 

are deteriorated. Thus, the capacity decreases, and the internal resistance increases (power 

capability fade). In order to know when to replace a BESS, a common criterion is to consider 

the end of life (EOL) of a battery when its capacity drops to less than 20% of the initial nominal 
capacity [26]. This limit of 20% has been initially set because of the behavior of lead-acid bat-
teries: the capacity fade is quite linear until 20%, and then there was a sudden drop of capac-

ity. Of course all the batteries do not exhibit this large decrease of capacity; this is why some 
projects such as the second life of batteries have been created (old batteries that do not fulfill 
the automotive requirements are reused in stationary projects).

Usually, the aging of batteries is monitored by measuring the nominal capacity and compar-

ing it to the initial nominal capacity C
n
(t

0
). In this case, the battery reaches its EOL when the 

state of health (SOH) goes below 80%:

  SOH (t)  =   
 C  
n
   (t) 
 _____ 

 C  
n
   ( t  0  ) 

    (9)

The lifetime of batteries is related to calendar aging (shelf life) and cycle aging. In renew-

able microgrids, a BESS is subjected to variable cycling conditions. The lifetime of a BESS 

depends on the cycle depth and the SOC level (mean of SOC during the cycle). As shown in 

Ref. [27], the degradation of the nominal capacity can be considered linear for both calendar 

Figure 3. Calendar and cycling lifetime model of the BESS derived from [27].
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and cycling lifetime. As presented in Figure 3, experimental studies performed on lithium-ion 

batteries [27] revealed that the maximum number of cycles performed by the BESS is higher 

for low cycle depths and medium SOC levels (close to 50%). Assuming that the BESS will 
perform at least 1 cycle per day, a limit can be set on the maximum number of cycles that is 

defined by the calendar aging.

Two main methods are used to estimate the aging of a BESS. In Ref. [28], a simple method 

called “ampere hour throughput” is based on the assumption that the exchangeable energy 

of a battery is fixed (because nearly constant) whatever the cycle depth performed by the 
BESS. In this case, the maximum energy that can be exchanged is calculated as follows:

   E  
max

   = 2  N  
max

   (DOD)  × DOD ×  C  
n
   ( t  0  )   (10)

in which the initial nominal capacity is expressed in Wh. Another method is called the rainflow 
counting. A very popular algorithm of rainflow counting has been presented by Downing and 
Socie [29]. Initially developed to estimate the effect of mechanical stress in automotive and 
building industries, the rainflow counting is often employed to describe the aging of batteries, 
as in Ref. [30]. Given a battery SOC time series, it is possible to extract the number of cycles 

with their associated cycle depth and SOC level and then update the value of nominal capacity.

4. BESS power/energy management schemes

For optimal operation of an energy system equipped with BESSs in different working modes 
(i.e., grid-connected or islanded), it is crucial to properly design and implement energy man-

agement systems (EMSs). These system optimizers normally determine the best possible oper-

ating scheme at supply and demand sides in terms of optimized set points for controllable units 

such as energy storage devices and send them as the control signals into the dedicated control 

system of interfacing converters. Generally, there are two types of energy/power management 

strategies used in energy system applications. These are named as interactive schemes based 

on information sharing mechanisms and passive schemes based on self-autonomy [31].

4.1. Interactive power/energy management strategies

In a given interactive power/energy management system (IP/EMS), local and global system 

information (such as line currents, nodal voltages, frequency, and powers) is communicated 

in the system and exchanged between corresponding nodes in order to determine operation 

point of each controllable ESS or distributed generation (DG) unit. These strategies also ben-

efit from a sort of intelligence in the integration of the computing and communications tech-

nologies which help them to define and develop the communication structure based on the 
computation burden of each node and other related system’s objectives and constraints [32]. 

In this regard, three different communication schemes can be realized for an IP/EMS: central-
ized, decentralized, and hybrid. In each of the mentioned schemes, different communication 
technologies such as microwave (μW), power line carrier (PLC), fiber optics, infrared, and/or 
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wireless radio networks (such as global system for mobile (GSM) communications and code 

division multiple access (CDMA)) can be effectively used and integrated into the existing 
infrastructures [33, 34].

4.1.1. Centralized P/EMS

In a centralized P/EMS, also known as a supervisory scheme, there is a centralized entity or a 

control center that monitors the system’s behavior, collects information from different parts of 
the network, makes decisions based on the observations, and accordingly updates set points 

for the controllable units in supply/demand sides [35–37]. In other words, a centralized P/EMS 

acts as a master unit, while other local controllers within the system are treated as slaves to 

follow the reference signals coming from the master unit as shown in Figure 4. To improve 

the effectiveness of a P/EMS, it is also very important to clearly define system’s objectives 
and constraints. These objectives (such as operating cost minimization, emission mitigation, 

power loss reduction, SOC equalization, etc.) together with the constraints might be conflict-
ing in some cases which in turn make the optimal decision-making process a difficult or even 
an impossible task. Different examples of centralized P/EMS for microgrids can be found in 
the literature [38–40]. The advantages of a centralized scheme mainly lie within the simplicity 

of implementation and globality of optimal solution; however, it brings two disadvantages: 

single point of failure which implies that a centralized P/EMS has to be securely designed 

Figure 4. Block diagram of a centralized P/EMS.
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with appropriate built-in redundancy and massive communication expenditure. The latter is 
not a challenging problem in small-scale networks, but it could be problematic for larger sys-

tems as the complexity of the centralized optimization grows exponentially with the number 

of units (control variables) in the system.

4.1.2. Distributed P/EMS

Distributed P/EMS is the second interactive scheme for management of a given system in 

which there is no central supervisory unit, but all the local controllers are connected and 

communicate with each other through a communication bus [41]. In this sense, each control-

ler not only captures local measurements but also receives information from neighboring 

nodes which helps in decision-making process according to different optimization objec-

tives [42–43]. In this scheme, intelligent algorithms are often used for better exploration/
exploitation of the environment in order to find optimal operation point. Figure 5 shows the 

block diagram of a decentralized P/EMS. A distributed scheme has some advantages over 

a centralized one. First, it supports a scalable structure with Plug-and-Play (PnP) feature 

for newly added/removed energy sources or load blocks. Second, computation burden of 

each local controller is mitigated which in turn reduces the required communication band-

width. Finally, a distributed P/EMS could improve the redundancy and modularity of the 

system where it is needed. However, there is still a problem if a communication link fails 

in the system. This failure would not end to a total system collapse, but the performance of 

the system would not be optimal any longer. Also, a distributed P/EMS suffers from deg-

radation of performance on small/medium networks, increased use of database space, and 

complex use and administration. Multi-agent system (MAS) is one of the best illustrations 

for a distributed scheme [44].

Figure 5. Block diagram of a decentralized P/EMS.
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4.1.3. Hybrid P/EMS

Hybrid scheme for power/energy management can be realized as another interactive struc-

ture that is mainly based on a combination of centralized and distributed schemes. In a hybrid 

structure, local controllers which are used for operation management of different energy 
sources are divided into groups [45]. Within each group, a centralized scheme is used to con-

trol and optimize the performance of local controllers. On a higher level, a distributed scheme 

is utilized to coordinate the operation of centralized controllers in different clusters for global 
optimization. Such a hybrid strategy can be seen in Figure 6.

It is notable that a hybrid P/EMS scheme is normally implemented for large-scale networks 

such as interconnected energy systems or microgrids, where the optimal operation of the 

entire system depends on cooperation and coordination of different control layers over time. 
By doing this hybridization, it is very possible to improve the system reliability and resiliency 

for long-run operations due to the unique features that inherently exist in centralized/decen-

tralized schemes [46].

4.2. Passive power/energy management strategies

Self-autonomy of operation for a local controller without having information from neighbor-

ing nodes is the main idea of a passive power/energy management scheme (PP/EMS). In this 

structure, it is assumed that making an information sharing mechanism is too costly or not 

viable; thus, independent operation of energy sources is required. Moreover, it is needed to 

clearly define the control objective of each energy source to assure reliable operation of the 
system. Block diagram for such a power/energy management scheme is shown in Figure 7.

Among the existing methods for PP/EMS, droop-based control strategy is regarded as a domi-

nant method [47–49]. This control methodology adopts the behavior of synchronous machines 

Figure 6. Block diagram of a hybrid P/EMS.
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in responding to the changes in voltage and frequency and applies similar rules in operation 

management of converters in ac/dc sides. The droop-based control strategy works based on 

the assumption that the output impedance of a controllable unit (such as a micro-source) is 

mainly inductive, and it utilizes droop characteristics of voltage amplitude and frequency of 

each controllable unit to control its output. In case of a dc microgrid, bus voltages and in case 

of an ac microgrid the system voltage and frequency are the information sensed by each local 

droop controller and used subsequently to adjust output active (and/or reactive) power of a 

BESS or a generation unit. Figure 8 shows such control strategy for a given dc microgrid. As 

can be seen in the same figure, either output power or output current can be selected as the 
feedback signal in droop control. For dc microgrids with power-type load, output power can 

be used as droop feedback, as shown in Eq. (11).

On the other hand, when current signal is used, as shown in Eq. (12), droop coefficient mc can 

be regarded as a virtual internal resistance. In that case, the implementation and design of 

the parallel converter system in a dc microgrid can be simplified to some extent as the control 
law is linear:

   v  
DCi

  ∗   =  v  
DC

  ∗   −  m  
p
   .  P  

oi
    (11)

   v  
DCi

  ∗   =  v  
DC

  ∗   −  m  c   .  i  oi    (12)

where v*
DCi

 is the output of the droop controller, i.e., the reference value of dc output voltage 

of converter #i; v*
DC

 is the rated value of dc voltage; and m
p
 and mc are the droop coefficients in 

power-based and current-based droop controllers, while P
oi
 and i

oi
 are the output power and 

current of converter #i, respectively. Since there is no communication requirement to fulfill the 

Figure 7. Block diagram of a PP/EMS.
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control objectives, this control strategy is highly reliable. Moreover, this control structure could 

be easily extended to different energy sources while enabling true PnP features. Apart from the 
benefits, there are several issues in such power/energy management strategy. First, low- voltage 
regulation and proportional current sharing cannot be addressed directly by this method. 

Instead, nonlinear and adaptive droop techniques are proposed as key solutions for achieving 

acceptable voltage regulation at full load and ensuring proportional current sharing. Second, 

low X/R line impedance ratio may result in active and reactive power coupling and instability 

issues in low-voltage microgrid systems and cause power sharing errors for generation units 

[50]. Recently, several works have been done to improve the performance of a conventional 

droop-based control method by implementing the droop in virtual frames [51], adding vir-

tual impedance in control loops [52], or adjusting the output voltage bandwidth [50]. However, 

without a coordinating unit such as a central controller or a system optimizer, it would be a 

challenging task to optimally manage the operation of a microgrid system with PP/EMS.

As another type of PP/EMS, maximum power point tracking (MPPT) control methodology is 

also applied in microgrids to maximize power extraction from RESs (mainly WTs and PVs) 

under all conditions [53]. In such power management technique, unit’s voltage and current 

are sampled frequently, and the duty ratio of the interfaced converter is adjusted accordingly. 

However, it should be noted that in islanded renewable-based microgrids which are con-

trolled based on MPPT principles, ESSs must also be dispatched to provide voltage and fre-

quency regulation services [54]. Considering the drawbacks of IP/EMS and PP/EMS, it seems 

that a combined P/EMS structure (e.g., a consensus-based droop framework [55] or a droop-

based distributed cooperative control [56]) could not only address reliability issues but also 

enhance control performance of the system both in grid-connected and stand-alone modes.

Figure 8. Droop control for dc microgrids.
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