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1. Introduction

The design of controllers for the rejection of multisine disturbances with time-varying

frequencies is considered. The frequencies are assumed to be known. Such a control problem

frequently arises in active noise and vibration control (ANC/AVC) applications where the

disturbances are caused by imbalances due to rotating or oscillating masses or periodically

fluctuating excitations, for example the torque of a combustion engine, and the rotational

speed is measured. Application examples are automobiles and aircrafts.

For the rejection of disturbances with time-varying frequencies, time-varying controllers

that are automatically adjusted to the disturbance frequencies are usually used. Although

time-invariant controllers might be sufficient in some applications [22], time-varying

controllers usually result in a much better performance, particularly if the disturbance

frequencies vary over fairly wide ranges. Such a controller can be constructed in several ways

(see Sec. 2.1). Two observer-based state-feedback controllers are presented in this chapter (see

Sec. 3). General output-feedback controllers are treated in the next chapter. The approaches

presented in this chapter use state augmentation in order to achieve disturbance rejection.

One consists of a time-invariant plant observer and a time-varying state-feedback gain for the

state-augmented plant, where the state augmenation is based on a time-varying error filter,

as proposed by Kinney & de Callafon [19]. The other controller approach is based on the

disturbance observer of Bohn et al. [7], where the plant is augmented with a time-varying

disturbance model. A time-varying observer for the overall system and a time-invariant

state-feedback gain are used to track and reject the disturbance.

The remainder of this chapter is organized as follows. In Sec. 2, existing approaches to the

problem are classified and some general control design considerations are discussed. The

state-augmented observer-based state-feedback approaches are described in Sec. 3. In Sec. 4,
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the calculation of stabilizing state-feedback gains for time-varying systems in polytopic linear

parameter-varying (pLPV) form is discussed. The application of this method for the rejection

of harmonic disturbances is treated in Sec. 5. Real-time results are presented in Sec. 6. A

discussion and conclusions are given in Sec. 7.

2. Controller design: Overview, stability and implementation aspects

In this section, an overview of control approaches for the rejection of harmonic disturbances

with time-varying frequencies is given (Sec. 2.1) and stability and implementation aspects are

discussed (Secs. 2.2 and 2.3, respectively).

2.1. Overview and classification of control approaches

A common approach in ANC/AVC is adaptive filtering, where the filter weights are usually

updated with the FxLMS algorithm [24]. In most cases, disturbance feedforward is used,

although it is possible to use an adaptive filter in feedback control with a technique called

“secondary path neutralization” [24], which is equivalent to internal model control [25].

Another approach is to use gain scheduling, where the scheduling parameters are calculated

from the disturbance frequencies. This can be further subdivided into indirect and direct

scheduling methods. In indirect scheduling, the controller, or part of it, for example a

state-feedback or observer gain, is determined from a set of pre-computed quantities through

interpolation or switching. For example, for linear parameter-varying (LPV) systems, where

the uncertain parameters are contained in a polytope, one controller is calculated for each

vertex and the resulting controller is obtained from interpolation [2]. For the rejection of

harmonic disturbances, continuous-time LPV approaches have been suggested by Darengosse

& Chevrel [10], Du & Shi [11], Du et al. [12], Witte et al. [28], Balini et al. [6] and tested for a

single sinusoidal disturbance by Darengosse & Chevrel [10], Du et al. [12], Witte et al. [28] and

Balini et al. [6]. Methods based on observer-based state-feedback controllers are presented by

Bohn et al. [7, 8], Kinney & de Callafon [19, 20, 21] and Heins et al. [16, 17]. In the approach of

Bohn et al. [7, 8], the observer gain is selected from a set of pre-computed gains by switching.

In the other approaches of Kinney & de Callafon [21], Heins et al. [17] and in this chapter, the

observer gain is calculated by interpolation. In the other approach presented here, which is

also used by Kinney & de Callafon [19, 20] and Heins et al. [16], the state-feedback gain is

scheduled using interpolation.

In direct scheduling, the dependence of the controller on the scheduling parameter does not

correspond to a simple interpolation or switching law [2, 4, 5, 21, 23, 26]. For example, for LPV

systems where the parameter dependence is expressed as a linear fractional transformation

(LFT), the uncertain parameters also enter the controller through an LFT [2]. For harmonic

disturbances, an LPV-LFT approach has been suggested and applied in real time by Ballesteros

& Bohn [4, 5] and Shu et al. [26]. Another example for direct scheduling is a controller

based on a time-varying state estimator, for example a Kalman filter, where the scheduling

parameters enter the controller through the recursive equations for the state estimate and

the error covariance matrix. Such a controller is presented and compared to an indirect

(interpolation) approach by Kinney & de Callafon [21].
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2.2. Stability considerations

The existing design approaches can be classified as approaches that take stability into
consideration and such that do not. In indirect scheduling, for example, the controllers or
gains are sometimes pre-computed for fixed operating points and then interpolated in an
ad-hoc fashion [7, 8, 20]. Stability is then not guaranteed, although it might be expected that
the system is stable for slow variations of the scheduling parameter. For the adaptive filtering
approaches, only approximate stability results seem available to date [13, 24]. To take stability
into consideration, it is attractive to model the control problem as an LPV system and then use
suitable gain-scheduling techniques [4–6, 10, 16, 17, 19, 23, 26, 28]. If parameter-independent
Lyapunov functions are used, this guarantees closed-loop stability even for arbitrarily fast
changes of the scheduling parameters at the expense of conservatism. The methods presented
in this chapter guarantee closed-loop stability. In designs based on parameter-dependent
Lyapunov functions, limits on the rate of change of the parameters can be incorporated.

2.3. Implementation aspects

For a practical application, the resulting controller has to be implemented in discrete time. In
applications of ANC/AVC, the plant model is often obtained through system identification.
This usually gives a discrete-time plant model. It is therefore most natural to carry out the
whole design in discrete time. If a continuous-time controller is computed, the controller has
to be discretized. Since the controllers considered here are time-varying, the discretization
would have to be carried out at each sampling instant. An exact discretization involves the
calculation of a matrix exponential, which is computationally too expensive. Particularly in
LPV gain-scheduling control, an approximate discretization is proposed by Apkarian [3].
However, this leads to a distortion of the frequency scale. Usually, this can be tolerated,
but not for the suppression of harmonic disturbances. It is therefore not surprising that the
continuous-time controllers of Darengosse & Chevrel [10], Du et al. [12], Kinney & de Callafon
[19] and Köroğlu & Scherer [23] are only tested in simulation studies with a very simple
system as a plant and a single frequency in the disturbance signal. The design methods that
are tested in real time are usually formulated in discrete time [4, 5, 7, 8, 16, 17, 20, 21, 26].
Exceptions are Witte et al. [28] and Balini et al. [6], who designed continuous-time controllers
which then are approximately discretized. However, Witte et al. [28] use a very high sampling
frequency of 40 kHz to reject a harmonic disturbance with a frequency up to 48 Hz (in fact, the
authors state that they chose “the smallest [sampling time] available by the hardware”) and
Balini et al. [6] use a maximal sampling frequency of 50 kHz. It seems more natural to directly
carry out the design in discrete time to avoid discretization issues.

3. State-augmented observer-based state-feedback control

Usually, disturbances act somewhere on the plant under consideration. The control objective
is then to reject this disturbance. For the design methods considered in this paper, it is
assumed that the disturbance acts on the plant input. For linear systems, a disturbance acting
somewhere in the plant can be represented as a disturbance acting on the plant input under
very mild assumptions. Therefore, assuming an input disturbance does not mean that the true
disturbance has to act on the plant input (in fact, it usually does not). The design method used
in this chapter is based on the internal model principle [14]. Applying this principle results
in controllers with high gain in the frequency ranges where disturbances are assumed. These
disturbances are then rejected no matter where they act upon the plant.
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Figure 1. Interconnection of plant model and error filter

A discrete-time model for the plant with a disturbance yd, k acting on the input is given by

xp, k+1 = Apxp, k + Bp(up, k + yd, k),

yp, k = Cpxp, k.
(1)

In the approaches presented in the following, the disturbance rejection will be achieved
with observer-based state-feedback controllers. The design methods presented here use
state augmentation to add certain desired dynamics to the controller. In the time-invariant
case, such a state augmentation can be used to prescribe controller poles. It can easily
be verified that controller poles show up as zeros in the closed-loop disturbance transfer
functions. Therefore, controller poles can be chosen to correspond to disturbances that are
to be suppressed.

This argumentation, of course, only holds in the time-invariant case for which transfer
functions and poles are defined (and only for controller poles that are not cancelled by plant
zeros). If a time-varying internal model is used, it is not easy to interpret what happens when
the internal model changes. Conceptually, the argument that the controller has high (infinite)
gain at the disturbance frequencies that are to be rejected should still hold. It is confirmed
by experiments (see Sec. 6) that even for fairly fast changes of the disturbance frequencies,
excellent disturbance rejection is achieved.

3.1. State augmentation through an error filter

In this approach, disturbance rejection is achieved by including additional dynamics in
a state-feedback controller through error filtering. A general error filter in state-space
representation is given by

xM, k+1 = AMxM, k + BM

(
rk − yp, k

)
(2)

and interconnected with the plant model (without disturbance input)

xp, k+1 = Apxp, k + Bpup, k,

yp, k = Cpxp, k.
(3)

as shown in Fig. 1. Usually, the controller error e = r − yp is used as input for the error filter.
In the application considered here, however, no set-point r will be given and the error filter
basically acts as an output filter with input −yp. Nonetheless it will be referred to as error
filter in the following.

The dynamics of the error filter can be used to include additional desired dynamics in a
state-feedback controller for the overall system given by the plant and the filter. The additional
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dynamics can be chosen such that they describe the disturbances that the controller should
reject, which corresponds to the internal model principle [14]. The additional dynamics can
therefore be referred to as the “internal (disturbance) model.” If, as in the control problem
considered in this chapter, the disturbance characteristics change over time, a time-varying
internal model

xM, k+1 = AM, kxM, k − BMyp, k (4)

can be used.

In order to design a state-feedback controller for the overall system, first the overall system
model is formed by combining the plant model (3) and the error filter dynamics (4) through
introduction of an augmented state vector. This yields

[
xM, k+1
xp, k+1

]
=

[
AM, k −BMCp

0 Ap

] [
xM, k
xp, k

]
+

[
0

Bp

]
up, k,

yp, k =
[

0 Cp
] [ xM, k

xp, k

]
.

(5)

Then, a state-feedback gain Kk for the overall system (5) can be designed. Due to the
time-varying dynamics of the error filter, the state-feedback gain may be time-varying.

Usually the plant states are not available for feedback. Therefore, an identity observer

x̂p, k+1 = (Ap − Lp, kCp)x̂p, k + Bpup, k + Lp, kyp, k (6)

is used to obtain an estimate x̂p of the plant states xp. The estimate is then used for feedback
instead of the unknown plant states.

For an overall state-feedback gain

Kk =
[
KM, k Kp, k

]
, (7)

where KM, k and Kp, k denote the parts which feed back the error filter states xM and the plant
states xp (or in this case, the estimated plant states x̂p), respectively, the state-feedback law is
given by

up, k = −KM, kxM, k − Kp, kx̂p, k. (8)

The structure of the overall closed-loop system is shown in Fig. 2. The plant is affected by a
disturbance yd at the plant input. The plant output yp is used as input for the error filter (with
a sign reversal), which outputs are its states xM, and for the identity observer for the plant.
The latter gives an estimate x̂p of the plant states computed from yp and up. The states are
then combined and fed back with the overall state-feedback gain consisting of KM, k and Kp, k.

For stability analysis of the closed-loop system it is convenient to separate the state-space
representation of the overall closed-loop dynamics including plant, observer, error filter,
state-feedback and disturbance input in several parts as derived in the following. First, the
controlled plant under disturbance at the input can be derived by combining (1), (6) and (8) to

xp, k+1 = (Ap − BpKp, k)xp, k − BpKM, kxM, k − BpKp, k(x̂p, k − xp, k) + Bpyd, k. (9)

It is driven by the error filter states xM, the observer error x̂p − xp and the real unknown
disturbance yd.
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Figure 2. Structure of the resulting controller based on error filtering

py

dy

p, kK
p p
x̂ x

I

pB

0

 p p, pkA L C
 p p p, kA B K pB

pC 0

0 M, kA
M pB C

p M, kB K

0

Observer error dynamics

Plant dynamics

Figure 3. Dynamics of the overall closed-loop system for stability analysis

The dynamics of the identity observer for the plant states are described by (6). Since the
observer does not include a model of the disturbance, the dynamics of the observer error,
from now on denoted by x̃p, are given as

x̃p, k+1 = (Ap − Lp, kCp)x̃p, k − Bpyd, k, (10)

which means that the observer is driven by the unknown disturbance yd. With the error filter
dynamics given by (4), the overall system can be described as

⎡
⎣

x̃p, k+1

xM, k+1
xp, k+1

⎤
⎦ =

⎡
⎣

Ap − Lp, kCp 0 0

0 AM, k −BMCp

−BpKp, k −BpKM, k Ap − BpKp, k

⎤
⎦
⎡
⎣

x̃p, k

xM, k
xp, k

⎤
⎦ +

⎡
⎣
−Bp

0
Bp

⎤
⎦ yd, k. (11)

The overall system behavior is shown in Fig. 3. From this representation it can be seen that
the time-varying dynamics of the augmented plant under state feedback are driven by the
time-varying dynamics of the observer error for the plant states. The augmented plant under
state feedback and the dynamics of the observer error for the plant states can therefore be
interpreted as two distinct systems connected in series. From this it follows that choosing
an observer gain Lp, k such that Ap − Lp, kCp is stable and a state-feedback gain such that the
time-varying dynamics of the augmented plant under state feedback are stable guarantees
overall stability of the closed-loop system.
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3.2. State augmentation through a disturbance model
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Figure 4. System model for the disturbance observer approach

In this approach, the disturbance yd acting on the plant input up is explicitly modeled as the
output of an unforced linear time-varying system

xd, k+1 = Ad, kxd, k,

yd, k = Cdxd, k
(12)

as shown in Fig. 4. An overall linear time-varying system model is then given by the
combination of the plant model (1), which is affected by the disturbance yd, k at the plant
input, and disturbance through

⎡
⎣

xd, k+1

xp, k+1

⎤
⎦ =

⎡
⎣

Ad, k 0

BpCd Ap

⎤
⎦
⎡
⎣

xd, k

xp, k

⎤
⎦+

⎡
⎣

0

Bp

⎤
⎦ up, k,

yp, k =
[

0 Cp
]
⎡
⎣

xd, k

xp, k

⎤
⎦ .

(13)

With

xk =

⎡
⎣

xd, k

xp, k

⎤
⎦ , Ak =

⎡
⎣

Ad, k 0

BpCd Ap

⎤
⎦ , B =

[
0

Bp

]
, C =

[
0 Cp

]
, (14)

the overall system can be written as

xk+1 = Akxk + Bup, k,

yp, k = Cxk.
(15)

Estimates for the states of the disturbance and the plant model can then be obtained by
application of a linear time-varying identity observer with time-varying observer gain Lk

x̂k+1 = (Ak − LkC)x̂k + Bup, k + Lkyp, k. (16)

A state-feedback control for the overall system is given by

up, k = −Kkx̂k. (17)

This leads to the typical structure of an observer-based state-feedback controller, but due to
the time-varying disturbance model, the observer gain as well as state-feedback gain might be
time-varying. Fig. 5 shows the general structure. The idea behind the disturbance observer is
to use the estimate of the disturbance states (with a sign reversal) as control input. This should
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lead to perfect disturbance cancellation if the disturbance model is chosen appropriately. For a
more detailed analysis of this aspect, in the following observer gains and state-feedback gains
are seperated into a part that feeds back the disturbance states via Ld, k and Kd, k and a part
that feeds back the plant states or their estimates via Lp, k and Kp, k. The estimated disturbance
states can be described by

x̂d, k+1 = Ad, kx̂d, k − Ld, kCpx̂p, k + Ld, kyp, k, (18)

and the estimated plant states are given through

x̂p, k+1 = (Ap − Lp, kCp)x̂p, k + BpCdx̂d, k + Lp, kyp, k + Bpup, k, (19)

where
Lk =

[
Ld, k Lp, k

]
. (20)

In Fig. 6, this more detailed representation is illustrated.

For stability analysis of the overall system including overall observer dynamics and state
feedback, the dynamics of the observer error for the plant states

x̂p, k+1 − xp, k+1 = (Ap − Lp, kCp)(x̂p, k − xp, k) + BpCdx̂d, k − Bpyd, k (21)

are considered.

The dynamics of the states of the plant under state feedback are given by

xp, k+1 = (Ap − BpKp, k)xp, k − BpKd, kx̂d, k + BpKp, k(x̂p, k − xp, k) + Bpyd, k. (22)
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This yields the overall closed-loop system dynamics given by

⎡
⎣

x̂d, k+1
x̃p, k+1

xp, k+1

⎤
⎦ =

⎡
⎣

Ad, k −Ld, kCp 0
BpCd Ap − Lp, kCp 0

−BpKd, k BpKp, k Ap − BpKp, k

⎤
⎦
⎡
⎣

x̂d, k
x̃p, k

xp, k

⎤
⎦+

⎡
⎣

0
−Bp

Bp

⎤
⎦ yd, k. (23)

Fig. 7 illustrates the structure of the overall system dynamics. This representation shows,
similiar to the error filtering approach, that the dynamics of the plant under state feedback are
driven by the time-varying dynamics of the observer for the augmented system, where in this
case the outputs are given by the estimate of the disturbance states and the observer error for
the plant states. The plant under state feedback and the observer of the augmented system
can therefore be considered as two distinct systems in series connection. From this it follows
that as long as a stabilizing state-feedback gain Kp, k for the linear time-invariant plant and a
stabilizing observer gain for the augmented system model is chosen, the overall closed-loop
system is stable. It is also evident that the choice of the disturbance model does not influence
the overall system stability, as long as the disturbance model itself is stable. Also, the choice
of Kd, k has no effect on the overall system stability (as long as Kd, kx̂d, k remains bounded).
Therefore, the overall state-feedback gain K does not have to be time-varying since only the
linear time-invariant plant must be stabilized by Kp and the choice of Kd is not important
for system stability. Furthermore, it can be seen that, assuming a perfect disturbance model,
complete disturbance cancellation will be achieved after some transient if Kd = Cd.

4. Gain-scheduled state-feedback and observer design for pLPV systems

In this section, design methods for time-varying state-feedback and observer gains for pLPV
systems based on quadratic stability theory are reviewed.

An LPV system is a linear system described by

xk+1 = A(θ)xk + B(θ)uk

yk = C(θ)xk + D(θ)uk
(24)

with xk ∈ R
n, where the state-space matrices depend on a possibly time-varying parameter

vector
θ =

[
θ1 θ2 · · · θN

]T
∈ Θ ⊂ R

N . (25)

In the following, only unforced systems of the form

xk+1 = A(θ)xk (26)
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are considered. In general, an LPV system is called a pLPV system, if the matrices depend
affinely on the varying parameter. For the unforced system given in (26), this means that it is
a pLPV system, if the system matrix A(·) depends affinely on θ, that is

A(θ) = A0 + θ1A1 + θ2A2 + · · ·+ θNAN , (27)

where Ai ∈ R
n×n for all i = 0, 1, ..., N are constant matrices and Θ is a convex polytope

in R
N with a finite set of vertices V = {v1, v2, ..., vM} ⊂ R

N . A point θ ∈ Θ can be
written as a convex combination of vertices, which means there exists a coordinate vector
λ = [λ1 λ2 . . . λM]T ∈ R

M such that θ can be written as

θ =
M

∑
j=1

λjvj, λj ≥ 0 ∀j = 1, ..., M,
M

∑
j=1

λj = 1. (28)

Defining Av,j = A(vj) for j = 1, . . . , M, A(θ) can be represented as

A(θ) = A(λ) = λ1Av,1 + λ2Av,2 + · · ·+ λMAv,M. (29)

The matrices Av,j can be considered as system matrices of linear time-invariant vertex systems

xk+1 = Av,jxk, j = 1, . . . , M, (30)

and the current system (26) is a convex combination of the vertex systems in (30).

The pLPV system (26) is called quadratically stable in Θ if and only if there exists a positive
definite matrix P such that for all θ ∈ Θ

AT(θ)PA(θ)− P < 0, (31)

or equivalently via the Schur complement [18]

[
P PA(θ)

AT(θ)P P

]
> 0, (32)

where “> 0” and “< 0” indicate positive and negative definiteness, respectively.

Since (32) has to hold for every θ, this constitutes an infinite set of linear matrix inequalities
(LMIs), which is computationally intractable. By the following result, it is possible to use a
finite set of inequalities. It holds that a pLPV system in the form of (26) is quadratically stable
for every θ ∈ Θ if and only if there exists a symmetric positive definite matrix P such that

AT
v, jPAv, j − P < 0, (33)

or equivalently [
P PAv, j

AT
v, jP P

]
> 0, (34)

for all j = 1, . . . , M. This result is based on one single quadratic Lyapunov function that
assures stability for the whole parameter space Θ. Therefore, θ is allowed to change arbitrarily
fast with time and θ and λ can explicitly be assumed time-varying and denoted as θk and λk,
respectively. A proof is given in Amato [1].
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These results can be applied to the design of time-varying state-feedback and observer gains,
as reviewed in the following sections.

4.1. State-feedback design for pLPV systems based on quadratic stability

A system of the form
xk+1 = A(θk)xk + Buk (35)

is considered and the objective is to find a state-feedback gain K(θk) that quadratically
stabilizes the closed-loop system

xk+1 = (A(θk)− BK(θk))xk. (36)

From the above result it follows that it suffices to find a single symmetric positive definite
matrix P and a finite set of matrices Kv, j such that

[
P P(Av, j − BKv, j)

(Av, j − BKv, j)
TP P

]
> 0, j = 1, . . . , M. (37)

Then, K(θk) has to be chosen as

K(θk) =
M

∑
j=1

λj, kKv, j = K(λk), (38)

because then it holds that

A(θk)− BK(θk) =
M

∑
j=1

λj, kAv, j − B
M

∑
j=1

λj, kKv, j =
M

∑
j=1

λj, k(Av, j − BKv, j), (39)

and therefore quadratic stability of (36) is implied due to the results presented above.

4.2. Computation of state-feedback gains for the vertex systems

In this section, sufficient conditions that guarantee closed-loop stability and a certain
H2 performance level for the controlled vertex systems that can be used to calculate
state-feedback gains for the vertex systems are derived. To use an H2 performance level,
an additional performance input is introduced that enters the state update equation for each
vertex system of the pLPV system in (35). This input can be interpreted as process noise. For
every j = 1, . . . , M, this yields

xk+1 = Av,jxk + Buk + wk. (40)

As a performance output, the artificial signal

zk =

⎡
⎣Q

1
2 xk

R
1
2 uk

⎤
⎦ (41)

is defined that weighs the states and the control signal with matrices Q
1
2 and R

1
2 , respectively.

The objective then is to find state-feedback gains Kv, j that stabilize the system and minimize
the H2 norm of the transfer path from wk to zk, when the control signal uk in (40) and (41) is
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chosen as
uk = −Kv,jxk. (42)

This objective can be stated as the minimization of the H2 norm of the system

z = Gw (43)

which has the state-space representation

xk+1 = Ãxk + B̃wk,

zk = C̃xk,
(44)

with

Ã = Av,j − BKv,j, B̃ = I, C̃ =

⎡
⎣ Q

1
2

−R
1
2 Kv,j

⎤
⎦ . (45)

If the system is stable, the H2 norm of this discrete-time linear time-invariant system is given
by

‖G‖2
2 = trace

(
C̃WcC̃

T
)

, (46)

where the controllability gramian Wc satisfies the discrete-time Lyapunov equation

ÃWcÃ
T
− Wc + B̃B̃

T
= 0. (47)

Therefore, if there exist symmetric positive definite matrices P and W such that

ÃPÃ
T
− P + B̃B̃

T
< 0, (48)

W − C̃PC̃
T
> 0, (49)

trace (W) < γ2, (50)

then it follows that ‖G‖2 < γ for a γ > 0. Through the Schur complement, (48) and (49) can
be transformed to ⎡

⎣ P PÃ
T

ÃP P − B̃B̃
T

⎤
⎦ > 0, (51)

⎡
⎣

W C̃P

PC̃
T

P

⎤
⎦ > 0. (52)

Introducing

Q̃ =

[
Q

1
2

0

]
, R̃ =

[
0

R
1
2

]
, Yv, j = Kv, jP, (53)

it follows that if solutions for the matrix variables P, W and Yv, j, j = 1, . . . , M, can be found
that satisfy the 2M + 1 LMIs

[
P

(
Av, jP − BYv, j

)T

Av, jP − BYv, j P − I

]
> 0, j = 1, . . . , M, (54)
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⎡
⎢⎣

W Q̃P − R̃Yv, j

(
Q̃P − R̃Yv, j

)T
P

⎤
⎥⎦ > 0, j = 1, . . . , M, (55)

trace (W) < γ2, (56)

then the system G has an H2 norm bounded by γ. From the solutions P and Yv, j, the
state-feedback gain for each vertex system can be calculated as

Kv, j = Yv, jP
−1. (57)

Quadratic stability is then implied for each closed-loop vertex system because of (48). In
order to guarantee quadratic stability for the whole parameter space, solutions for the matrix
variables P and W in (54)-(56) have to be the same for all vertex systems. Therefore, if solutions
are found, also the performance bound γ is guaranteed for every fixed θ in the parameter
space Θ, since it depends only on P and W.

Once state-feedback gains are found for the vertex systems, in any instant of time of a
realization of the pLPV system (35) with θk ∈ Θ, a state-feedback gain can be found
via interpolation according to (38). Quadratic stability of the closed-loop system (36) is
guaranteed. The question of how to compute the coordinates λk with the properties described
in (28) depends on the specific polytope Θ. The case of an N-dimensional hyper box will be
considered in detail in Sec. 4.4.

4.3. Observer design for pLPV systems based on quadratic stability

Although the observer design is dual to the controller design, the LMIs for observer design
are shortly presented here for completeness.

For observer design, a system of the form

xk+1 = A(θk)xk + Buk,

yk = Cxk

(58)

is considered and the objective is to find an observer gain L(θk) that quadratically (and
therefore, asymptotically) stabilizes the dynamics of the observer error

x̃k+1 = (A(θk)− L(θk)C)x̃k. (59)

From the above result it follows that it suffices to find a single symmetric positive definite
matrix P and a finite set of matrices Lv, j such that

[
P P(Av, j − Lv, jC)

(Av, j − Lv, jC)
TP P

]
> 0, j = 1, . . . , M, (60)

and L(θk) has to be chosen as

L(θk) =
M

∑
j=1

λj, kLv, j = L(λk). (61)
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As in the design of the state-feedback gain in the previous section, sufficient conditions for
quadratic stability of (59) and a certain H2 performance level can be derived. It is assumed

that white noise of unit covariance, given by w1 and w2 and weighted by matrices Q
1
2 and R

1
2

respectively, affects the states and the outputs of the vertex systems of (58). This gives

xk+1 = A(θk)xk + Cuk + Q
1
2 w1, k

yk = Cxk + R
1
2 w2, k.

(62)

The H2-norm of the transfer path from this noise input to the observer error is chosen as the
performance measure. Defining

wk =

[
w1, k
w2, k

]
, (63)

this transfer path is described by

x̃k+1 =
(

Av, j − Lv, kC
)

x̃k +
[

Q
1
2 −Lv, kR

1
2

]
wk. (64)

Therefore the objective is to minimize the H2-norm of the system z = Gw with state-space
representation

xk+1 = Ãxk + B̃wk,

zk = C̃xk,
(65)

with
Ã = Av,j − Lv,jC, B̃ =

[
Q

1
2 −Lv, kR

1
2

]
, C̃ = I. (66)

If the system is stable, the H2 norm of this discrete-time linear time-invariant system is given
by

‖G‖2
2 = trace

(
B̃

T
WoB̃

)
, (67)

where the observability gramian Wo satisfies the discrete-time Lyapunov equation

ÃWoÃ
T
− Wo + C̃

T
C̃ = 0. (68)

For the same arguments as in Sec. 4.1 and with the introduction of

Q̃ =

[
Q

T
2

0

]
, R̃ =

[
0

R
T
2

]
, Yv, j = LT

v, jP, j = 1, ..., M, (69)

it follows that if solutions for the matrix variables P, W and Yv, j, j = 1, . . . , M, can be found
that satisfy the 2M + 1 LMIs

⎡
⎣

P PAv, j − YT
v, jC

(PAv, j − YT
v, jC)

T P − I

⎤
⎦ > 0, j = 1, ..., M, (70)

⎡
⎣

W Q̃P − R̃Yv, j

(Q̃P − R̃Yv, j)
T P

⎤
⎦ > 0, j = 1, ..., M, (71)
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trace (W) < γ2, (72)

then the system G has an H2 norm bounded by γ. From the solutions P and Yv, j, the observer
gain for each vertex system can be calculated as

Lv, j = P−TYT
v, j. (73)

In order to guarantee quadratic stability for the whole parameter space, solutions for the
matrix variables P and W in (70)-(72) have to be the same for all vertex systems. Therefore,
if solutions are found, also the performance bound γ is guaranteed for every fixed θ in the
parameter space Θ.

Once observer gains are found for the vertex systems, in any instant of time an observer
gain for the realization of the pLPV system (58) with θk ∈ Θ can be found via interpolation
according to (61).

4.4. Computation of the coordinates for interpolation

The computation of the coordinates λk ∈ R
M required for the interpolation depends on

the specific polytope Θ ⊂ R
N that is used to cover the parameter space. In general, for a

parameter vector θk ∈ Θ, where Θ denotes a polytope with M vertices v1, v2, . . . , vM ∈ R
N ,

the coordinate vector λk as required for the interpolation is given by the solution to the
constrained system of linear equations

[
v1 v2 . . . vM

1 1 . . . 1

]
λk =

[
θk

1

]
, 0 ≤ λj, k ≤ 1, j = 1, . . . , M. (74)

Existence of the solution is guaranteed as long as θk ∈ Θ. If the polytope considered has
less than or exactly N + 1 vertices, the constrained linear equation system admits exactly one
solution. If the polytope is given by more than N + 1 vertices, the system is underdetermined
and more than one solution is possible. Since the controller design is not a linear operation,
different choices of coordinates might lead to different properties of the resulting controller.

In most cases, ranges of components of the parameter vector are given by closed intervals in
R determined by upper and lower bounds, such that

θi, k ∈
[
θi, min, θi, max

]
, i = 1, . . . , N. (75)

If no further information on the relations between parameters are known, the polytope Θ has
to be chosen as the N-dimensional hyper box, also referred to as the parameter box, given by

Θ = [θ1, min, θ1, max]× [θ2, min, θ2, max]× . . . × [θN, min, θN, max] . (76)

One way to compute a set of coordinates λk for this case is introduced by Apkarian et al. [2]
and generalized and implemented for an arbitrary number of vertices in the LMI Control
Toolbox for Matlab [15]. Another implementation of this approach is proposed here that
is suitable for real-time implementation purposes where variables have to be pre-initialized
with fixed dimensions. Daafouz et al. [9] presented a compact way of writing the calculation
scheme, on which the scheme proposed here and in [17] is based. If the order of vertices is not
changed, any of the mentioned approaches leads to the same coordinates.
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The i-th entry vj, i of a vertex j of the parameter box Θ is either the lower bound θi, min or the
upper bound θi, max of θi, k. Now, 2N vectors

bimin
=

⎡
⎢⎣

bimin, 1
...

bimin, M

⎤
⎥⎦ , bimax

=

⎡
⎢⎣

bimax, 1
...

bimax, M

⎤
⎥⎦ (77)

are pre-computed such that

bimax, j =

{
1

θi, max−θi, min
, if vj, i = θi, max,

0, if vj, i = θi, min,
(78)

bimin, j =

{
1

θi, max−θi, min
, if vj, i = θi, min,

0, if vj, i = θi, max.
(79)

The following steps are then carried out in every sampling instant:

1. θi, k = cos(2π fi, kT), i = 1, ..., N, (80)

2. cimax, k = θi, k − θi, min, cimin, k = θi, max − θi, k, i = 1, ..., N, (81)

3. λj, k =
N

∏
i=1

(bimax, jcimax, k + bimin, jcimin, k), j = 1, ..., M. (82)

5. Application for the rejection of harmonic disturbances

In this section, the methods described in Sec. 4 are applied to the case of a harmonic multisine
disturbance. Specific system models and the transformation that leads to a pLPV system are
presented.

5.1. Internal model for harmonic disturbances

The disturbance is assumed to be a multisine. Let N be the number of components of
the disturbance and fi, k the frequency of the i-th component at sampling instant k. The
frequencies are assumed to vary in intervals

[
fi, min, fi, max

]
⊂ [0, 0.5 fs], where fs denotes

the sampling frequency.

As discussed in Sec. 3, an error filter or a disturbance model can be used to include desired
dynamics in the controller according to the internal model principle [14]. Since the following
relations are used for either AM, k or Ad, k depending on the control approach, the notation
A M/d, k is employed. The dynamics for a multisine disturbance with time-varying frequency
are given by a discrete-time state-space model with system matrix

A M/d, k =

⎡
⎢⎣

AM1/d1, k · · · 0
...

. . .
...

0 · · · AMN /dN , k

⎤
⎥⎦ , (83)
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where

AMi/di , k =

[
cos(2π fi, kT) sin(2π fi, kT)
− sin(2π fi, kT) cos(2π fi, kT)

]
(84)

with sampling time T = 1/ fs. This time-varying matrix might therefore be used as system
matrix AM, k of the error filter described in Sec. 3.1 or Ad, k of the disturbance model described
in Sec. 3.2. In order to find a representation of A M/d, k that depends affinely on a parameter
vector θ, one approach could be to choose

θi, k = cos(2π fi, kT), i = 1, ..., N. (85)

Unfortunately, through

sin(2π fi, kT) =
√

1 − θ2
i, k, i = 1, ..., N, (86)

a non-affine dependence is introduced into the model. To circumvent this, additional
parameters

θi, k = sin(2π fi, kT), i = N + 1, ..., 2N (87)

could be introduced. The use of this internal model leads to a large dimension of the
parameter space and a polytope with many vertices. It can be expected that controllers based
on this model are quite conservative, if there exists a solution to the LMIs at all. Therefore,
a simplified disturbance model that leads to less conservative conditions is used for the
controller design.

In the case of constant frequencies, instead of (84), the matrices

AMi/di
=

[
0 1
−1 2 cos(2π fi,T)

]
, i = 1, ..., N (88)

can be used in the system matrix of the internal model (83). This leads to a time-invariant
overall system model. As discussed in Sec. 3, the internal model then is a way to determine
controller poles (that show up as zeros in the disturbance transfer functions). With the above
approach, for a frequency f , a complex conjugate controller pole pair is placed at exp(j2π f T)
and exp(−j2π f T), which causes complete asymptotic rejection of harmonic disturbances with
this frequency.

Although this model does not take into account the rate of change of the disturbance
frequencies and the argumentation based on controller poles is valid only in the time-invariant
case, this simpler model is used here even for the case of time-varying frequencies, since it
reduces the dimension of the parameter space. Thus, the matrices

AMi/di , k =

[
0 1
−1 2 cos(2π fi, kT)

]
, i = 1, ..., N (89)

are used for the time-varying disturbance model. This might have an effect on the disturbance
attenuation for fast changes of the frequencies, but it is expected that other effects are more
dominant than the “incorrect” disturbance model. There will always be delay between the
measured frequency used in the controller and the true frequency. Also, if the disturbance
and the control signal do not enter at exactly the same point and the disturbance frequency
varies, it is unclear which frequency “is present” at the point where the control signal enters
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the plant at a certain time. As shown in Sec. 3, closed-loop stability is not affected by the
choice of the internal model.

5.2. Transformation to pLPV form

If the internal model can be written in the form of a pLPV system, it is possible to find a
representation of the system matrix Ak of the overall system of the error filter approach (5)
and the disturbance observer approach (15) in the form of a pLPV system as well. Then, the
controller design and the gain-scheduling procedure can be carried out based on quadratic
stability theory of pLPV systems, as has been presented in Sec. 4.

If the sampling theorem applies (which should be the case for any practical application),
it holds that 0 ≤ 2π fi, kT ≤ π for all i = 1, ..., N. Since the function f �→ cos(2π f T)
is monotonically decreasing on [0, π], the frequencies under consideration have to fulfill
0 ≤ 2π fi, kT ≤ π for all i = 1, ..., N in order to guarantee a unique mapping between
frequencies and parameters. This can usually be achieved by choosing a sufficiently small
value for T. Then, parameters θi as defined in (85) are bounded by

θi, min = cos(2π fi, maxT), θi, max = cos(2π fi, minT), i = 1, ..., N, (90)

respectively. Defining

Θ = [θ1, min, θ1, max]× [θ2, min, θ2, max]× ... × [θN, min, θN, max] ⊂ R
N (91)

with vertices v1, v2, ..., vM ∈ R
N it follows that the parameter vector

θk =

⎡
⎢⎢⎢⎣

θ1, k
θ2, k

...
θN, k

⎤
⎥⎥⎥⎦ ∈ R

N (92)

is always inside the hyper box Θ. Then, the system matrix A M/d, k of the internal model can
be written as

A M/d, k = A M/d(θk) = AM0/d0
+ θ1, kAM1/d1

+ θ2, kAM2/d2
+ ... + θN, kAMN /dN

(93)

with

AM0/d0
=

⎡
⎢⎣
AM0/d0, 1 · · · 0

...
. . .

...
0 · · · AM0/d0, N

⎤
⎥⎦ , (94)

where

AM0/d0, i =

[
0 1
−1 0

]
, i = 1, ..., N, (95)

and AMi/di
matrices with zero entries only except for

AMi/di
(2i, 2i) = 2, i = 1, ..., N. (96)

Therefore, the system matrix A M/d, k of the internal model used for the error filter from
Sec. 3.1 and the disturbance model in Sec. 3.2 can be written in pLPV form based on the
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N-dimensional hyper box Θ with vertices v1, v2, ..., vM ∈ R
N . The system matrices Ak of (5)

in the error filter approach can then be written as

Ak = A( θk) = A 0 + θ1, kA 1 + ... + θN, kA N (97)

with

A 0 =

[
AM0

BMCp

0 Ap

]
, (98)

A i =

[
AMi

0

0 0

]
, i = 1, ..., N, (99)

and analogously in (15) for the disturbance observer approach

Ak = A(θk) = A 0 + θ1, kA 1 + ... + θN, kA N (100)

with

A 0 =

[
Ap BpCd

0 Ad0

]
, (101)

A i =

[
0 0

0 Adi

]
, i = 1, ..., N. (102)

Since Θ is a convex polytope, in every instant there exist coordinates λj, k, j = 1, ..., M, such
that

θk =
M

∑
j=1

λj, kvj. (103)

Since Ak depends affinely on θk in both approaches, it follows that the system matrix can be
expressed as

A(θk) =
M

∑
j=1

λj, kAv, j = A(λk), (104)

where
Av, j = A(vj), j = 1, . . . , M. (105)

The required time-varying state-feedback and observer gains for the overall systems (5) and
(15), respectively, can therefore be obtained by application of the design methods based on
quadratic stability theory as reviewed in Sec. 4.

5.3. Controller implementation

Once the pLPV representation of the considered system is found, the required time-varying
state-feedback and observer gains for the overall systems (5) and (15), respectively, can be
obtained by application of the design methods based on quadratic stability theory as reviewed
in Sec. 4.

The time-invariant vertex state-feedback or vertex observer gains are calculated in advance.
Since the plant itself is linear time-invariant, also the time-invariant observer required for
the estimation of the plant states in the error filter approach as well as the time-invariant
state-feedback gain of the disturbance observer approach can be calculated off-line with
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Figure 8. Control structure and interpolation for the error filter approach
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Figure 9. Control structure and interpolation the disturbance model approach

a standard method (e.g. LQR or pole placement). The controllers are then implemented
according to the structures given in Sec. 3 and shown in Figs. 8 and 9 with the interpolation.
Wherever possible, system matrices are updated in every sampling instant directly with the
measured frequencies, while the time-varying state-feedback and observer gains are obtained
by interpolation with the coordinates obtained by the scheme given in Sec. 4.4.

6. Real-time results

The gain-scheduled observer-based state-feedback controllers obtained through the design
procedures presented in this chapter are validated with experimental results. Both controllers
have been tested on an AVC and an ANC system and were found to work well. Results are
presented for the test of the error filter with time-varying state-feedback gain on an ANC
headset and the controller based on a disturbance observer with time-varying observer gain
on an AVC test bed.

6.1. Real-time results for state-feedback gain-scheduling (error filtering) approach

The controller based on a disturbance observer with time-varying observer gain is tested
experimentally on a Sennheiser PXC 300 headset. The experimental setup is shown
schematically in Fig. 10. An external loudspeaker is used to generate a harmonic disturbance.
The headset has one microphone on each loudspeaker. The objective is to cancel the
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Disturbance 

loudspeaker

CONTROL

UNIT

Headset 

loudspeakers

Headset 

microphones f

FILTER

FILTER

Figure 10. Block diagramm (left) and photograph (right) of the ANC system

disturbance with the loudspeakers of the headset. An anti-aliasing filter is applied to the
output signal and a reconstruction filter to the control input. The control algorithm is
implemented on a rapid control prototyping unit (dSpace MicroAutoBox). A sampling
frequency of 1 kHz was used.

Standard black-box system identification techniques were used to obtain the transfer function
between output and input of the control unit. The identified transfer function is of 12th order
and the resulting controller of 20th order. As a disturbance signal, a sum of four harmonically
related sine signals with fundamental frequency between 90 Hz and 100 Hz is used. The
control algorithm has been implemented on both sides and results for the right side are shown.

Fig. 11 shows the amplitude frequency responses for constant fundamental frequencies of
90 Hz and 100 Hz. The amplitude frequency response plots show that amplification takes
place in some frequency ranges, which is the known “waterbed” effect. It might cause
problems in practical applications where significant background noise, e.g. broadband
stochastic disturbances, is present. In Fig. 12, results are shown for a case where the
fundamental frequency suddenly jumps from 90 Hz to 100 Hz. The controller remains stable
even for such drastic variations of the fundamental frequency. The transient spike might be
undesirable, particularly in ANC applications where it could be audible. However, a step
change in the frequency does not commonly occur in real applications.

In Fig. 13, results for a gradually changing fundamental frequency are shown. The
measurements show that excellent disturbance attenuation is achieved. The performance
of the controller is tested with fast variations of the disturbance frequencies. Results for
this experiment are shown in Fig. 14. It can be observed that the attenuation performance
decreases, but the system remains stable.

6.2. Real-time results for observer gain-scheduling (disturbance model) approach

The scheme and a photograph of the AVC test bed are shown in Fig. 15. Two shakers (inertia
mass actuators) are attached to a steel cantilever beam. One shaker acts as the disturbance
source and the other shaker is driven by the control signal to counteract this disturbance. An
accelerometer is used to measure the output signal. An anti-aliasing filter is applied to the
output signal and a reconstruction filter to the control input.
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Figure 11. Open-loop (gray) and closed-loop (black) amplitude frequency responses for fixed
disturbance frequencies of 90, 180, 270 and 360 Hz (left) and of 100, 200, 300 and 400 Hz (right)
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Figure 12. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured sound pressure (right). The control sequence is off/on/off

A multisine test signal is used to identify the transfer function between output and input of
the control unit using standard black-box system identification techniques. The controller
is implemented on a rapid control prototyping unit (dSpace MicroAutoBox). A sampling
frequency of 1 kHz was chosen. The identified system is of 10th order and the controller of
16th order. As a disturbance signal, a sum of three harmonically related sine signals with
fundamental frequency between 110 and 120 Hz is used. The amplitude frequency responses
of the open-loop and closed-loop systems for fixed disturbance frequencies of 110 Hz, 220 Hz
and 330 Hz and 120 Hz, 240 Hz and 360 Hz are shown in Fig. 16. The resonance frequencies
are damped by a factor 0.9 using pole placement with the state-feedback gain Kp. In Fig. 17,
results are shown for a (rather unrealistic) case where the fundamental frequency suddenly
jumps from 110 Hz to 120 Hz. After a short transient spike the disturbance rejection resumes
quickly. The transient spike might be undesirable but a step change in the frequency does not
commonly occur in real applications. The measurements confirm the excellent disturbance
rejection that can be expected from the amplitude frequency responses. The amplitude
response plots show that amplification takes place in frequency ranges between the rejected
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Figure 13. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured sound pressure (right) in open loop (gray) and closed loop (black)
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Figure 14. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured sound pressure (right) in open loop (gray) and closed loop (black)
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Figure 15. Schematic representation (left) and photograph (right) of the AVC system

57
LPV Gain-Scheduled Observer-Based State Feedback 

for Active Control of Harmonic Disturbances with Time-Varying Frequencies



24 Will-be-set-by-IN-TECH

frequencies. This is due to Bode’s sensitivity integral (“waterbed” effect). Whether this is
tolerable or not depends on the application. It is possible to limit the maximum disturbance
amplification by a suitable overall controller design (which need not be observer based), but
at the expense of either not fully suppressing the harmonic disturbances (that is, the notches
in the frequency response would not get to zero) or requiring the frequency measurements
to be very exact (that is, making the notches narrower) or worsening the transient behavior
(that is, it would take longer before a harmonic disturbance is suppressed to a certain level).
However, in this chapter only harmonic disturbances are considered, so these issues are not
addressed in the design.

In Fig. 18, results for a gradually changing fundamental frequency are shown. It decreases

linearly from 120 Hz to 110 Hz, remains constant for a while and then rises back to 120

Hz. This is repeated four times, every time in a shorter time interval. At the end the fourth

harmonic rises from 330 Hz to 360 Hz and decreases back to 330 Hz in less than two seconds.

The effect of fast variations of the disturbance frequencies has been further investigated in

another experiment. The results are shown in Fig. 19. The disturbance frequency varies
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Figure 16. Open-loop (gray) and closed-loop (black) amplitude frequency responses for fixed
disturbance frequencies of 110, 220 and 330 Hz (left) and of 120, 240 and 360 Hz (right)
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Figure 17. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured acceleration (right). The control sequence is off/on/off
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sinusoidally between the minimum and the maximum value with a period that decays from

10 to 0.5 seconds. It is seen that for very fast frequency variations, the attenuation performance

decreases slightly (but the system remains stable).
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Figure 18. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured acceleration (right) in open loop (gray) and closed loop (black)
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Figure 19. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured acceleration (right) in open loop (gray) and closed loop (black)

7. Discussion and conclusion

Two discrete-time LPV observer-based state-feedback controllers for the rejection of harmonic

disturbances with time-varying frequencies are presented. The control design methods

are based on quadratic stability theory for pLPV systems. They guarantee stability of the

closed-loop system also for arbitrarily fast changes of the disturbance frequencies. This is

an advantage over other approaches such as adaptive filtering or heuristic gain scheduling.

The experimental results show that an excellent disturbance rejection is achieved and that the

proposed controllers can be applied in a real-time setup.
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However, some degree of conservatism is present in these approaches. Using a single

parameter independent Lyapunov function limits the range of admissible disturbance

frequencies that can be covered with the resulting controller. Also, the polytope that contains

the uncertain parameters could be chosen much smaller and with fewer vertices than the

cuboid applied here, if information on the relations between the disturbance frequencies is

given (as, for example, in the case of harmonically related frequencies). Thus, feasibility

of the LMIs and the upper bound on the system performance could be improved as well

as the computation time for the coordinates required for the on-line interpolation. This

might be important for applications where many harmonics have to be cancelled, a wide

frequency range has to be covered and the computational resources are limited, for example

in automotive applications [7]. This aspect as well as a direct comparison of the proposed

methods with conventional algorithms (such as the FxLMS) will be subject of future research.

To the best of the authors’ knowledge, industrial applications of LPV controllers are rather

limited. The results of this and the following chapter show that the implementation of even

high-order LPV controllers can be quite straightforward.

Nomenclature

Acronyms

ANC Active noise control.

AVC Active vibration control.

FxLMS Filtered-x least mean squares.

LFT Linear fractional transformation.

LMI Linear matrix inequality.

LPV Linear parameter varying.

pLPV Polytopic linear parameter varying.

Variables

(in order of appearance)

Ap, Bp, Cp State-space matrices of the plant.

xp, k State vector of the plant.

yp, k, up, k Output signal and control input of the plant.

yd, k Disturbance signal.

AM, BM State-space matrices of the error filter.

xM, k State-space vector of the error filter.

rk, ek Reference and error signal.

AM, k Time-varying system matrix of the error filter.
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0 Zero matrix.

I Identity matrix.

Lp Observer gain for the plant.

x̂p, k Estimated state vector of the plant.

Kk Time-varying state-feedback gain for the overall system.

KM, k, Kp, k Time-varying state-feedback gains for the error filter

and the plant.

x̃p, k Observer error of the plant.

Ad, k, Cd State-space matrices of the disturbance model.

xd, k State vector of the disturbance model.

Ak, B, C State-space matrices of the overall system.

Lk Time-varying observer gain of the overall system.

Ld, k, Lp, k Time-varying observer gains for the disturbance model

and the plant.

x̂d, k Estimated state vector of the disturbance model.

Kd, k, Kp, k Time-varying state-feedback gains for the disturbance model

and the plant.

A(θ), B(θ), State-space matrices of an LPV system.

C(θ), D(θ)

θ = [θ1 θ2 . . . θN ]T Parameter vector.

N Size of the parameter vector.

Θ Parameter polytope.

A i Constant matrices of a polytopic representation.

V Set of vertices of the parameter polytope.

vj Vertex j of the parameter polytope.

λ = [λ1 λ2 . . . λM]T Coordinate vector.

M Size of the coordinate vector.

Av,j System matrices for the j-th vertex.

P Symmetric positive definite matrix.

θk Vector of time-varying parameters.

λk =
[
λ1, k λ2, k . . . λM, k

]T
Time-varying coordinate vector.

Kv,j State-feedback gain for the j-th vertex.
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wk, zk, uk Process noise, performance output and control input.

Q,R Weighting matrices.

G Transfer function between wk and zk.

Ã, B̃, C̃ State-space matrices of the transfer path from wk to zk.

Q̃, R̃ Matrices to build the LMIs.

Wc Controllability gramian.

Wo Observability gramian.

W Symmetric positive definite matrix.

Yv, j Solution of the LMIs for the j-th vertex.

Lv,j Observer gain for the j-th vertex.

bimin
, bimax

Vectors for the computation of the coordinate vector.

cimin, k, cimax, k, Scalars for the computation of the coordinate vector.

bimin, j, bimax, j

AM/d, k System matrix of a general time-varying internal disturbance model.
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