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Abstract

Fibroblasts like synoviocytes (FLS) play several significant roles in rheumatoid 
arthritis (RA) pathophysiology. This chapter will describe known roles of FLS in 
disease initiation, joint inflammation, disease persistence and joint destruction. It will 
describe the newly characterized subsets of FLS based on single cell RNA sequencing 
studies, and their association to specific aspects of the disease. Finally, we will discuss 
the future of targeting FLS in the treatment of RA. The FLS in the synovial lining 
layer are identified by surface complement decay-accelerating factor (CD55) along 
with lubricin and metallopeptidase expression. Pathological activation of this lining 
layer subset result in bone and cartilage damage in mice. FLS of the sublining layer are 
often characterized by THY1 expression, but recent studies have highlighted a hetero-
geneity where several distinct subsets are identified by additional markers. Sublining 
FLS expressing human leukocyte antigen-DRA (HLA-DRA) produce C-X-C motif 
chemokine 12 (CXCL12) and receptor activator of nuclear factor-κB ligand (RANKL) 
and seems to constitute a pro-inflammatory subset that is associated with inflamma-
tion and tertiary lymphoid structures. Another subset of FLS characterized by CD34 
expression may discriminate a common progenitor fibroblast subset. Taken together, 
studies isolating and characterizing gene expression in synovial FLS report both asso-
ciations of unknown importance and markers that may impose protective or destruc-
tive features. This supports evidence of FLS as active players in RA pathology capable 
of cellular recruitment, local cellular crosstalk and promotion of joint destruction. 
These discoveries may serve as an atlas for synovial activation in RA and have identi-
fied several potential fibroblast markers for the development of targeted treatment.

Keywords: Fibroblast like synoviocytes, Rheumatoid arthritis, Inflammation, 
Autoimmunity, Tertiary lymphoid structures, Fibroblast activation protein, Fibroblast 
targeted treatment

1. Introduction

In normal resting conditions the synovial membrane is a thin layer of well-
ordered cells historically called type A and B synoviocytes. These cells form a barrier 
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between the articular cavity and a sublining layer, the latter being heterogeneous and 
composed of several cell linages. Fibroblasts, immune cells and mature vasculature 
(capillaries, arterioles and venules) made up of pericytes and endothelia are some of 
the various cell types constituting this layer [1–3].

2. Rheumatoid arthritis

Rheumatoid arthritis (RA) has a multifactorial etiology and is one among the most 
common systemic autoimmune diseases [4, 5]. The factors that mediate the initiation 
of RA is yet to be unraveled. However, the pathology of RA involves abnormalities 
in both the innate and the adaptive immune system, and both of these systems are 
implicated with the progression and persistence of the disease [6, 7]. The synovial 
membrane is the primary site of pathology during the synovitis stage of the disease and 
characterized by proliferation of tissue resident, synovial cells and the infiltration of 
inflammatory cells from the blood. RA is a chronic, progressive disease leading to deg-
radation of articular cartilage and bone along with several systemic manifestations [8].

In RA, the inflamed synovial membrane undergoes hyperplasia and transforms 
into less structured lining layer and sublining tissues both rich in fibroblasts like 
synoviocytes (FLS) [9, 10]. This inflamed synovial membrane eventually begins 
to invade the cartilage surfaces and the underlying bone, commonly referred to as 
 pannus [11, 12].

Present day treatment strategies for RA primarily focuses on suppression of 
cytokine signaling and T- and B-cell activity. These therapies have highlighted the 
importance of immune response in driving the progression of RA. However, they also 
clearly demonstrate that in a large proportion of patients these treatments are incapable 
of inducing disease remission [8, 13]. Synovial phenotyping of RA patients based on 
histology has highlighted a fibroblast dominated synovial pathotype [14]. This pathot-
ype is believed to include a large proportion of the non-responders to conventional and 
biologic disease modifying anti-rheumatic drugs [15–17]. This is supported in vitro 
where anti-tumor necrosis factor alpha (TNFα) treatments were ineffective in cultures 
dominated by FLS [18]. Furthermore, a recently published, biopsy driven clinical trial 
in RA patients with inadequate response to anti-TNFα treatment, showed significantly 
higher response rates when patients with B-cell poor synovium were treated with IL-6 
receptor inhibitor tocilizumab compared to the B-cell depleting agent rituximab [19].

In the following sections, we will first describe RA FLS in general before the era of 
single cell RNA sequencing (scRNA-seq). We will summarize the known and proposed 
roles of FLS in RA initiation, joint inflammation, disease persistence and joint destruc-
tion. Finally, we will describe the newly characterized subsets of FLS based on scRNA-
seq studies their connection to specific aspects of clinical disease, future outlooks in the 
context of RA diagnosis, RA tissue phenotyping and therapy targeting FLS.

3. Fibroblast like synovial cells in rheumatoid arthritis

3.1 Disease initiation

The central role of FLS in RA pathology is highlighted in murine studies demon-
strating that activation of FLS is sufficient to initiate local joint inflammation leading 
to persistent arthritis [20, 21].
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Furthermore, FLS greatly contribute to the transformation of the thin synovial 
membrane into a multi-layered invasive hyperplastic pannus [22]. This expansion 
of FLS in the inflamed synovium is likely a result of at least one of the following 
processes. First, pathological subsets of FLS seem to proliferate to some extent and 
develop a local resistance to apoptosis [23–25]. Secondly, pluripotent mesenchymal 
stem cells may migrate into the synovium from the circulation, where they dif-
ferentiate into mature pathological subsets of FLS [26]. Lastly, a local mesenchymal 
progenitor cell population may undergo activation and differentiation into distinct 
phenotypes of FLS [27]. Collectively, this leads to a local increase in pathological FLS 
in the RA synovium.

3.2 Joint inflammation

Pathogenic FLS constitute the majority of cells found in the inflamed synovial 
tissues, and play an important role in the inflammatory cascade, linking innate 
and adaptive immunity [6, 10]. FLS are capable of significantly affecting the local 
inflamed environment through production of cytokines and chemokines leading to 
recruitment and activation of immune cells [9, 28]. Specifically, pathogenic FLS are 
able to provide an adequate survival signal for synovial T-cells [29], a signal that is 
superior to the one produced by non-inflammatory fibroblasts [30]. This interac-
tion between FLS and lymphocytes can inhibit the resolution of local inflammation 
[30, 31] through both paracrine and direct cell–cell interactions [32]. This pathogenic 
role of the FLS is facilitated by the up-regulation of several adhesion molecules such 
as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 
1 (VCAM-1) [6, 33]. In addition to recruitment and co-activation of T-cells in the 
inflamed joint, FLS have been shown to be able to present antigens on class II major 
histocompatibility complex (MHC-II) to CD4+ T-cells [34].

Furthermore, FLS are involved in the formation of tertiary lymphoid struc-
tures (TLS) in the RA synovium. Stromal cell populations such as the fibroblastic 
reticular cell support organization of these lymphocyte aggregates similarly to that 
of secondary lymphoid organs with distinct T- and B-cell niches [35]. Thymocyte 
differentiation antigen 1 (THY1, also known as CD90) and podoplanin (PDPN) 
positive fibroblast associated with TLS in RA (Table 1) produce several chemokines 
such as C-X-C motif ligand (CXCL) 13 and C-C motif ligand (CCL)21 implicated with 
lymphocyte recruitment and organization [47, 48]. Another marker associated with 
the TLS associated fibroblast is the receptor activator of nuclear factor kappa-β ligand 
(RANKL), which is important in both bone homeostasis and lymph node develop-
ment [35, 49].

Collectively, FLS may be involved in both the pro-inflammatory initiation in the 
synovium, lymphocyte recruitment and the organization of TLS. A fibroblast driven 
RA phenotype resulting in persistent inflammation and a lymphoid rich synovium 
similar to what have been shown by histology.

3.3 Disease persistence

The highly proliferating and pathogenic RA FLS are very different from their 
quiescent state during non-inflamed conditions where FLS control the structural 
integrity of the joint lining and sublining layer [22]. The immunological events 
initiating a pathogenic state of RA FLS is still not fully understood, but proliferation 
and transformation of the FLS may occur prior to immune infiltration [50].



Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer

4

In RA, subsets of FLS can differentiate to become inflammatory, migratory, and 
invasive, thus collectively fostering disease aggravation in various animal models of 
RA [45, 51, 52]. Constitutive activation is a hallmark of RA FLS and leads to produc-
tion of several inflammatory cytokines, such as interleukin (IL)-1β, TNFα and IL-6 

Classical synovial subsets in RA Markers

Fibroblast like synoviocytes [36–38] Vimentin, THY1, prolyl-5-hydroxylase, CDH11, CD45, HLA-DR, 
α-SMA, CD55

Macrophage like synoviocytes [36, 39–41] CD14, CD68, RFD7, CD163, CD206, HLA-DR, CD97

Tertiary lymphoid structure associated 
fibroblast [35]

PDPN, THY1, FAP, CXCL13, CCL21, RANKL, CD21

Fibrocyte [42] CD34, CD45, CD14, CD11, MHC-II

Single cell analysis of synovial fibroblast subsets in RA

Published studies and subsets Cluster markers Associated transcription profile

Stephenson et al. 2018 [43] Fibroblast sorting strategy:
CD45 - Propidium iodide - PDPN+

Sublining fibroblast THY1+

Lining fibroblast CD55+ HAS1

Mizoguchi et al. 2018 [44] Fibroblast sorting strategy:
CD45- CD31- CD235a- CD146- PDPN+

Perivascular fibroblast THY1+ CD34- RANKLhigh, 
OPGlow

Migration factors:
CTHRC1, TWIST1, 
POSTN, LOXL2, 
PDGFBB, MMP14

Sublining fibroblast CD34+ IL6, CXCL12, 
CCL2, OPG

Lining fibroblast THY1- CD34- CD55, PRG4, HAS1, MMP1, MMP3

Zhang et al. 2019 [10] Fibroblast sorting strategy:
CD45- CD31- PDPN+

SC-F1 (sublining) THY1+ CD34+ C3, FOS

SC-F2 (sublining) THY1+ 
HLA-DRAhigh

IL6, CXCL12

SC-F3 (sublining) THY1+ DKK3+ CADM1, COL8A2

SC-F4 (lining) THY1- CD55+ PRG4, HBEGF, CLIC5

Croft et al. 2019 [45] Reanalysis of human data from Zhang et al. [10].

F1 (sublining) THY1+ DKK3, OGN, CD9,

F2 (sublining) THY1+ MDK, COL8A1, AEBP1

F3 (sublining) THY1+ IRF1, EGR1, JUNB

F4 (lining) THY1- CLIC5, CD55, HBEGF

F5 (sublining) CD34+ C3, APOD

Single cell analysis of circulating mesenchymal cells in RA:

Published study and subset Associated transcription profile

Orange et al. 2020 [46] Fibroblast sorting strategy:
CD45- CD31- PDPN+

AC3 (sublining fibroblast phenotype) CD34, HLA-DR, DKK3, FAPα, CDH11

The table contains a list of surface and transcriptional profiles of fibroblast subsets, fibroblast like cell subsets and 
macrophage subsets (pre-scRNA-seq) related to rheumatoid arthritis. For scRNA-seq studies, fibroblast subset names 
refer to the original articles. “+” and “- “shows whether the cells of interest are positive or negative for the cellular 
markers. The cellular markers which are discussed in the text are also listed under abbreviations.

Table 1. 
Surface and transcriptional profiles of FLS subsets (and related cellular subsets) in rheumatoid arthritis.
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and chemokines such as monocyte chemoattractant protein 1 (MCP-1/CLL2) [9] and 
CXCL12 [53]. Even though the activation of RA FLS is greatly affected by pro-inflam-
matory factors in the local environment, epigenetic changes are also important [54]. 
Epigenetic changes lead to constitutive activation even when the cells are removed 
from the inflamed environment and remain without addition of proinflammatory 
stimuli [52]. Moreover, a recent study suggests a link between epigenetic-driven 
positional identity of FLS (e.g. small versus large joints and proximal versus distal 
joints) and clinical disease patterns [55]. This link is further supported by the finding 
of oncogenes at sites of tissue destruction [56, 57] together with a highly activated 
nuclear factor κ beta pathway in RA FLS [58].

Altered metabolic activity with increased glycolysis is another hallmark of RA FLS 
[59]. Metabolic reprogramming of FLS were recently connected to complement C3 
and C3a receptor-activation. Here repeated inflammatory challenges resulted in a dis-
tinct pro-inflammatory phenotypic priming of FLS in mice models of arthritis [60].

On the opposite side, several factors attempt to facilitate remission of proinflam-
matory FLS. One such potential immune regulator is the MerTK expressing synovial 
macrophage which in vitro reduce matrix metalloproteinase (MMP) production by 
lining layer FLS [61].

Thus, even though FLS are responsive to their inflammatory context they may 
possess a distinct positional identity which enables a cytokine-independent intrinsic 
activation contributing to disease persistence in RA.

3.4 Joint destruction

The severe joint destruction of late-stage RA is in part attributed to the pannus tis-
sue which is rich in FLS. RA FLS are identified as invaders of the joint cartilage in vivo 
[62, 63], an invasive behavior that has been confirmed in vitro [64] and in mice [52]. 
FLS mediate cartilage degradation which is attributed to a combination of facilitat-
ing adhesion factors and production of proteases, here among several well-known 
matrix metalloproteinases (MMPs) [9, 52, 64]. Cartilage degradation is ameliorated 
when fibroblast activation protein (FAP) deficiency is induced in the human TNFα 
transgenic mice model of arthritis [65]. The invasiveness of pathological RA FLS is 
further emphasized by human FLS migrating to other joints in mouse models of RA 
and degrading the implanted human cartilage [51]. Migration that may be facilitated 
by specific anticitrulinated protein antibodies [66]. Notably, the ex vivo invasiveness 
of FLS correlates with joint erosions [67].

Increased osteoclastic activity leading to bone erosions in RA is another major 
factor in joint destruction. Here FLS produce CXCL12, RANKL, dickkopf related 
protein (DKK) 1, etc. which may increase both osteoclast migration, differentiation, 
proliferation/activation and inhibit osteoblast function [53, 68, 69].

4.  Single cell analysis of synovial fibroblast subsets in rheumatoid 
arthritis

4.1 Phenotyping of fibroblast like synovial cells

Increasing spatial and molecular resolution in present day cellular analysis are 
changing our view of the synovial membrane in RA. Most notable is the identification 
of different fibroblast subsets within the inflamed synovial membrane. Recent work 
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and ongoing studies are utilizing scRNA-seq, CyTOF and flow cytometry cell sorting 
to further investigate and distinguish these subsets and their role in disease pathology.

Recent scRNA-seq studies have identified several distinct disease-associated subsets 
in the inflamed synovial membrane, often grouped as lining layer or sublining layer 
FLS [10, 43, 44], Figure 1. The present studies utilize flow cytometry assisted cell 
sorting and transcriptomic clustering strategies based on exclusion of hematopoietic 
lineage cells (CD45), endothelial cells (CD31), red blood cells (CD235a), and pericytes 
(CD146) while using PDPN or collagen production as a positive marker (Table 1).

4.2 Lining layer fibroblasts

A common finding in scRNA-seq studies confirms the presence of complement decay-
accelerating factor (CD55) and absence of THY1 expression in FLS of the lining layer 
(Table 1). Of note, Mizoguchi et al. [44] did not report histological data of CD55 distri-
bution, but a high level of CD55 gene expression in CD34- THY1- lining layer fibroblasts. 
All scRNA-seq studies (Table 1) of joint tissue reported lubricin (PRG4) expression in 
the lining layer subset [10, 43–45]. All present studies showed similar patterns of gene 
expression pertaining to the potential markers of FLS presented in the following section.

Zhang et al. [10] and the reanalysis of the same human data by Croft et al. [45] 
both reported a distinct lining fibroblast subset, SC-F4 and F4 respectively. This 
lining fibroblast subset was associated with expression of chloride intracellular ion 
channel 5 (CLIC5) and heparin binding epidermal growth factor-like growth factor 
(HBEGF). Mizoguchi et al. [44] and Stephenson et al. [43] also reported increased 
hyaluronan synthase 1 (HAS1) and metallopeptidase expression.

Figure 1. 
The figure is a schematic presentation of fibroblast subsets identified by scRNA-seq studies of synovial tissue from 
patients with rheumatoid arthritis. The subsets have been divided into lining layer FLS and sublining layer FLS. 
No scRNA-seq studies yet have examined fibroblast subsets from the synovial fluid. Based on grouping markers and 
transcription profiles listed in Table 1, we propose 4 sublining phenotypes. Cells have been divided by dashed lines 
when the cellular markers were not listed in all the original studies. THY-1 and PRG4 expression gradients from 
the lining layer to the sublining layer is shown by the color density of the red and blue bars. The cellular markers are 
discussed in the text and listed under abbreviations. TLS: Tertiary lymphoid structures.
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HAS1 is important for hyaluronan production and is a response to pro-inflamma-
tory stimuli in RA synoviocytes. This activation results in hyaluronan cell coating, leu-
kocyte/monocyte recruitment and facilitation of fibroblast-monocytes binding [70].

CD55, a C3 convertase inhibitor, has received increasing interest in cancer, where 
CD55/CD97 binding is associated with several oncogenic properties such as invasion 
and migration [71]. In RA, CD55 positive FLS are exclusive to the lining layer and 
in proximity to CD97 positive macrophages, suggesting a possible mechanism of 
crosstalk [36]. CD55 is not exclusive to RA [72], but it has been suggested as a protec-
tive factor in a mice model of immune complex mediated arthritis [73].

In the context of joint tissue, the mucin-like glycoprotein, PRG4, has been pro-
posed as having a dual role comprising of well-known lubricating property and as a 
moderator of inflammation via NF-κβ pathways through interaction with both CD44 
and toll-like receptors [74].

CLIC5 is present in several intracellular organelles, but predominantly located at 
the mitochondrial inner membrane, where it has been associated with modulation 
of reactive oxygen species [75]. However, no functional studies have been published 
regarding CLIC5 in RA.

The epidermal growth factor family member, HBEGF, is present and involved 
in several physiological processes such as wound healing, tumor formation and 
angiogenesis. One common topic is its association with cell migration, as seen in 
keratinocyte/fibroblast models and in enterocytes in necrotizing enterocolitis [76]. 
In RA, HBEGF positive macrophages have recently been shown to increase synovial 
fibroblast invasiveness in an in vitro model [77].

Several matrix metalloproteinases, MMP1, MMP3 and MMP14 was connected 
to a specific subset of FLS by Mizoguchi et al. [44]. These destructive enzymes have 
previously been connected to cartilage degradation in RA, but MMP14 was also noted 
by Mizoguchi et al. as a migratory factor [44].

Taken together, studies isolating and characterizing gene expression in lining layer 
fibroblasts report both associations of unknown importance and markers that may 
impose protective and destructive features. This suggests that the lining layer fibro-
blast subset is an active subset in RA pathology capable of cellular recruitment and 
significant local cellular crosstalk.

4.3 Sublining layer fibroblasts

The scRNA-seq studies have reported several distinct sublining subsets presented 
in Table 1. The initial study by Stephenson et al. [43] identified THY1 as a marker 
of sublining fibroblasts and the subsequent scRNA-seq studies confirmed THY1 as a 
specific, albeit not universal marker of sublining fibroblasts [10, 44, 45].

Zhang et al. characterized this heterogeneity of the sublining layer fibroblasts and 
defined three THY1+ groups with additional subset markers; CD34 defined the SC-F1 
cluster, human leukocyte antigen (HLA)-DRAhigh defined the SC-F2 cluster and 
DKK-3 defined the SC-F3 cluster. The SC-F2 in particular was significantly increased 
in leukocyte-rich RA ssynovium compared to leukocyte-poor RA synovium and 
osteoarthritis (OA) synovium [10], suggesting these to encompass TLS-associated 
fibroblast subsets. Reanalysis of these human data by Croft et al. [45] enabled the 
distinction of four sublining layer fibroblast groups (F1–3,-5, Table 1).

As with the lining layer, large sets of multiomics data are available. Several markers 
connected to joint inflammation and destruction have been identified in these subsets. 
However, the markers most consistently reported are THY1, HLA-DRA, CD34, DKK3.
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THY1 is a glycoprotein present on the membrane of several different cells includ-
ing endothelial and mesenchymal cells [78]. Among the functions associated with 
THY1 expression is cellular contact, CD97 binding, integrin binding, trans-endothe-
lial migration and MMP-9 and CXCL8 secretion after binding to neutrophiles [78].

As with THY1, CD34 is an established marker in different cell types including 
several stromal cells, epi/endothelial cells and fibrocytes [79]. Its function is largely 
unknown but has been linked to proliferation, adhesion, differentiation and is 
proposed as a marker of progenitor subsets in both mesenchymal, epithelial and 
endothelial cells [79].

MHC molecule (both class I and II) functions are typically attributed to antigen 
presentation. Several MHC molecules have been associated with autoimmune dis-
ease. Examples are the association of the MHC-I molecule HLA-B27 with ankylosing 
spondylitis, reactive arthritis and juvenile idiopathic arthritis subsets [80], and the 
association of MHC-II molecules HLA-DR1 and DR4 association with RA [81]. The 
specific function of HLA-DRA in RA FLS is yet to be investigated.

The DKK family of glycoproteins are well known modulators of WNT pathways 
connected to embryogenesis, bone formation and eye and skin development [82]. 
DKK-1 has been extensively described in fibroblasts from RA patients and is a key 
player in joint remodeling [69]. DKK-3 has been reported as a chondroprotective 
factor in OA [83] and suggested as a B-cell modulator whose absence aggravates 
autoimmune symptoms in a murine systemic lupus erythematosus model [84] and a 
CD8 T-cell modulator involved in antigen tolerance [85].

Enrichment of several genes related to pro-inflammatory cytokines and proteins 
related to bone metabolism in RA have been reported in sublining fibroblasts includ-
ing IL-6, MCP-1/CCL2, CXCL12 and RANKL. Two proteins not mentioned above is 
the RANKL decoy receptor osteoprotegerin (OPG) which inhibit osteoclastogenesis in 
synovial macrophages [86] and the relatively new osteoglycin (OGN) that may both 
be part of the vascular system and may affect osteoblast differentiation [87].

The interferon regulatory factor 1 (IRF1) is a significant component of the inter-
feron signature/inflammation pathway, through which TNF induces production of 
CXCL9–11 and in its absence diminishes B-cell activating factor expression [88].

The heparin-binding growth factor midkine (MDK) is less investigated than the 
above-mentioned cytokines but has been identified in human synoviocytes and asso-
ciated with leukocyte migration to the synovium and osteoclastogenesis in mice [89].

C3, a unifying step for all three complement activating pathways has previously 
been located around microvasculature in the sublining of the RA synovium [90].

The cellular adhesion molecule 1 (CADM1) is a transmembrane member of the 
immunoglobulin superfamily with no known relation to RA. It has been identified as 
a tumor suppressor gene in solid cancers such as squamous cell carcinoma a, but may 
contribute to infiltration in adult T-cell leukemia/lymphoma [91].

To summarize, the sublining layer is a heterogeneous compartment of the 
inflamed RA synovium, regarding both cell linages and especially fibroblast subsets 
(Table 1 and Figure 1). Several distinct fibroblast subsets have been identified, but 
recuring markers such as HLA-DRA, CD34 and DKK-3 are relatively unknown in the 
RA context. Results from scRNA-seq studies propose that the sublining layer fibro-
blast subsets are significantly involved in cellular crosstalk, leukocyte recruitment, 
para- and autocrine pro-inflammatory stimulation, and joint tissue destruction. 
Notably, some distinguishing factors such as DKK-3 may be enriched to form a regula-
tory anti-inflammatory and pro self-tolerance subset with similar chondroprotective 
effects and immune modulation of antigen tolerance mentioned in the previous 
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section. An HLA-DRAhigh/CXCL12/RANKLhigh associated subset may constitute the 
pro-inflammatory TLS associated fibroblast subsets and CD34 may discriminate a 
common progenitor fibroblast subset. Together, the presence of both pro-inflam-
matory subsets and potential anti-inflammatory and progenitor subsets suggests an 
ongoing cellular balancing throughout the sublining layer, which may open avenues 
for new research in treatment strategies targeting FLS.

4.4  Fibroblast like synoviocytes in rheumatoid arthritis compared to other 
arthritides

In RA, synovial division into lining/sublining layers suggests differentiated roles 
of subsets of FLS regarding cytokine production, joint destruction, and possible 
regulatory mechanisms.

The expansion of these distinct subsets is different in RA compared with OA. 
Mizoguchi et al. reported a greater fraction of the THY1+ CD34− (perivascular) subset 
but less of the THY1− CD34− (lining) subset in RA compared with OA [44]. Notably, 
here the proportion of THY1+ CD34− (perivascular) FLS correlated with leukocyte 
infiltration and ultrasonic and histological synovitis [44].

Similarly, Zhang et al. reported an overabundance of the THY1+ CD34− HLA-
DRAhigh (SC-F2) subset with upregulated expression of CXCL12 and IL-6 and a 
THY1+ CD34+ (SC-F1) subset in RA. In contrast, lining FLS (SC-F4) were more 
fabundant in OA [10].

The causal link between distinct subsets and RA pathogenesis was investigated 
in mice by Croft et al. Here the mouse thy1− subset homologous to human lining 
FLS (F4) were correlated to joint damage and mouse thy1+ sublining FLS correlated 
to inflammation [45]. Notably, the elimination of FAP expressing subsets reduced 
pannus formation and joint destruction [45]. This suggests that FAP is a marker of 
pathologically active FLS in RA [45, 92, 93].

Comparison of subsets of FLS in RA and psoriatic arthritis are underway [94] and 
may potentially assist in discriminating these arthritides.

5. Fibroblasts derived from synovial fluid versus synovial tissue

Arthrocentesis is a common therapeutic procedure in treatment of RA. Fibroblast 
cultured from synovial fluid aspirates initially express similar phenotypical traits 
compared to tissue derived synovial fibroblast cultures [95, 96]. Despite these 
similarities, synovial fluid derived fibroblasts are likely a proxy regarding changes in 
the synovium and results must be interpreted as such. In both research and clinical 
settings synovial biopsies are both economical and well tolerated [97–100]. However, 
synovial fluid analysis of both cellular and soluble components is very useful in 
clinical settings where the length of consultations/sterile procedural environments/
analytic facilities may limit the use of synovial biopsies. To the authors knowledge, no 
studies have yet reported scRNA-seq analysis of synovial fluid fibroblasts.

6. Circulating mesenchymal fibroblast like cells in rheumatoid arthritis

In excess to tissue resident FLS, Orange et al. recently highlighted the pres-
ence of circulating fibroblast-like cells in the blood of RA patients shortly before 
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symptomatic disease flare [46]. Interestingly these pre inflammatory mesenchymal 
(PRIME) cells show enrichment of previously reported markers of distinct sublining 
subsets of FLS e.g., DKK-3, CD34 and HLA-DR. This suggests that PRIME cells may 
constitute a heterogeneous pool of circulating FLS-like cells with distinct functions. 
Subsets of FLS migrating from the RA affected synovium, or a common homoge-
neous pool of circulating progenitor FLS awaiting recruitment signals from local sites 
of inflammation could potentially be the origin of these cells, although this remains to 
be investigated. Regardless, PRIME cells may not only be a useful marker predicting 
disease flares in RA, but also potentially explain how synovitis is transmitted from 
joint to joint [51].

7. Future therapeutic perspectives

The insights recently generated through high resolution scRNA-seq have revolu-
tionized our understanding of specific subsets of FLS in RA and their involvement in 
driving different aspects of RA pathobiology. This understanding has also provided 
the basis for generating specific targetable markers of pathological subsets of FLS in 
RA. Targeting strategies that could be used as either monotherapy or as an add-on 
treatment to present day cytokine or lymphocyte inhibitors [101].

FLS could be targeted by drugs used in fibrotic conditions such as nintedanib or 
pirfenidone [102]. However, these drugs are likely affecting a completely different 
aspect of fibroblast functions. Therefore, new drugs are needed. An example is the 
addition of the cyclin-dependent kinase inhibitor, Seliciclib, which is currently being 
evaluated [103].

The well-known FAP marker of activated stromal cells has a diagnostic and prog-
nostic potential through precise and low background positron emission tomography 
tracers developed in cancer-immunology [104]. The recent development of specific 
quinoline-based positron emission tomography tracers that act as FAP inhibitors have 
demonstrated promising results both preclinically and clinically in different cancers 
but could also be promising as diagnostic and prognostic markers of RA [105]. 
Further, the clinical potential of targeting FAP expressing FLS would be a targeted 
treatment eliminating pathologically activated RA FLS, in both the lining and the 
sublining layer [45, 93].

Among other interesting targets, NOTCH3 is one of the most recently in vivo 
validated pathological targets. NOTCH3 is expressed on the surface of RA FLS and 
linked with THY1 expression. NOTCH3 may also be a useful target in a therapeutic 
senescence strategy through selective activation of the g-protein coupled receptor 
melanocontin type 1 receptor [106]. Furthermore, in an animal model of RA injection 
of NOTCH3-neutralizing monoclonal antibody attenuated the severity of arthritis. 
Taken together, the in vitro studies on NOTCH3, including its connection to spatial 
distribution of FLS and the above-mentioned animal study underline NOTCH3 as a 
promising therapeutical target in RA [106, 107]. Targeting the complement C3 - C3a 
receptor axis may serve as another preventive or complementary strategy, where 
metabolic priming of FLS can be avoided or reduced [60]. Another possible strategy 
of targeting FLS is drug delivery via the extra domain A fibronectin splice variant 
identified in OA and RA [108, 109] and utilized in cancer [110].

Several other reagents targeting FLS are currently being tested ranging from 
metabolite modulators to treatments targeting intracellular signal transduction or 
epigenetic changes [111].
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Collectively, these therapies targeting subsets of FLS are emerging as promising 
diagnostic and therapeutic tools. Tools for optimized and stratified treatments in RA 
based on which cellular mechanisms and which fibroblast subsets are pathologically 
activated in the individual patient.

8. Conclusions

Collectively, pathological FLS presented in this chapter are deeply connected to 
the RA pathophysiology of disease initiation, joint inflammation, disease persistence 
and joint tissue destruction.

Recent scRNA-seq studies have identified several distinct subsets of FLS causally 
linked to major elements of RA pathogenesis e.g., inflammation and joint destruc-
tion, while other subsets may present regulatory, pro-inflammatory TLS associated or 
common progenitor FLS.

These first steps in a scRNA-seq era of RA research warrants both rejoice and due 
diligence. Due diligence because we henceforth must appreciate the cellular diver-
sity and the complex cellular crosstalk of the RA synovium. Like FLS, monocytes/
macrophages and lymphocytes exhibit distinct subsets in RA, which may be as 
important in understanding the spectrum of RA disease, e.g., lymphocyte dominated 
vs. lymphocyte poor synovium and erosive vs. non-erosive disease. Furthermore, we 
must appreciate the heterogeneity of FLS and cellular organization (here among TLS 
formation) of the sublining layer.

Rejoice because the recent subset studies have produced a language and knowledge 
and a novel nomenclature for FLS in future research. A breakthrough that might 
enable clinicians in the future to modulate specific aspects of RA through fibroblast 
subset targeted treatment.
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