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Abstract

This chapter discusses the design and modelling of a spherical flying robot. The main
objective is to control its hovering and omnidirectional mobility by controlling the air
mass differential pressure between two asynchronous coaxial rotors that are aligned
collinearly. The spherical robot design has embedded a gyroscopic mechanism of three
rings that allow the rotors’ under-actuated mobility with 3DOF. The main objective of
this study is to maintain the thrust force with nearly vertical direction. The change in
pressure between rotors allows to vary the rotors’ tilt and pitch. The system uses special
design propellers to improve the laminar air  mass flux.  A nonlinear fitting model
automatically calibrates the rotors’ angular speed as a function of digital values. This
model is the functional form that represents the reference input to control the rotors’
speed, validated by three types controllers:  P,  PI,  and PID. The robot’s thrust and
induced forces and flight mechanics are proposed and analysed. The simulation results
show the feasibility of the approach.

Keywords: flight mechanics, flying control, robot modelling, thrust force, UAV,
under-actuation

1. Introduction

Nowadays, unmanned aerial vehicle (UAV) robots are being deployed at an increased rate
for numerous applications falling into a variety of engineering fields. There exist numer‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



ous kinds of rotary-wing-based robotic technologies in particular with active devices. Robots
with rotating wings are capable to self-control over lift, propulsion, landing, hovering And
take-off tasks [1–4]. Overcoming vertical flight (with minimum energy cost) is fundamen‐
tal  to  accomplish autonomous precise  tasks.  One fundamental  aspect  in  controlling and
designing rotary-wing-based intelligent machines is  to consider under-actuated issues to
reduce the number of actuators. Under-actuated flying robots perform motion tasks more
naturally, taking advantage of the inertial and gravitational forces, consequently, reducing
the use of electrical energy. Biological flying birds are instances of extremely efficient under-
actuated bodies. Therefore, in order to design flying machines with a reduced number of
actuators,  it  is  essential  to  model  and  understand  the  mechanical  nature  of  the  robot
mechanics, the fluids and their physics-based relationship.

The present work has foundations on the prototype of a home-made spherical aerial robot.
Some experiments can be viewed at https://www.youtube.com/watch?v=rrGH1Oh_beM.
Nevertheless, the purpose of this chapter is not on showing and discussing experimental
results, but on mathematically sustaining the hypothesis of the robot’s flight mechanics and
control. Unlike, known spherical design approaches [5–7], rather than deploying aileron-like
propellers, we proposed yaw, pitch and roll changes through under-actuation exerting an
inner gyroscopic mechanism. In the present chapter, the authors are particularly interested in
disclosing the physical model of a dual rotary-wing spherical robot with an under-actuated
gyroscopic mechanism. The model has been divided into four major areas: the robot’s flight
mechanics with direct and inverse solution, the thrusting or induced force model, the rotors
control model and a proportional integral derivative (PID) based control with non-stationary
reference values.

This chapter is organised as follows. In Section 2, the design and mechanical aspects of the
aerial robot are presented. Section 3 presents the kinematic direct and inverse solutions of the
flight mechanics. In Section 4, the acceleration components and forces involved in the robot’s
aerodynamics are discussed. Section 5 presents the robot’s thrusting force model that involves
two collinear induced forces. Section 6 presents the rotors’ actuator speed models that are
proposed from empirical measurements, and subsequently, the analytical solution is obtained.
In Section 7, the actuators’ feedback linear control is described. Finally, in Section 8, conclusions
are drawn.

2. Spherical gyroscopic robot

Unlike other reported approaches [8–13], in this study, the authors have proposed an
omnidirectional spherical design with two rotors vertically collinear (see Figure 1, right, and
Figure 2).
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Figure 1. Left: Aerial robot real prototype. Right: Robot’s main actuated and under-actuated mechanical elements.

Figure 2. Left: Robot’s global and local spherical coordinates. Centre: Robot’s flying space (Eqs. (1)–(3)). Right: recur‐
sive trajectory generation (Texto) and (Texto).

3. Flight mechanics model

Flight mechanics refers to the study of geometry of flight of a heavier-than-air aircraft,
considering aerodynamic aspects. Expressions (1)–(3) model the three-dimension robot’s
Cartesian kinematic components that describe its motion. The components, namely, x, y and
z, are the space positions w.r.t. the location of the robot’s starting flight. The proposed
kinematic model is constrained with initial posture as the inertial frame origin, where d is the
distance between the robot’s instantaneous 3D position and its Cartesian origin. Azimuth angle
ϕ0 is w.r.t. the plane XY, and the elevation angle ϕ1 is w.r.t. the Y-axis:
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( ) ( )1 0cos sinf f=x d (1)

The y component (vertical) is expressed as

( )1sin f=y d (2)

And, the z component is expressed as

( ) ( )1 0cos cosf f=z d (3)

For further purpose, the inverse solution is obtained by an algebraic arrangement of deriva‐
tives. The first-order derivatives of Eqs. (1)–(3) are obtained and shown in Eqs.(4)–(6),

( ) ( ) ( ) ( ) ( ) ( )1 0 1 0 0 1 0 1cos sin cos cos sin sinf f f f f f f f= + -& & &&x d d d (4)

The vertical component is expressed as

( ) ( )1 1 1sin cosf f j= +& &&y d d (5)

And, the z component is expressed as

( ) ( ) ( ) ( )1 0 1 0 0cos cos cos cosf f f f f= + &&& dz d (6)

Figure 2 centre depicts the robot’s flying space, which is spherical with the Cartesian origin at
robot’s starting flying task.

Expressing in the matrix form, the first-order derivative dp/dt w.r.t. time is

1 0 1 0 1 0 0

1 1 1

1 0 1 0 1 0

0
f
f

×
æ ö-æ ö æ ö
ç ÷ç ÷ ç ÷= = ç ÷ç ÷ ç ÷

ç ÷ ç ÷ ç ÷- -è ø è ø è ø

&&
&& &
&&

x dC C dS S C S
p y dC S

z dC C dS C C C d
(7)

By simplifying, the linear equation of direct kinematic is denoted by the Jacobian matrix J and
the first-order vector of independent variables,
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= F& &p J (8)

In order to obtain a recursive functional form equivalent to previous state variables, the
derivatives are expressed in the following manner:

= F
d dp J
dt dt

(9)

Time differentials are eliminated, and the integration operators complete the remaining
differentials dp and dϕ:

2 2

1 1

f

f

= Fò ò
&&

&&

p

p

dp J d (10)

Thus, to solve for the robot’s Cartesian position a recursive form is obtained by algebraically
reordering. Next, robot’s position pt+1 is obtained by successive approximations of ϕt until ϕf:

( )1 f f+ = + -t t f tp p J (11)

In addition, the kinematic inverse solution requires the inverse-squared Jacobian matrix,
assuming that it is an invertible and non-singular matrix, with non-zero determinant:

[ ] [ ]( ) ( ) ( )

0 0
1 2

1 0 1 1 1 0 122
2 21 1 0 0 1

1 0 1 0 1 1 0

0
1-

æ ö-ç ÷
= -ç ÷

ç ÷+ ç ÷-è ø

dC dS
J dC S S dC dC C S

d C C C S S
dC S dC C S dC C

(12)

Therefore, the first-order inverse kinematic is obtained by an algebraic approach:

1-F =& &J p (13)

As described earlier, we complete the differentials dp and dϕ:

2 2

1 1

1-

F

F
F = òò

&

& &

& p

p
d J dp (14)

By integrating both sides of the equality, respectively, a recursive inverse solution in terms of
the rotor’s angular speed is obtained,
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( )1
1

-
+ = F + -F && & &t t f tJ p p (15)

where pt is the actual robot 3D position and pf represents the final desired position in space.
To achieve such location, the robot recursively approximates the next desired rotor’s controlled
velocity. The next figure depicts a simulation result where the aerial robot successively
approached the final desired position, staring from the Cartesian origin.

4. Aerodynamic robot’s model

The aerodynamic robot’s model refers to the application of the Newton’s second law of motion
in three dimensions to infer the thrusting force T and other involved forces that produce the
Cartesian accelerations:

2
1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0

¨
2

0 11 0 1 0 1 1 0 1 1 0 1 0 1 0

x dc s ds s dc c dc c ds c dc c

dc c ds s dc s ds c ds s

f f f f f f

f f f ff f

= - + + - -

- - - - -

& & && & & & &

& & & & &

&&&&

&& &&
(16)

2
1 1 1 1 1 1 1 1 1f ff f= + + - +&& && && &&&y d s dc d c ds dc (17)

2
1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1

2
1 01 0 1 0 0 1 0 0 1 1 0 0 1 0

z dc c ds c dc s ds c dc c ds s

ds c dc s ds s dc c dc s

f f f f f f

f f f f f f

= - - - - +

- - + - -

&&& & &&&

&&

& & & &

& & & & &&& &
(18)

In the matrix form, the following equation represents the direct kinematic solution for the
Cartesian accelerations:

1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

2 2 2
0 0 0 0 2

2 2 2

dc c ds s c s dc c dc c dc c dc c ds s
dc s ds c

dc c ds c c s d dc c dc c ds s dc s c
p

ds

f
f
æ ö- - - - -æ ö æ ö
ç ÷ç ÷ ç ÷= + -ç ÷ç ÷ ç ÷

ç ÷ ç ÷ç ÷- - - - - -è ø è øè ø

&
&&
&

& (19)

or

1 2p J JF F= × + ×& &&&

From the previous expression, the vector acceleration is substituted into the Newton’s second
law of motion,

= × &&f m p (20)

Robot Control24



where the Cartesian force components defined in robot’s local inertial frame are expressed as
follows:

( ) ( )1 0cos sinq q=xf T (21)

The force component along the robot’s local y component is expressed as

( )1sin q=yf T (22)

And, the force component along the robot’s local Z component is expressed as

( ) ( )1 0cos cosq q=zf T (23)

By simplifying the Cartesian force components in the matrix form

1 0

1

1 0

æ ö
ç ÷= ç ÷
ç ÷
è ø

c s
f T s

c c
(24)

And, by substituting the functional form of the vector force f into the Newton’s second law,

1 0

1

1 0

æ ö
ç ÷× = ç ÷
ç ÷
è ø

&&
c s

m p T s
c c

(25)

Thus, by reordering the previous equation, we substitute the vector constraints wT =(C1S0, S1,
C1C0). The acceleration vector d2p/dt2 is a function of the next position pt+1 and the rotors
variables:

( )1, ,+= F F&& &
t f tTw m p p (26)

By dropping off the induced robot’s force T,

( )1
1, ,-

+= FF&& &
t f tT w m p p (27)

So far, in this expression, the total thrusting induced force T represents the robot’s global flying
force. Thus, T is an arithmetic result produced by the sum of the top rotor’s induced force T1

and the below rotor’s induced force T2 according to the following governing constraints:

(a) For T1 = T2, the inflow air mass is same throughout both rotors, hence T = T1 + T2.

(b) For T1 > T2, speed and air mass below rotor 1 are greater than rotor 2 inflow, T = T1 + α2 T2.
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(c) For T1<T2, opposed to constraint (b), then T2 = α2T1 and T = T1(1+α2).

Here, the numerical factors α1,2 are gains denoting rotors’ speed-rate differences. For either
constraint (b) or (c), the gyroscopic mechanism angles’ tilt and pitch are affected, consequently
changing the robot’s azimuth and elevation angles.

5. Induced force model

According to the depictions of Figure 3, the rotors are continuously pushing the air down. As
per Newton’s third law, an equal and opposite reaction force, denoted as rotor thrust, is acting
on the rotor due to air. The induced force model refers to the thrusting force exerted to
accelerate the robot. And at a constant velocity the quasi-static hovering is achieved [1–4].

Figure 3. Rotors’ flow conditions in the slip streams.

The momentum conservation is obtained by relating the induced force T2 to the rate of
momentum change. It is the mass rate and the far-field wake-induced velocity vw below rotor
2, where dm/dt=ρAv2 and the rotor disk area A = πR2. Thus, the moment conservation

= & wT mv (28)

The energy conservation per unit time

21
2 wTv mv= & (29)

To obtain a relationship between v and vw, let us substitute T and dm/dt,

(30)

Robot Control26



Algebraically simplifying,

1 ; 2
2 w wv v v v= = (31)

Hence, substituting vw into T,

(32)

Then,

22T Avr= (33)

Dropping off v, the following expression is obtained;

2
Tv
Ar

= (34)

The propulsive power Pw is the thrusting force T capable to move the robot at a given velocity
(distance over time):

2w
TP Tv T
Ar

= = (35)

The induced power per unit thrust for a hovering rotor can be written as

2
wP Tv
T Ar

= = (36)

The above expression indicates that, for a low inflow velocity, the efficiency is higher. This is
possible if the rotor has a low disk loading (T/A). Note that the parameter determining the
induced power is essentially T/(�A). Therefore, the effective disk loading increases with an
increase in altitude and temperature.

From previous analysis, let us now precisely define the thrusting force for rotors 1 and 2,
according to Figure 3 (left side). For rotor 1, the air mass flow is

(37)

Hence, considering only rotor 1, the induced force is

(38)
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The energy conservation principle for rotor 1 is expressed as

(39)

And finding a relationship between v1 and v2 in accordance with Figure 3 (left side),

2 12v v= (40)

Thus,

2
1 1 1 12T Avr= (41)

The induced air velocity induced by rotor 1 is modelled by

1
1

1 12
Tv
Ar

= (42)

Similarly, modelling both the induced force T2 and velocity v2 for rotor 2, the following analysis
is developed. The airflow rate,

(43)

And the induced force T2 considers the inflow air mass and the far-field wake-induced velocity
vw,

(44)

The energy conservation for the second rotor is expressed as

(45)

The relationship between far-field wake-induced air velocity vw and v3 is given by vw=2v3, and

2
2 2 2 32T A vr= (46)

Therefore, the second rotor’s air induced velocity is

2
3

2 22
Tv
Ar

= (47)
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From the three previous postulates of Figure 3, let us deduce the conditions when both rotors,
although asynchronous, simultaneously induce the airflow equally, when v1=v3 (Figure 3a).
For this case, the total robot’s thrusting force T=T1+T2,

2 2
1 1 1 2 2 32 2T Av A vr r= + (48)

For case 1, let us assume A1=A2 and v2=v3 through the second rotor’s disc area. And,

(49)

Rewriting total T as a function of v1, thus we have

2
c

c

m
v

r = (50)

The air mass variation is denoted as the mass derivative w.r.t. time,

(51)

Now, for the case v1>v3,

1 2 2T T Ta= + (52)

Let us substitute our T1 and T2 models previously analysed,

2 2
1 1 1 2 2 32 2T Av A vr r= + (53)

In addition, A1=A2, v2=2v1 and vw=2v3, but v2>v3 hence v3=α2v2. Thus, vw=2(α2 2(2v1)), and we
obtain the relationship between the far-field wake-induced velocity and v1:

2 16wv va= (54)

By substituting v1 into expression T, developing and factorising algebraically,

( )2
1 1 2 22 4T Av r a r= + (55)

Similarly, for the case when v1<v3, T=T1(1+α2),
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2 2
1 1 1 2 2 32 2T Av A vr r= + (56)

for this case, A1=A2, v2=2v1 and vw=2v3. However, just above and below rotor 2, v2<v3, and
therefore v2=α2v3, then v3=2v2/α2.

2
2 1

1 1 2
2

2 2 2 vT Av Ar r
a

æ ö
= + ç ÷

è ø
(57)

Factorizing and algebraically arranging,

2 2
1 1 2

2

82T Av rr
a

æ ö
= +ç ÷

è ø
(58)

Solving the parameter α2 for each of the three cases,

(59)

Therefore, we synthesise the total thrusting force T for all cases by

( )2 2
1 1 2 22T Av r a r= + (60)

Therefore, from Eq. (60), now we have a functional form for the thrusting force T. Thus, to
reach a controlled rotors’ velocity, we must establish a relationship between the induced ve‐
locity v1 and the rotor angular velocity dϕ/dt using the tip speed of the rotor blade as refer‐
ence. The rotor inflow is represented in non-dimensional form as

(61)

where CT is the thrust coefficient modelled by

(62)
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Therefore, the following equality allow us to deduce CT with more

(63)

Thus, substituting (Texto) into v1,

(64)

And subsequently, v1
2 is substituted into T,

(65)

Therefore, the induced force T arising from the fluid mechanics equation (65) is equated
with the induced force of the flight mechanics equation (27), the following expression is ob‐
tained:

(66)

Our objective is to find an analytical solution for the rotor speed required to reach the in‐
duced velocity v1 and the induced force T, which is governed by the flight mechanics law.
The induced air mass velocity v1 can be expressed in terms of the rotor speed that is control‐
led to obtain the desired angular velocity,

(67)

This model represents the independent variable to control the motors’ Speed of Eq. (73) or
Eq. (74):

Thus, it follows a set of empirical temperature measurements where some experimental
hovering experiments were carried out. The plots in Figure 4 depict how the air pressure is
affected as the temperature varies over time.
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Figure 4. Left: Thrusting force w.r.t. induced velocity. Right: Air mass density as temperature varies.

6. Actuators’ speed model

The actuators’ self-calibration speed model is discussed in this section. The real rotary velocity
in a range from minimal to maximal values approached a logarithmic model. It considered the
empirical set of angular speed measurements w.r.t. digital controls. The inherent physical
variations, such as temperature, air pressure, density and air dust particles, affected the
actuators’ performance. Since the angular speed value capable to hover the spherical robot’s
body is disturbed, a self-calibration is required to maintain position control as accurate as
possible. From experiments, the empirical models that obtained (Figure 5) φ vs. d are fitted
according to the next model. The parameters A and β are unknown and must fit the speed
measurements φ, w.r.t to digital word d,

(68)

We temporally substitute d’=ln(d), and thus the rotary speed

(69)

To estimate the unknown parameter β, a linear mean-squared method is applied,

(70)

Subsequently, the previous parameter solution is used in the next expression A,
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(71)

By substituting the parameters numerical values, the rotary speed model is obtained as follows:

(72)

In addition, in order to obtain the inverse solution, we algebraically drop off the variable d
from Eq. (72),

(73)

And numerical parametric values from Eq. (72) are substituted into (73) to obtain

(74)

In order to compare how our theoretical model fits the empirical model, both inverse and direct
operation control modes are depicted in Figure 5.

7. Rotor’s speed control

From the previous section, the actuators’ speed model is now used to formulate a feedback
linear control. Let us assume that a rotor control variable (i.e., angle, velocity and acceleration)
should ideally be equal to the real sensed control variable, as expressed by the next equality
(75). Nevertheless, in a realistic scenario real and ideal control variables are different due to a

Figure 5. Actuator’s raw measurements. Left: Direct solution. Right: Inverse solution.
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number of factors, such as frictions, inertial and gravity forces, motor electromagnetic
performance and so on. Thus, both variables are approached by a multiplicative gain or factor
alpha, which approximates both numerical values according to the relation

(75)

Assuming an arbitrary actual derivative order, the equation is equivalently expressed as

(76)

The time differentials are eliminated and the remaining differentials are obtained by solving
the following definite integrals,

(77)

By solving the definite integrals,

(78)

In this case, φ̂2 is the expected or the reference value to be reached ideally, φ̂2 =φ ref. Thus, by
adjusting the times sub-interval labels, and algebraically reordering, the next recursive
numerical successive approximation equation is expressed as follows:

(79)

From the previous expression, the error ket is spanned into the past (angular displacement),
the actual (rotary speed) and the future (angular accelerations) errors in order to cover the
whole error history. And the general constant gain k is proportional to kp, kI and kd. Thus,

( )1t t p p I I d dk e k e k ej j+ = + + + (80)

Therefore, the next feedback proportional error ep (rad/s) with proportional gain kp (dimen‐
sionless) is obtained with the observation ϕt measured online. And the reference model (Texto)
is established in terms of the instantaneous control word δt:

(81)
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Figure 6. Left: Measurement and reference proportional models. Right: Proportional error.

For illustrative purpose, an accelerative rotor’s task to exert robot’s propulsion was performed.
Figure 6 (left) depicts both the reference model ϕref and the observation ϕ(t).

In addition, Figure 6 (right) shows the proportional error behaviour ϕref-ϕ(t) without kp.
Furthermore, the feedback integral error eI (rad/s) with integral gain kI (dimensionless) is
expressed by the time integration of the difference of (d2ϕ/dt2 – d2ϕ(t)/dt2).

(82)

The observation model d2ϕ/dt2 was obtained online by the numerical derivatives of the optical
encoder according to the following relationship:

(83)

In addition, since the observation model inherently poses perturbations, an analytical reference
model d2ϕref/dt2 was obtained using a nonlinear regressive fitting process for parameters
identification,

(84)

where the previous expression is similarly expressed as

(85)

And by solving vector x,
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(86)

Hence, the reference model is a theoretical nonlinear function of time,

(87)

Therefore, for the sake of the integral control uI (rad/s), the angular acceleration reference
model (Texto) is substituted next in its general form:

(88)

Finally, in order to keep data homogeneity (numerical data subtraction), time integration is
obtained by the trapezoid rule for numerical integration,

(89)

Figure 7. Left: Measurement and reference integral models. Right: Integral error.

Figure 7 (left) depicts both reference and empirical models integrated with time. Figure 7
(right) shows the integral error behaviour.

In addition, the derivative control ud=kded (rad/s) with feedback derivative error ed, and with
derivative gain kd (dimensionless), improves the closed-loop stability as follows:

ref
d d d t

d dk e k
dt dt
f fæ ö= -ç ÷

è ø
(90)
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In order to obtain the time derivative observation model, the rotor’s angle evolution ϕ(t) (rad)
is observed online using an optical encoder during the time slot where velocity and acceleration
are also measured. As the measurements are read with noise, the analytical reference model
is fitted as a nonlinear polynomial of the following form:

( )ref 23709.6273 2116.9484 27.9289t t tf = - + + (91)

where the derivative error general form is expressed as

( )( )2
0 1 2d d d t

dk e k b b b t t
dt

f= - + + - (92)

Figure 8 (left) depicts both reference ϕref(t) and observation ϕ(t) models together. Although
both curves are apparently fitted, the vertical scale is provided in thousands of radians.
Figure 8 (right) shows the derivative error scale.

Figure 8. Left: Measurement and reference derivative models. Right: Derivative error.

Generally, the PID controller is expressed by the next expression

(93)

Therefore, the controlled rotor’s velocity that is recursively calculated by dφt+1/dt= dφt/dt + ut
is applied, and we established the following controller choices: proportional (P), proportional
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integral (PI) and proportional-integral-derivative. Figure 9 (left) depicts the rotors’ angular
speed without control and with three types of controllers. The constant parameters were
adjusted accordingly to obtain such results. We can see that after 25 s the responses P and PI
gradually converge w.r.t. the raw rotor’s speed (Figure 9, left).

Figure 9. Controllers P, PI and PID. Left: Rotor’s angular speed. Right: Induced Cartesian forces.

In addition, with the controlled rotor’s speed output, the induced force is iteratively calculated
by

(94)

Thus, Figure 9 (right) depicts the induced component forces that are produced using three
types of controllers.

8. Conclusions

This work briefly introduced the design of an aerial spherical robot with under-actuated
gyroscopic mechanism. Although the purpose of this study was not to describe the robot flying
and physical capabilities, the main objective was to demonstrate the induced force model
deploying dual collinear rotary wings with no steering actuators. This study describes the
following four major areas: the robot flight mechanics, the model of the induced thrusting
forces, the self-calibration actuators’ Speed model validated with three types of controllers (P,
PI, PID) to drive the rotors’ motor speed. The proposed aerodynamic mechanism poses neither
ailerons nor propellers for steering control. Although the platform is a home-made laboratory
prototype with special arrangements, the main focus of this chapter is to model the hypothesis
of controlling the robot’s directions by varying rotors’ asynchronous speed. To achieve this,
the under-actuated gyroscopic mechanism provides the ability to control its inner yaw, pitch
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and roll angles. Until this stage, the robot development is under an early control capability.
However, this study presents mathematical solutions and simulation results to demonstrate
the proposed aerodynamic hypothesis.
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