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Abstract

Lycopene, a naturally occurring non-provitamin A carotenoid pigment, is 
responsible for the red to pink colors in tomato, watermelon, red bell peppers, and 
pink guava. There are many health benefits attributed to lycopene including but not 
limited to its antioxidant activity. According to the American Lung Association’s 
State of Lung Cancer, lung cancer is still the leading cause of cancer death in the 
United States. Other chronic lung diseases such as asthma, emphysema, and chronic 
obstructive pulmonary disease are high prevalence. This chapter summarizes lyco-
pene’s protective role against lung diseases in both in vitro and in vivo studies. While 
it has been demonstrated that circulating lycopene can be used as a biomarker for 
several lung diseases, further studies are warranted to establish that. We aim to pro-
vide insights into how lycopene can remedy for lung diseases, including lung cancer.

Keywords: lycopene, lung diseases, oxidative stress, lung cancer, antioxidants, 
carotenoids

1. Introduction

1.1 Lycopene: chemical definition and metabolism

Lycopene, a major dietary carotenoid pigment responsible for the red color, 
is synthesized by plants and microorganisms [1]. It is mostly found in tomatoes 
and tomato products, albeit there is a small amount of lycopene in few other 
fruits, including watermelon, papaya, guava, and pink grapefruit [2]. Lycopene 
is one of the six most abundant carotenoids (others being α-carotene, β-carotene, 
β-cryptoxanthin, lutein, and zeaxanthin) in circulation in humans [3]. It has been 
shown that lycopene exerts cancer-preventive or chemopreventive properties 
against several cancer types, including prostate, lung, and colon cancers [4].

Lycopene has a chemical formula of C40H56, tetraterpene comprised of eight 
isoprene units that are purely containing carbon and hydrogen [5]. Lycopene can 
undergo isomerization from trans to cis by heat, light, and chemical reactions, 
although the all-trans isomeric form is the main isomer in nature [6].

Lycopene can be cleaved via two pathways (Figure 1). It can be metabolized by 
central cleavage, catalyzed by beta-carotene-15,15′-oxygenase (BCO1), yielding 
apo-15′-lycopenal [7]. It also can be metabolized by eccentric cleavage, catalyzed 
by beta-carotene-9′,10′-oxygenase (BCO2) yielding apo-10′-lycopenal, which 
can be either further oxidized into apo-10′-lycopenoic acid or reduced to apo-10′-
lycopenol [8]. It has also been shown apo-lycopenals at various chain lengths can 
also be derived from the absorption of apo-lycopenals directly from food [9].
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1.2 Lycopene: its antioxidant function

Lycopene is a linear, unsaturated hydrocarbon carotenoid with eleven and two 
unconjugated double bonds, making it highly reactive against oxygen and free 
radicals [10]. Lycopene displays the highest physical quenching rate constant of 
singlet oxygen (kq = 31 × 109 M−1 s−1) in vitro, while rate constants for α-carotene, 
β-carotene, and lutein were 19, 14, and 8, respectively [10]. Also, lycopene’s anti-
oxidant activity in liposomes was found to be greater than α-tocopherol [11]. It 
is worth highlighting its high quenching rate constant of singlet oxygen because 
lycopene’s concentration in the circulation is 0.7 μM in humans. Lycopene can 
also scavenge hypochlorous acid, a precursor of free radicals in respiratory stress 
pathology [12]. It has been documented that tomato products with olive oil 
increased human plasma antioxidant activity [13]. The authors used the Ferric 
Reducing Antioxidant Power (FRAP) assay, a quantitative assay for measuring the 
antioxidant potential, to demonstrate the antioxidant activity of tomato products 
with olive oil, and it was increased from 930 to 1118 mmol/L [13]. Finally, lycopene 
could enhance the production of endogenous antioxidant enzymes, e.g., gluta-
thione peroxidase (Gpx), glutathione reductase (GR), and superoxide dismutase 
(SOD) [14].

1.3 Lycopene: its dietary intake and bioavailability

Although lycopene can be consumed through various sources, processed tomato 
products (e.g., ketchup, tomato source, tomato juices, tomato extract) are the 
major dietary lycopene source in the United States [15]. Indeed, the mean lycopene 
content in these products is more than 90% [16]. The average lycopene intake in the 
U.S. is 6.6–10.5 mg/day in males and 5.7–10.4 mg/day in females [17].

Dietary lycopene intake amount is not always correlated with circulating 
lycopene levels because multiple factors can affect its bioavailability. Processed 
tomato products, for example, contain more lycopene than fresh fruits and veg-
etable [18]. While the lycopene content in ketchup is 9.9–13.44 mg lycopene/100 g 
[19], lycopene content in fresh tomatoes ranges from 1.82–11.9 mg/100 g wet weight 
[20]. Also, lycopene is more bioavailable in processed foods than in raw materials 
since the transformation of the all-trans isomer into the cis-isomer renders lycopene 
elevated solubility in bile acids [21, 22]. Since lycopene is a lipid-soluble compound, 
a diet with high levels of lipids may increase lycopene bioavailability. It has been 
shown that the addition of avocado to salad significantly increased lycopene 
absorption in humans, although the increase of lycopene bioavailability was not 
correlated with avocado co-consumption in a dose–response manner [23].

There has been growing research interest in genetic variant studies in recent 
years and the association between genetic variation and lycopene bioavailability. 

Figure 1. 
Central and eccentric cleavage of lycopene. Oxidative cleavage of lycopene at the central 15, 15′ double bond is 
catalyzed by beta-carotene-15,15′-oxygenase 1 (BCO1) leading to the generation of two molecules of apo-15′- 
lycopenal [7]. Eccentric cleavage takes place at the 9′-10′ double bond and is catalyzed by beta-carotene-9, 
10′-oxygenase 2 (BCO2) yielding apo-10′-lycopenal [8].
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In a study with 33 subjects, researchers revealed that 72% of the variance in the 
postprandial plasma lycopene response was explained by 28 single nucleotide 
polymorphisms (SNPs) in 16 genes [24]. Among these genes, ATP binding cassette 
subfamily a member 1 (ABCA1), lipoprotein lipase (LPL), insulin-induced gene 2 
(INSIG2), solute carrier family 27 member 6 (SLC27A6), lipase C (LIPC), cluster 
of differentiation 36 molecule (CD36), and apolipoprotein B (APOB) play critical 
roles in cellular lipid intake and transportation, indicating that the bioavailability 
of lycopene is likely to depend on lipid metabolism. Another study found that 
although SNP genotypes were unrelated to usual dietary lycopene intake, two BCO1 
SNPs predicted the plasma lycopene changes after subjects were given the same 
amount of tomato juice [25]. Such finding is intriguing because the activity of BCO1 
is lower than BCO2 toward non-provitamin A carotenoids such as lycopene [26], so 
further studies are warranted to explore the underlying mechanism by which BCO1 
SNPs led to different postprandial lycopene response.

Lycopene is widely distributed in various tissues in humans. However, the distri-
bution is uneven, with liver, adipose tissue, testes, adrenal glands, and circulating 
blood being the major storage pools [27, 28] while lung and kidney have relatively 
low lycopene concentration [19]. It has been shown that familial resemblances were 
found in plasma lycopene, indicating that lycopene distribution variance is due to 
genetic and environmental factors [29]. Cigarette smoke, for example, decreased 
plasma carotenoid concentrations in humans [30, 31]. A lower serum lycopene 
concentration was reported in ever-smokers than in never-smokers [32], and lyco-
pene concentration was even substantially lower in smokers who take more than 
three cigarettes per day [33]. Other factors, including aging, air pollution, and the 
initiation of diseases such as cardiovascular disease and diabetes, may also deplete 
lycopene levels due to increased oxidative stress and elevated reactive oxygen spe-
cies (ROS) [34, 35]. While numerous studies reported the lycopene levels in patients 
with lung diseases, there is a gap in providing the overall picture. Therefore, our 
current work aims to shed light on the association between lung diseases and 
lycopene concentration and how lycopene supplementation affects lung disease 
initiation/development, offering further research directions.

2. Lycopene and lung diseases

2.1 In vitro and in vivo evidence

2.1.1 Asthma

Asthma is characterized as the narrowing or blockage of the airways, leading to 
breathing difficulties like shortness of breath, coughing, or wheezing. The onset of 
asthma is associated with elevated pulmonary inflammation, which characteristi-
cally involves airway infiltration of related inflammatory cells through the activa-
tion of Th2-type lymphocytes, eosinophils, and mast cells [36]. A combination of 
these immunological activities with genetic and environmental factors can lead to 
the progression of asthma.

To investigate strategies to potentially mitigate the effects of asthma, two in vivo 
studies utilized dietary lycopene supplementation within a murine model induced 
with this lung condition. These studies involved intraperitoneal (i.p.) injection 
of ovalbumin (OVA) to induce airway inflammation in BALB/c mice and demon-
strated that subsequent lycopene supplementation of 8 and 16 mg/kg body weight 
(BW)/day alleviated such inflammatory cell infiltration into the bronchoalveolar 
lavage fluid (BALF) [37] as well as into the lung tissue and blood supply [38].
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Lycopene treatment at both of these dosages decreased the expression of eosino-
phil peroxidase (EPO) and the gelatinolytic activity of matrix metalloproteinase-9 
(MMP-9) caused by the i.p. injection of OVA [37]. Lycopene administration at 
both dosages also inhibited the OVA-specific release of Th2-associated cytokines 
interleukin-4 (IL-4) and interleukin-5 (IL-5) [37, 38]. The data presented in these 
studies revealed that dietary lycopene intervention could inhibit the infiltration of 
inflammatory immunocytes and alleviate asthma’s pathogenesis and progression.

2.1.2 COPD and emphysema

Chronic obstructive pulmonary disease (COPD) is a coined term that governs 
a group of inflammatory lung conditions such as bronchiolitis and emphysema 
[39]. Bronchiolitis involves fibrosis-related obstruction of small air passages, while 
emphysema is characteristic of alveolar enlargement and alveolar wall damage. 
COPD symptoms commonly consist of a chronic cough, shortness of breath, excess 
phlegm or sputum, and chest tightness [40].

One of COPD’s most prevalent risk factors is cigarette smoking, which can be 
usefully incorporated into in vivo studies to investigate potential remedies to allevi-
ate proinflammatory symptoms and this chronic condition’s progression. Due to its 
documented antioxidant capabilities, lycopene treatment can be utilized to reduce 
the oxidative stress induced by cigarette smoke. A study utilizing a ferret model 
investigated the efficacy of dietary lycopene stimulation upon both bronchiolitis 
and emphysema-related aspects of COPD [41]. Through i.p. injection of tobacco 
carcinogen nicotine-derived nitrosamine ketone (NNK) at 200 mg/kg BW/day and 
cigarette smoke exposure five days a week for four months, the COPD model was 
established in ferrets. Lycopene was administered via 10% w/w beadlets at a low 
dosage of 2.2 mg/kg BW/day and a high dosage of 6.6 mg/kg BW/day over 22 weeks. 
Following this exposure and treatment period, the findings illustrated that the high 
dose of lycopene decreased the incidence of NNK/cigarette smoke-induced bron-
chiolitis and emphysema in ferrets [41].

Tackling the issue of emphysema in particular, two in vivo studies investigated 
the antioxidant/anti-inflammatory efficacy of dietary lycopene supplementation on 
chronic cigarette smoke exposure alone in murine models. Lycopene administration 
at 25 and 50 mg/kg BW/day in C57BL/6 mice appeared to alleviate the detrimental 
effects of chronic cigarette smoke exposure (12 cigarettes/day) over 60 days [42]. 
Lycopene treatment at both dosages appeared to have improved redox balance 
and decreased lipid peroxidation and DNA damage; activities of SOD, catalase 
(CAT), and glutathione (GSH) were increased via lycopene treatment. Lycopene 
also decreased interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and 
interferon-gamma (IFNγ) levels at both dosages. On the other hand, the weight loss 
that occurred due to the smoke exposure was not recovered by lycopene treatment 
at either dosage. The same research team had previously conducted a short-term 
smoke exposure study [43] for just five days, not long enough to establish emphy-
sema, that employed the same dosages of lycopene treatment (25 and 50 mg/kg 
BW/day). This earlier study described that lycopene administration decreased 
neutrophil initiation and macrophage influx into the BALF as well as similarly 
decreased levels of IL-10, TNF-α, and IFNγ at both dosages.

Another in vivo study investigated the association of age-related progression 
with emphysema development within a senescence-accelerated mouse (SAM) 
model [44]. Utilizing the SAM model that mimics the senile mouse lung, the 
study aimed to determine if the dietary lycopene supplementation could prevent 
the onset of emphysema through chronic cigarette smoke exposure (30 min/day, 
five days/week, for eight weeks). Tomato juice (containing 5 mg of lycopene) 
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administration in place of tap water was shown to have an inhibitory effect on the 
onset of cigarette smoke-induced emphysema.

Collectively, dietary lycopene supplementation appears to have alleviating 
effects upon chronic obstructive pulmonary disease, cigarette smoke-induced 
bronchiolitis, and emphysema due to its potent antioxidant and anti-inflammatory 
activities.

2.1.3 Acute lung injury

Acute lung injury (ALI) is an acute inflammatory pulmonary disorder that 
causes endothelial and epithelial barrier disruption, leading to compromised 
alveolar-capillary membrane integrity [45]. Factors such as lung infection, aspira-
tion, sepsis, trauma, and shock can contribute to ALI’s onset. Due to the loss of the 
alveolar-capillary membrane integrity, further complications characteristic of ALI 
can involve increased pulmonary edema permeability, increased infiltration of 
neutrophils, and increased release of pro-inflammatory cytotoxic mediators.

Several in vivo studies have been conducted utilizing dietary lycopene supple-
mentation to determine potential treatment in alleviating the damage associated 
with acute lung injury. One method of generating ALI in these animals was 
through the administration of lipopolysaccharide (LPS). One study investigated 
the synergistic protective efficacy of lycopene and matrine, an alkaloid found in 
kinds of Sophora plants, against LPS-induced ALI compared to the corticosteroid 
dexamethasone (DEX) in BALB/c mice [46]. Mice were intraperitoneally injected 
with DEX (5 mg/kg BW), matrine (25 mg/kg BW), lycopene (100 mg/kg BW), or 
a combination of the matrine + lycopene treatments for seven days before a final 
dosage of LPS (5 mg/kg BW). Following 6 hours after LPS administration, the 
combined treatment of matrine and lycopene appeared to have similar beneficial 
effects. Furthermore, the combined treatment inhibited NF-κB p65 activity and 
reduced the expression of malondialdehyde (MDA), myeloperoxidase (MPO), 
interleukin-6 (IL-6), and TNF-α while simultaneously upregulating GSH.

Sarcandra glabra (SG), an herb native to Southeast Asia which is used for treating 
various oxidative stress diseases, was incorporated within another study in conjunc-
tion with lycopene to combat LPS-induced ALI in a rat model [47]. The rats were 
treated similarly as the other study with supplementation of SG (2.5 mg/kg BW) and 
lycopene (5 mg/kg BW) individually or in combination for two weeks before LPS 
(6 mg/kg BW) administration. Like the study involving matrine, the combination 
of SG and lycopene led to a significant decrease in LPS-induced histopathological 
injuries, as well as reduced levels of IL-6, TNF-α, NF-κB, and mitogen-activated 
protein kinase (MAPK). Furthermore, the combination treatment increased anti-
oxidative activity and helped reverse the abnormal metabolism back towards normal 
status. Courtesy of the findings from these studies, lycopene treatment has the 
potential to alleviate LPS-induced acute lung injury. As lipopolysaccharide is not 
the only way to induce acute lung injury, other studies have incorporated alternative 
methods to study lycopene’s effect. A study investigated the effects of Redivio® 
capsules (lycopene in 10% fluid suspension) against oleic acid (OA)-induced ALI in 
Wistar rats [48]. Over five weeks, the rats were treated with 100 mg/kg BW/day OA 
and 20 mg/kg BW/day lycopene. Lycopene supplementation decreased neutrophilic 
infiltration and decreased perivascular and alveolar edema. Lycopene treatment also 
decreased serum and tissue MDA, serum and tissue SOD, and increased tissue CAT 
levels; however, there was no effect on serum and tissue Gpx. ALI can additionally 
be brought on by hyperoxia, which was investigated in a study involving newborn 
rats that were housed in conditions of normoxia (ambient air) or hyperoxia and 
supplemented with 50 mg lycopene in olive oil/kg BW/day for 11 days [49]. Despite 
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the expected antioxidant effects of lycopene in these conditions, this treatment 
did not improve hyperoxia-induced injury as MDA, SOD, and IL-6 levels were not 
changed; interleukin-1β (IL-1β) and Gpx levels were not affected by hyperoxia or 
lycopene.

2.1.4 Pulmonary fibrosis

Lung fibrosis, or idiopathic pulmonary fibrosis (IPF), is considered an inter-
stitial lung disease. It involves alveolar epithelial damage and scarring of the lungs 
due to excess deposition of extracellular matrix by myofibroblasts [50]. The alveolar 
epithelial degradation is considered an indicative initiating factor of IPF, and the 
associated damage can lead to interstitial pneumonia. Patients with IPF have a 20% 
higher risk of developing lung cancer, which can take approximately 2–4 years to 
reach end-stage respiratory insufficiency [51]. In this case, a treatment regime is 
quite crucial to shunt this detrimental progression.

Bleomycin (BLM), a polypeptide antitumor agent, can mimic lung fibrosis’s 
pathological effects and can be incorporated within studies to study treatment 
efficacy. One in vivo study utilized this model via intratracheal instillation of BLM 
(4 mg/mL) in Sprague–Dawley rats to induce IPF [52]. Lycopene extracted from 
tomatoes was administered over 28 days at a dosage of 5 mg/kg BW/day appeared 
to alleviate the damage attributed to BLM-induced oxidative stress partially. 
Such lycopene treatment inhibited the extent of free radical injury, fibrosis, and 
alveolitis. Furthermore, supplemental lycopene decreased plasma and tissue levels 
of TNF-α and decreased plasma levels of MDA and nitric oxide (NO). Since lung 
fibroblasts can contribute to the onset of pulmonary fibrosis, this cell type can be 
studied within an in vitro context to identify methods of regulating their abnormal 
activity. Two in vitro studies capitalized on this cell line type by inducing DNA dam-
age in Chinese lung fibroblasts, V79 cells, through peroxynitrite administration [53] 
and catechol estrogen [54]. The cells were pre-treated with β-carotene and lycopene 
at concentrations of 0–5 μM and 0–10 μM 24 hours before the damage. The treat-
ment of these carotenoids decreased the DNA damage in these fibroblast cells by 
inhibiting single-strand breaks [53, 54] and decreasing the inflammation oxidative 
stress [53].

2.1.5 Lung cancer

Lung cancer is the leading cause of cancer mortality in the United States, con-
stituting nearly one fourth of all cancer deaths [55]; thus bringing about the need 
to finding remedies in any way possible. In terms of carotenoid treatment, supple-
mentation of lycopene and its metabolites may demonstrate some anti-cancer 
efficacy within both in vitro and in vivo settings by inhibiting carcinoma severity 
and progression; such a trend has been seen in multiple cell types including pros-
tate, breast, hepatoma, stomach, colon and oral cancer cells [56–58]. In the studies 
regarding lung cancer, the models typically involve lung cancer cell lines, cigarette 
smoke exposure, and the administration of carcinogenic agents. As non-small cell 
lung cancer (NSCLC) accounts for the most lung cancer-related deaths, various in 
vitro studies have utilized cell lines that characterize this cell type. In these cases, 
lycopene and its metabolites appeared to be a potent inhibitor of cancer cell growth 
and proliferation [59–62], even more so than either α- carotene or β-carotene [59], 
by arresting the cell cycle at the G1 checkpoint [62]. In cigarette smoke-induced 
oxidative stress, the formation of reactive oxygen species (ROS) could lead to dam-
age of cellular macromolecules, notably to genomic DNA that can cause mutations. 
Like in the case of the Chinese hamster fibroblasts [50], lycopene’s antioxidant 
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potential was shown as its capability to quench ROS and upregulate enzymes related 
to base excision repair, such as DNA glycosylases [63].

Through the classic model of cancer-induction via cigarette smoke exposure in 
vivo, treatment of lycopene at both a low dose (1.1 mg/kg BW/day) and a high dose 
(4.3 mg/kg BW/day) for nine weeks reduced the extent of lung squamous metaplasia 
via apoptosis in a ferret model [64]. The apoptosis was attributed to the upregulation 
of plasma insulin-like growth factor binding protein-3 (IGFBP-3) levels and reduc-
tion of the IGF-1/IGFBP-3 ratio.

An alternate method of inducing tumorigenesis in animal models can be 
achieved through the administration of carcinogenic agents like benzo[a]pyrene 
(BaP), NNK, and dimethylhydrazine (DMH) [62–64]. An in vivo study utilized 
the DMH method of tumor-induction via subcutaneously injecting 20 mg/kg BW 
DMH into B6C3F1 mice, the F1 generation of a cross between C57BL/6 J females 
and C3H/HeJ males [65]. For 32 weeks, the mice were administered with DMH 
twice a week for five weeks and then lycopene (25 or 50 ppm in drinking water) 
starting at week 21. After this treatment period, anticancer effects were primarily 
seen in males as the high lycopene dose (50 ppm) decreased DMH-related tumor 
development and decreased multiplicities for lung adenomas and carcinomas [65]. 
Another two in vivo studies utilized the treatment of lycopene-enriched tomato 
oleserin (LTO) in models involving tumorigenesis induction via BaP only [66] or 
BaP and NNK [67]. In one of those particular studies, a proprietary MutaMouse 
model consisting of the F1 generation of a cross between BALB/c and DBA/2 mice 
was injected with 125 mg/kg BaP and treated with LTO (3.7% lycopene) at different 
doses in their diets (7 and 14 g LTO/kg diet, 0.5 and 1.0 mmol lycopene/kg diet). 
However, the BaP-induced lung mutagenesis was found to have increased with LTO 
supplementation, especially at the high dosage [66]. On the other hand, a study 
incorporating BaP and NNK-induced carcinogenesis into A/J mice investigated the 
effect of LTO (5.9% lycopene) at different doses in their diets (185 ppm, 1850 ppm, 
9260 ppm). In this case, there was no overall effect on the weight gain or survivabil-
ity of the mice; furthermore, none of the LTO-enriched treatments given before, 
during, or after BaP and NNK administration had any effect on tumor incidence or 
multiplicity [67]. The minimal or lack of effect that lycopene has on these carcino-
genic agents may indicate that this carotenoid’s anticancer efficacy is better suited 
against cigarette smoke exposure, possibly due to its antioxidant properties.

While lycopene is typically utilized within these carotenoid treatment studies, 
its metabolites have shown some anticancer efficacy, especially apo-10′-lycopenoic 
acid. In a joint in vitro and in vivo study, apo-10′-lycopenoic acid was shown to 
inhibit cell cycle progression in non-small cell lung cancer (NSCLC) and lung 
tumor multiplicity in A/J mice [62]. Approaching the in vitro aspect, normal human 
bronchial epithelial cells (NHBE), BEAS-2B-immortalized normal bronchial epi-
thelial cells, and non-small cell lung cancer, A549 cells, were treated with 0–10 μM 
apo-10′-lycopenoic acid for five days; this treatment regime appeared to have 
decreased cyclin E and inhibited cell cycle progression from G1 to S phases as seen 
with lycopene previously [59]. Furthermore, cell cycle mediators (p21 and p27) 
were increased, indicating promoted mediation of checkpoint regulation.

Lycopene also appears to be involved in tumorigenesis suppression through 
several pathways, such as inhibiting NF-κB, activating sirtuin-1, or modulating 
reverse cholesterol transport mechanism by inhibiting 3-hydroxy-3-methylglu-
taryl–coenzyme A (HMG-CoA) reductase expression [1, 68, 69]. Furthermore, 
lycopene and its metabolites have been shown to upregulate retinoic acid receptor 
β (RARβ) activation [63], leading to reduced cell proliferation, increased apop-
tosis [70], and enhanced gap junction communication (GJC) by upregulating 
connexin-43 (Cx43) [63, 71].
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3. Lycopene and lung diseases in human

To conclude the association between circulating lycopene and lung diseases, we 
performed a systematic review and meta-analysis by following the PRISMA guide-
line [72]. We conducted a comprehensive search of the following electronic data-
bases: MEDLINE, Web of Science, EMBASE, and Google Scholar from inception 
up to November 8, 2020. We employed an integration of Medical Subject Heading 
(MeSH) terms and/or keywords to article-searching in these databases. The search 
terms are listed as follows:

(“lung diseases”[MeSH Terms (MeSH), title or abstract (ti/ab)] OR 
((“lung”[MeSH] OR “lung”[All Fields]) AND “cancer*”[MeSH Terms]) OR 
“pulmonary disease, chronic obstructive”[MeSH, ti/ab] OR “pulmonary 
disease, chronic obstructive”[MeSH, ti/ab] OR “pulmonary disease, chronic 
obstructive”[MeSH, ti/ab] OR (“pulmonary emphysema”[MeSH, ti/ab] OR 
“emphysema”[MeSH, ti/ab]) OR “asthma”[MeSH, ti/ab] OR “acute lung 
injur*”[MeSH] OR “cystic fibrosis”[MeSH, ti/ab] OR “pulmonary fibrosis”[MeSH, 
ti/ab]) AND “lycopene”[MeSH, ti/ab].

3.1 Methods

3.1.1 Eligibility

We used these inclusion criteria while carrying out a meta-analysis and systematic 
review:

• patients with confirmed lung diseases including asthma, acute lung injuries, 
emphysema, COPD, lung fibrosis, and lung cancer;

• used one of the following study designs: randomized controlled trial (RCT), 
cohort study, case–control study, nested case–control study, and cross-
sectional study;

• reported circulating lycopene level, dietary lycopene intake, dietary consump-
tion of lycopene-enriched foods (e.g., tomato products);

• outcomes related to the incidence or development of lung diseases;

• provided statistical reports

When multiple studies included subjects from the same cohort, only the publi-
cation reported the most updated results were selected. In vitro studies and animal 
studies were excluded. Review articles were also excluded.

3.1.2 Data extraction

Data extraction was performed by two independent researchers (J. Cheng, A. 
Eroglu) by utilizing a structured form. A third investigator (E. Balbuena) would 
be involved if discrepancies occurred. The following information was collected 
from eligible studies: study characteristics (author, year of the study, study design, 
name of the cohort), subject characteristics (a type of lung disease, subject age), 
treatment information, and primary results, which included means, comparison of 
the groups, relative ratio (RR)/odds ratio (OR)/hazard ratio (HR), and the measure 
of variability (95% confidence interval and p-value). For studies that used both 
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univariate analysis and multivariate analysis, only the multivariate analysis results 
were extracted. A table was constructed (Table 1) to summarize the data.

3.1.3 Statistical analysis

We only included the studies that reported OR/RR/HR and 95% confidence 
interval to perform statistical analysis. Studies that failed to provide such informa-
tion were excluded from meta-analysis but were still included in our systematic 
review with detailed information listed in Table 1. According to the rare disease 
assumption, the prevalence of lung diseases is low, and the relative risk approaches 
the odds ratio [73]. Therefore, we reported all risk estimates in our current meta-
analysis as OR for simplicity. With the possibility that the variance between the 
studies was caused by heterogeneity, the pooled ORs of the risk of lung diseases 
were estimated using a random-effects model. Two-tailed p-values <0.05 were 
considered statistically significant. We performed statistical analyses by employing 
RevMan 5.4.1.

3.2 Results

The process of study selection was displayed in the flow chart (Figure 2). The 
search for the four databases yielded 105 articles, of which 101 were eventually 
screened (Figure 2). Forty-eight articles were included for final screening after 
we excluded 53 in vitro or animal studies. Among them, 11 articles were excluded 
with various rationales: the exposure is not lycopene-related (N = 1), outcomes 
are not related to lung diseases (N = 3), review articles (N = 3), full text unavail-
able (N = 1), or studies that used the same cohort (N = 4) which led to 37 papers 
included in this systematic review (Figure 2).

3.2.1 Asthma

A total of 13 articles reported the relation between asthma and lycopene 
concentration, or dietary lycopene intake [74–86]. Among them, 9 studies are 
observational studies: cross-sectional (N = 1), nested case–control (N = 1), or 
case–control studies (N = 7) [74–82], whereas other studies are randomized clinical 
trials (RCTs) [83–86].

In total, eight case–control (including nested case–control) studies included 
1,280 current asthma patients and explored circulating lycopene levels in cases 
versus matched controls. Additionally, one cross-sectional study with 218 subjects 
reported the association between serum lycopene concentration and asthma 
severity [77]. In four studies, a significantly lower circulating lycopene concentra-
tion was observed in cases than in healthy controls [76–79]. Nevertheless, other 
case–control studies reported similar circulating lycopene levels in asthma patients 
than the matched control group, indicating that the risk of asthma was unrelated 
to circulating lycopene levels [74, 75, 81, 82]. Such discrepancy might be due to 
the heterogeneity of disease characteristics. Wood et al. showed a trend of higher 
plasma lycopene concentration in asthma patients with airway hyper-responsive-
ness [80]. It was also reported that plasma lycopene concentration was higher in 
atopic asthma subjects than in non-atopic asthma subjects [76]. Therefore, a high 
proportion of hyper-responsive asthma patients or atopic asthma patients may 
decrease the probability of observing a significant difference.

Two studies reported the correlation between circulating lycopene concentra-
tion and the severity of asthma. Forced expiratory volume in one second (FEV1) is 
defined as the volume of breath exhaled during a forced breath within one second. 
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Forced vital capacity (FVC) is the full air exhaled in the entire timeframe [87]. A 
low percentage predicted FEV1/FVC ratio is an indicator of reduced pulmonary 
function. Ochs-Balcom et al. reported a lack of association between serum lycopene 
concentration and %FEV1/FVC ratio in 22 asthma cases, indicating that circulating 
lycopene concentration is not correlated with pulmonary function [77]. Similarly, 
Wood et al. depicted that plasma lycopene concentration was similar in moderate 
asthma patients than patients with severe asthma [80]. Also, no difference was 
found in plasma lycopene levels between asthma controlled or partly controlled 
patients vs. uncontrolled patients [80], indicating that circulating lycopene levels 
are unrelated to asthma development.

Four RCTs supplemented asthma patients with lycopene or lycopene-enriched 
foods to investigate the effect of dietary lycopene on asthma [83–86]. They 

Figure 2. 
Flow diagram of study selection according to the PRISMA guideline.

Figure 3. 
Forest plots for lung cancer risk in (A) subjects with lower lycopene intake vs. subjects with higher lycopene 
intake, and (B) subjects with lower circulating lycopene levels vs. subjects with higher circulating lycopene 
levels.
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examined their pulmonary function at the end of the study [83–86]. Two stud-
ies addressed exercise-induced asthma, where researchers gave asthma patients 
lycopene at a dosage of 30 mg/d for one week [80, 81]. Although one study found 
that lycopene supplementation increased %FEV1 [83], Falk et al. failed to observe 
any significant differences in pulmonary function indicators between patients with 
lycopene supplementation and the placebo group [84]. Such inconsistency may have 
resulted from the inadequate intensity of the exercise challenge in the study. In the 
study by Falk et al., the participants performed an eight-minute treadmill exercise 
at a load of 85% of the predicted maximal heart rate [84]. Such intensity may not 
be strenuous enough to induce exercise-induced bronchoconstriction, especially 
in physically active people [88]. Also, only 19 subjects were included in the trial, 
leading to a loss of power. Therefore, additional studies with larger samples size and 
higher exercise challenges are warranted to examine the effect of lycopene supple-
mentation on exercise-induced asthma.

With a growing interest in investigating the synergistic effect of various 
antioxidants on lung diseases, Wood et al. provided the subjects with a 10-day 
low antioxidant diet, followed by either placebo or tomato extract (or tomato 
juice) supplementation that contains 45-mg lycopene for another ten days [85]. 
As a result, the low antioxidant diet significantly increased sputum neutrophils, 
decreased with tomato juice or tomato extract supplementation [85]. Furthermore, 
a reduced level of sputum neutrophil elastase activity was found in patients supple-
mented with tomato extract [85]. The neutrophil elastase released by neutrophils 
is a serine proteinase that may act as a biomarker of inflammation and pathogen 
invasion [89]. Since this enzyme is involved in lung tissue destruction, by inhibiting 
neutrophil elastase activity, tomato extract supplementation may hinder pulmonary 
inflammation, subsequently mitigate the swell of the airways and decrease mucus 
production [90], leading to alleviated asthma manifestations. Indeed, in a follow-up 
study with 137 subjects, Wood et al. portrayed decreased levels of plasma C-reactive 
protein (CRP), IL-6, and IL-1β in the asthma patients who consumed tomato 
extract that contains 45 mg/d lycopene [86]. Intriguingly, the repeated-measures 
analysis by time point showed a reduced risk of disease exacerbation in the patients 
with tomato extract supplementation compared to the placebo group. Additionally, 
the decrease of %FEV1 and %FVC from baseline was only observed in the placebo 
group, but not in the tomato extract-supplemented group [86].

Collectively, the results generated from these clinical trials did not show a con-
sistent association between circulating lycopene and the initiation or development 
of asthma. Besides, there is a lack of evidence that dietary lycopene supplementa-
tion alleviating asthma progression. Whole foods that contain a high concentration 
of lycopene, such as tomato extract, showed beneficial efficacies against asthma. 
However, both RCTs subjects had a low-antioxidant diet at baseline to deplete their 
antioxidant levels, meaning that a similar alleviating effect may not be observed 
in people with normal circulating antioxidant concentrations. It is also important 
to note that tomato extract and tomato juice are high in lycopene and other anti-
oxidants, such as ascorbic acid or β-carotene. Thus, lycopene itself may lack the 
capability of mitigating asthma. It should be noted that the combination of lyco-
pene with other antioxidants produces a synergistic effect that can further inhibit 
pulmonary inflammation and lessen asthma manifestations.

3.2.2 COPD

Both asthma and COPD cause swelling in the airways and difficulties to 
breathe [91]. Several studies focused on tackling COPD and asthma-COPD overlap 
syndrome (ACOS) due to the similarities between the two diseases.



Antioxidants - Benefits, Sources, Mechanisms of Action

20

At the end of article screening, two case–control studies, one cross-sectional 
study, and one prospective study depicted the association between circulating 
lycopene concentration and COPD [75, 77, 81, 92]. Overall, 105 COPD patients and 
21 ACOS patients were included in the case–control studies [77, 81], whereas the 
cross-sectional study included 218 subjects (68 asthma patients, 121 COPD patients, 
and 29 ACOS patients). The prospective study used the data from the Third 
National Health and Nutrition Examination Survey (NHANES III), recruiting 1,492 
COPD patients [75].

In one case–control study, Kodama et al. reported a significantly lower 
plasma lycopene concentration in the COPD subjects than the healthy controls 
[81]. However, such an association was not observed in the ACOS subjects [81]. 
Interestingly, another case–control study did not find any differences in plasma 
lycopene levels between the COPD patients and the controls [92]. However, they 
demonstrated a positive correlation between plasma lycopene concentration and 
blood oxygenation saturation in COPD patients [92], indicating that circulating 
lycopene concentration may be related to COPD severity. Similarly, the cross-
sectional study conducted by Ochs-Balcom et al. also reported that serum lycopene 
concentration was positively associated with %FVC, but not %FEV1 or %FEV1/
FVC ratio [77]. In 2014, Ford et al. reported that although the COPD patients and 
the healthy controls appeared to have similar serum lycopene levels, they observed 
an inverse correlation between serum lycopene concentration and all-cause mortal-
ity among people with obstructive lung function [75]. With a large sample size 
and prospective study design, these findings highlighted the possibility that serum 
lycopene concentration could be a potential biomarker predicting COPD’s develop-
ment and prognosis.

3.2.3 Lung cancer

In total, 19 studies met our inclusion criteria and provided information on 
lycopene and lung cancer [32, 93–110]. Among them, there are 8 case–control 
studies that included 2,226 lung cancer patients [93, 95, 99, 100, 104, 105, 107, 
110], 6 nested case–control studies that included 1,951 lung cancer cases  
[32, 94, 98, 102, 106, 108], and 5 prospective studies that included 218,251 
subjects [96, 97, 101, 103, 109].

Among the studies that reported the association between lycopene intake and 
lung cancer risk, nine studies provided detailed study estimates [95, 96, 101–106, 
108] (Figure 3A). Our meta-analysis results showed that the meta-OR of lung 
cancer with a higher dietary lycopene intake was 0.79 (95% CI: 0.71–0.88, overall 
P < 0.0001). The p-value of the Chi-squared (Chi2) test is 0.52, and the between-
study variance (I2) for lung cancer incidence is 0%, meaning that there was a 
minimum of heterogeneity in the studies. Two case–control studies found that 
lycopene or lycopene-enriched tomato juice’s daily consumption was lower in lung 
cancer cases than in healthy controls [93]. In contrast, the Singapore Chinese Health 
Study failed to observe a significant correlation between lycopene dietary intake 
and lung cancer risk [109]. Multiple factors may contribute to the non-significant 
findings. In the case–control studies, studies that used the Food Frequency 
Questionnaire (FFQ ) to collect lycopene intake frequencies may undergo recall 
bias, which led to a loss of power. It is also likely to observe a significant difference 
in lycopene consumption between cases and controls by including subjects who had 
a low baseline circulating lycopene level or dietary lycopene intake. Rohan et al. 
observed significantly different lycopene intake between the cases and the controls 
when the subjects’ daily lycopene intake was between 983 μg to 1,050 μg [102]. 
However, by including the subjects who reported a baseline daily dietary lycopene 
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intake at 15.8 mg to 16.9 mg, which is about twice the amount of average daily 
lycopene intake in the U.S. [17], Shareck et al. found the dietary lycopene intake was 
comparable between the cases and the controls [104].

Three case–control studies [93, 99, 107] and three nested case–control studies 
[32, 94, 97] reported the association between circulating lycopene concentration 
and lung cancer risk. Two studies provided estimates [32, 98], thus were included in 
the meta-analysis. Since Ito et al. only reported the estimates in the male and female 
subgroups [98], we pooled the two subgroups and another study [32] to explore the 
relationship between circulating lycopene concentration and lung cancer risk by 
performing the meta-analysis. Our results showed that the meta-odds ratio of lung 
cancer with a higher circulating lycopene level was 0.47 (95% CI: 0.30–0.73, overall 
P = 0.0007), with the Chi2 p-value at 0.84, and the I2 at 0% (Figure 3B). Such data 
indicates that a higher circulating level of lycopene is correlated with a lower risk 
of lung cancer. Intriguingly, the other three studies that were not included in the 
meta-analysis consistently showed that lung cancer cases had a significantly lower 
circulating lycopene concentration than the healthy controls [93, 99, 110]. Only 
one study reported a similar lycopene concentration in lung cancer subjects and 
the controls [94]. One possible explanation for this negative result is that Comstock 
et al. did not stratify the subjects according to the stage of lung cancer. Although 
serum lycopene concentration was comparable in the early stage patients and 
the advanced stage patients, serum lycopene concentration was more significant 
between the advanced lung cancer patients and the healthy controls [99]. If the 
majority of the patients included by Klarod et al. were cancer patients at an early 
stage, the difference of circulating lycopene level between the cases and the controls 
would be unapparent. One prospective study showed that serum lycopene concen-
tration was lower in the lung cancer deaths than in the cancer survivors; however, 
such difference disappeared after the researchers adjusted the model for sex, age, 
smoking habit, and serum levels of total cholesterol and alanine aminotransferase 
(ALT) activity [97] suggesting that the association between lycopene and lung 
cancer mortality might be influenced by multiple factors, which warrants further 
investigation.

In conclusion, we found consistent reports showing that dietary lycopene intake, 
or the consumption of lycopene-enriched foods, was inversely related to lung 
cancer risk. Our systematic review and meta-analysis showed that the circulating 
lycopene level might be a potential biomarker predicting lung cancer risk.

4. Concluding remarks

We summarized the association between circulating lycopene and chronic lung 
diseases in a comprehensive manner. To accomplish this task, we first have screened 
both in vitro reports and in vivo animal models to delineate lycopene’s role in chronic 
lung diseases including asthma, COPD, emphysema, acute lung injury, pulmonary 
fibrosis, and lung cancer. Dietary lycopene intervention could potentially decrease 
the infiltration of pro-inflammatory cytokines in ovalbumin-induced airway 
inflammation in a murine model of asthma [37, 38]. Lycopene was also found to 
inhibit smoke-induced bronchitis and emphysema through reverse cholesterol 
transport in the COPD model in ferrets [41]. In a murine model (C57BL/6 mice) for 
emphysema, lycopene administration lessened the detrimental effects of chronic 
cigarette smoke exposure [42]. Lycopene treatment was found to ease LPS-induced 
acute lung injury (ALI) in murine animal models [46], BALB/c mice, and LPS-
induced ALI in a rat model [47]. Lycopene extracted from tomatoes could reduce 
the burden of lung fibrosis’s pathological effects in a rodent study [52]. In terms of 
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lung cancer, lycopene could decrease the extent of squamous metaplasia in a ferret 
model using the conventional method of induction of lung cancer by cigarette 
smoke [64]. Alternative models using carcinogenic agents were not definitive in 
showing its chemoprevention capabilities [62–67].

Next, we conducted a systematic review and meta-analysis to reveal the link 
between lycopene concentration and lung diseases in clinical trials using multiple 
electronic databases. While several case–control studies reported markedly lower 
lycopene concentration in asthma patients [76–79], others found that asthma pro-
gression was not related to lycopene in the circulation [74, 75, 77, 80–82], suggesting 
that the association between asthma and lycopene concentrations in humans was 
not conclusive. We came across several epidemiological studies, including case–
control, cross-sectional, and prospective studies, to demonstrate the association 
between lycopene concentration in the circulation and COPD in our meta-analysis. 
These trials reported similar lycopene concentrations in healthy subjects vs. COPD 
patients [75, 77, 81, 92]. Finally, we found that dietary lycopene is inversely asso-
ciated with lung cancer risk, particularly in subjects with low lycopene in their 
circulation [93, 102, 104]. Furthermore, circulating lycopene displayed a significant 
association between advanced lung cancer patients and early-stage patients [99].

5. Future perspective

Overall, our comprehensive review in this chapter provides convincing evidence 
on the role of lycopene in chronic lung diseases including lung cancer. This chapter 
also contributes confirmatory data to the as yet unsettled proof on the hypothesized 
associations between lycopene in circulation and lung diseases. The health benefits 
of lycopene can be attributed to its antioxidant function as highlighted in this 
chapter. Lycopene can be used as a preventive and therapeutic compound by itself 
or in combination with other compounds to improve lung diseases. Further inves-
tigations and well-designed clinical trials are needed to confirm whether there is a 
casual relation between the disease and the circulating lycopene in humans.
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i.p. intraperitoneal
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BW body weight
BALF bronchoalveolar lavage fluid
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MMP-9 matrix metalloproteinase-9
IL-4 interleukin-4
IL-5 interleukin-5
COPD Chronic obstructive pulmonary disease
NNK nicotine-derived nitrosamine ketone
CAT catalase
GSH glutathione
IL-10 interleukin-10
TNF-α tumor necrosis factor-alpha
IFNγ interferon-gamma
SAM senescence-accelerated mouse
ALI Acute lung injury
LPS lipopolysaccharide
MDA malondialdehyde
MPO myeloperoxidase
IL-6 interleukin-6
SG Sarcandra glabra
MAPK mitogen-activated protein kinase
OA oleic acid
IL-1β interleukin-1β

IPF idiopathic pulmonary fibrosis
BLM Bleomycin
NO nitric oxide
NSCLC non-small cell lung cancer
ROS reactive oxygen species
BaP insulin-like growth factor binding protein-3, benzo[a]pyrene
DMH dimethylhydrazine
LTO lycopene-enriched tomato oleserin
NHBE normal human bronchial epithelial cells
HMG-CoA 3-hydroxy-3-methylglutaryl–coenzyme A
RARβ retinoic acid receptor β
GJC gap junction communication
Cx43 connexin-43
RCT randomized controlled trial
RR relative ratio
OR odds ratio
HR hazard ratio
FEV1 Forced expiratory volume in one second
FVC Forced vital capacity
ACOS asthma-COPD overlap syndrome
NHANES III National Health and Nutrition Examination Survey
ALT alanine aminotransferase
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