

Occurrence of Pathogenic Aspergillus species in Drinking Water from Restaurants in Kathmandu, Nepal

U Shrestha Khwakhali^{1*}, JF Meis^{2,3}, PE Verweij^{3,4}

¹Department of Microbiology, Amrit Campus, Tribhuvan University, Kathmandu, Nepal

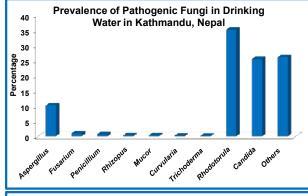
²Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands

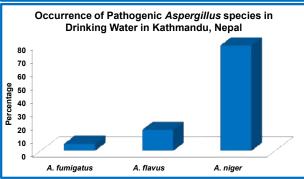
³Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands

⁴Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands

30 JUNE – 4 JULY 2018

Introduction


- Aspergillus is a ubiquitously distributed opportunistic fungus that causes a wide range of infections in both immunocompetent and immunocompromised hosts.
- Aspergillus fumigatus is the global leading cause of invasive aspergillosis associated with high morbidity and mortality.
- A. flavus also causes invasive aspergillosis and is known to produce aflatoxins.
- Aspergillus species and other fungi are accounted as a significant cause of water contamination due to their ability to survive after filtration in distribution networks and during storage even when they have been treated with chlorine.
- The presence of *Aspergillus* in drinking water can lead to invasive infections, allergy and toxic responses, particularly in immunocompromised patients.
- In this study, we investigated the occurrence of pathogenic *Aspergillus* species in drinking water from restaurants in Kathmandu, Nepal.


Methods

- A total of 120 drinking water samples were collected between March to June 2017 from restaurants in the centre of Kathmandu and processed using a membrane filter (MF) technique according to standard methods of American Public Health Association (2005).
- A volume of 100 mL water was filtered through a sterile membrane filter with 0.45 µm pore size and 47 mm diameter.
- The membranes were placed on Sabouraud dextrose agar plates with chloramphenicol (50 mg/L) and incubated at 37°C for up to 7 days and examined daily for any visible growth of pathogenic fungi.
- Pathogenic Aspergillus species as well as different types of other fungi were enumerated and identified to species complex level by macroscopic and microscopic morphology.
- Microscopy, germ-tube test and biochemical tests were also performed for identification of yeasts.

Results

- All treated drinking water samples were positive for the growth of pathogenic fungi.
- Aspergillus species were recovered from 63% of water samples from restaurants but yeasts (83.7%) were more predominant than filamentous fungi (16.3%).
- Total count of *Aspergillus* species ranged from 1 to 38 colony forming units (cfu)/100 mL, with an average of 5 cfu/100 mL.
- The most abundant genera of filamentous fungi identified were Aspergillus (10.2%) but Fusarium (1.0%), Penicillium (0.8%), Rhizopus (0.4%), Mucor (0.4%), Curvularia (0.3%) and Trichoderma (0.2%) were also isolated.

- •The genera *Rhodotorula* (35.1%) and *Candida* (25.5%) were detected in a high frequency.
- •Among Aspergillus isolates, A. fumigatus (5.3%), A. flavus (15.8%) and A. niger (78.9%) were recovered from drinking water samples.

Conclusion

- Pathogenic Aspergillus species were the most frequently isolated filamentous fungi in treated drinking water sources in Kathmandu.
- The occurrence of opportunistic fungal pathogens in drinking water is a potential threat to human health and indicated increased risk of *Aspergillus* infections.
- Awareness of drinking water quality and water safety and the availability of improved drinking water treatment systems should be emphasized to maintain microbial drinking water safety.

Acknowledgements

We are grateful to ISHAM for ISHAM2018 attendance grant and Fungal Infection Trust for a travel grant to attend ISHAM 2018. We thank Atmaz Kumar Shrestha and Prashanna Maharjan for their help during water sample collection and filtration.

References

- Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 2007; 153(Pt 6): 1677-1692.
- 2. Babič MN, Gunde-Cimerman N, Vargha M, Tischner Z, Magyar D, Verissimo C, Sabino R, Viegas C, Meyer W, Brandão J. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int J Environ Res Public Health 2017: 14: 636.
- Oliveira HMB, Santos C, Paterson RRM, Gusmão NB, Lima N. Fungi from a groundwater-fed drinking water supply system in Brazil. Int J Environ Res Public Health 2016; 13: 304.
- Al-gabr HM, Zheng T, Yu X. Occurrence and quantification of fungi and detection of mycotoxigenic fungi in drinking water in Xiamen City, China. Sci Total Environ 2014; 466(467):1103-1111.
 Hageskal G, Gaustad P, Heier BT, Skaar I. Occurrence of moulds in drinking water. J Appl Microbiol 2007;
- 102(3):774-780.

 6.American Public Health Association (APHA). Standard method for examination of water and wastewater, 21st

edn. APHA, Washington, DC, USA, 2005.

Copyright © 2017 U Shrestha Khwakhali, JF Meis, PE Verweij. E-mail: ushanas@hotmail.com