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Abstract

Mitochondria are the major energy producers within a cell in the form of 
adenosine triphosphate by oxidative phosphorylation. Normal mitochondrial 
metabolism inevitably generates reactive oxygen species (ROS), which have been 
considered to solely cause cellular damage. Increase of oxidative stress has been 
linked to various pathologies. Thus, mitochondrial ROS (mROS) were basically 
proposed as byproducts of oxidative metabolism, which undergo normalized by 
antioxidant enzymes. However, the mROS have extensively been esteemed to 
function as signalling molecules to regulate a wide variety of physiology. These 
phenomena are indeed dependent on mitochondrial redox status, which is dynami-
cally altered under different physiological and pathological conditions. The oxida-
tive stress is incurred by which the redox status is inclined to exceeded oxidation or 
reduction. Here, we attempt to integrate the recent advances in our understanding 
of the physiological functions of mROS.

Keywords: mitochondrial ROS, oxidative stress, oxidative metabolism, 
redox signaling, mitochondrial physiology

1. Introduction

Mitochondria are double-membrane-bound cellular organelles found in most 
eukaryotic organisms. The number of mitochondria in cell differs widely according 
to organisms, tissues and cell types, which is determined by the energy demand. 
Mitochondria occupy around 40% of the cytoplasm in heart muscle cells and 
20–25% with ~2000 per cell in liver cells. Mitochondria, as the power plants of the 
cell, mainly generate energy in forms of adenosine triphosphates (ATPs) by oxida-
tive phosphorylation (OXPHOS) during glucose metabolism [1, 2]. The OXPHOS 
is coupled with mitochondrial respiration in which mitochondrial transmembrane 
potential (MMP, ΔΨm) is generated by pumping the protons via mitochondrial 
complexes I, III and IV of the electron transport chain (ETC) [3].

Molecular oxygen (O2) is essential for the mitochondrial bioenergetic metabo-
lism, which functions as the final electron acceptor for cytochrome c oxidase (com-
plex IV) in the respiratory ETC that catalyses the four-electron reduction of O2 to 
H2O. Mitochondria are an important source of reactive oxygen species (ROS) within 
most mammalian cells [4, 5]; mitochondrial ROS (mROS) are basically produced 
as byproducts of this bioenergetic metabolism during the OXPHOS [6]. Electron 
leaks at complex I and III from ETC lead to forming partially reduced and highly 
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reactive metabolites of O2, including superoxide anion (O2
·−) and hydrogen per-

oxide (H2O2), formed by one- and two-electron reductions of O2, respectively [7]. 
In the presence of transition metal ions, the more reactive hydroxyl radical (OH·) 
is formed. The O2

·− is rapidly dismutated to H2O2 by two dismutases including Cu/
Zn-superoxide dismutase (Cu/ZnSOD) in mitochondrial intermembrane space and 
manganese-dependent superoxide dismutase (MnSOD) in mitochondrial matrix. 
Unless the dismutation of O2

·− is catalyzed into H2O2, the radical oxidant promotes 
DNA damage, protein oxidation and lipid peroxidation in many types of cells. H2O2 
is also cell damaging molecule to be degraded to water by catalase [8]. Although the 
O2

·− generation by respiratory complexes is a well-established phenomenon, it is 
still poorly understood in mechanism [9].

Mitochondria have been implicated in the regulation of a number of physiological 
and pathological processes, including proliferation, differentiation, programmed cell 
death, innate immunity, autophagy, redox signalling, calcium homeostasis, hypoxic 
stress responses and stem cell reprogramming [10–16]. The mROS production contrib-
utes to mitochondrial damage in a range of pathologies, which is also is closely related 
to redox signalling in the cell [4, 17]. However, accumulating evidences show that 
mROS are not only deleterious molecules derived from the cellular metabolism but 
also indispensable participants in diverse cellular signalling and regulations [18–20].

In this chapter, we briefly summarize recent developments in our understanding 
of the involvement of mROS as signalling mediators in redox biology, rather than 
pathological stress, underlying physiological conditions.

2. Mitochondrial physiology and ROS production

Mitochondria, cellular organelles in cells of eukaryotic organisms, have a 
primarily role in the process of pyruvate breakdown and ATP synthesis, generat-
ing water and carbon dioxide (CO2) as the end products via aerobic respiration 
[21]. Mitochondria turned into driving forces in biological evolution after the 
symbiotic engulfment of aerobic α-proteobacteria by a precursor of the eukaryotic 
cells around 2 billion years ago [22, 23]. Although mitochondria have preserved the 
double-membrane shape and ATP production characters of their ancestors, they 
have attained numerous additional functions in the cell, dramatically altering their 
structure and composition [24]. Most part of the bacterial genome was rapidly 
lost or transferred to the nuclear DNA [25]. Mammalian mitochondrial genome is 
transmitted solely through the female germ line [26]. Human mitochondrial DNA 
(mtDNA) is a double-stranded, circular molecule of 16,569 bp and contains 37 
genes coding for two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and 13 
proteins [22]. As the major power plants, mitochondria constantly produce reactive 
radical oxidants as byproducts during OXPHOS. Thus, in response to the metabolic 
or environmental stresses, mitochondria have accomplished antioxidant defence 
system [27]. Mitochondria are also highly dynamic to maintain the functions, which 
form a tubular network that continually changes by fission and fusion [28]. In this 
section, we concisely discuss overall mitochondrial biology and the ROS generation.

2.1 Mitochondrial structure and genome

A mitochondrion comprises four subcompartments, the outer mitochondrial 
membrane (OMM) and inner mitochondrial membrane (IMM), and the two soluble 
compartments intermembrane space (IMS) and matrix, which are architecturally 
and functionally distinct. The OMM encloses the organelle, which has a protein-
to-phospholipid ratio similar to that of the plasma membrane [29]. It contains 
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large numbers of integral membrane protein, porin [30]. Voltage-dependent anion 
channel (VDAC) is a major trafficking protein that forms a beta barrel spanning 
the outer membrane, which transports nucleotides, ions and metabolites between 
cytosol and intermembrane space [31, 32]. The IMM is found inside of the OMM, 
which encloses mitochondrial matrix, extensively folded and compartmentalized 
[33]. The IMM is non-permeable to nucleotides, sugars and small ions; thus specific 
carrier proteins enable the molecules to transport across the membrane [34].

The mitochondrial respiratory complexes I–IV, in which electrochemical 
gradient is generated for OXPHOS to occur for ATP synthesis, are embedded in 
the IMM [22]. Mitochondria contain two aqueous compartments: the IMS and 
matrix. The IMS, existing between the OMM and IMM, relays molecular transport 
from cytosol to mitochondrial matrix or reversely [35]. The compositions of small 
molecules such as ions and sugars in IMS are chemically similar to those in cytosol, 
as OMM is selectively permeable to those molecules [36]. However, in case of large 
proteins, the specific signalling peptides are required to be transported across the 
OMM. Thus, the protein composition of the IMS is different to the protein composi-
tion of the cytosol (e.g. cytochrome c) [37]. The mitochondrial matrix, enclosed 
by IMM, contains mitochondrial DNA (mtDNA), RNA and proteins. Especially, a 
number of proteins in the matrix are involved in diverse biochemical processes such 
as tricarboxylic acid (TCA) cycle, fatty acid oxidation, amino acid degradation and 
mitochondrial dynamics (fission and fusion) [27, 38] (Figure 1).

2.2 Mitochondrial genome

Mitochondria contain their own genetic material (mtDNA), which is maternally 
inherited without DNA recombination and encodes 37 genes that participate in mito-
chondrial ATP synthesis. Thirteen genes of them are involved in OXPHOS, and the 
rest two rRNAs and 22 tRNAs. One human cell has hundreds to thousands of mtDNA 
copies [39, 40]. mtDNA has high rates of mutation and sequence evolution, and 
mutant and wild-type mtDNA are present in the cell at different proportions [41, 42]. 
The mtDNA mutations lead to abnormality in OXPHOS activity and ATP synthesis 
[43]. The mtDNA is exposed to OXPHOS-derived ROS without conventional histone 
proteins. Moreover, in the lacking repair mechanisms, mtDNA damage further ampli-
fies during DNA replication [44]. Therefore, the mtDNA is susceptible to mutation 

Figure 1. 
Mitochondrial structure.
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and damage. Therefore, mtDNA mutations and damage cause mitochondrial dys-
function, including ATP synthesis impediment, intracellular calcium level elevation, 
phospholipase activation and membrane phospholipids decomposition [45, 46].

2.3 Mitochondrial bioenergetics and dynamics

The most prominent roles of mitochondria are to produce the cellular energy 
in forms of ATPs via aerobic respiration and to regulate the cellular metabolism. 
Nutrients such as sugars (mostly glucose), lipids and amino acids are oxidized to pri-
marily produce the energy [47]. Approximately 90% of cellular energy requirements 
are generated in mitochondria [48]. Glucoses and lipids are glycolysed into pyruvic 
and fatty acids, respectively, in the cytoplasm. Subsequently, these acids form 
acetyl coenzyme A (Acetyl CoA) via a series of catabolic reactions and then enter 
the TCA cycle in the mitochondrial matrix [49]. In the reaction of the TCA cycle, 
convert three equivalents of nicotinamide adenine dinucleotide (NAD+) into three 
equivalents of reduced NAD+ (NADH), one equivalent of flavin adenine dinucleo-
tide (FAD) into one equivalent of FADH2 and one equivalent each of guanosine 
diphosphate (GDP) and inorganic phosphate (Pi) into one equivalent of guanosine 
triphosphate (GTP). The NADH and FADH2 are, in turn, used by the OXPHOS to 
generate ATPs. Thus, oxidation of nutrients provides electrons to the mitochondrial 
ETC in the form of NADH and FADH2. The sequential transport of electrons from 
complex I or II to III and IV extrudes protons from the matrix to the IMS, generating 
an electrochemical gradient. In this process, the ETC requires two electron carriers: 
coenzyme Q 10 (CoQ 10, also known as ubiquinone) and cytochrome c (Cytc) [50]. 
Along this electrochemical gradient, the protons flow through complex V (ATP 
synthase) on the IMM to return to the mitochondrial matrix. This reflux alters the 
conformation of complex V and drives the synthesis of ATP from ADP and Pi [47].

2.4 Mitochondrial dynamics (fission and fusion)

Mitochondria are highly dynamic and interacting organelles. Mitochondria are 
able to autonomously integrate (fusion) and divide (fission) by remodelling their 
morphology and moving along cytoskeletal tracks, in response to their metabolic 
or pathogenic conditions and cellular environment [29]. The mitochondrial lengths 
and networks are determined by the balance between fission and fusion rates [51]. 
Mitochondrial fission and fusion processes are mainly mediated by large guanosine 
triphosphatases (GTPases) in the dynamin family [51].

Mitochondrial fission requires the dividing of mitochondrial proteins and 
mtDNA thus that each daughter organelle normally functions without significant 
loss of soluble proteins from the mitochondrial matrix or intermembrane space [52]. 
Fission is required for the cellular distribution of mitochondria during cell division 
and embryonic growth [53]. Exceeded mitochondrial fission, not mutually balanced 
with fusion, leads to glucose oxidation, MMP decrease and hence the downregula-
tion of ATP production [54]. The fission process is coordinated by a set of compo-
nents in the cytosol, cytoskeleton, as well as mitochondria. Fission is mediated by 
a cytosolic dynamin family member, dynamin-related protein 1 (Drp1). Drp1 is 
recruited from the cytosol to form spirals around mitochondria and, subsequently, 
constricts the membranes at the fission site to split the mitochondrial cluster [29].

Mitochondrial fusion is mediated by a different set of dynamin-related GTPases. 
Mitochondrial outer membrane fusion is coordinated with inner membrane fusion. 
Three large GTPases are essential for mitochondrial fusion [55]. The mitofusins 
(Mfn1 and Mfn2) are transmembrane GTPases embedded in the OMM [56]. OPA1 
is a dynamin-related GTPase associated with the IMM or IMS. Mitofusins and OPA1 
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physically interact to mechanistically mediate OMM and IMM fusion, respec-
tively [29, 57, 58]. Mitochondrial fusion may increase to maximize the fidelity for 
OXPHOS in cellular energy demands [27].

2.5 Mitochondrial ROS production and antioxidant enzymes

Mitochondria are the major source of ROS generation [9]. In an organism, 
mitochondria utilize approximately 98% of the total amount of inhaled O2, 
including 1–2% for ROS generation [59, 60]. Mitochondria actually produce ROS 
in a number of enzymatic reactions; the vast majority of the free radicals from 
the mitochondria are formed in the ETC during OXPHOS [61]. In the process 
of OXPHOS, electron leaks from the ETC combine with O2 molecules to form 
(O2

·−). Mitochondrial O2
·−, primarily generated in complexes I and III, is cata-

lysed by Cu/ZnSOD or Mn SOD to disproportionate into H2O2. Subsequently, 
H2O2 can be converted to OH· by Fenton reaction. Mitochondrial O2

·− can also 
bind with protons to form uncharged HOO· radicals and subsequently react 
with unsaturated fatty acid of mitochondrial membrane lipids to produce lipid 
radicals. Mitochondrial nitric oxide (NO) interacts with O2

·− to form reactive 
nitrogen oxide species (RNS) such as peroxynitrite (ONOO−), which produce 
cellular dysfunction by S-nitrosylating proteins [62]. Mammalian cells have 
multiple enzymes to degrade H2O2, including peroxiredoxins (Prxs), glutathione 
peroxidases (Gpxs), thioredoxins (Trxs) and catalase. Mitochondrial H2O2 is 
primarily eliminated by the action of Gpx1, Gpx2 and Gpx4, Prx3 and Prx5 and 
Trx2 systems, which requires glutathione (GSH) [63–65]. Oxidized GSH (GSSG) 
is reduced to GSH by glutathione reductase (GR) activity [66]. Similarly, oxi-
dized Trx2 is recycled by Trx reductase (TrxR). These H2O2 scavenging system 
ultimately depends on reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) which is regenerated by three mitochondrial matrix-located enzymes: 
NADP+-linked isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH) 

Figure 2. 
Reactions and transformations of mitochondrial ROS. SOD enzymes catalyse the dismutation of superoxide 
(O2

·−), generating hydrogen peroxide (H2O2). The catalase (CAT), glutathione peroxidases (Gpxs) and 
peroxiredoxins (Prxs) convert H2O2 into water. H2O2 reacts with redox-active iron to generate the hydroxyl 
radical (OH·) through the Fenton reaction. The reaction between O2

·− and nitric oxide (NO·) produces 
peroxynitrite (ONOO−), whose decomposition in turn gives rise to some highly oxidizing intermediates 
including NO2

·, OH·, CO3
· as well as, finally, stable NO3

−. Thus, increased O2
·− levels can also reduce NO· and 

generate ONOO− toxicity. O2
·− by itself can reduce ferric iron (Fe3+) to ferrous iron (Fe2+) in iron-sulphur 

centres of proteins, leading to enzyme inactivation and concomitant loss of Fe2+ from the enzymes. The 
protonation of O2

·− can form the more reactive hydroperoxyl radical (HO2
·).



Free Radical Medicine and Biology

6

Figure 3. 
Physiological regulation by mitochondrial ROS. mROS contribute to the various physiological cellular processes, 
including proliferation, differentiation autophagy, immunity and aging.

and nicotinamide nucleotide transhydrogenase (NNT) [61]. Catalase catalyses 
the decomposition of hydrogen peroxide to water and oxygen, existing as a 
tetramer composed of four identical monomers, each of which contains a heme 
group at the active site. Catalase also requires NADPH as a reducing equivalent to 
prevent oxidative inactivation of the enzyme [67] (Figure 2).

3.  Physiological functions of mitochondrial ROS in diverse cellular 
processes

mROS generation is a ubiquitous phenomenon during life of eukaryotic cells 
[68]. mROS-induced oxidative stress is considered a main contributor to the aetiol-
ogy of both normal senescence and severe pathologies. Under normal physiological 
conditions, mROS emission is accounted for ∼2% of the total O2 consumption, of 
which the decomposition is well-controlled [2]. Accumulation of mROS, which is 
an imbalance of neutralization, induces deleterious consequences such as neuro-
degenerative disease [69], cardiovascular disease [70] and cancers [71]. However, 
depending on the cellular environment, antioxidant machinery-regulated oxida-
tive stress could initiate diverse cellular responses, involved in cell protection, 
initiating coordinated activation of mitochondrial fission and autophagy to carry 
out clearance of abnormal mitochondria and cells, which are to protect spreading 
the damage to the adjacent cells [72, 73]. H2O2 is the primary molecule of mROS 
utilized for intracellular signalling, which selectively reacts with cysteine residues 
in redox-sensitive proteins, altering activities or conformations of the proteins to 
regulate signal transduction [74–76]. Mechanistically, H2O2 oxidizes thiol groups 
(SH) on cysteine residues to form sulphenic acid (SOH), which react with GSH to 
become glutathionylated (GSSG), with neighbouring thiols to form a disulphide 
bond (S-S) or with amides to form a sulphenyl amide (S-N) [77, 78]. In this sec-
tion, we introduce the physiological roles and regulations of mROS in diverse 
cellular processes such as proliferation, differentiation, autophagy, immunity and 
aging (Figure 3).
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3.1 Proliferation

Accumulation of mitochondria-derived ROS enables to prompt cell proliferation 
inhibition and cellular senescence [79, 80]. However, the cells essentially utilize 
mROS for survival and growth via multiple mechanisms in diverse circumstances.

mROS regulate cell proliferation during hypoxia. Under the hypoxic condition 
(a low O2 environment, generally 0.3–3% of O2), the cells raise transcriptional and 
non-transcriptional responses to increase O2 supply, simultaneously reducing O2 
consumption. These adaptations to hypoxia are enhanced by mROS. The hypoxia-
inducible factors (HIFs) such as HIF1, HIF2 and HIF3 orchestrate the transcrip-
tional response to the hypoxia, promoting erythropoietin (EPO) expression to 
increase erythropoiesis, vascular endothelial growth factor (VEGF) to promote 
blood vessel formation and glycolysis enzymes to retain ATP levels [81, 82]. HIFs 
are heterodimers consisting of two basic helix-loop-helix/PAS proteins: a stable 
β-subunit and one of three unstable labile α-subunits (HIF1α, HIF2α and HIF-3α) 
[83, 84]. Under normoxic conditions, prolyl hydroxylase domain protein 2 (PHD2) 
leads to hydroxylation of HIFα at two proline residues, which target via Von 
Hippel-Lindau (VHL) E3 ubiquitin ligase-dependent proteasomal degradation [85]. 
However, under the hypoxic condition, HIFα is stabilized, which is then dimerized 
with HIF-1β and binds HIF-response elements (HRE) to recruit gene transcription 
[86]. Moreover, mitochondrial DNA lacking ρ° cells are unable to stabilize HIFα 
proteins under hypoxic condition, which results from failure of mROS production 
by ETC deficiency. In contrast, MMP reconstitution restores mROS, which leads 
to HIFα and cell proliferation [87]. Chemical inhibition of mitochondrial ETC 
also attenuates mROS production in mitochondria-repleted cells, interrupting to 
stabilize HIFα under hypoxia [88]. Genetic loss of the complex III subunit Rieske 
iron-sulphur protein (RISP) or Cytc also inhibits mROS production and HIFα 
stabilization [89–91]. It is also indicated that mROS are requisite to activate HIFs by 
non-hypoxic stimulus [92].

mROS are also involved in vascular smooth muscle cell (VSMC) proliferation. 
Angiotensin II (AngII) is a peptide hormone basically involved in sodium and 
water homeostasis and vascular contraction, which is also recognized to influence 
cell growth and proliferation [93]. AngII exerts physiological effects by signalling 
via interacting with angiotensin type 1 receptors (AT1Rs) [94]. In VSMCs, AngII 
signalling is required to activate a multitude of mitogenic signalling cascades via 
crosstalk with growth factor receptors such as epidermal growth factor receptor 
(EGFR), platelet-derived growth factor receptors (PDGFR) and insulin receptor 
(IR). Intracellular signalling of VSMC proliferation is stimulated by AngII signalling-
triggered mROS production and subsequently induced via mitogenic serine/threo-
nine kinases, including ERK1/2 and p38MAPK [95].

Despite the detrimental effects, mROS function as signal transduction molecules 
in regulation of stem cells [96]. Depletion of ataxia telangiectasia mutated (ATM) 
kinase or forkhead box O (FOXO) transcriptional factors increases mROS levels, 
which impairs hematopoietic stem cell (HSC) proliferation [97–99]. Although the 
increased mROS level impairs the differentiation of HSCs, a decreased mROS level 
also has negative effects for self-renewal in neural and spermatogonia stem cells 
(SCs) [100, 101].

3.2 Differentiation

mROS function as active signalling molecules for diverse cell differentiation. 
Stem cells (SCs, embryonic or adult) have potentials to self-renew for maintaining 
stem cell pool or differentiate to the multicellular organism and supply de novo 
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functional cells to tissues throughout the life of the organism. During differentia-
tion of SCs, the mitochondrial oxidative metabolism is highly stimulated, and thus 
cellular respiration and mROS production increase [102–105].

In SCs, generally, mitochondria exhibit immature mitochondrial networks 
and primitive cristae [106]. As bone marrow-derived human mesenchymal stem 
cells (MSCs) differentiate to osteoblasts, mitochondrial biosynthesis increases by 
PGC-1α activation [102]. Mitochondrial mass and oxygen consumption increase 
during differentiation of human embryonic stem cells (ESCs) [107] or pluripo-
tent stem cells (PSCs) [108]. Knockdown of the complex III protein RISP or 
mitochondrial-targeted antioxidants inhibited differentiation of human MSCs to 
adipocytes, indicating that mROS are required for differentiation of MSCs [109]. 
Furthermore, during differentiation of human PSCs, uncoupling protein 2 (UCP2) 
expression is repressed, which is required for metabolic transition from glycolysis 
to mitochondrial glucose oxidation. Knockdown of UCP2 expression facilitates 
mROS accumulation, which stimulate the PSC differentiation to cardiomyocytes. 
Ectopic UCP2 expression impairs the differentiation with retardation of mROS 
accumulation and embryonic body formation [110].

mROS, at least within physiological concentrations, have critical roles in pro-
cesses of myogenic differentiation and muscle regeneration [111]. mROS could 
promote mitochondrial biogenesis, which is an essential molecule in myogenic 
differentiation, via peroxisome proliferator-activated receptor gamma coactiva-
tor 1 (PGC1)-activated signalling pathway [112]. Myogenic cells are armed with 
antioxidant enzymes such as SODs, catalase, Gpxs, Prxs, γ-glutamylcysteine 
synthetase (γGCS) and heme oxygenase-1 (HO-1) [113–120]. These antioxidant 
enzymes could play as critical signalling molecules to maintain muscle homeostasis 
in company with primarily neutralizing excessive ROS [121]. mROS facilitate 
myoblast differentiation and hypertrophy via insulin growth factor 1 (IGF1) signal-
ling pathway [111], which enhances phosphorylation of IGF1 receptor (IGF1R) 
[122]. Mitochondrial complex I-derived H2O2 acts as a signalling molecule to induce 
cardiac myogenic differentiation. Chemical inhibition of the complex I and treat-
ment of mitochondrial-specific antioxidant exhibits reduction in mROS production 
and thus impairs the myoblast differentiation [123]. Moreover, mROS induced 
phosphatase and tensin homolog (PTEN) oxidative inactivation and thereby 
stimulated phosphoinositide 3-kinase (PI3K)-AKT signalling pathway to express 
myogenic genes during skeletal myoblast differentiation and muscle regeneration 
[124]. In differentiation of VSMCs, mROS production also elevates to activate p38 
MAPK signalling pathway [125]. However, the complexity of mROS involvement 
still requires further investigation to elucidate the certain roles of oxidative stress in 
myogenic differentiation and muscle regeneration.

3.3 Autophagy

Autophagy is a conserved catabolic process that controls cellular degrada-
tion of unnecessary or dysfunctional cellular components in the lysosome [126]. 
Generally, the autophagy continuously occurs to recycle damaged proteins and 
organelles for cellular homeostasis under normal conditions [127]. The autophagy 
has at least three different types: (1) Macroautophagy (usually referred to as 
autophagy): cytosolic contents are delivered to the lysosome by autophagosomes. 
(2) Microautophagy: the contents are directly introduced into lysosomal mem-
brane. (3) Chaperone-mediated autophagy: the target proteins contain a motif 
KFERQ , and then the chaperone (KFERQ )-protein complex binds lysosome-
associated membrane protein 2A (LAMP2A) receptors on the lysosomal membrane 
[128]. Autophagy induction results in recruitment of autophagy-related proteins 
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(ATGs) to a punctate structure, phagophore assembly site (PAS), where proteins of 
the uncoordinated-51-like kinase 1 (ULK1) complex assemble to initiate autopha-
gosome formation [129].

In autophagy signalling, mitochondria are considered as main source of ROS 
[130]. mROS, especially as H2O2, are required for autophagy induction in response 
to nutrient starvation and rapamycin, tumour necrosis factor α (TNFα) and nerve 
growth factor (NGF) deprivation [131–134]. H2O2 modulates the cysteine protease 
Atg4, which cleaves c-terminus of Atg8 (or light chain 3, LC3), and thus enables 
the addition of phosphatidylethanolamine (PE) to Atg8. Subsequently the active 
Atg8 is conjugated on the autophagosomal membrane, leading to the autophago-
some formation [131]. H2O2 also disrupts the MMP to inhibit Akt/mammalian 
target of rapamycin (mTOR) signalling pathway for autophagy initiation [135, 136]. 
Furthermore, elevated H2O2 induces autophagy via activation of p38 MAPK signal-
ling pathway in cardiac or skeletal muscle [137, 138].

In physiological energy metabolism, mitochondrial ATP production by OXPHOS 
induces mROS generation, resulting in a certain degree of constitutive mitochon-
drial damage and submitochondrial particles. The damaged mitochondria cause 
ATP depletion and Cytc release, which eventually leads to activation of caspases 
and then onset of apoptosis [139, 140]. To prevent cell death, the dysfunctional 
mitochondria are thus sequestered from the mitochondrial network and eliminated 
by selective autophagy, mitophagy, to properly maintain mitochondrial quantity 
and quality [130]. Therefore, mitophagy limits further mROS generation, which 
promotes turnover of mitochondria and avoids accumulation of dysfunctional 
mitochondria. Mitophagy is mainly controlled by the PTEN-induced kinase 1 
(PINK1)-Parkin pathway, which is stimulated upon the MMP depolarization. 
PINK1 is a Ser/Thr kinase that translocates on the outer mitochondrial membrane, 
which is stabilized by low MMP, thereby sensing mitochondrial depolarization 
[141–143]. Then, PINK1 recruits Parkin that ubiquitylates OMM-located pro-
teins such as VDAC1, resulting in recruitment of autophagic machinery and the 
selective sequestration of ubiquitylated mitochondria within autophagosomes 
[130]. Furthermore, the mitochondrial proteins, BCL2/adenovirus E1B 19-kDa-
interacting protein 3 (Bnip3) and Bcl-2/adenovirus E1B 19-kDa-interacting protein 
3 (Bnip3L/NIX), participate in mitophagy [144]. In response to oxidative stress 
after ischemia/reperfusion (I/R), Bnip3 is homodimerised, to be activated, result-
ing in induction of mitophagy [145]. NIX, an atypical BH3 protein, is required for 
mitophagy in erythrocyte development. It directly recognizes autophagosome-sited 
GABA receptor-associated protein (GABARAP) that is a functional homolog of LC3 
and subsequently induces mitophagy [126, 146]. Bnip3 and NIX directly bind to 
the autophagy machinery components, differently to PINK1 or Parkin [147]. ULK1 
also regulates mitophagy via translocation to mitochondria to phosphorylate FUN14 
domain containing 1 (FUNDC1) protein, a mitochondrial outer membrane protein, 
which is a receptor for hypoxia-induced mitophagy [148].

3.4 Immunity

In immune system, it is well known that ROS contribute to directly eliminate 
pathogens via the oxidative burst mediated by NADPH oxidases (NOXs) that are 
plasma membrane-bound enzyme complexes in phagosomes. However, intracel-
lular redox state intervened by mROS has emerged to be essential for innate and 
adaptive immune responses [149, 150].

mROS are crucial for Toll-like receptor (TLR) signalling pathways [19]. 
Activation of cell surface TLRs such as TLR1, TLR2 and TLR4 increases in mROS 
production via TNF receptor-associated factor 6 (TRAF) and evolutionary 
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conserved signalling intermediate in Toll pathways (ECSIT) signalling pathway 
[151]. The TRAF6 or ECSIT depletion promotes reduction of mROS generation in 
macrophages and thus impairment of bacterial clearance [151]. Lipopolysaccharide 
(LPS)-induced pro-inflammatory cytokines such as TNFα and IL-6 are controlled 
by mROS generation [152]. Innate immune response enhancement in patients with 
TNF receptor-associated periodic syndrome (TRAPS) that is an autoinflammatory 
disorder is affected by missense mutations in the type 1 TNF receptor (TNFR1), 
which might be attributable to mitochondrial ROS generation [152].

mROS control pattern recognition receptors (PRRs) such as nuclear oligomer-
ization domain (NOD)-like receptors (NLRs). NLRs form multisubunit protein 
complexes termed inflammasomes that activate caspase-1 resulting in proteolytic 
cleavage and pro-inflammatory cytokine IL-1β maturation [153, 154]. Pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular patterns 
(DAMPs) such as lipopolysaccharide (LPS), asbestos, ATP and uric acid activate 
NLR family pyrin domain containing 3 (NLRP3) inflammasome via mROS genera-
tion [155, 156]. Pharmacologic or genetic inhibition of autophagy elevates mROS 
concentration, which heightens inflammasome activation [157, 158]. Increase of 
mROS persuades lysosomal membrane permeabilization, which is required for 
NLRP3 activation [159]. Activation of NLRP3 inflammasome results in mitochon-
drial damage, interrupting mitophagic signalling [160]. Notably, calcium influx 
contributes to mitochondrial damage, which might increase mROS production and 
mtDNA release to amplify NLRP3 inflammasome activation [161, 162]. However, it 
remains to be further delineated how PAMPs and DAMPs increase mROS to prop-
erly activate NLRP3 inflammasome.

In adaptive immune responses, T cells are functionally crucial in response to the 
pathogens [150, 156]. In infectious condition, naïve T cells promptly proliferate and 
differentiate into effector T cells [163]. The activation of T cells requires increase in 
glycolysis and mitochondrial metabolism for synthesis of macromolecules in process 
of the proliferation and differentiation [156, 164, 165]. Elevated mROS concentra-
tion contributes to the T-cell activation; treatment of antioxidants inhibits cellular 
proliferation and interleukin-2 (IL-2) production [166]. Similarly, antioxidant 
administration to mice exhibits their reduced immunity after infection of the virus, 
suggesting that mROS are indispensable for the T-cell functions in vivo [167, 168]. 
The T-cell receptor (TCR) stimulation induces mROS production from complex I, 
which leads to activation of NF-κB and AP1 signalling, and in turn facilitates IL-2 
and IL-4 productions that are imperative drivers in T-cell activation [169, 170].

3.5 Aging

Aging is a process that is concomitant with the accumulation of cellular damage 
over the time of all living organisms. In the 1950s, Denham Harman suggested the 
‘free radical theory of aging’ as a molecular explanation for aging [171], in which free 
radicals, as byproducts of energy metabolism, develop cumulative cellular damage 
resulting in loss of organismal ability over time. The theory has been revised that 
the mitochondria-derived free radicals are causative of aging [172]. Mitochondrial 
dysfunction and consequent excessive ROS production result in inevitable cellular 
damage and subsequent cell death [173]. Oxidative damage to genomes, proteins and 
lipids has been associated with mitochondrial dysfunction and ultimately cellular 
senescence or death [174]. Consistently, overexpression of antioxidant enzymes 
reduces ROS production and subsequently protects DNA, which is interconnected to 
a prolonged life span in Drosophila melanogaster [175, 176].

Despite numerous evidences underpinning the detrimental roles of mROS in 
aging, the discoveries are questioning a direct correlation between oxidative stress 
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and the lifespan. A mitochondrial enzyme, doublecortin-like kinase 1 (MCLK1), 
reduction induces mitochondrial dysfunction that displays the regression of 
electron transport in mitochondrial respiratory chain and decline of TCA cycle 
activity [177]. In Drosophila melanogaster, mROS levels elevate along with age, but 
do not intervene with life span [178]. Furthermore, moderate ROS levels have been 
associated with an extension of longevity in Drosophila melanogaster and in young 
mice [179–181]. Therefore, physiologically controlled mROS might activate adaptive 
responses that are beneficial to the organism and extend life span.

4. Conclusion

Mitochondria are primary energy producers to generate ATPs via oxidative 
phosphorylation. For a long time, mROS have been considered as byproducts of 
biological energy metabolism during the ATP generation or by cellular redox system 
imbalance, which are highly aggressive and detrimental to the neighbouring cells 
and tissues. However, the roles of mROS have been extensively substantiated to 
understand normal physiology and pathology over the past decades. Mitochondria-
derived H2O2 have been unequivocally recognized as essential molecules in a range 
of physiological processes in cells.

In this chapter, we have provided a brief discussion of current understanding of 
physiological roles of mROS by which mitochondria indeed contribute to the imple-
mentation of cellular proliferation, differentiation autophagy, innate and adaptive 
immunity and aging. In understanding the mechanisms regulating mitochondrial 
physiology and homeostasis, mROS production might provide a significant poten-
tial for the development of novel therapeutic strategy for the treatment of a wide 
range of human pathologies.
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