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Introduction

Digital epidemiology, also referred to as digital disease detection (DDD), is motivated by the

same objectives as traditional epidemiology. However, DDD focuses on electronic data sources

that emerged with the advent of information technology [1–3]. It draws on developments such

as the widespread availability of Internet access, the explosive growth in mobile devices, and

online sharing platforms, which constantly generate vast amounts of data containing health-

related information, even though they are not always collected with public health as an objec-

tive. Furthermore, this novel approach builds on the idea that information relevant to public

health is now increasingly generated directly by the population through their use of online

services, without their necessarily having engaged with the health care system [4, 5]. By utiliz-

ing global real-time data, DDD promises accelerated disease outbreak detection, and examples

of this enhanced timeliness in detection have already been reported in the literature. The most

recent example is the 2014 Ebola virus outbreak in West Africa [6]. Reports of the emerging

outbreak were detected by digital surveillance channels in advance of official reports. Further-

more, information gleaned by the various datasets can be used for several epidemiological

purposes beyond early detection of disease outbreaks [7, 8], such as the assessment of health

behavior and attitudes [4] and pharmacovigilance [9].

This is a nascent field that is developing rapidly [10]. While changes in the ways in which

epidemiologic information is obtained, analyzed, and disseminated are likely to result in great

social benefits, it is important to recognize and anticipate potential risks and unintended conse-

quences. In this article we identify some of the key ethical challenges associated with DDD

activities and outline a framework for addressing them. We argue that it is important to engage

with these questions while the field is at an early stage of evolution in order to make ethical

awareness integral to its development.

The Context in Which DDDOperates

DDD operates at the intersection of personal information, public health, and information tech-

nologies, and increasingly within the so-called big data environment. Big data lacks a widely

accepted definition. The term has, nevertheless, acquired substantial rhetorical power. We use

it here in the sense of very large, complex, and versatile sets of data that are constantly evolving

in terms of format and velocity [11]. This dynamic environment generates various ethical chal-

lenges that relate not only to the value of health for individuals and societies, but also to
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individual rights and other moral requirements. In order to spell out these challenges and pos-

sible ways of meeting them, it is necessary to take into account the distinctive nature of DDD

and the broader context in which it operates. Generally, these distinct features are linked to the

methods by which data are generated, the purposes for which they are collected and stored, the

kind of information that is inferred by their analysis, and eventually how that information is

translated into practice [12]. More specifically, some of these relevant features include those

outlined below—namely, the steady growth of digital data, the multifaceted character of big

data, and ethical oversight and governance.

The steady growth of digital data

The amount of data that is generated from activities facilitated by the Internet and mobile tech-

nologies is unprecedented. The global number of mobile-cellular subscriptions is close to the

world’s population figures, with a total penetration rate of 96%. The mobile-cellular penetra-

tion rate in developing countries is 89%, and about 40% of the world’s population is connected

to the internet [13]. 82% of the world’s online population uses social media and networks. [14].

More than 40,000 health apps are available, and a new higher-level Internet domain name

“health” is about to be released [15, 16]. Not surprisingly, personal data have recently been

described as a new asset class with the potential to, among other things, transform health care

and global public health [17].

The multifaceted character of big data

Big data cannot be readily grouped into clearly demarcated functional categories. Depending

on how they are queried and combined with other datasets, a given dataset can traverse catego-

ries in unpredictable ways. For example, health data can now be extracted from our purchases

of everyday goods, our social media exchanges, and our web searches. New data analytics con-

stantly change the kinds of outcomes that become possible. They go beyond early identification

of outbreaks and disease patterns to include predictions of the event’s trajectory or likelihood

of reoccurrence [18, 19]. These new possibilities render good data governance, which ensures

their ethical use, all the more complex.

Ethical oversight and governance

Public health surveillance and public health research are governed by national and internation-

al legislation and guidelines. However, many of these norms were developed in response to

very different historical conditions, including technologies that have now been superseded

[20]. Such mechanisms may not be appropriate or effective in addressing the new ethical chal-

lenges posed by DDD, nor the questions that will be raised if DDD is effectively integrated into

standard public health systems. Health research utilizing social media data and other online

datasets has already exerted pressure on existing research governance procedures [21].

Ethical Challenges

Against this background we have identified three clusters of ethical challenges facing DDD that

require consideration (Table 1).

A. Context sensitivity

At the crux of the debate on the ethics of big data lies a familiar, but formidably complex,

question: how can big data be utilized for the common good whilst respecting individual rights

and liberties, such as the right to privacy? What are the acceptable trade-offs between

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1003904 February 9, 2015 2 / 7



individual rights and the common good, and how do we determine the thresholds for such

trade-offs? These ethical concerns and the tensions between them are not new to public health

research and practice, but now they must be addressed in a new context, with the result that

appropriate standards may vary according to the type of big data activity in question.

It is clear that the context of DDD differs in significant ways from other types of big data ac-

tivity concerned with health. DDD has a public health function, aiming ultimately to improve

health at the population level. Public health is a common good from which all individuals bene-

fit and one that is essential to human development and prosperity. There is a clear contrast

here with forms of corporate activity that may use the exact same data (i.e., social networking

data), but for other purposes, such as advertising. The former aims at fostering a public good

(health); the latter at generating a corporate profit. Such differences have important ethical

implications. A context-sensitive understanding of ethical obligations may reveal that some

data uses that may not be acceptable within corporate activity (e.g., user profiling and data

sharing with third parties) may be permissible for public health purposes. Furthermore, societal

obligations to foster the common good of public health may generate duties on corporate data

collectors to make data available for use in DDD.

Pursuing this line of thought, it is arguable that privacy considerations that apply in stan-

dard public health practice will have to be creatively extended and adapted to the case of DDD.

This will result in new standards that relate to data from a diverse range of sources, e.g., self-

tracking, citizen scientists, social networks, volunteers, or other participatory contexts [22, 23].

Such new standards are urgently needed, especially as greater convergence of datasets becomes

possible. An illustration of global activity on this front is the United Nations Global Pulse proj-

ect [24]. This project explores the concept of data philanthropy whereby public–private part-

nerships are formed to share data for the public good. Such so-called data commons, operating

on the basis of clear rules about privacy and codes of conduct, can profoundly affect disease

surveillance and public health research more generally.

Table 1. Mapping the ethical issues in digital disease detection.

Categories Ethical Challenges Specific Examples Values

Context sensitivity Differentiating between commercial versus public
health uses of data

Is identification permitted? Is consent required for
DDD uses? If so, has consent been obtained? Can
it be revoked?

Privacy and contextual
integrity

User agreements, terms of service, participatory
epidemiology

Are users protected in all contexts irrespective of
privacy laws that differ according to jurisdiction?

Transparency

Global health issues Are privately collected data open to global public
health uses?

Global justice

Nexus of ethics and
methodology

Robust methodology: algorithm validation,
algorithm recalibration, noise filtering, and
feedback mechanisms

False identification of outbreaks and inaccurate
predictions of outbreak trajectory

Risk of harm

Pressure to mobilize public health resources in light
of rapidly spreading unvalidated predictions

Fair use of resources

Data provenance Awareness about public health uses of personal
data (in aggregated form)

Trust, transparency,
accountability

Legitimacy
requirements

Best practice standards Is there a shared code of practice amongst all those
working on DDD?

Trustworthiness

Monitoring bodies (policies for ongoing monitoring
and action plans for correction of false results)

Is there a mechanism for quick response to
inaccuracies about outbreaks?

Trust, transparency,
accountability

Paced integration of DDD to standard surveillance
systems

Are there mechanisms for redressing harms caused
by DDD activities?

Justice

Communication to the public (prevent hype) Management of expectations Common good

doi:10.1371/journal.pcbi.1003904.t001
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Another dimension of context relates to global justice. Historically, new health tools have

been predominantly used to improve the health of inhabitants of the better-off parts of the

world. DDD projects that access global data are often less costly than traditional public health

approaches. They could thus offer a potential breakthrough in early disease detection that would

benefit communities throughout the world [25, 26]. However, this potential brings moral obliga-

tions in its train. This requires not only efforts to detect diseases in poorer parts of the world but

also measures to ensure that the way data are collected and processed respect the rights and in-

terests of people from these diverse regions and communities. This raises difficult questions of

cultural relativity, such as whether standards of privacy can take different forms in relation to

different cultures or whether some minimal core of uniform standards is also justified.

B. Nexus of ethics and methodology

Robust scientific methodology involves the validation of algorithms, an understanding of con-

founding, filtering systems for noisy data, managing biases, the selection of appropriate data

streams, and so on. Some have expressed skepticism about the role that DDD can play in public

health practice given its early state of development [27]. In 2013, when Google Flu Trends

overestimated flu prevalence levels in the US, further concerns were raised about the sensitivity

of this methodology to the digital environments created by users’ behavior—for example, dif-

ferent uses of search terms [28] from those used to develop the initial algorithm or the distort-

ing influence of searches arising from media coverage of the flu [29, 30].

Methodological robustness is an ethical, not just a scientific, requirement. This is not only

because limited resources are wasted on producing defective results or because trust in scientif-

ic findings is undermined by misleading or inaccurate findings. There is a further risk of harm

to individuals, businesses, or communities if they are falsely identified as affected by an infec-

tious disease. The harm can take many forms, including financial losses, such as a tourist region

being falsely identified as the location of a disease outbreak; stigmatization of particular com-

munities, which may adversely affect individual members; and even the infringement of

individual freedoms, such as the freedom of movement of an individual falsely identified as

a carrier of a particular disease.

The issue of data provenance comes within the remit of ethically sound methodology. Cur-

rently published DDD studies and other initiatives have mostly used data that are in the public

domain (e.g., Twitter) or that have been contributed by individuals with their explicit consent

for use in disease surveillance (flunearyou.org). While in principle data in the public domain

are open to being used for public health purposes, what constitutes public domain on the Inter-

net is the subject of lively debate [31]. Especially in the context of data derived from social net-

work interactions, it remains unclear whether users understand in what ways their data can be

used and who may access them [32]. Any DDD project will inevitably have to navigate this

uncertain environment and so must exercise diligence about data provenance and exhibit

transparency about its uses.

C. Bootstrapping legitimacy

Legitimacy concerns the extent to which DDD is actually ethically justified in imposing the

compliance burdens that it does and also the extent to which it is perceived to be ethically justi-

fied. In recent years the concept of “global health security” has been mobilized by international

organizations, nongovernmental organizations, and national governments to strengthen the

legitimacy of systems of disease surveillance both nationally and globally. The idea of human

security has been expanded to include health (protection from infectious diseases and other

health hazards), augmenting state responsibilities to provide appropriate safeguards. The
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revised International Health Regulations [33], which set out a global legal framework for dis-

ease detection and response, are premised on the understanding that in our globalized world

diseases spread rapidly and therefore on the need for the timely notification of any public

health threat of potentially international significance. They also recognize the importance of

information gathering from various sources, including unofficial or informal ones, whilst also

requiring that the validity of such information be verified [34]. This creates a legitimate space

for DDD activities because they are precisely responses to both the accelerated detection and

the global nature of the spread of disease.

However, even if ethical arguments already justify the DDD enterprise, they only serve as

a starting point. DDD will have to build its own legitimacy over time as an integral part of its

approach. This means that the issues under categories A and B have to be constantly engaged

with thorough processes that bootstrap DDD’s legitimacy, so it is continuously self-generating

and enhanced over time. So, for example, it is not enough simply to appeal to the great contri-

bution that DDD stands to make to the common good of public health. It is important that this

contribution is made in certain ways rather than others, through transparent procedures that

are worthy of engendering trust among those individuals whose data are used in DDD.

Current regulatory and ethical oversight mechanisms are ill-equipped to address the entire

spectrum of DDD-type activities. The distinction between public health and public health

research has long been considered a problematic one, and this is even more evident in the

DDD context. Consider an analogy with participant-led biomedical research—a growing

movement of people collecting data about themselves and conducting various forms of re-

search in large groups. Either such activities fall through the cracks of the existing oversight

mechanisms or else, if they do not, those mechanisms impose inappropriate burdens upon

them [35, 36]. Participatory approaches to disease surveillance confront similar challenges.

Individuals report on disease symptoms on online platforms, (e.g., flunearyou.org) which en-

ables them to contribute to the common good of disease surveillance and often to receive feed-

back about disease prevalence in their area [37]. This active participation potentially empowers

individuals and democratizes the process of scientific discovery. However, data (personally

identifiable information, geolocation, etc.) that are collected for DDD purposes need to be gov-

erned in ways that minimize the risk of harm to participants. For example, if individuals take

personal risks in order to report events of public health importance (i.e., a farmer reporting

avian flu at risk of losing his flock), those risks should be mitigated by appropriate policies

(e.g., compensation) that acknowledge the societal contribution and the local/personal costs.

For the purposes of ensuring its legitimacy, DDDmust develop internal mechanisms such

as its own best-practice standards, including monitoring boards with the concrete mandate to

ensure that risks and costs to individuals and communities are proportional to benefits. Such

boards should also be empowered to negotiate compensation schemes for harms that have

been suffered. As in standard public health practice individuals may be adversely affected by

a practice that aims to secure the health of the population. However, this laudable goal does

not remove the obligation to respect individual rights and dignity in its pursuit. Neither of

these standards are to be equated with an automatic insistence on individual consent. Instead,

they consist of distinct individual entitlements, of the sort set out in the Universal Declaration

of Human Rights, and the inherent value in all human beings, which underlies them.

Conclusions

The emergence of DDD promises tangible global public health benefits, but these are accompa-

nied by significant ethical challenges. While some of the challenges are inherent to public

health practice and are only accentuated by the use of digital tools, others are specific to this
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approach and largely unprecedented. They span a wide spectrum, ranging from risks to indi-

vidual rights, such as privacy and concerns about autonomy, to individuals’ obligations to

contribute to the common good and the demands of transparency and trust. We have grouped

these concerns under the headings of context sensitivity, nexus of ethics and methodology, and

bootstrapping legitimacy. It is vital that engagement with these challenges comes to be seen as

part of the development of DDD itself, not as some extrinsic constraint. We intend this paper

to be a contribution to the development of a more comprehensive and concrete ethical frame-

work for DDD, one that will enable DDD to find an ethical pathway to realizing its great poten-

tial for public health.
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