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PREFACE 

This book is initiated by the engineering experience of the author. Throughout his career the 

author has encountered many of the problems known to others involved in the design of elec-

troacoustic transducers. The fact of the matter is that the complexity of designing electroacous-

tic transducers is inherent in the multidisciplinary nature of the subject. Therefore, the develop-

ers and designers of the transducers must possess the knowledge of several different theoretical 

disciplines (such as the vibration of mechanical systems, electromechanical conversion by de-

formed piezoelectric bodies, and acoustic radiation) and be able to actively use this knowledge 

to derive equations that describe the performance of the transducers. Furthermore, creating 

practical transducer designs that meet certain requirements and can operate under realistic en-

vironmental conditions requires the knowledge of properties of materials used and a certain 

level of engineering intuition that cannot be developed without a clear understanding of the 

underlying physics. Hardly anyone may possess all these capabilities without having received 

a specially targeted education, which, to the best of the author’s knowledge, is not commonly 

available in the academic world. Usually, the necessary skills may be acquired through self-

education, which was the case for the author. The main difficulties that arise in this endeavor 

are not in the lack of available information. On the contrary, the theoretical disciplines listed 

above are very well developed and are well-represented in the literature. Nevertheless, all these 

disciplines employ different methods for solving their problems and the results obtained are 

usually presented in forms not suitable for direct use in concert for synthesizing equations that 

govern transducer performance. Thus, the results must be tailored accordingly. 

Experiencing the above difficulties over several decades, the author gradually developed a 

special approach to treating transducers problems that allows one to overcome many of the 

obstacles. The essence of this approach is in the consistent application of the physics-based 

energy method for solving all the problems that arise in the course of treating electromechanical 

and electroacoustic transducers. The first attempt to describe this concept was undertaken in 

Electromechanical transducers from piezoelectric ceramic published in 1990 in Russia. This 

version has now been updated and expanded to the extent that it can be considered a completely 
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different book. Only the underlying energy approach to solving the problems has remained 

unaltered. This book is written for students, applied scientists and engineers in a way that should 

prove fruitful both for those who have only begun to chart their careers in electroacoustics as 

well as for those at a more advanced level. The content of the book is split into four p arts. 

In Part I, titled “Introduction of energy method of treating the transducers,” the main con-

cepts of the method are considered (Chapter 1); applications of the method to calculating prop-

erties of transducers with single degree of freedom are illustrated (Chapter 2); and the study of 

problems for designing the transducers as a part of the transmit/receive channel is made (Chap-

ter 3). The main concept is that of energy and following its transformation. Different types of 

energies involved in the electro-mechano-acoustic conversion in the course of transducer oper-

ation are presented in the generalized coordinates. All the governing equations are derived from 

the energy principles, that is, from the Law of Conservation of Energy for transducers with a 

single mechanical degree of freedom, and from the Principle of Least Action for transducers 

with multiple degrees of freedom. Equations describing the electromechanical part of the prob-

lem are reinterpreted as Kirchhoff’s equations for the corresponding equivalent electromechan-

ical circuits. In Chapter 2, the general approach is applied towards calculating the properties of 

transducers of widely used types (spheres, cylinders, bars undergoing extensional vibration and 

for circular plates and rectangular beams vibrating in flexure) that may be considered as systems 

with single mechanical degree of freedom. In Chapter 3, the operating properties of transducers 

as a part of a transmit/receive channel are considered and some recommendations regarding a 

rational transducer designing are presented. Given that the single degree of freedom approxi-

mation covers many practical transducer designs, Part I can be regarded as a self-sufficient 

study of underwater electroacoustic transduction on a basic level and can be read independently 

from the rest of the book. 

The general treatment of electroacoustic transduction requires an advanced knowledge of 

the vibration of mechanical systems, electromechanical conversion in the deformed pie-

zoceramic bodies and acoustic radiation. Information about these topics, which is necessary for 

the consideration of virtually all practical transducer types is presented in Chapters 4-6 of Part 

II under the title: “Subsystems of the Electroacoustic Transducers.” All the constitutive equa-

tions are derived in these chapters from the Principle of Least Action as Euler’s Equations in 
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generalized coordinates. The obtained results are presented in the form of impedances, (includ-

ing the radiation impedances), electromechanical transformation coefficients and acting forces 

(including those of acoustic origin) that can be directly substituted into the equivalent electro-

mechanical circuits (multi contour in general) of the transducers. The diffraction coefficients 

and directional factors for differently configured transducer surfaces are also presented. 

In Chapter 4, special attention is paid to the consideration of coupled vibrations in the 

generally two-dimensional mechanical systems. The results allow determining the range of as-

pect ratio, at which the system can be approximately considered as one-dimensional, where the 

problem can be simplified. 

In Chapter 5, especial importance is ascribed to the theorem that sets the conditions, at 

which the electromechanical conversion under the longitudinal and transverse piezoelectric ef-

fects can be treated qualitatively in the same way. This allows for the unifying calculation tech-

nique for the transducers that employ these types of ceramics polarization. Another important 

subject is the general analysis of optimizing the effective coupling coefficients in nonuniformly 

deformed piezoceramic bodies. 

Chapter 6 touches upon several noteworthy issues. Besides solving the general radiation 

problems, it provides a detailed consideration of the effects of baffling parts of the surfaces of 

cylindrical and spherical transducers, which ensures their unidirectionality. The technique for 

the experimental investigation of the acoustic interaction between transducers (or between the 

mechanically isolated parts of the same transducer) is also analyzed. Since the baffles have an 

effect on the acoustic near field, the interactions can rarely be treated analytically for practical 

transducer configurations, hence more reliable characterization of the interaction can be ob-

tained through an experimental investigation. 

The results obtained in the Part II are used in Part III of the book titled “Calculating trans-

ducers of different types” for synthesizing equations that describe the detailed operation of 

transducers of various configurations: cylindrical (Chapter 7), spherical (Chapter 8), plates and 

beams vibrating in flexure (Chapter 9) and bar transducers (Chapter 10). 

Chapter 7 presents a study of cylindrical transducers that employ multimode extensional 

and flexural vibration of complete and incomplete cylinders (slotted cylinder projectors are also 

considered) for various practical applications. Different modes of the cylinder polarization are 
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considered, including the tangential polarization (with striped electrodes). An extensive study 

is provided of the effects of coupled vibrations on the electromechanical and acoustic perfor-

mance of transducers that employ cylindrical piezoelements having finite thickness to diameter 

aspect ratios. Chapter 8 covers transducers which employ general multimode extensional vibra-

tions of complete and incomplete piezoceramic spherical shells, (hemispherical in particular). 

The baffling of the parts of the surface that allows using multiple modes of vibration for unidi-

rectional transducer operations is also considered. 

In Chapter 9, a general analysis is provided of transducers which feature flexural vibrations 

of circular and rectangular piezoceramic plates (beams), including non-uniform over thickness 

and radius (length) transducer designs. Optimizing the effective coupling coefficients of the 

transducers is considered making use of the nonuniformity of the distribution of deformations 

in the volume of the plates. Corrections for transducer parameters due to a finite thickness to 

radius (length) ratio of the plates are taken into account. It is then concluded that the accuracy 

with which the wave numbers can be predicted substantially depends on the aspect ratio (espe-

cially for the higher modes of vibration) and presenting their values without the notion of the 

aspect ratios is not appropriate. 

In Chapter 10, the length expander bar transducers are considered Transitions of configu-

rations of bars to thickness vibrating plates at different polarizations and related dependencies 

of their effective coupling coefficients on the aspect ratios are considered using the technique 

of coupled vibrations. Relatively small attention is paid to the widely used Tonpilz transducer 

designs because they have already been described in detail in the available literature. 

Part IV (Chapters 11 through 15) is titled: “Some aspects of the transducers designing.” 

In Chapter 11, a review of the existing data and some new results is presented regarding 

effects of operating environmental conditions, such as the hydrostatic pressure, temperature, 

and drive level on the parameters of piezoceramics. It is emphasized that, under these condi-

tions, the parameters of ceramics may deviate significantly from those that are given in speci-

fications for normal conditions. Moreover, they may differ for samples of ceramics supplied by 

different (and even by the same) manufacturers. This must be kept in mind when calculating 

the operating parameters of transducers under real conditions and in estimating a reasonable 

accuracy of calculation of the parameters. The variations in the parameters of transducers 
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intended for operating at great depths can be avoided by using designs, which incorporate hy-

drostatic pressure compensation. Issues related to the practical implementation of the pressure 

compensation are examined in Chapter 12 (more general information), in Chapter 13 (regarding 

the liquid filled cylindrical projectors) and in Chapter 14 (regarding the hydrophones). 

Chapter 13 presents some considerations regarding the practical challenges of the projec-

tors design. Using the concept of the Reserves-of-Strength for improving parameters of the 

transducers of different types by optimizing their matching with the acoustic field is considered. 

The possibilities of increasing the dynamic and static mechanical strength of the projectors by 

prestressing and combining piezoceramic with passive materials in their mechanical systems 

are analyzed. 

Chapter 14 is dedicated to the design of hydrophones and related issues. The hydrophones 

employing different transducer types are classified by the pressure and pressure-gradient hy-

drophones of the diffraction and motion types. Their properties as a source of energy of signal 

and internal noise for a receive channel are considered. Special attention is paid to the response 

of the hydrophones and accelerometers to unwanted actions and to measures aimed at increas-

ing their noise immunity. 

 Chapter 15 is crucial for the structure of the book because it introduces the practice of 

combining Finite Element Analysis (FEA) with analytical energy methods. This is illustrated 

with examples of flextensional and oval transducers. Combining powerful computer-based FEA 

techniques that are used to obtain results for vibration mode shapes with the energy method that 

yields great physical insight opens up a new area of research collaboration for many transducer 

problems. FEA allows the determination of the vibration mode shapes for mechanical systems 

that cannot be approximated analytically due to the complexities of the mechanical system and 

its boundary conditions. 

The book also contains appendices with information on the properties of the piezoelectric 

ceramics and passive materials that may be used in transducer designs, and on the properties of 

the special functions that are referred to throughout the book. 

In summary, the book presents methods for calculating the properties of most common 

electroacoustic transducer problems with particular focus on underwater applications. Moreo-

ver, by combining the FEA technique to determine the prerequisite vibration mode shapes with 
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the energy method, virtually any transducer type may be analyzed. Still however, when it comes 

to choosing and designing a particular transducer for a particular application under demanding 

operating and environmental specifications – this remains somewhat of an art. Thus, recom-

mendations of transduction choices for representative problems remain a guide and not a pre-

scription for success. 

It is inevitable that the book may contain typographical or content errors and thus the author 

would welcome the readers’ comments and notifications of such. 

 

Boris S. Aronov 
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CHAPTER 4 

VIBRATION OF ELASTIC BODIES 

4.1 Introduction 

Equations of motion of elastic bodies will be derived throughout this treatment from the Least 

Action Principle regardless of the coordinate system used, as the corresponding Euler’s equa-

tions. The forms of Euler’s equations that depend on the type of function describing an energy 

status of the vibrating system were stated in Section 1.6.2.1. Thus, in the case that the kinetic 

energy, potential energy and the energies of external actions for a body ( kinW , potW  and eW ) 

depend on the generalized velocities 
i , and generalized coordinates (displacements) i , re-

spectively, vibration of the body is described by the system of Euler-Lagrange equations (1.93) 

 , ( 1,2,...).
potkin e

i

i ii

WW Wd
f i

dt  
  

+ = = =    
 (4.1) 

If vibrations of a volume element of an elastic body in the geometry coordinates are concerned, 

in which case the energies of the element (kinetic kinw , potential potw  and energy ew  supplied 

to the volume element by external actions) depend on the velocity  , displacement   and its 

derivative x   as functions of the geometry coordinates, the Euler’s equations in the form (1.95) 

are applicable 

 
potkin e

x

ww wd

dt x  
    

− =        
. (4.2) 

To further specify the Euler equations, an appropriate to a particular case coordinate system has 

to be chosen and explicit expressions for the energies involved in these equations must be ob-

tained. At first, we will consider the problem in the geometrical coordinates. 

4.2 Information on the Theory of Elasticity 

4.2.1 Strain and Stress Tensors 

External actions may result in certain changes in the form and volume of an elastic body. The 

changes are characterized by the elastic body deformations. A body volume element will be 
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considered in orthogonal rectangular coordinate system with coordinates 1 2 3, ,x x x  (Figure 4.1 

(a)). Mathematically deformations are expressed through displacements of the points of the 

body ( )1 2 3 1 2 3, , ,x x x   = + +i j k where i, j, k are the unit vectors of the coordinate system. 

The expressions for the components of the tensor of deformations are of the form 

 

11 1 1 22 2 2 33 3 3

3 32 1
23 32 13 31

3 2 3 1

1 2
12 21

2 1

, , ,

1 1
,

2 2

1
.

2

S x S x S x

S S S S
x x x x

S S
x x

  

  

 

=   =   =  

     
= = + = = +         

  
= = +   

 (4.3) 

Strains 11S , 22S , 33S  characterize elongation in the directions of coordinate axes (Figure 4.1 

(b)); 23S , 13S , 12S  characterize a change in the angles between linear elements, which were 

parallel to the corresponding axes prior to deformations. As it is obvious from Figure 4.1 (c), 

13 13 31( ) / 2S  = + . If a deformed element of the volume is turned by the angle 31 , we obtain 

deformation due to a simple displacement, under which the cross section planes move in parallel 

to one of the coordinate planes. So, the displacement angle is 13 31 13( ) 2S  = + = . 

 

Figure 4.1: Components of tensors of the stress and strain in rectangular coordinates. 

Further, along with the two number index designations of strain and stress, we will also use for 

brevity the single number designations, introduced as follows 11 1 22 2, ,S S S S= = 33 3S S= , 

23 42 ,S S= 13 5 12 62 , 2S S S S= = . In these designations 4 5 6, ,S S S  are changes of angles be-

tween the respective sides of a volume element under deformation. 

The potential energy of an elastic body made of passive materials is a function of its defor-

mation, and the process of deformation under vibration is considered adiabatic. The change in 

the potential energy of a volume element under deformation is 

2
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1

T33
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T31
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x2

x1

x3
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3
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



1
1
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x






1

3

1

3
3

3

S
x

x






1
1

1
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x


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
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6

1

pot

pot i i i

i i

w
w S T S

S
  

=


= =

 , (4.4) 

where /i pot iT w S=    are the mechanical stresses. In relation (4.4) the rule is used, according 

to which the summation is supposed to be performed over the repeating indices in the products 

of the vector or tensor components, so that 

 
6

1

i i i i

i

T S T S 
=

= . (4.5) 

The mechanical stresses are the forces that act on the sides of an elementary volume and that 

are reduced to their unit area. The stresses 1 11T T= , 2 22T T= , 3 33T T=  act along the normal to 

the sides of the volume in the direction of the coordinate axis, which corresponds to the stress 

index. The stresses 4 23T T= , 5 13T T= , 6 12T T=  act tangentially to the sides that are perpendicu-

lar to the axis corresponding to the first number and go in the direction of the axis corresponding 

to the second number. 

It is established experimentally that under small deformation the mechanical stresses de-

pend on deformations linearly, so that 

 1 ( / ) ( ,  1,2,...,6)i j jT T S S i j=   = , (4.6) 

where /i jT S   = 2 /pot i j ijw S S c   =  are the elastic moduli. 

Equations (4.6) represent Hooke’s law, the equations of state for an elastic body (in our case, 

under adiabatic conditions). The elastic moduli are determined experimentally. The number of 

independent moduli of elasticity depends on the symmetry of the material structure. In an iso-

tropic body the independent terms are two constants  and , which are called Lame constants 

and by means of which all the elasticity moduli can be expressed. In the general case, when it 

is impossible to make any additional assumptions about the relation between strains and 

stresses, Eqs. (4.6) for an isotropic body have the following form 

 

11 1 1 2 3

22 2 1 2 3

33 3 1 2 3

23 4 4 13 4 5 12 6 6

( 2 ) ,

( 2 ) ,

( 2 ) ,

, , .

T T S S S

T T S S S

T T S S S

T T S T T S T T S

   
   
   

  

= = + + +
= = + + +
= = + + +

= = = = = =

 (4.7) 

For particular conditions of deformation of elastic bodies having different geometry the relation 

between components of stress and strain tensors may be simplified. Examples of the body 
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geometries that are of practical importance in the analysis of the common types of vibrational 

systems are shown in Figure 4.2. Consider deformation along the axis of a thin bar (along the 

 

Figure 4.2: Images of typical mechanical systems of the transducers. The dashed lines in the co-

ordinate systems under the images show directions of working deformations in the mechanical 

systems. 

mean circumference of a thin ring with small height) (Figure 4.2 (a)). As the side surfaces of 

the bar are free of stress ( 2 3 4 5 6 0T T T T T= = = = = ), these stresses are close to zero inside the 

bar due to small lateral dimensions. Under these conditions from the system (4.6) we obtain 

 
2 3 1 1

1 1 1

/ 2( ) ,

[ (3 2 ) / ( )] .

S S S S

T S YS

   
    

= = − + = −
= + + =

 (4.8) 

Here / 2( )   = + is the Poisson’s ratio, i.e., the ratio of the transverse relative compression 

(signified by the “minus” sign according to the rule of signs) to the longitudinal elongation; 

(3 2 ) / ( )Y     = + +  is the Young’s modulus, i.e., the ratio of the longitudinal stress to the 

longitudinal strain. It can be shown that / (1 )(1 2 )Y   = + − and / 2(1 )Y = + . 

Since the elastic constants of material have to be determined experimentally, and the Young’s 

modulus and Poisson’s ratio can be obtained in a simple way, these constants are widely used 

to describe the state of elastic bodies along with the second Lame constant , which is the shear 

modulus (usually the term “modulus” is referred to the ratio of stress to strain). 

1
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3
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1
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1
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2
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3
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2

3
2

3

1
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It is noteworthy that values of the elastic constants can be obtained from the experimenting 

to 3 digits accuracy (see Table A1 of the elastic constants in Appendix A). Therefore, calculat-

ing parameters of transducers to a greater accuracy does not make sense. 

Using constants Y  and  , Eqs. (4.7) can be rewritten as follows, 

 

( ) ( )

( ) ( )

( ) ( )

1 1 2 3

2 2 1 3

3 3 1 2

1 ,
(1 )(1 2 )

1 ,
(1 )(1 2 )

1 ,
(1 )(1 2 )

/ 2(1 ) ( 4,5,6).i i i

Y
T S S S

Y
T S S S

Y
T S S S

T YS S i

 
 

 
 

 
 

 

= − + +  + −

= − + +  + −

= − + +  + −
= + = =

 (4.9) 

Sometimes, and in the case under consideration in particular, when one or two of the stresses 

are zero, it becomes more convenient to use equations between stresses and strains, in which 

stresses are independent variables, namely, 

 

1 1 2 3

2 2 1 3

3 3 1 2

[ ( )] / ,

[ ( )] / ,

[ ( )] / ,

/ ( 4,5,6).i i

S T T T Y

S T T T Y

S T T T Y

S T i






= − +
= − +
= − +
= =

 (4.10) 

4.2.2 The Energy Densities in Particular Mechanical Systems 

Example 1: Deformations of a Bar. 

In the tensile deformation of a bar along axis 1 (Figure 4.2 (a)), the potential energy of a unit 

volume (potential energy density), as the energy accumulated under the change of strain from 

zero to the value of 1S , is equal to 

 
1

2
2

1 1 1 1
1 1

10
2 2 2

S

pot

T S YS Y
w YS dS

x

 
= = = =   
 . (4.11) 

The kinetic energy of the bar per unit length can be determined to the first approximation as 

follows 

 2

1 / 2kin csw S = , (4.12) 

where .c sS
 
is the area of a bar cross section. 
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The more precise value of kinw  can be obtained, if to consider transverse motion that ac-

companies the bar elongation. From Eqs. (4.8) and (4.3) for displacements in the plane of the 

bar cross section we obtain 

 2 2 1 1 3 3 1 1( / ), ( / )x x x x     = −   = −   . (4.13) 

Taking into account this motion, the correction to the kinetic energy per unit length of a bar is 

 ( ) ( )
22 2

2 2 2 21
2 3 2 3 2 3 2 3

1

,
2 2

c s cs

p

kin p

S S

J
w dx dx J x x dx dx

x t

   
 

 = + = = +   
    , (4.14) 

where pJ  is the polar moment of inertia for the bar cross section. The same conditions exist in 

the thin and short ring under the circumferential deformation. 

Example 2: Uniaxial Deformation in the Plane of a Thin Plate. 

With uniaxial deformation in the plane of a thin plate, the dimension of which in the direction 

perpendicular to the tension is so large that, due to symmetry, deformation in this direction does 

not take place (Figure 4.2 (b)). In this case 3 4 5 6 0T T T T= = = = , 2 0S = . The analogous con-

ditions exist in the case of tension in the direction tangential to the mean circumference of a 

thin cylinder of a big height. From Eq. (4.10) it follows that 2 1,T T= 3 1 / (1 )S S − − , 

2

1 1 / (1 )T YS = − , and 

 

2

2 1
12 2

1

1 1
  

2 21 1
pot

Y Y
w S

x


 

 
= =  − −  

. (4.15) 

Example 3: Deformation in the Plane of a Thin Plate in Two Perpendicular Directions. 

In the case of deformation in the plane of a thin plate in two mutually perpendicular directions 

(Figure 4.2 (c)), 3 4 5 6 0T T T T= = = = , 

 

1 1 2 1 2

2

1 1 2

2

2 2 3

2 21 1 2 2
1 1 2 22

( ) / ( ) / (1 ),

( ) / (1 ),

( ) / (1 ),

1
( 2 ).

2 2 1
pot

S T T Y S S

T Y S S

T Y S S

T S T S Y
w S S S S

  






= − + = − + −

= + −

= + −
+

= = + +
−

 (4.16) 

Analogous conditions take place in the case of tension in a thin cylinder (ring) in the direction 

of its axis, taken as axis 1. If  1 2 S S S= = , as for example, in the case of the spherical shell, 

then 
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 21 2

2 1
pot

Y
w S


=

−
. (4.17) 

Example 4: Deformation Through the Thickness of a Plate with Large Transverse Dimensions. 

In the case of deformation through the thickness of a plate with large transverse dimensions 

(Figure 4.2 (d)), due to symmetry it can be assumed that 1 2 0 = = . Hence, 1 2 0S S= = , 

3 4 5 6 0S S S S= = = = . From Eqs. (4.9) it follows that 

 3 3 1 2 3(1 ) / (1 )(1 2 ), / (1 )(1 2 )T Y S T T Y S     = − + − = = − + − , (4.18) 

where from 

 
2

3

1 (1 )

2 (1 )(1 2 )
pot

Y
w S


 
−

=
+ −

. (4.19) 

Example 5: Deformation through the Thickness of a Tall Cylinder, Short Ring, and Spherical 

Shell. 

With deformation through the thickness of a tall cylinder, short ring, and spherical shell (Figure 

4.2 (d)), displacement 1  in direction of the mean circumference and displacements 1  = 2  

tangential to the middle surface of the spherical shell are equal to zero, due to symmetry. How-

ever, it follows from the expressions for strain in curvilinear coordinates (see Section 4.4.1) that 

strains 1S and 1 2S S=  have in these cases finite values. It can be shown that the following ex-

pressions are valid for the above bodies, respectively: 

for a tall cylinder, 

 

( )
( )

( )
( )

1 3 3 1

2 1 3

2 2

1 1 3 3

1 1
0, , ,

1 (1 2 ) 1 (1 2 )

(1 ) 2
;

(1 )(1 2 ) 1
pot

Y S S Y S S
S T T

Y
w S S S S

   
   

 
  

− + − +      = = =
+ − + −

−  = + + + − − 

 (4.20) 

for a short ring, 

 

1 2 2 1
2 1 32 2

2 2

1 1 3 32

( ) ( )
0, , ,

1 1

1
( 2 );

2 1
pot

Y S S Y S S
T T T

Y
w S S S S

 
 




+ +
= = =

− −

= + +
−

 (4.21) 

for a spherical shell, 
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( )

( )
( )

3 11 3
1 2 1 2 3

2 2

1 1 3 3

1 2( )
, , ,

1 (1 2 ) 1 (1 2 )

2
2 4 (1 ) .

(1 )(1 2 )
pot

Y S SY S S
S S T T T

Y
w S S S S

 
   

 
 

− + +  = = = =
+ − + −

 = + + − + −

 (4.22) 

Example 6: Deformation of Torsion of a Bar. 

Under this deformation each cross section turns by a certain angle 3x  =   relative to the 

axis of inertia of the bar (Figure 4.3). In this case, 1 2 3x x = , 2 1 3x x = − . Besides, at the 

deformation of torsion surface of a cross section experiences distortion, so that its points dis-

place in the direction of axis 3, and 3 1 2( , )x x = . The function 1 2( , )x x depends on config-

uration of the cross section and must be determined for each case.  

 

Figure 4.3: To the deformation of torsion. 

It can be concluded using definitions (4.3) that in this case the strains are 

 

1 2 3 6

32
4 23 1

3 2 2

31
5 13 2

3 1 1

0,

 2S  ,

 2S  .

S S S S

дд
S x

дx дx x

дд
S x

дx дx x

 

 

= = = =

 
= = + = −  

 
= = + = +  

 (4.23) 

The stress components that do not vanish are 4 4T S=  and 5 5T S= . It is known (Ref. 1) that 

for the circular and square cross sections 0  . In these cases 

 4 1 1 5 2 2

3 3

,S x x S x x
x x

   
= − = − = =

 
. (4.24) 

The forces acting in the cross section of the bar are equivalent to a couple of moment fM G=  

about the axis 3x , where G is the constant referred to as the torsional rigidity. For the circular 

and square cross sections pG J= . For a circle of radius a, 4 / 2pJ a= , for a square with side 

1

2

3

2

1 d

x3

x3+dx3
x3 x3+dx3

dS1

dS2
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w, 4 / 6pJ w= . For a rectangular cross section with aspect ratio not too large 4 2/ 4 .cs pG S J 

The potential and kinetic energies for the unit length of a bar are, respectively, 

 

2

2

3 3

1 1 1

2 2 2
pot fw M G G

x x

 
  

= = =    
, (4.25) 

 21

2
kin pw J = . (4.26) 

Example 7: Bending of a Thin Beam 

The bending of a thin ( / 1t l  and / 1w l  ) beam (Figure 4.4) is already considered in Section 

2.6, but here our goal is to get explicit expressions for the densities of potential and kinetic 

energy under the flexure that are necessary for deriving equations of motion. 

Under the flexural deformation the neutral surface exists in a beam that does not experience 

either tension or compression, whereas the layers located on both sides of the neutral surface 

suffer deformation of opposite signs. The strain of the layer located at distance 3x  from the 

neutral surface is 

 3 3
1

( )R x R x
S

R R

 


+  − 
= =


, (4.27) 

where R is the radius of curvature of the neutral surface of the beam. As it follows from Figure 

4.4 

 

1 1 1

2

3 3 31
1 2 12

1 1 1x x x

x
x

R x x x

  
  

+

  
 = = + = − + = − 

  
, (4.28) 

where from 2 2

3 11/ /R x= −  , where 3 ( )x  is the normal displacement of the neutral surface. 

Considering that flexure and displacement of the neutral surface are small (i.e., / 2 1t R  and 

3 t ), we can assume that the cross sections of a beam remain flat and are displaced along 

the normal to its neutral plane [2]. From the fact that the side surfaces of the beam are free of 

stress follows that 2 3 0T T   and 4 5 6 0T T T    all over the volume, and 

 
2

3
1 1 3 2

1

T YS Yx
x


= = −


. (4.29) 

The potential energy per unit length of a beam is 
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2/2 /2 23

3
1 1 3 2 2

1/2 /2

1 1

2 2 12

w t

pot

w t

wt
w T S dx dx Y

x



− −

 
= =   

  , (4.30) 

where 3

2( /12)wt J=  is the moment of inertia of the section with respect to axis 2x . In general, 

if the cross- section has different configuration with moment of inertia J 

 

2
2

3

2

1

1

2
potw YJ

x

 
=   

. (4.31) 

Thus, for example, for a circular of r a=  cross section 4 / 4J a= . 

The kinetic energy per unit length (ignoring the rotary inertia of the cross sections) is 

 2 2

3 3

1 1

2 2
kin csw wt S   = = . (4.32) 

 

 

Figure 4.4: Flexure of a beam. Figure 4.5: Depiction of shear deformation in a 

beam under flexure. 

With increase of the relative thickness t/l of the beam or plate, the values of shear stresses, 

as well as the rotary inertia of the cross sections under flexure become significant, so that cor-

rections must be made to the energies determined by formulae (4.30) and (4.32). The kinetic 

energy per unit length of the beam associated with turning of the sections by angle 

3 1( / )x =    regarding axis 2 (Figure 4.4) is 

 

2
2

2 3
2 2

1 1

2 2
kinw J J

x t


  

 
 = =    

. (4.33) 



x1+x1x1
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3
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1
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R


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x3
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x

32

1
dx1

T13
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

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Another correction is related to an additional deflection due to shear deformations, which 

takes place in a beam under its flexure, but which can be ignored at small t/l. If to consider the 

balance of forces acting on the shaded element of the volume (Figure 4.5 (a)) projected on axis 

1, it will be found that the shear stresses 13 5T T=  are 

 
33 32 2

25 3 31
5 5 3 33 3

11 1/2

,
8 2 4

x

t

T TYt Y t
S T dx x

xx x

 


 
  

= = = = = −   
 . (4.34) 

The cross section of a beam becomes distorted due to shear. The shear strains, which are equal 

to angle  of the section element tilt relative to the original plane (Figure 4.5 (b)), have maxi-

mum value at the neutral axis, at 3 0x =  

 
32

5 3
5 3

18

T Yt
S

x




 


= = =


. (4.35) 

The additional deflection, ad , of the neutral axis can be considered as corresponding to this 

turning angle according to the relation 1( / )ad x = −   . Thus, the additional deflection is 

 
22

3

2

18
ad

Yt

x







= −


 (4.36) 

and the total deflection of the neutral plane becomes 3 ad  = + . As in this approximation 

5 0T  , the correction should be applied to the value of potw  expressed by formula (4.30), since 

this value was somewhat exaggerated (increase of deflection under invariable action shows re-

duction of the rigidity and results in decrease of the potential energy). Using expression (4.35) 

we obtain 

 

2/2 32 5
2 3

5 3 3

1/2
2 240

t

pot

t

w wY t
w T dx

x


 −

 
 = − = −   

 . (4.37) 

4.3 Equations of Vibration in Rectangular Coordinates 

Equations that describe movement of elastic bodies can be derived as the Euler’s Eqs. (4.2) as 

result of substituting the corresponding expressions for the comprising energy densities. Thus, 

in examples 1, 2, 4, 6 of one-dimensional deformations the density of potential energy can be 

represented as 

 2( ) / 2pot xw K  = , (4.38) 
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where K  is the specific rigidity of a volume element (in examples 1, 2, 4 it is equal to Y ,

2/ (1 )Y − , and (1 ) / (1 )(1 2 )Y   − + − , respectively). And under torsion deformation (ex-

ample 6)  = , K G =  – the torsional rigidity. The density of kinetic energy can also be 

expressed in the generalized form as 

 2 / 2kinw m = , (4.39) 

where m  is the specific mass of a volume element, which is equal to   in examples 1, 2, 4 

and to pJ  in example 6 (body under torsion). 

If a force or a moment act on some cross section of a body, then the energy supplied to the 

body can be expressed as follows 

 ( ),ew f x t = , (4.40) 

where under torsion ( ),  f x t  is the moment ( ),fM x t , and   is the turning angle  . After 

substituting potw , kinw  and we from Eqs. (4.38), (4.39) and (4.40) into Eq. (4.2), for the cases 

under consideration will be obtained 

 2 ( , )c f x t m   − = , (4.41) 

where c = /K m   is the velocity of deformation propagation. In examples 1, 2, 4, 

/c Y = , 
2/ (1 )Y  − , (1 ) / (1 )(1 2 )Y    − + − , respectively, and in example 6 (un-

der torsion) / pc G J=  (for bars of circular and square cross sections /c  = ). In order 

to obtain a definite solution for Eq. (4.41), the boundary conditions on the end surfaces of the 

bar at x = 0, x = l, and initial conditions at 0t =  have to be taken into account. Namely, values 

of 0,( , )x lx t =  and/or 0,( , )x x lx t =  for the longitudinal vibration, and ( )
 0,

,  
x l

x t
=  and/or 

0,'( , )x lx t =  for torsion, as well as ( ,0)x , ( ,0)x  and ( ),  0  x , ( ),0  x , respectively. 

The Euler’s equation (4.2) cannot be applied to solving the flexural vibration problem (ex-

ample 7), since potw  depends on "

xs , as it follows from expression (4.31). In this case the equa-

tion of vibration can be obtained directly from the variational principle in the form 

 
2 2

1 1

( ) 0

t x

kin pot e

t x

w w w dtdx− + =  , (4.42) 

or, after substituting expressions (4.31), (4.32) and (4.40) for the energies involved 
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2 2

1 1

2 2 " 2( ) 0

t x

x m

t x

f dtdx J      − + = =   , (4.43) 

where 2 2 /12Y t = , . ./m c sf f S= . 

Equation of motion in this case can be derived in the following way. Let us assume that the 

function ( , )x t  satisfies Eq. (4.43). Let ( , )x t  be some function, which has the first and the 

second continuous derivatives, and which equals to zero together with its first derivative at 

values 1t , 1x  and 2t , 2x . Consider function ( ) ( ), ,x t x t + . This function meets the same 

boundary conditions as ( ),x t  at the limits of integration. After substituting this function in-

stead of ( ),x t  under the integral (4.43), the value of the integral at any small value of  should 

be greater than at  = 0, i.e., the integral has minimum at this point. Thus, it should be 

( ) 0J   + = . From this condition the equation of motion can be found. The same result can 

be obtained, if to replace   with  +  under the integral and, retaining the first-order terms in 

respect to   and its derivatives, to equate the integral to zero. In the latter case we arrive at 

 
2 2

1 1

2( ) 0

t x

x x m

t x

f dxdt     − + =  . (4.44) 

Performing the integration by parts, we obtain 

 
2 2

2

1

1 1

t t

t

t

t t

dt dt  = −  , (4.45) 

 
2 2

2 2

1 1

1 1

x x

x x IV

x x x x x x x x

x x

dx dx           = − +  , (4.46) 

and taking into consideration, that 2

1

t

t = 
2

1

x

x
 = 

2

1

x

x
  = 0, integral (4.44) becomes 

 
2 2

1 1

2( ) 0

t x

IV

x m

t x

f dxdt   + − =  . (4.47) 

Since the function  is arbitrary within interval of integration, the expression in parenthesis has 

to vanish, and the following equation for function ( , )x t  should be satisfied 

 2

. ./IV

x m c sf f S   + = =  (4.48) 

that presents the equation of flexural vibrations of a bar. 



4.3. Equations of Vibration in Rectangular Coordinates  19 

In order to make solution to the problem of vibration certain, the boundary conditions at 

the ends of the bar must be set (the boundary conditions on the other surfaces have been con-

sidered before, while deriving potw ). To formulate the boundary conditions, the energy conser-

vation law can be used in the form 

 ( )kin pot e

d
W W W

dt
+ = , (4.49) 

where 
eW  is the energy flux through the ends of a bar. Thus, 

 

2 2

1 1

2
2 2

1 1
1

2 2 2 2

2 2 2

1
( ) ( )

2

1
( ) / .

2

x x

x x x

x x

x
x x IV

x x x x x e cs
x

d
dx dx

dt

dx W S

      

          

   + = + = 

  = − + + =

 


 (4.50) 

(In course of obtaining this result the second term under the original integral was twice inte-

grated by parts.) Since ( , )x t  satisfies Eq, (4.48) at 0mf = , 

 
2 2

1 1

2 2

. ./
x x

x x x e c sx x
W S        − = . (4.51) 

In this expression   is the vibration velocity, 2 Q   =  is the shearing force acting at the cross 

section in the direction perpendicular to the middle surface of the bar, 
x   is the angular velocity, 

2

x fM   =  is the bending moment. 

If no energy flows through the ends of a bar 
eW  = 0, we obtain ideal boundary conditions, 

under which 

 2 2

1 1
0, 0x x

x x x x x     = = . (4.52) 

For example, at the simply supported end the displacement and bending moment are equal to 

zero, 

 0, 0x  = = ; (4.53) 

at the clamped end the displacement and slope are equal to zero, 

 0, 0x  = = ; (4.54) 

at the free end the bending moment and the shearing force both vanish, 

 0, 0x x  = = . (4.55) 
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In case that the energy flux through the ends is not equal to zero and is determined by the 

action of the external bending moments feM  and/or forces eQ , then 

 2 2,x fe eM Q    = = . (4.56) 

It is noteworthy that not ideal boundary conditions for any mechanical vibrating system are due 

to a leakage or input of energy through the mechanical system boundaries. 

Consider the most common method for solving the equations of elastic body vibration, the 

method based on separation of variables, with example of equations (4.41) and (4.48). 

4.3.1 Separation of Variables and Normal Modes 

Consider Eq. (4.41) at preset boundary and initial conditions, for example, at 

 
0( , ) ( , ) 0x x x x lx t x t = = = = , (4.57) 

 ( ,0) ( )x a x = , ( ,0) ( )x b x = , (4.58) 

where a(x) and b(x) are the arbitrary continuously differentiable functions. At first, consider 

solution to the auxiliary problem, namely, to the equation of free vibrations 

 2 0c   − =  (4.59) 

that would satisfy the boundary conditions (4.57). We present the assumed solution as the prod-

uct of two functions 

 ( , ) ( ) ( )x t X x T t = , (4.60) 

where X(x) is a function of x alone and T(t) is a function of t alone. Substituting ( , )x t  in Eq. 

(4.59) and dividing the result by ( ) ( )X x T t , we obtain 

 2( ) / ( ) ( ) / ( )X x X x T t c T t  = = − , (4.61) 

where  is a constant. Thus, we have the following equations for determining X(x) and T(t) 

 2( ) ( ) 0T t c T t+ = , (4.62) 

 ( ) ( ) 0X x X x + = . (4.63) 

The function X(x) must satisfy the boundary conditions (4.57), therefore 

 (0) ( ) 0X X l = = . (4.64) 



4.3. Equations of Vibration in Rectangular Coordinates  21 

The values i =  and the corresponding functions ( )iX x  that satisfy simultaneously Eq. (4.63) 

and conditions (4.64) are called the eigenvalues and eigenfunctions (or normal modes) of the 

problem, respectively. The non-zero solutions of Eq. (4.63) under conditions (4.64) exist only 

at positive values of i . In this case according to Eq. (4.63) 

 1 2( ) cos sini iX x A x A x = + . (4.65) 

To satisfy the boundary conditions (4.64) it should be 2 (0) 0A X = =  and 

1 sin ( ) 0i iA l X l  = = . In order to get non-zero solutions, there must be 1 0A   that results

sin 0i l =  and / .i i l =  Thus, in this case the eigenvalues and corresponding normal 

modes are 

 ( )2 2

1 ( ) / ,  cos ( / )i i ii l X x A i x l  = = . (4.66) 

The solutions of Eq. (4.62) that correspond to eigenvalues i  are 

 1 2( ) cos( / ) sin( / )i i iT t B i ct l B i ct l = + . (4.67) 

Here ( / ) ii ct l =  is the natural frequency of vibration. Back to expression (4.60), we can see 

that the functions 

 1 2( , ) ( cos sin )cos( / )i i i i ix t B t B t i x l   = +  (4.68) 

are the partial solutions of Eq. (4.59) under boundary conditions (4.64). Due to linearity of 

equation (4.59), the sum of partial solutions (4.68) 

 1 2

1 1

( , ) ( , ) ( cos sin )cos( / )i i i i i

i i

x t x t B t B t i x l    
 

= =

= = +   (4.69) 

is also a solution, satisfying the same boundary conditions. This is the general solution for Eq. 

(4.59), because a proper selection of the constants 1iB  and 2iB  can result in satisfying the initial 

conditions (4.58) as well. By applying these conditions, we obtain 

 1

1

( ,0) ( ) cos( / )i

i

x a x B i x l 


=

= = , (4.70) 

 2

1

( ,0) ( ) cos( / )i i

i

x b x B i x l  


=

= = , (4.71) 

where from 1iB  and 2iB  can be derived as coefficients of expansion of functions a(x) and b(x) 

into Fourier series in terms of normal modes ( ) cos( / )iX x i x l= , namely 
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1 2

0 0

2 2
( ) ( )cos , ( ) ( )cos

l l

i i i i i

i x i x
B a x a x dx B b x b x dx

l l l l

 = = = =  . (4.72) 

Thus, the displacements in an elastic body that vibrates freely under specified boundary and 

initial conditions can be represented in the form of superposition 

 1

1 1 1

( , ) ( , ) ( cos sin )cos ( ) ( )i
i i i i i i

i i ii

b i x
x t x t a t t t x

l

     


  

= = =

= = + =    (4.73) 

of standing waves, which change harmonically with amplitude ( )i t and have time independent 

forms, ( )i x , that are the eigenfunctions ( ) ( )i ix X x = . We will call ( )i x  the normal modes 

of vibration and will assume that their maximum values are normalized to unity (in the partic-

ular case under consideration this is fulfilled automatically). 

Expressions for displacements (4.73) at cos( / )i i x l = , /i i c l =  determine vibrations 

under the end conditions (4.57), but in the general form they are also valid for the normal modes 

of vibration and natural frequencies corresponding to any other set of ideal conditions. Thus, if 

(0) ( ) 0l = = (clamped ends), sin( / )i i x l =  and /i i c l = . If (0) 0 = , ( ) 0l  =  (one 

end is clamped, another is free), ( ) ( )sin[ 2  1 / )]i x i x l = −  and ( )2 1 /i i c l = − . 

4.3.2 Transient Vibration 

Now we return to solving the inhomogeneous Eq. (4.41) under boundary conditions (4.57) as-

suming that at the moment of applying the force ( , )f x t  conditions (4.58) are satisfied. As was 

previously noted, we assume that the force changes harmonically 

 ( , ) ( )cosf x t f x t= . (4.74) 

We represent solution of Eq. (4.41) as the sum of the general solution of the homogeneous 

Eq. (4.73) (will be denoted ( , )I x t ), which satisfies the initial and boundary conditions, and of 

the partial solution ( , )II x t  of the inhomogeneous equation under zero initial conditions (4.58)

, as follows 

 ( , ) ( , ) ( , )I IIx t x t x t  = + , (4.75) 

 ( , ) ( )cosII IIx t x t  = . (4.76) 

After substituting the displacements from Eqs. (4.75) and (4.76) into Eq. (4.41), we obtain or-

dinary differential equation for the partial solution ( , )II x t  
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 2 2( ) ( ) ( ) /II IIc x x f x m    + = . (4.77) 

We will be looking for a solution of Eq. (4.77) in the form of expansion into the Fourier series 

in terms of normal modes of vibrations ( ) cos( / )i x i x l = , namely, as 

 
1 1

( ) ( ) cos( / )II II i i II i

i i

x x i x l    
 

= =

= =  . (4.78) 

Represent the active force as an expansion into the Fourier series in terms of the same normal 

modes 

 
1 1

( ) ( ) cos( / )i i i i

i i

f x f x f i x l 
 

= =

= =  , (4.79) 

where 

 
0

2
( )cos

l

i

i x
f f x dx

l l


=  . (4.80) 

Upon substituting the assumed solution (4.78) and f(x) from (4.79) into Eq. (4.77), we obtain 

 2 2( ) / /II i i i i eqv if m f M   − = = , (4.81) 

where 

 2

0 0

( ) ( ) , ( )
l l

i eqv i i if f x x dx M m x dx = =  . (4.82) 

Thus, the partial solution of Eq. (4.41) is 

 
2 2

( , ) sin
( )

i eqv

II i

i i

f
x t t

M
 

 
=

−
 (4.83) 

and the general solution (4.75) is 

 
1

2 2
1

( , ) ( )cos( / )

sin
cos sin cos .

( )

Ii IIi

i

ieqvi
i i i

i i i i

x t i x l

f tb i x
a t t

lM

   

  
  



=



=

= +

  = + +   −  




 (4.84) 

Here the first term in the brackets describes the free vibrations and the second term describes 

the forced vibrations of a body. 

It is noteworthy that obtained solution is not in accord with practice. It follows from the 

solution that the normal vibration, once it starts, can last indefinitely long, and that with the 
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frequency of an active force approaching one of the natural frequencies the amplitude of forced 

vibration increases indefinitely. The normal vibrations decay exponentially, whereas the am-

plitude of the forced vibration at i =  is limited. The reason for such discrepancy lies in the 

fact that no internal losses of energy in course of deformation have been considered so far. 

Although these losses are small enough to treat the mechanical systems as absolutely elastic, 

they should be considered in the total energy balance, as it was done in previous chapters. 

It is easy to make sure that the expansion coefficients in the formula (4.84) 

( , ) ( , ) ( , )i I i II ix t x t x t  = + , which were obtained as a result of solution of Eqs. (4.59) and 

(4.41) for ( , )I i x t  and ( , )II i x t , respectively, can be derived from the following equations that 

describe these systems as systems with one degree of freedom 

 ( 1,2,...)i i i i i eqvM K f i + = = , (4.85) 

where 2

i i iK M= , ( )0  i ia = , ( )0i b =  and ia , ib  can be determined by formulae (4.72). 

After introducing in Eq. (4.85) an additional term 
ir , which will account for energy losses,it 

becomes 

 i i i i i i i eqvM r K f  + + = . (4.86) 

In Eq. (4.86) the first term represents inertial force, the second term is frictional force and the 

third term stands for elastic force. Solution of Eq. (4.86) for free vibration (at 0ieqvf = ) under 

initial conditions (4.58) can be assumed in the form pt

i Ae = . Substituting this expression in 

the equation, we obtain 

 2 22  0i ip a p + + = , (4.87) 

where 2 /i i ia r M=  and 2 /i i iK M = . From Eq. (4.87) we obtain 2 2– i i ip j  =  − . With 

small losses 2 2 2 2/ 4i i i ir M  = , the value 2 2 2

1i i i  = −  is positive, and the general solution 

for the homogeneous Eq. (4.86) satisfying the initial conditions can be obtained in the following 

form (see formula (4.73)) 

 1 1 1

1

cos sin cos( )i it ti i i
i i i i i

i

b a
e a t t Ce t     


− −  +

= + = +  
   

, (4.88) 

where C and  are the initial amplitude and phase of vibration. Thus, taking losses into account 

we obtain damped free vibration that is precisely what is observed experimentally. Besides, the 
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frequency of free vibrations has slightly changed compared to Eq. (4.84), namely, 

2 2

1 1 /i i i i   = − . Since usually 2 2

i i  , this change can typically be ignored. 

For examining the mode of forced vibrations, we will switch to the complex form 

( ), ( , ) ( ) j t

i i if x t F x t F x e → = , ( ), ( , ) ( ) j t

i i ix t U x t U x e  → = . After substituting these expres-

sions into Eq. (4.86) we obtain 

  ( / )i i i i iU r j M K F + − = . (4.89) 

At frequencies far from the natural frequency i  the value of ir  can be ignored, so that 

2 2/ ( )i i i iU F M  = − , as it was obtained by formula (4.83) without involving losses. At 

i =  the amplitude of vibration is limited by the value /i i iU F r= . 

The stage of motion, at which both damped normal vibrations and forced vibrations exist 

simultaneously, is referred to as the transient process. At a certain point, when it becomes pos-

sible to ignore the normal vibrations, a steady state of forced vibrations begins. Further we will 

consider the steady state vibrations only. 

Thus, displacements in a vibrating body can be represented as expansion (4.84) in terms of 

normal modes both in the transient and in the steady state vibration. Since under fixed distribu-

tion of displacements a mechanical system has one degree of freedom (such systems were con-

sidered in Chapter 2), this means that any complicated vibrations of an elastic body can be 

represented as superposition of simple vibrations of the body, each having one degree of free-

dom and can be considered independently. 

4.3.3 Equivalent T-Network of a Longitudinally Vibrating Bar 

Under the steady state of vibration the solution of Eq. (4.59) can be represented in the complex 

form. Let the complex quantity of displacement be denoted ( , ) ( , ) ( ) j tx t x t x e   → =  substi-

tuting this function into Eq. (4.59) we arrive at the equation 

 ( ) ( )2 0x k x  + = , (4.90) 

where 2 2 2/k c= .. This is the one-dimensional wave equation. It matches in form with Eq. 

(4.63) at 2k = , and its solution in the form of expansion in terms of the normal modes of 

vibration was previously considered. It is another form of solution of Eq. (4.90). Under this 

solution the arbitrary constants in expression for ( )x , 
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1 2( ) sin cosx A kx A kx = + , (4.91) 

can be determined directly from the conditions at the ends of a bar. In setting conditions at the 

ends, we must follow the adopted rule of signs, the effect of which was illustrated in Figure 

1.11 (a). Since we consider tensile strains and displacements that generate such strains as con-

ventionally positive, the displacements at the right end, x l= , should be considered with their 

signs, while those at the left end, 0x = , with the opposite signs (the positive directions of dis-

placement and of the axis x are opposite in this case). The forces 0F  and 1F  shown in Figure 

4.6 (c) are positive because they coincide in direction with the displacements. As the compress 

ive forces should result in negative values of stress, the conditions at the ends are as follows 

 00
, x lcs cs lx

YS F YS F  ==
 = − = − . (4.92) 

 

Figure 4.6: Equivalent circuit of a longitudinally vibrating bar loaded on the ends: (a) T-network 

representation, (b) equivalent two-port block representation, (c) illustration for the rule of signs. 

If the ends of a bar are loaded with mechanical impedances 0Z  and lZ , then the forces of 

reaction applied to the ends are F Z ZU= − = − . At directions of displacements looking in-

side a bar, as shown in Figure 4.6 (c), 
0  and 

l  are negative, so the responsive forces are 

tensile and must lead to positive stress at the ends, so that the end conditions should be written 

as follows 

 0 0 ,cs cs l lx o x l
YS Z U YS Z U 

= =
 = − = − . (4.93) 

If we consider the displacements 0  and l  as given, then putting in formula (4.91) 0(0) = −  

and ( ) ll = −  we obtain 

 ( )2 0 1 0,  cos / sinlA A kl kl  = − = +  (4.94) 

(a)

(b)
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0U
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and 

 
0 0( ) ( cos )sin / sin coslx kl kx kl kl   = + − . (4.95) 

Thus, the displacements in a bar prove to be completely determined by two values 
0  and 

l . 

Therefore, a longitudinal vibrating bar can be considered as a system with two degrees of free-

dom with the generalized coordinates 
0  and 

l . In this system the losses can be accounted 

for, if to assume that the sound speed and the wave number are complex quantities. Namely, 

( ) 1 / 2 mc c j Q= +  and ( )/ 1 / 2 mk c k j Q= = − , where Qm is the quality factor of material. 

If forces 0F , lF  and impedances 0Z  and lZ  are applied to the ends of a bar simultaneously, 

then taking into consideration expressions (4.92) and (4.93) the following conditions should be 

satisfied 

 . 0 0 00c s x
YS Z U F = = − − , (4.96) 

 .c s l l lx l
YS Z U F = = − − . (4.97) 

After substituting expression for ( )x  from (4.95) and 2Y c=  in these equations we arrive 

at 

 . 0
. 0 0 0 0

( )
tan 0

sin 2

c s l
c s

cS U U kl
j cS U Z U F

j kl




+
+ + + = , (4.98) 

 . 0
.

( )
tan 0

sin 2

c s l
c s l l l l

cS U U kl
j cS U Z U F

j kl




+
+ + + = . (4.99) 

It can be verified that Eqs. (4.98) and (4.99) are the Kirchhoff’s equations for “currents” 0U  

and lU  in the circuit in Figure 4.6 (a), where the bar is represented by the two-port T-network 

between points 1, 1’ and 2, 2’ with impedances 

 1 . 2 3 .sin , tan( / 2)c s c sZ j cS kl Z Z j cS kl = − = = . (4.100) 

For brevity, this two-port network may be presented, as the equivalent block shown in Figure 

4.6 (b). 

The values of velocities of the ends can be determined using the circuit of Figure 4.6 (a), 

Consequently the distribution of vibrations in a bar at various combinations of loads and acting 

forces on the ends can be found by formula (4.95). If it is necessary to determine velocity of 
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vibration of any point inside of a bar, the bar can be represented by a cascade connection of two 

T-networks that correspond to the parts of the bar on the left and right sides of this point. 

The two-port circuit in Figure 4.6 (a) can be used for determining value of the mechanical 

input impedance inZ  of a bar. With load impedance LZ  at the opposite end it is 

 .

.

tan

1 ( / ) tan

c s L
in

L c s

j cS kl Z
Z

j Z cS kl




+
=

+
. (4.101) 

In the cases that 0LZ =  (the opposite end is free, i.e., mechanical short circuited) 

 . . tan  in c sZ j cS kl= , (4.102) 

and at LZ →  (the opposite end is fixed, i.e., mechanical open circuited) 

 . . / tan  in c sZ j cS kl= . (4.103) 

Since Eq. (4.90) originated from Eq. (4.59), which pertains to the general case of one-

dimensional longitudinal and torsional vibrations, its solution in the form of Eq. (4.95), where 

0  and 
l  are determined by expressions (4.98) and (4.99), and the equivalent circuit of Figure 

4.6 (a) are valid for all the above considered particular cases. It is sufficient only in the case of 

longitudinal vibrations to use in the final result 
2/ (1 )c Y  = −  for vibrations through the 

width of a long stripe (see Figure 4.2 (b)) and (1 ) / (1 )(1 2 )c Y    = − + −  for vibrations 

through the thickness of a plate with large transverse dimensions (see Figure 4.6 (d)). In the 

case of the torsional vibrations (see Figure 4.5) csS  must be replaced with pJ  and the sound 

speed must be calculated by formula / pc G J= , which yields the value /c  =  for the 

bars of a circular and square cross sections. In the case of torsion, the generalized active forces 

are the moments and the generalized displacements are the turning angles. 

Presenting solution to the problems of vibration of a transducer mechanical system in the 

form of Eq. (4.95) is especially advantageous if it is considerably loaded at the ends, and/or 

when a relatively broad frequency range of operation is concerned. It is much more convenient 

to employ the solution in form of expansion in terms of normal modes of vibration for analyzing 

the transducers operating at small loads and in relatively narrow frequency ranges around the 

resonances. 
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4.3.4 Normal Modes of the Transverse Vibrating Beams 

The method of expansion in terms of normal modes may be applied to solving the equation of 

transverse vibrations of a beam (4.48) under the boundary conditions (4.53)–(4.55) in the mode 

of the steady state harmonic vibrations, 

 2 ( , ) /IV

x csf x t S   + = . (4.48) 

Here 2

./ c sEYJ S = , ( , ) ( )cosf x t f x t= . 

The equation of free vibrations corresponding to Eq. (4.48), in which the notations 

( , ) ( ) j tx t X x e  =  and 2 2 4/ k  =  are used, can be presented in the form 

 4 0IVX k X− = . (4.104) 

Substituting the assumed solution in the form of ( ) xX x e=  in this equation we will find four 

values of  : , jk k  . Thus, the general solution of Eq. (4.48) can be represented as 

 
1 2 3 4( ) jkx jkx kx kxX x Ae A e A e A e− −= + + +  (4.105) 

or 1 2 3 4( ) sin cos sinh coshX x C kx C kx C kx C kx= + + + . (4.106) 

Relations between the arbitrary constants as well as the equations for determining natural fre-

quencies can be found by applying boundary conditions. In this way we also obtain expressions 

for normal modes. Consider the following variants of the ideal boundary conditions. In the case 

of a beam with simply supported ends the boundary conditions are of the form of (4.53) 

 
0,

(0) ( ) 0, 0
x x l

X X l X
= =

= = = . (4.53) 

The equation to determine the natural frequencies is sin  0ik l = , where from   ik l i= , 

2 2( / )i ik i l   = = . The normal modes are 

 ( ) sin( / )iX x i x l= . (4.107) 

In the case that both ends are free it follows from (4.55) that 

 '' '''

0, 0,| 0, | 0x l x lX X= == = . (4.55) 

From Eq. (4.104) will be obtained that 

 cos cosh 1i ik l k l = . (4.108) 

The successive values of ik l  are 0, 4.73, 7.85, and 
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 ( ) ( )2 2

0 1 2 0, 4.73/ l , 7.85 / l    = = = . (4.109) 

The presence of the natural frequency 0 0 =  signifies that the beam can be displaced as a solid 

body. 

For a beam with one end clamped (at 0x = ) and another end free (at x l= ) the boundary 

conditions are 

 0(0) 0, ( ) 0, ( ) 0, ( ) 0x x l x lX X x X x X x= = =  = = = = . (4.110) 

The frequency equation is 

 cos cosh 1i ik l k l = − , (4.111) 

and the successive roots of this equation are 

 1.87, 4.69ik l = . (4.112) 

At 2i   they are the same as for the beam with free ends. The first natural frequency is 

 ( )2

1 1.87 / l = . (4.113) 

For a beam clamped at both ends the boundary conditions are 

 
0, 0,

( ) 0, ( ) 0
x l x l

X x X x
= =

= =  (4.114) 

and the same frequency equation (4.108), as for the beam with free ends is valid. This results 

in the same successive natural frequencies (4.109) except for absence of the natural frequency

0 0 = , because no motion as a solid body is possible in this case. 

The beams having boundary conditions that can be approximated by the considered ideal 

conditions are used as parts of mechanical systems of different transducer designs, mainly of 

those operating in the frequency range below their first resonance frequency. In this frequency 

range the first mode of vibration dominates. With very good approximation the modes of static 

deflection of the beams under uniformly distributed loads can be used instead of the normal 

modes for solving vibration problems in this frequency range by Rayleigh’s method (definitely, 

except for vibration of beams with free ends). Following Ref. 2 they are for the beams: 

with simply supported ends 

 3 2 4 3( ) (16 / 5 )( 2 / / )x l x x l x l = − + ; (4.115) 
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with clamped ends 

 2 2 2 2( ) (16 / )(1 2 / / )x x l x l x l = − + ; (4.116) 

with one clamped and another free ends 

 2 2 2( ) 2( / ) (1 2 / 3 / 6 )x x l x l x l = − + . (4.117) 

 

Figure 4.7: The modes of static deflections for the beams: (a) with simply supported ends, (b) with 

both ends clamped, (c) with one end clamped and another free, (d) normal mode of the beam with 

free ends. The normal mode for the simply supported beam, ( ) sin( / )x x l = , coincides with 

the static deflection shown in (a) within the thickness of the line. 

The modes of static deflection for the beams are presented in Figure 4.7. In the same Figure are 

presented the normal mode for the simply supported beam for comparison, and the normal mode 

for the beam with free ends. Coordinates of important points on the modes of vibration are: the 

inflection points, at which signs of curvature change of the mode for the beam with clamped 

ends, at 1 0.24x l=  and 2 0.76x l= ; the nodal points, at which displacements of beam with free 

ends are zeros, at 1 0.22x l=  and 2 0.78x l= . If the beam with free ends is simply supported at 
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the nodal points, then it can move at low frequencies predominantly as a solid body (in the 

piston like mode), i.e., vibration in the first mode is suppressed. 

Before proceeding with representing solution for a vibration problem as expansion in terms 

of the normal modes, the following general properties of the normal modes must be noted. They 

can be derived using equations of separation (4.63) and (4.104). Consider for example Eqs. 

(4.104) after substituting the normal modes nX  and mX  with corresponding eigenvalues nk  

and mk  

 4 0IV

n n nX k X− = , (4.118) 

 4 0IV

m m mX k X− = . (4.119) 

Multiplying the first equation by mX  and second by nX , subtracting equations and integrating 

over interval [0, l] we obtain 

 ( )4 4

0 0

( ) ( ) ( )
l l

IV IV

n m n m m n n mk k X x X x dx X X X X dx− = −  . (4.120) 

After integrating the right-side integral by parts and applying different ideal boundary condi-

tions we arrive at conclusion that in all the cases the normal modes are orthogonal, i.e., 

 
0

( ) ( ) 0 ( )
l

n mX x X x dx n m=  . (4.121) 

An arbitrary continuously differentiable function ( )g x  that satisfies boundary conditions of the 

problem can be expanded in terms of normal modes ( )iX x  as follows 

 
1

( ) ( )i i

i

g x g X x


=

= , where 
1

( ) ( )
l

i i

i o

g g x X x dx
N

=   and 2

0

( )
l

i iN X x dx=  . (4.122) 

Now we return to Eq. (4.48). Remember that under steady state vibration the solution can 

be represented in the complex form, in which case it is denoted ( , ) ( , ) ( ) j tx t x t x e   → = , 

and ( , ) ( ) j tf x t F x e → . After representing the assumed solution and the acting force as expan-

sions into series in terms of the normal modes that correspond to a particular type of boundary 

conditions, 

 
1

( ) ( )i i

i

x X x 


=

=  (4.123) 
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and 

 
1

( ) ( )i i

i

F x F X x


=

=  (4.124) 

After substituting these series into Eq. (4.48), we obtain the solution in the form of expres-

sion 

 
2 2 2 2

. . . .( ) ( )

eqvii
i

c s i c s i i

FF

S S N


     
= =

− −
. (4.125) 

In the course of manipulations, it was taken into account that due to Eq. (4.106) 

 4 2 2( / )IV

iX k X X = = . (4.126) 

Note that following relations (4.122) 

 
0

( ) ( )
l

eqvi iF F x X x dx=  . (4.127) 

Expression (4.125) represents magnitude of the normal mode iX  in expansion of transverse 

steady state vibration of a beam. It is analogous to expression (4.83) for longitudinal vibrating 

bar, and the same considerations regarding accounting for the energy losses in real situation are 

applicable. 

Correlation between magnitudes of modes of vibration, and number of terms in the series 

(4.123) that have to be taken into account depend essentially on distribution of the active force 

( )F x . If ( ) ( )oF x F x=  is a concentrated force applied at point ox  on the side surface of a 

simply supported beam, then by formula (4.127) ( ) ( )eqvi o i oF F x X x=  , and the modes of vi-

bration, for which the force is applied to a node of mode of vibration, are not excited. If the 

force distribution coincides with any of the normal modes, ( ) ( )mf x X x , then in series (4.123) 

only the term corresponding to this mode of vibration will remain, because the force distribution 

in this case is orthogonal to all the other vibration modes, and 0ieqvf =  at i m . In reality, 

distributions of active forces require for their representation only several terms of expansion, 

therefore the series (4.123) proves to be limited as well. 
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4.3.5 Corrections Due to Finite Thickness of Bars and Beams 

In the case that dimensions of cross sections of bars and beams are not too small compared to 

their length, corrections (4.14), (4.33) and (4.37) to the energies of their vibration have to be 

taken into account, when deriving equations of motion. 

At first consider the kinetic and potential energies of vibrating bars and beams having small 

relative thickness, assuming that distribution of displacements is represented by series (4.123), 

 

2

2

.

1 10

1 1

2 2

l

kin c s i i i eqvi

i i

W S X dx M  
 

= =

 = = 
 
  , (4.128) 

where 

 2

.

0

l

eqvi c s iM S X dx=  . (4.129) 

The potential energy of deformation of a beam is 

 

2 2

2 2 2

1 1 10 0

1 1 1

2 2 2

l l

i
pot i i i i eqvi i

i i i

W YJ X dx YJ X dx K


  


  

= = =

   = = =     
    , (4.130) 

where 

 

2

2

0

l

i
eqvi iK YJ X dx




 =     . (4.131) 

In the expressions for the energies eqviM  and eqviK  are the equivalent mass and equivalent 

rigidity that correspond to normal mode iX  (the modal mass and rigidity). In the process of 

manipulations the orthogonal property of the normal modes was used, and the expression 

 

2

2 2

0 0

"( )
l l

i
i iX dx X dx




 =     , (4.132) 

which can be obtained by multiplying both parts of Eq. (4.122) by iX , integrating by parts over 

the beam length, and applying the ideal boundary conditions. 

Expressions (4.128) and (4.130) for the kinetic and potential energies are general for the 

beams under ideal boundary conditions and the values of eqviM , eqviK , and i  depend on the 

particular boundary conditions. 
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For the longitudinally vibrating bar with free ends ( cos( / )iX i x l= ) from expressions for 

the kinetic and potential energies will be obtained that 

 2 2 2 2/ 2 / 2, ( ) 2 , ( )eqvi cs eqvi cs iM S l M K i YS l i Y l    = = = = . (4.133) 

For the transversely vibrating beam with simply supported ends ( sin( / )iX i x l= ) 

 
4 3

2 4 4

3

( )
/ 2, , ( ) / ( )

12
eqv i eqv i i cs

i wt Y
M M K i YJ S l

l

   = = = . (4.134) 

Consider now effect of correction to the kinetic energy by formula (4.14) that accounts for 

the energy of the transverse motion under the longitudinal vibration of a bar with free ends 

(Rayleigh’s correction). Upon substituting displacement in the form of expansion in terms of 

normal modes into expression (4.14) and integrating over the length of the bar we obtain 

 

22 2
2 2

1 10

1 ( )
sin

2 2 2

l
p

kin i i p

i i

J i i x i
W dx J

l l l

     
 

= =

  = = 
 
  . (4.135) 

Adding kinW  to the kinetic energy (4.128) for the longitudinally vibrating bar does not change 

the form of the series that represents kin kin kinW W W = +  . The modal equivalent masses change 

only, and this results in changing the natural frequencies. New expression for the modal masses 

and resonance frequencies will be found to be 

 
2 21 ( ) /eqvi eqvi p csM M i J l S  = +  , (4.136) 

 
2 2 2 2/ 1 ( ) / 1 ( ) / 2i i p cs i p csi J l S i J l S      = +  −  . (4.137) 

For the bars of the circular and rectangular cross sections 4 / 2pJ a=  and 3 / 6pJ wt= , re-

spectively. The correction increases with increase of the ratio of transverse dimension to the 

half-wave of deformation ( 2 /l i ). For a bar with the square cross section this ratio is equal 

to 2 2( ) /12i w l , and at / 1/ 3 w l   the correction term in expression (4.137) is less than 0.01 

for the first mode of vibration. 

For the transversely vibrating beams the effects of shear deformation and rotary inertia that 

result in changing densities of the kinetic and potential energies must be taken into account. In 

the expansion (4.123) will be denoted ( )i iX x=  in order to distinguish from the case of lon-

gitudinal vibration. Upon substituting the displacement 1 1( , ) ( ) ( )x t t x  =  into expressions 

(4.33) for kinw  and (4.37) for potw  and integrating over length of a beam we arrive at 
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2

2 1
1 2

0

1

2

l

kin

d
W J dx

dx

    =    , (4.138) 
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2 1
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2 120

l

pot i

wY t
W dx

x




 
 = −   

 . (4.139) 

For a beam with simply supported ends the following corrections will be obtained to parameters 

eqvM  and eqvK originally defined by the formulae (4.134) for the first mode of vibration, which 

is the most usable for practical applications, 

 
2 2 2

2 2

( )
1 , 1

12 20
eqv eqv eqv eqv

t t Y
M M K K

l l

 


    = + = −   
   

. (4.140) 

So far the equations of vibration of bars and beams were considered. Other important pie-

zoelement geometries are plates. As to the rectangular plates with commensurable lateral di-

mensions, they are rarely used in transducer designs. A rectangular surface can be assembled 

of the beams or strips, if necessary. The width of these elements may be small enough in com-

parison with their length. By contrast, vibration systems in the form of the circular plates are 

widely used. Solving the problems of vibration of the circular plates and of any bodies with 

curvilinear surfaces (cylindrical and spherical) require introducing the curvilinear coordinates 

to be able to match coordinate system with surfaces, on which boundary conditions are defined. 

4.4 Equations of Vibration in Curvilinear Coordinates 

4.4.1 Curvilinear Coordinates 

Consider a volume element in a curvilinear orthogonal system of coordinates 1 2 3, ,q q q  with 

coordinate surfaces 1 1 1 2 3( , , ),q f x x x= 2 2 1 2 3( , , ),q f x x x=  3 3 1 2 3( , , )q f x x x=  the volume ele-

ment being formed by intersection of pairs of surfaces corresponding to the values of iq  and

i iq dq+  (Figure 4.8 (a)). Unit vectors 1 2 3, ,q q q  are tangential to coordinate lines (lines of 

intersection of coordinate surfaces), which converge in one point. The position of the coordinate 

vectors relative to the former rectangular coordinates with unit vectors , ,1 2 3x x x  is determined 

by cosines of angles between directions of the vectors q1  and x1 , cos( , )q x1 i . Suppose that the 

rectangular coordinates 1 2 3, ,x x x  are expressed through the curvilinear coordinates 1 2 3, ,q q q  
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as follows: 1 1 1 2 3( , , )x q q q= , 2 2 1 2 3( , , )x q q q= , 3 3 1 2 3( , , )x q q q= . Then the elementary 

length along the rectangular coordinate lines will be 

 1 2 3

1 2 3

i i i
idx dq dq dq

q q q

    
= + +
  

, (4.141) 

 

Figure 4.8: Curvilinear systems of coordinates: (a) general type, (b) cylindrical. 

and the direction cosines of unit vectors, cos( , )l iq x , will be proportional to /i lд дq . Condi-

tions of orthogonality of the curvilinear coordinate system are 

 3 31 1 2 2 0,
l k l k l k

l k
q q q q q q

         
+ + = 

     
. (4.142) 

Calculating the elementary length in curvilinear coordinates (see Figure 4.8) with taking into 

consideration Eqs. (4.141) and (4.142) yields 

 

2 2 2 2

1 2 3

22 2
3

2 2 2

1 2 3

1 2 31

2 2 2 2 2 2

1 1 2 2 3 3 .

i i i

dl dx dx dx

dq dq dq
q q qi

H dq H dq H dq
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= + +

       
 = + +             =  

= + +

  (4.143) 

Here iH  are the Lame coefficients of the curvilinear system of coordinates, 
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. (4.144) 

It follows from formula (4.143) that elementary lengths along the axes of curvilinear system of 

coordinates are 1 1 1 2 2 2 3 3 3, ,dl H dq dl H dq dl H dq= = = . 

When curvilinear coordinates are used, a convention has to be established regarding des-

ignations of the coordinate axes, components of the displacements and components of the 
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H1dq1

H3dq3
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tensors of strain and stress. The elementary lengths along all the axes of rectangular coordinates 

are equal ( 1 2 3 1),H H H= = =  therefore it is possible to introduce numerical designations for 

all the above components. The peculiarity of mechanical systems made from piezoelectric ce-

ramics that axis 3 is commonly directed along the poling vector in this case can be considered 

in advance. During this treatment the cylindrical coordinates will be predominantly used. In 

case of the cylindrical coordinates , ,  r z  (Figure 4.8 (b)) 1 cosx r = , 2 sinx r = , 3x z= . 

The Lame coefficients for the cylindrical coordinates are 1, , 1r zH H r H= = =  following 

expressions (4.144). The expressions for the components of the strain tensor are 

 
1

, ,r r z
rr zzS S S

r r r z




  
  

= = + = , (4.145) 

 
1 1

, ,z z r r
z rz rS S S r

z r r z r r r

 
 

    
 

      
= + = + = +         

. (4.146) 

In the axial symmetric case 0, / 0, / 0,r z    =   =   =  and 

 , ,r r z
rr zzS S S

r r z


  
 

= = = , (4.147) 

 0, z r
z r rzS S S

r z
 
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= = = +

 
. (4.148) 

In case of the spherical coordinates , ,  r    1 sin cosx r  = , 2 sin sinx r  = , 3 cos .x r =

The Lame coefficients for the spherical coordinates are 1rH = , H r = , sinH r =  follow-

ing expressions (4.144). The expressions for the components of the tensor of strain in the axially 

symmetrical case are 
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r r r
rrS S S

r r r r r

 
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, (4.149) 
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rS

r r r

 


 
 
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= + −

 
. (4.151) 

All the relations between stresses and strains expressed in rectangular coordinates will be 

valid, if coordinates r, , z ( , ,r    for spherical coordinate system) correspond to designations 

1, 2, 3, respectively, so far as the isotropic bodies are considered. In case that the body is made 
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of piezoceramics, its volume element is related to the orthogonal crystallographic coordinate 

system, in which the direction of axis 3 (unit vector 3q ) coincides with the direction of poling 

vector P. Directions of the unit vectors 1q  and 2q  may be arbitrary, but a common convention 

is that all the unit vectors form the right-hand system (i.e., rotation of 1q  to the coincidence 

with 2q  must be seen as counter-clockwise from the end of vector 3q ). 

4.4.2 Vibrations in the Plane of Circular Disks of Small Height 

Note that within this Section it is assumed that the height is dimension of a disk in direction 

perpendicular to its plane (axis 3) and the thickness of an annual disk is (a-b), where a is the 

outer and b is the inner radius of the disk. 

4.4.2.1 Deriving Equation of Motion 

Consider the axial symmetric vibration in the plane of the circular disks (Figure 4.9) that are 

the widespread piezoelement configurations in transducer designing. Relations between the 

stresses and strains in this case, as well as formula (4.16) for potw , can be presented in the 

cylindrical coordinates by substituting expressions for strain from (4.147) 

 1 2  /  ,   /rr r rS S д дr S S r = = = = . (4.152) 

As a result, we obtain 

 
1 22 2

,
1 1

rr

Y Yr r r rT T T T
r r r r


  

 
 

    = = + = = +    − −   
, (4.153) 

 

2 2

2

1
2

2 1
pot

Y r r r rw
r r r r

  



     = + +     −      

. (4.154) 

The density of kinetic energy is 

 2 / 2kinw r= . (4.155) 

Note that kinw  and potw  are related to volume element .dV  In this case r dr d dzdV = . To 

obtain the equations of vibration we will use the same procedure, as was used for treating the 

transverse vibrations of a beam. Following the variational principle, we obtain 
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 (4.156) 

Upon substituting under the integral function ( ),r r t +  for r , where  (r, t) is an arbitrary 

continuously differentiable function, which takes zero values at the boundaries of integration 

interval. Displacement r  inside of the disk must satisfy the condition 
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0
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r r r r
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t
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  , (4.157) 

where 

 2 2/ (1– )c Y  = . (4.158) 

 

Figure 4.9: Circular disks in the extensional vibration in the plane: (a) solid disk, (b) annular disk 

(ring) of a finite thickness, (a-b). 

After integrating by parts the terms containing   and r , the expression will be obtained 
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r r
r
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  . (4.159) 

As the function  is arbitrary, this condition can be held only, when r  satisfies the equation 
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r r r r c
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. (4.160) 

Besides, the boundary conditions must be fulfilled on the edge of the disk. Under the ideal 

boundary conditions, i.e., with no energy flux passing through the edge, 1 0r r a
T 

=
 = . Thus, 

either ( ) 0r a =  at the clamped edge, or 
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4.4. Equations of Vibration in Curvilinear Coordinates  41 

 
1 2

0
1

r r

r a
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Y
T

r r

 
=

=

 = + = −  
 (4.161) 

at the free edge. 

Under the steady state harmonic vibrations Eq. (4.160) turns into the Bessel equation of the first 

order 

 
2

2

2 2

1 1
0

d d
k

r drdr r

   + + − =  
, (4.162) 

where 2 2 2/k c=  and 2 2/ (1 )c Y  = −  (the subscript r in r  is omitted for brevity). Its 

general solution is 

 1 1( ) ( )AJ kr BN kr = + , (4.163) 

where 1( )J kr  and 1( )N kr  are the Bessel and Neumann functions of the first order. Description 

of the Bessel functions can be found, for example, in Ref. 3. Some of the properties of these 

functions are given in Appendix C.1. Coefficients A and B are the arbitrary constants that must 

be determined using the boundary conditions. 

4.4.2.2 The Case of the Solid Disk 

From condition of zero radial displacement in the center of the disk it should be 0B = . Thus, 

the normal modes of the problem are 1( ) ( )i iX r J k r= . The eigenvalues, i ik a = , and corre-

sponding natural frequencies 

 2( / ) / (1 )i a Y
i

   = − . (4.164) 

Using the boundary condition (4.162) for the free edge we obtain equation 

 1 1( ) ( )
0i idJ k r J k a

r adr a
+ == . (4.165) 

The following relations for the Bessel functions are known (see Appendix C. 1) 

 1 0 1 1 0 1( ) ( ) ( ) / , ( ) ( ) ( ) /J x J x J x x N x N x N x x = − = − . (4.166) 

Considering the first of the relations (4.166), the equation (4.165) becomes 

 1
0

( )
( ) (1 ) i

i

i

J k a
J k a

k a
= − . (4.167) 
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The solutions of this equation at 0.3 =  are 

 i ik a =  = 2.05, 5.38, 8.57, and 0.9i i  −  at i > 3. (4.168) 

The resonance frequencies that correspond to the modes of vibration 1( ) ( )i iX r J k r=  will be 

obtained by formula (4.164). 

It follows from Eq. (4.167) that the eigenvalues and normal modes depend on Poisson’s 
ratio   to a certain extent. In case that the discs are made from piezoceramics, Y and   must 

be replaced by 
1 111/E EY s=  and 

1 12 11/E E Es s = − . Although for different piezoceramic materials 

1 0.3E  , within limits of values of 
1

E  for the most usable PZT compositions (
1

E  is approx-

imately between 0.27 and 0.35) the values of i  change less than by 1% from their values at 

0.3 = , as it can be verified using the equation (4.167). Thus, formula (4.168) for the reso-

nance frequencies remains valid for the piezoceramic discs within this accuracy. 

Equation (4.162) describes also radial vibrations of an infinitely long cylinder. The only 

difference is that in this case the sound speed (1 ) / (1 )(1 2 )c Y    = − + −  must be used. 

Therefore, the formula for calculating the natural frequencies will be 

 
(1 )

2 (1 )(1 2 )

Yifi a

 
   

−
=

+ −
 (4.169) 

with the same values of i , as those in the case of a disk. 

4.4.2.3 Annular Disk or Isotropic Ring of a Finite Thickness 

The assumption of isotropic properties of the ring, strictly speaking, is exactly applicable to the 

piezoelements that are axial poled. Peculiarities arising at different directions of polarization 

will be considered in Chapter 7. 

For the case of free vibration, we assume that the outer and inner side surfaces of the ring 

are free of stress, i.e., 

 1 2
0

1

Y d
T

dr r

 


 = + = −  
 at r a=  and at r b= . (4.170) 

After applying these boundary conditions to the general solution (4.163) the frequency equation 

and mode shape of vibration, ( ) ( ) / ( )r r a  = , will be obtained as follows. 

The set of equations that correspond to the boundary conditions will be 

    0 1 0 1( ) (1 ) ( ) ( ) (1 ) ( ) 0A ka J ka J ka B ka N ka N ka − − + − − = , (4.171) 
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    0 1 0 1( ) (1 ) ( ) ( ) (1 ) ( ) 0A kb J kb J kb B kb N kb N kb − − + − − = . (4.172) 

The frequency equation for this system of equations is 

 0 1 0 1

0 1 0 1

( ) (1 ) ( ) ( ) (1 ) ( )

( ) (1 ) ( ) ( ) (1 ) ( )

ka J ka J ka kb J kb J kb

ka N ka N ka kb N kb N kb

 
 

− − − −
=

− − − −
. (4.173) 

Spectrum of the wave numbers ik  can be found from this equation for various relations 

 1
b w

a a
= − , (4.174) 

where w a b= − is the thickness of a ring, by a straightforward calculation. Less formal proce-

dure of determining the lower resonance frequencies and the mode shapes of vibration of a ring 

vs. its relative thickness was suggested in Ref. 4, as follows. 

Let us denote 

 0 1

0 1

( ) (1 ) ( )
( )

( ) (1 ) ( )

kr J kr J kr
kr

kr N kr N kr





− −

=
− −

. (4.175) 

Plot of this function for 0.3 =  up to its first null at value 2.05kr =  is depicted in Figure 4.10. 

 

Figure 4.10: Plot of the function ( )kr . 

It can be shown that function ( )kr  has maximum at 21kr = − . In vicinity of this point 

r b a   and ( ) / 2r a b= +  that corresponds to the case of a thin ring. Given that for a disk 
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Y
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 
=

−
, (4.176) 

for the resonance frequency in the region of ( / ) 1b a   we obtain expression 

10

kb ka



44  4. Vibration of Elastic Bodies 
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r t

Y
kr c

a b a b



=  =

+ +
, (4.177) 

which is the formula for resonance frequency of the thin ring. The ratio of values ka and kb in 

the points on kr axis that correspond to abscissa ( ) ( )ka kb =  determines ratio of the inner 

to outer radius /b a , and their difference is ( )k a b kw− = , or 

 1
b w

ka k
a a

 − =  
. (4.178) 

With ratio b/a known from the plot in Figure 4.10 the corresponding resonance frequency can 

be found from this relation for a ring having outer radius a. Let us represent expression for the 

resonance frequencies of the thick rings as 

 
2

( / ) ( / ) ( ) ( / )r r t av

Y
b a F b a r F b a

a b
 


= =

+
. (4.179) 

Here ( )r t avr  is the resonance frequency of the thin ring having radius equal to average radius 

of the thick ring under consideration, and ( / )F b a  is a correction factor. Obviously, (1) 1F =  

and 
2(0) 1.025 / 1 1.07F = − = , as the resonance frequency at 0b =  must correspond to 

those for radially vibrating circular disk by formula (4.164) at 2.05 = . Plot of the correction 

factor vs. ratio of inner to outer radius is presented in Figure 4.11. It is seen from Figure 4.11 

 

Figure 4.11: Correction factor that relates the resonance frequency of a thick ring to the frequency 

of a thin ring having the same average radius. 

that the resonance frequency of a thick ring up to ratio / 0.5b a   can be calculated by formula 

for the thin ring having the same average radius with accuracy greater than 5%. After the 
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resonance frequency and thus the wave number / ( / ) /b a rk b a c=  is determined, the ratio B/A 

of arbitrary constants can be obtained from either of Eqs. (4.172) or (4.173) as 

 / 0 / 1 / / 0 / 1 /

/ 0 / 1 / / 0 / 1 /

( ) (1 ) ( ) ( ) (1 ) ( )

( ) (1 ) ( ) ( ) (1 ) ( )

b a b a b a b a b a b a
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k a J k a J k a k b J k b J k bB

A k a N k a N k a k b N k b N k b

 
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− − − −
= = −

− − − −
. (4.180) 

And the mode shape of vibration will be found using the general expression (4.163) for the 

radial displacement as 

 1 / 1 /

1 / 1 /

( ) ( / ) ( )( )
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b a b a
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J k r B A N k rr
r

a J k a B A N k a




+
= =

+
. (4.181) 

The mode shapes of vibration for the rings having different thickness are plotted in Figure 4.12 

 

Figure 4.12: The mode shapes of vibration for the rings having different thickness: solid line – b/a 

= 0.8, dashed line – b/a = 0.6, and dot-dash line – b/a = 0.4. 

It is noteworthy that the mode shapes determined for the ring isotropic in its plane (which is the 

case for axial poled piezoelement) remain the same to great accuracy for the piezoelements 

poled in radial and circumferential directions and can be used for calculating equivalent param-

eters of transducers that employ vibration of the rings regardless of the mode of their polariza-

tion. Results of calculating the parameters for different modes of polarization will be presented 

in Section 7.2.2.1. 
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4.4.3 Axial Symmetric Flexural Vibrations of a Thin Circular Plate 

Under the same assumptions, as those made in the case of the flexural vibration of a rectangular 

beam in Section 4.3.4, we obtain 

 2 2/rr zS z r= −   . (4.182) 

Since at the same time /rr rS r=  , it follows that /r zz r = −    and 

 r zz
S

r r r


 
= = −


. (4.183) 

Because of the condition that in a thin plate 0zT = , the relations (4.16) for stress, strain and 

density of the potential energy can be used, if to change the coordinate axes 1 and 2 to rr and 

φφ, respectively. Thus, 
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, (4.185) 
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. (4.186) 

Here 3 2/12(1– )D Yt =  is the flexural rigidity of a plate. Using expressions for potw  and 

 2 / 2kinw z= , (4.187) 

the following equation of the flexural vibration of the circular plate will be obtained from var-

iational principle in the way completely analogous to those used in the case of the flexural 

vibration of a beam, 

 4 4( / ) 0ta Dz z   + = , (4.188) 

where 
2

4 2 2/ (1/ ) /r r r     = +  is the differential operator that should by applied to z . 

The ideal boundary conditions per unit length of the plate edge are analogous to those expressed 

by relations (4.53) through (4.55). They are formulated as follows: 

for the simply supported edge 
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( ) 0, 0Z r

z za M D
r rr r a
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= = − + =   =
; (4.189) 



4.4. Equations of Vibration in Curvilinear Coordinates  47 

for the clamped edge 

 ( ) 0, 0Z
za
r r a
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= =

 =
; (4.190) 

for the free edge 
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M z zM Q D
r r r rr r a
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. (4.191) 

In case of harmonic vibration the equation of separation is 

 
4 4( ) 0zi  − = , (4.192) 

where 

 2 2 / /i ia D t  = . (4.193) 

Equations for determining the normal modes of the problem will be obtained from Eq. (4.192) 

after substituting 2

i  in the following forms 
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i i i i

d X dX
X r X

r drdr
  − = + − = . (4.195) 

Solutions of these equations are the cylindrical functions 0 ( / )iJ r a  and 0 ( / )iI r a  of the real 

and imaginary variables, respectively. Their linear combinations are the normal modes for the 

boundary problem under consideration, so that 

 ( ) 0 0( / ) ( / )i i iX r AJ r a BI r a = + . (4.196) 

The eigenvalues 2

i  and relations between coefficients A and B have to be found by applying 

the boundary conditions (4.173) through (4.177). Information on these values is available in 

Ref. 5. We reproduce some of them at 0.3 = . 

In the case of the simply supported edge 

 0 0 0 0

0 0

( ) ( ) ( ) ( )
( )

( ) ( )

i i i i
i

i i

J k r I k a J k a I k r
r

I k a J k a


−
=

−
, (4.197) 

 i ik a =  = 2.23, 5.45, 8.61, (4.198) 
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 2

1 (2.23 / ) /a D t = . (4.199) 

There are i nodal circles on the surface of a plate, at which ( ) 0i r = . At 1i =  the nodal circle 

is on the edge ( 1r a= ), at i = 2 1r a=  and 2 0.44r a= . 

In the case of the free edge 

 1 0 1 0

1 1

( ) ( ) ( ) ( )
( )

( ) ( )

i i i i
i

i i

I k a J k r J k a I k r
r

I k a J k a


−
=

−
. (4.200) 

There exists the normal mode of vibration 0 ( ) 1r =  at 0 0 = , which means that movement of 

a plate is possible without deformation. Otherwise 3.01, 6.2, 9.3,...i = . Radii of nodal circles 

are: 1 0.68r a=  at 1i = ; 1 0.84r a=  and 2 0.39r a=  at 2i = . 

In case that the edge is clamped expression for the normal mode is the same as (4.197), but 

the eigenvalues are 

 = i ik a  = 3.2, 6.3, 9.4,…, (4.201) 

 2 2

1 2(10.2 / ) / , (39.6 / ) /a D t a D t   = = . (4.202) 

Radii of the nodal circles are 1 0.38r a=  and 2r a=  at i = 2. 

4.4.3.1 Corrections to the Energy Densities for the Plates due to Finite Thickness 

With increase of the relative thickness t/a of the circular plates the values of shear stresses, as 

well as the rotary inertia of the cross sections under flexure, become significant, so that correc-

tions must be made to the energies determined by formulae (4.30) and (4.32) analogous to those 

made for the beams in Section 4.3.5. With this goal the expressions for the related energy den-

sities formulated in Section 4.3 for the element of volume in the rectangular coordinates must 

be rewritten for the element of volume in the axial symmetric polar coordinates. 

The additional kinetic energy per unit volume along the radius of plate associated with 

turning of the cross sections by angle ( / )z r =    in regard to axis 2 (Figure 4.4) is according 

to (4.33) 
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kinw J J
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, (4.203) 

where 
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 3

2 /12J rd t= . (4.204) 

Another correction is related to an additional deflection due to shear deformations that 

takes place in a plate under flexure but can be ignored at small t/a. If to consider the balance of 

forces acting on the shaded element of the volume (Figure 4.5 (a)) projected on axis 1, according 

to (4.34) it will be found that the shear stresses 13 5T T=  are 
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 . (4.205) 

The cross section of a plate perpendicular to the radius becomes distorted due to shear. The 

shear strains, which are equal to angle 

 5 5 /s S T = =  (4.206) 

of tilt of the section element relative to the original plane (Figure 4.5 (b)) has maximum value 

at the neutral axis at 0z = , 
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r S T

r
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 


= = =

− 
. (4.207) 

An additional deflection of the neutral axis, ad , corresponds to this turning angle. It can be 

determined according to the relation ( / )s ad r = −   . Thus, the total deflection of the neutral 

plane becomes z ad  = + . As in this approximation 5 0T  , the correction must be applied to 

the value of potw  expressed by formula (4.186). Using expression (4.205) we obtain 
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z
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t

rd rd Y t
w T dz

r

 
  −

 
 = − = −  −  

 . (4.208) 

The sign minus is since the value of potential energy was somewhat exaggerated. Increase of 

deflection under invariable action shows reduction of the rigidity and results in decrease of the 

potential energy. 

Due to shear deformation distortion of the cross section takes place that is associated with 

additional displacements in the radial direction, 

 ( , ) ( , )r s sz r z r z = . (4.209) 

The related radial strain is 
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 ( , ) ( , ) /r s r sS z r d z r dr= . (4.210) 

Following expressions (4.206) and (4.205) 
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 (4.211) 

and, consequently, the additional radial strain due to the shear deformation is 
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. (4.212) 

As follows from this expression, ( / 2) (0) 0rs rsS z t S=  = = , and it has the maximum value at 

0.3z t  . 

The corrections of energy densities do not influence the mode shapes of vibrations. They 

must be taken into consideration, when calculating the resonance frequencies and equivalent 

parameters of the mechanical systems of a transducer employing the circular plate. The addi-

tional radial strain by formula (4.212) results in changing the electromechanical conversion. All 

these effects will be considered in application to the corresponding transducer types in Part III. 

4.4.4 Vibration of a Circular Ring in its Plane 

The axisymmetric radial vibration of a thin circular ring as one degree of freedom system was 

described on Section 2.3. Here vibration of a general type in the plane of a ring will be consid-

ered. The geometry of a thin circular ring is shown in Figure 4.13. The thickness (t) and height 

(h) of the ring will be assumed to be small compared to the radius (a) of the middle surface of 

the ring. As the surfaces of a ring are free of stress, it can be assumed that all the stress in the 

volume of the ring vanish except for the extensional stress in the circumferential direction that 

is determined by product of Y and the corresponding deformation in the circumferential direc-

tion. In the general case the cross sections of the vibrating ring may move in the radial and 

circumferential directions. This may cause both the extensional deformations in the ring and 

bending of its middle surface. The displacement of a cross section in the radial direction is 

denoted as ( )r  . Note that under assumption of a thin ring the elementary theory of bending 

is applicable, which states that the cross sections remain undistorted and perpendicular to the 

neutral surface while turning at some angle. Displacements in the direction 
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Figure 4.13: (a) Geometry of a ring under deformation, (b) radial displacement of a segment of 

the ring that causes its elongation, and (c) turns of the cross sections of the segment that cause 

change of the curvature. 

of the normal to the cross section will be denoted as ( )  . They may be presented in the form 

 ( , ) ( ) ( , )a br r       = + , (4.213) 

where a  is the averaged over cross section displacement, and b  is the displacement due to 

turning of cross section under bending of the middle (neutral) surface. This displacement 

change through the thickness, and ( , ) 0b a  = . Displacements that take place in a small ele-

ment of a ring are shown in Figure 4.13 (b). Expression for the strain in the circumferential 

direction in polar coordinates is 

 
a br rS

r a a a a

  


   
  

  
= + = + +

  
, (4.214) 

where it is considered that t a , and therefore 1/ 1/r a . The sum of the first two terms in 

expression (4.214) represents the relative elongation of the elements of the ring, and it will be 

denoted S . The term /r a  is due to change of the mean radius under displacement in the 

radial direction (the displacement r  is positive, if it leads to the tension, i.e., when is directed 

from the ring’s center). The term /a a    presents longitudinal deformation of the element 

of a ring as a bar. The last term, /b a   , is due to change of curvature of an arc element of 

the ring, as illustrated in Figure 4.13 (c). To identify the meaning of this term, consider transi-

tion of an arc element of the middle surface into a curved state as a result of two successive 

displacements of the arc ends with coordinates   and  +  in the radial direction. Namely, 

( )r   and ( )r   +  (displacement in the circumferential direction does not lead to 

changes in the curvature). At displacement ( )r   the arc turns about the location  +  by 

t
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the angle 1 ( ) / ( ) ( ) /r r ra a       =  +      in the positive (anti-clockwise) direction. 

This is the angle, at which the normal to the arc turns at location  . At displacement 

( )r   +  the arc turns about   at the angle 2 ( ) /r a    =  +   in the negative 

(clockwise) direction, and the normal to the arc in the point  +  turns at this angle. Thus, 

the change of the angle between the normals to the curved arc element at extreme points or, in 

other words, change of the angle  between the new curvature radii R drawn to these points 

in comparison with angle  is 

 
2

1 2 2

( ) ( ) 1r r r

a a a

         
  

 +   
 − = − = − − = −     

. (4.215) 

As the length of the arc element does not change, ( )R a sr  = +  , and the curvature of the 

arc element after bending is 

 
2 2

2 2 2

1 1 1 1 1
1

( )

r r
r

r rR a a a a a

  
    

    
= = −  − +   +  +     

. (4.216) 

Manipulations made in expression (4.216) involve the replacement 21/ ( ) ( ) /r ra a a +  −  

and the dropping of the second order term 2 2 2( / )( / )r ra    . From expression (4.216) we 

obtain change of curvature of the arc element under bending as 
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. (4.217) 

The deformation of a layer having radius r due to the change of curvature can be determined 

by comparing its lengths, 2l  and 1l , after and before the bending, respectively. This is illustrated 

by Figure 4.14. We denote separation of the layer under consideration from the middle line 

 

Figure 4.14: Segment of a ring before (a) and after (b) bending. 

as r a z− = . This separation does not change under bending. The length of the middle line does 

not change as well, where from follows that 
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 R a  =  . (4.218) 

Thus, the deformation of the layer due to bending is 

 2 1
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( )

( )
b

l l R z a z
S r

l a z


 


− +  − + 
= =

+ 
. (4.219) 

After some manipulations with expression (4.219) that take into consideration relation (4.218) 

for the thin rings (under the assumption that t a , and therefore a z a+   in denominator) 

will be obtained 
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Finally, the expression (4.214) for the overall deformation may be presented as 
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After expression for deformations in vibrating ring is determined, the potential energy per ele-

ment of volume of the ring can be represented as 
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 (4.222) 

Here V  denotes the element of volume of the ring (V ah dzd=  ) and the coordinate system 

is introduced that is shown in Figure 4.11, in which r a z− = . The first term under the last 

integral corresponds to energy of the extensional vibration. They take place under the condition 

that 
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. (4.223) 

The second term corresponds to energy of the flexural vibration of a ring that takes place under 

the condition that 

 0r

 



+ =


. (4.224) 
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As will be shown further, the natural frequencies of vibrations related to these two kinds of 

deformation differ greatly. Besides, when employed in transducer designs, these two kinds of 

vibration involve different conditions of excitation. Hence, as an approximation, it is possible 

to consider these vibrations separately by either ignoring the energy of flexural deformation, or 

by considering the flexure to occur without tension of the middle surface of a ring. 

The differential equations of the extensional vibration of a ring along the circumference 

can be derived as the Euler equations (4.2) under the condition (4.200), using expressions for 

the potential and kinetic energy per element of volume of the ring 
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, (4.225) 

 ( )2
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2 2
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. (4.226) 

Thus, we arrive at equations 
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After differentiating the first equation with respect to  and adding it to the second, we will find 

that in this case 

 0r


 
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
+ =


. (4.229) 

Under this condition the equation for r  will be 
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The boundary condition for equation (4.230) is 2π periodicity of function ( )r  . 

Deriving equation of the flexural vibration of a ring and analyzing solutions for both ex-

tensional and flexural vibrations of the rings is easier to perform in the generalized coordinates. 

This will be done in Sections 4.5.2 and 4.5.4. 
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4.5 Equations of Vibration in the Generalized Coordinates 

4.5.1 The General Outline of Solving Vibration Problems in the Generalized Coor-

dinates 

An alternative to deriving differential equations of motion is solving the vibration problems in 

the generalized coordinates. This approach proves to be more appropriate in many cases in 

respect to mechanical systems of transducers. A brief description of the method is given in 

Section 1.6. The equations of motion in this case are of the form of Euler-Lagrange equations 

(4.1). The general outline of solving the vibration problems using generalized coordinates can 

be laid out as follows. 

Let us assume that ( )i r  is a certain complete system of functions, which are defined 

within a vibrating body and satisfy the boundary conditions. It will be referred to as the sup-

porting system of functions. Displacements in the vibrating body can be represented as expan-

sion into series 
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

=

=r r  (4.231) 

with unknown coefficients ( )i t . Since distribution of displacements and therefore a state of 

the mechanical system becomes determinate provided the values of coefficients i  are found, 

they can be considered as the generalized coordinates. For determining thus introduced gener-

alized coordinates the variational principle in the form of Eq. (1.91) can be applied, assuming 

that function L that characterizes state of the body is expressed by relation (1.94). In the general 

case expressions for the kinetic and potential energies of a vibrating body can be represented 

as follows 
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have dimensions of masses and rigidities. For example, following relations (4.38) and (4.39) 

for one-dimensional longitudinal and torsional vibrations expressions for the energies are 

 2 21 1
, ( )

2 2
kin pot

V V

W m dV W K dV   = =  . (4.235) 

Upon substituting ( , )x t  from Eq. (4.231) we arrive at the expressions for the masses and 

rigidities 

 ( ) ( ) , ' ( ) ' ( )il i l il i l

V V

M m x x dV K K x x dV    = =  . (4.236) 

The term eW  in expression (4.1) represents the total energy of external actions, which 

comprises the energy due to action of external mechanical source, designated as mW , and due 

to reaction of a mechanical load, LW , into which a part of energy flows. Since energy mW  flows 

into the body, while LW  flows out of it (see Section 1.6), e m LW W W= − . If we consider the 

external actions in the most general case as the forces ( )mf r  and ( )Lf r  distributed over sur-

face of the body, then [ ( ) ( )]e m LW f f  = −r r  and using expansion (4.231) we obtain 
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where mif
 
and Lif  have the meaning of equivalent forces (see Eq. (4.82)) that correspond to 

the modes of vibration i . Upon switching to the complex form and introducing distributed 

impedance of a load, ( )Lz rΣ , we arrive at the expression for the equivalent reaction of the load 
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where   is complex quantity that corresponds to instantaneous value of   from formula 

(4.231). From Eq. (4.237) we obtain 
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Substituting expression (4.238) for ( )LF r  under the integral (4.240) results in 
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where 

 ( / )Li Lii Lni n i

n i

Z Z z  




+=   (4.242) 

is the equivalent impedance of a load; LiiZ  is the self-impedance of a load for vibration mode 

i , Lniz  is the mutual impedance that correspond to interaction between vibration modes i  and 

n . The energy flux (4.240) that flows into the load can now be represented as 
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W Z


=

=  . (4.243) 

Consider several examples of the external actions. 

Action of the lumped force, ( ) ( )m x x xF T d= r r , and load, ( ) ( )L x L x xZ z d= r r , where ( )xT r  

and ( )L xz r  are the mechanical stress and density of a load that vanish outside of the unit area 

xd . In this case 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Lni L x i x n x L x i x n x x L x i x n xZ z d z d Z     


=  =  = r r r r r r r r r , (4.244) 

 ( ) ( ) ( ) ( ) ( ) ( )mi x i x x i x x m x i xF T d T d F  


=  =  = r r r r r r . (4.245) 

If ( ) 0i x =r , then 0miF =  and 0l iZ = , i.e., actions applied to points on the nodal line don’t 

affect the mode of vibrations ( )i r . Consequently, the elements of fastening a mechanical sys-

tem preferably must be placed close to the nodal lines. 

Action of a force distributed uniformly with density mF . The equivalent acting force is 

 ( ) ( )mi m i m i m aviF F d F d F S  
 

=   =   =  r r , (4.246) 

where 

 ( )avi iS d 


=  r  (4.247) 

is the average area of the surface vibrating in the mode ( )i r . In particular, the acoustic field 

produces action of this kind, if dimensions of the transducer body are considerably smaller than 

the wavelength of sound. In this case the sound pressure ( ) oP t P , where oP  is the acoustic 
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pressure in the free field, and mi o aviF P S . The volume velocity, 
V

U , produced by a surface 

vibrating with distribution of displacement 
0( ) ( )i  =r r  is 0 aviV

U S= . Obviously, 

avi rS S  ( rS  is the area of the vibrating surface), where equality is achieved at ( ) 1i =r . If 

some parts of the surface vibrate in anti-phase, the values of avS  may be considerably reduced 

and even may drop to zero. Thus, under the transverse vibrations of a beam with simply sup-

ported ends ( ) sin( / )i x i x l = , 2 /avi rS S i=  at uneven i, and 0aviS =  at even i. If 0aviS = , 

the corresponding mode of vibration cannot be excited under an uniform action over the surface 

(in this case 0miF = ), and the surface vibrating in such a mode does not produce a volume 

velocity ( 0
V

U = ). Because of this it is not expedient to use mechanical systems with small 

values of the average area for mechanoacoustic conversion, especially if they have a small wave 

size. Values of an average area can be significantly increased by baffling the parts of the surface 

vibrating in anti-phase. 

Action of force intended for exciting a single mode of vibration. Distribution of the force 

must be orthogonal to all the other modes of vibration, as it follows from formula (4.239). In 

fact, if distribution of the acting force replicates distribution of the displacements in the desira-

ble mode of vibration ( )i r , i.e., ( ) ( )m m iF F  = r r , where mF  does not change over the 

surface, then 

 2 ( )mi m i m eff iF F d F S 


=   =  r  (4.248) 

and 0mnF =  at n  i due to orthogonality of vibration modes i  and n . The quantity 

 2 ( )eff i iS d


=  r  (4.249) 

will be called the effective surface area of vibration mode i . 

Thus, the values of the average and effective surface areas aviS  and eff iS  defined by 

formulae (4.247) and (4.249), and location of the nodal lines of the modes of vibration are the 

important properties along with other equivalent parameters of the mechanical system of a 

transducer. 

Upon substituting expressions (4.233) and (4.237) for the energies (on this stage without 

applying of a mechanical load, i.e., at 0Lf = ) the system of Euler equations (4.1) becomes 
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 ( ) , ( 1,2,...)ii i ii i ni n ni n mi

n i

M K M K f i   




+ + + = = . (4.250) 

If the mechanical system is uniform (in the expressions (4.236) m  and K  are constant) and 

the normal modes iX  are used as the supporting functions, then from orthogonality of the nor-

mal modes follows that 0niM =  and 0niK = , and Eqs. (4.250) become independent. In this 

case the generalized coordinates i  are called normal coordinates and Eqs. (4.250) coincide 

with Eqs. (4.85), which were obtained as a result of solving the vibration problem for the me-

chanical system by method of expansion in terms of normal modes. Considering losses of en-

ergy, we have brought Eqs. (4.85) to the form of Eqs. (4.86). In the analogous way we will 

account for energy losses in Eqs. (4.250), simultaneously changing to the general case, in which 

eW  is determined by relation (4.238). Then equations (4.250) become 

 ( ) ( 1,2...)ii i i i ii i ni n ni n mi Li

n i

M r K M K f f i    




+ + + + = − = . (4.251) 

Under harmonic vibrations Eqs. (4.251) present an infinite system of algebraic equations with 

constant coefficients relative to the generalized coordinates i . Changing to the complex form 

and taking into consideration expressions (4.241) and (4.242) for LiF  and LiZ , we arrive at 

 

( / ) ( / )

( / ) , ( 1,2,3,...).

ii ii i i ni ni n

n i

Lni n i i miLii
n i

j M K j r U j M K j U

z U U U F iZ

   








+ + + + +

 + = =  
+




 (4.252) 

It is convenient to denote for brevity 

 

/ , / ,

( / ) ,

ii ii i m ii ni ni m ni

m ii mni n i m i

n i

j M K j r Z j M K j z

Z z U U Z

   




+ + = + =

+ =
 (4.253) 

where miiZ  is the mechanical self-impedance of vibration mode i , m niz  is the mutual mechan-

ical impedance, which characterizes interaction between vibration modes i  and n . Using 

these designations, Eqs. (4.252) can be finally represented as 

 ( ) ( )m ii Lii i mni Lni n m i

n i

Z Z U z z U F




+ + + = . (4.254) 
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In the case that the equivalent forces 
miF  are of electromechanical origin (for example, 

forces acting on the body surface from the side of electro-dynamic, electromagnetic, or other 

electromechanical generators), Eqs. (4.254) describe vibration of the mechanical system of the 

corresponding transducers in the generalized coordinates (velocities). Procedure for solving the 

systems of equations such as (4.254) is well known (e.g., see Ref. 5). Thus, the problem to be 

solved in each particular case is in determining the impedances involved in the equations. 

Solution of the infinite systems of equations can be obtained by the method of reduction, 

as it is demonstrated in Ref. 5. But the same problem can be solved differently, if to reduce the 

number of degrees of freedom for the mechanical system under consideration in advance, and 

to present the displacements as the finite series 

 
1

( ) ( )
N

N i i

i

x x  
=

= . (4.255) 

Once an approximate solution, ( )N x , is obtained, it can be made more precise by gradual 

increasing the number of equations N. Such technique of solving the problem of elastic body 

vibration is known as the Ritz’s method. 

With exception for the particular case of normal coordinates, the equations of the system 

(4.224) are coupled. The degree of coupling the equations, calculating difficulties in solving 

vibration problem and clarity of physical interpretation of results to a great extent depend on 

selection of the supporting functions. Solution of the system of equations is fairly simple, if the 

normal modes of the vibration problem for a real body are selected as the supporting functions. 

Sometimes it proves possible to guess the form of normal modes based on symmetry of me-

chanical system. But in general, the problem of determining normal modes is equivalent in 

terms of complexity to that of determining vibration of the mechanical system. 

Another practical way of analyzing a real system is to use the normal modes of an idealized 

vibrational system, for which they are known, provided that the latter does not significantly 

differ from the real system. In order to illustrate the above-mentioned approaches, considere-

veral examples. The first group of examples illustrates employing the normal modes of vibra-

tion. 
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4.5.2 Extensional Vibration of the Complete Rings 

The transducer with mechanical system in the shape of a thin piezoelectric ceramic ring was 

considered in Section 2.3 under assumption of uniform excitation and uniform acoustic loading, 

as a typical example of transducer with one mechanical degree of freedom. If to reject these 

assumptions, then the symmetry considerations are not valid and the ring may vibrate in the 

extensional modes with displacements taking place in the radial and circumferential directions, 

as shown in Figure 4.15. The general expressions for displacements in the extensional vibration 

of a ring are presented in Section 4.4.4. 

 

Figure 4.15: The extensional vibrations of a general type in the plane of a ring: r  and c  are the 

displacements in the radial and circumferential directions. 

The potential and kinetic energies of the ring following expressions (4.225) and (4.226) are 
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2
kinW tha d



      = +     . (4.257) 

Taking into consideration 2  periodicity of function ( )r  , an arbitrary distribution of the 

the radial displacement on the ring surface can be represented as 

 ( )
0

cosr i

i

i   


=

= . (4.258) 

According to Eq. (4.213) 
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After substituting the functions ( )r   and ( )   into expressions for the energies (4.256) and 

(4.257) we obtain: 
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 (4.260) 

where 2M ath =  is the mass of the ring and 
eqviM  is the equivalent mass that corresponds 

to the mode of vibration i . 
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Her (4.261) 

Here eqviK  is the equivalent mass that corresponds to the mode of vibration i . When calculat-

ing the integrals, orthogonality of functions cos i  and sin i  on the interval 0 to 2  was used. 

It follows from Eqs. (4.260) and (4.261) that 

 ( )2

0 , 1 / 2eqv eqviM M M M i= = +  (4.262) 

and 

 ( )2
2

0

2
, 1eqv eqvi

thY thY
K K i

a a

 
= = + . (4.263) 

After substituting the parameters by formulas (4.262) and (4.263) into the general expression 

for the natural resonance frequencies, 

 /i eqvi eqviK M = , (4.264) 

we obtain 

 
2

0 1i i = +  (4.265) 

as the resonance frequencies of the extensional vibrations of different order, where   

0 (1 / ) /a Y  =  is the natural frequency of zero order (at 0i = ), or of the pulsating mode of 

vibration. Under extensional vibrations of this kind the displacements of cross sections of a ring 

are 
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2 2 2 2 2cos sinj j

ri i ie i i i e 
    = +  = +  , (4.266) 

where  arctan( tan )i i = . As the angle   changes, vector   turns by angle  relative to axis 

0 = . Positions of the vector at /4 increments of angle   for i = 1 are shown in Figure 4.15. 

The cross sections of ring that don’t move in radial direction have maximum displacement tan-

gential to the circumference. As an order of the vibration mode increases, natural frequencies 

become multiples of i, while the motion becomes more concentrated in the tangential direction 

(| |)i rii = . Using expression (4.221) the value of mechanical stress in the ring can be ob-

tained as 

 
2

0

(1 )cosi

i

Y
T YS i i

a
   



=

= = + . (4.267) 

4.5.3 Extensional Vibration of Incomplete Rings 

Consider extensional vibration of an incomplete ring with free ends. Geometry of the ring is 

shown in Figure 4.16. We assume that the ring is thin and short, that is ( / ) 1t a  and 

( / ) 1h a . Therefore, the only nonzero stress in the ring is T YS = . Using expression for 

strain S  from Eq. (4.70) and condition (4.76) of existing the extensional vibration only, we 

obtain 

 

Figure 4.16: Geometry of an incomplete circular ring with opening angle  . Dashed line shows 

the lowest mode of vibration of the ring with a slot - 0 ( , ) cos( / 2).   =  
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The conditions at free ends are 



=
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 0T YS   =
= =  i.e., 

2

2
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r

 




=

 
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. (4.269) 

For transducer application purposes the symmetric in respect to axis 0 =  vibrations are of 

interest. This condition together with conditions (4.269) are satisfied by the functions 

 ( , ) cos(2 1) ( 0,1,2,...)
2

i i i
   


= + = . (4.270) 

They form a complete orthogonal set of functions in the interval   −   . Indeed. 
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The functions (4.270) can be used as the set of supporting functions, and the general solution 

to the problem of extensional vibration of an incomplete ring that satisfies the boundary condi-

tions (4.269) can be represented as series 
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After substituting these expressions for displacements into formulas for the potential and kinetic 

energies per element of a ring (4.225) and (4.226), will be obtained: 
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where 
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where 



4.5. Equations of Vibration in the Generalized Coordinates  65 

 

2

1 (2 1)
2

eqviM tha i



   = + +  
   

 (4.277) 

is the equivalent mass that corresponds to the mode of vibration i . 

The resonance frequencies of free vibrations are (1/ 2 ) /i i if K M= , and after substitut-

ing expressions (4.248) and (4.249) will be obtained that 
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where 
0 (1/ 2 ) /rf a Y =  is the lowest resonance frequency of a complete ring of radius a. 

Thus, for example, the ring having a thin slot or a crack (in this case   ) has the resonance 

frequencies 
0 0 1 0 2 01.25, 1.8 , 2.7r r rf f f f f f= = =  as compared with the resonance frequen-

cies of the complete ring 0 0, 1.4r rf f  and 02.2 rf , respectively. The mode shape that corre-

sponds to the lowest resonance frequency of a ring with a slot is 0 ( , ) cos( / 2).   =  It is 

shown in Figure 4.16. The modal distribution of stress in the ring is 
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4.5.4 Flexural Vibration of the Complete Rings 

Equation of the flexural vibration of a ring can be derived under the condition (4.260) 

 0r
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


+ =


 (4.280) 

that the middle surface of the ring does not elongate. Under this condition expressions (4.225) 

and (4.226) for the potential and kinetic energies per element of the ring can be modified to the 

following form 
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The same system of supporting functions ( ) cosi i  =  can be accepted, as in the case of the 

extensional vibrations, taking into account 2  periodicity of solution for the flexural vibration 

of a complete ring. Thus, the displacements in the radial and circumferential directions that 

meet the condition (4.231) will be presented as follows 
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After substituting expressions for the displacements into formulas (4.281) and (4.282), we ob-

tain the following representations for the potential and kinetic energies of the ring: 
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(note that at 1i =  the potential energy cannot exist, therefore the series (4.283) and (4.284) have 

to be started from 2i = ); and 
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Expressions for the equivalent masses, eqviM , and rigidities, eqviK , (compliances 

1/eqvi eqviC K= ) that follow from the relations (4.285) and (4.286) are 
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Thus, the resonance frequencies of the flexural vibration of a ring are 
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The lowest resonance frequency occurs at 2i =  and is 

 2 2
0.12 /

t
f Y

a
= . (4.289) 

The next resonance frequency is 3 28f f , therefore the mode of vibration cos 2r ro  =  can 

be considered as dominant in the frequency range below and around frequency 2f . Ratio of the 

lowest resonance frequency of extensional vibration of a ring, ( )0 / / 2f Y a = , to 



4.5. Equations of Vibration in the Generalized Coordinates  67 

frequency 2f  is 0 2( / ) 1.3 /f f a t= . Thus, for the relatively thin rings free flexural and exten-

sional vibrations can be treated as independent.It is noteworthy that the case at i=1 corresponds 

formally to translation of the ring as a rigid body in the direction 0 =  with mass 1M M=  

and “resonance frequency” 1 0 = . 

Distribution of the mechanical stress in a ring can be found using Eq. (4.221), in which the 

second term represents the flexural deformations, namely 
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4.5.5 Vibration of the Spherical Shells 

4.5.5.1 Introduction 

Piezoceramic spherical shells are common in underwater acoustics predominantly as omnidi-

rectional (zero mode) projectors and hydrophones. Example of a transducer that can be used in 

this capacity is considered in Section 2.2. Spherical shell transducers can also be used as direc-

tional by combining different modes of vibration, or by baffling of parts of their surfaces. Such 

applications will be considered in Chapter 8. They require more general analysis of vibration 

of the shells. Vibration of the passive spherical shells has been examined by many authors. An 

extensive bibliography on this issue is provided in Ref. 6. 

 

Figure 4.17: (a) Geometry of the spherical shell and (b) its differential element and variables used. 
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The geometry of the spherical shell in the general case of an open shell is shown in Figure 

4.17. We will consider the axisymmetric vibrations of thin elastic spherical shells only. There-

fore, the components of motion are the radial and tangential displacements of the middle sur-

face, r  and  , which are independent of the azimuthal angle . The opening angle for the 

incomplete sphere is denoted 0 . The thickness of the shell, t, is assumed to be small enough 

to neglect the radial stress through the thickness ( 0zT  ). 

In course of analysis of the spherical mechanical system a set of supporting functions that 

define the distribution of radial displacements for the normal modes of vibration must be deter-

mined and the generalized coordinates introduced. After this is done, the modal equivalent pa-

rameters of the spherical mechanical system and corresponding resonance frequencies must be 

calculated. All these goals will be achieved with reference to work [8], in which the general 

case of axisymmetric vibration of the finite thickness spherical shells open at one pole and 

effects of the shell bending are considered. It was s found that the frequency spectrum of vibra-

tion of the complete shells corresponds with two coupled sets of modes, namely, the “mem-

brane” modes, which are associated with extension of the shell, and the bending modes. Their 

related resonance frequencies form the upper and lower branches, respectively. Two modes 

constitute the exceptions: the zero-order (“breathing”) mode, where the displacements are 

purely radial, and the first-order mode, where the distribution of radial displacements is 

0 cosr  = . In both cases only the extensional modes of deformation and corresponding res-

onance frequencies exist. In the case of the first-order vibration, formally, the resonance fre-

quency 0f =  also exists, which can be ascribed to translation of the shell as a rigid body in 

the direction 0 =  without deformation. We denote the corresponding displacement as 1t . 

This rigid body movement must be considered by adding the term 
2

1 / 2sph tM   ( sphM  is the mass 

of the sphere) to the total kinetic energy of the shell. The resonance frequency corresponding 

to the zero mode of vibration is considered as the fundamental mode, although it is not the 

lowest resonance frequency (the lowest are the resonance frequencies of some of the bending 

modes). 

The membrane modes are independent of the shell thickness so far as the classical theory 

of thin shells is applicable. The general convention is that this is valid for the range of the 

relative thicknesses (thickness to radius ratio) / 0.05t a  . At this condition the terms on the 
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order of z/a can be neglected in any expression for strain, S, by replacing / (1 / )S z a S+  . It 

is of note that the spherical shells for transducer applications usually have relative thickness in 

the range of t/a = 0.05 to 0.2. The factor 1/ (1 / ) 1 /z a z a+  −  could be retained to increase 

the accuracy of calculations, but this would unjustifiably complicate the general analysis. It will 

be shown later by comparing the results of calculations made with and without this factor that 

difference in estimating transducer parameters is insignificant up to t/a = 0.2. 

The bending modes vary with thickness. According to the membrane theory (Ref. 2) the 

bending mode related resonances are confined within a finite interval at low frequencies, 

whereas the bending theory predicts that they may extend to the high frequencies for all values 

of the thickness. Thus, the resonances of the bending modes can appear in the operating fre-

quency range of the transducer and may cause a corruption of its frequency response and direc-

tional factor. Therefore, it is appropriate to use this more general approach, when considering 

broadband operation of a multimode spherical transducer. 

For vibration of incomplete spherical shells, especially those with great opening angles, 

the most comprehensive analysis available is also given in Ref. 8. Thus, all the calculations of 

the spherical shell parameters will be produced based on the mode shapes of vibration deter-

mined by following the results presented in this work without repeating their derivation. The 

brief outline of the procedures performed in this work follows. 

As it is shown in Ref. 8, the expressions for strains of the middle surface of a shell are 

 
1 1

[ ( ) ( )], [ ( )cot ( )]r rS S
a a

           = + = + , (4.292) 

where the prime sign (') denotes the derivative with respect to  . Changes of curvature of the 

middle surface in directions of the meridian and azimuth are 

 
2 2

1 1
[ ( ) ( )], cot [ ( ) ( )]r r

a a
               = − = − . (4.293) 

The total strain across the thickness is 

 ,S S z S S z      = + = + . (4.294) 

The expressions for stress are 
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2 2

( ), ( )
1 1

Y Y
T S S T S S      

 
= + = +

− −
. (4.295) 

The expression for the kinetic energy of deformation for a sphere with the opening angle 0  is 

 ( )
0

2 2 2

0

sinkin rW a t d



     = + . (4.296) 

The expression for the potential energy is 
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2 2 2 2
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S S S S d d
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

       
         


= + =

= + + + + +
−




 (4.297) 

Analysis for the complete and incomplete spherical shells will be fulfilled separately. 

4.5.5.2 Complete Spherical Shells 

The displacements of complete spherical shells, being periodic functions with period 2, can 

be presented by Legendre polynomials, (cos )iP  , which are solutions of the differential equa-

tion (Appendix C.3) 

 
2

2

2

( ) ( )
( 1) 2 ( 1) ( ) 0i i

i

d P x dP x
x x i i P x

dxdx
− + − + =  (4.298) 

at cosx = . The Legendre polynomials present an appropriate orthogonal set of supporting 

functions in the interval [1, -1] for solving the transducer problems, and the radial and tangential 

displacements can be presented in the form 

 
0 1

( ) (cos ), ( ) (cos )r ri i i i

i i

P P        
 

= =

= =  . (4.299) 

The modal displacements ri  and i  are related in the following way8, 

 ( ) (cos ), ( ) (1 ) (cos ) ( 1,2,3,...)ri ri i i ri i iP C P i        = = − + = . (4.300) 

Here is denoted 0( )ri ri    ==  and 

 
2 2

(1 )(1 ) ( 2)

(1 )(1 )(1 ) (1 )(1 )

i
i

i

C
   

     
+ + + −

=
− − + + + − +

, (4.301) 

 
2 2 2

2

2
( 1), ,

12
i

t a
i i

Ya

 = + =  = . (4.302) 
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After the modal resonance frequencies i  are determined from frequency equations, the non-

dimensional frequency parameters 2  and coefficients iC  can be calculated. At i  2 i , i  

and iC  have two values: higher and lower, which correspond to the membrane and bending 

modes, respectively. They will be denoted as im , im , imC  and ib , ib , ibC . Substituting 

the modal displacements given by Eq. (4.300) into expressions (4.292) and (4.293) results in 

determining the strains and curvature change and, subsequently, in calculating the kinetic and 

potential energies associated with deformation of a shell. Note that according to relations 

(4.300) all the quantities appear to be expressed through the modal displacements of the pole, 

ri , which can be taken for the generalized coordinates. Given that at i  2 two modes of vibra-

tion exist for each number i, the corresponding generalized coordinates ri m  and ri b  must be 

introduced. It is also of note that the radial component of translation of the shell as a rigid body, 

which we denote 1r t , has the same dependence on , as the radial displacement in the first 

mode. Therefore, the total radial displacement associated with the mode shape at i = 1 should 

be represented as 1 1 1( ) ( )cosr r t     = + , when considering the radiation related problems. 

The subscript r will be further omitted for brevity and the respective set of generalized 

coordinates 0 ; 1 , 1t ; im , ib  will be used, where i = 2, 3,… . The displacements and all the 

displacement dependent functions with numbers i  2 will be represented as 

 
, , ;

, .

i i m ib i i m ib i i m ib

i i m ib i i m ib

S S S S S S     

     

  
     

= + = + = +
= + = +

 (4.303) 

The displacement at i = 1 is 1 1 1t   = + , but it must be remembered that no stress is associated 

with the generalized coordinate 1t . 

Taking into consideration orthogonality of Legendre polynomials on the interval 

0    , the kinetic and potential energies can be represented as superposition of the modal 

energies. Thus, 

 

2 2 2 2

1

0

2 2 2 2 2

0 0 1 1 1

2

[ ( ) ( )]sin
2

1
[ ( )].

2

sph

kin kini t ri i

i i

eqv sph t eqv eqvi m i m eqvib ib

i

M
W W a t d

M M M M M



        

    


= = + + =

= + + + +

 


 (4.304) 
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 (4.305) 

where eqviM  and eqviK  ( eqvi mK  and eqvibK  at i  2) are the modal equivalent masses and rigidi-

ties. Parameters 
i mbK  are the mutual rigidities, which are accounted for the elastic coupling 

between the membrane and bending modes at i  2. Expressions for the nondimensional reso-

nance frequencies and for the equivalent parameters are presented in Table 4.1. 

Table 4.1: Equivalent parameters of the complete spherical shells. 

Parameter i 0 1 22) 32) 52) 

i 1) 
m 2 / (1 )−  3 / (1 )−  2.9 3.9 6.2 

b - - 0.75 0.92 1.24 

eqviM , 

24 a t   

m 1 0.5 0.60 0.62 0.26 

b - - 0.29 0.17 0.10 

eqviK , 
2

2

1

Yt



−

 
m 4(1+) 3(1+) 8.9 16.3 14.3 

b - - 0.28 0.23 0.16 

imbK   - - -0.01 0.0016 0.027 

iC  
m - 1/2(1+) 0.45 0.41 0.19 

b - - -0.21 -0.1 -0.036 
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Figure 4.18: Dependences of the normalized resonance frequencies i  of a spherical shell as 

functions of t/a and σ: (a) for the membrane modes, and (b) for the bending modes. Solid lines – 

0.33 = , dotted lines – 0.30 = . 

The calculations of parameter values for modes at i  2 are made for Poisson’s ratio  = 0.3 and 

t/a = 0.1. The dependence of the resonance frequencies on ratio t/a at different values of  is 

shown in Figure 4.18. As can be seen from Figure 4.198 (a), the resonance frequencies of the 

membrane modes are nearly independent of t/a for t/a < 0.2. Also, the resonance frequencies of 

the bending modes are practically independent of . In order to simplify the general analysis, 

we will intentionally sacrifice some accuracy by performing the calculations at  = 0.3 and t/a 

= 0.1, unless particular transducers are considered. The accuracy of calculations can be in-

creased, if needed, by using real properties of a particular spherical shell. 

The modal radial displacement distributions in the membrane modes for the complete shell 

at i = 0, 1, 2, 3 are presented in Figure 4.19 in comparison with the mode shapes of incomplete 

(hemispherical) shell in the next section. 

4.5.5.3 Incomplete Spherical Shells 

The solution to the equation of free vibrations of a spherical shell open at one pole results in 

Legendre functions of complex order, i.e., conical functions (cos )
imP   of the first kind, where 
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0.5 0.25i im = + + , and i  can be a complex quantity. The modal displacements in this case 

can be presented as8 

 
1,2,3 1,2,3

( ) cos , ( ) (1 ) (cos )
i irm i m m i i m

i i

A P C A P      
= =

= = − +  . (4.306) 

The frequency equations for determining the normalized resonance frequencies   in this 

case have to be formulated according to boundary conditions that exist on the open edge of a 

shell at 0 = . Only free boundary conditions will be considered here because they can be 

realized exactly, and they are the most realistic and practical boundary conditions for the in-

tended transducer designs. For the free boundary to exist, the stress, moment, and shearing force 

must vanish. 

Once the resonance frequencies are determined, the values of i  can be calculated from 

the corresponding cubic equation8 that produces three values of  (one real and two complex 

conjugate) for each resonance frequency. The coefficients iC  may then be found from Eq. 

(4.301) and the mode shape coefficients iA  can be found following the procedure described in 

Ref. 8. Given that ( )1 1
imP = , the pole’s radial displacement can be represented as 

 1 2 3 1 2 1 3 1(0) (1 / / )r r A A A A A A A A = = + + = + + , (4.307) 

where it can be assumed 1 1A = . The resonance frequencies  of the first membrane mode and 

bending modes of vibration for a hemisphere ( 0 / 2 = ) and for a spherical segment with 

opening angle 0 / 3 = , together with values of the quantities for determining the correspond-

ing mode shapes ( im , iC , iA ), are presented in Table 4.2. Data presented in Table 4.2 show 

that the resonance frequencies of the membrane modes, which are usable for transducer appli-

cations, are preceded by those of the bending modes. A relatively noticeable contribution to 

mechano-acoustic conversion can be expected from the lowest bending modes, judging by the 

comparison of the mode shapes of the radial displacements shown in Figure 4.19. Subsequently, 

we will only consider parameters of the membrane modes and of the lowest bending modes. 
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Figure 4.19: The modal radial velocity distributions: (a) for the complete spherical shells, 

(cos )nP  , n = 0, 1, 2, 3; (b) for the hemispheres’ first membrane and first bending modes. Solid 

lines – approximate solution, dashed lines – exact solution. 

The equivalent modal masses and rigidities for the spherical shells were introduced and 

determined in Ref. 9 from the general expressions for the kinetic and potential energies (4.296) 

and (4.297). After substituting expressions (4.263) for the displacements ( )r   and ( )  , 

performing all the calculations and considering that in accordance to relation (4.307) 

2 3(0) 1r A A = + + , the modal potential and kinetic energies of deformation may be represented 

in the form 

 2 21 1
(0), (0)

2 2
kin eqv r pot eqv rW M W K = = . (4.308) 

For the case of hemispherical shell ( 0 / 2 = ) it follows from Table 4.2 that the terms in Eq. 

(4.306) corresponding to 2A  are dominant for the membrane mode. Thus, we may assume 

that 

 1 1( ) (cos ), ( ) 0.38(1 ) (cos )rm r m rP P          − + . (4.309) 

For the first bending mode the terms related to 1A  are dominant, and therefore 
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 3 3( ) (cos ), ( ) 0.1(1 ) (cos )rb r b rP P          + . (4.310) 

The approximate distributions of displacements in accordance with expressions (4.309) and 

(4.310), and the exact results that take into account all the terms from Table 4.2, are presented 

in Figure 4.19 (b) and show sufficiently good agreement. 

Table 4.2: Coefficients related to calculation of parameters of incomplete spherical shells. 

  Hemisphere ( 0 / 2 = )  Semisphere ( 0 / 3 = )  

 Mode 1m 2m 1b 2b 1m 1b 2b 

  2.07 2.82 0.9 1.03 2.55 0.95 1.4 

iA 1) 1 1 1 1 1 1 1 1 

2 11.7 

 
-15.5 

 
0.006 

-0.003i 

-0.01 

-0.004i 

-10.8 

 
0.04 

-0.05i 

0.01 

 

3 10-5 

 
-410-8 

 
0.006 

+0.003i 

-0.01 

+0.004i 

-14 

 
0.04 

+0.05i 

0.01 

 

im 1) 1 7.5 10.7 2.9 3.8 8.3 3.2 5.5 

2 1 

 
3 

 
2.1 

-3.2i 

1.3 

-3.1i 

1.7 

 
1.8 

+3.0i 

-0.5 

-1.3i 

3 -0.5 

-7.5i 

-0.5 

-10.9i 

2.1 

+3.2i 

1.3 

+3.1i 

-0.5 

+8.5i 

1.8 

-3.0i 

-0.5 

+1.3i 

iC 1) 1 -0.02 -0.01 -0.1 -0.06 -0.015 -0.08 -0.03 

2 0.39 

 
0.52 

 
0.015 

-0.016i 

0.04 

-0.06i 

0.45 

 
0.02 

+0.06i 

0.22 

 

3 0.02 

 
0.01 

 
0.015 

+0.016i 

0.04 

+0.06i 

0.012 

 
0.02 

-0.06i 

0.03 

 

The expressions (4.309) and (4.310) coincide with expressions (4.300) for displacements 

in one half of a complete sphere vibrating in the first membrane mode and in the first bending 

mode (at i = 3b), respectively. Therefore, the resonance frequencies of a hemisphere are the 

same as for a complete sphere vibrating in the first mode, and all the equivalent parameters are 

twice smaller than the analogous parameters of the complete sphere of the same geometry vi-

brating in the first mode. 

It is noteworthy that these results for hemisphere could be predicted without calculations 

due to the fact that the boundary conditions for a hemisphere with free edge (stress T , moment 

M , and shearing force Q are zero) virtually coincide with the analogous conditions in the cross 
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section at / 2 =  of the complete sphere vibrating in the first mode. The only difference is 

that a finite shearing force exists in the last case. However, for the thin shells, the shear-related 

energy is negligible compared with the “membrane” energy and significantly smaller than the 

bending energy. The comparison of vibration distributions for the hemisphere presented in Fig-

ure 4.19 (b) shows that neglecting the bending energy does not change the membrane modes 

and only slightly changes the bending modes at the angles close to / 2 = . 

Table 4.3: Equivalent parameters of incomplete spherical shells. 

Geometry Parameter 
Bending 

1 2 

Membrane 

1 2 

 

 0.90 1.03 2.07 3.82 

eqviM , 
24 a t   0.12 0.11 0.21 0.51 

eqviK , 
2

2

1

Yt



−

 0.18 0.22 1.60 13.6 

 

 0.95 1.40 2.55 - 

eqviM , 
24 a t   0.09 0.03 0.24 - 

eqviK , 
2

2

1

Yt



−

 0.15 0.10 2.75 - 

In the case of the opening angle 0 / 3 = , the following simplified expressions for the 

displacements may be obtained: 

for the membrane mode 

 1.6 1.6( ) (cos ), ( ) 0.45(1 ) (cos )rm r m rP P        = = − + ; (4.311) 

and for the first bending mode 

 3.6 3.6( ) (cos ), ( ) 0.07(1 ) (cos )rb r b rP P        = = − + . (4.312) 

Equivalent parameters of the shells at opening angles 0 / 2 =  and 0 / 3 =  that are 

calculated from expressions (4.296), (4.297) for the kinetic and potential energies using the 

above expressions for the generalized displacements are presented in Table 4.3. 
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4.5.6 Flexural Vibration of Nonuniform Beams 

Vibration of the piezoceramic uniform bimorph beams and circular plates were considered in 

Section 2.6. As it will be shown in Chapter 9, the parts of active material of the piezoceramic 

bender transducers employing rectangular and circular plates that contribute the least to the 

electromechanical conversion can be replaced by passive material (metal predominantly) in 

order to optimize the operating properties of the transducer. This require considering peculiar-

ities of flexural vibration of these mechanical systems with properties nonuniform through their 

thickness and over length (radius). The procedure of calculating vibration of various nonuni-

form mechanical systems remains virtually the same, but their numerical illustration looks in 

the simplest way in application to the rectangular beams. Considering this example is moreover 

reasonable that the results obtained regarding effect of nonuniformity through the thickness are 

valid for all the mechanical systems vibrating in flexure. 

 

Figure 4.20: Modifications of the symmetric trilaminar beams: (a) uniform over the length, (b) 

with parts of active layers replaced by a passive material, (c) with parts of the active layers re-

moved. Passive material is shown as dashed. 

Practical modifications of the nonuniform beam designs are shown in Figure 4.20 and Fig-

ure 4.21. The symmetric trilaminar beam is composed of two piezoelectric ceramic layers hav-

ing equal thickness that are cemented to the central laminate made of passive material. 

Bilaminar beam is composed of active and passive parts having different mechanical prop-

erties. 
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Figure 4.21: Modifications of the bilaminar beams: (a) uniform over the length, (b) with parts of 

active layer replaced by a passive material, (c) with parts of the active layers removed. Passive 

material is shown as dashed. 

We will start the treatment from the symmetric trilaminar beams. Position of the neutral 

surface under bending in the trilaminar beams remains the same, as for the uniform beam due 

to symmetry. Position of the neutral surface in the bilaminar beams depends on relation between 

the thicknesses and elastic properties of the active and passive layers, and this complicates the 

problem. Considering vibration of nonuniform beams that are composed of materials with dif-

ferent properties require using expressions for the potential and kinetic energies in the following 

general forms. 
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where the density and Young’s modulus may change over the volume. 

4.5.6.1 Trilaminar Beam Uniform over the Length 

Variant of the beam in Figure 4.20 (a) can be considered as uniform over the length with some 

equivalent parameters of material that can be determined as follows. The stresses across the 

cross section are determined as 1T YS= , where 1S  is described by Eq. (2.113), namely, given 

that ( ) ( )ox x  = , 
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where the Young’s moduli of the passive and active laminates are denoted by pY  and E

aY . 

The densities of the active and passive laminates will be denoted a  and 
p . The follow-

ing notations will be used for brevity to characterize properties of the trilaminar beams 

 , ,
p p

YE
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Y
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tY
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  


= = = . (4.317) 

Here 0.5y =  corresponds to the fully active bimorph design. Next, the energy status of the 

vibrating beam has to be considered. The potential energy of the beam at 0E =  will be deter-

mined after substituting the Young’s moduli for the active and passive parts of the beam into 

expression (4.313). As result of integrating through the thickness we obtain 
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where eqvtY  denotes the equivalent Young’s modulus of the trilaminar beam, and 

 ( )
3

32
1 [1 ( 1)(1 2 ) ]E E E

eqvt a p a a YY Y Y Y Y y
t

  = + − − = + − −  
. (4.319) 

The kinetic energy of the beam will be determined after substituting the densities for the active 

and passive parts of the beam into expression (4.314). As result of integrating over the thickness 

we obtain 
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o
kint eqvtW tw x dx
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=  , (4.320) 

where eqvt  denotes the equivalent density of the beam 
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[ 2( 1) ]
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eqv t a
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 

  
   

+
= = − − . (4.321) 

Thus, a trilaminar beam can be considered as uniform over the length beam having the 

equivalent Young’s modulus, eqvtY , and density, eqvt , that are presented by formulas (4.319) 
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and (4.321). Further, only the beams with simply supported ends will be considered. The normal 

modes of vibration in this case are the same, as for any uniform beam with simply supported 

ends, i.e., ( ) cos( / )i x i x l = . Therefore, the expressions for the equivalent mass and rigidity 

of the trilaminar beam coincide with the analogous expressions for the bimorph beam (see Sec-

tion 2.6.1), if a  and 
111 Es  are replaced by the equivalent density eqvt  and equivalent Young’s 

modulus eqvtY , namely, for the first mode 

 

4 3
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1 1
,

224

eqvtE

eqvt eqvt eqvtE

eqvt

wt Y
K M wtl

C l


= = = . (4.322) 

(In regard to the nonuniform over length beams these notations will be shortened to 1tK  and 

1tM .) 

The resonance frequency of the trilaminar beam is 

 
2

0.45
eqv t

t

eqv t

Yt
f

l 
= . (4.323) 

4.5.6.2 Trilaminar Beam Nonuniform over the Length 

The beams of variants shown in Figure 4.20 (b) and (c) must be treated as nonuniform over the 

length. We will distinguish them by subscripts A (the case that parts of ceramics are replaced 

by a passive material) and B (the case that the parts of ceramics are removed). The length and 

thickness of layers of active material are denoted al  and  . 

The unknown distribution of displacement of the neutral surface in these cases can be rep-

resented by the series in terms of the normal modes of vibration of uniform bar. Assuming that 

the beam is simply supported 

 
2 1 2 1

1 1

( ) cos( / ) ( ) ( 1,2,...)
m m

i i i

i i

x i x l x m    
+ +

= =

= = =   (4.324) 

For transducers designing applications the lowest mode of vibration is of primary interest. It is 

logical to suggest that to the first approximation this mode should be close to the first mode of 

the uniform beam. This is moreover that the ratio /al l  cannot be too small from the practical 

considerations. In order to find out whether this assumption leads to sufficiently accurate 
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results, or a contribution of the higher modes is significant, we will at first take into calculation 

the first two terms of the series (4.324). Thus, we assume that 

 1 3( ) cos( / ) cos(3 / )x x l x l    = + . (4.325) 

After substituting this expression for ( )x  into general formulas (4.313) and (4.314) for the 

potential and kinetic energies the following results will be obtained. 

The kinetic energy of the beam in the case A can be represented as 
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
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 (4.326) 

After performing calculations of the integrals, the expression for the kinetic energy will be 

 
2 2 2 2

1 3 1 1 3 3 1 3 13

1 2
( ) ( )( )

2 2
kintA eqv t p a

wtl
W wl F F F         


 = + + − + −  

, (4.327) 

where 

 1( / ) 1 ( / ) (1/ )sin( / )a a aF l l l l l l = − − , (4.328) 

 3 1 ( / ) (1/ 3 )sin(3 / )a aF l l l l = − − , (4.329) 

 13 sin( / ) (1/ 2)sin(2 / )a aF l l l l = + . (4.330) 

The kinetic energy by expression (4.326) can be presented in the form 

 2 2

1 1 13 1 3 3 3

1 1

2 2
kintA tA tA tAW M M M   = + + . (4.331) 

Here and further the following notations are introduced for the equivalent parameters of the 

trilaminar beams: 1 1,t tK M  and 3 3,t tK M  for the first and third modes of vibration of uniform 

over length beam; 1 1,tA tAK M  and 3 3,tA tAK M - for the beam of modification A; 1 1,tB tBK M  and 

3 3,tB tBK M - for the beam of modification B. Notations with subscripts 13t A and 13t B are used 

for the mutual rigidities and masses between the first and third modes 

Thus, in the expression (4.331) 

 1 1 1

2( 1)
1

2( 1)
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y
M M F

y


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
 

 −
= + 
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, (4.332) 
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 3 3 3
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, (4.333) 

note that for a beam with simply supported ends 3 1t tM M= . 

 
13 1 13

2 ( 1)

[ 2( 1) ]
tA t

y
M M F

y



 


  

−
= −

− −
. (4.334) 

In expressions for masses in variant B subscript A should be replaced by B, and   in the nu-

merators must be set to zero in Eqs. (4.331)-(4.334). 

Expression for the potential energy of the beam of variant A can be represented as 
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 (4.335) 

This expression can be presented after manipulations analogous to those performed for the ki-

netic energy in the form 

 2 2

1 1 13 1 3 3 3

1 1

2 2
pot tA tA tA tAW K K K   = + + , (4.336) 

where 
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. (4.339) 

In the expressions for rigidities for variant B subscripts A should be replaced by B, and Y  in 

the numerators of formulas (4.337)-(4.339) must be set to zero. 

Given that the kinetic and potential energies of the nonuniform beams are known, the La-

grange equations of free vibration of the beams can be derived, and the lower resonance fre-

quency and mode of vibration to the second approximation can be determined. Namely, from 
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 0 ( 1,2,...)
potkin

ii

WWd
i

dt 
 

− = =   
, (4.340) 

after substituting the expressions (4.331) and (4.336) for the kinetic and potential energies we 

arrive into equations for variant A 

 2 2

1 1 1 13 13 3( ) ( ) 0tA tA tA tAK M K M   − + − = , (4.341) 

 2 2

13 13 1 3 3 3( ) ( ) 0tA tA tA tAK M K M   − + − = , (4.342) 

and analogous set of equations for variant B with replacement of subscript A by B. 

The frequency equation, from which the lower resonance frequency to the second approx-

imation may be found, is 

 ( )2
2 2 2 2 2

1 3 13 13

1 3

1
( )( ) 0tA tA tA tA

tA tA

K M
M M

    − − − − = . (4.343) 

Here, 

 2

1 1 1/tA tA tAK M =  and 2

3 3 3/tA tA tAK M = . (4.344) 

After the lower resonance frequency I  is obtained, the ratio of displacements (or the mode 

shape coefficient, ms) can be determined from either of Eqs. (4.341) or (4.342), as 
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−
. (4.345) 

The distribution of vibration at the resonance frequency I  now can be represented as 

 1( ) [cos( / ) cos(3 / )]Ix x l ms x l   = + . (4.346) 

Thus, the mode shape of vibration to the second approximation is 

 
( ) 1

( ) [cos( / ) cos(3 / )]
(0) 1

I

I

x
x x l ms x l
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  


= = +
+

. (4.347) 

Analogous calculations may be performed for variant B. 

Results of calculating parameters of nonuniform trilaminar beams made according to the 

above analysis are presented in Figure 4.22 and Figure 4.23 for the first and second approxima-

tions. 
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Figure 4.22: The distribution of displacements (mode shapes ( )x ) determined to the second 

approximation at / 0.6al l =  in comparison with ( ) cos( / )x x l =  for the first approximation. 

Calculations are made for case B and combinations of PZT-4 with aluminum and steel. Deviations 

of the results are within the shaded areas. 

 

Figure 4.23: Ratio of the resonance frequencies of nonuniform over the length trilaminar beams 

calculated to the second ( I ) and to the first ( 1t ) approximations. Solid lines – 1( / )I t A  , 

dashed lines – 1( / )I t B  . Combinations of aluminum – PZT-4 are labeled as number 1, and 

combinations of steel – PZT-4 are labeled as number 2. 

All the calculations are performed for the relative thicknesses of the active material 

/y t=  that correspond to the maximum of the coupling coefficients, as this will be illustrated 

in Chapter 9 for different passive materials used. The reason behind this is that the reduction of 

1
/

I
t



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the volume of active material presupposes that these transducers are not intended for radiation 

of the maximum possible power in case it is limited by the electric field. At this condition 

optimizing the coupling coefficient is the reasonable choice. Further reduction of piezoelement 

thickness may also be appropriate depending on requirements for transducer operation, but in 

this case effect of nonuniformity on the results of calculating the parameters obviously will be 

lesser. 

The following conclusions can be drawn from the results presented in Figure 4.22 and 

Figure 4.23. The main result is that the mode shape of the trilaminar nonuniform beam to the 

second approximation remains practically the same as for the uniform beam at least up to values 

/ 0.6al l = . This is illustrated in Figure 4.22 for the thickness of an active layer that is optimal 

in terms of the effective coupling coefficient of a corresponding piezoelement, even for the 

most critical case that the parts of active material are removed from the ends of the beam (var-

iant B). The mode shape coefficients by formula (4.347) that are presented in Figure 4.22 sup-

port this conclusion, as their plots show that the contribution of the third mode of vibration is 

very small. As the result the resonance frequency of the beams calculated to the second approx-

imation don’t deviate from those determined to the first approximation by more than 5% up to 

values / 0.6al l  . It is of note that at / 0.6al l   the effective coupling coefficients starts to 

drop, as it will be shown in Chapter 9, and further reducing of the length of piezoelement does 

not make sense. Thus, the results of calculating the equivalent parameters 1 1,tA tAM K  and 

1 1,tB tBM K  of the nonuniform beams obtained to the first approximation from formulas (4.332) 

and (4.337), and the resonance frequencies determined with their application are valid in all the 

practically reasonable transducer designing range of changing the length of the active element. 

4.5.6.3 Bilaminar Beam Uniform over the Length 

Peculiarity of this case is that the neutral plane under bending does not coincide with the middle 

plane, as it was in the case of the symmetrical trilaminar beam. Thus, as the first step the loca-

tion of the neutral plane (coordinate 0z ) must be determined. By definition the neutral plane 

should be free of stress, and therefore its coordinate 0z  may be found from the condition that 
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x x
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T dz T dz+ =  , (4.348) 
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where 
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0 0 2
( ) ( )x

d
T z z Y z

dx

= − − . (4.349) 

If the thickness of the active part is  and the modules of the active and passive parts are 

 and E

a pY Y , then condition (4.348) is equivalent to 
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where from 
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Here / E

Y p aY Y =  and /y t= , as denoted by expressions (4.317). 

For a rational transducer design 0z  should be greater than   (otherwise the electrome-

chanical effects in the piezoelectric element above and below the neutral plane would be in 

opposite phase). We denote the value of 0z
 
that is equal to   as 0mz . Obviously, 0 maxmz = is 

the maximum reasonable thickness of piezoceramic layer for a given combination of active and 

passive materials. From equation (4.351) we obtain 
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Y
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
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=
+

. (4.352) 

The ratio 0 /mz t  for different combinations of active and passive materials is given in Table 

4.4. After the position of the neutral plane is determined, the equivalent parameters of a trans-

ducer with the piezoelectric element of different relative thickness can be calculated. 

The potential energy of a bilaminar beam is 
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 (4.353) 

Table 4.4: Ratio 0 max( / )mz t y=  for different combination of materials. 

 PZT-4 
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Passive Material Aluminum Steel Glass G-10 Alumina 

9 2, 10  N/mE

aY  For PZT-4 is 81 

9 2, 10  N/mpY  70 210 62 24 300 

0 max( / )mz t y=  0.48 0.62 0.47 0.35 0.66 

We denote the equivalent Young’s modulus as 
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. (4.354) 

In the particular case that 0 0 maxmz z = =  
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3 30 0
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. (4.355) 

For the combinations of the active and passive materials listed in Table 4.4, the plots for 

0( / )eqvbY z t
 
vs. / t

 
are represented in Figure 4.24. Expression (4.322) for the equivalent ri-

gidity of the uniform over the length trilaminar beam is valid for a bilaminar beam under the 

assumption that eqvtY is replaced by eqvbY  that is given by formula (4.354) (or (4.355) in the case 

that 0 0mz z= ). 

The kinetic energy of a bilaminar beam is 
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where 
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and effS  is defined by formula 
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Figure 4.24: The equivalent Young’s modulus as a function of / t  (up to 0mz = ) for different 

combinations of PZT-4 ceramics with: aluminum (solid line), steel (dashed line) and G-10 (dot-

dash line). 

For the beams with simply supported ends at the first mode of vibration 

 1 1[ ( ) ( ) cos( / )] 0.5eff effx x x l S S wl  = = = = . (4.359) 

Using expressions (4.354) and (4.357) for the equivalent rigidity and mass we arrive at the 

general formula for the resonance frequency of the bilaminar beam 
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where raf is the resonance frequency of the fully active beam. In the case that 0 0mz z=  
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. (4.361) 

4.5.6.4 Bilaminar Beams Nonuniform over the Length 

The same considerations on optimizing effective coupling coefficient can be followed regarding 

the nonuniform bilaminar beam design, as in the case of the nonuniform trilaminar symmetric 

beam. The main peculiarity of this case is that exact position of the neutral surface throughout 

the length of the beam can’t be predicted. We will assume that the neutral surfaces are 
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positioned individually within the passive ends and bilaminar part of the beam. Namely, in the 

bilaminar part, as they were determined for the uniform bilaminar beam, and in the end parts, 

as they were determined for uniform passive beam. This assumption ignores the irregularities 

that take place on the boarders between the parts, which may be a source of additional errors. 

The assumption is based on belief that influence of these irregularities may be noticeable in a 

close proximity to the boarders only. But, anyway, the results obtained under this assumption 

require experimental or Finite Element Analysis verification. 

It is noteworthy that determining position of the neutral surface in a particular cross section 

of a beam, as well as determining an optimal correlation between thicknesses of the active and 

passive layers in terms of maximizing the effective coupling coefficient depend from distribu-

tion of properties of materials over the thickness only, so far as elementary theory of bending 

is applicable. Therefore, all the results obtained in this regard for uniform bilaminar beam in 

the preceding section remain valid. 

After the assumption regarding location of the neutral surfaces in the parts of a beam is 

accepted, procedure of successive approximations to calculating the electromechanical param-

eters of the partially active bilaminar beam can be applied in the same way as it was done in the 

case of trilaminar beam. Two variants of nonuniform over the length design that are shown in 

Figure 4.21 (b) and (c) have practical sense. They will be labeled, as variants A and B. 

At first, consider the first approximation assuming that distribution of displacement is 

0( ) cos( / )x x l  = . Determine the energy state of the vibrating beam at this mode of vibra-

tion. The kinetic energy is: 

for variant A (parts of ceramic are replaced by a passive material) 

 

/2 /22
2 20

/2 /2

cos ( / ) 2 ( ) cos ( / )
2

a

l l

kinbA eqvb p a

l l

W w t x l dx x l dx


     
−

 
= + − 

  
  ’ (4.362) 

and for variant B (parts of ceramic are removed) 
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After performing integrations and some manipulations we obtain the following expressions for 

the equivalent masses: 
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where 

 1 1[ ( 1) ]b eqv effM M y tS  = = − − . (4.366) 

The potential energy for the variant A is 
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For the variant B it must be set 0pY =  in expression (4.303), where eqvbY  is in general deter-

mined by formula (4.354). In the case that 0 0mz z = = , the expression for eqvbY  simplifiers to 

formula (4.355). It is noteworthy that this latter case, in which the most of amount of active 

material is replaced by a passive, is the most representative in terms of margins of accuracy of 

the first approximation in comparison with the second approximation to a real mode of vibra-

tion. Determining of these margins is one of the goals of our treatment. For this case after per-

forming integrations and some manipulations we obtain the following expressions for the equiv-

alent rigidities: for the variant A 
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and for the variant B 
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where 
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Consider now the second approximation assuming that distribution of displacement on the 

surface of a vibrating beam is 
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 1 3( ) cos( / ) cos(3 / )x x l x l    = + . (4.371) 

As the most significant changes of the distribution of displacements and hence changes in val-

ues of the equivalent parameters can be expected for the design of Figure 4.21 (c), in which 

case the nonuniformity is the strongest, we will consider this modification of nonuniform beam 

at first. In the same manner, as it was done for the nonuniform trilaminar beam, after substitut-

ing the two-term expression for the displacement into relations for the corresponding energies 

and performing manipulations we will arrive at the following expressions for the equivalent 

parameters of a bilaminar nonuniform beam to the second approximation. 

For the equivalent masses: 
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 (4.373) 

(note that for the simply supported beams 3 1b bM M= ), and 
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For the equivalent rigidities: 
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As far as all of the equivalent parameters of a nonuniform bilaminar beam are determined to 

the second approximation, the frequency equation (4.343), formulas for calculating mode shape 

coefficients and resulting mode of vibration (4.344) and (4.346) can be used for calculating all 

the characteristics of the beam and for comparing with values of analogous characteristics de-

termined to the first approximation. Results of the calculations are presented in Figure 4.25 and 
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Figure 4.26. (Note that Figure 4.25 is practically the same as Figure 4.22 for the trilaminar 

beam). 

 

Figure 4.25: The distribution of displacements (mode shapes ( )x ) determined to the second 

approximation at / 0.6al l =  in comparison with ( ) cosx x =  used to the first approximation. 

 

Figure 4.26: Ratio 1/I b   of the resonance frequencies of nonuniform bilaminar beams calcu-

lated to the second ( I ) and to the first ( 1b ) approximations. Solid lines – 1( / )I b A  , dashed 

lines – 1( / )I b B  . Combinations of aluminum – PZT-4 are labeled as number 1, and combina-

tions of steel – PZT-4 are labeled as number 2. 

The same conclusion as for the nonuniform trilaminar beams can be made following the 

results of calculations presented in the figures that the mode shapes of vibration of bilaminar 

1
/

I
b



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nonuniform beams remain the same as for a uniform beam. This conclusion is valid for all the 

practically reasonable values of relative thickness of active material. 0 /my z t , even to greater 

extend of ratios /al l  than for the nonuniform trilaminar beams. And all the parameters of 

transducers that employ the nonuniform bilaminar beams including the resonance frequencies 

and effective coupling coefficients can be calculated with sufficient accuracy using the equiv-

alent parameters determined to the first approximation. 

4.5.7 Flexural Vibration of Nonuniform Circular Plates 

The general expressions for the kinetic and potential energies of a vibrating plate having nonu-

niform properties over the volume are as follows. 

The kinetic energy is 
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where ( , )z r  is the density of material, and ( , ) az r =  for the active parts and ( , ) pz r =  

for the passive parts of the plate. 

The potential energy is 
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, (4.379) 

where for brevity the modified elastic modulus is introduced, 
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as the combination of the Young’s modulus and Poison’s ratio for the material. On the passive 

and active parts of a plate the modified elastic moduli are, respectively, 
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The integrals over volume V  in the expressions (4.378) and (4.379) are the general represen-

tations for the energies. Further they are specified for the circular plates vibrating in the first 

mode, i.e., at 0( ) ( / )r r a  = . 

4.5.7.1 Vibration of the Radially Uniform Plates 

In this section we will consider radially uniform though may be nonuniform by the thickness 

circular plates. That is ( , ) ( )Y z r Y z = , ( , ) ( )z r z = , and ( , ) ( )z r z = . Peculiarity of ex-

pression (4.379) for the potential energy is that the function within brackets strictly speaking 

may be different depending on what values of Poisson’s ratios have the passive and active ma-

terials used in the mechanical system. But it can be shown that these expressions can be unified 

to a great accuracy for the modern compositions of PZT piezoceramics and for the passive 

materials used in the transducer designs intended for underwater applications. Thus, it can be 

adopted value 0.3 =  for Poison’s ratio for all the ideal boundary conditions. With this goal 

consider integral 
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Let us denote for brevity 
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Obviously, ( ) 2I IIL L L = + . Thus, the relative error due to replacement ( )L   by (0.3)L  is 
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+
. (4.385) 

For evaluating the possible error for the case of simply supported boundary we will use expres-

sion for the mode shape by formula (2.150) 

 2 2 2 2( / ) (1 / )(1 / 4 )r a r a r a = − − . (4.386) 
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Substituting this mode shape in formulas (4.383) and (4.384) results in values 22.92 /IL a=  

and 21.12 /IIL a= . Thus 

 
( ) (0.3)

0.6( 0.3)
(0.3)

L L

L

 −
 −  (4.387) 

and for values of Poisson’s ratio 0.25 0.35   variation of modulus of this quantity is less 

than 0.03. In the case of clamped boundary 0IIL = , thus ( ) IL L =  is independent of . 

For the free boundary substituting the mode shape by formula (4.200) into integrals (4.383) and 

(4.384) results in 
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L L
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and the variation is less than 1%. 

After this discussion the expression (4.379) for the potential energy of the radial uniform 

circular plate can be represented as 
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where subscript bc indicates that the integral must be calculated with mode shape that corre-

spond to a certain boundary condition, and it is defined that 
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12
( )( )

t

eqvY Y z z z dz
t

 = −  (4.390) 

is the equivalent Young’s modulus of the plate with nonuniform through the thickness elastic 

properties. This is the common definition for all the mechanical systems that experience flex-

ural deformation (see examples of beams and rings). 

Thus, from relation (4.389) the equivalent rigidity of the plate at particular combination of 

elastic moduli of materials used, and under a certain boundary conditions (bc), to which 

(0.3)bcL corresponds, is 

 

3

(0.3)
12

eqvE

eqv bc

t Y
K L

=  . (4.391) 

For the simply supported boundary 2(0.3) 7.2 /ssL a= , for the clamped boundary 

2(0.3) 21.4 /clL a= , and for the free boundary 2(0.3) 22 /freeL a= . 
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Expression (4.378) for the kinetic energy in case of radial uniform plate can be represented 

as 

 2 2

0 0

1 1

2 2
kin eff eqv eqvW S t M  = =  (4.392) 

where 
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eqv
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z dz
t

 =   (4.393) 

is the equivalent density of nonuniform through the thickness plate, and 

 2

0

2 ( / )
a

effS r a rdr =   (4.394) 

is the effective surface area of the plate. Thus, from (4.392) 

 eqv eqv effM tS= . (4.395) 

All the results for the equivalent Young’s moduli and densities of the circular plates nonuniform 

through the thickness are the same as presented in Sections 4.5.6.1 and 4.5.6.3 for the beams 

having nonuniformity of the same kind. Namely, for the trilaminar plates eqvtY  and eqvt  are 

given by Eqs. (4.319) and (4.321); for the bilaminar plates 0( )eqvb mY z  and eqvb  are given by 

Eqs. (4.355) and (4.357). 

4.5.7.2 Flexural Vibration of the Radially Nonuniform Circular Plates 

Two modifications of the radially nonuniform plates have practical sense: the one with active 

material partially replaced by passive material, as shown by the cross shaded parts in Figure 

4.21 (b)- (c), in which the coordinate x, l and al  must be changed to r, a and ar , respectively) 

that is labeled A, and the case with these parts of material removed labeled B. The trilaminar 

plates are the most widely used in A modification. The bilaminar plates are often used in B 

modification as well. In terms of demonstrating the approach to calculating parameters of the 

radially nonuniform plates the most representative are the bilaminar plates of B modification, 

as they have the most pronounced nonuniformity. Besides transducer design of this type is es-

pecially widely used for in air applications. Therefore, just this modification will be considered 

in detail for brevity. This is moreover reasonable that calculating procedures for other 
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modifications may be the same, as it will be seen from the following analysis. From the same 

consideration of brevity all the results of calculations will be presented in this section for the 

most important case of simply supported boundary conditions, although expressions for all the 

transducer parameters are general. The same assumption will be made as in the case of nonuni-

form beams that positions of the neutral planes in the fully passive part and in the bilaminar 

part of the plate may be determined in the same way as for the corresponding radially uniform 

plates. The most pronounced is nonuniformity of the bilaminar plate with active laminate hav-

ing the maximum reasonable thickness for a given combination of active and passive materials, 

i.e., in the case that 0mz = . Therefore, estimation of the strongest influence of nonuniformity 

will be made for the value of 0 /my z t= . As calculating the equivalent parameters becomes 

straightforward after the mode of vibration is known, the modes of vibration of the radially 

nonuniform bilaminar plates have to be determined. At first the assumption can be made that 

the mode of vibration remains the same as for uniform by radius plate, i.e., that 1 1( )r  = . But 

this assumption can be considered valid only to the first approximation and for limited ranges 

of relative radii and thicknesses of the active and passive layers, and these limits may be differ-

ent for different boundary conditions. In order to estimate the level of accuracy of the first 

approximation, the second approximation must be considered by representing the displacement 

distribution over the surface of the plate as superposition of two normal modes of vibration, 

namely, 

 1 1 2 2( )r    = + , (4.396) 

where it is denoted for brevity 1 1( )k r =  and 2 2( )k r = , as the normal modes of vibration 

for the corresponding boundary conditions. Finally, the relative contribution of the second mode 

has to be determined for the range of reasonable relative dimensions of the active and passive 

parts of the mechanical system. 

4.5.7.3 Equivalent Parameters of the Radially Nonuniform Bilaminar Plates to the First 

Approximation 

Using the results obtained in Section 4.5.6.4 for the equivalent Young’s modulus of bilaminar 

beams (plates) and assuming that ( , )z r  is replaced by 0.3 = , the expression for the poten-

tial energy of the radially nonuniform bilaminar plate can be represented as 
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where it is denoted for brevity 
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The first term in the brace of expression (4.397) forms the equivalent rigidity of uniform bilami-

nar plate, eqvbK . The second term compensates for the addition made to the rigidity of the ac-

tive–passive part of the plate that results in forming the equivalent rigidity of the uniform plate; 

the third term is the equivalent rigidity of the passive part of the plate that for the case B has 

thickness pt . Further in this section we will omit “eqv” in subscripts of the notations for the 

equivalent rigidities and masses for brevity. Thus, for example, eqvbK  will read as bK . After 

obvious manipulations the expression for the equivalent rigidity of the radially nonuniform 

bilaminar plate will be obtained as 
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, (4.399) 

where in the general case 0( )eqvbY z is determined by formula (4.354). For the case that 0mz = , 
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Here in addition to expressions (4.398) the notations are introduced 
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The kinetic energy of the nonuniform plate is determined by expression 
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where the first term is the equivalent mass of uniform bilaminar plate for the first mode of 

vibration, bM , and the second term is the correction that takes account for nonuniformity of 

the plate. It follows from this relation after replacing eqvb  by its expression (4.357) that 
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Here the notation for the effective partial area is introduced 
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4.5.7.4 Equivalent Parameters of Radially Nonuniform Plate to the Second Approximation 

When considering the equivalent parameters to the second approximation, we must substitute 

the displacement ( )r  by formula (4.396) into expressions for the potential and kinetic energies 

of the bilaminar plate. This will result in 
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Note that following expressions (4.400) and (4.401) 
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After performing manipulations similar to those made to the first approximation, in course of 

which it is taken into consideration that the functions 1  and 2  are orthogonal in the interval 

[0 ]r a  , the following results for the rigidities will be obtained: 

1bK  is determined by formula (4.399), 
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where 
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The kinetic energy to the second approximation is 
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where from the following expressions for the equivalent masses are obtained. The mass 1bM  is 

determined by formula (4.403), 
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where it is denoted 
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4.5.7.5 Free Vibration of the Radially Nonuniform Plate as Two Degree of Freedom Sys-

tem 

As far as expressions for the potential and kinetic energies of a radially nonuniform vibrating 

plate are known, the Lagrange’s equations of free vibration of the plate can be derived and the 

lowest resonance frequency and the mode of vibration to the second approximation can be de-

termined. Namely, 
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After substituting expressions (4.405) and (4.411) for the potential and kinetic energies these 

equations become 
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 2 2
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The frequency equation, from which the lower resonance frequency of the plate to the second 

approximation may be found, is 
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where 2

1 1 1( / )b b bK M = , 2

2 2 2( / )b b bK M = , and 2

1( / )bf f=  is the relative frequency 

square. After the lowest value of   is obtained (we denote this quantity as 2

1( / )I I bf f = , 

where If  is the lower resonance frequency of the plate to the second approximation), the ratio 

of displacements 2  and 1  at this frequency (or the mode shape coefficient, Ims ) will be 

determined from Eq. (4.116), as 
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The distribution of vibration at the first resonance frequency is. 1 1 2( ) [ ( ) ( )]Ir r ms r   = + . The 

mode shape of vibration to the second approximation can be presented now as 
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Figure 4.27: Ratio 1/I bf f  of the resonance frequencies of nonuniform bilaminar circular plates 

vs. /ar a  calculated to the second ( If ) and to the first ( 1bf ) approximations for combination of 

PZT-4 with aluminum (solid line) and steel (dashed line) at 0 /my z t= . 

/ar a
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Results of calculating the first resonance frequencies and the mode shape coefficients vs. 

ratios /ar a  for nonuniform plates to the second approximation are presented in Figure 4.27 

and Figure 4.28 for different passive materials used in combination with PZT-4 ceramics under 

the condition that 0 /my z t= , in which case the effect of nonuniformity is the most pronounced. 

 

Figure 4.28: The mode shape coefficients 2 1/Ims  =  vs. /ar a  at lowest resonance frequen-

cies of nonuniform bilaminar circular plates for combination of PZT-4 with aluminum (solid line) 

and steel (dashed line) at 0 /my z t= . 

 

Figure 4.29: The mode shapes ( / )r a  determined to the second approximation at ratio 

/ 0.5ar a =  (solid line for aluminum–PZT, dashed line for steel–PZT) in comparison with the 

mode shape 1( / )r a  for the uniform plate (dotted line) that is used in calculations to the first 

approximation. 

/ar a
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In the extreme cases at ar a=  and 0ar =  the mode shape coefficient 0Ims = , as the plates are 

uniform in both these cases. The maximum deviation of the mode shapes from those for the 

uniform plate can be expected at / 0.5ar a  . Plots of the mode shapes calculated at ratio 

/ 0.6ar a =  for different combination of materials used are presented in Figure 4.29. It follows 

from the plots that even in this case deviation from the mode shape for uniform plate is negli-

gible. The probable reasonable limit of reducing the radius of the active laminates can be esti-

mated as approximately / 0.6ar a  , because the layers and for the most critical case B that the 

parts of active material are removed. As the result, the resonance frequencies of the plates cal-

culated to the second approximation almost don’t deviate from those determined to the first 

approximation, as it is seen from Figure 4.27. 

Thus, the conclusion can be made that the parameters of the nonuniform bilaminar plates 

can be calculated using the mode shape of vibration of uniform plate with sufficient accuracy 

at least up to ratios / 0.6ar a   even for the maximum reasonable thicknesses of the active 

Note, that as it follows from Figure 4.28 the maximum contribution of the second mode to 

actual mode of vibration takes place at / 0.5ar a = . Therefore, the first mode of vibration dom-

inates in all the range 0 / 1ar a  , and calculating of equivalent parameters using the first 

mode only is possible with the same degree of accuracy at all the values of /ar a . But, as it will 

be shown in Chapter 9, the effective coupling coefficient of the plate drops at ( / ) 0.5ar a  , and 

further reducing of relative size of the active laminate does not make sense. 

After it is proven that the first mode solution is sufficiently accurate for calculating param-

eters of the plate designs with the most pronounced nonuniformity (bilaminar of B modifica-

tion), other variants of the transducers (bilaminar and trilaminar of A modification) can be con-

sidered using the same approximation and analogous calculating procedures. Thus, for exam-

ple, the equivalent rigidities and masses for bilaminar design of A modification can be obtained 

from the expressions (4.397) for the potential and (4.402) for the kinetic energies slightly 

changed. Namely, in the last term in the brace of expression (4.397) quantity pt  has to be re-

placed by the full size thickness t. And in the last term in the brackets of expression (4.402) the 

density a  has to be replaced by ( a p − ). This will result in the following expressions for 

the relative rigidity and mass. For the rigidity 
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in the general case, and 
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in the case that 0mz = . And for the mass, 
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4.5.8 Approximate Methods of Solving Vibration Problems 

So far, the supporting functions have been represented by the system of normal modes for a real 

elastic body under consideration, or for a body of the same configuration under the same bound-

ary conditions. But in general, for bodies having not suitable configuration or/and vibrating 

under real boundary conditions determining the normal modes itself is equivalent to solving 

vibration problem that hardly may be achieved analytically. In this case attempt can be made to 

solve such vibration problem approximately by means of direct methods with a priori limita-

tions placed on a number of considered degrees of freedom, or by using Finite Element Analysis 

(FEA). We will consider examples of employing the most usable for calculating mechanical 

systems of transducers direct methods based on considering energies of the systems: the one 

employing Rayleigh’s principle that is applicable to one degree of freedom approximation, and 

another that can be used for calculating systems with several degrees of freedom, the Ritz’s 

method of successive approximations. 

4.5.8.1 Flexural Vibrations of a Center Supported Circular Plate 

Vibration of the center supported plate, as potential mechanical system for electromechanical 

transducer, was considered analytically in Ref.10 based on application of the Rayleigh’s prin-

ciple. Distribution of normal displacement ( )r  of the neutral surface of the plate supported at 

the center must meet conditions of zero displacement and zero slope at the center, 

 ( ) 0r or = = , (4.424) 
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= , (4.425) 

and zero moment at the edge 

 
2

2
0

r a

d d

r drdr

  

=

+ =  (4.426) 

(the same conditions are for the plate clamped at the center). 

 

Figure 4.30: Schematic view of the center supported plate. 

As result of solving this problem in Ref.10, the wave number for the lowest resonance mode of 

vibration was determined as 1.94ka =  and the corresponding resonance frequency as 

 1 2 2
0.172

(1 )
res

t Y
f

a  
=

−
. (4.427) 

We will consider the example of center supported plate in detail, because it is typical and 

convenient for illustrating application of the Rayleigh’s principle in general. In the simple 

words the principle states that the resonance frequency of an assumed mode of a system vibra-

tion cannot be smaller, then the resonance frequency of the true lowest normal mode of the 

system. Its application falls into the following steps. 

Step 1: Determining of an Assumed Mode (Deflection Curve) of Vibration of the System. 

The expression for the assumed deflection curve must satisfy the boundary conditions for the 

system and include an adjustable parameter. In our case it can be the power series 

 
2 3 4

0 1 2 3 42 3 4
( / ) ...

r r r r
r a c c c c c

a a a a
 = + + + + + . (4.428) 

To satisfy the conditions (4.424) and (4.425) it should be 0 1 0c c= = . From condition of nor-

malizing the function one of coefficients can be unity, so let 3 1c = . One equation for determin-

ing correlation between unknown coefficients will be obtained using boundary condition 

(4.426). One more equation may be obtained by employing the Rayleigh’s principle. Thus, it 

r
a

z

t

0

a
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should be sufficient to retain three terms in the series (4.403) and to present the assumed de-

flection curve as function 

 
2 3 4

3 42 3 4
( / )

r r r
r a c c

a a a
 = + + . (4.429) 

Using the condition (4.426) (with 0.3 = , as sufficiently accurate for all the usable PZT ce-

ramic compositions) will be obtained 

 4 30.20 0.52c c= − − . (4.430) 

As the result, expression for the assumed deflection curve that satisfies all the boundary condi-

tions, 

 
2 3 4

32 3 4
( / ) ( 0.52) 0.20

r r r
r a c

a a a
 = + − − , (4.431) 

has the only parameter that may be determined by application of Rayleigh’s principle. 

Step 2: Calculating the Kinetic and Potential Energies of the Vibrating System. 

The next step is to calculate the kinetic and potential energies of the vibrating system according 

to the expressions 

 2 2 2 2

0

1 1 1
2 ( / ) (1) (1)

2 2 2

a

kin eqv eqvW t r a rdr M M    = = = , (4.432) 
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      = + − − =      
 . (4.433) 

Here (1)  is displacement of the reference point on the edge of the plate. After substituting 

expression (4.431) for ( / )r a  and integrating we arrive at the following expressions for eqvM  

and eqvK  

 2

3 37.5 (0.07 0.26 0.24)eqvM M c c=  + + , (4.434) 
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3 32

132
(0.15 0.40 0.29)

12(1 )
eqv

t Y
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


=  + +
−

. (4.435) 

Step 3: Application of Rayleigh’s Principle. 

Equating maximum values of the kinetic and potential energies we obtain 
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According to Rayleigh’s principle the closest approximation to real normal mode of deflection 

will be achieved by value of coefficient 3c  that gives minimum to the frequency, which is found 

from equation 

 2

3[ ( )] 0c  = . (4.437) 

Differentiating expression (4.413) with respect to 3c  will result in equation 

 2

3 32.8 1.7 0c c+ + = . (4.438) 

The root of the equation that gives minimum to the frequency is 3 0.91c = − . After determining 

4 0.28c =  from Eq. (4.405), expression for the assumed deflection curve will be presented as 

 
2 3 4

2 3 4
( / ) 0.91 0.28

r r r
r a

a a a
 = − + . (4.439) 

The resonance frequency determined by using this expression for deflection curve with help of 

relation (4.436) at 3 0.91c =  is 

 1 2 2
0.171

(1 )
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t Y
f

a  
=

−
, (4.440) 

i.e., differs from those by Eq. (4.427) by less than 1%. 

The equivalent mass and rigidity calculated from expressions (4.434) and (4.435) are 

 
3

2

2 2

6.6
0.48 0.48 ,
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. (4.441) 

4.5.8.2 Flexural Vibrations of a Circular Plate Supported by the Post of a Finite Radius 

 

Figure 4.31: The schematic view of the disk supported by the post of finite diameter. 
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t 0
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The center supported (clamped) plate is the ideal model. In practical applications, such as me-

chanical system of a hydrophone (accelerometer), real supporting element has a finite diameter. 

We will assume that the clamped conditions are in place on the contour of the supporting post 

at radius r b= . 

The Rayleigh-Ritz method will be used for solving the problem with an admissible function 

obtained in Ref. 162 for annular plate clamped on the inner and free on the outer boundary. 

Namely, 

 

2
2 2

1 22 2
( , ) ( ) 1 ln ( ) 1

r r r
r t t t

bb b
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   
=  − +  −   
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. (4.442) 

For brevity we introduce notation 
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2
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Thus, 
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1 2( , ) ( ) ( / ) ln ( ) ( / )
r

r t t f r b t f r b
b

  =   +  . (4.444) 

The expression contains generalized displacements 1  and 2 . To make the mode of deflection 

of the plate certain, the ratio 2 1/   must be determined. As the first step we must represent the 

kinetic and potential energies associated with vibration of the plate. The kinetic energy is 

 ( )2 2 2

1 1 1 2 12 2 2

1 1
2 2

2 2

a

kin

b

W t rdr M M M      =  = + + , (4.445) 

where 
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a

b
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 4

2 2 ( / )
a

b

M t f r b rdr=  , (4.447) 

 3

12 2 ( / ) ln( / )
a

b

M t f r b r b rdr=  . (4.448) 

The potential energy is 



110  4. Vibration of Elastic Bodies 

 

( )

2 22 2

2 2

2 2

1 1 1 2 12 2 2

1 1 1
2 2

2

1
2 ,

2

a

pot

b

W D rdr
r r r rr r

K K K

    

   

         =  + +             

= + +


 (4.449) 

where 
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Here 
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The next step is in obtaining Lagrange’s equations regarding the generalized displacements 1  

and 2 . They are 

 0, ( 1,2)
potkin

ii

WWd
i

dt 
 

+ = =   
 (4.454) 

or 

 11 1 1 12 12 2( / ) ( / ) 0j M K j j M K j     + + + = , (4.455) 

 12 12 1 2 2 2( / ) ( / ) 0j M K j j M K j     + + + = . (4.456) 

After obvious manipulations we obtain equations 
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where 
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The frequency equation of this set of equations is 
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After introducing notation 
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Eq. (4.460) becomes 
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Denote solutions of this equation 1  and 2  assuming that 1 2  .With value of 1  the 

lower resonance frequency, r , of the plate will be obtained from relation (4.461) as 

 2 2

1 1r =  . (4.463) 

Upon substituting this value of the resonance frequency into one of Eqs. (4.457) or (4.458), the 

ratio of the generalized displacements that we denote A will be found, e.g., 
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By combining expressions (4.442) and (4.464) we obtain the deflection curve 
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and the resonance mode shape of vibration of the plate 
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With expression for the mode shape of vibration known all the equivalent parameters of the 

plate and related electromechanical transducer can be determined. Results of calculations made 

for various relations of inner and outer radiuses b/a are as follows. 

Resonance Frequencies 

Following notations accepted in Ref. 173 we denote 

 2

/ 22 (1 )12
r b a

t Y

a
 

 
=

−
. (4.467) 

 

Figure 4.32: Plot of coefficient   vs. radii ratios of b/a. Results of calculations made in Refs. 14 

and 15 are presented by the circles. 

Plot of coefficient   vs. ratio b/a is presented in Figure 4.32 together with the plot that corre-

sponds to data obtained in Ref. 14 and 15, where exact solution for vibration of annular thin 

plate clamped on the inner radius was presented. Values of coefficients   vs. ratios b/a are also 

given in Table 4.5. 

Mode Shapes of Vibration vs. Ratio b/a 

Coefficients A at different values of b/a are presented in Table 4.5, and the corresponding mode 

shapes are shown in Figure 4.33. 
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Figure 4.33: Plots of the mode shapes of vibration of the plates at different ratios b/a: 0.05 (solid 

line), 0.1 (dashed line), o.5 (dash-dotted line). The static approximation is shown in thin solid line. 

Table 4.5: Calculated parameters for flexural disk supported by a post of finite diameter. 

b/a 0.7 0.6 0.5 0.1 0.05 
0 (center 

supported) 

A 0.23 0.18 0.13 0.01 0.003 - 

  
admiss. func-

tion 
6.13 4.59 3.68 2.25 2.18 1.95 

  
Static ap-

prox. 
6.17 4.61 3.69 2.19 2.13 

 

  
“exact” Refs. 

14 & 15 
6.08 4.53 3.61 2.06  

/

/

eff b a

b a

S

S
 0.28 0.28 0.30 0.36 0.37 0.48 

static 0.26 0.28 0.29 0.36 0.37  

/

/

av b a

b a

S

S
 0.41 0.44 0.45 0.52 0.53 0.64 

static 0.41 0.42 0.44 0.52 0.53  

  200 79 41 9.13 8.35 6.9 

Equivalent Parameters of the Plate for Various Values of b/a 

The equivalent mass of the plate is determined by formula 
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 / /eqvb a eff b aM tS= , (4.468) 

where 

 22 ( )
a

eff

b

S r rdr =  . (4.469) 

Values of /eff b aS normalized to 2 2 2

/ (1 / )b aS a b a= −  are given in Table 4.5. 

The equivalent rigidity /eqvb aK  can be determined from formula 

 2

/ / /eqvb a r b a eqvb aK M= . (4.470) 

Following formulas (4.457) and (4.458) we will obtain that 
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−
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The coefficients 

 4 2 2

/ /(1 / ) /eff b a b aS b a S = −  (4.472) 

are given in the Table 4.5. 

Deformation of the plate by uniformly distributed load q (hydrostatic pressure, sound pressure 

at low frequencies, inertia forces under action of acceleration) is proportional to the equivalent 

force, /eqvb aF , that is determined by expression 

 / /eqvb a avb aF qS=  (4.473) 

where 

 
/ 2 ( )

a

avb a

b

S r rdr =  . (4.474) 

Values of / //av b a b aS S  are given in the Table 4.5. 

The resonance frequencies of vibration, /r eqv eqvK M = , are proportional to 2 . Their 

approximate values are somewhat higher than those known from classical theory of thin plates 

that are shown in Table 4.5 following results presented in Refs. 14 and 15. 

The results obtained may have practical applications in two areas. At small ratios b/a they 

can be used for mechanical systems of electromechanical transducers. In this capacity they will 

be considered in Chapter 9. At large ratios b/a the circular disks can be used as passive parts of 
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the length expander transducers that serve for matching with acoustic field. Such application 

will be considered in Chapter 10. 

It must be remembered that all the results are obtained under the assumptions of applica-

bility of the thin plates theory and clamped boundary conditions on the inner radius at all the 

ratios b/a. In case the thickness to radius ratio of a plate becomes significant, the corrections 

for rotary inertia and shear deformations must be introduced. 

4.5.8.3 Application of Ritz’s Method of Successive Approximations 

As it has been noted before, any complete system of functions satisfying boundary conditions 

can be taken as a supporting system. As an example, consider the problem of axial symmetric 

free flexural vibrations of a circular plate with clamped edge. The precise analytical solution to 

the problem is given in Section 4.4.3. Let us represent the displacement ( , )z r t  in the form of 

series 

 
2 2 1

1

( , ) ( )(1 / )i

z i

i

r t t r a 


+

=

= − . (4.475) 

It is easy to verify that the functions 2 2 1( / ) (1 / )i

i r a r a += −  satisfy conditions (4.190) on the 

clamped edge of the plate. They form a complete system of functions within interval [0, a] (the 

proof of this is provided in Ref. 5). Let us represent the kinetic and potential energies of the 

plate, determining potW  by integrating expression (4.186) for potw  over the volume of the plate, 

 2

0

a

kin zW t rdr =  , (4.476) 

 

2
2 2

2 2

0

1 1
2(1 )

a

z z z z
potW D rdr

r r r rr r

    
      = + − −      
 . (4.477) 

Upon substituting the displacements ( , )z r t  in the form of series (4.475) into expressions 

(4.476) and (4.477), the coefficients ilM  and ilK  of the system of equations (4.224) may be 

found. Following Ritz’s method, we substitute only one (first) term of series (4.475) into the 

energy expressions, as the first step. The Lagrange equation in this case will be 

 2

1 1 0K M− = , (4.478) 

where 
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 2 (1) 2

1 1 164 / 3 , / 5, (10.33 / ) /K D a M M a D t  = = = . (4.479) 

This solution must be considered as the first approximation. The obtained value of natural fre-

quency is somewhat higher than the exact value, 

 
2

1 (10.2 / ) /a D t = , (4.480) 

determined by formula (4.202). The exact normal mode of vibration, which is described by 

function (4.197) at 1 3.2k a =  and the mode of vibration to the first approximation, 

 2 2 2

1( / ) (1 / )r a r a = − , (4.481) 

are shown in Figure 4.34. 

 

Figure 4.34: Successive approximations of the modes of plate vibration. 1 – 1( / )r a ; 2 –

2 ( / )r a . Solid lines - exact values, dashed lines – the first approximation, dashed dotted lines – 

the second approximation. 

The second approximation will be obtained, if to take into consideration two terms of series 

(4.475). Upon their substituting into expressions for the energies, the following Lagrange equa-

tions will be obtained 

 2 2 2 2

1 2(64 / 3 / 5) (16 / / 6) 0D a M D a M     − + − = , (4.482) 
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 2 2 2 2

1 2(16 / / 6) (96 / 5 / 7) 0D a M D a M     − + − = . (4.483) 

More accurate expressions derived from these equations for the first resonance frequency, 

 (2) 2

1 (10.21/ ) /a D t = , (4.484) 

and for the mode of vibration almost coincide with the exact values (for the mode shape this 

can be concluded from Figure 4.34). At the same time the expressions for the second resonance 

frequency, 

 (1) 2

2 (43.04 / ) /a D t = , (4.485) 

and for the second mode of vibration are obtained. The resonance frequency presents a rough 

approximation to its exact value, 

 2

2 (39.6 / ) /a D t = , (4.486) 

and comparison of the modes of vibration made in Figure 4.34 shows significant difference. To 

obtain more accurate expressions for the subsequent values of the resonance frequencies and 

modes of vibration, the procedure of successive approximations must be continued. 

4.5.9 Employing the Static Approximation to the First Mode of Vibration 

Selection of supporting (assumed) functions and of a number of retained degrees of freedom 

for practical calculations, which always prove to be approximate to a certain extent, depend 

substantially on the objectives of the calculations. With respect to transducers for underwater 

applications the most typical problems are those of computing their characteristics either for 

the frequency range around one or two adjacent lower resonance frequencies (mainly, for trans-

ducers – projectors), or for a broad frequency range below the first resonance (mainly, for the 

transducers – receivers). The frequency responses of displacements in the elastic bodies can be 

presented in generalized coordinates as a result of superposition of the frequency responses of 

the partial systems, which correspond to the particular degrees of freedom of the body. 

In the simplest case, when the supporting functions are normal modes, this can be qualita-

tively illustrated by means of Figure 4.35, in which the frequency responses of moduli of dis-

placements, i , that correspond to the resonance modes of vibration are presented. The total 

displacement at each frequency is a sum of displacements in all vibration modes (under a real 
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summation the phases of displacements should be taken into account). Considering responses 

in frequency ranges around the certain resonance frequencies, it is practically possible to ignore 

contributions of other vibration modes compared to the resonance ones, and to limit a number 

of considered degrees of freedom. This helps to greatly simplify solution for the vibration prob-

lem. In contradistinction to this, results of solving the same problem in geometric coordinates 

contain a mix of contributions of all the resonance modes including insignificant contributions 

of the modes that correspond to resonance frequencies remote far away from the range under 

consideration. This makes such solution less physically transparent, than those in the form of 

expansion into series in terms of the normal modes. 

In calculations within the frequency range below the first resonance, the mode of vibration 

pertaining to this resonance frequency contributes the most to the overall displacement. How-

ever, the total contribution of the higher resonance modes also exists, in principle. In this case, 

instead of taking into calculation many resonance modes of vibration it may be expedient to use 

the static (at  → 0) modes of displacement as the supporting functions. 

 

Figure 4.35: Frequency responses of displacements at the normal modes of vibrations. 

A qualitative explanation of the fact that the static deflection under action of uniformly 

distributed force mF  (for example, under the hydrostatic pressure) gives a good approximation 

to the first resonance mode of vibration can be given with example of a simply supported beam. 

The first mode of vibration and uniform distribution of the pressure over the surface of the beam 

are shown in Figure 4.36 (a). 

If the acting forces were distributed in accordance with the mode shape at the resonance, then 

it would be the only mode exited (see formula (4.239)). By the way, if the beam vibrated in the 

first mode, the inertia forces loading the beam would be distributed according to this mode. 

Although the uniform distribution of force differs from the normal mode, contribution to the 

f1 f2 f3 f

i
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equivalent force of the pressure acting on the parts of surface that are close to the ends is small 

in accordance with formula (see (4.246)) 

 ( )mi m i m aviF F d F S 


=   =  r . (4.487) 

 

Figure 4.36: (a) Beam under bending. The first mode of vibration - solid line, and the static de-

flection under uniformly distributed pressure - dashed line; (b) Extensional deformation of a bar. 

Distribution of deformation in the first resonance mode – solid line, static deformation – dashed 

line. 

Accuracy of the static deflection approximation can be estimated qualitatively with the same 

example of simply supported beam, for which the normal modes are ( ) cos /i x i x l = . Vibra-

tion of the beam can be considered as rigidity controlled in all the modes in the frequency range 

below the first resonance frequency, i.e., it may be considered that /eqvi eqviM K  . Expres-

sion for the rigidities can be presented as 4

1eqvi eqvK K i=  (see formulas (4.134)). The equivalent 

forces can be expressed as eqvi m aviF F S=  , where 2 /aviS l i=  at 2 1i n= − , 1,2,...n =  and 

0aviS =  at 2i n= . Thus, the magnitude of displacement in the mode i  is 
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1

2 1
.

2 1(2 1)

mm
i

eqv

l F
j

nK n



 =

−−
   (4.488) 

Thus, the maximum displacement is 

 1 5
1 1

1
(0)

(2 1)
i

i n n

 

= =

= =
−    . (4.489) 

It is known20 that 

 
4

4
1

1
1.01

96(2 1)n n



=

= 
− . (4.490) 
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5 4

1 1

1 1

(2 1) (2 1)n nn n

 

= =


− −  , (4.491) 

thus, the contribution of all the higher modes to total static displacement is less than 1% in 

comparison with displacement in the first mode. Similar estimations can be made for the circu-

lar plates vibrating in flexure. The modes of static deflection under the action of forces uni-

formly distributed over surface of the beams and circular plates are known from Ref. 2. 

They are for the rectangular beams: 

with simply supported ends, 

 3 2 4 3( ) (16 / 5 )( 2 / / )x l x x l x l = − + ; (4.492) 

with clamped ends, 

 2 2 2 2( ) (16 / )(1 2 / / )x x l x l x l = − + ; (4.493) 

with one end clamped and with a force acting on the free end, 

 2 2( ) ( / 2 )(3 / )x x l x l = − . (4.494) 

For the circular plates (at   = 0.3): 

with simply supported edge, 

 2 2 2 2( / ) (1 / )(1 / 4 )r a r a r a = − − ; (4.495) 

with clamped edge, 

 2 2 2( / ) (1 / )r a r a = − . (4.496) 

The above considered approximating procedure for determining displacements of the circular 

plate with clamped edge illustrated with Figure 4.34 converged quickly to the exact solution 

(the first approximation was practically sufficient), because the mode of the total static dis-

placement 2 2 2( / ) (1 / )r a r a = −  is close to the vibration mode at the first resonance fre-

quency. By contrast, in calculations in the range of the high resonance frequencies such a se-

lection of supporting functions would necessitate considering many degrees of freedom to get 

an acceptable approximation (as can be seen from Figure 4.34, the second approximation is still 

far from the exact form of the second mode). 

It is instructive to consider using the static displacement of the circular plate center sup-

ported by the post of finite diameter (Figure 4.31) that can be obtained, as solution for 
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deformation of the clamped-free annular plate under uniformly distributed static load with den-

sity q, which is2 

 

2
4 2 2

2 2
( / ) 1 2 1 2ln

64
st

qb r r r
r b A

D bb b


    
 = − − − −   
     

, (4.497) 

where 

 
4 2

2

(3 )( / ) (1 )( / )

(1 )( / ) (1 )

a b a b
A

a b

 
 

+ − +
=

+ + −
. (4.498) 

Plot of the static mode shape ( / ) ( / ) / ( / )st st str b r b a b  =  for ratios b/a = 0.05 is presented 

in Figure 4.33 in comparison with those obtained by using the admissible functions (4.442) for 

illustrating application of the Rayleigh-Ritz method of solving the problem. The coincidence 

of the mode shapes is almost complete. This leads to very close results of calculating equivalent 

parameters of the plates that are shown in Table 4.5 for various values of b/a, though they are 

obtained in much simple way. 

It is noteworthy that for the mechanical systems vibrating in the extensional modes the 

static approximation to the first resonance mode does not hold in general. This can be illustrated 

using the same procedure as for the beam in flexure with example of longitudinally vibrating 

uniform bar that is shown in Figure 4.36 (b). In this case 2

1eqvi eqvK K i=  (see formula (4.133)), 

and expression analogous to (4.489) will be 

 
2

1 2
1

1
( / 2) 1.26

8(2 1)n

l
n



=

 = 
−  . (4.499) 

Thus, contribution of the higher modes is significant. 

The general conclusion can be made that the static approximation to the first resonance 

mode of vibration is applicable to the mechanical systems that have the next active resonance 

frequency far away from the first (the plates, beams, symmetrically mass loaded bars). 

4.5.10 Flexural Vibration of a Slotted Ring 

Free flexural vibration of the uniform slotted ring in its plane will be considered as an example 

of solving vibration problem for a mechanical system in static approximation regarding the 
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mode shape of its vibration. The geometry of a slotted ring is shown in Figure 4.37. The ring is 

assumed to be short. The thickness and height of the ring are denoted t and h, respectively. 

The condition (4.224) for existing of the neutral (not stretched) circumference surface in 

the ring, 

 0r

d

d

 

+ = , (4.500) 

 

Figure 4.37: (a) Slotted ring geometry, (b) distribution of strain through the thickness of the ring. 

is assumed to be fulfilled. In a thin ( t a ) and short ( h a ) ring the only not zero stress is 

the stress in the circumferential direction, T YS = , and the strain S  in circumferential direc-

tion is 

 
2

2 2

r
r

r a
S

a


 


 −
= − +  

 (4.501) 

according to formula (4.220). The minus sign means that the positive moment (acting in anti-

clockwise direction at the right end of the segment and in the clockwise direction on the left 

end) produces negative strain (contraction) in the upper layer (at r a ). At low frequency ap-

proximation, i.e., at frequencies around and below the first resonance frequency, the assumed 

mode of the flexural vibration of the ring in its plane may be taken the same as the mode of its 

static deformation under action of hydrostatic pressure p uniform over surface. Following Ref. 

17, the equation of static deformation of a thin ring may be presented in the form of 
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where ( )M   is the bending moment, 3 /12J t h=  is the inertia moment of the rectangular cross 

section, and the superscript ( ) denotes the second derivative with respect to coordinate  . 

From the geometry considerations 

 2 2

0

( ) sin( )  (1 cos )M pha d pha



    = − = − . (4.503) 

The following solution is after Ref. 18. After substituting the moment (4.503) into Eq. (4.502) 

and denoting 2 /ha p YJ N=  we obtain 

 ( )1 cosr r N  + = − − . (4.504) 

The assumed solution for Eq. (4.504) is 

 cos sin sinr A B C D    = + + + . (4.505) 

This can be verified by substituting r  in Eq. (4.503). After substituting r  into Eq. (4.504) we 

arrive at 

 2 cos (1 cos )D C N + = − − . (4.506) 

For satisfying this equality at arbitrary   it should be 

 , / 2D N C N= − = . (4.507) 

From the symmetry considerations 0r  


=
 = . Thus, / 2B N= −  and the radial displacement 

is 

 cos sin sin
2 2

r

N N
A N    

= − + − . (4.508) 

Following condition (4.224) 

 ( ) ( )sin cos
2 2

N N
A N     = − + − − − −  

. (4.509) 

Assuming that the mode of static deformation coincides to the fist approximation with the 

resonance mode of vibration, the total amount of motion of a ring should be zero, i.e., 

 
2 2

0 0

( cos sin ) 0y rtha u d tha d
 

       = − =  , (4.510) 
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where cos siny ru    = −  is the projection of velocity of vibration on the axis y. Integral 

of the horizontal component of velocity, xu , is equal to zero due to symmetry. After taking in 

consideration the condition (4.510), we obtain 1.25A N= −  and finally the distributions of dis-

placements will be presented in the form 

 1.25 cos sin sin
2 2

r

N N
N N    

= − − + − , (4.511) 

 ( ) ( )0.75 sin cos
2

N
N N    = − − − − . (4.512) 

Let the reference point be at 0 =  (the slot is supposed to be thin enough). The radial displace-

ment of this point is 

 (0) 2.25r roN = − = . (4.513) 

Then the expressions for the radial and tangential displacements (mode shapes) will be repre-

sented in normalized form as 

 
( ) ( ) 0.55cos 0.70sin 0.22 sin 0.44

r

r

ro

 
     


= = + − + , (4.514) 

 
( ) ( ) 0.33sin 0.22( )cos 0.44( )
ro




 
       


= = − + − + − . (4.515) 

 

Figure 4.38: Mode shapes of the radial (solid line) and tangential (dashed line) displacements. The 

experimental data are shown by the circles and squares. 
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The mode shapes are shown in Figure 4.38 together with results of experimental verification of 

the radial displacement18. The fact that at 150 =    both the radial and tangential displace-

ments are close to zero can be exploited for mounting the rings to structural elements of a trans-

ducer design. 

Qualitative comparison between the mode shapes of radial displacements for the complete 

ring, slotted ring and for the “arms” of the tuning fork comprised of two bars clamped at one 

end is made in Figure 4.39. The comparison is useful in terms of a qualitative prediction of 

effectiveness of low frequency radiation by these systems. Whereas 0avS =  in the case (a) and 

baffling of the areas vibrating in anti-phase is required, in the cases (b) and (c) 0avS   and the 

radiation resistance has a fairly good value without baffles. It will be obtained after substituting 

expression for ( )r   into formula (4.247) that for the slotted ring 0.66avS S= , where S is the 

total surface area of the ring. 

 

Figure 4.39: Geometries of mode shapes of the radial displacements: (a) complete ring in flexure, 

(b) slotted ring, (c) tuning fork. 

To determine the equivalent parameters of the ring, expressions for the potential and kinetic 

energies must be considered. For the potential energy it is 

 

222 2
2

4 2
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1 1 1

2 2 212

cs r
pot r eqv ro

V

S t Y
W S T dV ad K

a
 
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

 
= = + = 
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  . (4.516) 

For the kinetic energy 

 ( )
2

2 2 2 2

0

1 1 1

2 2 2
kin cs r eqv ro

V

W u dV S ad M     


= = + =  . (4.517) 

Here csS th=  is the cross section area of a ring, eqvM  and eqvK  are the equivalent mass and 

rigidity of the ring. After substituting values of r  and   from formulas (4.514) and (4.515) 

into expressions for the energies we obtain 

cos(2 )

 = 0  = 0

(a) (b) (c)
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3

3

1 20
1.57 ,eqv eqv

eqv

a
M M K

C t hY
= = = . (4.518) 

The resonance frequency of the ring is 

 
2

1/ 2 0.02r eqv eqvm

t Y
f M C

a



= = . (4.519) 

4.6 Coupled Vibrations in the Mechanical Systems 

So far, we considered one-dimensional vibrations of elastic bodies. In this case the degrees of 

freedom of the elastic body were related to different distributions of vibration in one dimension. 

Though in the most cases such an approximated analysis of vibration of elastic bodies used in 

transducer designs is justified, sometimes it is necessary to consider simultaneous vibrations 

that occur in two dimensions. An exact solution to the problems of two-dimensional vibrations 

of elastic bodies having commensurable dimensions presents considerable difficulties. At the 

same time, a decent for practical purposes approximations can be obtained, if to consider the 

two-dimensional vibrations as coupled vibrations of the properly chosen one-dimensional par-

tial elastic systems. 

4.6.1 The General Outline of the Theory of Coupled Vibrations 

Consider some general information on the theory of coupled vibrations, assuming that the vi-

brations of an elastic body take place in two dimensions and that each partial system has one 

degree of freedom (i.e., has one resonance frequency in the operating range). The state of the 

body is described by two generalized coordinates, 1p  and 2 p , so that distribution of displace-

ments in its volume can be represented as 

 1 1 2 2( , ) ( ) ( )p px y x y    = + , (4.520) 

where 1( )x  and 2 ( )y  are vibration modes of the partial systems. (Partial is the system that 

remains, if to put one of the generalized coordinates to zero). In the general case the expressions 

for the kinetic and potential energies of the system are of the form 

 
2 2

1 1 12 1 2 2 2/ 2 / 2kin p p p pW M M M   = + + , (4.521) 

 2 2

1 1 12 1 2 2 2/ 2 / 2pot p p p pW K K K   = + + . (4.522) 



4.6. Coupled Vibrations in the Mechanical Systems  127 

Here 1M , 2M  and 1K , 2K  are the equivalent masses and equivalent rigidities of the partial 

systems; 12M  and 12 K  are the mutual masses and rigidities, which quantitatively characterize 

inertial and elastic interaction between the partial systems. 

Generalized forces 1mf  and 2mf  that generate vibrations of the partial systems are inde-

pendent, and the energy supplied by these forces is 

 1 1 2 2e m p m pW f f = + . (4.523) 

Expressions (4.521) and (4.522) can describe the coupled vibrations not only in an elastic 

body, but also in mechanical systems composed of two separate bodies, between which a con-

structive connection exists. For illustration consider the typical example of the two degree of 

freedom mechanical system shown in Figure 4.40 that has lumped parameters. Masses 1M   and 

2M   vibrate in the vertical direction on the springs having the stiffness constants 1K   and 2K  . 

(The primes are introduced to distinguish the example from the general case). Configuration of 

the system is completely defined by displacements 1  and 2  of the masses. 

 

Figure 4.40: Coupled mechanical system with lumped parameters. 

The potential and kinetic energies of the system are 

 2 2 2 2

1 1 2 2 1 1 2 1 2 1 2 2 2

1 1 1 1
( ) ( )

2 2 2 2
potW K K K K K K           = + − = + − + , (4.524) 

 2 2

1 1 2 2

1 1

2 2
kinW M M  = + . (4.525) 
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The partial systems are as follows: at 2 0 =  the mass 1M   vibrating between springs 1K   and 

2K   having a combined stiffness 1 2K K + ; at 1 0 =  the mass 2M   vibrating on the spring 2K  . 

The resonance frequencies of the partial systems are 1 1 2 1(1/ 2 ) ( ) /pf K K M   = +  and 

2 2 2(1/ 2 ) /pf K M  = , respectively. The coupling between the partial systems is elastic (as

12 0M  = ) with mutual rigidity 12 2K K = . 

Using expressions (4.521)-(4.523), the Lagrange’s equations for a system with two coupled 

degrees of freedom can be obtained as 

 2 2

1 1 1 12 12 2 1( ) ( )p pK M K M F   − + − = , (4.526) 

 2 2

12 12 1 2 2 2 2( ) ( )p pK M K M F   − + − = . (4.527) 

The following notations will be introduced: for the natural frequencies of partial systems (par-

tial frequencies), 

 1 1 1(1/ 2 ) /pf K M= and 2 2 2(1/ 2 ) /pf K M= ; (4.528) 

and for the coefficients of inertial and elastic coupling between the systems, 

 12 1 2/i M M M =  and 12 1 2/e K K K = . (4.529) 

In the example of mechanical system shown in Figure 4.40 the coupling is elastic, 

therefore, 0i =  and 12 1 2/e K K K   = 2 1 2/ ( )K K K  = − + . 

Further in the general analysis of the coupled vibrations in elastic bodies only the inertial 

coupling will be considered for brevity assuming that 12 0K = , and notation   for the coeffi-

cient of the inertia coupling will be used. The variant of elastic coupling can be considered in 

analogous way. This will be illustrated with examples of particular mechanical systems. 

4.6.1.1 Free Vibrations in Coupled Systems 

With notations (4.528), (4.529) introduced and at condition that 12 0K = , Eqs. (4.526) and 

(4.527) for free vibrations become 

 2 2 2

1 1 1 12 2( ) 0pM f f M f− − =  , (4.530) 

 2 2 2

12 1 2 2 2( ) 0pM f M f f− + − =  . (4.531) 

The frequency equation for the system will be obtained from the condition that its determinant 

is equal to zero 
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 2 2 2 2 2 4

1 2( )( ) 0p pf f f f f− − − = , (4.532) 

where from the values of the natural frequencies of vibration in a coupled system 1f  and 2f  

can be determined as follows 

 2 2 2 2 2 2

1,2 1 2 1 22

1
( ) 1

2(1 )
p p p pf f f f f 


 = −  − + −

, (4.533) 

where 2 2

1 2 2 12 / | |p p p pf f f f = − . This quantity is called the coefficient of connectivity. 

From the system of equations (4.530) and (4.531) relations between the amplitudes of dis-

placements in the partial systems at natural frequencies, the mode shape coefficients ims , may 

be obtained as 

 

1 2

2 2 2 2

1 1 1 2 2 22 2
1 22 2

1 11 12 2 12

( ) ( )
,

p p

f f f f

M f f M f f
ms ms

f M f M
= =

− −
= = = =
 
 

. (4.534) 

Analysis of expression (4.533) shows that values of the partial frequencies are situated between 

the natural frequencies of the system. If we assume that 1 2f f  and 1 2p pf f , then relation 

1 1 2 2p pf f f f    is fulfilled. Thus, from expressions (4.534) follows that 1 0ms   and 

2 0ms  . 

Quantitative characterization of interaction between partial systems and of a shift of natural 

frequencies relative to the partial ones is determined by the value of the coefficient of connec-

tivity  . At small values of   the connectivity of partial systems significantly increases at 

1 2p pf f→ , and conversely, with great difference between partial frequencies the partial sys-

tems become independent, even if the coefficient of coupling γ is relatively large. 

From formulas (4.533) and (4.534) follows that at 1 2p p pf f f= =  

 2 2 2 2

1 2/ (1 ), / (1 )p pf f f f = + = − , (4.535) 

 1 21, 1ms ms= = − , (4.536) 

i.e., vibrations of the partial systems occur with the same amplitude, but at the lower natural 

frequency they are in phase, while at the higher natural frequency in anti-phase. 

It is interesting to consider behavior of natural frequencies at constant coefficient   in 

dependence from detuning between the partial systems, which is characterized by value of the 

detuning factor 
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 1 2/p pf f = . (4.537) 

Denoting 2 2

1/ pf f = , as the normalized coefficient of natural frequencies of a coupled sys-

tem, we bring Eq. (4.532) to the form 

 2 2

2

1 1
(1 ) 1 0

 
 

−  − + + = 
 

. (4.538) 

The resulting dependence of   on   is qualitatively presented in Figure 4.41 (a). 

 

Figure 4.41: Dependences of (a) natural frequencies and (b) ratios of the mode shape coefficients 

from the detuning factor  . 

At  = 0, we obtain 1 1 =  and 2 → , so that 

 1 1pf f=  and 2f → . (4.539) 

At  → , 1 0 →  and 2 1

2 (1 ) − → − , so that 

 1 0f → and 2

2 1 / 1pf f → − . (4.540) 

The mode shape coefficients (4.534) in the new notations become 

 1 1 2 2 1 2 1
1 2

12 1 12 2 2 1 2

1 1 (1 )
, ,

(1 )

M M ms
ms ms

M M ms

− −  −
= = =

   −
. (4.541) 

At 0 → , 1 1 =  and 1 0ms = ; 2 →  and 2 2 12/ms M M→− . 

At  → , 1 0 → , 1ms → ; 2

2 1/ (1 ) → − , 2 12 1/ms M M→− . 
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Dependences of ratios of the mode shape coefficients from the detuning factor   is illustrated 

in Figure 4.41 (b). The further away from the value 1 = , at which the connectivity between 

the partial systems is the greatest and 1 2ms ms= − , the less is the contribution of the partial 

systems into vibration of each other. If the admissible value of the ratio 
1 2/ms ms  is set, the 

values of the detuning factor can be determined, at which interaction between the partial sys-

tems becomes insignificant. 

4.6.1.2 Forced Vibrations in the Coupled Systems 

Let us present Eqs. (4.526) and (4.527) replacing the displacements by the velocities of vibra-

tion 1 1p pU =   and 2 2p pU =  . Besides, the following notations will be introduced 

 

2 2

1 1 1

2 2

1 2 2

12 c

( ) / ,

( ) / ,

,

p

p

j M Z

j M Z

j M Z

  

  



− =

− =

=

 (4.542) 

where 1Z  and 2Z  are the self-impedances of the partial systems in the absence of coupling, cZ  

is the coupling impedance of the partial systems (in our case the inertial coupling is assumed). 

As a result, the equations describing forced vibrations in a coupled system can be represented 

as 

 1 1 c 2 1p pZ U Z U F+ = , (4.543) 

 c 1 2 2 2p pZ U Z U F+ = . (4.544) 

Solution to this system of equations is 

 2 c1 2
1 2 2

1 2 c 1 2 c

p

F ZF Z
U

Z Z Z Z Z Z
= −

− −
, (4.545) 

 1 c2 1
2 2 2

1 2 c 1 2 c

p

F ZF Z
U

Z Z Z Z Z Z
= −

− −
. (4.546) 

The distribution of displacements in the mechanical system can be found in a general case using 

these equations. The concepts of input, 11Z  and 22Z , and transfer, 12Z , impedances of the cou-

pled system are commonly introduced as follows 
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2
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2 1

2

1 2 c1
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2

1 22
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2
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,

,

.

p F

c

p F

c

p p cF F

Z Z ZF
Z

U Z

Z Z ZF
Z

U Z

Z Z ZF F
Z

U U Z

=

=

= =

−
= =

−
= =

−
= − = − =

 (4.547) 

The last relation presents formulation of the reciprocity principle for the mechanical systems. 

Using expressions for the input and transfer impedances, Eqs. (4.543) and (4.544) can be re-

written in the form 

 1 2 2 1
1 2

11 12 22 12

,p p

F F F F
U U

Z Z Z Z
= − = − . (4.548) 

The coupled system has two resonance frequencies, close to which the amplitudes of forced 

vibrations will increase in both partial systems. At small losses the frequencies, at which the 

maximum magnitudes of vibration are reached, are close to natural frequencies of the system, 

because they are determined from the condition of the minimum value of 
2

1 2 c |,Z Z Z−  whereas 

the natural frequencies correspond to condition 2

1 2 cIm{ } 0Z Z Z− = . 

 

Figure 4.42: The frequency responses of the coupled system. 

If only one of the forces, for example 1F , is acting on the system, then the frequency responses 

of velocities of vibration in partial systems qualitatively look, as it is shown in Figure 4.42 for 

velocity 1pU . The peculiarity of this case is that 1pU  goes to zero at partial frequency 2 pf . This 

property can be utilized in designing vibration absorbers and rejecting filters. In the transducer 

1pU

2 pU
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(predominantly receiver) designs this can result in appearance of a trough in the frequency re-

sponse provided the partial frequency of a coupled mechanical system (it can be an enclosing 

case or/and structural elements, to which the transducer is attached) gets into its operating range. 

4.6.2 Examples of Coupled Vibrations in Mechanical Systems 

4.6.2.1 Double Plate Symmetrical Mechanical System 

Consider the mechanical system that is comprised of two identical circular plates hinged on a 

common base in the form of a rigid circular ring, shown in Figure 4.43. We assume that the 

magnitudes of vibration of centers of the plates are 1p  and 2 p . The mass and displacement 

of the base are denoted bM  and b . Distribution of displacements over surfaces of the plates 

can be represented as 

 1 1 2 2( / ) ( / ), ( / ) ( / )b p b pr a r a r a r a       = + = + . (4.549) 

 

Figure 4.43: Coupled vibrations of double plate mechanical system: 1- plate; 2 – base (support). 

Modes of vibration of the double plate structure: (a) symmetrical vibration of plates in opposite 

phase, 0b = ; (b) in phase vibration of plates, 0b  . 

Determine the kinetic and potential energies of the system taking into consideration the kinetic 

energy of the base 2 / 2b bM  . As a result, we obtain 

 2 2 2

1 2

0 0

1 1
2 ( ) 2 ( ) / 2

2 2

a a

kin b p b p b bW t rdr t rdr M        = + + + +  , (4.550) 

 2 2

1 2

1
( )

2
pot eqv p eqv pW K K = + , (4.551) 

1

2

(b)

(a)
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
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where 
eqvK  is the equivalent rigidity of the simply supported plate. After performing integration 

in expression for kinW , and introducing notation av avtS M =  for the average mass of a plate, 

we obtain 

 

2 2

1 22

1 2

2
( )

2 2

pl b p p

kin b b p p av eqv

M M
W M M

 
   

+ +
= + + + . (4.552) 

Expressions for the equivalent rigidity and mass, and average surface avS  are presented by 

formulas (2.151). Namely, 0.29eff plM M=  and 20.46avS a= . From Lagrange’s equation for 

the generalized coordinate b  

 0kin

b

Wd

dt 
 

= 
 

, (4.553) 

follows that 

 
1 2( )

2

p p av

b

b pl

M

M M

 


+
= −

+
. (4.554) 

Upon substituting the velocity 
b  into Eq. (4.552) it will be obtained 

 2 2

1 1 12 1 2 2 2

1 1

2 2
kin p p p pW M M M   = + + , (4.555) 

where 

 1 2

1
1

3(1 / 2 )
eqw

b pl

M M M
M M

 
= = − 

+  
, (4.556) 

 12

0.1

1 / 2

pl

b pl

M
M

M M
= −

+
. (4.557) 

Thus, according to formula (4.529) 

 12

1 2

1

3(1 / 2 ) 1b pl

M

M MM M
 = = −

+ −
, (4.558) 

and 

 
1

1

1
eqvM M


=

+
. (4.559) 
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As the coefficient of coupling,  , is negative, the absolute value is taken to avoid confusion 

regarding the sign of this quantity in formulas, where it is used. 

The partial frequencies are 

 1 2 0

1

1
eqv

p p p

K
f f f f

M
= = = = + , (4.560) 

where 0f  is the first resonance frequency of the simply supported circular plate according to 

formula (4.184). Since the partial frequencies are equal, the natural frequencies of the coupled 

system can be found by formulas (4.535), namely 

 

2 22

02 2 2

1 2 0

(1 )
,

1 1 1

p pf ff
f f f


  

+
= = = =

− − +
. (4.561) 

In this case 2 1f f . 

According to relations (4.536) at frequency 2f , 1 1ms = − , i.e., . The plates vibrate in op-

posite phase (Figure 4.43 (a)), and displacement of the base 0b = . The mechanical system 

vibrating in this mode is ideal for designing pressure hydrophones. Being fixed to a platform 

by the base the hydrophone should not be sensitive to a structural vibration. At freq 2 1p p = −

uency 1f  we obtain 1 2p p p  = = . The plates vibrate in phase (Figure 4.43 (b)), and displace-

ment of the base may be determined by formula (4.554), as 

 
2 0.45

2 1 / 2

p av

b

b pl b pl

M

M M M M


 = − =

+ +
. (4.562) 

The mechanical system vibrating in this mode can be used for designing the pressure gradient 

hydrophones. 

Note that at 0bM =  0.5 = −  and 1 01.73f f=  from relation (4.561). At 

(1 / 2 )b plM M+ →  we obtain 0 →  and 1 2 0f f f→ = . In this case the plates may vibrate 

independently, and the mode of vibration depends on the phase correlation of forces that gen-

erate vibration. A close effect can be achieved at finite values of the ratio / 2b plM M . This can 

be estimated from formula 

 1 / [( / 2 ) 1] / [( / 2 ) 0.34]o b pl b plf f M M M M= + +  (4.563) 

that can be obtained from relation (4.561) using expression (4.558) for the coefficient  . 
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4.6.2.2 Coupled Vibrations in Rectangular Plates and Bars 

In general, the mechanical systems of piezoelectric ceramic transducers are elastic bodies of a 

size, for which it is hard to accurately determine or predict the distribution of displacements 

over the volume under vibration. Approximate approach to solving of the problem was sug-

gested in Ref. 19 and is known as “hypothesis of Giebe and Blechshmidt”. The approach to 

solving the problem is based on the assumptions that: (a) vibration of a real elastic body may 

be represented as the coupled vibration of the partial one-dimensional systems, to which the 

real body approaches at the extreme values of its aspect ratios, and (b) the coupling factors 

between the partial systems may be selected in such a way as to yield the known resonance 

frequencies for their extreme one-dimensional configurations. 

 

Figure 4.44: Drawing of a rectangular plate considered as a coupled system of two bars (a), the 

extreme one-dimensional systems. 

Thus, for example, it was suggested to consider the extensional vibration of a rectangular 

plate as a coupled vibration of two bars, as shown in Figure 4.44, with inertia coupling between 

them. For this case the first resonance frequencies of the partial systems are 

1 1(1/ 2 ) /pf L Y =  and 2 2(1/ 2 ) /pf L Y = , and the coefficient of coupling was chosen as 

m = . In Ref. 20 such approach was used for determining the resonance frequencies of pie-

zoelectric bodies of several configurations, and the results obtained where sufficiently accurate. 
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However, the technique based on the Gibbe and Blechschmidt approach cannot be directly 

applied to calculating the electromechanical parameters of transducers. Moreover, it cannot be 

applied to treatment of transducers as electroacoustic, i.e., under the action of acoustic loads, 

because this requires knowing, how the modes of vibration of piezoelements change vs. their 

aspect ratios. For these applications the approach needs to be modified. This can be done by 

employing the general coupling theory, if to assume that the partial modes of displacement in 

the mechanical system are chosen as suggested according to part (a) of the Gibbe and Blech-

schmidt hypothesis. In this section the modification will be illustrated with example of the me-

chanical systems in the shape of thin rectangular plates (Figure 4.44 (a)) and long bars (Figure 

4.45), vibration of which can be regarded as two-dimensional. Here we assume that mechanical 

 

Figure 4.45: Geometry of the long bar and coordinate systems. It is assumed that deformation 

2 0S = . 

systems are passive isotropic bodies. In the case that they are made of piezoelectric ceramics, 

their properties depend on the directions of their polarization and may become anisotropic. The 

differences that arise from these effects will be considered, when the transducers employing 

these mechanical systems will be treated. To make referring to results of this section easier, the 

surfaces that presumably will be covered by electrodes are dashed, and the corresponding to 

directions of polarization crystallographic coordinate systems are used. 

4.6.2.2.1 Coupled Vibrations in the Rectangular Plates 

Consider vibration of a thin rectangular isotropic plate in its plane. The geometry of the plate 

is shown in Figure 4.44 (a). We assume that the thickness of the plate, t, is much smaller than 

its lateral dimensions 1L  and 2L , and therefore the boundary condition can be imposed that the 

stress 3 0T = . We are interested in the dependence of the plate's parameters on its aspect ratio, 
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1 2/L L . The partial distributions of displacements in the plate will be represented as the funda-

mental modes of vibration of thin bars having lengths 1L  and 2L , 

 1 1 2 2cos( / ), cos( / )x p y px L y L     = = . (4.564) 

The corresponding distribution of displacement and strain in the plate will be 

 1 1 2 2( , ) cos / ) cos( / )p px y x L y L    = + , (4.565) 

 1 1 1 1 2 2 2 2( / )sin( / ), ( / )sin( / )p pS L x L S L y L     = = . (4.566) 

(The minus sign is omitted here and further for brevity. Its meaning is that at positive directions 

of displacements 1p  and 3 p  the strains are compressive, i.e., negative by adopted sign con-

vention. But this is not important in context of this section.) 

For the stress follows from Eqs. (4.10) 

 1 1 2 2 1 22 2
( ), ( )

1 1

Y Y
T S S T S S 

 
= + = +

− −
. (4.567) 

For the strain in the direction of z axis we obtain 

 3 1 2( )
1

S S S



= − +
−

. (4.568) 

The energies associated with vibration of the plate are determined as follows. The potential 

energy is 

 2 2

1 1 2 2 1 1 2 22

1 1
( ) ( 2 )

2 2 1
pot

V V

Y
W T S T S dV S S S S dV


= + = + +

−  . (4.569) 

Here V  is the volume of mechanical system. After substituting expressions (4.566) for the 

strain and integrating over the volume of the plate we obtain 

 2 2

1 1 12 1 2 2 2

1
( 2 )

2
pot p p p pW K K K   = + + , (4.570) 

where 

 
2 2

2 1
1 2 122 2 2

1 2

4
, ,

2(1 ) 2(1 ) 1

L LYt Yt Y t
K K K

L L

  
  

= = =
− − −

. (4.571) 

The kinetic energy of the vibrating plate is 
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 2 2 2( )
2

kin x y z

V

W dV
    = + + . (4.572) 

Here the velocity of the surface vibration,
z , is denoted as 

z  . It can be found from Eq. (4.568) 

that 
3 3z S z  = = . Thus, 

 1 2( )
2(1 )

z

t
S S


 = − +

−
. (4.573) 

Note that velocity 
z  , being relatively small compared with velocities in lateral directions, is 

important for measuring the mode shapes of the plate vibration. This is the quantity that deter-

mines the acoustic radiation in the case that a laterally vibrating plate is used for this purpose. 

After integrating over the volume of the plate, the kinetic energy can be represented as 

 2 2

1 1 12 1 2 2 2

1 1

2 2
kin p p p pW M M M   = + + , (4.574) 

where 

 

2 2 2 2 2 2

1 22 2 2 2

1 2

2 2

12 2

1 2

1 , 1 ,
2 212(1 ) 12(1 )

.
3(1 )

M t M t
M M

L L

t
M M

L L

   
 




   
= + = +   − −   

=
−

 (4.575) 

In these relations, 1 2M L L t=  is the mass of the plate. So far as 1 2,t L L , the contribution 

of the terms with factors 2 2/t L  is negligible and 

 1 2 12/ 2, 0M M M M= =  . (4.576) 

Thus, the coupling between the partial systems may be regarded as pure elastic. 

Considering expressions for the potential (4.570) and kinetic (4.574) energies together with 

expressions for the equivalent rigidities (4.571) and masses (4.575), we can arrive at the fol-

lowing conclusions. In the case under consideration the partial system that is determined by the 

condition 1 0p =  or 1 0S = , at 1L → , constitutes a strip that is infinite in the x direction and 

vibrates along its width 2L . Similarly, another partial system (at 2 0p = ) is the strip that is 

infinite in the y direction and vibrates along dimension 1L . Thus, the partial resonance frequen-

cies are 
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2

1 1
( 1,2)

2 2 (1 )

i
ip

i i

K Y
f i

M L  
= = =

−
. (4.577) 

The coupling between the partial systems is elastic with the coupling factor 

 12

2

1 2

8
e

K

K K




= = . (4.578) 

(The subscript will be further omitted.) For a plate made of PZT-4 ceramic polled in z direction 

(
1 0.33E = = ) 0.27 = . 

After the energies associated with free vibration of the plate (without taking into account 

the energy losses and external loads) are determined, the Lagrange’s equations can be repre-

sented in the following form analogous to Eqs. (4.530) and (4.531) 

 2 2 2

1 1 12 1 1 2( ) ( / ) 0p p p pf f U K K f U− + = , (4.579) 

 2 2 2

12 2 2 1 2 2( / ) ( ) 0p p p pK K f U f f U+ − = . (4.580) 

The frequency equation follows from this set of equations in the form 

 2 2 2 2 2 2 2

1 2 1 2( )( ) 0p p p pf f f f f f− − − = . (4.581) 

We assume further for definiteness that the dimension 2L  (i.e., 2 pf ) is kept constant and 1L  

changes. After denoting 2 2

2/ pf f =   as the normalized non-dimensional resonance frequency 

factor and 

 
2 1

1 2

p

p

f L

f L
= = , (4.582) 

as ratio of the partial frequencies, Eq. (4.581) may be transformed to 

 2 2 2 2(1 1/ ) (1 ) / 0   − + + − = . (4.583) 

From this equation two branches of resonance frequencies that correspond to solutions 1  and 

2  may be found as functions of the aspect ratio. We will use the convention that 1( )  forms 

the lower and 2 ( )  the upper frequency branch. The frequency dependencies calculated at 

value of the coupling factor 2

1(8 / ) 0.27  = =  are shown in Figure 4.46 by solid lines. It 

follows from Eq. (4.583) that at 1 =  
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Figure 4.46: Resonance frequency dependence on aspect ratio for lower (1) and upper (2) fre-

quency branches (solid – calculated, dashed - Ref. 20, markers – measured, Ref. 21). 
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After the resonance frequencies are determined, the corresponding mode shape factors, which 

will be defined as 
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may be found from the set of Eqs. (4.579) and (4.580). Namely, 
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It follows from expressions (4.578) and (4.571) that 12 1( / )K K  = . Thus, Eq. (4.586) can be 

represented as 
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i

i

ms



= −
−

. (4.587) 

The dependence of the mode shape factors on the aspect ratio   is shown in Figure 4.47. It 

follows from Eq. (4.587) that at frequencies pertaining to the lower branch the velocities 1U  

and 2U  are in anti-phase. In particular, at 1 =  1 1ms = −  and 2 1ms = . This means that at 
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higher and lower resonance frequencies the velocities have the same magnitude, but are in-

phase at the higher frequency and in anti-phase at the lower frequency. 

 

Figure 4.47: Dependence of the mode shape factors on aspect ratio for lower (1) and upper (2) 

frequency branches (solid - calculated, dashed – calculated using 
1

E =  following Ref. 20). 

It is interesting to estimate the relation of the obtained solutions for the resonance frequen-

cies with known results for the limiting one-dimensional configurations of a plate, which are a 

long bar (at 0 →  and 2L  constant) and a long thin strip (at  →  and 2L  constant). It 

follows from Eq. (4.583) that 
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At 0 →  
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and 
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1 2(1 ), 1/   −  → . (4.590) 

Thus, 
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Taking into account expression (4.571) for the partial frequencies
ipf , we arrive at the resonance 

frequency for a thin bar of the length 2L  
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and for an infinitely long strip of the width 1L  

 2 2
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Y
f

L  
=

−
. (4.593) 

Given that the exact value for the resonance frequency of the thin bar must be 

2(1/ 2 ) /barf L Y =  and that 0.27 =  we obtain 1 1.02 barf f= . Thus, the error of the current 

approach can be considered as negligible for the limiting case at 0 → . For another extreme 

case (long strip) the value of resonance frequency obtained by formula (4.593) is exact. 

4.6.2.2.2 Coupled Vibrations in the Long Rectangular Bars 

The geometry and the electrode location for a long bar are shown in Figure 4.45. The condition 

2 0S =  is held. Distribution of displacements is assumed to be 

 1 1 3 3cos( / ), os( / )x p z px L c z L     = = , (4.594) 

where from the strains are 

 1 1 1 1 3 3 3 3( / )sin( / ), ( / )sin( / )p pS L x L S L z L     = = . (4.595) 

(Regarding the omitted sign minus, see the note under Eq. (4.566).) 

From Eqs. (4.9) follows that 

 1 11 1 13 3 3 13 1 33 3,T c S c S T c S c S= + = + , (4.596) 

where for an isotropic material 
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The same technique as was used for treating the plate can be applied to this case in the straight-

forward way. The partial systems in this case are the infinite in lateral dimensions plates of 

thickness 1L  (in which case 3 0S = ) and of thickness 3L (in which case 1 0S = ). From 
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considering expressions for the potential and kinetic energies analogous to (4.570) and (4.574) 

we obtain that 
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and 
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Thus, the partial frequencies are 

 1 3

1 3

1 1
,

2 2
p p

c c
f f

L L 
= = , (4.600) 

and the expressions for the ratio of the partial frequencies is 1 3( / )L L = . The coupling is 

elastic with the coupling factor 
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. (4.601) 

For example, for a bar made of isotropic material having Poisson’s ratio 0.33 =  0.4 = . 

In case that the bars are made of isotropic material, dependencies of the modal resonance fre-

quencies and mode shape factors vs. coefficient   can be found from Eqs. (4.583) and (4.587)

, respectively, at corresponding value of the coupling factor  , if to replace subscript 3 by 2. 

For the piezoceramic bars all the calculations complicate because of anisotropy of elastic 

properties. This case will be considered in Chapter 10. 

It is noteworthy that the results presented in this section are restricted to the fundamental 

modes of vibration of the partial systems, and as such are applicable for frequency range near 

and below the resonance frequencies of the two lowest modes of their vibration. The analysis 

is not intended for a much broader frequency range that could be of interest for a general treat-

ment of the vibration of piezoelectric plates and bars per se. The overtones of the partial systems 

are neglected because the corresponding modes of vibration are typically not suitable for prac-

tical or effective electromechanical transduction. 
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4.6.2.3 Coupled Vibrations of Cylindrical Discs and Solid Rods 

 

Figure 4.48: (a) Geometry of the finite size cylinder, (b) the extreme case at / 2 1h a , (c) the 

extreme case at / 2 1h a . 

Piezoelectric elements in the shape of thick discs or solid circular cylinders (Figure 4.48) that 

undergo longitudinal vibrations in the axial direction are used for many applications in a broad 

frequency range. The height to diameter aspect ratio of these piezoelements, h/2a, may change 

from very small (at / 2 1h a , Figure 4.48 (b)), to rather large (at / 2 1h a , Figure 4.48 (c)). 

In these limits of extreme aspect ratios, the piezoelements are commonly called “discs” and 

“rods,” respectively, and can be considered as one-dimensional systems in terms of calculating 

their vibration in the axial direction. In the intermediate cases that the height of the piezoele-

ments is comparable with their diameter, the piezoelements may be called “finite-height cylin-

ders.” This definition will be used further for all the geometries in general so far as the depend-

ence is concerned of their parameters on the aspect ratios. 

There have been many results of investigations related to the vibration of the circular discs 

having various height to diameter aspect ratios published over the span of several decades 

(Ref.21-24). The main goal of these experimental works was in investigating and classifying 

the axisymmetric vibrational modes of the circular discs and their dependence on the height to 

diameter aspect ratio. Piezoceramic discs were used in these investigations with fully electroded 

end surfaces as a convenient way to generate the axisymmetric vibrations. These works showed 

complexity of vibrations especially for thin discs. Authors of the referred works performed very 

careful and detailed measurements of the modal distributions of vibration over the discs surface 
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in the axial direction that proved to be essentially nonuniform in the most cases, which makes 

them virtually unusable for effective sound radiation. This information can be used for qualita-

tively predicting the ranges of aspect ratios that have to be avoided in practical designing of the 

piezoelements for electroacoustic transducers. 

The following qualitative description can be made from the point of view of the coupled 

vibration concept, of how parameters of piezoelements change as the aspect ratio progresses 

from extremely small to larger values (or as the resonance frequency of axial mode of vibration, 

acf , changes from high to lower values, while the diameter of the discs remains constant). 

When the resonance frequency of the axial vibration approaches the resonance frequencies 

of the radial modes of vibration, .rad if , the effect of coupling between these modes takes place 

that results in nonuniform distribution of axial displacement over the surface due to contribution 

of the radial modes. So far as the aspect ratio remains small, the radial modes are of high order 

(about 5 6i  − ), their effective coupling coefficients are small, and contribution of these 

modes to the axial displacement can be practically neglected. In this range of aspect ratios the 

axial (thickness) vibration of a disc can be approximately considered as one dimensional 

As the aspect ratio increases, the radial modes of lower order having higher effective cou-

pling coefficients come into action and the effects of their coupling with the axial mode become 

more pronounced, including raising nonuniformity of the distribution of axial vibration that 

may result in corrupting the directional factor of a corresponding transducer. These effects are 

especially significant in the ranges of aspect ratios around values that correspond to the condi-

tion .ax rad if f , at which the coupling between modes is strongest. After the aspect ratio 

reaches the values, at which interaction must be taken into account with the first (the lowest, at 

.1radf ) mode of radial vibration only, the cylinder can be considered as a two degree-of-freedom 

system, and the coupled vibration technique can be applied to calculating its parameters. With 

a further increase of the aspect ratio the longitudinal vibration of relatively tall cylinder can be 

considered isolated and one-dimensional theory of calculating the corresponding transducers is 

applicable. 

In this section we will analyze the dependence of the resonance frequencies and the mode 

shape coefficients of the finite-size cylindrical piezoelements for the range of aspect ratios, for 

which coupled vibration technique can be applied to provide means for calculating the operating 
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characteristics of the transducers that employ vibration of such piezoelements, and to determine 

approximate value of aspect ratio, after which the longitudinal vibration of the cylinder can be 

considered as one-dimensional. For this purpose the coupled vibration analysis technique can 

be used that is described in Section 4.6.1. In order to be qualified as a two degree of freedom 

system, to which the coupled technique approach can be applied, the corresponding partial sys-

tems must each have a single degree of freedom in all the intended range of changing the aspect 

ratio of the body. For specifying the partial systems the assumed distribution of displacements 

in the body must be suggested. Following the Gibbe and Blechshmidt hypothesis the assumed 

partial distribution of the displacements will be chosen, as the modes of vibration of the one-

dimensional bodies at the extreme values of the height to diameter aspect ratio h/2a. In our case 

they can be: the radial vibrating thin disc and axial vibrating thin bar at 0h→  and at 0a → , 

respectively, as shown in Figure 4.48. The partial displacements in the radial and axial direc-

tions will be denoted as a  and h . Characterization of the partial systems will be obtained 

with reference to Eqs. (4.521) and (4.522), in which the partial displacements have to be re-

placed by a  and h . The pair of the partial systems that comply with these equations represent 

radially vibrating infinitely long cylinder (in limit h→ , 0h → ) and the thickness vibrating 

disc of a large diameter (in limit a→ , 0a → ), because at 0h =  the remaining equations 

characterize the radially vibrating infinitely long cylinder, and at 0a =  they characterize the 

axially vibrating disc of infinite radius. 

If to consider the axial vibration of a finite-size cylinder around its lowest resonance fre-

quency only, which is practically the case, then distribution of displacement in the axial direc-

tion is 

 ( ) sin( / )hz z h  = , (4.602) 

and it remains the same in all the range of aspect ratios. 

The radial vibration of the thin disc is considered in Section 4.4.2. It cannot be regarded as 

one degree of freedom systems in the entire frequency range of interest, because it has multiple 

resonances within this range. The axisymmetric distribution of displacement in the radial direc-

tion being represented as expansion in the series by normal modes of vibration (4.163) is 

 1 1 1

1 1

( ) ( ) ( ) / ( )i i ai i i

i i

r J k r J k r J k a  
 

= =

= =  . (4.603) 
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Here ai  are the displacements at r = a, /i ik a= , and i  are the eigenvalues for the 

vibration problem (Section 4.4.2). In order to reveal the range of aspect ratios, in which appli-

cation of the two-dimensional coupling technique is possible, the first term of the series has to 

be retained only, 

 1 1 1 1( ) ( ) / ( )ar J k r J k a = , (4.604) 

where 1 2.05k a = . The corresponding resonance frequency is (4.168) 
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The resonance frequency of the next radial mode is at 2 5.83k a = . It can be considered that 

the first resonance mode of vibration remains dominant up to approximately 3ka = . 

Consider as the partial resonance frequencies the resonance frequency of the bar vibrating 

in its fundamental mode, 
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/
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hf Y
h

= , (4.606) 

and the resonance frequency of the radially vibrating thin disc by formula (4.605) corrected to 

3ka = . Then the aspect ratios that correspond to condition ( / ) 1a hf f = =  of the strongest 

coupling for the resonance modes of the disc can be determined from relation 

 
26 / 2 (1 ) 1h a  = − =  or ( / 2 ) 0.5h a   at 0.33 = . (4.607) 

With increase of the aspect ratio (increase the height with 2a constant) above approxi-

mately / 2 1.5h a   the third mode of the longitudinal vibration cannot be ignored in terms of 

applicability of the coupled vibration technique due to its coupling with the first radial mode. 

(The strongest coupling between third mode of longitudinal vibration and first radial mode of 

a tall cylinder takes place at / 2 1.8h a  ). But the range of aspect ratios above this value does 

not present problems in terms of transducer designing, because at these aspect ratios the longi-

tudinal vibration of the cylinder can be treated as one-dimensional, as will be shown below, and 

the radial modes of vibration of such tall rod do not present a practical interest. 

Thus, the entire range of aspect ratios can be divided conditionally into several regions that 

may differ qualitatively in terms of contribution of radial vibration of a disc into its thickness 
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vibration and in terms of applicability of treating the vibration as a coupled two-dimensional 

problem. At aspect ratios / 2 0.1h a  , the contribution of effects of vibration in radial direction 

can be practically neglected due to negligible values of the modal coupling coefficients. The 

thickness vibration can be considered as the extreme case of one-dimensional vibration of a 

plate with infinitely large lateral dimensions. 

The range of aspect ratios approximately in the interval 0.5 / 2 0.1h a  , is characterized 

by coupling the thickness (axial) mode of vibration with multiple radial modes having relatively 

small separation between the resonance frequencies. This makes the vibration problem rather 

complicated, and results in highly nonuniform distributions of displacements on the top cylinder 

surfaces. This range of the aspect ratios is hardly usable for transducers designing. Information 

on the displacement distributions for this range of the aspect ratios can be found in Ref. 21. In 

the range of aspect ratios approximately 1.5 / 2 0.5h a   the first radial mode is dominant, 

and the radially vibrating disc can be considered as a single degree of freedom system. In this 

range of aspect ratios the vibration problem for the finite-size cylindrical piezoelement can be 

treated as a two degree of freedom system by applying the coupled theory approach. Depend-

ences of the resonance frequencies and mode shape coefficients vs aspect ratio are further con-

sidered analytically for this range of the aspect ratios. 

The strains in the body of a cylinder according to the assumed distributions of displace-

ments (4.602) and (4.603) are 
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The corresponding expressions for stresses must be obtained from Eqs. (4.9) under the condi-

tions that for the partial system at 0a =  (axially vibrating disc of a large diameter) 1 2 0S S= =

,and at 0h =  (radially vibrating cylinder of a large height) 3 0S = . Thus, 

 1 1 2[(1 ) ]
(1 )(1 2 )

Y
T S S 
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= − +

+ −
, (4.611) 
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Our final goal is in treating coupled vibration of piezoelements of the same configuration. 

This will be done in Chapter 10. Elastic properties of the piezoelectric ceramics are anisotropic, 

and equations analogous to (4.9) look like 
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 (4.614) 

where E

ikc  are the elastic moduli of the ceramics at electric field 3 0E = . In order to make ex-

pressions for the equivalent parameters of an isotropic passive body like those of the piezoele-

ments of the same configuration, and for sake of brevity it is convenient to introduce the nota-

tions 

 
(1 )

(1 )(1 2 )
a h

Y
c c


 

−
= =

+ −
, (4.615) 

where ac  is analogous to 
11

Ec  and hc  is analogous to 
33

Ec , 
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where ahc  is analogous to 
13

Ec  and 
12

Ec . 

Consider the expressions for the potential and kinetic energies of the coupled system. 

 
/2

2 2

1 1 2 2 3 3

/2 0

1 1
2 ( ) ( 2 )

2 2

h a

pot eqv a a ah a h eqv h h

h

W S T S T S T rdrdz K K K    
−

= + + = + +  , (4.617) 

 
/2

2 2 2 2

/2 0

1 1
2 [ ] ( 2 )

2 2

h a

kin r z eqv a a ah a h eqv h h

h

W rdrdz M M M       
−

= + = + +  . (4.618) 

After substituting the above expressions for the stress, strain, and displacements, the following 

expressions will be obtained for the equivalent rigidities and masses that belong to the partial 

systems (their “self” parameters) and for parameters ,ah ahK M  that characterize coupling be-

tween the partial systems 
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The coefficient of coupling between the partial systems is elastic, 
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For example, consider a cylinder made of aluminum ( 0.33 = ) with 0.49 = . 

The partial resonance frequencies are 
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For the ratio of the partial resonance frequencies we obtain 

 1.4
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a

h

f h

f a
 =  . (4.623) 

After the coefficients   and   are determined, calculating dependencies of the resonance fre-

quencies and mode shape factors can be produced in the way, as it was demonstrated in the 

previous section (see Eqs. (4.583) and (4.58). 

4.6.2.4 Coupled Vibration of Thin-Walled Tubes 

The cylindrical piezoelectric ceramic transducers are widely used for underwater applications. 

Calculation of their parameters is well known in the case that the transducers are built from the 

thin-walled short rings, for which the assumption of one-dimensional nature of vibrations in the 

circumferential direction is valid (see Section 4.4.4). With increasing the height to diameter 

aspect ratio of the comprising piezoelements the one-dimensional approximation fails, and vi-

brations of the cylindrical piezoelements must be considered as two-dimensional coupled vi-

brations in the circumferential and axial directions. 

It has to be noted that a vagueness of terminology exists regarding naming of the thin-

walled cylindrical piezoelements, if to consider their two-dimensional vibration. So far as the 

passive elastic cylindrical elements are concerned, it is common to refer to elements as “rings” 

at aspect ratios / 2 1h a  and as the “tubes” at / 2 1h a . But it is not clear, when a ring 
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transitions into a tube. At the same time, a convention exists among suppliers of piezoceramic 

parts to specify the thin-walled cylindrical parts with electrodes applied to the side surfaces as 

tubes regardless of their height to diameter ratio. Following this convention, we will name the 

objects of this treatment as tubes because of their intended application as the piezoelements. 

The first treatment of vibration of piezoelectric ceramic thickness poled tubes in the two-

dimensional approximation was carried out in Ref. 25 in the framework of the “membrane” 

theory of shells following the treatment of vibration of the passive thin isotropic elastic tubes 

described by A. E. Love [1]. An alternative to the partial differential equations of motion treat-

ment of the problem that was introduced by Love was suggested by Gibbe and Blechshmidt 

[19]. They considered vibration of the tubes as dynamical interaction of two coupled partial 

mechanical systems, namely, of a thin ring undergoing radial vibrations and of a thin longitu-

dinally vibrating bar, as shown in Figure 4.49. We will adhere to this latter approach. 

A common prediction of both of these analyses was the existence of a so called “dead 

zone,” i.e., some frequency range, in which no resonance vibrations of a tube may occur. This 

physically improbable result is rooted in the membrane theory approximation, in which case 

the thickness of a tube is assumed to be small to the extent that the energy of flexural defor-

mations can be neglected in comparison with the energy of extensional deformations at any 

aspect ratio. It was shown in Ref. 26 that such an assumption is especially wrong for the range 

of aspect ratios around the point of strongest coupling. In order to correct this shortcoming, the 

energy related to flexural vibration of the bar as one of the partial systems must be taken into 

account, when considering vibration of the tubes. This involves introducing one more general-

ized coordinate, makes the problem three degree of freedom, and requires using technique that 

is somewhat different from those used in the previous sections for treating the coupled vibra-

tions. This will be done following Ref. 27. 

4.6.2.4.1 Assumptions on the Distribution of Deformations in the Thin-Walled Tubes 

Consider extensional axial symmetric vibrations of a thin-walled isotropic elastic tube shown 

in Figure 4.49 (a) as the coupled vibrations of the two partial one-dimensional systems, namely, 

of the radially vibrating ring (Figure 4.49 (b)) and of the longitudinally vibrating thin bar (Fig-

ure 4.49 (c)). 
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Figure 4.49: A thin-walled elastic tube (a) and its partial subsystems: (b) the radially vibrating 

short ring and (c) the longitudinally vibrating thin bar. 

The common assumption for the thickness, t, of the “thin-walled” tube is that 2t a . In 

other words, this means that the resonance frequency of vibration of the ring in the axial direc-

tion and the resonance frequency of the radial vibration of the ring, / 2rf c a= , are very far 

apart. Thus, these vibrations can be considered as independent, and at frequencies close to the 

radial resonance of the ring the thickness is very small compared with the extensional wave-

length. Therefore, the stresses in radial direction, rT , are practically constant, and being zero 

on the ring surfaces they remain negligible inside of its volume, i.e., 0rT = , which allows the 

problem to be treated as two-dimensional. 

Consider the extreme cases for the height of a tube, in which / 2 1h a  and / 2h a→ . 

In the case that / 2 1h a , the tube reduces to short ring, for which the first resonance fre-

quency of the axial vibrations, 1 / 2hf c h , is much higher than the resonance frequency of the 

radial vibration, rf . By the reasons discussed for the thickness of a ring it can be assumed that 

the axial stress 0xT =  in the volume of the ring. Thus, the problem becomes one-dimensional 

with a well-known solution. In the case that / 2h a→ , the tube becomes very long, the res-

onance frequency of the axial vibrations becomes much lower than for the radial vibration, and 

the vibrations in the vicinity of the radial resonance frequency may be considered as one-di-

mensional with the mechanical conditions 0rT =  and 0xS = , where xS  is the strain in the 

axial direction. The latter condition is valid, strictly speaking, for an infinitely long tube because 

of the symmetry considerations, but it may be assumed to be applicable to a tube long in 
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comparison with the extensional wavelength in a frequency range of interest. Both one-dimen-

sional approximations are valid practically to a broad extent of aspect ratios so far as the sepa-

ration between the resonance frequencies of vibration in the axial and radial directions is suffi-

ciently large. But it remains to be estimated, what is large enough in terms of an acceptable 

accuracy of calculations based on these approximations. It follows from the general theory of 

coupled vibrations that the strongest coupling between the partial systems takes place if the 

resonance frequencies of the partial systems are equal. In our case this condition fulfills at first 

in the vicinity of the aspect ratio / 2 / 2h a = = , at which point 1r hf f= , and then repeatedly 

at the aspect ratios related to the harmonics of the axial resonance frequency. Thus, it can be 

expected that the one-dimensional ring approximation may be valid for the tube with the aspect 

ratios / 2 / 2h a  . It is not clear, what the lowest acceptable value of the aspect ratio is for 

the one-dimensional long tube approximation to be valid. This must be determined. 

To employ the coupled vibration technique to analysis of a tube vibration, an assumption 

must be made regarding distribution of displacements over its surface. At first consider defor-

mations of a ring (Figure 4.49 (b)). Denote the radial displacement of the ring surface as 0 , 

then the strain S  in the circumferential direction may be presented as 

 0 02 ( ) 2

2

a a
S

a a


   


+ −
= = , (4.624) 

and the strain xS  in the axial direction will be determined as 

 0 /xS S a = − = − . (4.625) 

Correspondingly, the displacement in the axial direction  generated in the tube by the radial 

displacement will be 

 0xr

x

a

 = − . (4.626) 

Consider now deformations of a thin bar (Figure 4.49 (c)). Displacement in the axial direction, 

xx , may be represented as an expansion in the series 

 
2 1

1

sin( / )
n

xx xi

i

i x h  
−

=

= , (4.627) 

xr
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where n is a number of modes taken into account for an approximation, that may be considered 

as acceptable. Expression for the strain in the axial direction is 

 /x xxS x=   , (4.628) 

and the strain in the lateral direction, S , will be found as 

 /x xxS S x   = − = −   . (4.629) 

The deformation corresponding to this strain, which is produced in the circumferential direction 

of the ring, cause a displacement of the ring surface, rx . This displacement can be determined 

as 

 rx aS =  (4.630) 

according to formula (4.624). Thus, the deformation of the bar in the axial direction generates 

the radial displacement of the tube surface 

 ( / )rx xxa x  = −   , (4.631) 

which can be expressed with reference to Eq.(4.627) as 

 
2 1

1

cos( / )
n

rx ri

i

i x h  
−

=

= , (4.632) 

where /ri i a h = − , 0,...,4i =  

Summarizing the assumptions made above, the distribution of displacements in an axial 

symmetrically vibrating thin-walled tube can be represented as follows 

 
2 1
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1

( / ) sin( / )
n

x xx xr xi

i

x a i x h      
−

=

= + = − + , (4.633) 
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−

=

= + = + . (4.634) 

The distribution of displacements in a tube is shown qualitatively in Figure 4.50 (a), as a super-

position of displacements generated by vibration of the partial systems (only the fundamental 

mode of a bar vibration is illustrated for simplicity). 

So far as the distribution of displacements is defined by Eqs. (4.629) and (4.630), the axial 

symmetric strain distribution in the body of the tube can be represented in the cylindrical coor-

dinates x,   as follows 
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The term 2 2( / )rz x−    in Eq. (4.635) accounts for the strains due to the flexural deformations 

of the wall of the tube. The coordinate axis z goes in the radial direction and has its origin on 

the mean circumferential surface of the tube, as it is shown in Figure 4.50 (b). This term is a 

matter of principle in this treatment. It takes into consideration the energy of the flexural defor-

mations of the wall of a tube having a finite thickness, and makes the proposed approach to the 

problem different from that, which was used in the framework of the “membrane” theory. 

 

Figure 4.50: Distribution of displacements in a tube: (a) in the extensional vibrations, (b) in the 

flexural vibrations. 

The stresses in the tube will be found as follows from Eqs. (4.10) (remember that 0rT = ), 

 
2

( )
1

x x

Y
T S S


= +

−
, (4.637) 

 
2

( )
1

x

Y
T S S 


= +

−
. (4.638) 

By substituting the strains xS  and S , defined by Eqs. (4.635) and (4.636), into Eq. (4.637) it 

is easy to make certain that the boundary conditions ( / 2) 0xT h = on the free ends of a tube 

are met. With distribution of strain in the tube known, the equations of motion of an isotropic 

passive tube can be derived as the Lagrange’s equations. 

A note must be made regarding a number of terms in the series (4.627) to be taken into 

account for practical calculations in order to achieve an acceptable level of accuracy for the 
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results. This depends on the range of aspect ratios under consideration. For the range below and 

around the first region of strong coupling, namely, 0 / 2 3h a  , it should be sufficient to 

retain only the first term of the series, which corresponds to the fundamental mode of the axial 

vibration. For the higher range of aspect ratios, but below and around the second region of a 

strong coupling, that is for 0 / 2 6h a  , the next term must be included, which corresponds 

to the third harmonic of the axial vibration. One more note has to be made regarding represen-

tation of the flexural term in Eq. (4.635). The flexural term is represented based on the elemen-

tary theory of bending. This can be considered as sufficiently accurate until ratio of the half 

wave of flexure to thickness for a bar as a partial system is much larger than unity, i.e., / 1h it

, where i is a number of half waves of flexure on the length of the bar. Otherwise, corrections 

accounted for the effects of rotary inertia and shearing deformations on the kinetic and potential 

energies related to the flexural vibrations must be taken into consideration, as it is illustrated in 

Section 4.3.5. 

4.6.2.4.2 Results of Solving Equations of Coupled Vibration ofin Thin-Walled  Tubes 

The equations of free vibration of isotropic elastic tubes can be obtained as the Lagrange’s 

equations. The second approximation will be considered, in which case n = 2 in Eqs. (4.635) 

and (4.636). The new notations will be introduced for the generalized coordinates as follows: 

1 1r → , 3 3r → , 1 2x → , 3 4x → . Thus, the five generalized coordinates i  will be used 

to describe a solution to the problem. To obtain the Lagrange’s equations the kinetic and po-

tential energies of a tube must be considered. Under the assumption that for the flexural defor-

mations elementary theory of bending is applicable the energies will be determined as follows. 

The kinetic energy of a tube is 

 
/2

2 2 2 2

/2

1 1
( ) 2 ( )

2 2

h

kin r x r x
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= + = +  . (4.639) 

Here   is the time derivative of the displacement or the velocity, and V  is the volume of the 

tube. The following expression for the kinetic energy will be obtained after substituting the 

displacements r  and x  from Eqs. (4.633) and (4.634) and after integrating over the height 
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where 
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 (4.641) 

Here 2M aht =  is the mass of the tube. 

The potential energy of a tube is 
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Substituting expressions (4.635) and (4.636) for the strain and expressions (4.637) and (4.638) 

for the stress under integral (4.642), integrating over the volume of the tube and a little manip-

ulation yields 
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where it is denoted 
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As it was noted, for small aspect ratios corrections to the flexure related parameters of the 

masses and rigidities must be introduced. Following formulas (4.140) for the masses and rigid-

ities at i = 1, 3 with the corrections accounted for the rotary inertia and shearing deformations 

will be obtained 
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, (4.645) 

 

2 2 24 2

2

( ) 2 ( )
1 1

48 20(1 )
ii

htY i t a i Y t
K

h h ha

  


        = + −        −            
, (4.646) 



4.6. Coupled Vibrations in the Mechanical Systems  159 

where   is the shear modulus. Calculations made with these corrections are accurate in the 

range of aspect ratios / 2 0.5h a   at i = 1 and / 2 1.5h a   at i = 3. 

The Lagrange’s equations of free vibration of a tube, 

 0 ( 0,1,2,3,4)
potkin

i i

WWd
i

dt  
 

+ = = 
  

, (4.647) 

after substituting expressions (4.640) and (4.643) for the kinetic and potential energies, differ-

entiating and converting to the complex quantities yield 

 ( / ) 0 ( 0,1,2,3,4)eqvi eqvi ij M K j U i + = = . (4.648) 

Here iU  is the complex amplitude of velocity 
i , and eqviM  and eqviK are the equivalent 

parameters defined as follows 
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After substituting the parameters thus determined into Eqs. (4.648), these equations finally may 

be represented as 
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where 
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When representing the impedances (4.652), relations (4.650) and (4.651) are taken into consid-

eration and it is denoted 

 2 2 2

01 01 01 03 03 03/ , / , /ii ii iiK M K M K M  = = = . (4.653) 

The frequencies  can be interpreted in the following way ii
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 2 2 2 2 2

33 33 33 3 1/ 9tube fh tube fhK M    = = + = + , (4.657) 

 2 2 2

44 44 44 3 1/ 9h hK M  = = = . (4.658) 

The expressions for 11  and 33  are given for the aspect ratios, at which elementary theory of 

bending is applicable, i. e., when the corrections in Eqs. (4.645) and (4.646) can be neglected. 

In Eqs. (4.654)-(4.658) the following notations are introduced: 
ring  for the resonance fre-

quency of the radial vibration of a thin ring of the height h small compared with its radius; 1h

and 3h  for the fundamental resonance frequency and the third harmonics of vibration of infi-

nite thin strip in direction of its width h; tube  for the resonance frequency of the radial vibration 

of a thin-walled tube of infinite height; 1fh  and 3fh  for the first and third resonance frequen-

cies of the flexural vibrations in the “width” mode of an infinite strip of thickness t simply 

supported on the edges. The expressions for the frequencies in Eqs. (4.654)-(4.656) may be 

found in Ref. 1. Equation (4.655) can be transformed to the form 
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where from it follows that frequency 11  depends on both the aspect ratio and the thickness to 

height ratio of a tube. Further these frequencies will be labeled for brevity as i  at 0,...,4i = . 

The set of Eqs. (4.651) provides solution to the problem of free coupled vibrations in a 

passive isotropic elastic tube. Results of calculating the resonance frequencies as functions of 

aspect ratio h/2a are represented in Figure 4.51. The calculations were carried out for PZT-4 

ceramic tubes with the outer diameter oD  = 38.2 mm and thickness t = 3.2 mm, which corre-

spond to the dimensions of tubes used in the experimental study28. Parameters of PZT-4 were 

used as presented in Ref. 29 (see Appendix B, Table B.1). Results of calculations showed that 
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at least up to the aspect ratios / 2 3h a  the second approximation doesn’t contribute noticea-

bly to values of frequency branches 0, 1 and2 calculated using just the first approximation.  

 

Figure 4.51: The resonance frequencies i  of the thin-walled tube (PZT-4, 2a = 35 mm, t = 3.2 

mm) normalized by the resonance frequency of a short ring, 0f  = 30 kHz, as a function of aspect 

ratio h/2a. The curves are labeled by number 0,...,4i = . 

The only deviation due to the second approximation is shown in Figure 4.51 by dashed line 

and is related to curve 1. Thus, given that the dependencies 0, 1 and 2 are of the most practical 

interest, the generalized velocities 3U , 4U  and all the related impedances in Eqs. (4.651) can 

be set to zero. Therefore, the further analysis will be restricted by the first approximation the 

more so because the range of aspect ratios / 2 3h a   is the most interesting for practical appli-

cations and the restriction simplifies analysis for this range without loss of accuracy. Besides, 

the same technique can be used to analyze the solution at larger values of the aspect ratios in 

case this is needed. 

The part of the plot in Figure 4.51 related to the first approximation only is displayed in 

Figure 4.52 up to values h/2a = 3 in a larger scale together with results of calculations made for 

different thickness of the wall of the tube and with experimental data included. The notable 

difference between the frequency plots displayed in Figure 4.51 and those presented in Ref. 25 

is in existence of the flexure related branches 1 and 3, which could not be predicted by the 

“membrane” theory and which cross the so called “dead zone.” It is of note that for these 



162  4. Vibration of Elastic Bodies 

branches the normalized numerical values are valid for the thickness t = 3.2 mm only, whereas 

the extensional vibration related frequency branches do not depend on the thickness. 

 

Figure 4.52: Normalized resonance frequencies of the tube (PZT-4, 2a = 35 mm) calculated to the 

first approximation at different wall thickness t: 2.0 mm (1a), 3.2 mm (1b), 4.0 mm (1c). Experi-

mental data from Ref. 28 are shown by circles for branch 0, by squares for branch 1 and by dia-

monds for branch 2. 

The results of calculations made for the tubes with different thicknesses presented in Figure 

4.52 show significant dependence of the “intermediate” frequency branch 1 from the thickness 

at aspect ratios up to values in vicinity of the point of the strongest coupling. This is indicative 

of a flexural nature of the corresponding modes of vibration in this range of aspect ratios. Above 

the point of the strongest coupling this frequency branch becomes independent of thickness as 

the extensional branches do. This is in accord with results of observations made in Ref. 28. 

Effects of the coupled vibration on performance of the piezoceramic finite-size cylindrical 

transducers will be considered in Chapter 7. 
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4.7 Input Impedances of Mechanical Systems 

4.7.1 Input Impedance of a Homogeneous Uniform Bar 

The input impedance of a bar of the uniform cross section csS  that is loaded at the opposite end 

with impedance LZ , is determined by the relation (4.101), or from the two-port circuit in Figure 

4.6 (a) as 

 .
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1 ( / ) tan

c s L
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


+
=

+
. (4.660) 

Besides, the ratio of vibration velocity, LU , of the load to velocity of vibration at the bar input, 

U, in this case is as follows 

 / 1/ cos [1 ( / ) tan ]L L csU U kl j Z cS kl= + . (4.661) 

Consider the input impedances of a bar at different loading conditions. 

The input impedance of a bar with free end ( 0LZ = ) is 

 tanin csZ j cS kl= . (4.662) 

This function is shown in Figure 4.53 by the solid line. For the case that / 4l →  (the quarter 

wavelength bar), which corresponds to the parallel resonance frequency pr , the input imped-

ance approaches infinity inZ → , and close to this frequency the equivalent circuit of the bar 

can be represented by the parallel contour. Thus, attaching the quarter wavelength unloaded bar 

to some surface may result in its clamping. When the length of the bar decreases to / 6l → , 

then within 10% accuracy the input impedance becomes 

 in csZ j cS kl j M  = , (4.663) 

and the bar behaves as a mass csM S l= . 

The input impedance of a bar loaded by active resistance L LZ r= , where / 1L csr cS  , 

may be obtained from formula (4.660) as 

 2tan / cosin cs LZ j cS kl r kl + . (4.664) 

Thus, a bar can be used for transforming the load resistance to a great extent by changing its kl. 
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Figure 4.53: Input impedance of a bar: bar with free end-solid line, bar with the clamped end – 

dashed line. 

The input impedance of a bar with the clamped end ( LZ → ) is 

 / tanin csZ j cS kl= . (4.665) 

This function is shown in Figure 4.53 by the dashed line. 

At the length / 4l = , we have 0inZ = , which corresponds to the resonance frequency of the 

bar. In the frequency range close to this frequency the equivalent circuit of the bar can be rep-

resented as the series contour with 

 2/ 2, 8 /l l csM M C YS= = . (4.666) 

At / 6l   

 2/ /in cs cs lZ j cS kl c S K j   − = = , (4.667) 

and the bar behaves as the rigidity 

 2/ /l cs csK l c S l YS= = . (4.668) 

Thus, the reactive and active components of the input impedance of a homogenous bar of 

constant cross section with a load applied to its end, can be changed significantly depending on 

the wave resistance cscS  and the bar wave size kl. Because of this bar can be used for matching 

transducers with the external loads, in particular, for compensating the reactive component of 

the transducer internal impedance at a particular operating frequency (resonance tuning) and 

for transforming of the load impedances and the external forces in order to approach the optimal 

operating conditions for the transducer. To expand the matching capabilities, along with ho-

mogenous bars of constant cross section the systems with variable area of cross section are 
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used, such as systems composed of bars having different cross sections and build from different 

materials. 

It must be remembered that all the considerations of this article are valid under the condi-

tion that cross sections of a bar vibrate in piston like fashion. In practice this approximation 

takes place at significant values of the bar height to diameter aspect ratio (h/2a > 1.5). At 

smaller aspect ratios effects of coupled vibration in the axial and radial directions may become 

significant, and eventually the flexural vibrations, as of the thick disk, interfere. An accurate 

analytical solution for the vibration problem becomes hardly possible and using FEA for cal-

culations becomes the appropriate option. In the extreme case of small aspect ratio (at 

/ 2 0h a→ ) the input impedances of the thin disk vibrating in axial direction under action of 

forces applied to its surface are considered in the next section. 

4.7.2 Input Impedances of a Circular Disk 

Circular disks are widely used elements of the transducer designs. The caps of a cylindrical 

transducer can be regarded as the circular disks. Calculating the cylindrical transducer in this 

case requires determining input impedances on the edge of the disk in radial ( inrZ ) and perpen-

dicular to its surface ( inxZ ) directions. A circular disk may be considered also as an extreme 

case of a matching element of a Tonpilz like transducer. In this case the bar transducer is often 

made as a hollow cylinder, and its calculation requires knowing the input impedance of a disk 

in the direction perpendicular to its plane on the circumference with a radius that may change 

from considerations of optimizing the matching conditions. In both the cases it is expedient to 

use disks with such dimensions that their resonance frequencies were above an operating fre-

quency range. 

4.7.2.1 Input Impedance of a Circular Disk in the Radial Direction 

Assuming that in the frequency range below the first resonance frequency the resonance mode 

of vibration holds, the disk with the free edge can be considered as one degree of freedom 

system having the mode of vibration 

 1 1 1( / ) (2.05 / ) / (2.05)r a J r a J = . (4.669) 

The total system of Eqs. (4.254) for a disk in this approximation is reduced to equation 
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 11 1 1m mZ U F= , (4.670) 

where 1mF  is the total radial force acting on the edge of the disk, 1U  is vibration velocity of the 

edge in the radial direction, and 11mZ  is determined by relation from (4.253). Thus, the input 

impedance of the disk will be found as 

 1 1 11/inr m mZ F U Z= = , (4.671) 

that is, 

 2

1 11 11 11 1/ ( / ) [1 ( / ) ] /inr mi mL mLZ F U j M K j r jK r    = = + + = − − + . (4.672) 

The equivalent mass 11M  and rigidity 11K  have to be determined by formulas (4.236). For this 

case 

 2 2

11 1 11 12

0 0

2
2 ( / ) , ( / )

1

a a
tY

M t r a rdr K r a rdr
   


= =
−  . (4.673) 

After substituting the mode shape (4.84) and integrating we obtain 

 11 11 12 2

10.3 2.05
0.78 , ,

1 (1 )

tY Y
M M K

a


  
= = =

− −
. (4.674) 

4.7.2.2 Input Impedance at the Edge of a Disk in the Transverse Direction 

We represent displacements of the disk as 

 ( ) ( / )a or r a   = + , (4.675) 

where 

 2 2 2 2

1( / ) (1 / )(1 / 4 )r a r a r a = − −  (4.676) 

is the mode of static deflection of simply supported disk; a  is the displacement of its edge 

(Figure 4.54 (a)). In this approximation the disk represents a system with two coupled degrees 

of freedom, and the general system of equations of vibration (4.254) is reduced to equations of 

type (4.526) and (4.527). The partial systems represent a rigid disk that vibrates as a piston with 

displacements a , and a simply supported disk that performs vibration ( ) ( / )or r a  = . 

Therefore, in Eqs. (4.526) and (4.527) we have 1p a = , 2 p o = , 1 0K = , 1M M= . 
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Figure 4.54: To the input impedance on the edge of a circular disk: (a) general view of the disk, 

(b) equivalent circuit for calculating input impedance between points 1, 1; (c) simplified equiva-

lent circuit. 

The equivalent parameters for the second partial system must be determined considering 

that the thickness of the disk can be significant to ensure its static strength and needed value of 

the resonance frequency. Therefore, the equivalent parameters must be determined with correc-

tions for the rotary inertia and transverse shear that are introduced in Section 9.4.3 by formulas 

(9.266). Namely, 

 
2

2 0.3 1 0.5( / )M M t a = +  , (4.677) 

 
3 2

2 2 2 2 2

2
1 0.25

(1 ) (1 )

t Y Y t
K

a a  
 

 − − − 
. (4.678) 

The mutual mass 12M  and rigidity 12K  must be calculated by formulae (4.236) assuming that 

1( ) 1r =  (piston-like vibrations) and 2 ( ) ( / )r r a = . Thus, will be obtained that 12 0K =  and 

 
12

0

2 ( / ) 0.45
a

avM t r a rdr tS M  = = = , (4.679) 

(remember that for a circular simply supported plate 0.45av plS S= ). 

When calculating the input impedance of a disk at the condition that its surface is not 

loaded, it should be taken 2 0F = . Thus, Eqs. (4.526) and (4.527) of vibration of the disk under 

the force applied to the edge can be represented in the generalized velocities as 

 0.45a o mj MU j MU F + = , (4.680) 

 2 2

20.45 [1 ( / ) ] 0a pl oj MU j M U   + − = . (4.681) 
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From these equations follows that 

 
2 2

2 2 2

0.7
1 1 0.5m

inx

a pl

F t
Z j M

U a


 

  
= = + +   −   

, (4.682) 

where 2

2 2/pl K M = . If the disk represents a transducer cap, then it may experience an action 

of external forces and impedances, which in its turn will result in the change of the input im-

pedances. In order to consider the external actions in estimating the dependence of vibration 

velocity oU  from the force mF , the equivalent circuit shown in Figure 4.54 (b) can be used that 

results from Eqs. (4.680) and (4.681). 

The equivalent forces 1mF , 2mF  and impedances of loads 1lZ  and 2lZ  must be determined 

from expressions (4.240) and (4.242) provided the external actions are known. If the transducer 

cap experiences the acoustic pressure oP , which is uniform over its surface, then 

 2

1 2,m o pl o m o avF P S P a F P S= = = . (4.683) 

This corresponds to the case that dimensions of a transducer are small compared to the length 

of acoustic wave. It is natural to assume that impedances of the loads can be neglected in com-

parison with the mechanical self-impedance of the cap (remember that its resonance frequency 

is supposed to be above an operating frequency range), therefore in this case 1 2 0l lZ Z  . By 

the Thevenin’s theorem applied regarding the points 1, 1 in the circuit Figure 4.54 (b), this 

circuit can be transformed to those shown in Figure 4.54 (c). In this circuit inxZ  is determined 

by formula (4.682). The equivalent force, eqvF , accounts for the combined action of forces 1mF  

and 2mF  reduced to the open output of the circuit between points 1, 1 (see Figure 4.54 (b)). 

Considering that 0aU = , 

 2 2

2 2/ ( )o m plU F jM  = − − , (4.684) 

and 

 
2

12 2
1 12 1 2 2

2 1

1
( )

m
eqv m o m

m pl

M F
F F jM U F

M F


 

 
= + = − 

−  
. (4.685) 

After substituting expressions (4.683) for 2mF  and 2mF , and expressions (4.677) and (4.679)for 

2M  and 12M  into this relation will be obtained 

 2 2 2 2 2 2[1 0.67(1 0.5 / ) / ( )]eqv o plF P a t a   = − + − . (4.686) 
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4.7.2.3 Input Impedance of the Free Disk on the Circle of Radius b < a 

We will represent the distribution of displacements over the disk surface as 

 1 1( ) ( / )or r a   = + , (4.687) 

where 1( / )r a  is the natural mode of vibration of a circular plate with the free edge. This 

function is expressed by formula (4.200) at the eigenvalue 1 3.0k a = , i.e., 

 1 0 0( / ) 1.1 (3 / ) 0.1 (3 / )r a J r a I r a = − . (4.688) 

Peculiarity of the displacement distribution (4.687) in comparison with the previous case is that 

for the free plate the normal mode 0 ( / ) 1r a =  exists that formally corresponds to natural fre-

quency 0 1 =  (the free plate may vibrate as a piston). At 0 0 =  in plZ j M= , and formula 

(4.687) represents sum of the first two terms of expansion of displacement ( )r  into series in 

terms of the normal modes. The equations of vibration in the form of Eqs. (4.526) and (4.527) 

in a similar to the previous case manner. In this case 10 0M = , since the modes 0 ( / ) 1r a =  

and 1( / )r a  are orthogonal, and the partial systems (a rigid piston and a plate vibrating in the 

mode 1( / )r a ) are independent. The equivalent mass and rigidity for the free circular plate 

that account for the inertia of rotation and shear (see Section 9.4.3) are 

 2 2

1 0.26 [1 1.5 ( / )]M M t a= +  , (4.689) 

 
3 2 2 2 2 2

1 6 / (1 ) [1 0.7 ( / ) / (1 )]K t Y a Y t a   = − −  −  . (4.690) 

The resonance frequency of the partial system, which is the free plate, is 2 2

1 1 1/p pl K M = = . 

The generalized forces acting on the partial systems can be obtained from expression (4.523) 

converted into the complex form as 

 1 1( ) ( / )e m m o mW F b F F b a     = = + . (4.691) 

Thus, 

 0 1 1, ( / )m m m mF F F F b a= = , (4.692) 

and equations of the forced vibration of the disk are 

 o mj MU F = , (4.693) 

 2 2

1 1 1(1 / ) ( / )pl mj M U F b a   − = . (4.694) 
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The distribution of velocity over surface of the disk will be represented as 

 1 1
0 1 1 2 2

1

( / ) ( / )
( , / ) ( ) ( ) ( / ) 1

/ 1

m

pl

F b a r aM
U r a U U r a

j M M

    
  

 
= + = − 

−  
. (4.695) 

Determined from this relation input impedance of the disk is 

 

1
2

1

2 2

1

( / )
( , / ) 1

( , / ) / 1

m
in

pl

F b aM
Z b a j M

U b a M

 
  

−
 

= = − 
−  

. (4.696) 

Behavior of the input impedance vs. ratio b/a is qualitatively shown in Figure 4.55 (a). 

 

Figure 4.55: Input impedance of a circular disk on circumference of a variable radius. 

At some frequency ar  (anti-resonance frequency) that depends on the radius of the circle, 

at which generating force is applied, the input impedance becomes infinitely big, inZ → . It 

is not desirable to have this frequency in the operating frequency range. In Figure 4.55 (b) 

dependence of /ar pl   on the ratio b/a is shown. It can be concluded from the figure that 

optimal in terms of removing frequency ar  from the operating frequency range is value of b/a 

= 0.68 that corresponds to the radius of the nodal circle at which 1( / ) 0r a = . Expression 

(4.695) shows that in the case that acting force is applied on the nodal circle the distribution of 

vibration over the surface must be uniform. A violation of vibration uniformity may be caused 

by the fact that in reality the force is applied not exactly on the line, but on a ring area of finite 

width. Besides, in the absence of the first vibrational mode contribution of the next vibrational 

mode 2 ( / )r a , which so far was neglected, must be considered. However, using expression 

(4.200) at 6.29ka =  for the mode of vibration 2 ( / )r a , it is easy to verify that at b/a = 0.68 

in the frequency range pl   

0 
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2 2

2 1 2 2 2

2

/ 10 (0.68) 0.15
pl

pl pl

U U
 
 

  , (4.697) 

where 
2pl  is the corresponding resonance frequency (note that 2/ 0.23pl pl  = ). Given that 

1/ 1p   , contribution of the second mode of vibration is relatively small. Thus, by appropri-

ate application of the acting force vibration of even relatively thin disk can be made close to 

uniform. More detail on this issue will be presented in Chapter 10. 
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CHAPTER 5 

ELECTROMECHANICAL CONVERSION 

5.1 Equations of State for Piezoceramic Medium 

According to the energy approach that is accepted in this treatment and formulated in Chapter 

1, all the equations describing a transducer operation are derived from variational principle. The 

main characteristic feature of using variational principle to deriving equations of vibration for 

piezoceramic bodies is that the state of a piezoceramic body is defined not only by mechanical 

but also by electrical generalized coordinates. Therefore, in the expression (1.94) for the La-

grangian L of an electromechanical system that a piezoceramic body presents, a suitable ther-

modynamic function characterizing its energy state should be used instead of the density of the 

potential energy, potw . Since the processes of vibrations of elastic bodies are considered to be 

adiabatic (proceed under conditions of thermal insulation at constant entropy), a suitable ther-

modynamic function may be the internal energy, intw , 

 int i i m mw T S E D T S   = + + , (5.1) 

where i iT S  and m mE D  are independent mechanical and electric energies applied to an ele-

ment of a body (thermodynamic functions are related to the unit volume), T is the temperature, 

S is the entropy; T S  is the thermal energy which vanishes in adiabatic process ( 0S = ). 

Variations of the thermodynamic functions are meaningful only, as a measure of work per-

formed in process of change of state of a body. For thermodynamics of piezoceramic media 

see, for example, Ref. 1. For a piezoceramic body that is under an action of external forces, or 

for a unit volume of this body, we will present Lagrangian in the form analogous to that ac-

cepted by relations (1.94) and (1.92)), replacing the potential energy with the internal energy. 

Namely, for a unit volume 

 kin int eL w w w= − +  (5.2) 

and for a body 

 ,kin int e int int
V

L W W W W w dV= − + =  . (5.3) 



5.1. Equations of State for Piezoceramic Medium  175 

Equations of motion for piezoceramic bodies can be obtained in the same way, as they were 

derived for elastic bodies made from passive materials, in the form of Euler's equations (4.1) in 

the generalized coordinates, or (4.2) in the geometric coordinates. The only difference being 

that electric coordinate must be included in the generalized coordinates. For deriving a partic-

ular Euler's equation, it is necessary to obtain the explicit expressions for the internal energy of 

a volume element and for the entire piezoceramic body via generalized coordinates. To this 

end, the equations of state that describe relationship between variables, which are involved in 

determining the internal energy of a body, must be considered. 

The equations of state for piezoceramic medium are derived based on the thermodynamic 

functions chosen depending on what variables are used as independent. For the adiabatic pro-

cess it is convenient along with the internal energy function to use enthalpy H 

 i i m mH S T D E T S   = − − + , (5.4) 

where the stress, iT , and the electric field, mE , are independent variables, and the electric en-

thalpy 2H  

 2 i i m mH T S D E T S   = − + , (5.5) 

in which case the independent variables are the strain, iS , and electric field mE . 

For a general transducer operation analysis, the function 2H  is preferable with iS  and mE  

as independent variables. Although the choice of a particular initial function is not crucial, since 

all the thermodynamic functions are interrelated. The convenience of using strain iS  as an in-

dependent variable is because in a general analysis the mode of vibration of a body and the 

strain distribution therein are often assumed to be known. In addition, energy transfer into a 

load is generally caused by the transducer surface displacements, which are directly related to 

the strains. The equations of state derived from the enthalpy 2H  have the following form 

 2 2
,

, ,

( , ), ( )

i

i i i m m m i m

i mE S S S

H H
T T S E D D S E

S E

    
= = = − =       

. (5.6) 

For particular calculations in many cases it is convenient to use stress iT , and mE  as independ-

ent variables. The respective equations of state which are derived from the function H are 
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 ( ) ( )
, ,

, , ,i i i m m m i m

i mE S T S

H H
S S T E D D T E

T E

    
= − = = − =       

. (5.7) 

The subscript indices for the derivatives of the thermodynamic functions indicate that the values 

of the corresponding variables remain constant. If to consider transducers at small deviations 

of independent variables from their position of equilibrium and under a linear approximation, 

which is justified for almost all practical modes of operating the transducers built from the 

modern piezoceramic materials, then equations of state (5.6) can be represented, as follows: 

 E

i ik k im mT c S e E= − , (5.8) 

 S

m mi i mk kD e S E= + , (5.9) 

where ( )/E

ij i j E
c T S=    are the moduli of elasticity at constant electric field, 

( )/S

mk m k S
D E =    are dielectric constants at constant strain, and 

 ( ) ( ) / /im i m m iS E
e T E D S=   = −    (5.10) 

are piezoelectric constants. The latter expression is a relationship of electromechanical reci-

procity for the piezoelectric transduction. In analogous way for equations (5.7) we obtain 

 E

i ik k im mS s T d E= + , (5.11) 

 T

m mi i mk kD d T E= + , (5.12) 

where ( )/E

ik i j E
s S T=    are the elastic compliances at constant electric field, 

( )/T

mk m k T
D E =    are the dielectric constants at constant mechanical stress, and 

( ) ( )/ /im i m m iT E
d S E D T=   =    are the piezoelectric moduli In equations (5.8), (5.9) and 

(5.10) summation is supposed to be performed with respect to repeating indices, in accordance 

with the rule accepted for tensor quantities. These equations are called local piezoelectric equa-

tions (or the constitutive equations) since they describe situation in a small volume element, 

within which the values of independent variables do not change. In the case that deformation is 

uniform and electric field is independent of coordinates, the volume, in which piezoelectric 

equations are valid, may be not small. In the absence of piezoelectric effect equations (5.8) and 

(5.9) become independent equations of mechanical state (Hooke’s law i ik kT c S= ) and equa-

tions of dielectric state m mk kD E= . These equations should be used with respect to those por-

tions of the transducer volume where the ceramics is not polarized. This is a widespread case 
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in the transducers designing, and in addition to the values of constants , , ,E E T S

ik ik ik mkc s    it is nec-

essary to know the values of elastic and dielectric constants of not polarized ceramics as well. 

The elastic constants E

ikc  and E

iks  relate two second-order tensors, and they form the fourth-

order tensors. (It is more accurate to call these constants electro elastic, because their values 

depend on the electrical state of a piezoelement.) Piezoelectric constants relate second-order 

tensors and vector and form a third-order tensor. Dielectric constants form a second-order ten-

sor. All the above-listed constants are determined experimentally. The number of non-zero and 

independent constants depends on the symmetry of the material structure. For the polarized 

ceramics, which belongs to the  mm class of symmetry, the matrices of elastic, dielectric and 

piezoelectric constants that correspond to equations (5.11) and (5.12) are presented in Table 

5.1. Note that the volume element of piezoceramic is related to the orthogonal coordinate sys-

tem (Figure 5.1), where the direction of axis 3 (unit vector 3q ) coincides with the direction of 

poling vector P. Directions of the unit vectors 1q  and 2q  are arbitrary, but such that all the 

three form a right-hand coordinate system (rotation of 1q  to the coincidence with 2q  must be 

seen as counter-clockwise from the end of vector 3q ). For simplicity we will consider the di-

rection of 1q being such that vector E  is always in the plane 2, 3, whereby 1 0E = , and

3 3 2 2E E= +E q q . 

 

Figure 5.1: Volume element in the crystallographic coordinate system. 

The following relation holds between the elastic constants, 

 ( )1 /
i jE

ij ijs
+= −   , (5.13) 

where  is the determinant of matrix E

ijc , ij is a minor formed by deletion of the line i and 

column j (similarly for E

ijc ). Namely, (we will omit superscripts E of elastic constants in the 

relations between them for brevity) 

2

3

1

q2

q1

q3

E3

E2

E

P
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2 2 2 2

11 12 33 11 12 13 11 11 33 13 33 11 12

2

13 12 13 11 13 12 13 12 33

( )[ ( ) 2 ], , ,

, .

s s s s s s s s s s s

s s s s s s s

 = − + −  = −  = −

 = −  = −
 (5.14) 

Piezoelectric constants are related to each other through the equations 

 ,E E

mi mj ji mi mj jid e s e d c= = . (5.15) 

Since in process of manipulations the constants of different kind may be used interchangeably, 

it is useful to present some relations between them that follow from expressions (5.13)-(5.15). 

 
( ) ( )
( ) ( )

2 2 2 2 2

33 13 11 11 11 33 13 11 13 33 11 11 12

2 2 2 2 2

11 12 11 33 11 33 13 12 13 33 12 11 12

/ / , / / ,

/ / , / / ;

c c c s s s s c c c s s s

c c c s s s s c c c s s s

− = − − = −

− = − − = − −
 (5.16) 

 
( )

13

2

33 31 13 11 33 11 31 13 11 33 13 31 33 13 33 31 11 12

2

31 12 11 33 11 12 31 13 11 33 13

/ ( ) / ( ), / / ,

(1 / ) [ ( ) ] / ( ).s

e e c c d s d s s s s e e c c d s s

e c c d s s d s s s s

− = − − − = +

− = + + −
 (5.17) 

Relationships are also valid obtained from (5.16) and (5.17) by replacing ijc  with ijs , and mid  

with mie , and vice versa. 

Table 5.1: Matrices of constants of piezoelectric ceramics. 

- 1T   2T  3T  4T  5T  6T  1E  2E  3E  

1S  
11

Es  
12

Es  
13

Es  0 0 0 0 0 31d  

2S  
12

Es  
11

Es  
13

Es  0 0 0 0 0 31d  

3S  
13

Es  
13

Es  
33

Es  0 0 0 0 0 33d  

4S  0 0 0 44

Es  0 0 0 15d  0 

5S  0 0 0 0 44

Es  0 15d  0 0 

6S  0 0 0 0 0 
1)

66

Es  0 0 0 

1D   0 0 0 0 15d  0 11

T  0 0 

2D  0 0 0 15d  0 0 0 11

T  0 

3D  31d  31d  33d  0 0 0 0 0 33

T  

In course of calculating electromechanical transducers, it is often necessary to refer to prop-

erties of analogous mechanical systems made of isotropic passive materials, or to consider me-

chanical systems of the transducers as comprised of active and passive materials. Therefore, it 

is convenient to use analogous notations for the elastic constants of passive and piezoceramic 

materials. Such notations for the piezoceramic materials may be introduced by comparing the 

equations of state (4.10) and (5.11) at m = 3 and 3 0E = , the latter being rewritten in the form 
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1 11 1 12 11 2 13 11 3[ ( / ) ( / ) ]E E E E E E E ES s T s s T s s T= + + , (5.18) 

 
2 11 12 11 1 2 13 11 3[( / ) ( / ) ]E E E E E E E ES s s s T T s s T= + + , (5.19) 

 
3 33 13 33 1 13 33 2 3[( / ) ( / ) ]E E E E E E E ES s s s T s s T T= + + . (5.20) 

Further we introduce the following notations 

 
11 1 33 31/ , 1/E E E Es Y s Y= = , (5.21) 

analogous to Young’s moduli, and 

 
12 11 1 13 11 3 13 33 13/ , / , /E E E E E E E E Es s s s s s  − = − = − = , (5.22) 

analogous to Poisson’s ratios. In these notations (that are also useful in terms of brevity) the 

above equations will look like 

 1 1 1 2 3 3

1

1
[ ]E E E E E

E
S T T T

Y
 = − − , (5.23) 

 2 1 1 2 3 3

1

1
[ ]E E E E E

E
S T T T

Y
 = − + − , (5.24) 

 3 13 1 13 2 3

3

1
[ ]E E E E E

E
S T T T

Y
 = − − + . (5.25) 

Values of the introduced elastic constants are presented in Table 5.2 for several piezoceramic 

compositions following the original data from Ref. 2 (see Appendix B, Table B.1.) 

Table 5.2: Values of the elastic constants of piezoceramic compositions. 

 1

EY GPa 3

EY

GPa 

1

E  3

E  13

E   

PZT-4 81 64 0.33 0.43 0.34 

PZT-5 61 53 0.35 0.44 0.38 

PZT-8 87 74 0.32 0.42 0.35 

Consider the piezoelectric equations (5.8), (5.9) and (5.11), (5.12) from the point of view 

of the rule of signs accepted in Section 1.5.2. For a visual demonstration we will identify be-

havior of the domain areas in piezoceramic with behavior of a dipole (two charged balls on a 

compliant bar, as shown in Figure 5.2), the electric moment of which is parallel to the direction 

of the dominant orientation of the electric moments of domains. We will also assume that the 

strains in the piezoelectric element and the changes of charges on the electrodes (changes of 
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charge density D) caused by mechanical actions and by the external electric field are due to 

deformations (rotations and tensions/compressions) of domain areas in our model of equivalent 

dipoles. Figure 5.2 shows the cross section of a piezoelectric element with two dipoles, the 

moments of which are equally inclined relative to direction of the poling vector since the direc-

tions of domain moments are also symmetric relative to the polar axis. 

 

Figure 5.2: On the rule of signs in the piezoelectric equations for the tensile (a, b) and shear (c) 

deformations. 

In a free piezoelectric element (at 0kT = ) 3 3i iS d E= . The action of electric field 3E  in 

direction of the polar axis should result in a positive tensile strain 3S  and negative compressive 

strains 1S  and 2S  in the transverse direction, since in this case the dipoles elongate and rotate 

towards the polar axis (Figure 5.2 (a)). Since 33 0d  , 31 0d  , it is this direction of 3q , which 

is conventionally positive. With changes of direction of vector 3q  (dashed line in (a)), dipoles 

shorten and turn away from the polar axis, which leads to a negative compressive strain 3S  and 

positive tensile strains 1S  and 2S . It is easy to verify that for the conventionally positive direc-

tion of 2q  0 E P . 

In a short-circuited piezoelectric element (at 3 0E = ) i ik kS s T= . Tensile mechanical 

stresses cause longitudinal tensile strains ( 0iis  ) and transverse compressive strains ( 0iks  ). 

Therefore, they are conventionally positive. It follows from equation (5.12) that m mi iD d T= , 

and the tensile mechanical stress 3T  must cause positive polarization (increase of charge density 

on the electrodes) since 33 0d  , while 1T  and 2T  must cause negative polarization (decrease of 

charge density on the electrodes) since 31 0d  . Indeed, as can be seen from Figure 5.2 (b), the 

stress 3T  results in dipole elongation and rotation towards the polar axis, and hence increase of 

the charge density on the electrodes. By contrast, the tensile stresses 1T  and 2T  cause with-

drawal of charges from the electrodes and, consequently, a decrease in the charge density. 
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Positive shear stresses lead to dipole rotation towards the electrodes (Figure 5.2 (c)), which 

corresponds to the value of 15 0d  . 

From the equations (5.8) and (5.9) it follows (and, similarly to the above case, can be illus-

trated by means of Figure 5.2) that the electric field mE  in the assumed conventionally positive 

direction generates in a clamped piezoelectric element ( 0iS = , i im mT e E= − ) mechanical com-

pressive stresses 3T  and negative shear stress 5T  ( 33 0e  , 15 0e  ) as well as positive tensile 

stresses 1T  and 2T  ( 3 0ie  ). In a short circuited piezoelectric element ( 3 0E = , 3 3i iD e S= ) the 

tensile strains 3S  and positive shear strains 5S  cause positive polarization, whereas tensile 

strains 1S  and 2S  cause the negative one. 

Elastic and dielectric constants characterize piezoceramics as an ideal elastic electric me-

dium. For a proper transducer designing the mechanical and dielectric losses of energy in pro-

cess of operation must be taken into consideration. The quality of piezoceramics in terms of 

internal energy losses are characterized by its mechanical ( mQ ) and electric ( eQ ) quality factors 

or by the more convenient in some cases angles of losses m  and e , which are related to the 

quality factors by formulas tan 1/m mQ =  and tan 1/e eQ = . 

The values of the piezoceramic constants depend on the initial equilibrium state of ceram-

ics, namely, on the static mechanical stresses and temperature, at which the transducers operate. 

Under strong dynamic mechanical stress and electric field non-linearity of properties of pie-

zoceramics may become noticeable, which must be taken into consideration in designing pow-

erful transducers. Information on dependencies of piezoceramic parameters from the strong 

static and dynamic actions can be found in Ref. 2 and in Chapter 11. 

5.2 Energy State of a Volume Element 

Consider the energy state of a piezoceramic volume element in the rectangular coordinate sys-

tem with unit vectors 1q , 2q , 3q  (Figure 5.1). As it was noted, the possible variants of mutual 

direction of vectors P and E for piezoceramics are reduced to two, namely, 3 3E=E q  in the 

case that the same electrodes are used for piezoceramic poling and transducer operation, and 

2 2E=E q  in the case that working electrodes are placed on the faces of a piezoelectric element, 

which are parallel to the polar axis, upon removing the electrodes used for poling, in order to 

realize electromechanical conversion under the shear deformation. 
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Some mechanical and electrical boundary conditions exist on the faces of a volume element 

in each particular case. If no energy exchange between the volume element and environment 

takes place, they are ideal boundary conditions. Thus, the faces may be free of mechanical 

stresses ( 0T = ) or clamped ( 0S = ), and the electrodes may be short circuited ( 0E = ) or open 

( 0D = ). 

Variation of the internal energy of a unit volume element, 

  int i i m mw T S E D  = + , (5.26) 

may be caused by independent mechanical and/or independent electrical energy entering the 

volume. If only mechanical energy is applied, then independent electric energy is absent and 

 int mch i iw w T S  = = . (5.27) 

If only electrical energy is applied, then independent mechanical energy is absent and 

 int el m mw w E D  = = . (5.28) 

Certainly, it does not mean that in the first case no strains or mechanical stresses arise and in 

the second case no charges or electric fields are generated, as it would be without electrome-

chanical conversion performed by piezoelectric material. As for piezoceramics, here in the first 

case the electric polarization energy depending on the mechanical actions appears by virtue of 

the direct piezoelectric effect, which is a component of the independent mechanical energy 

mchw . In the second case the strain energy depending on an electrical action appears by virtue 

of the reverse piezoelectric effect, which is a component of the independent electric energy 

elw . For distinguishing between energies due to independent electric and mechanical actions 

in general case that both may be applied, we will underline the terms pertaining to independent 

mechanical actions. Thus, the expression for the internal energy in this general case will be 

presented as 

 int i i m mw T S E D  = + . (5.29) 

At first, we assume that only electric energy is supplied to a volume element. Then the electric 

field mE  is generated in the element, and strains iS  allowed by boundary conditions arise due 

to reverse piezoelectric effect. The electric field mE  is the independent variable. Taking into 
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account that in this case independent mechanical energy vanishes 0mech i iw T S = = , and re-

ferring to Eq. (5.8) we arrive at the following expression for Eq. (5.28), 

 S

int el m m mm m m mi m iw w E D E E e E S     = = = + . (5.30) 

The first term in Eq. (5.30) is the energy that would be supplied by an external electric source 

with the field strength changing by mE  to the volume element, if it was completely clamped 

( 0iS = ). This energy will be designated as S

elw . The second term represents the energy, 

which would be supplied to the volume element by the electric source, if the electric field mE  

was kept constant and the strain changed by iS . This quantity will be called the electrome-

chanical energy and designated emw . The concept of the electromechanical energy was intro-

duced in Chapter 1 (see Eq. (1.51)) for the case of one- dimensional deformation. Here it will 

be considered for the general case. At m = 3 we have 3 31 3em iw e E S = , at m = 2 

2 24 2 4emw e E S = . Multiplying both parts of Eq. (5.8) by iS  and taking into account that 

0i iT S =  due to ideal boundary conditions, we obtain 

 
3 3 3 3 ( , 1,2,3)E E E

em i i ii i i ik i k mchw e E S c S S c S S w i k    = = + = = , (5.31) 

 
2 24 2 4 44 4 4 2

E E

em mchw e E S c S S w   = = = . (5.32) 

The expressions for E

mechw  describe increments of the volume strain energies calculated under 

the condition that the values of elastic moduli are determined at 0mE = . Relations (5.31) and 

(5.32) demonstrate that electromechanical energy emw  can be considered as that part of energy 

supplied to the volume element, which is converted into the strain energy determined at values 

of elastic moduli at mE  constant. 

Since all the subsequent manipulations concerning the two possible variants of mutual ori-

entation of vectors P and E at m = 3 and at m = 2 are analogous, we will perform them for the 

most common case of m = 3, omitting subscript m in designations of energies. The relations for 

the case of m = 2 will be presented in their final form, when it will be needed. Thus, summariz-

ing expressions (5.30)-(5.32) we arrive at the following relations, which will be used in further 

calculations 

 S

int el el emw w w w   = = + , (5.33) 

  S E

int el mchw w w  = + , (5.34) 

where 
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33 3 3 3 3,S

el em i iw E E w e E S    = = . (5.35) 

If the volume element is considered in the mode of electromechanical conversion under action 

of an external mechanical load (which is the case), then the energy balance instead of (5.30) 

should be presented in the form 

 S

el el em int ew w w w w    = + = + , (5.36) 

where ew  is the mechanical energy generated because of electromechanical conversion and 

propagating into the load. Thus, in this case 

  S

int el em ew w w w   = + − . (5.37) 

Using equation (5.8), we obtain 

 E

mi m i ik k i ir ie E S c S S T S  = − , (5.38) 

where irT represents the mechanical stresses that are generated on the surface of the volume 

element as reaction of the load. This expression may be transformed as follows. 

Since the energy ew  flows into the load, i.e., out of the volume element,  ir i eT S w = −  

(the situation is like that illustrated in Figure 1.14). In presence of reaction of the load an electric 

field may be generated in the volume element, which is directed perpendicular to the faces free 

of electrodes. Since there is no free charges on these faces, the corresponding charge densities 

are zero, and from equation (5.8) we obtain: 1 15 5 11 / SE e S =−  and 2 24 4 11 / SE e S =−  at m = 3; 

3 3 33 / S

i iE e S =−  and 
1 15 5 11 / SE e S =−  at m = 2. When the external field mE is applied, the strains 

4S , 5S  at m = 3 and 1S , 2S , 3S  at m = 2 are not generated directly, but they may arise as a 

response of the environment to deformation of the volume element. As result of manipulation 

of expression (5.38) upon substituting thus obtained values of electric field and considering that 

 ir i eT S w = − , we obtain for m = 3 and m = 2, respectively, 

 
( )

3 3

3

24 2 4 44 4 4

2

,

( , 4).

, 1,2,3; 4

E E D

em i i ii i i ik i k ll l l e

E

mch e

E D D

em ii i i ik i k e

E

mch e

w e E S c S S c S S c S S w

w w

w e E S c S S c S S c w

i k

S

l

S

w w i k

     
 

     
 

= =

= = + + + =

= +

= = + + + =

= + 

 (5.39) 

In relations (5.39) it is taken into account the correlation between piezoceramic constants 

2 /E S D

ik mk mm ikc e c+ = , which can be obtained from equations (5.8) and (5.9) at 0mD = . We can 

see that in the general case, when the volume element is located inside of a body that 
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experiences deformation, the expressions for 
3

E

mchw  and 
2

E

mchw  resulting from the relations 

(5.39) have to be used. Relations (5.39) show that in this case emw  is the total energy that is 

converted into the mechanical form as the result of electromechanical conversion as well, how-

ever, now a part of the mechanical energy propagates into a load. Substituting (5.39) into (5.37) 

results in 

 S S E

int el em e el mchw w w w w w     = + − = + . (5.40) 

Thus, while expression (5.37) for internal energy is always valid, the expression (5.34) holds 

for the ideal boundary conditions only, and in the general case, when reaction of the environ-

ment is present, one should use expression (5.37) instead. 

Determine the total energy imparted to the volume element as its state changes from the 

initial stage at 3 0E = , 0iS =  to that characterized by values 3E , iS . Evidently, it will be 

 ( )2 2 2

33 3

1 1
, ( , 4,5; 4,5)

2 2

S S E E E D

el mch ii i ik i k ll lw E w c S c S S c S i k l= = + +  = . (5.41) 

To determine the total change in emw , imagine that the entire interval of change of mE  and iS  

is divided into N equal parts. Assume that within each part /i iS S N =  and the electrical field 

remains constant and undergoes a sudden change by /mE N  at its end. The electromechanical 

energy wem can be found as the limit of the integral sum 

 
1

1

1
lim

2

N
i m

em im im m i
N

n

S E
w e n e E S

N N

−

→
=

=   = . (5.42) 

Now, the value of intw  can be represented based on the relation (5.33) as 

 S

int el el emw w w w= = + . (5.43) 

Here emw  is taken by modulus because of the following reasons. As can be seen from relation 

(5.32), emw  is the essentially positive quantity (the energy that this quantity represents flows 

into the volume element). This complies also with expression (5.35), if to take a proper account 

for the signs of piezoelectric constants and strains arising from the conventionally positive di-

rection of 3E . However, in practical calculations it is difficult to keep track of the signs of the 

strains, and one may erroneously obtain a negative value of emw . Taking this quantity by mod-

ulus eliminates possibility of such an error. 
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Expression for the internal energy can also be represented in a form other than that in Eq. 

(5.30). Considering that the values of mE  and iS  characterize the state of the volume element 

with faces free of stress (except for those fixed by virtue of boundary conditions), the internal 

energy can be represented as 

 i iT T

int m m el mm m mw E D w E E    = = = . (5.44) 

Here 2 / 2i iT T

el mm mw E=  can be regarded as the electric energy of the volume element determined 

at the value of dielectric constant iT

mm , which corresponds to the existing boundary conditions 

(superscript iT  indicates, which mechanical stress are equal to zero). Comparing the new ex-

pression for emw  with formula (5.23) leads to the relation 

 iT S

em el elw w w= − . (5.45) 

When the mechanical state of the volume element changes from the state corresponding to a 

completely clamped volume to the state corresponding to the free (to the extent that is allowed 

by the pre-set boundary conditions), the energy equal to electromechanical energy can be con-

verted into mechanical work performed in the external medium, provided that the electric field 

is kept constant. Therefore, the electromechanical energy emw  also can be called convertible, 

as it is done in Ref. 7. Finally, in order to emphasize once again the continuity of the connection 

between the electric and mechanical states of piezoceramics, this energy can be called mutual, 

as it is done in Ref. 2. 

Consider now the internal energy, intw , in the case that independent flow of mechanical 

energy is supplied to the volume element and the electrodes are open ( 0mD = , electrical open 

circuit (no-load) condition), i.e., 

 mch i iw T S = . (5.46) 

Using equation (5.8) we obtain (the case that m = 3 will be considered only) 

 3 3

E D

int mch ik k i i oc i mchw w c S S e E S w    = = − = . (5.47) 

From formula (5.8) at 3 0D =  we obtain 3 3 33/ S

oc k kE e S = − . Thus, 

 3 3 33 3 3

S

i oc i oc oce E S E E  − = . (5.48) 

Let us designate 
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 3 3 33 3 3, S S

i oc i me oc oc ele E S w E E w    − = = . (5.49) 

As we can see from (5.48), 
mew  is a part of mechanical energy supplied to the volume element 

that can be considered as converted to electric form 
S

elw . Since (see Eq. (5.31)) 

 
E E

ik i k mchc S S w = , (5.50) 

we can obtain from formula (5.47) with regard to introduced designations that 

 
D E

me mch mchw w w  = − , (5.51) 

 
E E S

int mch mch me mch elw w w w w w     = = + = + . (5.52) 

Comparing Eqs. (5.49) and (5.35), we can see that, if to replace 3ocE  by 3E , the expressions 

for emw  and mew  will differ only by sign. The opposite signs for emw  and mew  reflect the 

fact that, while in the case of electromechanical conversion the electric field 3E of convention-

ally positive direction (coinciding with direction of the poling vector) causes positive strain (

33 0e  ), in the case of the mechanoelectric conversion the positive tensile strain causes gener-

ating of the field 3ocE  of the opposite direction. This corresponds with relation (5.10) of reci-

procity of piezoelectric conversion. 

The expressions for energies (5.41) and (5.42) have to be used in the general case, when 

the mechanical boundary conditions are complicated. In the most of cases the number of inde-

pendent components of tensors of strain or stress is restricted, and it is expedient to simplify 

these expressions in advance. This will be done for the same kinds of boundary conditions, as 

those considered in Chapter 4 with respect to a volume element of a passive isotropic material. 

Note that a brief and less general summary of results of this Section that are useful for 

understanding the essence of the subject is presented in Ref. 3. 

5.3 Expressions for Energy Densities 

The energy densities will be considered for various mutual directions of acting deformations 

and polarization vector that are illustrated in Table 5.3. In the table configurations of the piezo-

electric elements combined under numbers I-VI are shown, in which the respective boundary 

conditions are realized, and various orientations of the polar axis in these piezoelectric elements 
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(designated by numbers 1, 2, 3). The coordinate axes, direction of which coincides with that of 

acting deformation, are designated by dashed lines. 

At first, we consider variants of deformations that are not accompanied by shear, that is, at 

4 5 6 0S S S= = = . The numbers of variants correspond to the numbers of their images in Table 

5.3. 

I. Deformation through the thickness of a plate, other dimensions of which are large. The 

strains in the plane of the plate are absent from considerations of symmetry. Two directions of 

axis 3 can be considered: 1) perpendicular to the plate, whereby 1 2 0S S= = ; 2) parallel to the 

plane of the plate, whereby 2 3 0S S= = . By substituting of 1S  into expressions (5.41) and 

(5.42) for these two directions of axis 3, in the first of which the longitudinal and in the second 

one the transverse piezoelectric effect is realized, we obtain 

 2 2

33 3 33 3 33 3 31) 2 , 2 , 2S S E E

el mch emw E w c S w e E S= = = , (5.53) 

 2 2

33 3 11 1 31 3 12) 2 , 2 , 2S S E E

el mch emw E w c S w e E S= = = . (5.54) 

II. Deformation through the width of a thin plate, one dimension of which is large, or in 

the direction of the circumference of a long thin cylinder. Since the plate (cylinder) has a small 

thickness and mechanical stresses on its side surfaces are zero, they can be considered as zero 

also throughout the thickness of the plate (cylinder). The strains in the direction of large length 

are absent from the symmetry considerations. In this case the strains that differ by the direction 

of axis 3 are possible: 1) axis 3 is coincident with the strain direction, the longitudinal piezoe-

lectric effect, 1 0T = , 2 0S = ; 2) axis 3 is perpendicular to the plane of the plate, the transverse 

piezoelectric effect, 3 0T = , 2 0S = ; 3) axis 3 is parallel to the length of the plate, the transverse 

piezoelectric effect, 2 0T = , 3 0S = . 

For the variant 1 (longitudinal piezoelectric effect, 1 0T = , 2 0S = ) from equation (5.8) at 

i = 1 we obtain ( )1 31 3 13 3 11/E ES e E c S c= − . Substituting the values of 1S and 2 0S =  into expres-

sions (5.41) and (5.42) we find by formula (5.43) that 

 3,12 2 2 2

33 31 11 3 33 31 13 11 3 3 33 13 11 3

1 1 1
( / ) ( ) ( )

2 2 2

SS E E E E E E

int elw e c E e e c c E S w c c c S= + + − = + − . (5.55) 

Considering relations (5.16) and (5.17) between the constants of piezoceramics, the expressions 

for components of the internal energy can be represented as follows  
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Table 5.3: Coefficients characterizing piezoeffect under various boundary conditions (1/3) 
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Table 5.3: Coefficients characterizing piezoeffect under various boundary conditions (2/3) 
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Table 5.3: Coefficients characterizing piezoeffect under various boundary conditions (3/3) 

Mechanical 

System 
  

Boundary 

Conditions 

Parameter 

1 

 

3 1 20,S S S=   
1 2S S=  

1 

 

4S  

iS

eС   33

S  
33

S  11

S  

K 
  

E

mchw  from (5.76) 
11 122( )c c +  44 441/c s =  

n  emw  from (5.77) 312e  15 15 44/e d s=  

ck  - - 
15

11 44

T

d

s 
 

Designation of ck  in Ref. 2 - 
'

pk  15k  

K  - - 
  

 3,1 3,1 3,12 2

33 3 33 33 31 112 , / ,
S S S S E

elw E e c  = = +  (5.56) 

 2 2 211
33 13 11 3 32

11 33 13

2 ( / )
E

E E E E

mch E E E

s
w c c c S S

s s s
= − =

−
, (5.57) 

 33 11 31 13
33 31 13 11 3 3 3 32

11 33 13

2 ( / )
E E

E E

em E E E

d s d s
w e e c c E S E S

s s s

−
= − =

−
. (5.58) 

Here designation 3,1 2

33 33 31 11/
S S Ee c = +  is introduced for the dielectric constant determined under 

the condition that 3 0S = and 1 0S = ,the index of acting strain coming first in the subscript 3,1S . 

Designations with superscripts of the analogous kind will be used further in general. 

For the variant 2 (transverse piezoeffect, 3 0T = , 2 0S = ): 

 1,2 1,2 1,22 2

33 3 33 33 33 332 , /
S S S S E

elw E e c  = = + , (5.59) 

 2 2 211
11 13 33 1 12 2

11 12

2 ( / )
E

E E E E

mch E E

s
w c c c S S

s s
= − =

−
, (5.60) 

 31
31 33 13 33 3 1 3 1

11 12

2 ( / )E E

em E E

d
w e e c c E S E S

s s
= − =

+
. (5.61) 

For the variant 3 ( 2 0T = , 3 0S = ): 

S2 S1 

V

S4 

VI

 

3 2

1

P
E2
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 1,3 1,3 1,3 3,12

33 3 33 332 ,
S S S S

elw E  = = , (5.62) 

 2 2 33
11 12 11 1 12

11 33 13

2 ( / )
E

E E E E

mch E E E

s
w c c c S S

s s s
= − =

−
, (5.63) 

 33 11 12 31 33
31 12 11 3 1 3 12

11 33 13

( )
2 (1 / )

E E E
E E

em E E E

d s s d s
w e c c E S E S

s s s

+ +
= − =

−
. (5.64) 

III. Deformations of a thin bar in the direction of its length, or of a thin short ring in the 

direction of its circumference. This variant is considered in Chapter 1 (Eqs. (1.47)–(1.50)) for 

the case of the transverse piezoeffect ( 2 3 0T T= = ). The variant of the longitudinal piezoeffect 

can be considered in the analogous way. The final results for the energy densities are 

 2 2

33 3 33 33 32 , /i i iS S S T E

el i iiw E d s  = = − , (5.65) 

 2 22 /E E E

mch ii i i iiw s T S s= = , (5.66) 

 
3 3 3 32 ( / )E

em i i i ii iw d E T d s E S= = . (5.67) 

Here the subscripts i = 1 and i = 3 correspond to the transverse and longitudinal piezoeffects, 

respectively. 

IV. Two-dimensional deformation in the plane of a thin plate. 

In the variant of the transverse piezoelectric effect, 3 0T = , 1 0S  , 2 0S  . The same condi-

tions apply for deformations that take place in a thin-walled spherical shell, and along the axis 

of a thin-walled cylinder. In the general case (variant 1), in which 1 2S S , we obtain using 

equations (5.8), (5.9) and relations (5.41), (5.42) that: 

 1,2 1,2 2

33 32
S S

elw E= , (5.68) 

 

2 2 2 2

11 13 33 1 2 12 13 33 1 2

2 211
1 12 11 1 2 22 2

11 12

2 ( / )( ) 2( / )

[ 2( / ) ],

E E E E E E E

mch

E
E E

E E

w c c c S S c c c S S

s
S s s S S S

s s

= − + + − =

= − +
−

 (5.69) 

 31 3
31 33 13 33 3 1 2 1 2

11 12

Ε
2 ( / )Ε ( ) ( )E E

em E E

d
w e e c c S S S S

s s
= − + = +

+
. (5.70) 

Here relations (5.16) and (5.17) between the constants of the piezoceramics are used. For a 

pulsating sphere (variant 2) 1 2S S S= =  and 

 2

11 12 31 3 11 122 2 / ( ), 2 2 Ε / ( )E E E E E

mch emw S s s w d S s s= + = + . (5.71) 
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In the case that direction of polarization is parallel to the plane of the plate (variant 3) 2 0T = , 

1 0S  , 3 0S  , and we obtain 

 3,1 3,1 2

33 32
S S

elw E= , (5.72) 

 2 2

11 3 13 1 3 33 1

11 33 13

1
2 ( 2 )E E E E

mch E E E
w s S s S S s S

s s s
= − +

−
, (5.73) 

 3
31 33 33 13 1 33 11 31 13 32

11 33 13

Ε
2 [( ) ( ) ]E E E E

em E E E
w d s d s S d s d s S

s s s
= − + −

−
. (5.74) 

V. Two-dimensional deformation in the plane of cross section of a long cylindrical bar. 

Unlike the above example, here under the transverse piezoeffect 3 0S = , 3 0T  , and 

 2

33 32 S S

elw E= , (5.75) 

 2 2

11 1 12 1 2 11 22 ( 2 )E E E E

mchw c S c S S c S= + + , (5.76) 

 31 3 1 22 Ε ( )emw e S S= + . (5.77) 

VI. Shear deformation of an elemental volume. 

If no mechanical transformation of shear into strains of other kinds is assumed, then 0iS =  at 

i  4, and from equations of type (5.31) and (5.35) at m = 2 we obtain 

 2

11 22 S S

elw E= , (5.78) 

 2 2

44 4 4 442 /E E

mchw c S T s = = , (5.79) 

 24 4 2 24 4 22 emw e S E d T E= = . (5.80) 

Returning to expression (5.34) for the internal energy of a piezoceramic volume element 

we can conclude that the electric (E) and mechanical ( iS ) variables are would be separated. 

The quantity iS

elw  is determined as the energy of the volume made from ceramics with dielectric 

constant known for each particular case of deforming. The quantity E

mechw  is determined as the 

potential energy of the element of passive ceramic material (with elastic constants at 0E = ) 

taking into account anisotropy of elastic properties of piezoceramics. 

Essentially new is the quantity emw , which characterizes electromechanical conversion of 

energy in piezoceramics. For evaluating the quality of piezoceramics as an active material, 

electromechanical coupling coefficients are widely used. Their values are directly related to 

values of the electromechanical energy emw  and depend on conditions of a piezoelement 
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deforming. Before considering methods of determining the electromechanical coupling coeffi-

cients and calculating their values for the most common conditions of deforming of pie-

zoceramic volume elements, we note that in all the above considered cases of deformation, 

except for examples with two-dimensional deformation at 1 2S S , density of the internal en-

ergy is expressed through one electric ( E ) and one mechanical ( iS ) variable. For all of these 

cases analogy can be drawn between energy conversion in elemental volume of piezoceramics 

and in electromechanical two-port network. Indeed, if one considers a unit volume element 

( 1 2 3 1x x x x =  =  =  = ), then the value of E  is numerically equal to the voltage between 

electrodes V  ( /E V x=  ), iS  is numerically equal to the displacement of the respective face, 

( /i iS x=  ), and 
33

iS  is equal to the capacitance of the volume element, iS

eC   

2

33( / )i iS S

eC x x =   . Taking into account these considerations and relations (5.33), expressions 

for the internal energy and its components, Ε
int ,iS

el el em em mchw w w w w w= = + = , can be repre-

sented as follows 

 2 / 2i iS S

el ew C V= , (5.81) 

 Ε Ε 2 / 2mch iw K S= , (5.82) 

 / 2em iw n VS= . (5.83) 

Here iS

eC  , EK , n  are the coefficients, which stand for specific capacitance, specific rigidity 

( Ε1/EC K =  is specific flexibility) and electromechanical transformation coefficient for differ-

ent variants of one-dimensional deformation of the volume element. Using these coefficients, 

we can represent piezoelectric equations in the following general form, 

 Ε
3T K S n E = − , (5.84) 

 3 3

S

eD n S C E = + , (5.85) 

where S is the only active strain. Similar representation can be used for the case of the shear 

deformation. 

Expressions for iS

eC  , EK  and n  for different variants of one-dimensional deformations 

that follow from above expressions for the energy densities are presented in Table 5.3. The 

table also contains expressions for K  related to the case that a passive isotropic material is 

used at the same boundary conditions. For the two-dimensional deformations the references are 

given to the formulae that must be used for determining the respective energy densities. 
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Figure 5.3: Electromechanical two-port network. 

It is easy to verify that the energy relations (5.81)-(5.83) are valid for the electric two-port 

network shown in Figure 5.3 (a), if to use generally accepted rules for calculating electric cir-

cuits and to assume that the fictitious transformer introduced in the circuit maintains the trans-

formation ratio n  down to the frequency  = 0 (corresponds to the static deformation). 

In the mode of the electromechanical conversion the energy is supplied to the electric input 

(position 2 of switch El) and the mechanical output is under the conditions of open circuit (

0iS = ) or short circuit ( 0iT = ) in positions 1 or 3 of switch Mch, respectively. 

In the mode of mechanoelectrical conversion, in which case energy is supplied to the me-

chanical input (position 2 of switch Mch), one can obtain expressions for internal energy of the 

volume element, which correspond to conditions of short circuit (E = 0) or open circuit (D = 0) 

of the electric side in positions 3 or 1 of switch El, respectively. The same results follow from 

the expressions (5.47)-(5.52). 

5.4 Coupling Coefficients 

5.4.1 About the Definitions for the Electromechanical Coupling Coefficients 

Electromechanical coupling coefficients (further just coupling coefficients, ck ) are important 

parameters of piezoelectric material and piezoelectric bodies subjected to deformation. They 

are introduced for evaluating quality of piezoceramics as piezo active material for various con-

ditions of deformation. The basic energy expression for ck  is4 

REl

u' 

1

2

3

iZ

eSC F 

1

2

3

rmch

El → Mch

iZ

eSC
u 

Si 

Z

mSC

2Z
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Z

mSC

2/iZ

eC n 

n? 
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 2 energy stored in the mechanical form

total input energy
ck = . (5.86) 

For the receive mode of operation this definition can be rephrased as 

 2 energy stored in the electrical form

total input mechanical energy
ck = . (5.87) 

In a piezoelectric body of finite size the quality of electromechanical conversion depends 

on distribution of strains over its volume. For evaluating effects of energy conversion in piezo-

electric bodies under nonuniform strain distribution the concept of effective coupling coeffi-

cients, effk , is introduced. For this case expressions (5.84) and (5.85) can be modified, as it was 

done in Chapter 2 (formula (2.88)), to 

2 energy stored in mechanical form in the considered mode of vibration

total input energy
effk =  at 0→ . (5.88) 

The effective coupling coefficient is related to a static strain distribution in the body that corre-

sponds to a particular mode of vibration. Several examples of application of this formula were 

considered in Chapter 2. 

It is difficult in some cases to calculate and especially to analyze the possible ways of 

optimizing the effective coupling coefficients using the above expressions directly. Therefore, 

one more formula for coupling coefficient was introduced in Ref. 2 

 em
m

e mech

w
k

w w
= . (5.89) 

The extension of this formula to the case of the effective coupling coefficient of a piezoelectric 

body, 

 

2

2

( )

( )( )

em

V
eff

e mech

V V

w dV

k
w dV w dV

=


 
, (5.90) 

was reported in Ref. 5. In formulas (5.89) and (5.90) emw , ew  and mechw  are the densities of the 

mutual, dielectric and elastic energies in our notations (the original notations in Ref. 2 are mU , 

eU  and dU , respectively). Applications of these formulas are not straightforward and require 

additional explanations. A systematic review of the definitions for the coupling coefficients that 
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includes explanation of possible shortcomings in application formulas (5.89) and (5.90) is pre-

sented in Ref. 6. Results of this work will be used for further analysis of issues related to the 

concept of effective coupling coefficients. 

It is noteworthy that sometimes (e.g., in Ref. 2) the coupling coefficients of piezoceramics, 

mk , are referred to as static coupling coefficients, and the effective coupling coefficients, effk , 

as dynamic coupling coefficients. Such definitions do not follow from the essence of the matter 

since the notion of strain nonuniformity is not necessarily related to motion. The dynamic 

strains may be uniform throughout the volume, as, for example, in pulsating vibration of a ring 

or of a spherical shell, while the static strains may be nonuniform, as in the case of bending of 

plates and beams. 

At first, we will turn to the coupling coefficients of piezoceramic material at various me-

chanical boundary conditions. The effective coupling coefficients for piezoceramic bodies un-

der nonuniform deformation distributions will be considered in Section 5.6 after the general 

analysis of the energy state of a deformed body will be done. 

5.4.2 Coupling Coefficients of Piezoceramic Material 

The energy stored in mechanical (electrical) form in the expressions (5.86) and (5.87) is the 

electromechanical, emw , or the mechanoelectrical, mew , energy (depending on direction of the 

energy conversion). The coupling coefficient will be denoted as mk  until particular boundary 

conditions are specified. Using relation (5.43) the coupling coefficient can be represented in the 

following equivalent forms 

 
2

EE
emm

m S E S E

el m el m

ww
k

w w w w
= =

+ +
 (5.91) 

 
2 meem

m T D

el mch

ww
k

w w
= = , (5.92) 

and, after using relation (5.33), 

 2 em em

m T S

el el em

w w
k

w w w
= =

+
, (5.93) 

where from 
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2

21

emm

S

m el

wk

k w
=

−
. (5.94) 

The reason, by which emw  and 
mew  in relations (5.91)-(5.94) are taken by modulus, was ex-

plained when discussing formula (5.53). Convenience of application of the alternative expres-

sions (5.92) and (5.94) for the coupling coefficients depends on what quantities are more ap-

propriate to use as independent variables in a particular variant of the boundary conditions. 

Since the expressions for emw  and elw  under various boundary conditions are determined in 

Section 5.3, formulas (5.91)-(5.94) can be readily used for calculating the corresponding cou-

pling coefficients. To this end, we will manipulate formulas (5.91)-(5.94) in such a way that it 

explicitly includes specific quantities iS

eC  , EK , n  that were introduced for a unit volume. Us-

ing relations (5.81)-(5.83) we obtain 

 ( )
2

2

1

1 /i
m S E

e

k
C n C  

=
+

. (5.95) 

Expressions for the coupling coefficients mk  at the various boundary conditions considered in 

Section 5.3 are presented in Table 5.3 

Using formula (5.91), we can obtain relations between the values of elastic and dielectric 

constants of piezoceramics under various mechanical and electrical boundary conditions that 

involve the respective coupling coefficients. Since it follows from expressions (5.44), (5.45) 

and (5.51), (5.52) that ,  i i iT S T

em el el el elw w w w w    = − =  and, similarly, ,D E

me mch mchw w w  = −
D

mch mchw w = , the formula (5.91) can be transformed, as follows: 

 
2

i i

i

D ET S
mch mchel el

m T D

mchel

w ww w
k

ww

−−
= = . (5.96) 

These relations can also be obtained by means of the circuit shown in Figure 5.3. In the case 

that independent electric energy is supplied, after transforming the mechanical impedance to 

the electric side (Figure 5.3 (b)) we obtain 

 ( )2 2 21 1

2 2
i i iS T TE

el e e elw V C n C V C w   = + = = , (5.97) 

 2 2

2

1 1
,

2 1 /

i i

i i

i i

T S
S S el el
el e mT S E

el e

w w
w V C k

w C n C


  

−
= = =

+
. (5.98) 

From these expressions follows that 
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 2 2

33 33(1 ), (1 )i i i iS T S T

e e m mC C k k  = − = − . (5.99) 

In the case that independent mechanical energy is supplied, after transforming the electrical 

impedance to the mechanical side (Figure 5.3 (c)) in analogous way will be obtained that 

 ( )21D

mK k K
 − = . (5.100) 

Thus, using relationships (5.99) and (5.100), in variant I.1 of the boundary conditions (see Table 

5.3) we obtain 

 3 2 2

33 33 33 33(1 ), (1 )TS D

t tk c k c  = − − = , (5.101) 

and in the variants III.1 and III.2 

 ( ) ( )2 2

33 33 3 31 , 1iS T D

i ii i iik s k s  = − − = , (5.102) 

where i = 1 and i = 3 for the transverse and longitudinal piezoelectric effect, respectively. 

Since the values of the coupling coefficients depend on a type of boundary conditions, a 

question arises, what their maximum values are and under what mechanical action they can be 

realized. In the case that m = 2 the only and hence the maximum coupling coefficient is 15k . In 

addition to the relevant expression presented in Table 5.3 the expression 

 2

15 11 111 /S Tk  = −  (5.103) 

that follows from relation analogous to formula (5.99) is another option. In the case that m = 3, 

the maximum value of the coupling coefficient max 3k  (it is called “invariant” in Ref. 2) can be 

obtained by generating in a volume element stresses 3T  and 1 2T T=  of opposite signs, e.g., 

tension along the polar axis and compression in the perpendicular plane, whereby 

 2

max3 33 331 /S Tk  = −  (5.104) 

5.4.3 Cycles of Energy Conversion by a Piezoelement 

For better understanding the physical meaning of concepts of the electromechanical energy and 

of the coupling coefficient, consider the cycles of conversion of the electrical energy into me-

chanical energy, and the reverse conversion of energy of a mechanical source into the electric 

energy that are performed by a piezoelement. The piezoelement will be schematically repre-

sented by the two-port system (short bar) having electrical and mechanical inputs. The electro-

mechanical conversion is illustrated with diagrams in Figure 5.4. 
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Processes of the energy conversion will be assumed as proceeding in several stages. We 

assume that at the first stage (it will be labeled by the superscript I) an external force F is applied 

that clamps the piezoelement in the direction of axis 3 (
3 0IS = ). The external electric source 

produces electric field 
3

IE  inside the element. As follows from equations (5.11)and (5.12), in 

the piezoelement arise the mechanical stress and charge density 

 
3 33 3 33Ε /I IT d s= − , (5.105) 

 ( ) 32 Ε
3 33 33 33 3 33 3/ Ε ΕSI T I ID d s = − = . (5.106) 

The change of state of the piezoelement at this stage is represented in Figure 5.4 by segments 

0, I. The electric source has supplied energy 

 ( )3
2

33 3 / 2SI I

elw E= . (5.107) 

 

Figure 5.4: Cycle of the electromechanical conversion: 3

33tan S = , 3

33tan T = . 

At the second stage the piezoelement is disconnected from the electric source with its electrodes 

remaining open (thus 
3 3

II ID D= ). The clamping force is removed, which is equivalent to con-

necting a small resistance of mechanical load, mlr , to mechanical terminals of the piezoelement. 

In the ideal cycle 0mlr → , and at the end of the second stage 3 0.IIT =  In the reality mlr , how-

ever small, still has a finite value, so that 
3 0IIT  . Using equations (5.11) and (5.12) we obtain 

by the end of the second stage for an ideal cycle 

 

3

3

3

3 33 3 3 33 3

3 33 3 33

3 33 3 33 33 3 33

,

/ ,

/ .

SII T II I I

SII I T

SII II I T

D E D E

E E

S d E d E

 

 

 

= = =

=

= =

 (5.108) 

(Note that 1 2T T=  all the time, and condition 3 0IIT =  is equivalent to condition of mechanically 

completely free piezoelement. Therefore, use of 
33

T  is justified.) The change of state of the 

piezoelement at this stage is represented by segments I, II. The energy 
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 ( )3
2

2 Ε 2
3 3 33 33 3 33 3 33/ 2 / 2SII I II I T I

mch elw T S d E s w k = = =  (5.109) 

passes into the mechanical load. Energy II

mchw  is taken by modulus, because formally it has sign 

minus (
3 3

II I II

mchw T S =   and 
3 0IT  ), which means by accepted rule of signs that the energy 

flux flows out of volume of the piezoelement. 

At the final stage, the electrodes are connected to a small internal resistance of the electric 

energy source, inr . Ideally 0inr → , 
3 0IIIE =  and 

3 0IIIS = . In reality 
3Ε 0III  . In the ideal cycle 

by the end of this stage the piezoelectric element returns to the initial state of the piezoelement, 

in which 3 0E = , 3 0S = , and 3 0T = . The change of state is shown by segments II, III. On this 

path the piezoelement returns to the electric source the energy 

 ( )3 3
2

3 3 33 3 33 33 33Ε / 2 Ε / 2 /S SIII II II I T I T

el elw D w   = = = , (5.110) 

while it does not perform any mechanical work (
3 3 0II IIIT T= = ). (The modulus of the energy, 

III

elw  is used since the energy flux flows out of the piezoelement and formally should have sign 

minus. Indeed, 
3 3Ε ,III II III

elw D =  where 
3Ε 0III  .) 

The difference between the energy I

elw , supplied to the piezoelement, and 
III

elw , returned 

by the element to the electric source, is equal to the mechanical work performed by the piezo-

element, i.e., to the energy transferred into mechanical load. Thus, 

 ( )3 1 2

33 33 331 /SI III I T II

el el el mch elw w w w w k − = − = = . (5.111) 

From the graphic representations of the ideal cycle in Figure 5.4 follows that the energy sup-

plied by electric source to the piezoelement is proportional to area of the triangles 30, ,I E  or 

0, ,I D , i.e., 
30

T

ID elS w → . The energy returned to the source in the end of the cycle is propor-

tional to area of the triangle 30, ,II D . Area of the triangle 0, ,I II  

 0, , 0, , 0, ,I II I II I II emS S S w− = →  (5.112) 

represents electromechanical energy, as a part of supplied electrical energy that can be con-

verted into mechanical energy in the ideal cycle. 

For the case of the mechanoelectrical conversion of energy of a mechanical source into the 

energy transferred to an electric load the graphic representation of the ideal cycle can be ob-

tained in the analogous way. Therefore, we present only basic relations relevant to each of the 

conversion stages that are illustrated in Figure 5.5. 
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Stage I. The source of mechanical energy produces strain 
3

IS  (let it be tension, 
3 0IS  ). 

Electrodes of the piezoelectric element are open, 
3 0ID = . It follows from equations (5.11) and 

(5.12) that 

 
3 33 3 33/I I TE d T = − , (5.113) 

 ( )2

3 33 33 33 3 33 3/I E T I D IS s d T s T= − = . (5.114) 

The mechanical energy supplied is 

 ( )2

3 3 33 3/ 2 / 2I I I D I

mchw T S s T= = . (5.115) 

The change of state of the piezoelement is characterized by segments 0, I. 

Stage II. Having fixed the face of the piezoelement (maintaining 
3 3

II IS S= ), we terminate 

its electrodes by a small resistance of electric load, 0elr → . In the ideal cycle, 0elr = and

3 0IIE = . The mechanical stress in the piezoelement changes to a value of 
3

IIT  that can be found 

from the condition 

 

Figure 5.5: Cycle of the mechanoelectrical conversion: 33tan Ds = , 33tan Es = . 

 3 33 3 3 33 3

II E II I D IS s T S s T= = = , (5.116) 

where from 

 3 33 3 33 3 33 3 33 33 3 33/ , /II D I E II II D I ET s T s D d T d s T s= = = . (5.117) 

The electric energy that enters the load is 

 
2 2 2

3 3 33 33 3 33 33 33/ 2 ( ) / 2II D T E I

el mchw D E d s T s w k  = = = . (5.118) 

This energy is taken by modulus because it escapes the piezoelement, and formally is negative 

by the rule of signs, as this was considered regarding the mechanical energy that flows into load 

in the previous case. In Figure 5.5 the change of state is shown by segment I, II. 
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Stage III. The force that maintained the strain constant is reduced to zero in the ideal cycle, 

and 
3 3 0III IIIT S= = . (In the real cycle they drop to small values that are determined by the in-

ternal resistance of the mechanical source, 0mchr → ). The electrodes remain short circuited, 

thus, 
3 3 0III IIE E= =  and no change of electrical energy takes place. Not spent part of mechani-

cal energy, 

 ( )2

3 3 33 3 33 33 33/ 2 / 2 /III II I D I E I D E

mch mchw T S s T s w s s= = = , (5.119) 

on this stage returns to the mechanical source. (The energy is taken by modulus because it flows 

out of volume of the pizoelement.) Change of state of the piezoelement to the initial one (in the 

ideal cycle to 
3 3 0III IIIE D= = , 

3 3 0III IIIS T= = ) is represented by segment II, III. As the result, 

 ( ) 2

33 33 331 /II I III I D E I

el mch mch mch mchw w w w s s w k= − = − = . (5.120) 

This part of supplied mechanical energy that may be converted into electrical energy in the 

ideal cycle (mechanoelectrical energy) is represented in Figure 5.5 by area of triangle 0, I, II. 

Both electromechanical and mechanoelectrical energies are also called convertible or mu-

tual energies7. Ratio of the convertible energy to the total energy supplied to the piezoelement 

is equal to the coupling coefficient square in the ideal cycle. In a real cycle the convertible part 

of the energy is smaller. 

Clarification must be made regarding using formula (5.89) (and hence formula (5.90)) for 

calculating the coupling coefficients. This expression differs from the physical clear definition 

(5.86). It is introduced in a formal way and has shortcomings. Consider the way, how it is 

derived in Ref. 2. Starting from the general expression for the internal energy 

 
1 1

2 2
int i i m mw S T D E= + , (5.121) 

and using the piezoelectric equations (5.30), the authors obtained 

 2

3 33

1 1 1 1
2

2 2 2 2

E T

int i ik k i im m m im i e m dw T s T T d E E d T E U U U= + + + = + + , (5.122) 

where / 2E

e i ik kU T s T= , / 2m m im iU E d T=  and 2

33 3 / 2T

dU E=  are the elastic, mutual and die-

lectric energies, respectively. Afterwards, the definition (5.89) for mk  is introduced by analogy 

with the correlation coefficient between two actions. However, it must be remembered that 
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/ 2m mE D  and / 2i iT S  in relation (5.121) are independent electrical and independent mechan-

ical energies. Therefore, the relations (5.121) and (5.122) should be represented in our desig-

nations in the form of 

 

2

33 3

1 1 1 1 1 1

2 2 2 2 2 2

.

E T

int i i m m i ik k i im m i im m

E T

mech me em el

w S T E D T s T T d E T d E E

w w w w

= + = + + +

= + + +
 (5.123) 

Now it is clear that the middle terms in relation (5.122) being outwardly similar are not equal 

in general and could not be doubled. They may be equal only in the case that a certain relation 

exists between otherwise independent electrical and mechanical actions. Being obtained from 

equation em mew w= , this relation is 

 3 3

33

i

T

i

E d

T 
= − . (5.124) 

Because of the above mentioned inaccuracy the piezoelectric equations (5.8) and (5.9) with 

strains as independent variables cannot be used for deriving expression (5.89). In fact, the same 

procedure, as described by expressions (5.121) and (5.122), being applied in this case leads to 

 2

33 3

1 1 1 1

2 2 2 2

E S

int i ik k i im m m im i e dw S c S S e E E e S E U U= + − + = + , (5.125) 

and the mutual term disappears. 

Despite the inaccurate derivation of formula (5.89) the expression of this kind can be used 

for determining mk , because it can be obtained from the original definition (5.86) in the form 

of expressions (5.91). Indeed, if to take into account that E

em mechw w= , in the case that the 

stresses are independent variables expression (5.92) for 2

mk  can be represented as 

 2 em em em

m T T E

el el mech

w w w
k

w w w
= =  , i.e., 

em

m
T E

el mech

w
k

w w
= . (5.126) 

In the case that the strains are independent variables, it can be found from expression (5.94) 

that 

 
2

21

em em emm

S S E

m el el mech

w w wk

k w w w
= = 

−
, i.e., 

21

emm

S E

m el mech

wk

k w w
=

−
. (5.127) 

Expressions (5.126) and (5.127) can be used for calculating mk , as well as formulas (5.91). 
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5.5 Internal Energy of Piezoceramic Body 

The main content of this section was presented in Ref. 3. 

5.5.1 Basic Considerations 

We define the internal energy of a piezoceramic body as an integral of density of internal en-

ergy, intw , over its volume. Taking into consideration that a volume element inside the body 

experiences reaction of the surrounding parts of the body in course of deformation (denote it 

riT ), the expression for intw  have to be used that follows from relation (5.37). Given that 

/ 2e ri iw T S= , 

 
1

2

S

int int el em ri i

V V V V

W w dV w dV w dV T S dV= = + −    . (5.128) 

Applying Green’s transformation to the last integral and keeping in mind that no external vol-

ume forces are present, we obtain 

 0ri i

V

T S dV d W


=   = =  f . (5.129) 

Here f  is the density of the forces acting on the surface   of a body,   is the displacement 

of the surface points, W  is the work of external forces, i.e., the mechanical energy that flows 

through the surface of the body. Since deformations of the body are supposed to occur under 

the ideal boundary conditions, 0W = . The following information must be available for calcu-

lating the integrals in (5.128) in addition to the energy densities that are already considered for 

various mechanical boundary conditions. 

Configuration of the piezoceramic poling electric field must be known since it determines 

the crystallographic coordinate system 1q , 2q , 3q , for which the tensors of piezoceramic con-

stants presented in Table 5.1 are valid. It is expedient to perform integration in this coordinate 

system, otherwise the tensors of the constants must be transformed to a chosen coordinate sys-

tem. 

Configuration of the operating electric field must be known. According to our convention, 

we have to consider only two variants: E  3q  (m = 3, 3 0E  , 2 0E = ) and E ⊥ 3q  (m = 2, 

2 0E  , 3 0E = ). The first variant corresponds to the most common case, in which the same 

electrodes connected in the same way are used both for ceramics polarization and for operation. 
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If in the operating mode some parts of the electrodes are connected in antiphase, then field 

component 2E  may develop in the parts of the volume around the gap between these parts of 

the electrodes. For implementing the second variant, the operating electrodes should be applied 

in such a way, as to insure the condition E ⊥ 3q . Usually this involves removing the electrodes 

used for polarization and applying new electrodes. If necessary, the general case of arbitrary 

mutual direction of vectors E and P can be considered as superposition of these two variants. 

Distribution of strain, iS , over the volume must be known. Since for solving vibration 

problems in generalized coordinates the systems of supporting functions are used that charac-

terize distribution of displacements over the volume, in the general analysis of the energy state 

of a body the strain distributions can be considered as a priori known. 

Prior to determining the particular configurations of polarization field, which depend on 

the shape of the piezoelectric elements and layout of electrodes on their surfaces, we will carry 

out analysis of integral (5.128) in the curvilinear coordinate system of the general form. Con-

figuration of piezoelement of a general form is qualitatively shown in Figure 5.6. We assume 

that the unit vector 3q  is tangential to the lines of force of the polarization field, and the unit 

vectors 1q , 2q  are tangential to the equipotential surfaces of this field. The elemental volume 

i idV H dq=  is limited by the side surface of a tube of current formed by lines of force of oper-

ating electric field and equipotential surfaces of this field (Figure 5.6). 

At first, we will assume that the entire volume of the piezoelement is confined between 

two electrodes. Since both variants of mutual directions of the poling vector P and of the oper-

ating electric field E can be considered in analogous way, a detailed analysis will be made for 

the variant of E  3q  and the final result will be given only for the variant of E ⊥ 2q . All the 

analysis will be performed for the mode of the electromechanical conversion. 

The components of internal energy densities iS

elw  and 
emw  in formula (5.128) are defined 

by relations (5.41) and (5.42). Peculiarity of the energy conversion by the elemental volume 

inside the piezoelectric body may occur due to possible mechanical and electrical interactions 

between this element and the neighboring parts of the body. The mechanical interactions don’t 

produce effect on the result of integrating over the volume under the ideal mechanical boundary 

conditions, as it follows from expression (5.129). 
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The electrical interactions between elements inside the body can result from the fact that 

distribution of the electric field in a deformed body (it will be denoted by 3E ) may differ from 

distribution 3E  in a clamped body under the condition that the same voltage is applied, since 

for an elemental volume the field generated by the remaining part of the body as a result of the 

piezoelectric effect turns out to be external as well. Therefore, 3E  should be replaced by 3E  in 

Eqs. (5.8), (5.9) and (5.11), (5.12), if the volume element under consideration is inside the body. 

Thus, one must know the distribution of 3E  over the volume of the body with respect to 3E , 

when integrating density of the internal energy, intw . Thus, relation between values of 3E  and 

3E  must be established. 

 

Figure 5.6: Piezoelectric body represented in the crystallographic coordinate system. 

Since piezoceramics is dielectric material, and there are no electrodes inside the volume 

upon which free charges could form, 

 
( ) ( ) ( )1 2 3 2 1 3 3 1 2

1 2 3 1 2 3

1
div 0

D H H D H H D H H

H H H q q q

   
= + + =    

D . (5.130) 

If E  3q , then D1 = D2 = 0, because there are no electrodes on the respective surfaces of the 

body, and 

 ( )3 1 2 3 3 1 2/ 0, constantD H H q D H H  = = . (5.131) 

After applying Eq. (5.9) to the elemental volume of the body in Figure 5.6 with substitution of 

'

3E  for 3E , multiplying both sides of the equation by 1 2H H , and integrating along the line of 

electric field el  ( 3 3 3edl dl H dq= = ), we obtain 

dle=H3dq3

V

P

3q

3E

1q
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 33 3
3 3 1 2 3 3 1 2 3 3

1 2 1 20 0

e el lS

i
i

e e

e
D E H H H dq S H H H dq

l H H l H H

 = +  . (5.132) 

Note that the length el  in general may depend on the coordinates 1 2,q q . The first term in this 

relation represents the charge density 
33 3

S E  due to the electric field 3E  in the clamped body 

under the applied voltage. The second term represents the charge density generated by the de-

formation of the body due to the piezoelectric effect. Substituting 3D  expressed by Eq. (5.132) 

into Eq. (5.9), we obtain the electric field inside the vibrating body 3E  in the form 

 3 3
3 3 1 2 3 3

33 1 2 330

el

i i i
iS S

e

e e S
E E S H H H dq

l H H 
 = + − . (5.133) 

Note that in relations (5.132) and (5.133) summing by the repeating index is assumed. Namely, 

in general it may be 3 31 1 2 33 3( )i ie S e S S e S= + + , but here iS  are the working strain only. For 

particular boundary conditions, which result in one-dimensional deformation, 

3 33/ ( / )i iS S

i i э ie S n C S  = , where iS  is the working strain, n , iS

eC   are the constants presented in 

Table 5.3. With regard to relation (5.95), 
3 33/ S

ie   can be replaced by ( )2 2/ 1E

c cK k k − , where ck  

is the respective coupling coefficient. 

Under nonuniform deformation of a body the equation (5.132) for 3D  and the following 

equation for stress iT , 

 
2 2

3 3
3 3 1 2 3 3

33 1 2 330

el

E i i
i ik k i i iS S

e

e e
T c S e E S H H H dq S

H H l 
= − − + , (5.134) 

must be used for its internal points instead of the local Eqs. (5.8) and (5.9). It is obtained from 

Eq. (5.8) after replacing 3E  by expression (5.133) for 3E , The expression (5.128) that includes 

components of the internal energy have to be rewritten correspondingly, as 

 ( )2

33 3 3 3

1 1

2 2
iS S

int el em i i

V V V V

W w dV w dV E dV e E S dV  = + = +    . (5.135) 

When integrating after substituting 3E  by its expression (5.133), the assumption that 1 2H H  is 

approximately independent of coordinate 3q  can be adopted for practically all the piezoelectric 

ceramic transducer designs. (Otherwise, the poling electric field in the piezoelectric elements 

could be nonuniform that would result in a poor quality of polarization). Under this assumption 

and considering that 
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 3 3

0

el

eH dq l=  (5.136) 

the integration in Eq. (5.135) becomes straightforward and leads to the following results. 

 

( )

1 2

2

33 3

2
2

2 23
33 3 3 3 3 3 1 2 1 2

33 , 0 0

1

2

1 1 1
,

2 2

e e

S

V

l

S i
i iS

eq qV

E dV

e
E dV S H dq S H dq H H dq dq

l






 =

  
 = + −      



   
 (5.137) 

 

1, 2

3 3

2
2

23
3 3 3 3 3 3 1 2 1 2

33 0 0

1

2

1 1
.

2 2

e e

i i

V

l l

i
i i i iS

eq qV

e S E dV

e
e S E dV S H dq S H dq H H dq dq

l

 =

  
 = − −      



   
 (5.138) 

Integrating in the second term is supposed over the equipotential surface perpendicular to the 

direction of polarization, 3q . 

It should be noted that by virtue of relations (5.38), in which 3E  must be replaced by 3E , 

and (5.129) 

 
3 3

1 1

2 2

E E E

i i mch ri i mch m

V V V V

e E S dV w dV T S dV w dV W = + = =    . (5.139) 

Here E

mW  is the strain energy of piezoceramic body, calculated under the assumption that the 

electric field is kept constant in the course of deformation. 

Several designations will be introduced for brevity: 

 2

33 3

1

2

S S

el

V

E dV W =  (5.140) 

for the electric energy supplied to the clamped body by the source generating the electric field 

of strength 3E ; 

 
3 3

1

2
i i em

V

e E S dV W=  (5.141) 

for the electromechanical energy, and 
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1, 2

2
2

23
3 3 3 3 1 2 1 2

33 0 0

1

2

e el l

i
i iS

eq q

e
S H dq S H dq H H dq dq W

l

  
 − =      

    (5.142) 

for the additional term, which depends both on the strain distribution and on the configuration 

of electric field in the clamped body. This quantity accounts for influence exerted on the internal 

energy by possible differences in conditions of electromechanical conversion over the volume 

of the body, which may arise under deformation. In other words, this term characterizes elec-

trical interaction between elements in a deformed body. 

For the boundary conditions, which result in one-dimensional deformation, 

3 33/ ( / )i iS S

i i e ie S n C S  = , where iS  is the working strain, n , iS

eC   are the constants presented 

in Table 5.3. With regard to relation (5.95), 
3 33/ S

ie   can be replaced by ( )2 2/ 1E

c cK k k − , where 

kc is the respective coupling coefficient. 

Summarizing expressions (5.138) through (5.142), we find that 

 E

em mW W W= + . (5.143) 

After substituting expressions (5.137) and (5.138) into formula (5.135), and taking into consid-

eration the introduced designations, we obtain 

 i iS S E

int el em el mW W W W W W= + = + + . (5.144) 

In the case that the strains do not change along the direction of electrical lines of force (i. e., 

3/ 0iS q  = ), 0W = , and relations (5.143) and (5.144) become 

 ,S E E

int el m em mW W W W W= + = . (5.145) 

That is, under the condition that 0W =  the electric and mechanical variables would be sepa-

rated. This means that the internal energy of a deformed body can be calculated as a sum of the 

electric energy of the body being clamped and of the mechanical energy determined at the con-

stant electric field. This statement can be qualified as formulation of the Theorem of Separation 

of the electrical and mechanical variables in the deformed piezoceramic bodies. 

In the variant that E ⊥ 3q  ( 3 2 0, 0E E=  ), relations (5.143) through (5.145) remain valid, 

and for the energies involved therein the following expressions hold: 

 2

11 2

1

2

S S

el

V

W E dV=  , (5.146) 
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 24 2 4 24 2 4em

V V

W e E S dV d E T dV= =  , (5.147) 

 
2

1

2

E E

m mch

V

W w dV=  , (5.148) 
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2
224
4 1 2 3 2 4 2 2 4 1 2 3 2 1 3

11 0 0 0

1

2

e e el l l

S

eq q

e
W S H H H dq S H dq S H H H dq dq dq

l
 

 = − 
  

    . (5.149) 

The condition, under which 0W = , is 4 2/ 0S q  = . 

When calculating energies by formulas (5.139) through (5.141) for the particular bodies 

under certain boundary conditions, the expressions for energy densities ,  iS E

el mchw w  and emw  must 

be used that are given in Table 5.3. 

Let us assume that the piezoelectric body has one mechanical degree of freedom. The dis-

tribution of displacements inside the body can be represented as ( ) ( ) ( ), ot t  =r r , where 

( )o t  is the displacement of a reference point on the surface of the body and ( ) r  is a non-

dimensional function of the geometrical coordinates, which does not change in the frequency 

range under consideration. Then all the components of the intW  may be expressed by 0  as the 

generalized mechanical coordinate and by the voltage V as the generalized electrical coordinate, 

namely, 

 

Figure 5.7: Equivalent circuit of a transducer with one mechanical degree of freedom: (a) the 

general representation (in the case that electrical and mechanical coordinates are separable, i.e. 

0W = , the compliance C  must be excluded), (b) the Mason’s equivalent circuit for an end-

electroded bar vibrating in the fundamental mode. 
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2 2 2 2 2

1
, , ,

2 2 2 2 22

S E
S Eel m o o o o

el m em oE

m

C V K K
W W W V n W

CC

    
= = = =  = =


. (5.150) 

Here S

elC  is the electrical capacitance of a clamped body, E

mK  and E

mC  are the equivalent rigidity 

and compliance ( 1E E

m mK C= ), n  is the electromechanical transformation coefficient and 

1K C =   is the additional rigidity of vibrating body, which is associated with energy W . 

Generally, the equivalent electromechanical circuit of such a transducer with one mechanical 

degree of freedom can be represented as shown in Figure 5.7 (a). In the case that electrical and 

mechanical variables are separable ( 0W = ), the circuit element C  must be excluded. 

5.5.2 About the Physical Meaning of Quantity W  

The energy term W that is defined by expression (5.142) is the matter of principle in terms of 

separation of the electrical and mechanical variables. Consider the physical meaning of this 

term and quantitative estimate of its magnitude in comparison with the elastic energy E

mW . It is 

convenient to examine these issues with typical examples of the longitudinally vibrating bars 

having different electrical boundary conditions, as illustrated in Figure 5.8, and with rectangular 

beams in flexural vibration, shown in Figure 5.11. 

5.5.2.1 Longitudinally Vibrating Bars 

The internal energy densities of the longitudinally vibrating bar are given by the expressions 

 
2 2

3 3
33 3, ,

2 2 2
i iS SS E i i

el el m em iE E

ii ii

E S d
w w w w S E

s s
= = = = . (5.151) 

Distribution of displacements and strain in the bars under consideration are 

0( ) cos( / )x x l  =  and ( )0 / sin( / )iS l x l  = − , respectively. The equivalent parameters 

for the bars must be calculated using expressions (5.139) through (5.142) and energy densities 

by formulas (5.151). The coordinate system is rectangular. Thus, when calculating W by for-

mula (5.149) it must be taken 1 2 3 1H H H= = = , 3 3 1 1 2 2,  ,  dq dx dq dx dq dx= = = . Besides for 

working strain along direction of polarization 

 ( )32 2 2 2 2 2 2 2

3 33 33 3 33 33 33 3 33 33/ / / 1iS SE E

i ie S d S s k S k s = = − , (5.152) 

and for the working strain in the transverse direction 
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Figure 5.8: Piezoelectric bars vibrating in the longitudinal fundamental mode: (a) side-electroded, 

transverse piezoeffect; (b) end-electroded, longitudinal piezoeffect; (c) segmented axially polar-

ized, longitudinal piezoeffect. 

 ( )12 2 2 2 2 2 2 2

3 33 31 1 11 33 31 1 31 11/ / / 1iS SE E

i ie S d S s k S k s = = − . (5.153) 

The following results of calculating the equivalent parameters will be obtained. 

For the side-electroded bar (transverse polarization) the working strain is 1( )S x , 

1 3 1/ ( ) / 0dS dq dS x dz= =  and the equivalent parameters are 

 ( )1

2
2 31

33 31

11 11

21
1 , , , 0

2

S T E

el m E E E

m

wdwl tw
C k K n K

t C s l s

= − = = =  = . (5.154) 

The side-electroded bar is a typical case that electrical and mechanical variables are separable. 

The equivalent circuit for the transducer looks like it is shown in Figure 5.7 (a) without C  

and obviously coincides with the common equivalent circuit for a side-electroded bar vibrating 

in the fundamental mode. 

For the end-electroded bar (axial polarization) the working strain is 3 ( )S x , 

2

3 3 3/ ( ) / ( / ) cos( / )odS dq dS x dx x l x l  = =− . Thus, 
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2 2

233 3
3 32

3333 0 0

1 1

2 21

l l

cs ok S K
W S dx S dx

s lk

     = − = 
−    

  . (5.155) 

The equivalent parameters are 

(b)

z 1( )S x ( )mi x

x

z 3( )S x ( )m avi x i=

xV

V

avi

(a)

(c)

z 3( )S x ( )m avi x i=

x

ix

V

( )m ii x

( )m ii x ix
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( )3

2
2 33

33 33

33 33

2

33
3 2 2

33

21
1 , , ,

2
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1 .

(1 )

S T E

el m E E E

m

E

m

d wtwt tw
C k K n

l C s l s l

k
K K

C k





= − = = =

  = = −  − 

 (5.156) 

The end-electroded bar is the most typical representation of a transducer with nonuniform strain 

distribution along the electrical field, which results in the additional rigidity K  associated 

with the energy W . In the case that PZT-4 is used with 2

33 0.5k ,
3 0.2 E

mK K = . This effect 

is represented by the term C  in the equivalent circuit shown in Figure 5.7 (a). The Mason’s 

equivalent circuit (Ref. 2) shown in Figure 5.7 (b) represents the same end-electroded bar vi-

brating in the fundamental mode. The parameters D

mC  and ( )S

elC−  in Figure 5.7 (b) are respon-

sible for the same effect of the internal energy component E

mW W+ , as parameters E

mC  and 

C  in Figure 5.7 (a). 

For the segmented axially polarized bar at the parallel electric connection of the segments, 

as it is shown in the Figure 5.8 (c), the poling directions and directions of the working electric 

field coincide in each segment. In terms of deformation nothing has changed in the bar. When 

computing S

elW , emW  and W the integration must be performed over each segment and the 

results must be added up. Finally for energy W, which in this case will be denoted as WN (N 

is the number of segments), we obtain 

 
( )

2
2 2

233 3
3 32

133 33 0 1

1 1

2 21

l xnN
cs N o

N E
n x n

k S K
W S dx S dx

xk s



=  −

      = − =
  −   

  . (5.157) 

After substituting expression for 3S  into the integrals will be found that 

 

22
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N m
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N Nk

 
−    = −   −     

. (5.158) 

Here 1 =  at 2N   and 2 =  at 1N = , which correspond to the preceding case of the solid 

axially polarized bar. All the other equivalent parameters are 

 ( )3

2 2
2 33

33 33

33 33

2
1 , ,

2

S T E

el m E E

d wtNwtN tw
C k K n

l s l s l

= − = = . (5.159) 

The ratio 3 31NK K  vs. the number of segments N  is presented in Figure 5.9. 
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Figure 5.9: The ratio 3 31/NK K   as a function of the number of segments N. 

At number of segments 6N   on a half wavelength of deformation 6 10.1K K   , and in 

practice is negligible. For instance, in the case of PZT-4, 
6 0.02 E

mK K  . With E

N mK K  

(conventionally, at 6N  , if the modern PZT ceramics is used), the equivalent circuit for the 

axially poled segmented bar is qualitatively the same as the equivalent circuit for the transverse 

polarized bar, as it would look like circuit in Figure 5.8 (a) with C  removed, because 

1/ 1/ E

mC C   and 1/ C  can be neglected. This reflects the fact that the conversion of 

energy in these two cases occurs qualitatively in the same manner, and it differs from the case 

of the axially polarized solid bar. 

In order to explain the physical difference in the quality of energy conversion between the 

transverse polarized, axially polarized solid and axially polarized segmented bars, let us assume 

that the bar is divided into small elements x  as shown in Figure 5.8 (a), and consider these 

elements as the individual elemental energy converters. The electrical energy, which is utilized 

by the elements, may be represented as ( ) ( ) ( ) ( ) ( )S

el el em s mw x w x w x i x i x = + +     (the “~” 

sign indicates the proportionality). The terms ( )S

elw x  and ( )si x  are the electrical energy and 

the current through the element in the case that the bar is clamped, ( )emw x  and ( )mi x  are the 

motional part of electrical energy utilized by the element and the motional current through the 

element due to the deformation of the whole bar. The motional part of the electrical energy 

consumed by the element is 3( ) ( ) ( )em mw x i x E x . The part of the electrical energy, which is 

converted into the mechanical energy in the course of the element deformation, is 

( ) ,E

em mchw x w=  and according to Eq. (5.42) it is proportional to the strain, i.e., 
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3( ) ( ) ( )E

mw x S x E x , where 3( )E x  is the electric field in the element. Thus, the ratio 

( ) ( ) ( ) / ( )E

mch em mw x w x S x i x  quantifies the part of the motional electrical energy that is con-

verted into the mechanical form by the element of the bar with coordinate x. In the case of the 

transverse piezoelectric effect the electrodes of the bar distribute the motional current in such a 

way that ( ) ( )mi x S x  (actually 
31 1 11/ E

mi d S s= ) and ( ) ( )/E

mch emw x w x  = constant. The distribu-

tion of the motional electrical energy between the elements of the mechanical system occurs in 

exact accordance with their contribution to the electromechanical conversion. 

In the case of the axially polarized solid bar ( )m avi x i= , where avi  is the average current, 

which flows through all the elements, while ( ) sin( / )S x x l . Accordingly, 

( ) ( ) sin( / )E

mch emw x w x x l . This means that, although the elements located near the ends con-

tribute nearly nothing to electromechanical conversion, they consume the same amount of the 

motional electrical energy, as the elements located in the middle part of the bar which contribute 

the most. The distribution of the motional electrical energy in this case is “unfair”. The electrical 

interaction between the elements takes place in a manner that the “strong” elements of the bar 

feed the “weak” ones. To obtain the same amount of the mechanical energy, relatively more 

electrical energy is needed than in the preceding case of the transverse electric field. 

In the case of a segmented bar the electrodes inserted into the bar distribute the motional 

current between segments in accordance with the average strain 3 ( )av iS x  within a segment, 

( ) ( )m i av ii x S x . Therefore, we have 
3 3/ ( ) / ( )E

mch em i av iw w S x S x . With increasing the 

number of segments / 0ix l N = →  and 3 3 .( ) / ( ) 1i av iS x S x → . (It can be assumed that 

3 . 3( ) ( )avS x S x   at N > 6 for a half wavelength of deformation, as it follows from Figure 5.9.) 

The distribution of the motional energy becomes almost as “fair” as in the case of the transverse 

electric field. The conversion of energy in these two cases takes place qualitatively in the same 

manner in a more "economical" way. 

Returning to the equivalent circuits presented in Figure 5.7 it can be concluded that the 

representation of the circuit in Figure 5.7 (a) with term C has an advantage of clarity, whereas 

the term ( S

elC− ) in Figure 5.7 (b) does not have a clear physical meaning. 

Due to the above-described circumstance, a solid end-electroded bar behaves, as if it was 

more rigid, since it requires a larger electric energy to achieve the same level of deformation 

than the segmented bar. Indeed, the rigidity of a solid bar is 3 3

E EK K K= +  whereas that of a 
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segmented is 
3

E EK K= . There exists terminology that reflects the distinction between piezo-

rigid and piezo-soft forms of vibration of piezoceramic bodies (with implicit understanding that 

in the first case the longitudinal piezoelectric effect and in the second case the transverse effect 

is used). As we can see, such classification is justified to a certain extent, since with the trans-

verse piezoelectric effect K = 0. However, in the context of the real transducer designs it is 

not indisputable, the more so as the quantities equivalent to Young’s modulus for the longitu-

dinal and transverse piezoeffect are related as 
11 33/ 1E Es s  . 

 

(a)  

 

(b)  

Figure 5.10: Effect of the electrodes imbedded in a piezoelectric bar: (a) location of the electrodes, 

(b) ratio ( ) / ( )elK l K l   as a function of separation between electrodes. 

The most inadequate consumption of the motional electrical energy in the axially polarized 

solid bar takes place near the ends of the bar, where strains are especially small. Therefore, it is 

interesting to consider the case that the electrodes are imbedded in the bar at some distance 

from the ends, as shown in Figure 5.10 (a). Using Eq. (5.142), where the integration is fulfilled 

over the length of the bar between the electrodes, yields 
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( ) 1 8 / ( / 2 )

e e e e
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 
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. (5.160) 
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This function is depicted in Figure 5.10 (b), where from it can be concluded that ( )eK l  may 

be neglected compared to ( )K l at / 0.5el l  . 

5.5.2.2 Rectangular Beam Vibrating in Flexure 

One more example for the case that the strain changes in the direction of electric field represent 

transducers employing mechanical systems in the shape of beams, plates, and shells vibrating 

in flexure and employing the transverse piezoelectric effect. Distribution of strains in direction 

perpendicular to the neutral surface in these systems does not depend on their configuration in 

the horizontal plane and on the boundary conditions. Therefore, example can be used of the 

rectangular simply supported beam vibrating in the fundamental mode ( ) sin( / )x x l =  that 

was previously considered in Section 2.6.1, and shown in Figure 5.11. 

 

Figure 5.11: Rectangular beam under flexural deformation: (a) fully active bimorph design, (b) 

trilaminar design, (c) segmented transducer design, longitudinal piezoeffect. 

The general expression for the strain is 2

1( , ) ( / ) sin( / )oS z x z l x l  = . After substituting 

this expression into formula (5.142), and taking into account relations (5.152) and expression 

4 3 3

11( / 48)( / )E E

mK wt s=  for the equivalent rigidity of the beam we arrive at 
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where 
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If the transducer is made of PZT-4 ceramic, in which case 2

31 0.1k , then 0.03 E

mK K , and 

this term can obviously be neglected as compared to E

mK . In practical designing of the flexural 

transducers that employ the transverse piezoeffect it is more common to use trilaminar mechan-

ical systems with the piezoelectric layers removed from the neutral plane, as shown in Figure 

5.11 (b). In this design / E

mK K  drops as the separation between the piezoelectric layer and the 

neutral plane increases exactly for the same reason as in the case of a longitudinally vibrating 

bar with embedded electrodes. If we assume that Young’s moduli of the active and passive 

materials are approximately the same, then 

 

1
2 2

( ) 2 2 2
3 1

( 2)

K

K t t t t

   
−

       = − +              
, (5.163) 

where   is the thickness of the piezoelectric layer and t is the total thickness of the beam. From 

this equation follows that at / 0.4t  , which is common from considerations of optimizing 

the effective coupling coefficient (see Section 5.6), the term K  can be neglected even if the 

single crystal materials are used having very high coupling coefficients ( 31 0.5k  ). 

Piezoelements of the rectangular beam bender transducers intended for application as pro-

jectors usually have segmented design, as shown in Figure 5.11 (c) and employ the longitudinal 

piezoeffect. Situation in terms of the additional rigidity in this case is exactly the same as for 

the segmented longitudinal bar, and formula (5.158) is valid for NK  with 

4 3 3

33( / 48)( / )E E

mK wt s= . 

As it is clear from above discussion, for calculating components of the internal energy in 

each case one must know configuration of the polarization field and of the operating electric 

field in the clamped piezoceramic body (that is at values of dielectric constant iS

mm ). The most 

widely used in the transducer designs are the piezoelements in the shape of the bars, plates, 

disks, and thin-walled shells with unipolar electrodes completely covering their side surfaces. 

The electric fields in these piezoelements form the rectangular coordinate systems. This is also 

true for the cases of split electrodes having different polarities, if separation between them is 

small compared with their linear dimensions, because at this condition an effect of leakage 

fields is negligible. In significantly thick ring-shaped piezoelectric elements polarized in the 

radial direction the poling electric field forms the cylindrical coordinate system. Piezoelements 
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with essentially nonuniform electric fields that form a specific curvilinear coordinate system 

may be used relatively seldom. Such fields can be generated by electrodes of special configu-

ration, for example, by the striped electrodes used to tangentially polarize thin-walled piezoel-

ements. Examples of the effect of the tangential polarization will be considered in Chapter 7. 

5.6 Effective Coupling Coefficients 

Consider now the effective coupling coefficient, 
effk , for arbitrary deformed piezoelectric 

body6. Using definition (5.90) and expressions (5.143) and (5.144) for the components of inter-

nal energy of nonuniformly deformed piezoelectric body, effk  can be represented as 

 2
E

em m
eff S S E

el em el m

W W W
k

W W W W W

+
= =

+ + +
. (5.164) 

It must be noted that the concept of effk  makes sense only in connection with a certain distri-

bution of deformation in a body and is valid so long as this distribution remains invariable. In 

other words, each single mechanical degree of freedom of a piezoelectric body is characterized 

by its coupling coefficient effk . Therefore, prior to calculating effk  the displacement distribu-

tion ( ) r  in the body should be known. Represent this displacement distribution in the general 

form as 

 ( ) ( )o   =r r , (5.165) 

where o  is the displacement of the reference point with coordinate or  and ( ) r  is the mode 

shape, i.e., displacement distribution normalized in such a way that ( ) 1 =or . Let the corre-

sponding strain distribution be 

 ( ) ( )o SS S =r r . (5.166) 

In the case that the body has one mechanical degree of freedom, the energies involved in for-

mula (5.164) may be expressed by means of corresponding equivalent parameters defined by 

formulas (5.150), and the expression for 2

effk can be modified as follows 

 2 21/ (1 / )S

eff el mk C n C= + , (5.167) 

where /( )E E

m m mC C C C C=  + . Formula (5.167) is especially convenient for calculating effk  

of the particular transducer types. 
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5.6.1 Optimizing the Effective Coupling Coefficient 

In general, under nonuniform deformation eff mk k , which means that the ability of a piezoe-

lectric material to perform electromechanical conversion is not fully used. The question arises, 

whether the electromechanical conversion in nonuniformly deformed bodies can be improved. 

To answer this question the analytical formulation (5.164) for effk  may be considered. 

First, in the case that initially 0W   
effk  can be increased by segmenting the mechanical 

system of the transducer in the direction of the electric field. As stated in Section 5.5.2, this 

leads to 0W =  at number of segments 6N   on the have wave of deformation. Therefore, 

for the further analysis we will assume 0W =  in expression (5.164), and as the result E

m mC C=  

in formula (5.167). 

The expressions (5.150) for energies of a body with one mechanical degree of freedom 

may be represented in the general form as 

 
2 / 2 ( )S S S

el el el

V

W C V w dV= =  r , (5.168) 

 
2 / 2 ( )E E E

m o m m

V

W C w dV= =  r , (5.169) 

 / 2 ( )em o em

V

W nV w dV= =  r . (5.170) 

Suppose now that the electric field is a function of coordinates 

 3 3( ) ( ) ( )EE E = or r r , (5.171) 

where ( )E r  is the normalized electric field distribution. Taking into account expressions 

(5.166) and (5.171), the energy densities S

elw , E

mw , and emw  as the functions of the electric field 

and deformation can be represented in the form 

 2 2( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( )S S E E

el el E m m S em em E Sw w w w w w   = = =o o or r r r r r r r r . (5.172) 

Upon substituting these expressions into (5.168)-(5.170) and the latter into (5.164) we arrive at 
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eff S E
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, (5.173) 
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where from 
effk  may be found as soon as the distribution of strain and electric field are known. 

The following variants of the distributions are of interest: 

1. Uniform deformation, uniform electric field ( ( ) 1S =r , ( ) 1E =r ). 

This is, for example, the case that thin rings and spherical shells with fully electroded inner and 

outer surfaces vibrate in the breathing mode. Expression (5.173) in this case becomes 

 2 ( )

( ) ( )

em o
eff S E

el o m o

w
k

w w
=

+
r

r r
, (5.174) 

and comparison with formula (5.91) results in eff mk k= . 

2. The most widespread case of an arbitrary strain distribution and uniform electric field. 

( ( ) 1S r  at  or r , ( ) 1E =r ). From expression (5.173) it can be concluded that eff mk k . 

3. The distribution of strain is arbitrary. The distribution of electric field matches the strain 

distribution ( ( ) ( )E S =r r ). Substitution of ( ) ( )E S =r r  into expression (5.173) results in 

the relation (5.174), which means that eff mk k= . 

Thus, we arrive at the conclusion that effective coupling coefficient, effk , for a piezoelec-

tric body under nonuniform deformation can be increased (theoretically up to the corresponding 

coefficient mk ), if to match the electric field and the strain distributions. To illustrate how this 

condition can be practically fulfilled and what the physics is behind this condition, at first refer 

to the examples of the length expander bars, namely, side-electroded, end-electroded and seg-

mented axially polled vibrating in the fundamental mode. The geometry of the bars is shown in 

Figure 5.8, and expressions for the equivalent parameters are given in Section 5.5.2. Substitut-

ing the equivalent parameters of the bars into formula (5.167) results in the following values 

for effk : 
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 (5.175) 

for the side-electroded bar (at 1i = ) and for the segmented bar with number of segments N > 6 

( 3i = ), and 

 2 2 2

338 /effk k =  (5.176) 

for the solid end-electroded bar. Thus, effk of a solid end-electroded bar is smaller than that of 

a segmented bar. If PZT-4 is considered, 2

effk = 0.40 for the solid bar and 2

effk = 0.45 for the 
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segmented bar, while 2 0.5mk =  for the material (i.e., under uniform deformation). Qualitatively 

this fact is explained in Section 5.5.2. Thus, the effective coupling coefficient of the longitudi-

nal vibrating bar can be increased by rational changing the electrical field distribution. 

5.6.2 Examples of Optimizing the Effective Coupling Coefficients 

5.6.2.1 Length Expander Bar, Transverse Piezoeffect.  

It is hardly possible to exactly fulfill the relation ( ) ( )E Sx x =  in a reasonable way in practical 

devices except for the trivial cases of uniform deformation like for the pulsating rings and 

spheres. Even the stepped distribution of electric field shown in Figure 5.12 (a) is very compli-

cated and scarcely worthwhile. Fortunately, very reasonable results on effk  optimization can be 

 

Figure 5.12: The length expander bars with different electrode shapes: (a) fragmented (stepped) 

electrode (parts 1 and 2 are connected in series, then all the electrodes of the same sign are con-

nected), (b) parts of electrode are removed. 

achieved by means of the simple approximation by the electric field to the strain distribution 

shown in Figure 5.12 (b), namely, just by removing electrodes from the parts of the mechanical 

system that undergo relatively small deformation. To make an appropriate quantitative analysis, 

consider expression (5.167) for effk . In this expression the term 
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depends on the shape of the electrodes. The equivalent compliance E

mC  remains the same, when 

the shape of electrodes changes, if the parts of mechanical system not being used as piezoactive 

are electroded and short circuited. If these parts are not electroded, then, strictly speaking, one 

must use the Young’s modulus of unpolarized ceramics, when evaluating a contribution of the 

passive parts to the total potential energy of the mechanical system. But the potential energy 

density potw  of those parts is relatively small because of small deformations (exactly by this 

reason they are not used for electromechanical conversion). Thus, the values of the total E

mW  

and E

mC  accordingly should not change significantly by comparison with those for a fully active 

mechanical system. Further in this Section we will assume that this is the case. In general, the 

not electroded parts of the mechanical system can be replaced by a passive material with dif-

ferent elastic properties. In this case the same analysis is applicable, but changes of E

mC  also 

must be considered. 

The coefficient c  is linked to effk  by relation 
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1

c
eff

c

k



=
+

, (5.178) 

and we can judge the change of effk  based on the behavior of the term c  and specifically on 

the factor 2 / S

eln C . Denote the value of c  that corresponds to eff mk k=  by c m . 

The coefficient 
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 (5.179) 

may characterize, how close a particular electrode shape brings effk  to its maximum possible 

value mk . Using formula (5.167) for effk and relations (5.177)-(5.179) yields 

 
2

2

21 (1 )

m
eff

m

Ak
k

A k
=

− −
. (5.180) 

The value of effk  for a particular electrode shape may be determined by means of this expres-

sion given that the corresponding coefficient A is known. In the case of the transverse piezoe-

lectric effect 2 0.15mk   practically for all the piezoelectric ceramic compositions, and it follows 

from relation (5.180) that 2 2

eff mk A k   within 5% accuracy. 

Substituting 1S

elw  and emw  for a bar from (5.65) and (5.67) into relations (5.172) and carry-

ing out the integrals (5.168)-(5.170) over the volume of the bar produces the following general 
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expressions for the electromechanical transformation coefficient n and capacitance 1S

elC  in the 

case of a side-electroded length expander bar: 
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With these expressions in use, it appears that for the electric field distribution corresponding to 

the electrode connection shown in Figure 5.12 (a) we obtain A = 0.95, i.e., 310.97effk k=  (which 

is almost the maximum possible value) compared with 310.90effk k=  in the case of the uniform 

electric field. In the case of the electrode shape shown in Figure 5.12 (b) 

 ( ) 1E x =  at / 2ex l  and ( )E x  = 0 at / 2ex l . (5.183) 

The corresponding expressions for parameters n, 1S

elC  and coefficient A will be 
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Plot of the function ( / )eA l l  is depicted in Figure 5.13, where from it can be concluded that 

maximum value for effk can be achieved by removing about 0.13 of electrode length from each 

end of the bar. In this case 0.92A  , i.e., almost the same as for rather complicated electrode 

configuration presented in Figure 5.12 (a). Another interesting conclusion can be made that in 

the case that 0.5el l= effk  is the same as with the full- size electrodes. 

In the variant of a solid bar with embedded electrodes the function ( / )eA l l  obtained by 

employing formulas analogous (5.181) for the case of longitudinal piezoeffect is shown in Fig-

ure 5.13 by the dashed line. If the bar is segmented on its part of length el , the dependence 

( / )eA l l  has the same form, as in the case of the transverse piezoelectric effect. Comparison 

the dependences for the segmented and solid with embedded electrodes bars shows that at 

/ 0.5el l   segmenting does not lead to an increase in effk . Qualitatively this follows from the 

fact that the segments located close to the ends consume amount of electric energy 
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disproportionally large to their contribution to the electromechanical conversion, and thus cause 

reduction of the effective coupling coefficient. 

 

Figure 5.13: Illustration of the effk  dependence on the electrode length, 
2 2( / ) ( ) / .e eff e mA l l k l k  

Solid line for a bar at transverse piezoeffect and for a segmented bar at the longitudinal piezoef-

fect. Dashed line for a solid bar at the longitudinal piezoeffect with embedded electrodes. 

If one considers piezoelectric transducer as a mechanical system with multiple degrees of 

freedom, each corresponding to a normal mode of vibration, then maximizing of effk  for a 

particular mode makes this mode isolated, i.e., the only electromechanically active. It is worth 

mentioning that the opposite statement is not valid, i.e., an isolated mode does not always have 

maximum effk . For example, the electrode shape shown in Figure 5.14 (see Ref. 8), in which 

case 

 

Figure 5.14: The electrodes shape that leads to the isolated fundamental mode ( ) cos( / )x x l =  

 ( , ) 1E x y =  at ( / 2)sin( / )y w x l  (5.186) 

and 

y

x

0 l

/ 2w
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 ( ) 0E x =  at ( / 2)sin( / )y w x l , (5.187) 

leads to the isolated fundamental mode ( ) cos( / )x x l = . But evaluating effk  by applying the 

above considered procedure gives in this case 310.78effk k=  i.e., even smaller value than in the 

case that electrical field is uniform. 

Sometimes it is more reasonable to consider reducing an amount of piezoelectric material 

in the mechanical system of a transducer without loss in 
effk  rather than obtaining the maximum 

possible 
effk . Thus, as we have already seen, up to 0.5 of the volume of a length expander bar 

can be substituted by a passive material without loss in effk . Even more significant gain can be 

produced in the case that mechanical system undergoes flexural deformation. This will be il-

lustrated in the next section. 

The conclusions concerning the effects of the electrodes designing drawn for the piezoel-

ement in the shape of a bar can also be extended to the cases of other piezoceramic bodies 

having strain distributions. Namely, for increasing effk  piezoelements should be segmented in 

the direction of the lines of force of the electric field, if strains are nonuniform in this direction, 

and the electric field distribution must be approached to the strain distribution. The simplest 

way of increasing effk  is removing the electrodes from those parts of piezoelectric body, in 

which strains are relatively small. 

5.6.2.2 Beams and Circular Plates Under Flexure 

In the case of the beam and circular plate with axisymmetric electrodes shown in Figure 5.15 

the distribution of strain exists by the thickness and by the length or by the radius. Therefore, 

the values of effk  for regular designs with uniform electrical field are relatively smaller than in 

the case of one-dimensional strain distribution, and the gains due to optimization may be more 

significant. At first consider trilaminar beam transducer with simply supported ends (Figure 

5.15 (a)) vibrating in the first flexural normal mode. In this case 

 ( ) cos( / )z ox x l  = , (5.188) 

 ( )2 2 2( , ) / ( / ) cos( / )x z oS x z z x z l x l   = −   = . (5.189) 

With electrodes inserted in mechanical system, as it is shown in Figure 5.15 (a), the electrical 

field in the body of the beam can be represented as follows 



228  5. Electromechanical Conversion 

 3 ( , ) ( / ) ( ) ( )Ex EzE x z V x z  = , (5.190) 

where 

 ( ) 1Ex x =  at / 2ex l  and 0Ex =  at / 2ex l , (5.191) 

 ( ) 1Ez z =  at / 2z t  −  and ( ) 0Ez z =  at / 2z t  − . (5.192) 

 

Figure 5.15: Mechanical systems under flexure: (a) trilaminar beam with simply supported ends, 

(b) circular plate with simply supported boundary. 

Here el  and   are the length and the thickness of the active piezoelectric layers, which are 

assumed to be electrically connected in parallel, and el l= , and / 2t =  correspond to the 

beam fully made of active piezoelectric material. Substituting expressions for energy densities 

1S

elw  and emw  from (5.65) and (5.67) into (5.172) and carrying out the integrals (5.168)-(5.170) 

over the volume of the beam produces 
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The coefficient ( , )c el   normalized to its value at / 2t =  and el l=  may be represented in 

the form 
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where ( )eA l  is given by formula (5.185) and is depicted in Figure 5.13, and 
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The coefficient ( )A   is given in as function of / t . This function has maximum at / 3t = , 

and at / 5t =  it has the same value, as at / 2t = . Summarizing the results illustrated in Figure 

5.13 and Figure 5.16 one may conclude that the maximum value for effk  can be achieved at 

/ 3t =  and 0.74el l= . In this case 310.91effk k= , and the volume of active material is half of 
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the total volume of the beam. Note that in the case that / 5t =  and 0.5el l=  ( 0.2active totalV V= ), 

the effective coupling coefficient has the same value, as in the case that the beam is fully made 

of piezoelectric material. 

 

Figure 5.16: To dependence of the effective coupling coefficient on the thickness of piezoelectric 

layer. 

Electromechanical conversion in the circular axially symmetric plate (Figure 5.15 (b)) vi-

brating in flexure is considered in Section 2.6.3. For a circular plate the expression analogous 

to expression (5.194) for a beam may be represented as 
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Figure 5.17: Function 
2 2( ) ( ) / ( )el eff el effA r k r k a  as Illustration of effk  dependence on the radius 

of electrodes: (a) with simply supported boundary, (b) with free boundary. 

The factor ( )A   is the same as given by formula (5.195) and as illustrated in Figure 5.16. The 

factor ( )elA r  is different for different boundary conditions. For the simply supported and free 
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plates ( )elA r  as the function of /elr a  is given in Figure 5.17. In the case that the plates are 

fully made of piezoelectric material 310.9effk k=  for the simply supported boundary and 

310.8effk k=  for the free boundary. The same value of 
effk can be obtained at 0.8elr a=  and 

/ 5t =  ( 0.25activ totalV V= ) for the simply supported plate and at 0.58elr a= and / 5t =  ( 

0.13activ totalV V= ) for the free plate. The maximum values of effk are: 310.98effk k=  ( 0.9elr a= , 

/ 3t = ) for the simply supported plate, and 310.92effk k=  ( 0.75elr a= , / 3t = ) for the free 

plate. 

It must be noticed that all the numerical results related to effk  optimization are obtained 

under the assumption that the elastic properties of the passive parts of a mechanical system are 

approximately the same as for the active piezoelectric parts. In the case that the elastic proper-

ties of the active and passive parts differ significantly the mechanical system must be treated as 

nonuniform, and the numerical results may change, although the qualitative conclusions remain 

valid. Related issues for the transducers with nonuniform mechanical systems will be consid-

ered in Chapter 9. 

The presented analysis shows that analytical expression (5.164) for the effective coupling 

coefficient effk  and its modification (5.167), which are based on the concept of the internal 

energy of a piezoelectric body, may be successfully used for optimizing the electromechanical 

conversion of energy under nonuniform deformation. It is shown that the absolute maximum of 

effk , which is equal to the corresponding coupling coefficient of the piezoelectric material, can 

be achieved theoretically for any mode of the strain distribution by special electrodes design, 

leading to the distribution of electric field that matches the strain distribution. It is illustrated 

with typical examples of bars, beams and plates vibrating in the longitudinal and flexural modes 

that very close to optimum results can be obtained just by removing electrodes from the parts 

of mechanical system, experiencing relatively small deformation. In practice these parts of pi-

ezoelectric material may be replaced by a passive material having approximately similar elastic 

properties. Another option illustrated with the same examples is to significantly reduce the 

amount of piezoelectric material in electromechanical transducer without loss of value of the 

effective coupling coefficient. 

Optimizing the effective coupling coefficient is undoubtedly desirable for receivers, be-

cause their specific sensitivity is proportional to this coefficient (see formula (3.181)). As to the 
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projectors, this may be questionable, because reducing amount of active material results in re-

ducing the electromechanical force that generates vibration. Therefore, it can be acceptable only 

in the case that the transducer has sufficient reserve of the electric strength. 

5.6.3 Effect of Electromechanically Passive Elements on the Effective Coupling 

Coefficient 

The transducer designs may include electromechanically passive elements, which are essential 

for their operation. The typical examples in this regard are the cables (having capacitance cC ) 

and reinforcing mechanical elements (having equivalent rigidity adK ) shown in Figure 5.18, 

where the reinforced segmented bar transducer is schematically depicted. 

 

Figure 5.18: Segmented bar reinforced with a central metal bolt. 

These passive elements produce effect of increase of electrical energy consumed by a trans-

ducer and of the additional energy of deformation, m adW , at the same magnitude of the trans-

ducer vibration. Namely, now the electrical energy supplied and the total mechanical energy 

produced are 
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where elW  is the electrical energy consumed by the clamped transducer, and 
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where mechW  is the total energy of deformation and E

mW  is the useful mechanical energy that 

remains the same, as without the passive elements. Besides the relation holds 
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2
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The total electrical energy supplied to the transducer can be represented as 

 S E

etotal el mech el cable m madW W W W W W W= + = + + + . (5.200) 

0
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The energy balance that corresponds to the above expressions of energies leads to the equivalent 

circuit that is presented in Figure 5.19. 

 

Figure 5.19: Equivalent circuit of a transducer with equivalents of the passive elements included. 

After substituting expressions for the energies into the basic definition (5.164) the following 

result for the effective coupling coefficient, ( )eff pk , that accounts for existence of the passive 

elements will be obtained, 
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From comparison of expressions (5.198) and (5.199) follows that 

 
E

m ad

o

K KV

n
+

= . (5.202) 

Using relations (5.201) and (5.202), we arrive at formula for effective coupling coefficient

( )eff pk in the form 
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where c  is defined by expression (5.177). Remember that effk  without the passive elements 

is determined through coefficient c  as 2 / ( 1)eff c ck  = + . 

5.7 Equations of Vibration of Piezoceramic Bodies in Generalized Coordi-

nates 

5.7.1 Expressions for the energies involved. 

Note that the basic derivation of the equations of vibration of piezoceramic bodies in the gen-

eralized coordinates was presented in Section 1.6 in a simplified form. The peculiarities of the 

internal energy of nonuniformly deformed piezoceramic bodies were not considered. Here more 

cC

E

mC
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general treatment of the problem will be presented. In order to obtain equations of vibration of 

a piezoceramic body in generalized coordinates in the form of Euler's equations (4.1), the al-

ready known expressions for components of the internal energy intW  of the body have to be 

explicitly expressed in terms of the generalized coordinates, as it was done for a body made of 

a passive material in Section 4.5. It is appropriate to use for this purpose the same system of 

supporting functions ( )i r  that would be selected to solve the problem of free vibration of a 

body of the same configuration made from a passive isotropic material. Thus, displacements in 

a piezoceramic body will be represented as expansion into the series (4.231) 
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The coefficients ( )i t of this series and the voltage ( )v t  across the electrodes form the system 

of generalized coordinates. The expression for kinW  does not differ from the similar one in 

system (4.232), namely, 
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where m  is the specific mass of the volume element as in Eq. (4.39), ilM  are the equivalent 

masses. They are the self-masses for the vibrational modes i  at l = i and the mutual masses 

that characterize inertial interaction between vibrational modes i  and l  at l  i. Let us now 

express the components of the internal energy in terms of the generalized coordinates. We will 

do this for the case that E q
3

 ( 3E E= ). For 2E E=  the final expressions are the same, if 

only to use constants of piezoceramics corresponding to this case. 

The electric energy iS

elW  (5.140) is 

 2 2
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W E dV C V= = , (5.206) 

where 

 ( )2 2

33 31/i iS S

el

V

C V E dV=   (5.207) 

is capacitance of the clamped piezoelement, 33
iS  is the value of iS

elC   that corresponds to a 

particular boundary condition in Table 5.3. Considering iS

elW  in a real piezoceramic body, one 

should take into account the energy of dielectric losses, which is characterized quantitatively 
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by the electrical quality factor Qe or by tan 1/e eQ = . The energy of electrical losses we deter-

mine as 

 / tani iS S

eL el e el eW W Q W = =  (5.208) 

(see Section 1.4). In the equations of vibration dielectric losses can be accounted for by assign-

ing to the capacitance the meaning of a complex quantity, ( )1 tan
i

i
S S
el el eC C j = − , or by intro-

ducing resistance of electrical loss elR  in accordance with formulas 

 2 /eL eL eLW v R i v= = , (5.209) 

 1/ taniS

eL el eR C = . (5.210) 

The electromechanical energy emW  (5.141) is 
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where emw  is the density of electromechanical energy for the corresponding boundary condi-

tions, and in  is the electromechanical transformation coefficient for the vibration mode ( )i r . 

It can be obtained by using relation (5.35) that 
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and in particular 
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Thus, the electromechanical transformation coefficient for the vibration mode ( )i r  can be 

found as 
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. (5.212) 

It is noteworthy that expressions for the electromechanical energy and transformation 

coefficient are valid, if the electrodes are divided into electrically insulated sections, which are 

connected in different polarities, or if only a part of the transducer volume is used as active 

(e.g., for optimizing the effective coupling coefficient). In these cases the signs of electric field 
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within the sections must be changed to opposite, or the electric field in the passive parts have 

to be set to zero, when integrating in Eq. (5.211). 

The mechanical energy E

mW  can be represented in the same manner as 
potW  by formula 

(4.233) with the exception that the energy density for a piezoceramics body is E

mchw  for the 

corresponding boundary conditions, namely, 
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where E

ilK  are the equivalent rigidities (1/ E E

il ilK C=  are equivalent compliances): self rigidities 

for modes of vibration i  at l = i and the mutual rigidities that characterize elastic interaction 

between the modes of vibration i  and l  at l  i. If only a part of the mechanical system is 

made of piezoceramics, then in calculations related to the remaining part of the volume in the 

expression for energy density under the sign of integral (5.213), the value of mchw  for passive 

material must be used for the same boundary conditions. However, the designations for the full 

equivalent rigidity and energy in this case will be retained as E

ilK  and E

mW  in order to distin-

guish them from similar quantities for a body, which is made entirely of a passive material. For 

a real piezoceramic body the energy of mechanical losses must be accounted for by introducing 

into equations either the complex quantity of rigidity, ( )1 tan
E

E
il il mK K j = + , or the mechani-

cal loss resistances mLir , which are determined by means of the relation 
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where (see Section 1.4) 

 / tanE E

mL m m m mW W Q W = = . (5.215) 

In this case, 

 1/ /E E

mLi ii m ii mr C Q K Q = = . (5.216) 

The quantity W  is proportional to 2

iS  and hence to 2

i , as can be seen from expression 

(5.142). We will regard this quantity as the mechanical energy (though it could equally well be 

classified as the electric energy because quantity 3i ie S  has dimension of charge), and represent 

it in the form 
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where (  1/ )ii ii iiK C K  =   correspond to the vibration modes i , and Kil characterize inter-

action between the vibration modes i  and l  arising due to nonuniformity of electromechan-

ical conversion. 

In the External Actions that were considered as the energy eW  of the mechanical actions 

in Section 4.5.1 now the action of source of the electric energy, elW , must be included in the 

mode of electromechanical conversion. In the mode of the mechanoelectrical conversion we 

will consider electrodes to be open, i.e., electric load being absent. In the case that an electric 

load is applied, the solution obtained for the open circuited electrodes can be used by employing 

the Thevenin’s theorem (see Section 1.5.3). The flux of electric energy supplied to transducer 

is 
elW vi= . Since in case of the electromechanical conversion el intW W= and by virtue of for-

mula (5.144) iS

int el emW W W= + , we obtain 
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and 
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The electrical energy losses can be take into account by substituting the quantity WeL according 

to formula (5.209) into the right-hand side of Eq. (5.218). After turning to the complex form 

the Eq. (5.218) becomes 
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5.7.2 Derivation of equations of vibration 

In the mode of electromechanical conversion the Lagrangian can be presented as 

 – –kin int el LL W W W W= + , (5.221) 

where LW is the energy transferred into a mechanical load (in particular, the energy of acoustic 

radiation, acW ). This energy is represented in general form by Eq. (4.240), and through the 
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impedance of the load, LZ , by Eq. (4.243). Euler's equations (4.1) of vibration of the 

piezoelectric body in the generalized coordinates is found as 
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Upon substituting into Euler's equations kinW  according to formula (5.205), intW  from (5.144) 

with regard to expressions (5.212) through (5.217), LW  by Eq. (4.240), and expression (5.218) 

for elW , we obtain equations of vibration, which are similar to equations (4.250) for the passive 

mechanical system. Here, like in equations (4.251), resistances that account for energy of me-

chanical losses are introduced 

 ( ) [ ( ) ]E E

ii i ii ii i i i li l li li l i Li

l i

M K K r M K K vn f    




+ + + + + + = − . (5.223) 

The following distinctions from equations for a passive body exist in the case of a piezoceramic 

body: the forces that generate vibrations, i if vn= , are of electromechanical origin, and specif-

ics exists in determining the equivalent rigidities. For unifying the equations of motion with 

equations (4.254) for the passive bodies we will convert them to the complex form and intro-

duce notations for the mechanical impedances of the piezoceramic bodies analogous to expres-

sions in (4.253). Namely: 

 
( ) ( )

( )
/ , / ,

/ .

E E E E

ii ii ii i mii li li li mli

E E E

mii l i mli mi

l i

j M K K j r Z j M K K j Z

Z U U Z Z

   



+ + + = + + =

+ =  (5.224) 

Finally, the equations (5.223) become 

 ( ). / ( ) ( 1,2,...)E E

mii L ii l i mli Lli i i

l i

Z Z U U Z Z U Vn i




 + + + = =  
 . (5.225) 

Together with Eq. (5.220) for the generalized electrical coordinate these equations form the 

complete system of equations that describe vibrations of a piezoceramic body in the mode of 

electromechanical conversion (in the transmit mode). 

In the mechanoelectrical conversion mode with open electrodes 

   –kin int mL W W W= + , (5.226) 
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where mW  is the energy supplied by an external mechanical source (in particular, energy sup-

plied by the acoustic field) that is acting on the transducer surface by the equivalent force mF . 

Both the energy and the force are expressed in general form by formulas (4.239). Based on the 

relations (5.52), where from 
E

int m mew w w= +  and iS

me elw w= , we obtain in this case that 

 ,  iSE

int m em em eW W W W W W= + + = , (5.227) 

where in expressions for 
emW  and iS

eW  the quantities 3E  and V should be replaced by 3ocE  

and ocV , respectively. Euler's equations for the mechanical generalized velocities in the com-

plex form will be derived for the mechanoelectrical conversion using the same procedures, as 

in the previous case. As the result will be obtained 

 ( / )( ) ( 1,2,...)E E

mii Lii l i mli Lli i oc i i

l i

Z Z U U Z Z U V n F i




 + + + + = =  
 . (5.228) 

The equation for electrical coordinate ocV , being derived directly from the relation 

iS

em e elW W W= +  with taking into account expressions (5.210) and (5.213), is as follows 

 
1

iS

oc e i i

i

V Z U n


=

=  , (5.229) 

where 

 1/ , 1/i i i iS S S S

e e e e eLZ Y Y j C R= = + . (5.230) 

Equations (5.228) and (5.229) provide solution to the problem of calculating transducer that 

operates in the mechanoelectrical (receive) mode. After substituting ocV  by formula (5.229) into 

(5.228) we obtain the following equations for determining generalized velocities 

 2 ( / )( ) ( 1,2,...)i iS SE E

mii Lii el i l i mli Lli el l i i i

l i

Z Z Z n U U Z Z Z n n U F i




 + + + + + = =  
 . (5.231) 

The set of equations (5.220) and (5.225) for the electromechanical and (5.229), (5.231) for 

the mechanoelectrical conversion can be obtained from the electromechanical circuit shown in 

Figure 5.20 with corresponding values of its components, using the common rules for calculat-

ing the electric circuits. Thus, if the energy is supplied to the electric side, the switch should be 

set to EM position. In absence of the external force it must be 0LF = . If energy is supplied 

from the mechanical side in the absence of an electrical load (open circuited output), the switch 
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should be set to ME position. The internal impedance of the source of mechanical energy is 

included into the circuit as LiZ . In the case that transducer is electroacoustic, LiZ  is the radia-

tion impedance that should be included in the equivalent circuit for both modes of operation. It 

represents a load in EM mode. In ME mode radiation impedance is the internal impedance of 

acoustic field, as source of mechanical energy with “acoustomotive” force i eqviF F= , as it was 

discussed in Chapter 1. A detailed analysis of the acoustic field related parameters for trans-

ducers of different types will be performed in Chapter 6. 

5.7.3 Equivalent Electromechanical Circuits 

The equivalent electromechanical circuit of Figure 5.20 presents visualization of the equations 

that describe vibrations of piezoceramic body under various effects. Though the circuit provides 

the same information as that obtained from the equations, it may serve as a mnemonic rule, 

using which the equations can be recovered. One of the merits of utilizing the equivalent circuits 

is that this allows considering the transducers and electrical circuits, in combination with which 

they usually operate, in the similar manner and even without turning to equations describing 

the entire system. 

 

Figure 5.20: Equivalent circuit of the electromechanical transducer (general case) 

So far the equations of vibration for a piezoceramic body in the generalized coordinates 

were presented in the most general form of equations (5.225) and (5.231). They include the 

mutual impedances ,E

m mi L miZ Z  and iS

el m iZ n n , which link the equations (the contours of the 

equivalent circuit corresponding to the vibration modes.) This is due to the peculiarity of the 
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method used, namely, that the normal modes for uniform isotropic mechanical system of the 

same shape and under the same boundary conditions are chosen as the system of supporting 

functions without regard to piezoelectric effects and mechanical loads. Quite often interactions 

between the equations turn out to be insignificant, so that they can be or neglected, or easily be 

considered. In the first case the equations of vibration can be regarded as independent. Espe-

cially this may be justified, if the transducers are supposed to operate in the frequency ranges 

around the resonance frequencies that correspond to the supporting vibration modes. In this 

case the equivalent circuit simplifies to the form that is shown in Figure 5.21, where equivalent 

compliances ( 1/E E

ii iiC K= ) and masses ( iiM ) are presented in the form of capacitances and 

inductances (as elements that in electric circuits are related to the potential and kinetic energies 

as well). 

 

Figure 5.21: Equivalent circuit of electromechanical transducer for the case that interaction be-

tween the contours can be neglected (for the case that the generalized coordinates are normal, in 

particular). 

Some of the electromechanical transformation coefficients ni may vanish. This means that 

the respective modes of vibration (contours of the equivalent circuit) have no direct coupling 

with the electrical side, i.e., cannot be directly excited electrically, and being excited mechani-

cally do not produce direct effect at the electric output (they are passive vibration modes). How-

ever, an indirect output effects may arise due to their interaction with active vibration modes. 

The procedure used for deriving equations of motion of system with an infinite number of de-

grees of freedom is also applicable without any alterations to the case, in which the number of 
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degrees of freedom is limited. In this casin the set of equations (among the contours of the 

equivalent circuit) only those remain, which correspond to the degrees of freedom considered. 

For a single mechanical degree of freedom, the result will be the same as in Section 1.6.1. 

5.7.4 Examples of Application of the Equations in Generalized Coordinates 

5.7.4.1 Equations of Vibration of the Piezoceramic Bars 

 

Figure 5.22: Transducers in the shape of a bar with incomplete electrodes: (a) transverse piezoef-

fect, (b) longitudinal piezoeffect, solid bar; (c) longitudinal piezoeffect, segmented bar. 

Vibration of a bar as one degree of freedom system was considered in Section 2.4 under the 

assumptions that the ends of the bar are free of loads, all the volume of the bar is confined 

between unipolar electrodes, and in the case of longitudinal piezoeffect the bar is segmented 

with number of segments sufficient for considering that electric field is constant along the bar. 

Bars vibrating in the first normal mode were used as examples for illustrating effect of nonuni-

form deformation on the effective coupling coefficient in Sections 5.5.2.1 and 5.6.2.1. Here 

vibration of the bars utilizing the transverse and longitudinal piezoelectric effect that are pre-

sented in Figure 5.22 will be examined under more general assumptions. 

At first, we will assume that the ends of the bars are not loaded, and active are the segments 

of the bars between coordinates 1l  and 2l  that have lengths el  and are positioned symmetrically 

relative to the middle cross section. Choosing the system of normal modes of the problem of 

free vibrations of a bar, cos( / )i i x l = , as a system of supporting functions, we represent 

displacements and strains in the bar as follows: 

 
0 0

( ) ( ) cos( / )i i i
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x x i x l    
 

= =

= =  , (5.232) 
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0

( ) ( ) ( / )sin( / )i

i

S x x i l i x l   


=

= = − . (5.233) 

(The minus sign in formula for strain accounts for the sign convention, according to which the 

strain is negative in case the displacement couses compression.) 

The equivalent parameters of a bar miM , iS

eC , in , E

miK , and miK  have to be determined 

by formulas (5.205), (5.207), (5.212), (5.213), and (5.217), respectively, using the expressions 

(5.65)-(5.67) for the energy densities, 

 2 2

33 33 3 3 3(1 ), / 2 , ( / 2 )iS T E E E

i m i ii em i ii ik w S s w d s E S = − = = . (5.234) 

Here 1i =  for the transverse and 3i =  for the longitudinal piezoelectric effect. For the equiva-

lent masses we obtain in all the cases 00M M= , / 2iiM M= , where csM S l=  is the full 

mass of the bar, ooM  is the mass corresponding to motion of the bar as a whole (without defor-

mation). Due to uniformity of the bar 0miM = . In the case that le  l for the transverse piezoe-

lectric effect (Figure 5.22(a)) 

 ( )1 2

33 311 /S T

e eC k wl t= − , (5.235) 

and for the longitudinal piezoelectric effect (Figure 5.22 (c)) 

 ( ) ( )3 2 2 2

33 33 33 331 / 1 /S T T

e e eC k wt l k N wt l = − = − , (5.236) 

where N is the number of the segments within the length el . 

In determining values of the equivalent rigidities E

miK  it should be remembered that the 

value of the elastic constant of ceramics within segments 1 and 3, which are beyond the volume 

confined between the active electrodes, depends on whether the ceramics is polarized or not. If 

not, then it should be elastic constant of ceramic as a passive material. If they were polarized, 

but electrodes are removed afterwards, it should be D

iis , as there is no free charges on the sur-

faces of these segments. If the electrodes on these parts exist being electrically isolated, then 

the elastic properties depend on whether they are short circuited or open. In the case that the 

electrodes are short circuited E

ii ils s= , as it would be in the case that el l= . This assumption 

will be used in all the further treatments. The case that the isolated electrodes are open will be 

considered in Section 5.7.4.3. In the examples under consideration, we will be interested in how 

a change of the length of the active part of the bar influences electromechanical conversion, and 
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therefore the assumption of short-circuiting the electrodes on the passive parts that does not 

complicate the calculations is reasonable. 

To distinguish between the values of ,E

mi miK K  and in  for the transverse and longitudinal 

piezoelectric effect letter p will be used in the subscripts, which have values p = 1 and p = 3, 

respectively. By formula (5.213) 

 
2 2

, 0
2

E Ecs
pii pmiE

pp

i S
K K

s l


= = . (5.237) 

Note, that if differences in values of pps  along the length would be taken into account, then in 

the general case (at el l ), 0E

pmiK  , i.e., an elastic interaction between the modes of vibration 

would exist. 

Quantity miK  may be obtained from expression (5.142) after it is represented as 
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1

1

2
mi i

m

W K 


=

 =  . (5.238) 

After substituting expression (5.233) for strain and considering Eq. (5.217), it will be obtained 

that for a solid end-electroded bar at el l=  
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, (5.239) 
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The fact that 3 0miK   at the odd values of i and m indicates that a coupling between these 

vibration modes exists due to nonuniformity of electromechanical conversion and, strictly 

speaking, the normal modes for a bar under the longitudinal piezoelectric effect and for a pas-

sive bar differ. Practically, this coupling is negligibly small. 

As follows from formulas (5.237) and (5.240), at i = 2, 4,... 

 3 3 3 3 32

33

1

1

E E D

ii ii ii ii iiK K K K K
k

= + = =
−

. (5.242) 

For a segmented bar at el l=  by means of formula (5.158) we obtain 
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
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−   
, (5.243) 

where 1 = , if i/N is a fraction, and 2 = , if i/N is an odd number. As it was noted with regard 

to formula (5.95), 3 0iiK   for N/i  6 in the case that PZT ceramics is used. 

If el l , the values of 3imK  can be found by means of the formulas (5.142) and (5.238) in 

combination with Eq. (5.217), wherein integration should be performed over the segment con-

fined between the electrodes. However, as el  decreases, these values rapidly decrease and can 

be neglected in practical calculations at least when / 0.85el l  . 

It is noteworthy that the segmented transducer designs are used for relatively low frequency 

applications. The end-electroded piezoelements for high frequency applications (starting from 

the height of a piezoelement that allows its convenient polarization) are used as solid, and all 

the “ K considerations” are applicable. 

The electromechanical transformation coefficients ( )m en l  may be found by formula 

(5.211) after substituting expression (5.233) for strain and integrating over the segment limited 

by electrodes. These manipulations yield 

 ( ) 3
3 ( 1,2,3,...)

2 2

i e e
m e m mE

ii

wtd l l l l
n l E m

s V
  + −    = − =        

. (5.244) 

The mode of vibration is cos( / )m m x l = , and the electric field has the following values: 

3 /E V t=  for the transverse piezoelectric effect; 3 / eE V l= , 3 / eE VN l=  for the longitudinal 

piezoelectric effect in the variants of the solid and segmented bar. From formula (5.244) we 

obtain 

 3( ) sin sin
2 2

i e
m e E

ii

wtd m l m
n l

ls

    =      
 (5.245) 

for the variants shown in Figure 5.22 (a) and (b), and 

 33

33

( ) sin sin
2 2

e
m e E

e

wtd N m l m
n l

ls l

    =      
 (5.246) 

for the variant shown in Figure 5.22 (c). 

After all the equivalent parameters are determined, vibrations of the bar can be calculated 

using the equivalent circuit of Figure 5.21, because with above made assumptions contours of 
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the circuit (respective equations for the generalized velocities) are independent. With electrodes 

positioned symmetrically relative to the middle cross section of a bar the even (antisymmetric, 

at m = 2k) vibration modes are electromechanically passive as 0mn = . Electromechanical ac-

tivity of the odd (symmetric, at m = 2k-1) vibration modes depend on the electrode length el . 

Any mode of vibration at m > 1 can be suppressed (made electromechanically passive), if the 

length of electrodes meets condition 

 sin 0
2

em l

l

  =  
, i.e., 

2el

l m
= . (5.247) 

Thus, for example, if it is desirable to expend the frequency range, in which the first mode of 

vibration is dominant, the third mode of vibration can be suppressed by putting the length of 

the electrodes 0.66el l . It is noteworthy that with this length of the electrodes the effective 

coupling coefficient of the first mode increases and almost reaches its optimal value, as it can 

be seen from Figure 5.23. The fact that even vibration modes are electromechanically passive 

at ell l=  was physically explained in Section 2.4 with reference to Figure 2.7. Explanation of 

the same kind can be extended for the case of symmetrical electrodes of arbitrary size and can 

be illustrated with plots of the normal modes shown in Figure 5.23. So far as the electrodes are 

unipolar over the entire length ( 3E  does not change its sign), signs of the charges formed in 

different parts of the electrodes coincide with the signs of strains and being averaged over the 

electrode surface they may be completely compensated, as it is in the variant of distribution of 

strains 2S  and 4S  in Figure 5.23 (a), and in the case that the third mode is intended to be 

suppressed, as it is in variant of 3S  at the length of the electrodes 2 / 3el l= . Electromechanical 

activity of the even modes can be restored, if to separate halves of electrodes electrically, and 

connect them in opposite phase, as it is qualitatively clear from the plots in Figure 5.23 (b). In 

general, the frequency response of a transducer can be changed by changing the electrodes con-

figuration. 

To qualitatively estimate effects of arbitrary electrodes geometry and electrical connection 

of their parts let us represent the electric field in the general case as 

 3 ( )
V

E x
t

=  , (5.248) 
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where the function ( )x  depends on the electrode configuration and t is the separation between 

electrodes. We assume that ( ) 0x   if 
3 E P  and ( ) 0x   if 

3E P . Thus, following 

the general expression (5.212), formulas for the transformation coefficient of a bar will be: 

for the transverse piezoeffect 

 

Figure 5.23: Natural modes of longitudinal vibration of bars: (a) unipolar electrodes, (b) halves of 

the electrodes are connected in opposite phase. 

 31
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d S
n

s t
=  , (5.249) 

for the longitudinal piezoelectric effect in the general case that the bar is segmented along its 

length 
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e

d S N
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s l=  . (5.250) 

Factor i  is 

 ( )
0

( )
el

i ix x dx  =  . (5.251) 

Values of the transformation coefficients in  depend significantly on what is the function ( )x  

that characterizes the electrodes configuration. Values of coefficients i  for several variants 

of electrodes configuration are presented in Table 5.4. In the last row of the table the spectrum 

of the resonance frequencies (within the first three) is illustrated that corresponds to the active 

modes of vibration of a bar. Thus, by changing the function ( )x  (by switching the parts of 

electrodes in particular), the frequency characteristics of the transducer can be governed. 
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Table 5.4: Spectrum of the natural frequencies of a bar vs. configuration of electrodes. 
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Consider now the case that the bar is loaded by impedances (0), ( ), ( )Z Z l Z x , and the 

external forces (0),  ( )F F l , as shown in Figure 5.24. The equivalent external forces and load 

 

Figure 5.24: Bar transducer under actions of external loads and forces. 

impedances that correspond to the real quantities can be determined by formulas (4.238) - 

(4.241). In this case, we will consider the forces and impedances being concentrated. If the real 

actions are distributed, then these forces and impedances must be considered as result of inte-

grating the actions over surfaces, to which they are applied. In the particular cases ( )Z l  may 

imitate the radiation impedance, ( )Z x - impedance of a supporting structure, and force ( )F l - 

the equivalent force due to action of acoustic field. Considering that 

 ( ) cos( / ), (0) 1, ( ) ( 1)i

i i ix i x l l   = = = − , (5.252) 

we obtain 

 1(0) ( 1) ( )i

iF F F l+= + − , (5.253) 

 2(0) ( ) ( )cos ( / )iiZ Z Z l Z x i x l= + + , (5.254) 

where the tensile forces should be regarded as positive. Besides, the mutual impedances 
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exist, which characterize couplings between the vibration modes (contours of the equivalent 

circuit) that appear because the normal modes of the loaded bar, strictly speaking, differ from 

those for not loaded. Thus, using the equivalent circuit of Figure 5.20 in the general case of a 

loaded bar transducer becomes too complicated and virtually not appropriate. Vibration of the 

arbitrary loaded bar transducers will be considered in Section 5.8 based on the geometry coor-

dinates approach. Under the assumption that loading impedances are small and interaction be-

tween the contours can be neglected, the general equivalent circuit of Figure 5.20 can be mod-

ified to the circuit shown in Figure 5.25 for the bar transducers. If the bar is fixed in the middle 

 

Figure 5.25: Multicontour equivalent circuit of a bar transducer. 

cross section ( ( / 2)Z l → ), then the only vibrations are possible, for which cos( / 2) 0i = , 

i.e., at 2 1i m= − . The even contours (including the one at 0i = , which is responsible for move-

ment of a bar without deformations) must be excluded from the circuit. In the frequency regions 

around resonance frequencies it is sufficient to consider only the contour that corresponds to 

the resonance vibration mode in the circuit of Figure 5.25. It is noteworthy that in this case the 

assumption of neglecting interaction between contours is especially true, because the actual 

effect of interaction depends on the introduced impedances ( / )inmi mi m iZ z U U= , and in vicinity 

of the resonance frequency of ith mode i mU U . 

When calculating transducer in the receive mode in the frequency range much below the 

first resonance, (1/ )E
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size (the modes are active at i = 2m - 1) and a force is acting only on one end, while another 

end is free of an external action (that is (0) 0F = , 0 0Z = ). Retaining the elastic impedances 

only in the circuit of Figure 5.25 we obtain the output voltage in the following form 

 
( )1 1

31 3111 11

2 2
111 11

2 221 1 1

42 1

E E

out l lS E S E
m cscsel el

wd wds l s l
V F F

Ss S sC Cm






=

= =
−

 . (5.256) 

Here it is considered that 

 
( )

2

2
1

1

82 1m m



=

=
−

 . (5.257) 

The same result will be obtained using a different approach in Section 5.8. 

So far, we have discussed calculating by means of the circuit shown in Figure 5.25 under 

the assumption that the loading impedances are small. If impedance at one of the ends is large 

( (0)Z → ), i.e., this end can be considered as fixed, then supporting system of normal modes 

must be used for calculating parameters of the equivalent circuit that matches this boundary 

condition, namely, 

 ( ) sin[(2 1) / ]i x i x l = − . (5.258) 

In this case using the above procedure for the side-electroded bar with full size electrodes we 

arrive at the following results: 

 
( )

2 2

11

1

31 11

/ 2, / 2 ,

1 / ( 2 1; 1,2,...).

E E

ii ii cs

m E

i cs

M M K i S ls

n d S s t i m m


+

= =

= − = − =
 (5.259) 

The equivalent forces and load impedances in this case are 1( 1) ( )m

iF F l+= − , ( )iiZ Z l= . 

Everything that has been discussed with respect to the bar transducers vibrating longitudi-

nally equally holds for the bar transducers performing the torsional vibrations. It is necessary 

only to make the following substitutions in all the formulas: 

 ( )2 2 2

44 24 44/ 2, / 2 , / 4E E E

ii p ii p i iM J l K i J s l n w d s = = =  . (5.260) 

5.7.4.2 Equations of Vibration in the plane of a Circular Disk Poled through its Thickness 

Consider the radial vibration of a piezoceramic thickness polarized disk shown in Figure 5.26. 

We assume that the electrodes are axially symmetric and the edge of the disk is free. For the 
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supporting functions will be taken the normalized normal modes of problem of vibration of a 

passive disk (see Section 4.4.2.2), namely, 

 ( ) 1 1/ ( / ) / ( )i i ir a J r a J  = , (5.261) 

where i  are the eigenvalues, which by virtue of relation (4.166) for 0.3 =  are equal to 

 i  = 2.05, 5.38, 8.57; and at i > 3 ( 0.9)i i  − . (5.262) 

 

Figure 5.26: Circular disk with axially symmetric electrodes. 

It is noteworthy that though for different piezoceramic materials 
1 12 11/ 0.3E E Es s =  , it can be 

shown from the Eq. (4.167) for determining the eigenvalues that the values of i  change less 

than by 1% from their values at 0.3 =  within limits of values of 
1

E  for the most usable PZT 

compositions (approximately between 
1

E  = 0.27 and 0.35). Thus, displacements ( )r  in the 

plane of a disk will be represented in the form of the series 

 1

1 1

( ) ( / ) ( ) / ( )ai i ai i i i

i i

r r a J k r J k a   
 

= =

= =  , (5.263) 

where /i ik a=  and ai  are the radial displacements at r a=  for the different modes of 

vibration. By formula (5.205), 

 
0

2
a

mi i mM t rdr =  , (5.264) 

where from follows that 0miM =  for m  i due to orthogonality of the normal modes, and 

2(1 0.9 / )ii iM M = −  with M = a2t. Thus, 

 11 22 ii0.76 , 0.97 , ( 3)M M M M M M i= =   . (5.265) 

Other equivalent parameters of the disk can be found from expressions (5.206), (5.211) 

and (5.213). The quantities ,iS

e emW W  and E

mW  that are involved in these expressions must be 

determined by formulas (5.139) through (5.141) after substituting the values of energy densities 

for the axially symmetrical deformation in the cylindrical coordinates from expressions (5.68) 

- (5.70). As the disk is poled in z direction and axis 3 of the crystallographic coordinate system 

z
r1r2

r
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goes in the same direction, the axes 1 and 2 are in the plane of a disk, 1rrS S=  and 2S S = . 

After substituting expressions (5.263) for ( )r  in formulas (4.145) we obtain (see properties 

of the Bessel functions in Appendix C.1) 

 1 1
1 0

1 11 1

( ) ( )( ) 1
( )

( ) ( )

i i i
ai ai i

i i i

J k r k J k rr
S J k r

r J k a r J k a k r

  
   

= = = −    
  , (5.266) 

 1
2

1 1

( )( )

( )

i i
ai

i i

k J k rr
S

r J k a k r

 


= = . (5.267) 

Thus, 

   0
1 2

1 1 1

( )1
( )

( )

i i
ai i i ai

i i i

k J k rd
S S k r k r

r dr J k a
  

 

= =

+ = =  . (5.268) 

In the case that the electrodes completely cover the surfaces of the disk we obtain, using the 

expression for E

mw  from (5.69), 

 

2 2
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1 0

2

1
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2 0.3
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1
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= 

       = +  + −      −       
 − − = + 



 
 (5.269) 

Since the supporting functions i  are defined as normal modes at   = 0.3, the first integral in 

(5.269) contributes only to values of E

iiK , defining the major part of these values. In the case 

that 
1 0.3E   the second integral produces a certain change in E

iiK  and introduces the mutual 

rigidities E

miK , which characterize interaction between equations (5.225) and between contours 

of the equivalent circuit in Figure 5.20. Upon substituting in (5.269) displacement ( )r  in the 

form of series (5.261) and upon subsequent calculations, we obtain 

 
( )1 1 1

112

1

2 0,3 0,3
,

1,61

E E E
iiE E E

ii miE

tY
K K K

   


+ − −
= 

−
, (5.270) 

where 11 1.6 = ; 22 14.1 = ; 33 36 = . For PZT piezoceramic compositions that are used in 

transducers 1 0.3 0.05E −   it can be assumed that 
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1
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33 3 1
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, 8.8 ,
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22 , .
30

E
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E E E E
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tY
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K
K K K K


=  = 

−

=  

 (5.271) 

It can be seen that at 
1 0.3E   some interaction between equations (5.225) exists due to a finite 

value of the mutual rigidities E

miK . Using the expressions for equivalent parameters of a disk 

and equations (5.231), the estmation of values of introduced impedances, 

 ( )/ E

int i m i mi

m i

Z j U U C




=  , (5.272) 

for the frequency ranges around the resonance frequencies can be obtain in the form 

 0.02 E

int i ii mZ C Q , (5.273) 

where mQ  is the quality factor of the mechanical system that has an order of magnitude higher 

than 10. Thus, the effect of int iZ  can be neglected, and the equations (5.231)for the disk and 

corresponding contours of the equivalent circuit of Figure 5.20 can be regarded as independent. 

The values of natural frequencies are defined by the relation 

 1

2

1(1 )

EE

i ii
i E

ii

KY

a M




 
= =

−
. (5.274) 

For the first mode of vibration with 11M  and 
11

EK  taken from expressions (5.265) and (5.271) 

we obtain 

 1

2

1

2.04

(1 )

E

i E

Y

a


 
=

−
, (5.275) 

whereas the value obtained from differential equation for 
1 0.3E =  is 1 2.05 =  (see the note 

below expressions (5.262)). 

When considering the quantities 12S

eC  and in , we will assume that the electrodes may be 

partial. Strictly speaking, a change in the dimensions of the electrodes influences the energy 

E

mW  as well, however, we will not take this into account, as in the previous example of a bar. 

At least, E

mW  must remain unchanged, if we assume that electrodes on inactive parts of a disk 

exist, but they are electrically isolated and short circuited. Using formulas for densities of the 
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electrical and electromechanical energies (5.68) and (5.70), we obtain from Eqs. (5.206) and 

(5.211) 

 ( )1,2 2 2 2

33 2 1(1 ) /
S T

e pC k r r t = − − , (5.276) 

 ( )
2

1

31 1
1 2 3

11

21 1

2 21

rE

em i aiE
ir

d tY
W S S E rdr V n








=

= + =
−  . (5.277) 

After substituting expression for 1 2( )S S+  by formula (5.268) the electromechanical 

transformation coefficients will be found as 

 31 1 2 2 1 1

1

2

1

E

i i iE

d aY r r r r
n

a a a a

  


    = −    −     
. (5.278) 

In the case that 1 0r =  and 2r a=  

 31 1

1

2

1

E

i E

d aY
n




=
−

. (5.279) 

The values of the transformation coefficients at different correlations between radiuses 2r  and 

1r  can be obtained using plots in Figure 5.27. 

 

Figure 5.27: Natural modes of the radial vibration of a disk (i = 1, 2, 3). 

In particular, the electromechanical activity of the modes 2  and 3  (and whatever mode, in 

general) can be significantly increased (or suppressed) by appropriate choice of the size and 

location of parts of electrodes. Qualitatively this can be explained exactly in the same way, as 

it was done in the case of the longitudinal vibration 
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of a bar, if to consider plots of functions 1 2( )iS S+  vs. ratio r/a, which are according to expres-

sion (5.268) proportional to 0 ( )iJ k r . Plots of these functions for the first three modes of vibra-

tion are shown in Figure 5.28 (note that the functions in the figure change signs, when passing 

the zero points). 

 

Figure 5.28: Plots of functions 1 2( )iS S+  vs. /r a . 

For quantitative estimation of quality of electromechanical conversion consider depend-

ence of the effective coupling coefficients from location and size of the electrodes using ex-

pressions (5.178), 

 
2

1

c
eff

c

k



=

+
, where 

1,2

2

c
c S EE

eqveqv e

n

KK C





= = . (5.280) 

The term 

 1,22 /
S

c en C  =  (5.281) 

depends on the location and size of the electrodes only. As it was noted previously, the equiv-

alent rigidity, E

eqvK , does not depend on geometry of the electrodes, unless difference between 

the elastic constants of polarized and not polarized ceramics on the parts of a piezoelement 

without the electrodes is taken into account. This difference is further neglected, moreover, 

usually the pats of a mechanical system are deprived of electrodes that contribute less to elec-

tromechanical conversion and therefore possess relatively small potential energy. The 
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maximum value of 
effk  is achieved at maximum value of coefficient c , and hence at maxi-

mum value of coefficient c  . At first, consider dependences of ( )ci r   from radius of electrodes 

located in the center of a disk. Note that coefficients ( )i a   don’t depend on the number i of 

mode of vibration, and 

 2

1

( )
( / )

( )

ci
i

c

r
r a

a







=


, (5.282) 

as it follows from expressions for ( )in a  and 1,2S

eC . Therefore, it can be concluded from plots in 

Figure 5.27 that the maximum values of ( )ci r   are achieved for the first mode at r a= , for the 

second mode at 0.35r a= , and for the third mode at 0.22r a= . The corresponding values of 

the coefficient are 

 2

2 1 2 1(0.35 ) ( ) (0.35) 2.9 ( )c c ca a a     = = , (5.283) 

 2

3 1 2 1(0.22 ) ( ) (0.22) 4.6 ( )c c ca a a     = = . (5.284) 

Consider now dependences of this ratio from the relative width of concentric electrodes located 

around the nodal lines of the modes of vibration. Such electrodes may be used in some appli-

cations of the disk transducers, e.g., for the piezoelectric transformers that will be considered 

in the next section. Denote the radiuses of the nodal lines inr , where i is number of the mode 

and n is number of the nodal line. The radiuses of the nodal lines are: 

21 31 320.71 , 0.45 , 0.8r a r a r a= = = . We will mark coefficients c  and c   that correspond to 

the radiuses of the nodal lines with the same subscripts. Results of calculating the relative 

widths of electrodes /r a , at which the maximum value of ratios 0/cin ci    is achieved are: 

 
21max 20 31max 30

32max 30

2.0  at 0.23 , 1.6  at 0.28 ,

1.2  at 0.23 .

c c c c

c c

r a r a

r a

   

 

        

   
 (5.285) 

Here 20 2 (0.35 )c c a  = , 30 3(0.22 )a  = . It is convenient to express all the above coefficients 

through the coefficient 1( )c a  for fully electroded disk vibrating in the first mode. After sub-

stituting in the expression (5.280) values of 1

E

eqvK , 1,2

1

S

elC  and 1n from (5.271), (5.276) and 

(5.279), this coefficient will be obtained in the form 
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1 1 2

1

( ) (1 )
5 1

c pE

c E

eqv p

k
a

K k

  
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= = +
−

. (5.286) 
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For PZT-4 ceramics 1( ) 0.42c a =  (with 
1 0.33E = , 0.58pk = ), and ( )1 1/ 1eff c ck  = +

0.54 0.94 pk= = . Thus, the radial vibrating disk is a convenient configuration for experimental 

determining the planar coupling coefficient, 
pk , by means of measuring 

effk  by resonance- 

antiresonance method. 

The coefficients cin  that are necessary for calculating respective effective coupling coef-

ficients will be obtained as follows. The coefficients cin  are equal to / E

cin eqviK   under the 

assumption that the rigidities are independent on configuration of electrodes. The sequence of 

manipulations will be illustrated with example of calculating coefficients 20c  and 21c  for the 

second mode of vibration. The coefficient 
20 20 2/ E

c eqvK  = , and due to relation (5.283) 

20 2 1(2.9 / ) ( )E

c eqvK a  = . The coefficient 
21 21 2/ E

c c eqvK  = , and due to relations (5.283) and 

(5.285) 
21 2 1(5.8 / ) ( )E

c eqv cK a  = . Considering that 
1 1 1( ) ( ) E

c c eqva a K  =  and 
2 1/ 8.8E E

eqv eqvK K =

according to expressions (5.271), we finally obtain that 20 10.33 ( )c c a =  and 

21 10.66 ( )c c a = . The expression for coefficient 1( )c a  is given by formula (5.286). In the 

case that PZT-4 ceramics is used 1( ) 0.42c a = , 20 0.13c  , 21 0.26c  . The respective ef-

fective coupling coefficients are 1 0.54effk = , 20 0.34effk = , 21 0.45effk = . 

For the second mode of the fully electroded disk, 2 1( ) ( )n a n a= , 1,2 1,2

2 1( ) ( )
S S

e eC a C a= and 

2 1( ) ( ) / 8.8c ca a = . Thus, this mode is much less effective electromechanically. With PZT-4 

used 2 ( ) 0.05c a   and 2 0.21effk =  instead of 0.42 and 0.54, respectively, for the first mode. 

Thus, electromechanical conversion performed by the second mode transducer with the full-

size electrodes can be greatly improved by using properly located partial electrodes. These re-

sults will be helpful in the following section. 

5.7.4.3 Electro-Mechano-Electrical Transducers 

5.7.4.3.1 Equivalent Circuit of the Transducer 

So far we assumed that the entire volume of a piezoceramic body is confined between one pair 

of electrodes. In some cases it proves necessary to use only a part of a piezoelement volume as 

active, or/and to divide electrodes into electrically insulated sections and to use them separately. 

In the last case we will call the transducers electro-mechano-electrical (for short EME). Electro-

mechano-electrical transducers have numerous applications. They may be used in electrome-

chanical transformers, as means for establishing electrical feedback in the devices that employ 
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piezoceramic resonators, for performing control of parameters of a transducer in process of 

operating. Theoretical treatment of EME transducers requires considering internal energy of a 

piezoceramic body in case that it has separate operating electrodes, as shown in Figure 5.6. We 

will assume that in the figure part 
1V  of the volume is the active part, in which electromechan-

ical conversion takes place. Part of the volume 
2V  has separate electrodes, electrical conditions 

of which can vary depending on the design task. Generally, they may be considered as open 

circuited, because thus obtained solution can be easily extrapolated to results of operation with 

any electrical load by using the Thevenin’s theorem. Part of the volume 
3V  is assumed to be 

without electrodes and imitates a passive portion of the piezoelement that is not polarized or 

previously polarized, but with removed electrodes. The value of the internal energy of the entire 

body that is consuming independent flow of the electric energy may be represented following 

expression (5.144), as iS

int e emW W W= + , where 

 1 1 2 3

E

em m m mW W W W W= + + + . (5.287) 

 

Figure 5.29: Configuration of a piezoceramic body of a general type with separate electrodes. 

Here 
1

E

mW  and 1W  are determined by formulas (5.138) and (5.142); the energies 2mW and 3mW  

are underlined, because these parts of the volume consume independent flow of mechanical 

energy. In calculating 3mW , two cases must be considered. If electrodes in this area were not 

applied in process of the piezoelement manufacturing, then 3mW  must be determined with val-

ues of elastic moduli of non-polarized ceramics. If electrodes were removed after the piezoele-

ment was polarized, then D = 0 due to absence of electrodes and therefore of free charges 

throughout this part of the volume. In this case the mechanical energy must be determined at 

the values of elastic constants corresponding to D = 0, i. e., 3 3

D

m mW W= . The part 2V  of the 

volume is in the mode of mechanoelectrical conversion (is consuming the external mechanical 

energy and converts it into electrical form), therefore the internal energy of this part is 

int mw w = . Using expression (5.52) for the mechanical energy of the volume element, we 

obtain according formula (5.227) that 

q3

q2

1V2V
3V
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 2 2 2 2 2 2, iSE

m m me me eW W W W W W= + + = , (5.288) 

where 2

E

mW , 2W  and iS

eW  must be determined by formulas (5.139), (5.142) and (5.140), in 

which 3E  must be replaced by 3ocE . Under condition of short circuited electrodes 

3 2 20, 0iS

oc me eE W W= = = , and 2 2 2

E

m mW W W= + . Thus, in the case under consideration expres-

sions that characterize the internal energy and energy balance in course of vibration become 

 1 1 2 2 3 2 2 2, .iSE E

em m m m me me eW W W W W W W W W= + + + + + =  (5.289) 

Here the result of electro-mechano-electrical conversion (“converted energy”) is 2meW . There-

fore, expression for the effective coupling coefficient (5.88) that corresponds to this conversion 

has to be modified to the form 

 
2 22

i

i i

S

me e

eff S S

e em e m oc

W W
k

W W W W 

= =
+ +

. (5.290) 

For brevity the energy emW  in (5.289) is denoted as m ocW  , the total mechanical energy of open 

circuited piezoelement. 

It can be seen that in expression (5.289) the relations (5.144) for electromechanical and 

(5.227) for mechanoelectrical conversions are combined. After the equations and equivalent 

circuits that describe electromechanical and mechanoelectrical conversions are known, there is 

no need to repeat analogous derivation for EME transducers. The result can be obtained by 

combining already existing equivalent circuits for these two cases. 

Usually, EME transducers operate near their resonance frequencies, or less often below the 

first resonance, and therefore they can be considered as having one mechanical degree of free-

dom. The equivalent circuit of the electro-mechano-electrical transducer that employs two pairs 

of electrically separated electrodes is shown in Figure 5.30. This circuit, one part of which 

 

Figure 5.30: Equivalent circuit of electro-mechano-electrical transducer. 
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operates in the mode of the electromechanical conversion (it will be conditionally denoted as 

input) and another operates in the mode of the mechanoelectrical conversion (output), allows 

calculating all the operating parameters of the transducers. The output and input parts can be 

used interchangeably. In this sense naming them “input” and “output” is conditional. 

The following has to be noted regarding parameters of the circuit given that the mode of 

vibration of the mechanical system of the transducer is known. Values of the capacitances and 

transformation coefficients 
1 1, iS

en C  and 
2 2, iS

en C  must be determined by the general formulas for 

the respective segments of electrodes. The equivalent mass eqvM  does not depend on separation 

of electrodes and is determined by the mode of vibration only. The equivalent compliance 

1/ ( )E E E

sc m mC C K K = = +  must be determined in accordance with relation 

 2 2

1 2 3 1 2( / 2)( ) / 2)( )E E E

m sc o m m m o mW K K K K K K K  = + + + +  + . (5.291) 

Here subscript sc indicates that the output of the piezoelement is short circuited. Value of the 

term 3mK , strictly speaking, depends on the status of the passive part, as it was previously 

discussed, but the differences that may occur are not significant. We will assume for simplicity 

that electrodes on this part exist and are short circuited. Thus, 
3 3

E

m mK K  and therefore

1 2 3

E E E

m m m mK K K K+ +  , i.e., equal to the rigidity of the piezoelement with full size electrodes. 

In the term 1 2K K K =  +  the items iK  exist only for the parts of piezoelement, where 

longitudinal piezoeffect is employed. Otherwise 0iK = , as it was discussed previously in 

Section 5.5. As the result 

 1/ ( )E E E

sc m mC C K K = = + . (5.292) 

In some applications the separated electrodes can be used for control of operating charac-

teristics of a transducer, for feedback, or even for adjustment within certain limits of EME 

resonance frequency. The latter is due to effect that the electrical output of the transducer pro-

duces on parameters of the mechanical system. The effect is determined by value of impedance 

 ( )2

2 2/ 1/ iS

int eLd eZ n R j C= +  (5.293) 

introduced into the mechanical contour from the secondary electrical side, as shown in Figure 

5.31. With short circuited electrodes 0intZ = , with open electrodes 2

2 2/ iS

in eZ n j C= . This leads 
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to an increase of elastic rigidity, and hence, to an increase of the resonance frequency of the 

mechanical system. 

 

Figure 5.31: Equivalent electromechanical circuit of the electro-mechano-electrical transducer 

with impedance of the electrical output transformed into mechanical contour. 

Piezoceramic transformers represent the most demanding application of EME, because 

they may perform transmission of significant amounts of energy, whereas other applications do 

not require large output signals. In the last case analogy can be drawn with electroacoustic 

receiver, if to replace the source of electrical energy by the acoustomechanical generator that is 

shown in Figure 1.8. The equivalent circuit of the transformer is analogous to those for electro-

acoustic projector with radiation impedance replaced by the impedance introduced from the 

electrical side. Therefore, all the considerations regarding properties of the projectors presented 

in Chapter 3 are applicable qualitatively to this case. Peculiarity of this case is that it is easier 

to change impedance of the electrical vs. acoustic load, and thus to achieve more favorable 

conditions of matching. In particular, the load can be made pure active by using inductance for 

compensating the reactive component of the electrical output. For example, with parallel in-

ductance 2

21/ S

op eL C= , where op  is the operating frequency of the transformer, the introduced 

capacitance in the circuit of Figure 5.31 must be short circuited and introduced resistance will 

be 2

2int LdR n R= . 

Although a detailed analysis of properties of the piezoelectric transformers is out of scope 

of this treatment, the piezoelements will be considered shown in Figure 5.32, as examples of 

those used in the typical transformer designs. The goal is to illustrate procedures of determining 

their effective coupling coefficients and resonance frequencies. Peculiarity is that the input pa-

rameters of the transformer depend on the status of its output. We will consider the cases that 

they are open (terminated by large impedance) or short circuited (terminated by small 

eLR1S

elC intZ

eqvM1

EC

V

11: n1

1

oU
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impedance). “Large” and “small” are meant being much larger and much smaller in comparison 

with 1/ iS

elC . 

 

Figure 5.32: Piezoelements that are used in the electromechanical transformer designs: (a) longi-

tudinal vibrating bar that employs both transverse and longitudinal piezoeffect (Rosen-type trans-

former), (b) radial vibrating in the first mode disk with split electrodes, (c) radial vibrating in the 

second mode disk with partial electrodes. 

5.7.4.3.2 Longitudinally Vibrating Bar Piezoelement  

With reference to expressions (5.237), (5.240) and (5.252) after integrating over the halves of 

the bar that operate in the transverse (input labeled I) and longitudinal (output labeled II) pie-

zoeffect at the first mode of vibration, the following parameters of the equivalent circuit will be 

obtained.  

The electromechanical transformation coefficients and capacitances are 

 31 33

11 33

2
,I IIE E

d w d wt
n n

s s l
= = ; (5.294) 

 1 2

33 31(1 )
2

S T

eI

wl
C k

t
= −  and 3 2

33 33

2
(1 )S T

eII

wt
C k

l
= − . (5.295) 

The rigidities under the condition that output of the transducer is short circuited (loaded 

with a small impedance) are 

 2

E

sc mK K K = + , (5.296) 

where 
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2

11 33

1 1

4

E

m E E

wt
K

l s s

  
= + 

 
, (5.297) 

and 2K  is due to longitudinal piezoeffect in one half of the bar. Using formula (5.155) will be 

obtained that 

 
22

33
2 2 2

33 33

8
1

4 1E

kwt
K

ls k




  = − −  
. (5.298) 

Thus, 

 
2 2

2 2

33 332 2 2

11 33 33 11 33

1 1 8 1 1 8
1 1

4 4(1 )
sc E E E D

wt wt
K k k

l ls s k s s

 
 

      = + − = + −      −       
. (5.299) 

The resonance frequency of the transducer under the condition that opposite sections are 

short circuited is 

 
1

2

sc

r sc

eqv

K
f

M
=  (5.300) 

where 0.5eqvM wtl= , i.e., 

 2

332

11 33

1 1 1 1 8
1

2 2
r sc E D

f k
s sl  
  = + −    

. (5.301) 

If output 2 -2 is open circuited (operates in the receive mode with large load) 

 
3 3

2 2

2

E II II
ocI m scS S

eII eII

n n
K K K K

C C
 = + + = + . (5.302) 

The last term, which is introduced from the secondary electrical circuit, after substituting ex-

pressions for IIn  and 3S

eIIC  from (5.294) and (5.295) may be represented in the form 

 
3

2 2
2

332

33

8

4

II

S D

eII

n wt
k

lsC




= . (5.303) 

Thus, 

 
3 3

2 2

2

E II II
ocI m scS S

eII eII

n n
K K K K

C C
 = + + = + , (5.304) 

and formula for the resonance frequency becomes 
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11 33

1 1 1 1

2 2
r sc E D

f
s sl 

 
= + 

 
. (5.305) 

Determine the effective coupling coefficient of EME transducer in the case that its output 

is open circuited by formula (5.290). After substituting expressions for energies involved

1 120.5S S

eI eIW V C= , 3 320.5( ) /S S

eII o II eIIW n C= , and 20.5m oc o ocIW K = , taking into consideration 

that ( / ) ( / )o ocI IV K n =  and after some manipulations we will arrive at 

 2

1

oc
oc cI

eff cII oc

cI

k



=
+

, (5.306) 

Where 

 
1 1

2 2

,oc ocI II
cI cIIS S

eI ocI eII ocII

n n

C K C K
 

 

= = . (5.307) 

The superscripts in coefficients c are introduced in order to distinguish their values determined 

under condition that electrodes on the remaining parts of a piezoelement are open circuited from 

commonly determined under condition that they are short circuited. Though the difference be-

tween these values can be neglected, when determining the coupling coefficients. All the pa-

rameters in expressions for coefficients oc

cI  and oc

cII  are known from relations (5.294), (5.295) 

and (5.302). The resulting values of these coefficients are 

 
2

231
332 2 2

31 11 33 33 11

8 1 8 1
,

1 1 / 1 /

oc oc

cI cIIE D D E

k
k

k s s s s
 

 
= =

− + +
. (5.308) 

And the effective coupling coefficient is 

 
2 2 2

332

33 11

8 1

1 /
eff effID E

k k k
s s

=
+

, (5.309) 

where effIk  is the effective coupling coefficient of electromechanical transducer with input I 

that has rigidity ocIK , namely, 

 

1
22

2 31
11 332

31

1
1 (1 / )

8

E D

effI

k
k s s

k


−

 −
= + + 
 

. (5.310) 

If PZT-8 ceramics is used ( 12

11 11.5 10Es −=   m2/N, 12

33 8.5 10Es −=   m2/N, 31 0.3k = , 33 0.64k =  ), 

then 0.08effk = . Thus, such the EME transducer is a poor energy converter due to double en-

ergy transformation. 
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Important characteristic of EME transducer is its turns ratio . As it follows from the 

equivalent circuit in Figure 5.31, the maximum value of the turns ratio is achieved with open 

circuited output, and expression for this value is 

 
3

1 o IIIIoc
tr S

I I eII

nV
N

V V C




= = , (5.311) 

where 

 
3 2 2

/

1 [( / ) ( / )]

rocI II
tr mS

eII ocI m roc roc

f fn n
N Q

C K Q f f f f

=
+ −

. (5.312) 

(In course of the manipulations relation ( / ) (1/ )mL oc m rocr K Q  =  was used). 

Thus, expression for the turns ratio becomes 

 
3 2 2

/

1 [( / ) ( / )]

rocI II
tr mS

eII ocI m roc roc

f fn n
N Q

C K Q f f f f

=
+ −

. (5.313) 

Using definitions (5.307) and considering that ocI ocIIK K  , the first factor in this expression 

can be represented, as 

 
1

3 3

( )
S

oc oc eII II
m cI cII m tr resS S

eII ocI eII

Cn n
Q Q N f

C K C
 



=    = . (5.314) 

and finally 

 
2 2 2

/
( )

1 [1 ( / ) ]

roc
tr tr roc

m roc

f f
N N f

Q f f
=

+ −
. (5.315) 

Here ( )tr rocN f  is the maximum value of the turns ratio that can be achieved at resonance fre-

quency with the open circuited output. For the particular case under consideration expressions 

for oc

ci  are given by formulas (5.307) and for S

eiC  by formulas (5.295). After substituting these 

expressions into (5.315) will be obtained that 

 

2

31
33 312 2 2

33 33 11 33

12 1
( )

1 1 ( / )(1 )
tr roc m E E

kl
N f Q k k

t k s s k
−

=  
− + −

. (5.316) 

(Remember that 2

33 33 33(1 )D Es s k= −  according to (5.102)). The aspect ratio l/t depends on geom-

etry of the piezoelement only, all the rest of the expression isё determined by properties of the 
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ceramics used and by the quality factor of the transducer, in other words by the mechanical 

losses in the EME transducer design. In the above example with PZT-8 ceramics used 

 2( ) 2.7 10 ( / )tr roc mN f l t Q−=  . (5.317) 

 

Figure 5.33: Representation of the EME transducer operating at resonance frequency as the equiv-

alent generator. 

The EME transducer can be represented as equivalent generator regarding the output 2 -2 that 

is shown in Figure 5.33 for the case that the transducer operates at the resonance frequency. 

According to the Thevenin’s theorem the electromotive force of this generator is 

2 1 ( )oc tr rocV V N f= , and the internal impedance must be determined as impedance between ter-

minals 2 - 2 with terminals 1 - 1 short circuited. It can be shown after straightforward manipu-

lations that at the resonance frequency 3/ S

in m cII roc eIIR Q C = , and 3S

in eIIC C . Thus, the rated 

power of EME transducer (maximum output power that can be delivered to the matched load 

Ld inR R= ) is 

 3

2 2
2

max

[ ( )] ( )1

4 4

SI tr roc tr roc
I roc eIIoc

in m cII

V N f N f
W V C

R Q



= = , (5.318) 

where parameter that depends on the EME converter properties may be denoted 
W
  is 

 3

2 ( ) Str roc
roc eIIW oc

m cII

N f
C

Q
 


= . (5.319) 

In the above considered example with coefficient ( )tr rocN f  by formula (5.317) this parameter 

is 

 
3

4 27.3 10 ( / )
S

roc eII
mW oc

cII

C
l t Q




−=  . (5.320) 

Values of 3S

eIIC , roc  and oc

cII  are expressed through parameters of piezoelement by formulas 

(5.295), (5.105) and (5.308), respectively. 

inR inC

1 ( )tr rocV N f

2

2
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Seemingly EME transducers can transform significant electrical power, but the maximum 

(rated) power is limited by dynamic mechanical stress in the piezoelement and its heating, as 

the equal power is dissipated in the form of mechanical losses. The power limited by the me-

chanical strength can be estimated for the case under consideration as follows. Given that at the 

first mode of vibration ( ) sin( / )ox x l  =  and the strain is ( ) ( / )cos( / )oS x l x l  = , at the 

resonance frequency 

 max
o

roc

T Y
l




= . (5.321) 

Here Y would be Young’s modulus of material in case the elastic properties along the mechan-

ical system were uniform. In our example the elastic modulus is 
111/ Es  within one half of the 

bar and 
331/ Ds  within another. For estimations that involve value of maximum permissible dy-

namic stress, 
pdT , which is known approximately, it may be acceptable to use for the Young’s 

modulus the average value 
11 330.5[(1/ ) (1/ )]E D

avY s s= + . Thus, the maximum power limited by 

the dynamic strength is 

 
2 2

2 2

m 2 2

roc
T o mL mL pd

av

l
W r r T

Y





= = . (5.322) 

Note that here 
mTW  is calculated on the mechanical side of the equivalent circuit, because the 

matched load transformed into mechanical contour is equal to mLr , besides 

 
roc eqv roc

mL

m m

M f V
r

Q Q
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= = , (5.323) 

where V  is volume of the piezoelement. Assuming also that (1/ 2 ) /roc avf l Y  , we finally 

obtain for the maximum power density 

 
2

m( / )T roc pd

m av

W V f T
Q Y


=  W/m3. (5.324) 

According to Ref. 2 (see also Ch. 11) it can be taken 25pdT   MPa. For PZT-4 and PZT-8 

ceramics 1110avY   N/m2. Thus, with these ceramics used 

 max ( )

20
( / ) r kHz

m

W V f
Q

  W/cm3. (5.325) 
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It must be remembered that this power can be available at efficiency of electro-electrical energy 

conversion 0.5ee = .This may result in significant overheating of the piezoelement. Increase 

of efficiency can be achieved for expense of the power converted. The trade-off between the 

efficiency and power available is the matter of a particular piezoelectric transformer design. 

5.7.4.3.3 Radially Vibrating Circular Disk 

We will consider only the electromechanical characteristics of the disk that are important from 

the point of view of analysis performed above for the longitudinally vibrating bar piezoelement 

under the assumption that the disk vibrates in the first mode and the electrodes are split at var-

iable radius r (Figure 5.32 (b) in order to determine dependence of parameters of the piezoele-

ment on the radius. Electromechanical characteristics of the radially vibrating circular disk with 

partial electrodes were considered in the preceding Section 5.7.4.2 under the condition that 

electrodes on the remaining part of the disk exist and are short circuited. Specifics of the pie-

zoelement for EME conversion is that the output electrodes are assumed to be open circuited to 

be able to treat the case of arbitrary loaded output. In this section data are presented regarding 

dependencies of relative values of coefficients that characterize effective coupling coefficients 

associated with the partial electrodes from the relative widths / inr r  of electrodes located 

around the nodal lines of higher (with number n) modes of vibration. These data allow one to 

estimate whether is it reasonable to use higher modes of vibration for designing EME with 

partial electrodes of the type shown in Figure 5.32 (c). 

 

Figure 5.34: Equivalent circuit of EME radial disk converter with open circuited output. 

As both input and output parts of the circular disk piezoelements employ transverse pie-

zoeffect, the equivalent circuit in Figure 5.30 simplifies to those shown in Figure 5.34 for open 

circuited output. Status of opposite electrical sides does not influence values of their 

eLIR1,2S

eIC

mLr

eqvM
E

mC
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eLIIR 1,2S

eIICoU



268  5. Electromechanical Conversion 

electromechanical transformation coefficients and capacitances. According to expression 

(5.278) for the inner part confined between the central electrodes 

 31 1
1

1

2

1

E

I E

d aY r r
n

a a





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, (5.326) 

and for the outer part 

 31 1
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E

II E

d aY r r
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a a

 


  = −   −   
. (5.327) 

The respective capacitances are 

 
1,2 2 2

33 (1 ) /
S T

eI pC k r t = −  and 
1,2 2 2 2

33 (1 ) ( ) /
S T

eII pC k a r t = − − . (5.328) 

The equivalent rigidity for the case that the opposite electrical sections are short circuited ac-

cording to (5.271) is 
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E
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
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−
. (5.329) 

With output electrodes open circuited 
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After introducing the coefficients 

 
1,2

2

I
cI S E

eI m

n

C K
 =  and 
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these expressions become 
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 (5.332) 

Here 
m ociK  ( ,i I II= ) are the rigidities determined under condition that electrodes on the op-

posite part are open circuited. Note that coefficients oc

ci  in the previous case were determined 

by formula (5.307) under the condition that opposite terminals are open circuited. Following 

expressions (5.326)-(5.329), 
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where 
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1 2
(1 )

5 1

pE

p

k
A

k

 = +
−

. (5.334) 

For PZT-4 and PZT-8 ceramics 0.42A =  and 0.29. 

The resonance frequency of the piezoelement measured at the input terminals with output 

terminals open circuited is 

 (1 ) 1
E

mocI m
r I cII rsc cII

eqv eqv

K K

M M
   = = + = + , (5.335) 

where rsc  is the resonance frequency of the disk fully covered by electrodes, namely, 

 1
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1

2.05

(1 )

E

rsc E

Y

a


 
=

−
. (5.336) 

Note that the resonance frequency measured at the output terminals with input open circuited 

is 

 1rII rsc cI  = + . (5.337) 

The coefficients ci  are related to the effective coupling coefficients determined under condi-

tion that the opposite terminals are short circuited by formula (5.280), thus, cI  corresponds to 

the effective coupling coefficient of the central part, and cII  to the peripheral part.  

Plots are presented in Figure 5.35 of dependences of coefficients cI  and cII  normalized to 

factor A from relative inner radius of the electrodes. It must be remembered that 

 1
1 1

1

(2.05 / )
( / ) ( / ) 1.74 (2.05 / )

(2.05)
o o o

J r a
r a r a J r a

J
    = = = . (5.338) 

Thus, relation between the effective coupling coefficients of the input and output sections of 

the disk can be changed in a broad range by changing inner radius of the electrodes. At 

/ 0.46r a   the effective coupling coefficients are equal. For PZT-4 they are 0.43effk  . 

Expression for turns ratio of EME converter at resonance frequency that is obtained from 

the general formula (5.314) in this case looks like 
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General formula for the turns ratio may be obtained after substituting expressions (5.328) for 

the capacitances and (5.333) for the coefficients ci . At 0.46r a= , 0.53cI cII A = =  and 

 
0.53

( ) 0.52
1 0.53

tr roc m

A
N f Q

A
=

+
. (5.340) 

In case that PZT-4 or PZT-8 ceramics are used (with 0.42A =  and 0.29), 2( ) 9 10tr roc mN f Q−   

and 2( ) 7 10tr roc mN f Q−  , respectively. 

 

Figure 5.35: Dependences of coefficients  and  normalized to factor A from relative inner 

radius of the electrodes. 

In determining the maximum available output power, the same procedure can be used as was 

demonstrated for the bar piezoelement. In the factual calculations some changes in values of 

parameters involved must be made as follows. In formula (5.323) for mLr  the equivalent mass 

is 1 0.76eqvM M=  according to (5.265), and the resonance frequency roc  has to be determined 

by formula (5.335). Following the expression (5.338) the maximum stress in the center of the 

disk is 

 max 1 1
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T Y Y
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= = , (5.341) 
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In practical designing an advantage may have EME converters that employ the second 

modes of vibration of the considered piezoelements. As the corresponding equivalent parame-

ters were determined in the previous sections, calculations analogous to those performed here 

can be made in a straightforward way. 

Considering issues related to principles of EME transducer designing is out of scope of this 

treatment. The only goal of analysis made in this section is to illustrate technique of estimations 

of properties of a piezoelement employed in such transducers that is based on their equivalent 

circuit representation. Information about different approaches to calculating various piezoelec-

tric transformer designs, and detailed analyses of their parameters can be found in vast literature 

on these issues. See, for example, Ref. 9 and bibliography therein. 

5.8 Equations of Vibration in Geometrical Coordinates 

Solution to the problem of vibration of a piezoceramic body in the generalized coordinates is 

rather general and, in essence, comes down to a formal procedure of determining the equivalent 

parameters, if solution is known to the vibration problem for the identical body made of passive 

material. Yet there are cases, when it is preferable to derive equations of vibration for pie-

zoceramic bodies directly in geometrical coordinates. For this purpose, we will use the varia-

tional principle in the same way, as it was done for bodies made from passive materials in 

Chapter 4. Initially, we will consider the entire volume of the body to be confined between solid 

electrodes so that there are no nonuniformities caused by the absence of electrodes on some 

part of the body, or by a difference in electric conditions on the parts of the electrodes that are 

electrically insulated from each other. Several peculiarities exist in applying the variational 

principle to deriving equations of motion for the piezoceramic bodies.  

Firstly, we must consider density of the internal energy intw  instead of potw , therefore, 

expression for the Lagrangian will be (see (1.96)) 

 –kin int eL w w w= + . (5.342) 

When considering expression (5.34) for the internal energy, iS E

int e mechw w w= + , it should be re-

membered that in calculating 2

33 3 / 2i iS S

ew E=  for a volume element located inside the pie-

zoceramic body, 3E  must be replaced with 3E  in accordance with relation (5.133). (Note that 
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we will further use subscript m instead of mech for brevity, thus, the formula for the internal 

energy will be iS E

int e mw w w= + ). 

Secondly, although the mechanical effects must be considered in the same way as for the 

passive bodies, differences arise in setting the boundary conditions, which must be formulated 

with regard to the piezoelectric effect. Besides, the electrical boundary conditions should be 

also considered. 

For the bodies, motion of which is governed by equation (4.41) (bars in the longitudinal 

and torsional vibrations, plates in vibration in their plane), in the case that they are made from 

the active materials we will use Euler's equations in the form of (4.2) 

 
kin int e

x

w w wd

dt x  
     

− =        
, (5.343) 

where displacement   is a function of the geometry coordinates 

5.8.1 Extensional and Torsional Vibrations of Piezoceramic Bars 

5.8.1.1 Equations of Motion 

We consider one-dimensional vibrations of the bars. Following formulas (5.132) and (5.133) in 

rectangular coordinates we obtain 

 
3 3

0

( )
ei

lS

e
i i

e e

C V n
D S x dx

l l

 = +  , (5.344) 

 
3 3 3

0

( ) ( )
e

i i

l

i i i iS S

e e e

n n
E E S x dx S x

C l C

 

 

 = + − , (5.345) 

where ( ) ( )i i iS x x =  is the working strain and el  is separation between electrodes. For the 

transverse piezoelectric effect 1 1( ) ( )i iS x S x= , el t= , 3 3E E = . For the longitudinal piezoelec-

tric effect 3 3( ) ( )i iS x S x= , and at el l= , 3 3E E  . Inside of a body that is segmented in the 

direction of the electrical lines of force, the expression for 3E  in rectangular coordinates within 

a segment of the length 3x , becomes at 3 0x →  

 
3 3

3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

( ) ( ) [ ( ) ( )]

x x

S S S

e e ex

n n n
E E S x dx S x E S x S x E

C x C C

+
  

  

 = + −  + − =
  . (5.346) 
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Actually, for fulfilment of this condition it is practically sufficient to have not less than 6 

segments on half of wavelength of deformation, as it is shown in Section 5.5.2. The two variants 

differ in principle. 

There is no distribution of strain S  =  along the lines of force, and 3 3E E =  (the trans-

verse piezoelectric effect, the longitudinal piezoelectric effect in a body segmented along the 

lines of force as noted above). In this case 

 ( )int i

E
S E Em
e m

w w
w w K 

   

  = + = =
    

, (5.347) 

and for all the bodies of this kind equation (5.343) coincides with Eq. (4.2) for analogous body 

made from a passive material, if intw  is substituted into the equation instead of 
potw . Therefore, 

all the equations of the kind of Eq. (4.40) also coincide, except that K  should be replaced with 

the respective coefficients EK  taken from Table 5.3, so that 

 2 2/ ( )E Ec K m c = = . (5.348) 

There exists a strain distribution along the lines of force, 3E  and iS

elw  depend on   . These 

are the cases of thickness vibrations of plates and vibrations of solid bars under the longitudinal 

piezoelectric effect. Substituting the value of 3E  from formula (5.346) into the expression for 

iS

ew  and using relations (5.95) and (5.100) in the process of manipulation, we 

 
( ) 2

int

i

i

S E

e m E D

e

w ww n
K K

x x C  
 


 



  +       = = + =         
. (5.349) 

Thus, in this case the equations of motion also coincide with those for similar passive bodies 

under the action of the same system of external forces, if to replace K  by DK , which means 

that 
2c  has to be replaced by 

 2( ) /D Dc K m = . (5.350) 

Since the forces of electromechanical origin do not exist in the equations of motion, they must 

appear in boundary conditions, so far as the electromechanical conversion does take place. 
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5.8.1.2 Boundary Conditions 

5.8.1.2.1 Mechanical boundary conditions 

At first, we will consider the ideal mechanical boundary conditions,  under which no flux of 

mechanical energy flows through the boundaries, i.e., 0eW = . In the variant of the longitudinal 

vibrations these conditions result from the relation 
0,

0
i

e x l
W f

=
= = , in the variant of the tor-

sional vibration – from 
0,

0e f x l
W M 

=
= = . At the free end the displacements and rotations are 

possible, and the conditions 0f = , 0fM =  must be met. Considering Eq. (5.84) in the variant 

of the longitudinal vibrations 

 0, 3 0,( )E

cs x l cs x lf S T S K n E=   == = − , (5.351) 

where from 

 0, 3 / E

x l E n K =   = . (5.352) 

Values of / En K   must be taken from Table 5.3 for a respective case. Thus, 
33( / )En K d  = , 

or 31d , or 
33 33/ Ee c  for a bar under the longitudinal or transverse piezoelectric effect, and for a 

plate vibrating through the thickness, respectively. 

 

Figure 5.36: To the formulation of boundary conditions for a piezoceramic bar intended to vibrate: 

(a) in torsion (on the left-fully active bar, on the right-half passive); (b) in flexure (on the left - 

employing extensional deformations, on the right - employing shear deformations). 

In the variant of the torsional vibration of a piezoceramic bar of square cross section poled 

along its axis x3 perpendicular to the cross section, as shown in Figure 5.36 (a). 
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/2 /2

4 1 1 5 2 2

/2 /2

w w

f

w w

M w T x dx w T x dx
− −

= +  . (5.353) 

(For the energy status of volume element of passive bar under the torsional deformation see 

Sec. 4.2.2, example 6). If there are no electrodes on the side surfaces of the bar, 
4 4 44/ DT S s=  

and 
5 5 44T / DS s= . By virtue of Eq. (4.24), 

34 1 xS x= −  and 
35 2 xS x = . Thus 

 ( )
3 3

/2 /2

2 2

44 1 1 2 2 44

/2 /2

/ ( / )
w w

D D

f x x p

w w

M s w x dx x dx J s 
− −

 
 = + = 

 
  . (5.354) 

It follows from the condition 0fM =  that 
3

0x = . If electrodes are applied to the side surfaces 

2 / 2x w=   and 2 0E  , then 

 
4 4 44 15 44 2 5 5 44/ ( / ) , /E E DT S s d s E T S s= − = . (5.355) 

After substituting these expressions for stresses into formula (5.353), we obtain 

 
3 3

44 44

1 1

2

p E

f x em x emE D

J
M M G M

s s
 

 
 = + + = + 

 
, (5.356) 

where 

 
/2

15
2 1 1

44 /2

w

em E

w

wd
M E x dx

s −

= −   (5.357) 

is the moment of electromechanical origin, 
44 44 44 44( ) / 2E E D E D

pG J s s s s= +  is the torsional rigidity 

of a piezoceramic bar of the square cross section. (Sign minus shows that at the positive 

direction of vector 2E  the generated moment is acting in the anticlockwise direction). 

If the electrodes are applied and connected electrically in such a manner that 2 1( )E x  is not 

an even function, as this is shown in Figure 5.36 (a), then emM   0. In the case that two halves 

of the electrodes are connected in opposite, 3

15 2 44 / 4 E

emM w d E s= − . Given that for square 

cross section 4 / 6pJ w= , from condition 0fM =  we find 

 
3 44 15 2 44 443 / ( )D E D

x s d E w s s = + . (5.358) 

Thus, the effect of electromechanical conversion is equivalent to those produced by the 

force 3em csf S n E=  in case of the longitudinal vibration or by the moment emM  in case of 

torsion, which are acting at the end of the piezoceramic bar. The electric energy that enters 

transducer through the electrodes appears as would be transformed due to electromechanical 
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conversion into mechanical energy that enters through the ends. These energies are 

3 0,em cs x l
W S n E  =

=  and 0,em em x lW M  ==  for the longitudinal and torsional vibrations, re-

spectively. 

On the fixed end the conditions 0 =  and 0 =  coincide with those for a passive body. 

No transformation of the electric energy into the mechanical energy that flows through the fixed 

end takes place, since at this end 0emf  =  and 0emM  = . Thus, piezoceramic bar with fixed 

ends and with unipolar electrodes that fully cover the side faces is electromechanically passive. 

This fact was noted also, when considering examples in Section 5.8, where an explanation was 

made based on analysis of the quantity emW  by representing strains, as expansion in terms of 

natural vibration modes (see Figure 5.23). In order to make the electromechanical conversion 

efficient under the fixed boundary conditions, or in order to increase its efficiency under con-

ditions (5.349) and (5.358), the electrodes configuration and electrical connections must be 

modified, as it was recommended in Section 5.8. The simplest way to achieve this is just to 

remove the portions of electrodes near the edges, or to separate the electrodes at the nodal lines 

of the strain distribution and connect their adjacent portions in reversed polarity. In both cases 

the equations of vibration must be written for each segment of the body with changed electrical 

boundary conditions, and mating conditions must be met at the boundaries between the seg-

ments. Thus, for example, for bars of the design shown in Figure 5.22 equations of vibration 

for segments 1 and 3 must be formulated as for the passive parts with propagation speed 

/c Y = , where Y and   are parameters of not polarized ceramics, strictly speaking. For 

segment 2 the propagation speed has to be determined, as for the active piezoelement: 
Ec  for 

the designs in Figure 5.22 (a) and (c), and 
Dc  for the design in Figure 5.22 (b). (Note that 

Figure 5.22 (a) is replicated as Figure 5.37 (a)). Analogous approach can be used regarding 

more general transducer design, in which case the passive parts of a bar have different cross 

sections, as shown in Figure 5.37 (b), under the assumption that these parts vibrate in the piston 

like mode (uniformly in plane of a cross section). Materials of the passive parts can also be 

different. 

For this design the mating conditions for the longitudinal vibrations are 

 1 1 2 1 2 2 3 2( ) ( ), ( ) ( )l l l l   = = , (5.359) 

 1 1 1 2 2 2 2 2 2 3 3 2( ) ( ), ( ) ( )cs cs cs csS T l S T l S T l S T l= = . (5.360) 
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In the example of Figure 5.37 (a) 1 2 3cs cs csS S S= = . Due to the piezoelectric effect in the middle 

segment of the bar, 2T  should be used in the form that for a general case is represented by 

expression (5.84). If this is taken into account, then for the particular case of a bar the conditions 

(5.360) will be transformed to 

 
1 11 1 2 2 3( ) ( )E

cs x l cs x lS K x S K x n E  =  = 
   = −  , (5.361) 

 
2 23 3 2 2 3( ) ( )E

cs x l cs x lS K x S K x n E  =  = 
   = −  . (5.362) 

For the design shown in Figure 5.22 (b) (with longitudinal piezoeffect on the active part) in 

these expressions EK  should be replaced by DK . 

 

Figure 5.37: The transducer design with passive parts having the same (a) and different (b) cross 

sections as the piezoelement has. 

In the variant of the torsional vibrations displacement   in the mating conditions must be 

replaced by the angle  , and the force csf S T=  must be replaced by the moment 
fM . Finally, 

for the cross section with coordinate 1x l=  condition (5.362) becomes 

 
1 11 44 1 2 44 44 44 44 2( / ) ( ) ( ) / 2 ( )E D E D

p x l p x l emJ s x J s s s s x M = =  = + +  , (5.363) 

where 44(1/ )s =  is the shear modulus of the passive material. 

5.8.1.2.2 Electrical boundary conditions 

Electrical boundary conditions may be ideal, if 0elW VI = = , and not ideal, if 0elW  . In gen-

eral, using relation (5.344) we obtain for one-dimensional longitudinal vibrations of a solid 

piezoelement 

  3 2 1 2 1( ) ( ) ( ) ( )i i

el

S Sel el
el e e

e eS

n S n S
I D dS C V l l j C V U l U l

l l
  = = + − = + −    , (5.364) 

where 2 1el l l= − , and elS  is area of the electrode. If to substitute values of the velocities 1( )U l  

and 2( )U l  into this equation, the input admittance of a transducer can be found, as /inZ V I= . 
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Under the torsional vibration strains 4S  do not change in the direction of lines of force of 

the electric field 2E , therefore, 2 2E E = , and expression for 2D  coincides with those in local 

piezoelectric equation, namely, 

 
2 24 44 4 11 2 24 44 3 1 11 2( / ) ( / ) ( )E T E TD d s S E d s x x E  = + = + . (5.365) 

Considering that halves of the electrodes in Figure 5.36 (a) are connected in parallel, we obtain 

  
2

11 24
2 2 1

44

( ) ( )
4

T

el
el E

S w d
D dS V l l

w s


= + −  . (5.366) 

Results for the ideal electric boundary conditions can be obtained from expressions (5.364) and 

(5.366). Thus, with open electrodes 0I = , and substituting ocV V=  in relation (5.364), we ar-

rive at 

  2 1 1 2( ) ( ) ) ( ) ( )
i i

el el
oc S S

e e e e

n S n S
V l l U l U l

l C l C
  = − − = −   . (5.367) 

Note that condition 0I =  is not equivalent to 3D  = constant, since equalizing currents can flow 

in a piezoelectric element with open electrodes, as they do in the case of the transverse piezoe-

lectric effect. With the electrodes short circuited it should be assumed that 0V =  in formula 

(5.364). In this case 3 0E =  (recall that 3E  is the electric field generated in a clamped body by 

voltage applied between the electrodes). Under the transverse piezoelectric effect and in a suf-

ficiently segmented piezoelement 3 3 0E E = = . Under the longitudinal piezoelectric effect in a 

solid (not segmented) piezoelement 3 0E  , as it follows from the relation (5.133) by assuming 

that 3 0E = . 

5.8.2 Equations of Flexural Vibrations and of the Radial Vibrations of a Circular 

Disk 

Equations for the flexural vibrations of piezoceramic beams and plates and for the radial vibra-

tions of the piezoceramic disks can be derived directly from the variational principle in the form 

of (4.42), with Lagrangian taken in the form (5.342). Equations of motion can be obtained by 

using procedure analogous to that used for deriving Eqs. (4.48) and (4.188) for flexural vibra-

tions of beams and circular plates and Eq. (4.160) for radial vibration of the circular disk. As a 

result it may be concluded that in these cases equations of vibration for the piezoceramic bodies 
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fully coincide with the equations for the passive bodies of the same configuration, if to replace 

in the latter K  by EK  (c by 
Ec ) for the transverse piezoelectric effect and for the longitudi-

nal piezoeffect in the beams in case that they are sufficiently segmented along the electrical 

lines of force. In all the cases forces of the electromechanical origin are not presented in the 

equations of vibration. They are accounted for by the boundary conditions that must be formu-

lated regarding the piezoelectric effect. 

5.8.2.1 Mechanical Boundary Conditions 

The ideal mechanical boundary conditions for Eq. (4.160) of radial vibration of the pie-

zoceramic disk may be obtained assuming that there is no energy flux through the edge of the 

disk, i.e., ( ) 0e rW f a= = , where from follows that either ( ) 0r a = , if the edge is fixed, or 

0b rrf S T= = , if it is free. Here bS  is the area of the boundary surface of the disk. Considering 

Eqs. (5.11) and (5.12) we obtain condition for 1rrT T=  in the form 

 
31 3 31 311 12

1 1 22 2

11 12 11 11 12 11 12

0
E E

emE E E E E E E

d E d Es s
T S S T

s s s s s s s

 
= − − = − = − + + 

. (5.368) 

Thus, the edge that is free from external action would be under the action of forces of the 

electromechanical origin em b emf S T= , and electric energy supplied to the disk is transformed 

into mechanical energy 

 
31 3 11 12( ) / ( )E E

em b rW S d E a s s= +  (5.369) 

that flows into the disk through its boundary surface. With the fixed boundary 0emW =  due to 

( ) 0r a = , and the disk is electromechanically passive. 

Consider now the boundary conditions for a beam in flexure (Eq. (4.48)). The ideal me-

chanical boundary conditions at the ends of the beam follow from the condition that an external 

flux of mechanical energy is absent. Thus, from expression (4.52) 

 0e fW M Q = + = . (5.370) 

The values of moment and shearing force 
fM  and Q  (see Figure 5.36 (b)) are related to me-

chanical stresses at the ends of a beam according to formulas 
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1 3 3 5 3

/2 /2

,
t t

f

t t

M w T x dx Q w T dx
− −

= =  , (5.371) 
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where 1T  and 5T  are the normal and shear stresses. It follows from Eq. (5.84) that for the 

transverse piezoelectric effect 
1 1 11 31 3 3 11/ ( ) /E ET S s d E x s= − , where 1 3 3S x  = −  (see formula 

(4.28)). Thus, we obtain 

 
/2

31
11 3 3 3 3 3

11 /2

( / ) ( )
t

E

f E

t

wd
M J s E x x dx

s


−

= −  . (5.372) 

The second term vanishes, and no electromechanical conversion takes place, if 3 3( )E x  is an 

even function. The function 3 3( )E x  must be non-symmetrical relative to the central plane of a 

beam. If the beam is mechanically uniform, this function must be odd. This can be achieved, if 

the bar consists of two bonded layers connected so that directions of vectors E  and P coincide 

in one half and are opposite in the other half, e.g., as it is shown in Figure 5.36 (b). Assuming 

that 3 3 3 3( ) ( )E x E x= − , we obtain 

 2

11 3 31 3 11 11 3( / ) / 4 ( / )E E E

f emM J s d E t s J s M  = − = − . (5.373) 

In the expression (5.371) for Q the stress 5T  must be substituted from Eq. (5.8), i.e., 

 
5 5 1  E

44 15T c S e E= − , (5.374) 

where following Eq. (4.33) 

 2 2

5 3 3( / 4 ) / 2S t x  = − . (5.375) 

Thus, 

 
44 3 15 1

EQ Jc e wtE = − , (5.376) 

i.e., the electromechanical conversion generates a shearing force only with 01E  , as shown 

in Figure 5.36 (b). For this purpose, upon poling the piezoelement in the direction 3x  the work-

ing electrodes must be applied to the surfaces perpendicular to axis 1x . In this case the electro-

mechanical conversion is possible because of shear strain arising on the contour of the plate. 

In the case of the simply supported end ( 0fM = , 3 0 = ) and of the free end ( 0fM = ,

0Q = ) it follows from formula (5.373) that at 3 0E   the boundary conditions are 

 3 31 33 /d E wt  = . (5.377) 

(Remember that for the beam with rectangular cross section 
3 /12J wt= .) The same conclusion 

can be made, as in the case of the longitudinal vibration, that the electrical energy that is coming 



5.8. Equations of Vibration in Geometrical Coordinates  281 

through the electrodes would be transformed into the mechanical energy, 3em emW M  = , gen-

erated by the equivalent moment emM  acting on the boundary. 

At the fixed end ( 3 0 = , 3 0  = ) 0emW = , and no energy transformation takes place. The 

piezoceramic beam with two fixed ends is electromechanically passive. The boundary condi-

tions for Eq. (4.187) of flexural vibrations of the circular plates may be formulated in the way 

analogous to those for the beams. 

5.8.2.2 Electrical Boundary Conditions 

The electrical boundary conditions may be formulated based on the expression for current 

through a transducer. For each particular case, the charge density D is determined by formula 

(5.132). Thus, in the case of axially symmetric vibrations in the plane of a circular disk (trans-

verse piezoeffect), 

 1,2 31
3 33 3

11 12

S r r

E E

d
D E

r rs s

   = + + +  
. (5.378) 

For the flexural vibrations of a rectangular bar per half of its thickness 
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11 3
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s x
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= − +


. (5.379) 

For the flexural vibrations of a circular plate per one half-plate 

 1,2

2

31 3 3
3 33 3 2

11 12

1
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S

E E

dt
D E

r rs s r

 


  
= + + +  

. (5.380) 

Substituting solutions of equations of vibration for the displacements 3  into expressions for 

charge density, we will obtain electrical boundary conditions in the form of expression for cur-

rent 

 
3

el

el

S

I D dS=  . (5.381) 

The manipulations with this equation are straightforward, and the results obtained may be ana-

lyzed, as this is done in Section 5.8.1.2.2. 

It is noteworthy that considering transducers vibration problems in geometrical coordinates 

it is difficult to determine, what measures can be taken for increasing efficiency of 
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electromechanical conversion without recourse to the concept of solution in terms of the gen-

eralized coordinates, as it was previously illustrated. For example, it is hard to predict how the 

dimensions of electrodes and way of connecting their parts must be modified to optimize effi-

ciency of electromechanical conversion for various transducer types. Even more challenging is 

that in these cases we would have to set up and to solve equations of types (4.47), (4.187) and 

(4.159) for segments of a mechanical system that belong to the partial electrodes, and to mate 

them at the boundaries of the segments. Due to these complications, it is much simpler to solve 

the corresponding problems in generalized coordinates from the very beginning. 

An exception in this respect presents solution of equation (4.40) that is applicable to widely 

used designs of the type schematically shown in Figure 5.37 (b). The solution allows convenient 

interpretation in the form of the equivalent electromechanical circuit, which enables consider-

ing various loading of the transducers ends and changing the dimensions and ways of connect-

ing the electrodes. Such the solution for the passive mechanical systems is illustrated in Section 

4.3.3 with T-network mechanical equivalent circuit displayed in Figure 4.6 (a). Consider this 

approach for analogous mechanical systems that are fully or partially made of piezoelements. 

5.8.3 Equivalent Three-Port Network of a Longitudinally Vibrating Piezoceramic 

Bar 

Refer to Eq. (4.90) of the steady state harmonic longitudinal vibrations. The general solution of 

this equation for a passive bar has the form of Eq. (4.91). In order to obtain solution for a 

piezoceramic bar, we must replace therein the wave number k by 
Ek  (c by 

Ec ) for solid bars 

that employ the transverse piezoeffect and for the segmented bars (with sufficient number of 

segments according to Section 5.5.2) under the longitudinal piezoeffect, and by 
Dk  (

Dc ) for 

the solid bars under longitudinal piezoeffect. In addition, the electromechanical boundary con-

ditions (5.352) must be taken into account as well as mechanical boundary conditions. The latter 

arise in presence of the loads and forces acting on the ends of the bars in the form of Eqs. (4.96) 

and (4.97). At first, the solid piezoceramic bars performing longitudinal vibrations will be con-

sidered. Results of the analysis will be valid for all mechanical systems, for which Eq. (4.90) is 

applicable, if appropriate values of coefficients n , iS

eC   and EK are used. For the piezoceramic 
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bars under the transverse piezoeffect with full size electrodes ( el l= ) the boundary conditions 

obtained by combining Eqs. (4.96), (4.97) and (5.352) will be 

 0 0 0 30 0
( )E

cs csx x
K S x Z F n S E  = =

 = − − + , (5.382) 

 3( )E

cs l l l csx l x l
K S x Z F n S E  = =

 = − − + . (5.383) 

Note that the sign of the strain at the left end of a bar (at x = 0) must be changed to opposite due 

to the accepted rule of signs (see Section 1.5.2 and 4.3.3), and the signs of the displacements 

and forces must be changed accordingly. In case of the longitudinal piezoeffect DK  must be 

used instead of EK . Variants with the transverse and longitudinal piezoeffects will be consid-

ered separately in further discussion, since in these cases the values of 3 0,x l
E

=
  are different. 

Namely, for the transverse piezoelectric effect 3 3 /E E V t = = , and for the longitudinal piezoef-

fect 

 
3 3

3
3 0 0( ) ( )l lS S

e e

NnV V
E U U

l lC l j C
 






 = + + = + + , (5.384) 

as it follows from the general relation (5.346) with taking into account that 
33 33/ En d s =  and 

3 2

33 33(1 )S T

eC k = − . (Note that the signs of displacement 0  and velocity 0U  are already 

changed to opposite.) In Eq. (5.384) 

 
3 33 33/ EN wtd s l=  and 3 2

33 33(1 ) /S T

eC k wt l= − . (5.385) 

Expression for the current flowing through transducer can be presented in the form 

analogous to Eq. (5.364) 

 
0( )iS

e i lI j C V N U U= + + , (5.386) 

where for the transverse piezoeffect ( 1i = ) 

 1 2

1 31 11 33 31/ , (1 ) /SE T

eN wd s C k wl t= = − , (5.387) 

for the longitudinal piezoelectric effect ( 3i = ) 3N  and 3S

eC  are given by formulas (5.385). Sub-

stituting expressions for ( )x  from Eq. (4.94) and for 3E  into the boundary conditions (5.382)

, we obtain relations similar to those presented by Eqs. (4.98) and (4.99). After introducing the 

designations for impedances according to formulas (4.100) we will obtain equations: 

 
1 0 2 0 0 0 1( )E E

l oZ U U Z U Z U F VN+ + + + = , (5.388) 
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1 0 2 1( )E E

l l l l lZ U U Z U Z U F VN+ + + + = , (5.389) 

for the transverse piezoelectric effect, and 

 
3

2

3
1 0 2 0 0 0 0 3( )D D

lS

e

N
Z U U Z U Z U F VN

j C
 

− + + + + = 
 

, (5.390) 

 
3

2

3
1 0 2 3( )D D

l l l l lS

e

N
Z U U Z U Z U F VN

j C
 

− + + + + = 
 

, (5.391) 

for the longitudinal piezoelectric effect. Designations for the impedances in above equations 

are analogous to those introduced by relations (4.100). Namely, they are 

 
1 / sin( )E E E

csZ j c S k l= − , 
2 tan( / 2)E E E

csZ j c S k l= , (5.392) 

 
1 2/ sin( ), tan( / 2)D D D D D D

cs csZ j c S k l Z j c S k l = − = . (5.393) 

Equations (5.388) – (5.391) for the transverse and longitudinal piezoeffect in combination 

with Eq. (5.386) for the electrical side solve the problem of the transducers calculating. 

 

Figure 5.38: Equivalent electromechanical three-port networks: (a) for the transverse piezoeffect, 

(b) for the longitudinal piezoeffect, (c) schematic representation of the networks. 

Comparing these equations with analogous equations for a passive bar, which were asso-

ciated with the two-port network shown in Figure 4.6, we arrive at the conclusion that the 

equivalent electromechanical circuits describing vibrations in the piezoceramic bars can be rep-

resented in analogous way. The difference is that one more port must be introduced accounting 

for the effect of electromechanical conversion as it is shown in Figure 5.38 (a) and (b). The 

effect of electromechanical conversion is provided by introducing the ideal transformers with 
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electromechanical transformation ratios iN  and by appearance of the “negative compliance” 

3 2

3/S

eC C N= −  in the case of longitudinal piezoeffect. Note that for a segmented bar under the 

longitudinal piezoeffect with number of segments more than 6 the circuit shown in Figure 5.38 

(a) is valid, if to replace 1N  by 3N  and 1S

eC  by 3S

eC . 

Instead of the three-port networks shown in Figure 5.38 (a) and (b) their schematic representa-

tions shown in Figure 5.38 (c) may be used for brevity. Correlation between the input electrical 

(V, I) and output mechanical (Ul, U0 and hence also (x)) quantities and vice versa can be found 

for various mechanical loads and electrical conditions using cascade connection of such cir-

cuits. To illustrate application of the cascade connection of the simplified networks consider 

several examples of piezoelements presented in Figures 5.39 and 5.40 that previously were 

treated in the generalized coordinates. In these examples the cascade connection of the 

 

Figure 5.39: Variants of the piezoelements design and their corresponding cascade equivalent cir-

cuits representations: (a) piezoelement with partial electrodes, (b) piezoelement with split elec-

trodes. 

equivalent circuits can be used in the way, as it is illustrated in the Figures, instead of solving 

new equations of motion and considering mating conditions on the boundaries of the parts hav-

ing different elastic and electromehcanical properties. The example presented in Figure 5.39 (a) 

corresponds to transducer in the form of a piezoceramic bar cemented with passive parts, and 

those presented in Figure 5.39 (b) corresponds to a piezoelement with electrically separated 

electrodes, to which different voltages can be applied. There is no need to consider analytically 

the mating conditions (5.361), (5.362) to be met over cross sections with the coordinates 1x  

and 2x . In the circuits shown in the Figure they are met automatically. The vibration velocities 

of these cross sections correspond to the "currents" 
1( )U x  and 

2( )U x  in the respective 
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branches of the equivalent circuit. Various voltages can be applied to the separated parts of the 

electrodes in Figure 5.39 (b). The case of electrical connection of the electrodes in the opposite 

polarities, which is shown in the Figure, illustrates how the effects of different electrodes ar-

rangement on the frequency response and quality of the electromechanical conversion can be 

considered for a transducer in the shape of a bar. 

 

Figure 5.40: The equivalent circuit of the Rosen-type EME converter: (a) full size equivalent cir-

cuit, (b) cascade representation. 

Slightly changed circuits arrangement that is shown in Figure 5.40 represents the equiva-

lent circuit of the Rosen-type EME converter that was considered in Section 5.7.4.3 using rep-

resentation in the generalized coordinates. In this case the half-bar that employs the longitudinal 

effect is presented as mechanical load for the input half-bar vibrating in the transverse mode. 

Advantage of the current approach is in its ability to perform calculation of transducer 

operating characteristics in a broad frequency range and universality in meeting mating and 

boundary conditions. But the universal nature of this technique comes for expense of physical 

clarity and simplicity of calculations in generalized coordinates in many practically important 

cases, in which this universality is not needed. In particular, these are the cases of operating in 

the frequency ranges around resonance frequencies and in a wide range below the first reso-

nance. 

In this chapter the general questions regarding electromechanical conversion in the piezo-

electric ceramic bodies were considered. The transducer examples were involved for purposes 
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of illustrating different aspects of the problem. The electromechanical transducers of different 

type under specific loading and acting forces that are typical for their applications to underwater 

acoustics will be analysed in detail in Part III of the treatment. Prior to this the issues related to 

interaction of electromechanical transducers with acoustic field will be considered in the next 

chapter. 
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CHAPTER 6 

ACOUSTIC RADIATION 

6.1 Introduction 

6.1.1 Scope of the Chapter 

In this Chapter the acoustic field related parameters of electromechanical transducers that are 

necessary for their calculation as electroacoustic transducers are considered. Typical geometries 

and wave sizes of radiating surfaces are listed, and expressions for the acoustic field related 

parameters are summarized. Unfortunately, there is no such a literature source on the radiation 

problems, with reference to which all the needed parameters of transducers can be readily ob-

tained. Though a great number of references exists, in which various radiation problems are 

solved for different purposes. To make it easier using the results available, a brief information 

on the general theory of radiation and on the methods of solving radiation problems is presented. 

In terms of statement of the radiation problems we will define transducer as a part of transmit 

or receive system that operates with a single power amplifier or preamplifier. It can be made of 

a single piezoelement, or of several mechanically isolated parts (elementary transducers). The 

latter variant can be used out of technological considerations, or in order to avoid harmful ef-

fects of coupled vibrations in the mechanical system of a transducer. We will assume that all 

the elementary transducers are supplied with the same voltage, if they are connected in parallel, 

or with the same current, if connected in series. When considering radiation of a transducer we 

will assume that all the comprising elementary transducers vibrate with no amplitude and phase 

distributions imposed intentionally. Though an unintended not uniform distribution of veloci-

ties over the transducer surface may occur in the case that the transducer is comprised of several 

mechanically isolated parts as result of their acoustic interaction. Therefore, the acoustic inter-

action between elementary transducers is also considered among the radiation problems. 
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6.1.2 Geometries and Wave Sizes of Radiating Surfaces 

Typical configurations of radiating surfaces of the transducers can be classified in several 

groups, as shown in Figure 6.1. The following types of mechanical systems of transducers and 

configurations of their radiating surfaces will be considered. 

 

Figure 6.1: Configurations of the transducers radiating surfaces: (a) cylindrical surfaces, (b) spher-

ical surfaces, (c) flat surfaces. 

Cylindrical transducers made of solid piezoelectric ceramic cylinders or composed of the 

elementary ring transducers (Figure 6.1(a.1)). The transducers may employ different circum-

ferential modes of vibration, among which the “pulsating” (zeroth mode) and “oscillating” (first 

mode) are the most widely used. Transducers comprised of the rings performing flexural vibra-

tions (solid and slotted) and of the incomplete rings also fall in this category. A part of radiating 

surface of the transducers of this kind may be covered with a baffle for achieving unidirectional 

radiation in the horizontal plane (Figure 6.1(a.2)). The models of infinitely long cylindrical 

radiator and of the transducer of a finite height embedded into infinitely long rigid cylindrical 

baffle of the same diameter are useful for approximate estimation of acoustic field related 

z z z

(a.2)

(b2)

(c.3)

(a.1) (a.3)

(b.1)

(c.4)(c.2)(c.1)
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parameters of cylindrical transducers, though the real transducers have a finite height, as shown 

in Figure 6.1(a.3). 

Spherical transducers made of piezoelectric ceramic spheres (Figure 6.1(b.1)). They may 

be used in the pulsating and oscillating modes of vibration (employment of the higher modes 

can be also imagined). The spherical transducers can be partially baffled for achieving the uni-

directional radiation (Figure 6.1(b.2)). 

Transducers with flat radiating surface. Piston like pulsating transducers (Figure 6.1(c.1)) 

and the flexural type transducers made of circular or rectangular plates vibrating with nonuni-

form distribution of velocity over radiating surface (Figure 6.1(c.2)). Being used in the double 

sided design they can be considered as embedded flash into the infinite absolutely rigid baffle 

due to symmetry. Dimensions of a single elementary transducer of the flexural type usually are 

small compared with acoustic wavelength. Transducers of this type having one sided design 

can be used with the finite size baffles flash with their radiating surface (Figure 6.1(c.3)). The 

widest used transducers with piston like vibrating surfaces are the transducers of the Tonpilz 

design. Their radiating surface may have circular or rectangular (square) configuration with 

dimensions typically less than / 2 . When used as a single projector the transducer can be 

supplied with a baffle, as shown in Figure 6.1(c.4). 

Transducers with flat radiating surface vibrating in the “piston like” mode with their back 

side baffled (Figure 6.1(c.4)). They can be made of the rectangular piezoceramic bars or circular 

plates vibrating through their thickness. In this case the transducers have relatively high oper-

ating frequencies, and dimensions of the radiating surfaces may reach many wavelengths, as 

for example, in transducer for side scan sonar (though such size is more typical for the arrays, 

but this case falls into category of a transducer by our classification). 

A brief outline of parameters of transducers that are needed for their calculating as electro-

acoustic and their general definitions will be considered in the next section. Partially these is-

sues were considered also in Part I. 
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6.1.3 Acoustic Field Related Parameters of Transducers 

6.1.3.1 Transducers Having a Single Mechanical Degree of Freedom 

Transducers of this kind have a fixed velocity distribution on the radiating surface in operating 

frequency range that can be represented as 

 ( , ) ( ) ( , )oU U    = r r , (6.1) 

where r  is the radius vector defining the points on the transducer surface   shown in Figure 

6.3 and oU  is the velocity of the reference point on the surface that has radius vector or . 

 

Figure 6.2: Illustration of the mechano-acoustic system consisting of the surface of radiating trans-

ducer #1 and pulsating sphere of a small radius # 2. 

Note that all the quantities in this chapter will be used in the complex form. The sound pressure 

in the radiated acoustic field, ( )P r , and on the transducer surface in particular, ( )P r , has to 

be determined by means of the acoustic radiation theory so far as distribution of velocity on the 

transducer surface is known as one of the boundary conditions. 

6.1.3.1.1. Sound Pressure and Diffraction Coefficient 

The sound pressure generated by a vibrating surface may be represented in general form as 

 ( /2)( , ) ( , )j kr

o

c
P U e

r

  − −=r r , (6.2) 

where function ( , ) r  depends on the radiating surface configuration and mode of vibration. 

We will refer to this function as the diffraction function of a transducer in the transmit mode. 

In the far field this function becomes independent of distance r and represents the directional 

factor of the transducer, ( , )H r , 

or
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r
. (6.3) 

Here nr  is the radius vector pointed in direction of acoustic axis of the transducer. 

For uniformly vibrating (pulsating) spherical radiator of radius a (see Section 2.2) 
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and the diffraction function is 

 
2

1

jkaka
e

jka
 −=

+
. (6.5) 

Further we introduce concept of the “referred volume velocity,” 
V r

U , for an arbitrary vibrating 

surface defined as 

 
oV r

U U S= , (6.6) 

where S  is the total area of the radiating surface. This quantity does not depend on the mode 

of vibration in contrast to the “real” volume velocity, or to the source strength, which is defined 

as 

 ( )o o avV
U U d U S



=  = r . (6.7) 

Here 

 ( )avS d 



=  r  (6.8) 

is the average radiating surface area. Thus, for the oscillating sphere 24oVr
U U a= , whereas 

0
V

U = . In the case that the wave size of the sphere is small ( 0ka→ ), it follows from expres-

sions (6.4) and (6.6) that sound pressure generated by the sphere is 

 ( /2) 2 ( /2)

0

1

2

j kr j kr

o V r

c c
P e U ka e U

r r

  


− − − −= = . (6.9) 

The ratio of the sound pressure generated by an arbitrary transducer to the sound pressure 

generated by a small pulsating sphere that has the same referred volume velocity we define as 
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the diffraction coefficient of the transducer in the transmit mode, 
.dif tk . Using expressions (6.2) 

and (6.9), we obtain 
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In the case of the spherical transducer 
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6.1.3.1.2. Radiation Impedance 

The acoustic power radiated by a transducer can be found by integrating the acoustic power 

density *( ) ( )P r U r d    over the transducer’s radiating surface . In the complex form the 

acoustic radiating power is 

 
* *( ) ( ) ( ) ( )ac oW P U d U P d   

 

=  =  r r r r , (6.12) 

where the sound pressure ( )P r  on the transducer surface has to be determined by expression 

(6.2). The acoustic power radiated can be represented in the form 

 
2

ac ac oW Z U= , (6.13) 

which can be considered as the definition for the transducer radiation impedance, acZ . Equating 

expressions (6.12) and (6.13) we obtain 

 
1

( ) ( )ac

o

Z P d
U

 


=   r r . (6.14) 

In the case that projector is composed of several elementary transducers the radiation imped-

ance of the elementary transducers can be different under the assumption that their velocities 

are the same since under this assumption the sound pressure on the surface of the transducer 

may have nonuniform distribution. If the transducer has a solid mechanical system, then the 

sound pressure is averaging on its surface, which results in some value of the radiation imped-

ance determined by formula (6.14). The elementary transducers, for which the averaging of 

pressure takes place on their surfaces, may have different radiation impedances. This may cause 

a difference in the velocities of vibration of the elementary transducers under the same voltage 
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applied, which contradicts the initial assumption regarding uniformity of their vibration. To 

make possible calculating a real distribution of velocities between the elementary transducers 

in this case the mutual radiation impedances between the transducers are introduced. 

The mutual impedance between two elementary transducers in assembly vibrating with the 

same velocity distribution 0 ( )U U = r  can be determined by the expression (Refs. 25, 26) 
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U
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=  r r , (6.15) 

where 1 2( )P r  is the sound pressure generated by transducer #1 on the blocked surface of trans-

ducer #2 at the condition that all the other members of the assembly also are blocked. 

6.1.3.1.3 Directivity of a Transducer (D). 

The property of a real transducer to generate in the far field larger intensity in direction of 

acoustic axis in comparison with intensity that omnidirectional transducer radiating the same 

acoustic power would generate in the same point is called directivity (D) (or the coefficient of 

acoustic energy concentration). According to this definition 
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where ( , )tr nP r  is given by expression (6.2), nr  is the radius vector pointed in direction of 

acoustic axes of the transducer (direction of maximum of the directional factor) and omniP  is the 

sound pressure generated in the same point by an omnidirectional transducer. Values of the 

sound pressures should meet the condition that the total active acoustic powers radiated are the 

same in both cases. For the directional transducer 
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where   is the solid angle and integration is assumed over the sphere of radius r. For the 

omnidirectional transducer after integrating over the sphere of the same radius we obtain 
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Equating relations (6.17), (6.18) and using the definition (6.16) we arrive at expression for the 

directivity 
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Useful correlation can be obtained between the radiation resistance, acr , directivity and value 

of the diffraction function in direction of acoustic axis, ( , )n r . Following expression (6.2), 

 

2
2 2 2

( , ) ( , )tr n o n

c
P U

r

   =   
r r . (6.20) 

Combining this expression with (6.17), (6.19) and the alternative expression for the acoustic 

power 

 
2

actr ac oW r U= , (6.21) 

we arrive at the relation 

 
21

4 ( , )ac nr c
D

  =  r . (6.22) 

This formula can be useful for determining the directivity in the case that the radiation resistance 

and the value of the diffraction function on the acoustic axis of a transducer are known. 

6.1.3.1.4 Equivalent Force and Diffraction Coefficient in Receive Mode 

In the receive mode the acoustic field constitutes the source of energy, amW , supplied to the 

transducer. The mode of vibration of the transducer mechanical system under action of acoustic 

field is expressed by the same formula (6.1) as for the transmit mode, due to condition that the 

system has a single degree of freedom. Therefore, the acoustomechanical power in the complex 

form can be determined as 

 
* *( ) ( ) ( ) ( )am oW P U d U P d   

 

=  =  r r r r , (6.23) 

where ( )P r  is the sound pressure on the surface of the transducer. The sound pressure may be 

represented as 

 ( ) ( ) ( )U

brP P P  = −r r r , (6.24) 

where ( )UP r  is the sound pressure on the blocked transducer surface (at 0U = ) and ( )brP r  

is the sound pressure due to the back radiation generated by vibration of the transducer surface. 

Upon substituting expression (6.24) for ( )P r  into Eq. (6.23) we obtain 
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* *( ) ( ) ( ) ( )U

am o o b rW U P d U P d    
 

= −  r r r r , (6.25) 

or 
U

am am acbrW W W= − . (6.26) 

The second term on the right side of the relation (6.25) is the acoustic energy of the back radi-

ation, and it can be represented as 

 
2

acbr ac oW Z U= , (6.27) 

where acZ  is defined by formula (6.14). We denote the integral in the first term as the equiva-

lent force, eqvF . Thus, 

 ( ) ( )U

eqvF P d 


=  r r , (6.28) 

and from relation (6.26) follows that 

 
*U

am o eqvW U F= . (6.29) 

Now the expression (6.26) for the acoustomechanical power can be rewritten in the form 

 
*( )am eqv ac o oW F Z U U= − . (6.30) 

On the other hand, if to denote the input impedance of the mechanical system as mZ , the power 

supplied to the mechanical system is 

 
*

am m o oW Z U U= . (6.31) 

Comparing relations (6.29) and (6.30) we arrive at 

 ( )m ac o eqvZ Z U F+ = . (6.32) 

This relation may be interpreted by the circuit of “acoustomechanical generator” with mecha-

nomotive force eqvF  and internal impedance acZ , which is equivalent to action of the acoustic 

field. Calculating the equivalent force, eqvF , is the subject of radiation theory. In the case that 

dimensions of a transducer are small compared with the wavelength of sound, we have 

0( ) ,UP P r  where 0P  is the sound pressure in the propagating wave, and 

 
0 0( )eqv avF P r d P S 



=  = . (6.33) 
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If the dimensions of the transducer are comparable with the wavelength, the equivalent force 

may be represented as 

 0eqv dif rF P k S= , (6.34) 

where 
dif rk  is the diffraction coefficient in the receive mode and S  is the total radiation surface 

area. The diffraction coefficient dif rk  may be calculated by equating the formulas (6.34) and 

(6.28) after the sound pressure distribution ( )UP r  is found by solving the diffraction problem 

for the blocked transducer surface. But in fact, if the radiation problem is already solved, the 

diffraction coefficient dif rk  can be determined by applying the reciprocity principle to the 

mechanoacoustic system consisting of two transducers: transducer # 1 with surface , on which 

the distribution of velocity is specified as ( ) ( )oU U  =r r , and pulsating sphere # 2 of small 

radius a located at a large distance from the transducer (as shown in Figure 6.3). This is done 

in Section 2.2 and results in the relation (2.37), 

 02 ( , )eqvF P = r . (6.35) 

The function ( , ) r  is determined by Eq. (6.2) from solution to the radiation problem. By 

comparing expressions (6.34) and (6.35) we obtain the diffraction coefficient for the transducer 

in the receive mode in the form 

 
2 ( , )

dif rk
S

  



=
r

. (6.36) 

that coincides with expression (6.10) for the difraction coefficient, dif tk , introduced for the 

transducer in the transmit mode. Therefore the distunguishing subscripts t and r will be further 

omitted. 

6.1.3.2 Transducers with Mechanical Systems Having Multiple Degrees of Freedom 

In general, the mechanical systems of electroacoustic transducers must be considered as having 

multiple degrees of freedom. In other words, the velocity distribution on the surface of mechan-

ical system may be represented as function of a number of independent variables (generalized 

velocities). If the actual velocity distribution on the transducer surface is expressed as 

 
1

( , ) ( ) ( )
N

i i

i

U U   
=

= r r , (6.37) 
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where ( )i r  is a set of the linearly independent functions satisfying the boundary conditions 

for the mechanical system, then the quantities ( )iU   can be considered as the generalized ve-

locities for the system. In this case the acoustic radiation related parameters of a transducer 

must be expressed using the generalized velocities. 

The sound pressure radiated by a transducer having distribution of velocity on its surface 

in the form of the series (6.37) can be represented as 

 
1

( , ) ( , )
N

i

i

P P 
=

=r r , (6.38) 

where ( , )iP r  is the modal sound pressure corresponding to the generalized velocity iU . 

According to Eq. (6.2) 

 ( /2)( , ) ( , )j kr

i i i

c
P U e

r

  − −=r r , (6.39) 

and ( , )i r  is the diffraction function that corresponds to the modal distribution of velocity 

( )i r . Expression for the modal diffraction coefficients will be obtained in the form analogous 

to Eq. (6.10) 

 
0

( , ) 2 ( , )

( )

i i
dif i

V r

P
k

P U S

   



= =
r r

. (6.40) 

After substituting the distribution of velocity (6.37) and sound pressure expressed by formula 

(6.38) under the integral in Eq. (6.12), the acoustic power radiated may be represented as 

 * *

1 1 0

( , ) ( )
N N N N

ac l i i acii i i acil i l

l i i i l

W P U d Z U U z U U 
 

= = = 

   =  =  +        
    r r . (6.41) 

In this expression aciiZ  is the self (modal) radiation impedance of the mode of vibration i  and 

acilz  is the mutual (inter-modal) impedance between modes i  and l . In the case that the 

supporting functions i  are orthogonal on the surface of a transducer (this is a preferable choice 

of the system of supporting functions), then the mutual impedances disappear. 

The modal equivalent force, eqviF , will be determined from expression for the acoustomechan-

ical energy, 
U

amW , by formula 

 

U

am
eqvi

i

W
F

U


=


. (6.42) 
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The acoustomechanical energy becomes represented as 

 

*

0

( ) ( )
N

U U

am i i

i

W P U d 
=

 =   
 r r  (6.43) 

after substituting ( )U r  in the form of the series (6.37) into formula (6.26). Thus, the modal 

equivalent force is 

 ( ) ( )U

eqvi iF P d 


=  r r . (6.44) 

6.2 Formulation of the Radiation Problem 

6.2.1 Acoustic Wave Equation 

Acoustic radiation theory considers acoustical processes as linear and occurring in ideal (invis-

cid) fluid. Although real fluids possess some viscosity, it is small enough for not to be consid-

ered in linear acoustic equation of motion. Some rotational effects and related shear defor-

mations in the real fluid are confined to a thin layer near boundaries (boundary layer), where 

they may produce an energy loss. Under the assumption of linearity the acoustic fields can be 

described by a single scalar function, the velocity potential ( , )t r , to which the particle ve-

locity, ( , )tv r , and the sound pressure, ( , )p tr , in the acoustic field are related as 

 = −  = − v grad  , (6.45) 

 0p
t

 
=


, (6.46) 

where 0  is the fluid density in the state of equilibrium. 

It is noteworthy that in some references (1, 2) the relations are accepted 

 =  = v grad  , (6.47) 

 0p
t

 
= −


, (6.48) 

In the vector analysis the convention is that direction of vector coincides with direction of the 

steepest decrease of the potential (i.e., should be = − v  ), and descriptions of the electric 

fields in terms of electric potential comply with this definition. For acoustic fields the relations 
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(6.45), (6.46) and (6.47), (6.48) can be used interchangeably, if consistent throughout a treat-

ment. Indicative of this is that direction of the vector of acoustic energy flux 

 p
t

 
= = − 


v   (6.49) 

is invariant to this choice. In fact, the choice of the system of relations has to do with sign 

convention for independent variables used. 

Deriving the acoustic wave equation (Refs. 1, 2) involves knowing the relations between 

the basic quantities that characterize the acoustic field in the elementary volume of a fluid, 

namely, the particle velocity, v , the sound pressure 
op P P= − , where P  is the instantaneous 

pressure, and 
oP  is the equilibrium pressure; and the condensation (compression or dilatation), 

0( ) / os   = − , where  is the instantaneous density of the fluid, and o is the equilibrium 

density. These relations are: 

The equation of state 

 p Bs= , (6.50) 

where 0 ( / )
o

B P  =    is the adiabatic bulk modulus (all the acoustic processes in fluid can 

be considered adiabatic in the practical range of frequencies). The assumption is that 1s . 

Note that in the phase of compression (at 0/ 1   ) both condensation and sound pressure are 

negative, and in the phase of dilatation ( 0/ 1   ) they are positive. This is analogous to sign 

convention for the strain and stress in the mechanical systems. 

The linearized (at 1s ) equation of continuity (the mass conservation law) 

 0( )
t

 
= −


div v , (6.51) 

or 0
s

t


+ =


div v . (6.52) 

It follows from the mass conservation law that 

 0( ) 0d V dV Vd  = + = , (6.53) 

and given that 0/ds d = −  we obtain from Eq. (6.53) that 

 
dV

p B
V

= . (6.54) 
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This equation is the acoustic equivalent of the Hook’s law. 

After applying the Newton’s second law to an element of ideal fluid we obtain the force 

equation (linearized Euler’s equation) 

 
o p

t
 

= −

v

 . (6.55) 

Combining Eqs. (6.45), (6.46), and (6.55), we arrive at wave equation for the velocity potential 

 
2

2

2 2

1
0

c t

 
− =


 , (6.56) 

where 2  is the differential operator (Laplace operator) that in the rectangular coordinates is 

presented as 

 
2 2 2

2 2 2

2

x y z


  
= + +
  

, (6.57) 

and c is the sound speed in the fluid equal to 

 0/c B = . (6.58) 

Note that this expression is analogous to expression for the sound speed of the longitudinal 

wave in a bar, /c Y = . Thus, the bulk modulus B can be considered as analogous to the 

Young’s modulus. Taking into consideration the expressions (6.50) and (6.58) we obtain rela-

tion between the sound pressure and condensation 

 2

0p c s= . (6.59) 

An alternative way of deriving the acoustic wave equation can be used that employs the 

variational Least Action principle instead of the Newtonian approach3. One of the reasons in 

favor of this derivation is that it is in line with general application of the energy method to 

treatment of the electroacoustic transducers including related radiation problems. 

After the Lagrangian for small vibrations of element of inviscid fluid is represented in the 

form 

 kin potL w w= − , (6.60) 

where kinw and potw are the kinetic and potential energies of the element of volume (energy 

densities). The kinetic energy density of the fluid after using expression (6.45) will be 
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 2 2 2 2

0 0

1 1
[( ) ( ) ( ) ]

2 2
kin x y zw v    = =  +  +  . (6.61) 

The potential energy of a unit volume is the work required for changing its state to the state 

characterized by condensation s from the state of equilibrium ( 0s = ), that is 

 
0

s

potw pds=  . (6.62) 

After substituting expression (6.59) for p we obtain 

 
2 2 2

2 0
0 2

00
2 2

s

pot

c s p
w c sds

c




= = = , (6.63) 

or with reference to expression (6.46) 

 

2

0

22
potw

tc

  =   
. (6.64) 

Thus, we obtain expression for the Lagrangian in the form of 

 

2

2 2 20

2

1
[( ) ( ) ( ) ]

2
x y zL

tc

      =  +  +  −     
. (6.65) 

The procedure of deriving the Euler’s equation of the problem in the geometry coordinates is 

the same, as for the longitudinally vibrating mechanical systems (bars, for example). 

The Euler’s equation for this case is 

 0
t x y z

L L L L

t x y z

             
+ + + =                      

. (6.66) 

The wave equation (6.56) follows from this equation after fulfilling the prescribed differentia-

tions. 

For the steady state conditions we can use the complex representation of the velocity po-

tential ( , ) ( ) j tt e  =r r  and the wave equation becomes the Helmholtz equation 

 2 2( ) 0k +  = , (6.67) 

or due to relation (6.46) 

 2 2( ) 0k P + = , (6.68) 

where /k c=  is the wave number. The time dependent factor j te  , which is used in this form 

in considering the electromechanical transduction, is further omitted. Note that in many 
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references on the radiation problems per se the time dependent factor is used in the form j te −

. As the physical meaning has only the real part of a solution, this difference does not influence 

the final results of a treatment. To bring all the manipulations made in these references to the 

form used in our case, just (- j) must be changed to (+j). 

The Laplacian 2  in the axisymmetric cylindrical coordinates is 

 
2 2

2

2 2 2

1 1
r

r r r r z
     = + +     

, (6.69) 

and in the axisymmetric spherical coordinates 

 2 2

2 2

1 1
sin

sin
r

r rr r


 
      = +         

. (6.70) 

6.2.2 Sources of Acoustic Field, Boundary Conditions 

The homogeneous wave equation (6.56) does not account for the acoustic field generation. In 

the acoustic applications of the electromechanical transduction the acoustic fields are generated 

by the vibrating surfaces. This can be an entire transducer surface, or a vibrating part of the 

transducer structure that can also include passive elements of transducer designs, such as baffles 

and caps. In the ideal fluid only normal component of the surface velocity produces acoustic 

radiation. Effects of a small (although finite) viscosity in a real fluid are confined to a very thin 

layer at the boundary, within which a loss of energy may occur. This issue does not influence 

process of radiation and will be considered separately in a due place. 

In the most typical case the radiation problem is in determining the acoustic field (the ve-

locity potential ( ) r  that satisfies Eq. (6.67)) under the condition that the normal component 

of the surface velocity, nU , is a known function 1( )f r , i.e., 

 1( ) ( )nU f
n

 



= − =


r r . (6.71) 

( n  is the outward normal to the surface). This problem is called the Newman’s problem, or the 

boundary-value problem of the second kind. Such is the problem of radiation by the vibrating 

tall cylindrical transducers (Figure 6.1 (a)) and spheres (Figure 6.1 (b)) without baffles and with 

perfectly rigid baffles on a part of their surfaces, and the transducers with flat surfaces (Figure 
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6.1 (c)) embedded in the rigid baffle of a large size. On the rigid baffles velocity is 

zero [ ( ) 0]bU  =r . 

Determining the acoustic field in the case that the potential (sound pressure P related to the 

potential by formula (6.46) 0P j=  ) is given on the surface, i.e., 

 
2 ( )f 

 = r , (6.72) 

constitutes the Dirichlet’s problem, or the boundary-value problem of the first kind. In the par-

ticular case of the absolutely compliant or “pressure-released” surface 2 ( ) 0f  =r . This problem 

is not typical for transducers radiation per se. It can arise as the problem of diffraction of sound 

wave on a “pressure-released” body located close to a transducer surface. 

In the most general case, the normal velocity is specified over a part of the transducer 

surface and the sound pressure or local impedance over another. This condition can be formu-

lated as 

 3( )f
n

 


 +  =  
r , (6.73) 

where   is constant over a part of the surface. This is the mixed boundary-value problem, or 

the boundary-value problem of the third kind. Such situation takes place, for example, when 

the baffles in the case of the transducers shown in Figure 6.1 are made from a “pressure-release” 

material. From the formulation (6.73) all the boundary-value problems follow at different val-

ues of the coefficient  . In particular, the problems of Newman and Dirichlet follow at 0 →  

and → . On the part of a surface (on the baffles or other structural elements of a transducer), 

over which ( ) .const  =r , the local input impedance ( )bZ r is specified (subscript b stands for 

“baffle”), where 

 
( )

( ) / ( / )
( )

b

n

P
Z j n

U



 

= = −   
r

r
r

. (6.74) 

The concept of the local input impedance is applicable in the case that the parts of a baffle can 

move under the action of applied sound pressure independently in normal direction to the baffle 

surface. For example, the baffle design with heavy inserts (pieces of lead) encapsulated in pol-

yurethane shown in Figure 6.3 can be approximated, as locally reacting. In general, the 
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structural elements of a transducer design (such as the caps) are the elastic bodies and formu-

lating the mixed boundary conditions on their surfaces complicates. 

 

Figure 6.3: Example of a baffle design: fragments of lead (1), encapsulating material (2). 

6.2.3 Sommerfeld Radiation Condition 

For solution of the Helmholtz’s equation to be unique, it should satisfy the condition of radia-

tion that has to be fulfilled at great distances from the radiating body. This condition was for-

mulated by Sommerfeld as the statement “…The energy, which is radiated from the sources 

must scatter to infinity, no energy may be radiated from infinity to the field.” The analytical 

expression of this statement for 3D field (in the spherical coordinates) is 

 lim 0
r

r jk
r →

 +  =  
. (6.75) 

This condition can be formulated in the equivalent form of 

 lim ( , )
jkr

r

e
A

r
 

−

→
 = , (6.76) 

which means that the sound field at large distances from any radiating body is the outgoing 

spherical wave. The first factor in Eq. (6.76) does not depend on distance, and it represents the 

directional factor of a projector. 

For the 2D acoustic field (in the cylindrical coordinates) the radiation condition takes form 

 lim ( )
jkre

A
r


−

 = , (6.77) 

and the field represents outgoing cylindrical wave with magnitude changing as 1/ r  in the far 

field (though this case is not realistic for the transducers of a finite size). 

1 2

bZ
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6.2.4 Solving the Radiation Problems by Separation of Variables 

The method of separation of variables in the Helmholtz equation is well suited for solving the 

radiation problems for a transducer in the case that its surface matches coordinate surface of a 

coordinate system, in which the Helmholtz equation is separable. The wave dimensions of the 

single transducers are usually relatively small, and the series of functions that represent solu-

tions for a boundary-value problem quickly converge. It appears very often that retaining sev-

eral terms of the series is sufficient for obtaining accurate enough results (this will be shown 

with below considered examples). 

At first consider the Helmholtz equation in the cylindrical coordinates (the Laplacian is 

given by expression (6.69)), 

 
2 2

2

2 2 2

1 1
0

P P P
r k P

r r r r z
    + + + =     

. (6.78) 

We represent the assumed solution for the equation as a product of functions depending on a 

single coordinate each, 1 2 3( ) ( ) ( )P F r F F z=   . Due to 2  periodicity of the coordinate sys-

tem over the coordinate   it can be assumed that 

 2 2( ) jnF A e  = , (6.79) 

where n is an integer number. After substituting 
1 3 2( ) ( ) jnP F r F z A e =  into Eq. (6.78) and di-

viding all the terms by P we obtain 

 
22

231

2 2

1 3

1 1 1
0

FF n
r k

F r r r Fr z

     − + + =      
. (6.80) 

The term in brackets depends on coordinate r only and the second term depends only on coor-

dinate z. The Eq. (6.80) can hold in all the range of the coordinates only in the case that each of 

these terms is constant. Denote these constants for the first and second terms as 2

rk−  and 2

zk− , 

respectively. Then we obtain the equations 

 
2

21
12

1
0r

F m
r k F

r r r r

    + − =      
, (6.81) 

and 

 
2

23
32

0z

d F
k F

dz
+ = , (6.82) 



6.2. Formulation of the Radiation Problem  307 

where 2 2 2

r zk k k+ = . 

The general solution for Eq. (6.82) is 

 
3 3 3( ) z zjk z jk zF z A e B e−= + , (6.83) 

where 3A  and 3B  are the arbitrary constants. The solution represents two plane waves propa-

gating in different directions of axis z. In the case that the cylindrical shell is infinitely long, 

and magnitude of vibration does not depend on z, 0zk = . 

The Eq. (6.81), which can be transformed to the more common form of 

 
2

1
12

1
1 0

dFd n
y F

y dy dy y

  
+ − =  

   
, (6.84) 

where ry k r= , is the Bessel equation. The solutions of this equation are combinations of the 

Bessel functions, ( )n rJ k r , and Neumann functions, ( )n rN k r . Subscript n indicates the order of 

the functions. The solution for the waves spreading out of a cylinder can be presented in terms 

of the Hankel functions of the second kind (due to j te  time dependence) 

 (2) ( ) ( ) ( )n r n r n rH k r J k r jN k r= − . (6.85) 

In the case that the cylindrical shell is infinitely long and magnitude of its vibration does 

not depend on z (two-dimensional acoustic wave) rk k=  and the partial solutions of the Eq. 

(6.78) for outgoing waves are the functions 

 (2)( , ) ( cos sin ) ( )n n n nP r A n B n H kr  = + . (6.86) 

In the general case that distribution of velocity on the infinitely long shell in the axial direction 

exists, 

 ( )(2) 2 2( , ) ( cos sin ) zjk z

n n n n zP r A m B n H k k r e   = + −  . (6.87) 

Consider now the Helmholtz equation in the axial symmetrical spherical coordinates (the 

Laplacian is given by expression (6.70)), 

 2 2

2 2

1 1
sin 0

sin

P P
r k P

r rr r


 
      + + =        

. (6.88) 

If to represent the sound pressure as the product of two functions 1 2( , ) ( ) ( )P r R r R =  and 

substitute this expression into the Helmholtz equation in the spherical coordinates, then the 

equations for R1 and R2 can be separated as follows 
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 2 21 2
12

1 2

1 1 1 1
sin

sin

R R
r k R

R r r Rr


  
     + = −         

. (6.89) 

Here the left part does not depend on   and the right side does not depend on r, and they should 

be equal to the same constant. This constant should be equal to ( 1)m m+  (this is shown in 

Ref.5), and one of equations becomes 

 
2

11

2 2

2 ( 1)
1 0

dRd R m m

z dzdz z

+ + + + =  
 where 0,1, 2, ...m =  (6.90) 

Thus, two equations will be obtained for determining functions 1R  and 2R : 

 2 21
12 2

1 ( 1)
0

dRd m m
r k R

dr drr r

+   + − =     
, (6.91) 

 2
2

1
sin ( 1) 0

sin

R
m m R

  
 

+ + =   
. (6.92) 

After substituting cos x =  the Eq. (6.92) can be represented in the form of the Legendre equa-

tion 

 2 2
2(1 ) ( 1) 0

dRd
x m m R

dx dx

 − + + =  
. (6.93) 

The partial solutions of Eq. (6.91), where it is denoted kr z= , are the spherical Bessel functions 

of order m: of the first kin 

of the first kind, 

 
1/2( ) / 2 ( )m mj z z J z += ; (6.94) 

of the second kind, 

 
1/2( ) / 2 ( )m mn z z N z += ; (6.95) 

and the spherical Hankel functions that for outgoing wave are 

 
(2) (2)

1/2( ) ( ) ( ) / 2 ( )m m m mh z j z jn z z H z += − = . (6.96) 

The partial solutions for Eq. (6.93) are the Legendre polynomials of order m, 

 ( ) (cos )m mP x P = . (6.97) 

Thus, the partial solutions for the Eq. (6.87) for outgoing waves are 
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 (2)( , ) (cos ) ( )m m m mP r C P h kr =  . (6.98) 

Properties of the special functions: cylindrical Bessel functions, spherical Bessel functions, 

and Legendre polynomials can be found in Refs. 5 and 6. Some of the properties of these func-

tions that are used throughout this treatment are presented in Appendix C. 

To get a unique solution for a particular radiation problem, a combination of the partial 

solutions given by Eqs. (6.86) and (6.98) must be matched to the boundary conditions on the 

surfaces of corresponding transducers. Examples of solving the radiation problems and calcu-

lating the radiation related parameters for the cylindrical and spherical transducers will be con-

sidered in the following sections. 

6.3 Radiation of the Cylindrical Transducers. 

Radiation of the cylindrical transducers will be analyzed under different boundary conditions. 

At first, we consider the acoustic field radiated by an idealized model of infinitely long trans-

ducer vibrating with velocity independent on z coordinate and having axial symmetric distribu-

tion over circumference with respect to axis 0 =  that is shown in Figure 6.4. The distribution 

of velocity can be represented as 

 

Figure 6.4: Illustration of the cylindrical shell (two-dimensional case) vibrating with arbitrary ax-

ial symmetric with respect to axis 0 =  distribution of velocity over the circumference. 

 
0
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i

U U i 
=

=  at    and ( ) 0U  =  at   , (6.99) 

where ( )U   is the complex amplitude of velocity (remember that time depending on factor 

j te   is omitted for brevity),  is the “opening angle.” The radiation problem is two-dimen-

sional, 

and its general solution for the sound pressure according to expression (6.86) is 

velocity
Rigid 

baffle

0U =

r a=




0

( )cos( )
N

i

U U i i
=
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(2)
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( , ) ( ) cosn n

n

P r A H kr n 


=

= . (6.100) 

Here nA  are the arbitrary constants, which have to be determined from the condition that the 

velocity in the sound field at r a=  should be equal to the velocity ( )U  of the radiating surface. 

Thus, the condition on the boundary is 

 (2)
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1
( , ) ( ) cosn nr a
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j r j
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 = − = −
  . (6.101) 

After representing ( )U   as an expansion into a Fourier series 
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where 1n =  at 0n = , 2n =  at 1n   and 
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 (6.103) 

and equating relations (6.102) and (6.101) we arrive at expression for values of constants nA  
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=−  . (6.104) 

The important note must be made regarding notations for the transducer radiation related 

quantities. All of them depend on the wave size ka of a transducer. Therefore, the wave size 

will be omitted for brevity from arguments, of which these quantities depend. Thus, the sound 

pressure generated by a transducer will be denoted below as ( , , )iP r    instead of 

( , , , )iP ka r   . The analogous abbreviations will be used regarding the radiation impedances, 

diffraction coefficients and directional factors. 

Upon substituting expression (6.104) into Eq. (6.100) we obtain 
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where 
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is the modal sound pressure generated by a single mode of vibration defined in the interval of 

values of   (   −   ). At large distances from the cylinder (at r → ) 
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(2) 2 4
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n

j kr

nH kr e
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
− − −

→ , (6.107) 

and we arrive at the following expression for the modal sound pressure 
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The sound field at large distances from the cylinder (in the “far zone”) according to Sommerfeld 

radiation condition expressed in the form of relation (6.77) can be described as product of two 

functions, one of which is nondimensional and depends only on the coordinate   (the direc-

tional factor of the transducer, ( )H  ) and another is a function of the distance r , the sound 

pressure on the acoustical axis of the transducer, ( ,0)P r . Following expressions (6.105) and 

(6.108) we obtain 
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Thus, the directional factor is 
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. (6.110) 

The total power radiated per unit length of the cylinder may be found as 
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 (6.111) 

This expression can be rewritten in the form 
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Here it is denoted 
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as the modal radiation impedance for i-th mode of vibration defined in the interval 

[ ]  −   , and 
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as the intermodal impedance between modes i and l ( i l ). Thus, the radiation impedance as-

sociated with the generalized velocity iU  is 

 ( ) ( ) ( )
N

l
aci acii acil

l i i

U
Z Z z

U
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

= + . (6.115) 

In application to practical cylindrical transducer designs equating to zero velocity of vibration 

on a part of the transducer surface can be imagined as result of covering this part of the surface 

by infinitely thin absolutely rigid baffle. In this case angle  specifies sector of the transducer 

surface free of baffle. We consider the most important variants of velocity distributions that 

correspond to transducer without a baffle and with 180o baffle coverage, at  =  and / 2 =

, respectively. 

6.3.1 Radiation of a Cylindrical Shell without Baffles 

According to formula (6.103) at  =  all the coefficients ( ) 0nia  =  at n i , ( )nna  =  at 

0n  , and 00 ( ) 2a  = . We consider the single mode radiation. The modal sound pressure for 

the pulsating mode of vibration 0( )U U =  is 
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0 0
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( )
( , )
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H kr
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
. (6.116) 

For the modes of vibration ( ) cosnU U n =  at 0n   
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
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Figure 6.5: The modal directional factors of cylindrical transducers without baffles at the 1st (solid 

line) and 3rd mode (dashed line 2), 

The directional factor of a cylinder vibrating in a single mode is ( , ) cosH n  = . The direc-

tional factors corresponding to several modes of vibration are shown in Figure 6.5. 

Consider sound pressure generated by the pulsating cylinder of small radius at 1ka . 

Considering that 
(2) (2)

0 1( ) ( )H ka H ka = − , and (2)

1 ( ) 2 /H ka j ka  (see Appendix C.1), from 

expression (6.116) will be obtained that 

 (2)

0 0( , ) ( )
4 Vr

k
P r c U H kr = , (6.118) 

where 02
Vr

U aU=  is the reference volume velocity (see Eq. (6.6)) per unit length for the 

pulsating cylinder. This is the sound pressure generated by the cylindrical (two-dimensional) 

simple source. 

The diffraction coefficient for a single mode transducer is by the definition (6.10) 
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+= = −


. (6.119) 

The diffraction coefficients for the cylindrical transducers vibrating in the single modes vs. ka 

are illustrated in Figure 6.6. 
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Figure 6.6: The modal diffraction coefficients of cylindrical transducers without baffles for i = 0, 

1, 3 (phase is labeled with ′). 

Thus, the modal sound pressure on the acoustic axis is 
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Consider the radiation impedances of the cylindrical transducer per unit height associated 

with the generalized coordinate iU . So far as the coefficients ( ) 0nia  =  at n i , all the inter-

modal impedances ( )acilz   in expression (6.115) vanish and ( ) ( )aci aciiZ Z = . According to 

formula (6.113) in this case the modal impedance for thi mode of vibration is 
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. (6.121) 

It can be concluded from this relation that 
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and after substituting into expression (6.113) of the term corresponding to the left side of this 

equality by its right side we arrive at 
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Thus, if the modal impedances for the unbaffled cylindrical shell (at  = ) are determined, 

calculating the modal radiation impedances for an arbitrary baffle coverage (angle  ) may be 

reduced to a mere calculating the coefficients ( )nia  . 
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It is worthwhile discussing in more detailed way the radiation impedances for the widest 

used 0 and 1 modes of vibration. 

For the zero (“pulsating”) mode of vibration 0( )U U = , and 
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(Note that 00 ( ) 2a  = and 0 1 = ). Expression (6.124) may be modified as follows 
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Here 00acr  and 00acx  are the active and reactive components of the radiation impedance, 00  

and 00  are the nondimensional coefficients. If to take into account that 

 1 1

2
( ) ( ) ( ) ( )n n n nJ x N x J x N x

x= +− = , (6.126) 

(see Appendix C.1), then we obtain from (6.125) 
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In the “long-wave“ approximation (at ka <<1) 0 ( ) 1J ka  , 0 ( ) (2 / ) lnN ka ka , 

1( ) / 2J ka ka , 1( ) 2 /N ka ka− , and from equations (6.127) and (6.128) will be obtained 

00 ( ) / 2ka   , 00 ( ) ln(1/ )ka ka  , or 
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 , (6.129) 

 2

00 ( ) [2 ln(1/ )]ac acx a ka m    = , (6.130) 

where 2 ln(1/ )ac wm M ka=  and 2

wM a=  is the mass of water in the volume of the cylinder 

per unit length. 

In the “short-wave” limit (at ka→ ) the asymptotic approximation (6.107) for the Hankel 

functions must be used (with substitution of kr by ka.) It will be obtained as the result that 

00 1 →  and 00 0 → . Thus, at ka→  
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 00 00( ) 2 , ( ) 0ac acr c a x    → . (6.131) 

For the first (“oscillating”) mode of vibration 1( ) cosU U = , and after substituting 

11( )a  =  and 1 2 =  we obtain from formula (6.121) that 
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where (2) (2) (2)

1 0 1

1
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x
 = − . (6.133) 

In the long-wave approximation, at 1ka , 
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And 
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acZ c a ka jka
  = + . (6.135) 

Thus, 

 2 3

11( ) ( ) / 4acr c a ka   , (6.136) 

 2

11( ) ( )ac wx c a ka a M      = = . (6.137) 

 

Figure 6.7: The modal nondimensional coefficients of the radiation impedances of cylindrical 

transducers without baffles for i = 0, 1, 3 ( ii are labeled with ′) 

The ratio of the active components of the radiation impedances for the first and zero mode 

transducers of small size is 

 2

11 00( ) / ( ) ( ) / 4ac acr r ka  = . (6.138) 
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In the short-wave limit, at ka→ , considering the asymptotic approximations for (2)

1 ( )H ka  

and (2)

1 ( )H ka we arrive at 

 11 1 11( ) , ( ) 0ac eff acr c a cS x     =  . (6.139) 

In the expression for the radiation resistance the effective area of radiating surface per unit 

length, effS , is introduced, which is defined in the general case as 

 2 ( )effS r d 


=  , (6.140) 

where   is the radiating surface and ( )r   is the mode of vibration of the surface. For the 

cylindrical transducers with modes of vibration ( ) cosn n  =  

 2coseff nS n ad




 
−

=  , (6.141) 

and at  =  0 2 ,eff eff nS a S a = = . (6.142) 

The nondimensional coefficients of the radiation impedances per unit length of the cylindrical 

shells vibrating in the single modes vs. ka are presented in Figure 6.7. 

6.3.2 Radiation of Cylindrical Shell with Rigid Baffles. 

If to suppose that velocity distribution within interval [ / 2 / 2]  −    is ( ) cos i  = , then 

the coefficients nia  defined by formula (6.103) will be 

00

1 1
( / 2) , ( / 2) / 2, ( / 2) sin( ) sin( )

2 2
ii nia a a n i n i

n i n i

     = = = + + −
+ −

. (6.143) 

All the coefficients at 2 ( , 1,2,...)n i l n i l+ =  =  will be zero. For the zero and first modes the 

coefficients are: 

 00 01 02 03( / 2) , ( / 2) 2, ( / 2) 0, ( / 2) 2 / 3, ...a a a a    = = = =−  (6.144) 

 10 11 12 13( / 2) 2, ( / 2) / 2, ( / 2) 2 / 3, ( / 2) 0,...a a a a    = = =− =  (6.145) 

Sound pressure ( , , / 2)iP r    for a single mode transducer will be defined by formula (6.108) 

with coefficients ( / 2)nia   calculated according to formulas (6.144). The corresponding dif-

fraction coefficients will be determined as the ratio (see the note related to expression (6.119)) 
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ni in n
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n

P r a
k j

P r ka ka H ka

  





−

=

= =


 . (6.146) 

 

Figure 6.8: The modal diffraction coefficients of cylindrical transducers with baffles at / 2 =  

for the 0 and 1 modes (0’ and 1’ for the phase). 

When calculating sound pressure 0 ( , 1)P r ka  generated by the pulsating cylinder of a 

small radius the reference volume velocity per unit length is iV r
U U a= . In general, if diffrac-

tion coefficients are determined for a baffled cylinder at arbitrary angle of the baffle opening, 

the modal sound pressures on the acoustic axis can be calculated as 

 . 0( ,0, ) ( ) ( , 1)i dif iP r k P r ka = , (6.147) 

and the reference volume velocity must be used in the form 2
Vr

U a =  , when calculating 0P  

by formula (6.118). 

The diffraction coefficients for the baffled cylinders vibrating in the single modes vs. ka 

are presented in Figure 6.8. 

Directional factors of the cylinders at / 2 =  may be calculated by formula 

 

(2)

0

(2)

0

( ) ( / 2) cos / ( )

( , / 2)

( ) ( / 2) / ( )

n

in n n

n
i

n

in n n

n

j a n H ka

H

j a H ka

  
 

 



=


=


=






. (6.148) 
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The directional factors of the cylinders vibrating in the zero and first modes for several values 

of ka  are illustrated in Figure 6.9. 

 

Figure 6.9: The modal directional factors of transducers at / 2 =  baffle coverage for ka = 1 

(solid line), ka = 2 (dashed line), ka = 3 (dash-dotted line), ka = 4 (thin solid line): (a) zero mode, 

(b) the first mode. 

The radiation impedance for the cylindrical shell vibrating in a single mode will be deter-

mined, if to substitute the coefficients ( / 2)nia   calculated by formula (6.143) into expression 

(6.113) or (6.123). Thus, for the zero and first modes we obtain 

 00 00 11 33

1 2 2
( / 2) ( ) ( ) ( ) ...

2 3
ac ac ac acZ Z Z Z   


= + − +  (6.149) 

 11 00 11 22

1 1 2
( / 2) ( ) ( ) ( ) ...

2 3
ac ac ac acZ Z Z Z   

 
= + + +  (6.150) 

Nondimensional coefficients of the radiation impedances are represented in Figure 6.10, 

given that 0 ( / 2)effS a =  and 1( / 2) / 2effS a = . 
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Consider now simultaneous radiation of several modes of vibration. We assume that the veloc-

ity distribution is 

 
0

( ) cos
N

i

i

U U i 
=

=  at / 2   and ( ) 0U  =  when / 2  . (6.151) 

 

Figure 6.10: Nondimensional coefficients of the modal radiation impedances for zero (0) and first 

(1) modes at / 2 =  ( ii  labeled with ′). 

The magnitudes of vibration iU  can be considered as the generalized velocities in the problem 

of calculating the cylindrical transducers. They must be determined by solving the Lagrange 

equations that describe the transducers operation. 

According to Eq. (6.105) the sound pressure generated by the cylindrical shell may be 

found as superposition of the modal sound pressures ( , , / 2)iP r    represented by formula 

(6.108). Considering expressions (6.146) and (6.147) for the diffraction coefficient and sound 

pressure, respectively, finally we obtain 

 ( /4)

.

2
( , , / 2) ( / 2) cos

4

j kr

i i dif i

ka
P r c e U k i

kr

    


− −= , (6.152) 

and the directional factor may be represented as follows 

 
.

0

.

0

( / 2) cos

( , / 2)
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i dif i

i
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. (6.153) 
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The radiation impedance associated with velocity iU  in this case will be represented fol-

lowing general formula (6.115) as 

 ( / 2) ( / 2) ( / 2)
N

l
aci acii acil

l i i

U
Z Z z

U
  



= + , (6.154) 

where the self-modal impedances ( / 2)aciiZ   are illustrated with the examples by formulas 

(6.149), (6.150) and Figure 6.10. The intermodal impedances acilz  given by general formula 

(6.114), after using relation (6.122) can be modified as follows 

 
2

0

( / 2) ( / 2)
( / 2) ( )

( )

ni nl
acil acnn

n nn

a a
z Z

a

 
 





=

= . (6.155) 

Thus, for example, 

 

00 01 10 11
01 00 112 2

00 11

20 21
222
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( / 2) ( ) ( )
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   
  
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


= + +

+ +
 (6.156) 

or taking into account expressions (6.143)-(6.145) and the fact that all coefficients ( / 2)nia   

are zero, for which n i  and n i+  is even,, we obtain 

 01 00 11

1 1
( / 2) ( ) ( )

2
ac ac acz Z Z  

 
= + . (6.157) 

After substituting expressions for the modal impedances 

 
00 00 00

11 11 11

( ) ( ) 2 [ ( ) ( )] and

( ) ( ) [ ( ) ( )]

ac w

ac w

Z c a j

Z c a j

      
      
= + 

= +
 (6.158) 

it may be concluded that 

 01 00 11 00 11( / 2) ( ) {[ ( ) ( )] / [ ( / 2) ( / 2)] / }ac wz c a j            = + + + . (6.159) 
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Figure 6.11: Nondimensional coefficients of intermodal radiation impedances at / 2 =  ( 01  

labeled with ′) 

Thus, the nondimensional coefficients of intermodal impedance 01( / 2)acz   are 

 01 00 11

1
( / 2) [ ( ) ( )]     


= +  and 01 00 11

1
( / 2) [ ( ) ( )]     


= + . (6.160) 

These coefficients vs. ka are presented in Figure 6.11. 

6.3.3 Radiation of an Infinite Cylindrical Shell with Compliant Baffle  

In the case that the baffles applied to a cylindrical transducer surface are compliant, the better 

approximation to a real situation gives the assumption that a part of the surface is covered by 

absolutely compliant material. This assumption brings us to the radiation problem with mixed 

boundary conditions, in which case on one part of the surface the radial velocity is specified 

and on the rest of the surface the sound pressure is supposed to be zero, as shown in Figure 

6.12. 

 

Figure 6.12: Illustration of the mixed boundary conditions. 

Thus, the boundary conditions for the velocity potential are 

velocity
Pressure 

release

0P =

r a=




0

( )cos( )
N

i

U U i i
=
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 ( ),
r a

U
r

   
=


= −  


, (6.161) 

 ( , ) 0,a    =  . (6.162) 

The problem of radiation under these boundary conditions was considered in the previous 

works7, 8.. A brief description of procedure used for getting the solution in Ref. 7 is as follows. 

Assuming that the distribution of velocity is symmetrical in respect to   axis, a general solution 

to wave equation 2 0k+  =  can be represented by expression (6.100) as 

 
(2)

0

( , ) ( )cosn n

n

r A H kr n 


=

 = , (6.163) 

where the coefficients nA  must be found using the boundary conditions (6.161) and (6.162). 

For getting an approximate solution to the problem the polynomials are introduced 

 
(2)

0

( , ) ( )cos
N

N n n

n

r A H kr n 
=

 = . (6.164) 

These functions satisfy the wave equation, but don’t satisfy the boundary conditions. However, 

the coefficients nA  can be determined in such a way as to best approximate the boundary con-

ditions. The best approximation of the functions N  to the solution of the problem will be 

defined as those minimizing the functional 
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2

0 1

0

( , ,..., ) ( , ) ( , ) ( ) N
N N N

r a

F A A A a a d U d
r

 



    
=

 =  − + −     (6.165) 

by proper chois of coefficients nA . In general, these coefficients are complex quantities and 

may be represented as n n nA a jb= + . The conditions of minimum for the functional NF  is for-

mulated as 

 0, 0, ( 0,1,..., )N N

i i

F F
i N

a b

 
= = =

 
. (6.166) 

The following set of equations for determining the coefficients nA  follows from Eqs. (6.166), 

 
*

0

( , ) ( ) ( ), ( 0,1,..., )
2

N

ni n i i

n

k
c ka A d H ka i N

 
=

= = . (6.167) 

In these equations (*) is the sign of complex conjugate, superscript (2) for Hankel function is 

omitted for brevity, and coefficients nic  and id  are: 
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 (6.168) 

Consider, for example, the case that / 2 = , and N=3 as the first approximation. 

 

Figure 6.13: Directional factors of 180° baffled cylindrical transducers with the rigid (solid line) 

and compliant (dashed line) baffles at ka = 2.0: (a) zero mode of vibration, (b) the first mode of 

vibration. 

In accordance with formulas (6.168) 



6.3. Radiation of the Cylindrical Transducers.  325 

 

0 1 3 2 4

2 22

00 0 0

2 22

2

01 0 1 0 1

2

03 0 3 0 0

2 2
1, , , 0,

3

( / 2, ) ( ) ( ) ,
2 2

( / 2, ) ( ) ( ) ,
4 4

0 at 2 , ( 1,2,...),

( ) ( ) ( ) ( ),

1
[ ( ) ( ) ( ) ( )

3

ii i i

ni

d d d d d

c ka H ka k H ka

c ka H ka k H ka

c n i p p

c H ka H ka k H ka H ka

c H ka H ka k H ka H ka

 
 

 

 

 

= = − = = =

= +

= +

= + = =

 = −

 = − −

2

12 1 2 1 2

2

23 2 3 2 3

32 23 30 03

],

1
[ ( ) ( ) ( ) ( )],

3

3
[ ( ) ( ) ( ) ( )],

5

, .

c H ka H ka k H ka H ka

c H ka H ka k H ka H ka

c c c c

 

 

 = −

 = −

= =

 (6.169) 

The first approximation is 
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where coefficients nA  must be determined from the set of equations 
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 (6.171) 

Results of calculations made for the case that the compliant baffles are used in comparison with 

those obtained with the rigid baffles are presented in Figure 6.13-Figure 6.15. 

The results of calculations show that significant difference between the two cases in terms of 

active radiation impedance and diffraction coefficient exists at small ka ( 0.3 0.5ka  − ). Oth-

erwise, the data are close. In terms of the directional factors, the main difference is in the back 

radiation, which is much smaller in the case of the compliant baffle. 

This conclusion is important for transducers modeling because the real designs of compli-

ant baffles can be built (for example, out of corprene encapsulated in polyurethane) unlike the  
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Figure 6.14: The diffraction coefficients of 180° baffled cylindrical transducers with the rigid (r – 

solid line) and compliant (c – dashed line) baffles at ka = 2.0: (a) zero (0) mode of vibration, (b) 

the first (1) mode of vibration (phase labeled with ′). 

 

Figure 6.15: The nondimensional coefficients of radiation impedances of 180° baffled cylindrical 

transducers with the rigid and compliant baffles: (a) zero mode of vibration, (b) the first mode of 

vibration. 
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rigid baffles that can be imagined only theoretically. As the operating range of the piezoceramic 

cylindrical projectors is practically at 1ka  , all the calculations of acoustic field related pa-

rameters of the baffled transducers can be made using relatively simple expressions that are 

valid for the rigid baffles, rather than by employing the above technique specified for the mixed 

boundary conditions. It is noteworthy that the conclusion regarding comparison of effects of 

the rigid and compliant baffles does not mean that results of calculations made for a not ideal 

baffle (having finite impedance) can be expected to lie in between. Both perfectly rigid and 

perfectly compliant baffles are ideal and don’t transfer acoustic energy, whereas the real baffles 

transfer a portion of acoustic energy and this may change the situation. 

6.3.4 Radiation of a Finite Size Cylinder in an Infinitely Long Rigid Cylindrical 

Baffle 

The model of infinitely long cylindrical surface with arbitrary velocity distribution along the 

circumference is very useful. It appears that the results obtained regarding the radiation imped-

ances per unit length are applicable sufficiently accurately to the finite height transducers in 

case that their height is comparable with wavelength of sound. More accurate and applicable to 

transducers of smaller height is the model of finite height cylinder with infinitely long rigid 

cylindrical extensions on the ends that is shown in Figure 6.16).  

 

Figure 6.16: The finite height cylinder with rigid cylindrical baffle extensions. 

Related problems are considered in several works [9-12]. A brief outline of solution to the ra-

diation problem is as follows. 

A partial solution for the three dimensional Helmholtz equation in the cylindrical coordi-

nates can be represented following the expressions (6.83) - (6.87), as 

z

h
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r

 z
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 (2)

1 1 2 2( , , ) ( ) ( )( )z zjk z jk zjm jm

m m rP r z Ae B e H k r A e B e  −−= + + , (6.172) 

where 2 2 2

r zk k k+ = . Thus, the general solution for an arbitrary distribution of velocity along z 

axis can be presented in the form of 

 (2) 2 2( , , ) ( ) ( ) zjk zjm

m z m z z

m

P r z a e A k H k k r e dk


=− −

= −  . (6.173) 

Here ma  and ( )zA k  must be determined from the boundary conditions for a particular velocity 

distribution. The term 

 (2) 2 2( ) zjk z

m zH k k r e−  (6.174) 

in the expression (6.173) represents two cylindrical waves with wave numbers zk  that propa-

gate in the positive and negative directions of the z axis. At zk  real (i.e., at rk k ) they repre-

sent traveling waves propagating out of the source. At zk  imaginary ( rk k ) they form inho-

mogeneous waves that are dying down in radial direction. These waves contribute to the sound 

pressure in the near field and to the reactive (inertia) component of the radiation impedance. 

Suppose that arbitrary distribution of velocity on the surface at r a=  is a separable function of 

  and z 

 0 1 2( , ) ( ) ( )U z U z   = , (6.175) 

where 0U  is velocity of the reference point at 0 = , 1  and 2  are the normalized velocity 

distributions along the circumference and z axis. Thus, the boundary condition is 

 0 1 2
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( ) ( )

r a
r a

P
U U z

j r
  

=
=


= = −


. (6.176) 

Suppose that 
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=   (6.177) 

are the Fourier coefficients and Fourier transform of the velocity distributions in the circumfer-

ence and z directions, respectively. Let us suggest for simplicity that the transducer is a cylinder 

of height h performing axisymmetric vibration with uniform distribution over the height, i.e., 

 1 2

1 / 2
( ) 1, ( )

0 / 2

at z h
z

at z h
  

 = = 


. (6.178) 
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Thus, by formulas (6.177) 

 0 1, 0mb b= =  at 0m   and 
sin( / 2)

( ) ( )
/ 2

z
z h z

z

k h
B k h h H k

k h
=  =  . (6.179) 

The designation  sin( / 2) / / 2 ( )z z h zk h k h H k= is introduced for brevity. 

After substituting expressions (6.179) into the boundary conditions and determining the 

unknown coefficients ma  and ( )zA k , we arrive at the following expression for the sound pres-

sure generated by the cylindrical transducer embedded into the rigid cylindrical baffle, 
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 . (6.180) 

Employing this function allows in principle calculating all the acoustic field related parameters 

listed in Section 6.1.3 by formulas presented therein for the cylindrical transducers of finite 

height embedded into the infinite rigid cylindrical baffle. But calculation of the integral in for-

mula (6.180) is not straightforward. The manipulations of the integral that result in formulas, 

which can readily be used for calculating the acoustic field in the near zone (that is needed for 

calculating the radiation impedances) and in the far zone (that is needed for calculating the 

directional factors and diffraction coefficients) can be fulfilled as follows. 

 

Figure 6.17: The contour of integration in the complex plane. 

Consider the integral I from expression (6.180), 
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following Ref. 9. The expression under the integral has singularities at the points zk k=  . Let 

us change variables by introducing sinzk k = . As integration goes over the interval 

zk−     (Figure 6.17), it is supposed to be sin ( ) / 2 1j je e j  −= −  , and the variable 

  should be complex. Let it be j   = + . Then 

 (sin cosh cos sinh )zk k j      = + . (6.182) 

As zk  should be a real number, it follows that cos sinh 0   =  and 

 sin coshzk k   = . (6.183) 

At 
zk k  from this condition follows that 0 =  and    changes in the interval 

( / 2) ( / 2)  −   . At the large values of 
zk k  it is obviously 0   (otherwise it would 

be sin 1   ) and it follows from the condition (6.183) that ( / 2)  =  , and 

coshzk k  =  . The function cosh is even, and question arises about the sign of    

(about the direction, in which the branches ( / 2)  =   go on the complex plane). 

It can be shown from consideration of convergence of the Hankel function at 1kr that these 

branches have to go as it is shown in Figure 6.17. The singularity points k  ( ( / 2)  =  ) 

must be passed over the arcs of infinitely small radius  . Thus, the integral (6.181) becomes 

 

(2) sin
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H k r e
I H k d

H ka
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 



 −

−

=
 , (6.184) 

where integration goes over the contour 1C  in the complex plane shown in Figure 6.17, which 

includes the following intervals: 

Interval 1,1C , over which 0−   , / 2  = − , sin cosh = − , cos sinh = ; 

Interval 1,2C , over which 0    , / 2  = , sin cosh = , cos sinh = − ; 

Interval 1,3C , over which 0 = , / 2 / 2  −   . 

It can be shown that integral (6.148) over the arcs with radius 0 →  vanishes. Thus, the inte-

gral (6.148) may be presented, as 
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 (6.185) 
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In course of further manipulations with the comprising integrals the following relations for the 

Bessel functions will be used (Appendix C.3): 

 (2) 2
2

( ) ( )
m

j

m mH jx e K x
j




− = − , (6.186) 

where ( )mK z are the modified Bessel functions of the second kind, 

 
(2) (2)

0 1 0 1( ) ( ), ( ) ( )H x H x K x K x = − = − . (6.187) 

After manipulations involving above relations, we finally arrive at the expression for the inte-

gral (6.185) 
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
 (6.188) 

This expression can be used for calculating the acoustic field regardless of a distance from the 

source, but it is most suitable for determining the near field parameters. For calculating the 

sound pressure in the far field, the integral (6.184) can be further transformed using the asymp-

totic representation of the Hankel function. 

6.3.4.1 Near Field of the Finite-Height Cylinder and Radiation Impedance 

The sound pressure (6.180) generated by the cylinder becomes after substituting expression 

(6.188) for the integral I 
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 (6.189) 

The radiation impedance can be found by the relation 

 
/2

0 /2

2
( , )

h

ac ac ac

h

a
Z P a z dz r jx

U



−

= = +  (6.190) 

After performing the integration under the integrals in expression (6.189), and some straight-

forward manipulations that include: replacement the variables  →  and   → , 
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substituting hH  from expression (6.179), and presenting the Hankel functions through the Bes-

sel and Neumann functions, the following expressions will be obtained for the radiation re-

sistances and reactances: 

 
/2

3

0

16
acr Ad

k

 


=  , (6.191) 

where 
2

2 2 2

1 1
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A

J ka N ka
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   
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; (6.192) 
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where 
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cosh ( sinh )

kh K ka
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 

= . (6.195) 

 

Figure 6.18: Dependences of the nondimensional coefficients of the radiation resistance (a) and 

reactance (b) on ka for aspect ratios h/2a = 0.5, 1.0, 1.5, 2.0, 2.5. 
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Expressions (6.191) - (6.195) coincide with expressions for the radiation impedance derived in 

a different way in Ref. 10. Note that function C rapidly goes to zero with increase of the argu-

ment   due to existence of 2cosh   in the denominator. 

Results of calculation of nondimensional (normalized to the surface area of the cylinder) 

coefficients of the radiation resistance and reactance vs. ka are presented in Figure 6.18). 

At small ka 

 1 1( cos ) 0, ( cos ) 2 / cosJ ka N ka ka   →  , (6.196) 

and after substituting sin x =  expression (6.191) can be transformed to 

 
1 2

2

2 2

0

sin ( / 2)
ac cyl

c kh x
r S dx

h x




=  . (6.197) 

 

Figure 6.19: Curves showing dependence of radiation resistance from kh for small ka at different 

cylinder aspect ratios, h/2a = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5. 

After integrating by parts (putting 2sin ( / 2)u kh x=  and 2dv z dz−= ), finally can be obtained 

the following expression for the radiation resistance 

 22
[ ( ) 2sin ( / 2)]ac cyl

a
r cS kh Si kh kh

h
=  − , (6.198) 

where the function 
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0

sin
( )

kh
y

Si kh dy
y

=   (6.199) 

is the sine integral [5, 6]. Dependence of nondimensional coefficient of the radiation resistance 

on kh for different aspect ratios of cylinders at small ka are shown in Figure 6.19. 

When analyzing the data on the radiation impedances it should be kept in mind that espe-

cially important to have these data accurate for the ranges of ka around the resonance wave 

sizes of the transducers. Thus, for transducers made of PZT compositions that employ the ex-

tensional vibrations of rings ka > 2, for the transducers of the flexural type (including slotted 

rings) (0.2 0.4)ka  − . 

6.3.4.2 Far Field of the Finite-Height Transducer and the Directional Factor 

For calculating the sound pressure in the far field integral (6.184) can be transformed using the 

asymptotic representation of the Hankel function 

 (2) cos /2 /42
( cos )

cos

jkr jm j

mH kr e e
kr

  
 

− + . (6.200) 

After substituting this expression into the integral (6.184) we obtain at 0m =  

 

1

( cos sin )
/4

(2)

0

2
( sin )

cos ( cos )

jk r z
j

h

C

e
I e H k d

kr H ka

 
  

  

− +


 . (6.201) 

The exponential term in the numerator represents a plane wave propagating under angle   in 

respect to the perpendicular to the cylinder axis. Thus, the integral summarizes a set of the 

waves propagating under different angles. They include the regular traveling waves propagating 

away from the source (they correspond to real values of  ) and inhomogeneous waves, which 

are dying out in direction perpendicular to the axis (they correspond to the imaginary values of 

 ). Indeed, when integrating along the branches 1.1C  and 1.2C  ( ( / 2) j   = − −  and 

( / 2) j   = + , respectively) cos sinhj  = −  and the factor cos sinhjkr kre e  − −=  van-

ishes with increase of r. The corresponding waves propagate along the cylinder axis and decay 

in the radial direction. By the way, this shows that direction of vertical branches in Figure 6.17 

is chosen correctly. Otherwise, this factor would be sinhkre   , and the wave would infinitely 

increase with increase of r in violation of the radiation principle. 
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For the far field approximation, we assume that the distance to an observation point is very 

large ( R h ). Under this assumption the stationary phase method can be used for approximate 

calculating integral (6.201). This method is applicable to calculating integrals of the kind 

 ( )( ) jp f y

C

I F y e dy=  , (6.202) 

where parameter p is large, f(y) is an analytical function. The stationary phase point 0y  is a root 

of equation ( ) 0f y = . If F(y) changes slowly in vicinity of the point 0y y= , then the 

asymptotic formula can be obtained for integral (6.202) 
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
. (6.203) 

At 1kr  integral (6.201) is of the (6.202) kind with p kr=  and ( ) cos ( / )sinf a z r = + . 

The exponential term rapidly oscillates, while the remainder of the integrant function changes 

slowly in vicinity of the stationary point, which being found from 0( ) 0f  =  happens to be at 

 
0 arctan

z

r
 = =  (6.204) 

Thus, the stationary point indicates direction to an observation point (Figure 6.16). Using for-

mula (6.203), we arrive at the approximate value of integral (6.201) (note that cosr R = , 

sinz R = ) 
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The farther an observation point is from the source, the more accurate is this approximation. 

Consider now the expression (6.180) for the sound pressure in the far field. After substi-

tuting the expression for integral I from Eq. (6.205), representing ( sin )hH k   by formula 

(6.179), and remembering that 
(2) (2)

0 1H H = − , it will be obtained 
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. (6.206) 

The factor in the brackets does not depend on distance to an observation point and characterizes 

the directivity factor of a finite height cylinder imbedded in the rigid cylindrical baffle. The last 
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factor characterizes the outgoing spherical wave. This result is in accordance with the radiation 

principle. 

The directional factor of the cylinder in the vertical plane is 
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At 1ka  
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and the directional factor of a thin cylinder in a rigid baffle is the same as for a line segment of 

length h in the free space, 
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Figure 6.20: Plots of the directional factors of a short ring in the vertical plane at ka = 0.5 in the 

free space (solid line), at ka = 0.5 embedded in a rigid baffle (dashed line), at ka = 2 in free space 

(dash-dotted line), and at ka = 2 embedded in a rigid baffle (thin solid line). 

At 1kh  from formula (6.207) follows that the factor 
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determines directionality in the vertical plane of a short ring embedded in the rigid cylindrical 

baffle. For comparison, the directional factor of a short ring in the free space is 

 0( ) ( cos )rfH J ka = . (6.211) 

Plots of the directional factors of a short ring in the vertical plane are shown in Figure 6.20 for 

different values of ka in comparison with those for the ring in the free space. 

Thus, the directional factor of a cylindrical transducer in the vertical plane, ( )cbH  , is the 

product of the directional factors of a low ring embedded in a rigid baffle and of the line segment 

in the free space that has the height of the transducer, 

 ( ) ( ) ( )cb rb hH H H  = . (6.212) 

Being illustrated for simplicity with example of the uniformly vibrating cylinder, this product 

theorem is valid for an arbitrary distribution of velocity on a cylinder surface so far as the dis-

tribution of the velocity is separable, i.e., can be represented as 0 1 2( , ) ( ) ( )U z U z   = .This 

conclusion follows from the procedure of deriving the result, though it requires more cumber-

some manipulations. 

Directionality of a finite cylinder vibrating in a rigid baffle with arbitrary distribution of 

velocity over circumference in the horizontal plane (at 0 = ) is the same, as for the infinitely 

long cylinder having the same distribution of velocity. As to the directional factor of a baffled 

ring in the vertical plane, it can be qualitatively estimated that direction of maximum radiation 

deviates from the axis / 2 =  in the plane of symmetry of the baffled ring, and its relative 

magnitude reduces. 

The comparisons made show that at wave sizes of a cylinder approximately ( / ) 0.8h    

and ( / 2 ) 1h a  the results obtained for the model of finite height cylinder vibrating in the rigid 

cylindrical baffle are close enough (for radiation impedances per unit height) to those obtained 

for much simpler model of infinite cylinder. At smaller wave heights and aspect ratios the model 

of finite size cylinder is more appropriate (though more complicated). But it is not clear to what 

extent this model can be accurate enough for short cylinders. In order to make this estimation 

and to provide means for modeling acoustic parameters of the short rings, the radiation problem 

has to be considered for cylinders vibrating in the free space (without the rigid baffle exten-

sions). This problem is much more complicated for analytical solution. It does not allow for 
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separation of variables in the Helmholtz equation and, strictly speaking, requires involvement 

of numerical methods for its solution. Nevertheless, in order to complete analysis of various 

variants of radiating by the cylindrical transducers the method of solving this problem and re-

sults obtained for representative aspect ratios of the cylindrical transducers is considered in the 

next section. 

6.3.5 Radiation of a Finite-Size Cylinder in the Free Space 

A number of works were devoted to solving the radiation problem for the finite size cylinders. 

Review of related bibliography on this issue can be found in Refs. 13, 14, which present prob-

ably the most comprehensive, easy to implement and physical clear interpretation of the prob-

lem. The technique described in Refs. 13, 14 and in more detailed way in Ref. 15, provides 

sufficient accuracy over a wide range of ka and aspect ratios h/2a under arbitrary boundary 

conditions. The results obtained converge to the limiting cases of a long ( / 2 1h a ) and short 

( / 2 1h a ) cylinders, and were experimentally verified for several cylindrical transducer de-

signs having intermediate aspect ratios in Ref. 16. The brief outline of the technique used 

therein for solving the finite cylinder radiation problem is as follows. 

 

Figure 6.21: (a) Geometry of the cylinder with dimensions and reference coordinates, (b) parti-

tioning of the cylindrical surface into rings and bands. 

The geometry of the cylinder in the cylindrical coordinate system is shown in Figure 6.21 

(a). The solution is found by considering the integral Helmholtz equation 
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where 
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In these equations: ( )x  is the velocity potential, 0( , )g x x  is the three-dimensional Green’s 

function, U is the surface velocity, S is the surface of the cylinder, x and 0x  are the coordinates 

of observation point and of a point on the surface, R is the distance between observation and 

surface points;   is coefficient that has a value based on where the observation point is taken 

(either outside the surface, on the surface, or inside the surface), 0n  is the outer normal to the 

surface. 

Substituting expressions (6.214)- (6.217) into Eq. (6.213) yields 

 0 0 0

0

4 ( ) ( ) ( )
jkR jkR

S S

e e
x x dS U x dS

n R R


− −   
 −  =       

  , (6.218) 

where the distance given in cylindrical coordinates is known to be 

 2 2 2

0 0 0 0 0( ) 2 cos( ) ( )R x x r r rr z z = − = − − − + − . (6.219) 

For most transducers intended for omnidirectional radiation in the horizontal plane, vibra-

tions are axisymmetric, and this significantly reduces numerical computations. We will con-

sider this case in order to avoid complications unnecessary for illustrating approach to solving 

the problem. 

The first step in solving Eq. (6.218) is to divide the cylindrical surface into top, bottom and 

side surfaces ( t b sS S S S= + + ) in order to evaluate the left-hand side and right-hand side sur-

face integrals. After letting ( , , ) ( , )r x r x =  and ( , , ) ( , )U r x U r x = , and some manipula-

tion, Eq. (6.218) can be represented as 
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where 

 

2 2 2

0 0 0

2 2 2

0 0 0

2 2 2

0 0

2 cos ( ) ,

2 cos ( ) ,

2 cos ( ) .

t

b

s

R r r rr z b

R r r rr z b

R r a ra z z







= + − + −

= + − + +

= + − + −

 (6.221) 

The next step is to partition the cylinder into discrete rings (on the top and bottom surfaces) 

and bands (on the lateral surface), as shown in Figure 6.21 (b), for numerical integration. Note 

that if in the general case there exists a velocity (or potential) distribution along the circumfer-

ence of the cylinder (i.e., vibrations are not axisymmetric), then the rings and bands need to be 

further partitioned along the azimuth. Extending this analysis to the general case is straightfor-

ward. 

With an axisymmetric vibration the velocity potential and velocity are constant over each 

ring and band (shaded in grey). There are 1N  rings on each of the top and bottom surfaces (over 

[0, a]) and 22N  bands on the side surface (over [-b, b]) for a total of 1 22( )N N N= +  discrete 

partitions. Solution to the integral Helmholtz equation will be found by solving N linear equa-

tions in the form 

 (4 )ij i ij jY V U −  =  where 1...i N= , 1...j N= . (6.222) 

The complex N N  matrices ijY  and ijV  are determined by summing all the non-planar 

contributions from all the partitions for each observation point. Note that Eqs. (6.222) can be 

used to determine the potential on the surface if distribution of velocities is given, or to 
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determine the velocity on the surface if distribution of potentials is given. This can be done 

simply by interchanging columns of the two matrices. 

In order to compute the radiation impedance of the cylinder, the observation points are 

chosen to be located on the surface at the center of each ring or band. The combined effect on 

the observation point from all other partitions vibrating forms each complex matrix element. 

For more accurate results, the contributing ring or band is further divided into 1M  smaller rings 

or 2M  smaller bands and the contributing point is swept over the azimuth in 3M  discrete an-

gles. The discrete implementation of Eq. (6.220) can be used to calculate coefficients of radia-

tion impedance for finite cylinders by expression 
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 (6.223) 

 

Figure 6.22: Nondimensional radiation coefficients of finite cylinders with rigid end caps for var-

ious aspect ratios: h/2a = 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, ∞ (labeled on the plots). 
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where 0U  is the reference velocity at the center of the lateral surface and ( )wP jk c=   is the 

sound pressure. Plots of the nondimensional radiation coefficients of a uniformly vibrating 

( 0/ 1U U =  on the lateral surface) finite cylinder with rigid end caps ( ( , ) 0oU r b =  on the top 

and bottom surfaces) for height to diameter aspect ratios of h/2a = 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 

2.0 compared to the infinitely long cylinder case ( / 2h a→ ) are shown in Figure 6.22. 

Comparison of the plots for the nondimensional coefficients of radiation impedances of the 

finite size cylinders vibrating in the rigid cylindrical baffle (Figure 6.18) and in the free space 

at the same aspect ratios is presented in Figure 6.23 

In addition to the plots in Figure 6.23 it has to be noted that at / 0.8h    the nondimen-

sional coefficient ( , / )ka h   can be taken as ( )ka  for the infinite cylinder of the same di-

ameter within 10% accuracy. And with increasing ka, the value of /h  , for which this approx-

imation holds, decreases and / 0.3h    with ka →. 

 

Figure 6.23: Comparison of the values of nondimensional coefficients of radiation impedances for 

finite pulsating cylinders in a rigid cylindrical baffle (solid lines) and without a baffle with fixed 

ends (dotted line). h/2a = 0.15 (1); 0.3 (2); 0.6 (3); 0.8 (4); 1.2 (5). 
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It is of interest for practical transducers designing to compare the values of radiation 

impedances for the transducers with different conditions on the ends, such as with rigid and 

compliant caps. For the latter case the boundary conditins on the ends are 
0( , ) 0P r b =  instead 

of 
0( , ) 0U r b = . Results of calculating the radiation resistance for the compliant ends are 

given in Figure 6.24. Comparison of the radiation impedances for the tranducers with rigid and 

comploant end caps at aspect ratio b/a = 0.5 is presented in Figure 6.25. 

 

Figure 6.24: Nondimensional coefficients of radiation resistance for a transducer with compliant 

caps for b/a = 0.26, 0.5, 1.0. 

 

Figure 6.25: The nondimensional coefficients of (a) radiation resistance and (b) reactance for b/a 

= 0.5. Rigid ends (r – solid lines), compliant ends (c – dashed lines), phase labeled with ′. 
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6.4 Radiation of the Spherical Transducers 

6.4.1 General Case 

Consider the acoustic field radiated by a spherical shell (Figure 6.26) vibrating under arbitrary 

axial symmetric velocity distribution over its surface (for a thin-walled sphere it can be consid-

ered that / 2outr a t a= +  ) 

 
0

( , ) ( ) (cos )
N

r i i

i

U a U P   
=

= = , (6.224) 

where ( )r   is the radial displacement of a spherical shell, 
i iU =  is the generalized ve-

locity (the modal velocity) at 0 = . In the general case a part of the sphere can be covered with 

a baffle. We will assume that the baffle is absolutely rigid and covers a segment of the sphere 

at b  , as it is shown in Figure 6.26. Therefore, the condition on the surface is 

 
0

( , ) (cos )
N

i i

i

U a U P 
=

=  at b   and ( ) 0U  =  at b  . (6.225) 

 

Figure 6.26: (a) Geometry of the spherical shell and coordinate system, (b) illustration of the 

spherical shell with a conformal baffle. 

The general solution for the radiation problem is 

 
(2)

0

( , ) ( ) (cos )l l l

l

P r A h kr P 


=

= . (6.226) 

Here (2) ( )lh kr  are the spherical Hankel functions of the second kind, (cos )lP   are the Legendre 

polynomials of order l. The arbitrary constants lA  must be determined from condition of match-

ing to the boundary conditions (6.225). i.e., 

0 =



0 ,  

, rr 

0 =b

( , )U a 

2a

(a) (b)



6.4. Radiation of the Spherical Transducers  345 

 (2)

0

1
( , ) | ( ) (cos )r a l l l

l

P k
U a A h ka P

j r j
 

  



=
=

 = − = −
  , (6.227) 

where the prime (') in the superscript denotes a derivative with respect to ka. After representing 

( , )U a   at 0     as a series in terms of the Legendre polynomials 
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where 
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and after equating this series to the series in the right side of relation (6.227), we arrive at 
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Upon substituting lA  from Eq. (6.230) into expression (6.226) we obtain 
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where ( , , )i bP r    is the modal sound pressure generated by the single mode of vibration de-

fined at b  . At sufficiently large distances from a sphere (at k r → ) 

 (2) ( /2)( ) j kr l
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j
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kr

− −→ , (6.232) 

and we have the following expression for the modal sound pressure, 
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Using expressions (6.231) and (6.233) we obtain for the sound pressure on the acoustical axis 

of the transducer, ( ,0, )bP r  , and for the directional factor of the transducer, ( , )bH   , 
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The modal diffraction coefficients of a spherical transducer relative to a plane wave prop-

agating in the direction of axis 0 = was previously defined (see Eq. (6.10)) as the ratio of 

modal sound pressure generated by a transducer (Eq. (6.233)) to the sound pressure generated 

by a small pulsating sphere having the same referred volume velocity, (Eq. (6.9)). It will be 

found in the form 
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2 (2)
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= = −
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 . (6.236) 

Note, that the referred volume velocity for the ith mode is 
24 iV i

U a U= , and the sound pressure 

generated by a small pulsating sphere having this volume velocity is 

 0 ( ) ( ) / 4jkr

V i
P r j c kU e r −= . (6.237) 

The diffraction coefficient changes in accordance with the directional factor. 

The total power radiated by a vibrating sphere may be found as 
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 (6.238) 

This expression can be rewritten in the form 
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where 
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is the modal (self) radiation impedance for ith mode of vibration defined for b  , and 
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is the intermodal (mutual) impedance between modes i and m ( m i ). Thus, the radiation im-

pedance associated with the generalized velocity iU  is 
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It is convenient to represent the self and mutual radiation impedances in the form 

 ( ), ( )acii effi ii ii acip effi ip ipZ c S j z c S j     = + = + , (6.243) 

where  and  are the nondimensional resistance and reactance coefficients and 

 2 2

0

2 (cos )sin
b

effi iS a P d



   =   (6.244) 

will be defined as the effective radiating surface area. 

6.4.2 Radiation of the Spherical Shell without Baffles 

For the spherical transducers without baffles, i.e., at b = , all the coefficients ipa  at i p  

vanish due to orthogonality of the Legendre polynomials, and 1iia = . The modes of vibration 

that will be generated depend on the geometry of electrodes. We consider the two most common 

electrode configurations: unipolar electrodes on the whole surface of the spherical shell and the 

electrodes split in halves that are connected in opposite phase (bipolar electrodes). 

6.4.2.1 Transducers with Unipolar Electrodes on the Whole Surface 

In this case only the isolated zero mode of vibration is generated, 0( , )U a U = , 00 1a = , 

2

0 4effS a= . This is a classic example of a transducer with a single mechanical degree of free-

dom that was considered in Chapter 2. The diffraction coefficient, sound pressure generated in 

the far field and radiation impedance are 

 
( arctan )

0
2

1 1

1 1 ( )

jka j ka ka

difk e e
jka ka

−= =
+ +

, (6.245) 
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where the nondimensional coefficients of the radiation impedance are 
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The plots of nondimensional coefficients and diffraction coefficient are depicted in Figure 6.27 

and Figure 6.28 at 0i = . At low frequencies (at ka < 0.2) 

 2

0 ( )ka   and 0 ka  . (6.249) 

The acoustic mass for the pulsating sphere of a small wave size is 0ac sphm V = , i.e., equal to 

mass of water in volume of the sphere. 

6.4.2.2 Transducers with Bipolar Electrodes 

In this case the modes of vibration at i = 1, 3, 5… are generated. From expression (6.244) it 

follows that 24 / (2 1)eff iS a i= + . For the first mode of vibration the diffraction coefficient and 

radiation impedance are 
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Detailed information on the properties of the spherical Bessel functions and tabulated data for 

the functions can be found in Ref. 5. Summary of the properties is presented in Appendix C.2. 

In particular, 

 (2) (2) (2)

1 0 2

1
( ) [ ( ) 2 ( )]

3
h ka h ka h ka = − . (6.252) 

where (2) ( ) ( ) ( )i i ih ka j ka jy ka= − . The dependences of the modal diffraction coefficients dif ik  

and nondimensional coefficients ii  and ii  on ka for the transducers without baffles are plot-

ted in Figure 6.27 and 6.28. 
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Figure 6.27: The modal diffraction coefficients dif ik  for spheres without baffles for i = 0, 1, 3 

(phase labeled with ′). 

 

Figure 6.28: Nondimensional modal radiation impedance coefficients for spheres without baffles 

for i = 0, 1, 3 ( ii  labeled with ′). 

At 0.3ka   
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and with aid of Eq. (6.251) we obtain 
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The acoustic mass of a small oscillating sphere (that is called a simple dipole source) is 
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i.e., half of mass of water in the volume of the sphere. Comparison of the radiation resistances 

of the oscillating and pulsating simple sources, which is 
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1
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4
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shows that the oscillating source is much worse projector. 

6.4.3 Radiation of a Spherical Shell with Baffles 

The baffling of the spherical shells is intended for achieving a unidirectional radiation of the 

spherical transducers. These issues will be considered in Chapter 8. The most interesting for 

the practical applications are the variants of baffling a hemisphere (at / 2b = ) and of a seg-

ment that corresponds to / 3b = . 

First, we will assume that the baffles are ideally rigid, i.e., that the velocity is zero on the 

surface of the baffle. In the general expressions (6.234), (6.236) and (6.240) for the sound pres-

sure, diffraction coefficient, and radiation impedance the angle b  must be taken according to 

the baffle coverage. Thus, for the case that the baffle covers a hemisphere, which we will con-

sider for illustration with the numerical examples, ( ) 0U  =  at / 2    . To apply the 

general expressions to calculating parameters of radiation for a particular baffle coverage and 

mode of the surface vibration, the coefficients ila  have to be found using formula (6.229). Thus, 

in the variant that electrodes are unipolar (zero mode is excited) at / 2b =  we find: 

11 1/ 2a = , 00 1/ 2a = , 01 3 / 4a = , 03 7 /16a = − , 05 11/ 32a = ,… and 0 0la =  for l odd. In the 

variant of bipolar electrodes connection (1, 3, 5… modes are excited) we find 12 5 /16a = , 

10 1/ 4a = , …,and 1 0la =  for l even. 

It is noteworthy that in both variants the non-zero “intermodal” coefficients ila  exist. This 

means that acoustic interaction takes place between electromechanically active zero mode and 

passive odd modes in the case of unipolar sphere excitation, as it follows from Eq. (6.241). And 



6.4. Radiation of the Spherical Transducers  351 

in the case of the bipolar excitation the active first mode generates electromechanically passive 

zero mode through the acoustic interaction. 

The analogous calculations and conclusions can be made for the variant of baffling at 

/ 3b = . The results of calculations for both variants of baffling are presented here to be 

referred to in Chapter 8. 

Dependences of the modal diffraction coefficients, nondimensional coefficients of self and 

mutual radiation impedances and directional factors from ka are presented for the baffled spher-

ical transducers at / 2b = in Figure 6.29 - Figure 6.34 and at / 3b = in Figure 6.35 and 

Figure 6.36. 

 

Figure 6.29: Modal diffraction coefficients of a baffled ( / 2b = ) sphere: dif ik  (thick lines) 

and phase dif ik  (thin lines, labeled with ') for i = 0, 1 with rigid baffle (solid lines) and compliant 

baffle (dashed lines). 

Calculations show that the magnitudes of the mutual impedances between modes drop very 

quickly, as separation between modes increases, and especially so the higher the orders of the 

modes are. As it follows from plots presented in Figure 6.31, only the mutual impedance 01acz  

between the zero and first modes has significant value, and 13acz  can be already practically 

neglected. 
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Figure 6.30: Nondimensional coefficients of the modal self-radiation impedances of a baffled (

/ 2b = ) sphere: ii  and ii  (labeled with ') for i = 0, 1, 3 with rigid baffle (solid lines) and 

compliant baffle (dashed lines). 

 

Figure 6.31: Nondimensional coefficients of the modal mutual radiation impedances of a baffled 

( / 2)b =  sphere: il  and il  (labeled with ') for i = 0, 1, 3 with rigid baffle (solid lines) and 

compliant baffle (dashed lines). 

The modal directional factors corresponding to zero and first modes of vibration at differ-

ent ka are shown in Figure 6.32 and Figure 6.33, and for the second and third modes they are 

presented in Figure 6.34 
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Figure 6.32 (on the left): Directional fac-

tors for the zero mode of vibration of a 

baffled ( / 2b = ) spherical transducer 

at different ka: (a) ka = 2.5, (b) ka = 3.5, 

and (c) ka = 4.5. Shown are the modal di-

rectional factors with rigid baffle (thick 

solid lines) and compliant baffle (thick 

dashed lines). Plot (b) shows the direc-

tional factors calculated for spherical 

transducer #1 with rigid baffle (thin solid 

line) and measured with compliant baffle 

(thin dashed line). 

Figure 6.33 (on the right): Directional fac-

tors for the first mode of vibration of a 

baffled ( / 2b = ) spherical transducer 

at different ka: (a) ka = 3.5, (b) ka = 4.5, 

and (c) ka = 5.5. Shown are the modal di-

rectional factors with rigid baffle (thick 

solid lines) and compliant baffle (thick 

dashed lines). Plot (b) shows the direc-

tional factors calculated for spherical 

transducer #1 with rigid baffle (thin solid 

line) and measured for hemispherical 

transducer (thin dashed line) 
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Figure 6.34: Modal directional factors for a baffled ( / 2b = ) sphere corresponding to the second 

and third modes of vibration: second mode at ka = 6.5 (thin solid line), third mode at ka = 8.5 (thin 

dashed line). For comparison the measured directional factor of spherical transducer operating in the 

third mode (thick solid line) and the measured directional factor of the hemispherical transducer op-

erating in the third mode (thick dashed line) are also shown. 

The variant of baffling at / 3b =  may be of a practical interest in case that the mode of 

vibration is 1.6( ) (cos )rU U P = , as it will be shown in Chapter 8. The plots in Figure 6.35 

and Figure 6.36 are calculated for this mode of vibration. The effective surface area for the open 

segment of sphere is in this case 20.34effS a= . 

 

Figure 6.35: Diffraction coefficients and nondimensional radiation impedance coefficients for a 

baffled ( / 3b = ) sphere  
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Figure 6.36: Directional factors of baffled ( / 3b = ) sphere at different ka: 4.5 (solid line), 5.5 

(dashed line), and 6.5 (dot-dashed line) 

Remarkable property of the directional factors of the baffled spherical transducers is that 

they remain almost unchanged in a broad frequency range around the operating resonance fre-

quencies of the transducers, as this can be seen from the above figures. 

To this point the assumption was made that the velocity on the baffled part of a sphere was 

zero due to employing the ideally rigid baffle. While a useful approximation, it is not clear how 

to practically realize such a baffle. It is more practical to assume that the baffle is ideally com-

pliant, and that the sound pressure is zero on the baffled part. This brings us to the case of a 

radiation problem with mixed boundary conditions. For solving this problem for the sphere, the 

method is used that previously was employed in Section 6.3.3 regarding the cylindrical shell. 

Omitting the mathematical manipulations, the results of calculations obtained for the cases that 

/ 2b =  and / 3b =  are presented in Figure 6.29 through Figure 6.36. The results show 

very close agreement with those obtained under assumption of absolutely rigid baffle (except 

for the drop of the level of back radiation, which is especially prominent for zero mode velocity 

distribution). The results also show good agreement with experimental data, which were ob-

tained with baffles made of corprene (a rubber-cork composition) that functions closely to an 

ideally compliant material. 



356  6. Acoustic Radiation 

6.5 Radiation of Transducers having Flat Surfaces 

6.5.1 General Considerations 

Solutions to majority of radiation problems for the planar surfaces are obtained under the as-

sumption that the surfaces are flash with infinite rigid plane baffle (Figure 6.1 (c)). They are 

based on application of Huygens’s principle, one of formulations of which is the integral for-

mula (Rayleigh’s integral) 

 ( ) ( )
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j e
P U d

r


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−



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r

r r . (6.259) 

Here   is the surface of the infinite plane, ( )nU r  is the normal velocity of the points of the 

surface with coordinates r , and 1 1 1( , , )x y zr  is the radius vector of an observation point with 

2 2 2

1 1 1( ) ( ) ( )r x x y y z z= − + − + − . The velocity in this formula must be known on the entire 

surface of the infinite plane. As the velocity is known on the surface of a transducer only, the 

existence of the infinite rigid baffle on which the velocity is zero is crucial for using the formula. 

It is noteworthy that another formulation of the Huygens’s principle is 
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( ) ( )
jkj e

P P d
r




−




= 
r

r r , (6.260) 

where   is the angle between normal to the plane and direction on the observation point. 

Using this formula requires knowing the sound pressure on the entire infinite plane surface, 

therefore it can be applied to the case that transducer is embedded into the absolutely compliant 

flat baffle. Factor cos  shows that whatever small wave size of a transducer placed in the 

compliant baffle is it does not radiate (receive) acoustic energy along the baffle. 

For the two-dimensional radiation problem, such as determining the field of vibrating strip 

infinite in direction of axis y embedded into the rigid plane, formulation of the Huygens’s prin-

ciple for sound pressure per unit length along the y axis is 

 (2)

0( ) ( ) ( )
2

nP U x H kr dx
 

−

= r . (6.261) 

Here 2

0 0( )r x x z= − + , where 0x  and 0z  are the coordinates of an observation point. In par-

ticular, the rigid baffle flash with the surface of a transducer can be simulated by its plane of 
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symmetry in the case that the transducer is double-sided pulsating piston of infinitesimal wave 

thickness, as it is shown in Figure 6.1 (a). In the cases that thickness of the symmetrical pulsat-

ing transducers is significant, or dimensions of real baffles are small compared with wave-

length, or real transducers are used without the baffles, the radiation problem for the planar 

transducers complicates, and these cases must be considered on the separate issues. This will 

be done in Sect. 6.5.8.4. 

6.5.2 Radiation of a Circular Pulsating Piston 

The radiation impedance of the thin pulsating piston was first calculated by Rayleigh17. Because 

of special importance of this case, and of originality of the derivation performed we will briefly 

reproduce this derivation. Consider the circular disk that vibrates uniformly with the normal 

velocity 0U embedded in the absolutely rigid plane baffle as shown in Figure 6.37. The sound 

pressure on the surface of the disk can be calculated according to formula (6.259) as 

 
0( )

2

jkrj e
P U d

r




−




= r . (6.262) 

At first, we calculate the sound pressure on the surface of a thin ring having radius xr  produced 

by uniformly vibrating elements of the disk of this radius (denoted ( )xP r ). If to place the center 

of polar coordinate system at some point of the ring (point o in Figure 6.37), then the pressure 

at this point, ( )o xP r , can be found as (note that the radius of the arc l is 2 cosxr r = ) 
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Figure 6.37: Illustration of geometry considerations used for calculating the radiation impedance, 

where l is the arc of radius r. 
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Taking into consideration expressions for the Bessel and Struve functions (Ref. 5, 6, see also 

Appendix C.1), 
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=  , (6.264) 
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the sound pressure at any point of the ring can be represented as 

 
0 0 0( ) {[1 (2 )] (2 )}

2
o x x x

c
P r U J kr jS kr


= − + . (6.266) 

Thus, the force that is acting on the entire ring is 

 ( ) ( ) 2x o x x xF r P r r dr=  , (6.267) 

and the total force acting on the surface of a disk of the radius a will be found as 

 
0 0 0

0 0

2 ( ) {[1 (2 )] (2 )}
a a

disk o x x x x x xF P r r dr cU J kr jS kr r dr = = − +  . (6.268) 

After performing integration keeping in mind that 

 0 1( ) ( )zJ z dz zJ z=  and 0 1( ) ( )zS z dz zS z= , (6.269) 

for the radiation impedance will be obtained 

 2 21 1

0
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1 ( )
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. (6.270) 

The nondimensional coefficients of radiation impedance   and   can be represented in the 

form of the series (for brevity we denote 2ka z= ) 
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Their plots are shown in Figure 6.38. 

At ka 0.5 (with accuracy not less than 5%) 
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 21
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2
ka   and 

8
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3
ka
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 . (6.273) 

Thus, the radiation resistance is 

 
2

2 2

2

1
( ) 2

2
ac

S
r a c ka c  


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This is the general expression for radiation resistance of a simple source given that in this case 

avS S= . 

The radiation reactance and the acoustical mass are, 

 2 8

3
acx a c ka 


  and 2 8 2

3
ac sphm a a V  

 
 = , (6.275) 

where sphV  is the volume of sphere having the same radius. 

 

Figure 6.38: The nondimensional coefficients of radiation impedance of pulsating disk imbedded 

in the infinite rigid baffle. 

When determining sound pressure generated by the disk in the far field, modulus of the 

radius vector of an observation point in formula (6.259), which will be denoted here as R , is 

much greater than radius of the disk, aR . Due to the axial symmetry of radiation, it is 

sufficient considering that the observation point is in plane perpendicular to the plane of the 

disk, as shown in Figure 6.39. At first, consider the sound pressure that is generated by an 

elementary ring of radius r. The sound pressure of an element of the ring having coordinates x 

and   is proportional to its volume velocity, 0( , )U x U rd dr = . Distance xr  between the 
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observation point and the point with coordinate cosx r =  on the surface of the disk can be 

expressed as 

 
2 2( cos ) ( sin ) 1 2( / )sinxr R R x R x R  = + −  −  (6.276) 

or, given that ( / ) 1x R , 

 [1 ( / )sin ]xr R x R  − . (6.277) 

 

Figure 6.39: Geometry for determining the sound pressure of a disk in the far field. 

The sound pressure generated by the element of the ring in the far field, being obtained by using 

formula (6.259), is 
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And the total sound pressure at the point of observation will be found as result of integrating 

this expression over the ring circumference, 
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Integral in the brackets is the Bessel function 0 ( sin )J kr  . Thus, expression for the sound pres-

sure generated by the ring in the far field becomes 

 0 0( , ) ( sin )
jkRe

P r j ckrdrU J kr
R

  
−

= , (6.280) 

and the directional factor of the ring is 

 ( ) ( sin )ring oH J kr = . (6.281) 

In order to obtain the sound pressure radiated by the entire disk having radius a, expression 

(6.280) must be integrated by radius. Given that 

xr o


x

z

r
 R
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 0 1( ) ( )zJ z zJ z= , (6.282) 

the result is 
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The directional factor of the disk is 

 12 ( sin )
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disk

J ka
H

ka


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= . (6.284) 

The diffraction coefficient at 0 =  for all the transducers imbedded in the infinite rigid plane 

baffle is 2difk = , as the sound pressure in incoming plane wave doubles on the surface of the 

baffle. Using formula (6.22), expression (6.270) for acr , and Eq. (6.283) for the sound pressure 

on the axis, the following relation can be obtained for the directivity of the disk 
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At / 2a   the directivity differs less than by 6% from its value by formula 
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6.5.3 Radiation of a Thin Ring Pulsating in the Axial Direction 

Radiation of a thin ring pulsating in axial direction may be considered as the extreme case of 

radiation of a radially vibrating cylinder of small height having rigid caps, as shown in Figure 

6.40, using symmetry considerations. 

 

Figure 6.40: (a) Thin ring pulsating in axial direction, (b) radially vibrating cylinder of a small 

height. They can be considered as vibrating in the infinite rigid plane baffle by the symmetry 

considerations. 

The geometry relations in the Figure are ,a  ,  2h =  . The procedures analogous 

(b)

2a

2h = 

(a)


2a
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to those used for calculating radiation of a disk can be used in this case. The sound pressure 

generated by a ring in the far field and directional factor accordingly were already obtained in 

process of determining these characteristics for a disk and expressed by formulas (6.280), 

(6.281). 

Determining the radiation impedance requires a little different calculation. The geometry 

considerations for solving this problem are illustrated with Figure 6.41. The sound pressure on 

the element o of the ring exerted by elements 1 and 2 remote from point o by distance 

2 cosxr a =  that have the volume velocity 0v x xU U r dr d=  is 

 2 cos

0( , ) j ka

o x x

j
P r U e dr d 


−= . (6.287) 

 

Figure 6.41: Illustration of the geometry considerations used for calculating radiation impedance 

of a ring. 

Thus, the total sound pressure at the arbitrary point of the ring will be obtained as 
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or taking into consideration the definitions (6.264) and (6.265) 

  0 0 0(2 ) (2 )oP cU ka S ka jJ ka=  + . (6.289) 

The force acting on the entire surface of the ring and the radiation impedance are 

 2ring oF a P=  , (6.290) 

  0 0

0

(2 ) (2 )
ring

ac ring

F
Z cS ka S ka jJ ka

U
= =  + . (6.291) 

Thus, the nondimensional coefficients of radiation impedance are 
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 0 (2 )ka S ka =  , (6.292) 

 0 (2 )ka J ka =  . (6.293) 

For a cylinder of the height 2h = with rigid caps formula (6.291) for the radiation impedance 

remains the same with replacement of 
ringS by 2cylS ah=  due to the fact that h   and the 

sound pressure on its surface is the same as on the surface of the ring. Therefore, formulas 

(6.292) and (6.293) for the nondimensional coefficients of radiation impedance are valid for 

this case also. 

6.5.4 Radiation of an Infinitely Long Pulsating Strip 

Radiation problem for the vibrating strip embedded into the rigid plane that is infinite in direc-

tion of axis y is two-dimensional. The geometry of the problem is illustrated in Figure 6.42. 

 

Figure 6.42: To the radiation of the infinite strip embedded into the rigid baffle. 

Therefore formulation (6.261) of the Huygens’s principle for determining the sound pres-

sure radiated by element y of length along y axis of the strip is 
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Here 0( ) ( )nU x U f x=  is distribution of the normal velocity over the width of the strip. In the 

case of uniform vibration 0( ) ( ) 1f x f x= = . Also of interest is the distribution of velocity 

1( ) ( )f x f x= cos( / )x W= , if to consider radiation of the column like double-sided rectangu-

lar plate bender transducer that is composed of simply supported beams. 

By the definition of the radiation impedance 
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where ( )pP x is the sound pressure generated by vibration of the strip in the point 
px  on its 

surface. For the sound pressure in the point px  we obtain from formula (6.294) 

 
/2

(2)

0 0

/2

( ) ( ) [ ]
2

W

p p

W

P x U f x H k x x dx


−

= − . (6.296) 

The resultant expression, from which the radiation impedance can be calculated, is 
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Note that 0[ ]pN k x x− → at px x→  as ln pk x x− , therefore a small interval around this 

point must be excluded from calculation. The subscripts 0 and 1 correspond to the uniform and 

cosine distributions, respectively. Thus, 00Z  and 11Z  are the radiation impedances for the case 

of uniform and cosine velocity distributions. 01Z is the mutual radiation impedance between the 

modes in the case that the distribution is superposition of uniform and cosine modes of vibra-

tions having equal magnitudes. The mutual radiation impedance per unit length may be repre-

sented as 

 ( ) [ ( ) ( )]acil effi il ilZ kW cS kW j kW  = + , (6.298) 

 

Figure 6.43: Dependences of the nondimensional coefficients of the radiation impedances for an 

infinitely long strip vibrating in a rigid plane. 
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where ( )il kW  and ( )il kW  are nondimensional coefficients of the radiation resistance and 

reactance, effiS is the effective radiating surface area per unit length, 
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Dependences of the nondimensional coefficients of the self-radiation impedances from kW at 

the uniform distribution ( 0effS W= per unit length), at the cosine distribution ( 1 / 2effS W=  per 

unit length), and of the coefficients for the mutual impedances between these modes of vibration 

(in which case it is taken that 01effS W= ) are shown in Figure 6.43. The numerical values of 

the coefficients for kW < 2 are presented in Table 6.1. This range of values of kW, at which 

/ 1/ 3W   , is typical for the rectangular bender transducers. 

The sound pressure in the far field can be found by using formula (6.294) and the asymptotic 

expression for the Hankel function 
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Thus, the sound pressure generated by an element y of the strip in the normal direction 

(at 0) =  in the far field (at R W ) is 
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Here 
V

U is the volume velocity, 0 avV
U U S= , and 
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is the average surface area of an element of the strip: avS W y=   for uniform vibration and 

(2 / )avS W y=   for the cosine distribution. 

The directional factor of a strip in the plane perpendicular to the strip is the same as for the 

segment of length W due to symmetry. Using the geometry considerations that follow from 

Figure 6.42, the sound pressure at the observation point can be represented as 
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where sinxr R x = −  analogous to (6.277). Thus, the directional factor is in general 
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Table 6.1: Impedances and nondimensional coefficients for the cases of uniform and sinusoidal distribu-

tions of velocities, and the mutual impedances between these modes of vibration. 

kW 

00acZ   11acZ   01acZ  

00  00  11  11  01  01  

0.1 0.050 0.123 0.040 0.105 0.031 0.079 

0.2 0.100 0.203 0.080 0.178 0.063 0.132 

0.3 0.149 0.266 0.121 0.236 0.095 0.175 

0.4 0.199 0.318 0.161 0.286 0.126 0.210 

0.5 0.247 0.361 0.201 0.329 0.158 0.239 

0.6 0.296 0.398 0.241 0.366 0.188 0.264 

0.7 0.343 0.428 0.280 0.399 0.219 0.286 

0.8 0.389 0.453 0.319 0.428 0.249 0.304 

0.9 0.435 0.474 0.357 0.452 0.279 0.319 

1.0 0.480 0.490 0.395 0.474 0.308 0.332 

1.1 0.523 0.503 0.433 0.493 0.336 0.342 

1.2 0.565 0.512 0.470 0.509 0.364 0.350 

1.3 0.606 0.518 0.506 0.522 0.391 0.356 

1.4 0.645 0.521 0.541 0.534 0.418 0.361 

1.5 0.683 0.521 0.576 0.543 0.444 0.363 

1.6 0.720 0.519 0.610 0.550 0.468 0.364 

1.7 0.755 0.515 0.643 0.555 0.493 0.364 

1.8 0.788 0.509 0.676 0.558 0.516 0.362 

1.9 0.819 0.501 0.707 0.559 0.538 0.358 

2.0 0.849 0.491 0.738 0.559 0.559 0.354 

In the case of uniform velocity distribution ( ( ) 1f x = ) we obtain the well-known expression 
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and for the cosine distribution ( ) cos( / )f x x w=  



6.5. Radiation of Transducers having Flat Surfaces  367 

 
2

cos[( / 2)sin ]
( )

1 [( / )sin ]

kW
H

kW


 

=
−

. (6.306) 

6.5.5 Radiation of the Rectangular Pulsating Pistons 

The radiation impedance of a rectangular piston vibrating uniformly in the infinite rigid plane 

baffle was considered in several works by numerical calculations based on using Rayleigh’s 

integral (6.259). The most complete results of the calculations produced for pistons in the wide 

range of their aspect ratios wave sizes are presented in Ref. 18, 19. This resalts will be consid-

ered in this section from the point of view of application to transducer designs. 

Plots of the nondimensional coefficients of radiation impedances of the rectangular pistons 

for their different widths to lengths aspect ratios, /R W L= , are shown in Figure 6.44. Several 

conclusions can be drawn from analysis of these data. 

 

Figure 6.44: Nondimensional coefficients of the radiation impedances of the rectangular radiating 

surfaces vs. wave width kW at different aspect ratios R = W/L. 
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Comparison with results presented in Figure 6.38 shows that the nondimensional coeffi-

cients of radiation impedance of the square pistons (at 1R = ) to a great accuracy are the same 

as for the circular pistons having equal surface area, i.e., at /ka kW = . The nondimensional 

coefficients of radiation impedance of rectangular pistons having the wave width 1kW   at 

/ 4R W L=   behave like those for the infinite strips (at R → ). Therefore, the data pre-

sented in Figure 6.43 and in Table 6.1 can be used for calculating radiation impedances of the 

rectangular pistons with such dimensions. 

The sound pressure generated by the rectangular piston in the far field can be determined 

by direct applying the integral formulation of Huygens’s principle (6.259). In the case that non-

uniform distribution of velocity exists over surface of the piston its volume velocity is 

av oV
U S U= , where avS  is the average surface area. For a uniform distribution oV

U WLU= . 

Thus, in this case 
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=  . (6.307) 

Expressions for the directional factor of the rectangular piston that has geometry shown in 

Figure 6.45 will be obtained by using formulas (6.305) and (6.306) for directional factors of the 

 

Figure 6.45: Rectangular piston and spherical coordinate system for representing its directional 

factor (point o is the observation point). 

linear segments without and with distributions of velocity over length. Following the product 

theorem, in the case that vibration is uniform 
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In the case of velocity distribution over the width ( ) cos( / )oU x U x W= , which is typical of 

the rectangular bender transducers, 

 
2

cos[( / 2)sin ] sin[( / 2)sin ]
( , )

( / 2)sin1 [( / )sin ]

kW kL
H

kLkW

  
 

= 
−

. (6.309) 

6.5.6 Radiation of the Oscillating Disk 

Surfaces of the oscillating disk vibrate in phase, as shown in Figure 6.46 (b), where the main 

types of the flat piston-like projectors are schematically depicted. It is noteworthy that in all the 

cases the thickness of the projectors is assumed to be infinitesimal, and in this sense it would 

be more appropriate to call them membranes. Real projectors have a finite thickness. Effects of 

the finite thickness will be considered in Section 6.5.8.4. 

 

Figure 6.46: Types of the circular disks vibration: (a) pulsating disk, (b) oscillating disk, (c) one-

sided (vibrating on one side) disk as the superposition of (a) and (b). 

The sound pressure on the surfaces of the oscillating disk (Figure 6.46 (b)) is in opposite 

phase (when compression occurs on one side, expansion takes place on another). Due to sym-

metry the sound pressure on the plane that is continuation of the disk surface is zero. This means 

that the oscillating disk can be imagined as uniformly vibrating membrane embedded in the 

infinite absolutely compliant plane baffle. The radiation problem for the oscillating disk was 

considered by L. Y. Gutin in Ref. 20. The solution was presented in the form of expansion into 

a series in terms of the oblate spheroidal functions. The coefficients of the series are presented 

in Ref. 20 for a number of terms that is sufficient for calculating radiation parameters for the 

range of ka having practical interest for transducer designing. The results of calculating the 

radiation parameters are summarized as follows. 

The nondimensional coefficients of radiation impedance are plotted in Figure 6.47 and 

given in Table 6.2. 

oU

oU

oU

oU
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Figure 6.47: Nondimensional coefficients   and   of radiation impedance of the oscillating 

circular disk. 

Table 6.2: Nondimensional coefficients of radiation impedance of the oscillating circular disk. 

ka   ka   

0.1 4.4e-6 0.044 3 1.12 0.17 

0.5 3.7e-3 0.23 5 0.96 0.23 

1 0.06 0.54 8 0.95 0.11 

2 1 0.9 10 0.97 0.03 

The main application of the results obtained for the oscillating disk is to designing the pressure 

gradient (dipole type) transducers, which predominantly have a small wave size. At 1ka  

(practically up to 0.3ka  ) 

 4

2

8 4
( ) , ( )

327
ka ka 


  . (6.310) 

From 2

ac axx c a m   = =  follows that the acoustic (radiation) mass is 

 34 1

3
ac sphm a V 


= = , (6.311) 

where sphV  is the volume of sphere having the same radius. Thus, the acoustic mass is twice 

smaller than for the pulsating disk (see (6.275)). 

Expression for the radiation resistance 
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2

8
( )

27
acr c a ka 


=  (6.312) 

seemingly does not comply with the general expression for radiation resistances of the simple 

sources 

 
2

2
2 av

ac

S
r c


= , (6.313) 

but for the oscillating disk 0avS = , which means that 0acr =  to the first approximation, and 

the oscillating disk is very poor projector at low frequencies. Expression (6.312) is for the ra-

diation resistance to the second approximation. 

The sound pressure in the far field can be presented in the form20 

 
( )

2
1

( , ) ( ) ( , )
j kR

o

c
P ka e U F ka E ka

R k

 
− −

=  , (6.314) 

where at 4ka   

 1 3( , ) (cos ) ( ) (cos )E ka P ka P   = + , (6.315) 

and functions ( )F ka and ( )ka  have values that are presented in Table 6.3. 

Table 6.3: Values of functions ( )F ka and ( )ka . 

ka 0.5 1.0 1.5 2.0 2.5 3.0 

( )F ka  j0.027 0.02(1+j12.6) 0.36(1+j3.2) 2.2(1+j0.9) 3.7(1+j0.45) 5.0(1+j0.18) 

( )ka  0.01 0.04 0.09 0.15 0.23 0.32 

At 1ka  (practically, at 0.5ka  ) 
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32
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3
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o

c j
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

− −
  . (6.316) 

The directional factor is 

 1 3(cos ) ( ) (cos )( , )
( , )

( ,0) 1 ( )

P ka PE ka
H ka

E ka ka

  


+
= =

+
. (6.317) 

At 1ka  

 ( , ) ( ) cosH ka H  = = , (6.318) 

i.e., directional factor of small oscillating disk is that of the dipole. The directional factor prac-

tically does not change at least up to 1ka = , as it follows from Figure 6.48, where the direc-

tional factors of an oscillating disks are shown at different values of ka. 
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Figure 6.48: Directional factors of the oscillating disk: ka = 0.25 (solid line, cos ), ka = 1 

(dashed line), ka = 2 (dash-dotted line), ka = 3 (thin solid line). 

Comparing expressions (6.314) and (6.2) for the sound pressure in the far field we can conclude 

that the diffraction function for the oscillating disk in direction of acoustic axis (at 0 = ) is 

 
0

1 1
( ) ( ) ( ,0) ( ) [1 ( )]ka F ka E ka F ka ka

k k
 

=
=  =  + . (6.319) 

Using the general formula for the diffraction coefficient (6.10) and taking into consideration 

that the total surface area of the disk is 22S a = , we arrive at the expression 

 0 2

2 2
( ) ( ) [1 ( )]

( )
dif ok ka F ka ka

S ka


  =


=  =  + . (6.320) 

From Eq. (6.316) follows that for ka < 0.5 

 32
( , ) ( ) cos

3

j
ka ka

k
  


=  , (6.321) 

and after substituting in the general formula for the diffraction coefficient we obtain 

 
4

( ) ( )cos( )
3

difk j ka 


= . (6.322) 

Moduli of the diffraction coefficients of disks at 0 = as function of ka are presented in Figure 

6.49. 
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Figure 6.49: Modulus of diffraction coefficients of circular disks as functions of ka: pulsating disk 

in infinite planar baffle (solid line), oscillating disk (dashed line), disk radiating from one side 

(dash-dotted line). 

6.5.7 Radiation of the Disk Vibrating on One Side (Gutin’s Superposition Concept) 

The radiation problem for the disk vibrating on one side without baffles was solved by super-

posing results of already available solutions for the pulsating and oscillating disks in Ref. 20. 

The idea is self-explanatory from Figure 6.46. This technique became obvious after it was first 

suggested by L. Y. Gutin in Ref. 20. Sometimes it is referred to as “the Gutin’s concept” (Ref. 

21), but mostly is used without any reference (for example, in Ref. 22). 

Superposing the potentials of acoustic fields generated by the pulsating and oscillating 

disks vibrating with equal velocities leads to the following results for the disk vibrating on one 

side with the same velocity. 

The nondimensional coefficients of the radiation impedance (denoted 1  and 1 ) are 

 1

1
( )

2
p o  = +  and 1

1
( )

2
p o  = + , (6.323) 

where subscripts p and o correspond to pulsating and oscillating disks. Coefficients p  and p  

are given by expressions (6.271) and (6.272), and plotted in Figure 6.50. 



374  6. Acoustic Radiation 

 

Figure 6.50: Nondimensional coefficients of radiation impedances of the circular disks: pulsating 

(solid line), oscillating (dashed line), one-sided (dash-dotted line). 

Coefficients o , o  are presented in Table 6.2 and shown in Figure 6.47. The values of coef-

ficients 1  and 1  are summarized in Table 6.4. 

Table 6.4: Nondimensional coefficients of radiation impedance of the disk radiating from one side. 

ka 1 1 ka 1 1 

0.1 2.5e-3 0.065 2 1.02 0.71 

0.5 0.065 0.31 5 0.98 0.21 

1 0.24 0.59 10 0.98 0.037 

At 1ka  
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The acoustic mass is 

 
3

2
ac sphm V


= . (6.326) 

Expression for the sound pressure in the far field being found as superposition of expressions 

(6.283) and (6.314) is 
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The sound pressure on the axis is 
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The directional factor is 
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 = . (6.329) 

Comparison of the directional factors of the circular disks at ka = 3 is made in Figure 6.51. 

 

Figure 6.51: Directional factors of the circular disks at ka = 3: pulsating disks (solid line), oscil-

lating disks (dashed line), disk vibrating on one side (dash-dotted line). 

The diffraction coefficient on the axis will be found by formula (6.10) as 

 0

2
( )difk ka

S


  =


=  , (6.330) 

where 2S a =  (the disk radiates from one side) and 
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Thus, 

 1 2

2
1 ( ) [1 ( )]

( )
difk F ka ka

ka
= +  + . (6.332) 

Taking into consideration that diffraction coefficient for the pulsating disk is 2dif pk = , and for 

the oscillating disk (
dif ok ) is given by expression (6.320), we can conclude that 

 1
2

dif p dif o

dif

k k
k

+
= . (6.333) 

At ka < 0.5 

 1

2
1 ( )

3
difk j ka


= + . (6.334) 

Values of the diffraction coefficient of the one-sided disk as function of ka are presented in 

Table 6.5. 

Table 6.5: Diffraction coefficient of the one-sided disk as function of ka. 

ka |kdif| ka |kdif| ka |kdif| 

0.1 0.25 1 0.62 10 1.22 

0.2 0.27 2 1.55   

0.5 0.34 5 1.23   

6.5.8 Radiation of Disks Embedded in the Baffles of Finite Size 

6.5.8.1 Introduction 

The preceding analysis shows significant difference between characteristics of acoustic energy 

radiation in free space of the circular disks of small wave size having different velocity distri-

bution (pulsating, oscillating and one-sided). This is illustrated with data regarding the nondi-

mensional coefficients of radiation resistance and ratio of the reactive to active power radiated 

that are presented in Table 6.6. The comparison shows that the characteristics of pulsating disk 

are comparable with those of the pulsating sphere, which can be considered as an ideal source. 

And the oscillating disk of small wave size is an extremely poor source of radiation. At large 

wave sizes (practically at 3ka   or at (2 / ) 1a   ) the difference in radiating characteristics of 

all the disks vanishes. 



6.5. Radiation of Transducers having Flat Surfaces  377 

Table 6.6: Ratios of the reactive to active power radiated by different sources. 

Projector Type ka    /    

Pulsating Disks < 0.5 
2( ) / 2ka   16 / 3 ka  

 0.5 0.125 3.4 

 3 1.09 0.15 

Oscillating Disk < 0.5 
4 28( ) / 27ka   

39 / 2( )ka  

 0.5 
31.9 10−   110 

 3 1.17 0.18 

One-Sided Disk < 0.5 
2( ) / 4ka  8/ ka  

 0.5 0.062 5.1 

 3 1.14 0.16 

Sphere < 0.5 
2 2( ) / [1 ( ) ]ka ka+  1/ ka  

 0.5 0.2 2 

 3 0.9 0.3 

Transducers with flat radiating surfaces shown in Figure 6.1(c) usually have dimensions of 

their surfaces relatively small compared with wavelength at operating frequencies. Thus, the 

simply supported circular plates of a double plate bender transducer have / 0.2.D    (This 

follows from formula for its resonance frequency 20.45( / )r ceramicf t a c=  at usually adopted 

/ 1/ 5t a  ). The overall thickness of a single double plate bender transducer, trt , is usually 

about two thicknesses of the comprising plates, i.e., / 0.4trt   . As to the rectangular plate 

benders that are made of beams, we will assume that a single transducer unit has approximately 

the same wave size as a circular plate having the same resonance frequency ( l w D= = ). 

Though this assumption is not quite rigorous, it gives sufficiently accurate estimation of the 

order of quantities. Diameters of the piston like vibrating surfaces of transducer configurations 

shown in Figure 6.1 (c.2) and (c.3), which are typical for the Tonpilz transducer design enclosed 

in a housing, usually have size / 0.5D    ( 1.5ka  ). (This requirement is out of consideration 

of steering directivity pattern of an array populated by the transducers of this kind). 

Thus, all the listed transducers fall into category of transducers with radiating surfaces 

small compared with wavelength, when operating as single transducer units. Their radiation 

characteristics in this case can be improved by using rigid baffles flash with their radiating 
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surfaces. The ideal results obviously would be obtained with baffles of infinite size, but suffi-

ciently good improvements can be achieved with real baffles of properly chosen finite size. 

The quantitative estimations of effects that rigid baffles of finite size exert on the charac-

teristics of acoustic radiation of the circular disks were produced in several works15, 21, 23. The 

problem was solved in Ref. 23 in the oblate spheroidal functions in the way similar to those 

used in Ref. 20 for calculating radiation characteristics of the oscillating disk without a baffle. 

The most comprehensive analysis of the related problems based on employing integral equa-

tions to calculating acoustic fields was performed in Ref. 15. The numerical results regarding 

the radiation characteristics of the disks embedded in the rigid circular baffles that are presented 

in this section are due to this work. 

6.5.8.2 Radiation of the Oscillating Disks Embedded in the Rigid Baffles of Finite Size 

A qualitative explanation of difference in radiation characteristics of oscillating disks of small 

and significant wave size can be done with help of Figure 6.52. 

 

Figure 6.52: Qualitative illustration of diffraction on the oscillating disk: (a) at small wave size 

(low frequencies), (b) at high frequencies. 

At small wave size the wave radiated from the front surface propagates round the edge of the 

disk and comes to the back surface practically in the same phase, in which this surface vibrates. 

Thus, the main fluid flow goes from one side of the disk to another in the process of vibration, 

and only a small portion of the radiation goes to infinity. Acoustic short-circuiting takes place. 

With increase of the disk wave size the portion of radiation that comes over the edge to the back 

surface in phase with its vibration reduces and eventually becomes negligible. Radiations from 

the disk surfaces become independent and take place in respective half spaces. For the one-

sided disk radiation in rear half space due to diffraction over the edge exists though it is much 

less pronounced than in case of the oscillating disk. It can be expected that the harmful effect 

of diffraction can be reduced by placing the disks in a circular rigid baffle and thus moving the 

L 

(a) (b)
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edge of the entire structure away of the source of radiation. Thus, for the pulsating disk there is 

no diffraction over the edge, because in terms of radiation in half space it is equivalent to radi-

ation of disk embedded in the infinite rigid baffle due to symmetry. As it follows from the Table 

6.6, the acoustic energy radiation characteristics of the disks of all the configurations become 

quantitatively practically the same at 3ka  . This allows to assume that the wave diameter of 

the baffle sufficient for achieving the goal of effective suppressing the effect of diffraction on 

the acoustic energy radiation may be about / 1d  = . 

Dependences of the nondimensional coefficients of radiation impedance for the disks hav-

ing different wave radiuses ka from the wave radiuses of the rigid baffles, kb, are presented in 

Figure 6.53 and Figure 6.54. In Figure 6.53 they are shown for small disk with 0.5ka =  in the 

more detailed way. 

 

Figure 6.53: Dependences of the nondimensional coefficients of the radiation impedances of disk 

with 0.5ka =  on the wave radius of the rigid baffle for the oscillating disks (dash-dotted lines) 

and one-sided disks (dashed lines). Solid lines correspond to the pulsating disk, for which charac-

teristics don’t depend on the size of the baffles. 

As can be seen from Figure 6.53, at 2kb   the normalized components of radiation im-

pedance reach the values that correspond to those for the pulsating disk, around which they 

oscillate with increase of the size of a baffle. Analogous dependences are shown in Figure 6.54 

for a wider range of the disks wave dimensions. They confirm that the wave radius of the rigid 

baffle that is sufficient for achieving values of the coefficients, around which they oscillate with 

further increase of the baffle size, is about 2 3kb =  . Dependence of the nondimensional 
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coefficients of radiation impedances of differently vibrating disks on the wave size in case that 

they are embedded in the rigid baffle having wave size 3.0kb =  are presented in Figure 6.55. 

Both components of the radiation impedance up to 0.5ka   and the active component up to 

1.0ka   behave like in the infinite baffle. At 3.0ka   active component of radiation of the 

disks practically does not depend on the size of the baffle (slightly oscillates around its value at 

the infinite baffle, as shown in Figure 6.54). The reactive component at 3.0ka   oscillates 

more significantly, but its average value becomes small. 

 

Figure 6.54: Dependences of the nondimensional coefficients of the radiation impedances of disks 

of different wave size on the radius of the rigid baffle: (a)  , (b)   for the oscillating disks 

(solid lines) and one-sided disks (dashed lines). Numbers on the curves correspond to the wave 

radiuses (ka) of the disks. 

For the disks with baffles of small wave sizes (at 0.5kb  ) the following approximate 

expressions for the nondimensional coefficients of radiation impedance may be used as it is 

shown in Ref. 21, 
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Figure 6.55: Nondimensional coefficients of the radiation impedance for the disks embedded in 

the rigid baffle at 3.0kb = : pulsating disk (the same as in the infinite baffle) (solid line), one-

sided disk (dashed line), oscillating disk (dash-dotted line). 

 

Figure 6.56. Illustration of the effects of diffraction on the sound pressure on the axis (a) and on 

the directional factor (b) of an oscillating disk of small wave size embedded in the finite size rigid 

baffle. 

The algorithms developed in Ref. 15, 23 allow a detailed analysis of peculiarities of the far 

field characteristics of the disks vibrating in the rigid baffles, namely, of the sound pressure 

generated on the acoustical axis and directional factors. 

As it is shown with results of calculations made therein at small wave dimensions of the 

disks these characteristics depend significantly on the wave size of a baffle. At 3ka   they are 

determined mainly by dimensions of the projector itself. As well as the radiation impedance, 

the sound pressure on the axis sharply increases with increase of the wave size of a baffle up to 

3kb   ( / 2b  ), and then its value starts to oscillate. The oscillations are more pronounced 

(up to about 6 dB) for the oscillating disks of small wave size (with 1.5ka  ) and less pro-

nounced for the one-sided disks of the same size. At value 6.3kb   ( b  ) the sound pressure 

(a)

b

(b)

b




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achieves minimum. The qualitative explanation of this behavior that takes place due to diffrac-

tion of sound on the edge of the disks can be done with help of the Figure 6.56. 

The sound pressure on the axis is a superposition of the direct radiation from the front surface 

of the disk and of radiation of its back surface that comes over the edge. This back radiation 

can be imagined as produced by an additional projector located on the edge. If the width of the 

baffle is / 2b  , then given that the surfaces of the disk vibrate in antiphase the additional 

projector radiates in phase with the front surface, and this results in maximum of sound pressure 

on the axis, which is greater than it would be produced with the infinite baffle. In the case that 

b  , the phase of the additional projector changes by 180°, and sound pressure on the axis 

drops to its minimum. 

Effect of the baffle on the directionality depends mainly on the dimensions of the projector. 

At small wave size ( 1.5ka  ) the influence is very strong. Thus, at 6.3kb  very sharp drop 

appears in the directivity pattern in a narrow range of angles close to the axis in addition to 

greatly reduced value of sound pressure on the axis. These angles (around 7o   in Figure 6.56 

(b)) correspond approximately to radius b, on which the phase shift brings radiation of the ad-

ditional projector on the edge to antiphase with the direct radiation of the disk. At larger dimen-

sions of the disks their directional factors practically are not influenced by the baffles. 

The peculiarities of behavior of the sound pressure on the axis and of the directional factors 

of oscillating disks of small size ( 1.5ka  ) embedded in the finite size baffles are qualitatively 

illustrated by plots in Figure 6.57. The values of parameters are approximate. More accurate 

results of calculations can be found in Ref. 15. The qualitative understanding of impact of baf-

fles of finite size based on considering the ideal baffles may be even more important than know-

ing the exact values thus calculated, because properties of the real baffles usually are not known 

to a sufficient accuracy. 

It is noteworthy that conclusions regarding large oscillations of sound pressure and deep 

drops in the directional characteristics that are made for the ideally rigid circular baffles occur 

since all the points of the additional projector on the edge vibrate in phase because of symmetry. 

For baffles of different configuration (for square baffles for example) these effects may be sig-

nificantly reduced. Besides, these effects may be reduced due to a finite compliance and active 

losses that the real baffles may possess. 
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Figure 6.57: (a) Relative values of sound pressure on the axis of small size ( 1.5ka  ) oscillating 

disk embedded in the finite size baffle. oP  is sound pressure generated by the disk in the infinite 

baffle. (b) Directional pattern of small ( 1.5ka  ) oscillating disk vibrating in the rigid baffle. 

Size of the baffle is 6.3kb  . 

6.5.8.3 One-Sided Disk in the Rigid Baffle of Finite Size 

After dependence of radiation characteristics of oscillating disk from dimensions of the rigid 

baffles is determined, the analogous characteristics of the one-sided disk can be obtained by 

employing Gutin’s concept, as result of superposing the acoustic fields generated by pulsating 

disk and oscillating disk embedded in the rigid baffle of corresponding size, as illustrated in 

Figure 6.58. 

 

Figure 6.58: Illustration of superposing the acoustic fields generating by the disks with the finite 

rigid baffles. 

Analogous to situation for the disks without baffles in this case 
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where subscripts “o-s,b” and “osc,b” denote parameters related to one-sided baffled and oscil-

lating baffled disks, respectively. Dependences of the nondimensional coefficients of radiation 

impedances of one-sided dusks from wave size of the baffles are shown in Figure 6.53 and 

Figure 6.54 by dashed lines. For the case that kb = 3.0 values of these coefficients are shown 

in Figure 6.55 as functions of the wave sizes of the disks. As follows from the Figures, the 

values of nondimensional coefficients of one-sided disks are intermediate of those for pulsating 

and baffled oscillated disks up to 2.0kb  . At 2.0kb   they oscillate around common value 

for all the disks. Magnitude of oscillations for one-sided disk is smaller than for the oscillating. 

Influence of the baffles on the directional characteristics of the one-sided disk is the most pro-

nounced at 1.5ka  . They significantly reduce the back radiation at angles 90     compared 

with those without baffles. At 3.0ka   characteristics are practically the same, as without baf-

fles. Peculiarity is that in all the cases maximum of radiation exists at angle 180 =  . This is 

because all the points of the additional projector that is formed as result of diffraction on the 

edge of a baffle radiate in phase in this direction. Note that the same effect takes place in the 

case of one-sided disk without the baffles (see Figure 6.51). 

6.5.8.4 Radiation of Disks Having a Finite Thickness 

 

Figure 6.59: Nondimensional coefficients of the radiation impedance for the pulsating disks hav-

ing finite thickness at h/a = 0.5 (solid line), h/a = 1 (dashed line), h/a = 2 (dash-dotted line) with 

rigid (r) and compliant (c) side surfaces. 
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The projector can be imagined in this case as a finite size cylinder with vibrating ends: pulsating 

(with ends vibrating in phase) and oscillating (with ends vibrating in antiphase). The same al-

gorithm was employed for solving this radiation problem, as was used for calculating radiation 

impedances of the finite size cylinder radiating by its side surface in Ref. 15 (see Section 

6.3.2.5). 

 

Figure 6.60: Nondimensional coefficients of the active (a) and reactive (b) components of the 

oscillating disks having finite thickness with rigid side surface for h/a = 0.5 (solid line), h/a = 1 

(dashed line), h/a = 2 (dash-dotted line), h/a = 0 (thin solid line). 

Radiation by the ends was considered under the conditions that the side surface of the cyl-

inder is rigid ( 0rU = ), or compliant ( 0rP = ). The results obtained for the nondimensional 

coefficients of the radiation impedances are presented in Figure 6.59 and Figure 6.60.  

It is interesting to note that up to values 1ka =  the active component of the radiation im-

pedance of the pulsating disk with rigid surface reduces with increase of separation between 

vibrating ends up to / 2h a = , while in the case of oscillating disk it increases. The clear phys-

ical explanation to this difference can be done, if to imagine that the radiation impedance of 

each end consists of its self-radiation impedance and mutual impedance between the ends. (For 

the acoustic interaction between transducers see the next section.) The sign of active component 

of the mutual impedance at these separations is positive for sources vibrating in phase and neg-

ative for those vibrating in antiphase (that have the dipole nature), and the magnitude of the 
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active component reduces with increase of the separation. At values 2ka   the interaction be-

tween ends becomes negligible, and they vibrate independently. The nondimensional coeffi-

cient of the active component becomes close to unity. At smaller ka ( 1ka  ) an increase of the 

thickness from / 0h a = (that corresponds to the thin disk vibrating in infinite rigid baffle) to 

/ 2h a =  (that is close to one-sided disk vibrating in the rigid cylindrical baffle) results in re-

ducing the radiation resistance in two times approximately. 

In the case that the side surface is compliant, radiation resistance is significantly smaller 

(up to order of magnitude at small ka). At 2ka   it becomes the same as with the rigid side 

surface. As to the nondimensional coefficients of the radiation reactance, their magnitudes re-

main close for both the rigid and compliant side surfaces. 

With data for the radiation impedances of the pulsating and oscillating disks of finite thick-

ness having rigid side surface known, the result can be readily obtained for the disk vibrating 

in one end of a rigid cylindrical housing by employing the superposition concept. (This is typ-

ical for the case that the housing encloses transducer of Tonpilz type, as is shown schematically 

in Figure 6.1(c.4). 

6.6 Acoustic Interaction Between Transducers 

6.6.1 Introduction 

The mechanical systems of the transducers may be often composed of several parts mechani-

cally isolated and connected electrically. This can be done due to technological reasons, when 

it is hard to manufacture an entire transducer as a solid structure, or in order to avoid harmful 

effects of coupled vibration that take place because of unfavorable aspect ratio of mechanical 

system of the transducer. Typical examples of mechanical systems composed of several parts. 

are shown in Figure 6.61. In all these cases effect of the sound pressure that develops on the 

surface of a transducer by its uniform vibration does not average, as it would be on the surface 

of the solid mechanical system. 

The situation arises that at equal velocities of vibration of the transducer parts the averaged 

sound pressures on the parts may be different and they appear to be loaded by different radiation 
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impedances. The effects of interaction between transducer parts can be often estimated analyt-

ically, as it will be shown below. 

 

Figure 6.61: Examples of mechanical systems of transducers that are composed of elementary 

parts: (a) cylindrical transducer, (b) rectangular flexural plate bender, (c) side-scan sonar trans-

ducer. 

The analogous effects of acoustic interaction exist between the transducers in arrays. An 

analytical determining the interactions in arrays can be significantly complicated. This is espe-

cially true for arrays populated by transducers having a non-planar configuration and those fur-

nished with special baffles, which may in particular be intended for reducing an effect of inter-

action. The most practical way to determine mutual impedances between transducers in these 

cases is through experimentation. Certain peculiarities are inherent in procedures of measuring 

the mutual impedances that are related to properties of transducers involved in this process. 

Therefore, one of objectives of this Section is to consider the methods for measuring the mutual 

radiation impedances. 

6.6.2 General Considerations and Definitions 

In order to show, how the effects of the acoustic interaction can be accounted for in calculating 

the transducers, we consider a system consisting of two identical transducers 1T  and 2T  (Figure 

6.62 (a)) that vibrate with velocities 1 1( )U r  and 2 2( )U r . Considering that the mutual influence 

on parameters of transducers has the most significant effect in the close to their resonance fre-

quency region, we will assume that interacting transducers have one degree of freedom. 

(a)

z

U

U

U

P

(b) (c)
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Figure 6.62: To the interaction of transducers: (a) interacting transducer; (b) and (c) are variants 

of the equivalent circuits of interacting transducers with introduced impedances, 12acZ , and equiv-

alent force, 21 21 1F z U= . (Note that variants (b) and (c) are separated by the dashed line.) 

The equivalent circuits of the transducers in this case can be presented as one contour circuits, 

and the vibration velocities as having the form 1 1 1 1( ) ( )U U  =r r and 2 2 2 2( ) ( )U U  =r r . 

The mode of the transducers operating can be considered as superposition of the two 

modes: 

a. Transducer 2T  is clamped ( 2 0U = ), transducer 1T  vibrates with velocity 1 1( )U r  and 

generates the acoustic pressure 11 1( )P r  on its own surface and 21 2( )P r  at the clamped 

surface of transducer 2T . 

b. Transducer 2T  vibrates with velocity 2 2( )U r  and generates the acoustic pressures 

22 2( )P r  on its own surface and 21 1( )P r  at the clamped surface of transducer 1T . 

Superposition of these two modes results in the acoustic pressure on surfaces of the simultane-

ously operating transducers 1T  and 2T . The power of their acoustic radiation can be presented 

as follows: 

 1 1 11 1 12 1( ) ( ) ( )P P P  = +r r r , (6.339) 
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1 1 1 1

1 1

1 11 1 1 12 1 1( ) ( ) ( ) ( )acW P U d P U d  
   

 

=  +  r r r r ; (6.340) 

 
2 2 22 22 21( ) ( ) ( )P P P  = +r r r , (6.341) 

 
2 2 2 2

2 2

2 22 2 2 21 2 2( ) ( ) ( ) ( )acW P U d P U d  
   

 

=  +  r r r r . (6.342) 

The first integrals in expressions (6.340) and (6.342) represent the quantities 
2

acii iZ U , where 

aciiZ  are the self-radiation impedances of one of the transducers in presence of another trans-

ducer clamped. Taking into consideration that pressure 12P  is proportional to velocity 2U , the 

second integral in expression (6.340) can be represented in the form of 
12 2 1z U U , where 

 
1 1

1

12 12 1

2

1
( ) ( )z P d

U
 



=  r r . (6.343) 

By the reciprocity 12 21z z= . Thus, the expressions (6.340) and (6.342) can be represented as 

 
2
, , 1,2l

aci acii il i

i

U
W Z z U i l

U

 
= + = 
 

. (6.344) 

The quantity 

 il il ilz r jx= +  (6.345) 

is called the mutual radiation impedance, where ilr  and ilx  are the mutual radiation resistance 

and reactance, respectively. The impedance  

 l
acil acil acil acil

i

U
Z z R jX

U
= = +  (6.346) 

may be called the introduced impedance, where acilR  and acilX  are the introduced radiation 

resistance and reactance. 

Relations (6.344) can be alternatively expressed as 

 
2 *

aci acii i acil iW Z U F U= + , (6.347) 

where acil il lF z U=  is the equivalent “acoustomotive” force, with which transducer lT  acts on 

the transducer iT  during their simultaneous operation. By comparing with expression (6.343) 

 ( ) ( )
i i

i

acil il iF P d 


=  r r . (6.348) 
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In accordance with expressions (6.344) and (6.347) the interaction between transducers 1T  and 

2T  can be accounted for by introducing the impedance 21acZ  (as is shown in Figure 6.62 (b)) 

or the equivalent force 21acF  (as it is shown in Figure 6.62 (c)) in the equivalent circuit of the 

transducer T2. Both representations of interaction are equivalent, but the first is more convenient 

in evaluating the changes in the transducer parameters operating in the transmit mode in the 

close to resonance range, while the second is preferable in the case of operating in the receive 

mode in the frequency range below resonance. The transducer T2 either generates additional 

energy or consumes energy of the acoustic field in the process of interaction depending on the 

signs of introduced impedance 21acZ  and force 21acF . 

The mutual impedance ilz  is inherent in the transducers geometry, mode of vibration and 

the relative location of the transducers. And the introduced impedance depends substantially on 

relative velocities of the transducers vibration. Magnitude of the introduced impedance can be 

changed by changing the ratio of magnitudes of the transducers vibration, as it follows from 

relation (6.346). In the case that the phase between the velocities changes, a correlation between 

the introduced resistance and reactance changes. According to expression (6.346) 

 Re( / ) ( / )acil acil l i acil l iR r U U x Im U U=  −  , (6.349) 

 Re( / ) Im( / )acil acil l i acil l iX x U U r U U=  +  . (6.350) 

Usually, the active component of the total radiation impedance and therefore the active compo-

nent of the introduced impedance are of a particular interest in the process of transducer design-

ing due to their effect on the radiation of the acoustic energy. But in the case that velocities of 

vibration of transducers in array differ in phase (and the differences may change because of 

steering) both the active and reactive components of the mutual radiation impedance must be 

known to determine the total radiation resistance. Thus, for example, if the phase shift between 

velocities is 90o, i.e., 
2 1 2 1( / ) /U U j U U= − , then 

 /acil acil l iR x U U= , (6.351) 

 /acil acil l iX r U U= . (6.352) 

In accordance with the equivalent electromechanical circuits in Figure 6.62 experimental 

methods of determining the mutual impedances can be based on measuring the input impedance 
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or the output voltage of one of interacting transducers under some special conditions of operat-

ing the neighboring transducer. These issues will be discussed in Section 6.4.10. The possibility 

to increase magnitude of introduced impedance and to convert its reactive component into ac-

tive (that is easier to measure) proves to be helpful in terms of increasing accuracy of the meas-

urements. 

General properties of the mutual radiation impedances may be illustrated with examples of 

the acoustic interaction between two transducers, for which the theoretical solutions are avail-

able. The easiest for considering and yet very informative are examples of the transducers hav-

ing dimensions small in respect to wavelength (simple sources). 

6.6.3 Interaction between Simple Sources 

Suppose that two small identical transducers are in free space at a distance d from each other 

and their surfaces, having an arbitrary shape, vibrate with the volume velocities 0v avU U S= . 

The pressure generated by one of transducers (#2) at the surface of another (#1) is (see formula 

(6.246) for a simple source, i.e., at 0 1difk = ) 

 ( /2)

12 0
2

j kr

av

c
P U S e

r




− −= , (6.353) 

where   r d r= +  is the distance between the surface elements of the transducers. Assuming 

that r d  and can be neglected, we obtain using expression (6.343) that 

 
2

12 2
 

jkd

avS e
z j c

kd




−

= . (6.354) 

Considering that 

 
2

112

av
ac

S
c r


=  (6.355) 

is the radiation resistance of a transducer with small wave dimensions, we have 

 12 11

sin cos
( / )

kd kd
z r j

kd kd
= + . (6.356) 

It is noteworthy that modulus of the mutual impedance drops with separation between the 

sources as 12 11/ 1/z r kd= . It is physically clear that reduction of modulus of mutual imped-

ance between projectors of a finite size should be more rapid. 
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Figure 6.63: A typical behavior of the normalized mutual impedances for different transducers: 

simple sources (formula (6.356)) (dashed lines); circular pistons with 2 / 0.3a  =  in the rigid 

plane (circles and squares); finite cylinders with / 0.36h  =  and 2 / 0.73a  =  in the rigid 

cylindrical baffle (solid line). 

In the case that one of transducer dimensions significantly exceeds another, more appro-

priate is to use for estimating the interaction between transducers expression for the normalized 

mutual radiation impedance per unit length of the infinitely long cylinders having diameter 

small compared to the wavelength (cylindrical simple sources). Starting from expression 

(6.118) for the sound pressure generated by the cylinder of small wave size 

 (2)

0 0( , ) ( )
4 Vr

k
P r c U H kr = , (6.357) 

and considering that its self-radiation resistance (6.129) is 

 
2

11
2

av
ac

S
r c

 


=  (6.358) 

we will obtain in the same way, as for the three-dimensional simple source, that 

 ( )12 11 0 0( / )   ( )z r J kd jN kd= − . (6.359) 

Plots of the active and reactive components of the normalized mutual impedances by for-

mulas (6.356) and (6.359) are presented in Figure 6.63 and Figure 6.64. 
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Figure 6.64: Normalized mutual impedances for the two-dimensional simple sources. 

Dependencies of the mutual impedances from separation between simple sources located 

on the surface of perfectly rigid plane are the same as those for sources in the free space. This 

can be shown by analogous derivation. But the normalizing radiation resistances of the sources 

(denote them 
11r ) are different. In terms of acoustic field generated by a source the perfectly 

rigid plane boundary can be replaced by the image of the source vibrating with the same veloc-

ity, as shown in Figure 6.65 (a). Thus, we may obtain 
11r  as result of interaction between the 

source and its image, namely, 

 1
11 11

1

sin 2
1

2

kd
r r

kd

  
= + 

 
 (6.360) 

for the 3D source, and 

 11 11 0 1[1 (2 )]r r J kd = +  (6.361) 

for cylindrical (2D) source. 

At 1 0kd → , 11 112r r → . Thus, for 3D source 

 
2

11 2
2 avS

r c


 =  (6.362) 

and for the cylindrical source per unit length 

 
2

11
avS

r c


 = . (6.363) 
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Figure 6.65: Simple sources located close to the perfectly rigid (a) and compliant (b) plane bound-

aries and their images. 

Expressions (6.360) and (6.361) show, how the radiation resistance of a source changes 

with distance from the rigid baffle. They will be valid for the variant of compliant baffle, if to 

change signs plus to minus, as in this case velocity of the image has the opposite sign (Figure 

6.65 (b)). The expression 

 1
11 11

1

sin 2
1

2

kd
r r

kd

  
= − 

 
 (6.364) 

can be useful for determining preferable distance from surface of water for measuring radiation 

resistance. At 12 0kd = , i.e., at 1 / 4d =  the radiation resistance is the same as in the free 

space ( 11 11r r = ). Thus, the radiation resistances of the bender transducers that have small reso-

nance dimensions with respect to the wavelength can be measured at relatively small depth. 

6.6.4 Interaction between Transducers of Finite Size 

Universal importance of the expressions (6.356) and (6.359) for the normalized mutual imped-

ances is due to the fact that these expressions are reasonably valid even in the case that dimen-

sions of the transducers are not very small provided that values for 11r  correspond to the par-

ticular transducer type. This can be illustrated with examples of transducer configurations, for 

which results of analytical calculations for the mutual impedances are available. 

6.6.4.1 Interaction between the Circular Disks 

One of the methods of calculating the mutual impedances between plane radiators vibrating in 

the infinite rigid plane and particular results for the circular piston-like vibrating disks are pre-

sented in Ref. 24. Values of the normalized mutual radiation impedances calculated for 1ka =  

1d0U = 1d0P =

(a) (b)
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( 2 / 0.32a   ) are shown in Figure 6.63 by the circles. They are in almost complete agreement 

with those for the simple sources. The same approximation remains practically valid for even 

larger values of ka. It is noteworthy that in application to underwater transducers uniformly 

vibrating circular disks imitate radiating surfaces of the heads of Tonpilz transducers. Their 

diameters usually should not exceed half of wavelength from consideration of steering directiv-

ity patterns of an array. To this extent formula (6.356) can be used for estimating effects of 

transducers interaction with sufficient accuracy. 

For the flexural disk (bender) transducers that vibrate with velocity distribution over sur-

face the calculations of the normalized mutual impedances are applicable, as this was shown in 

Ref. 25. The results obtained for the case of the simply supported edge up to 1ka =  are in 

complete agreement with formula (6.356), and value of the normalizing self-radiation resistance 

of the disk is determined by formula (6.362) for a simple source, where 20.46avS a=  for 

simply supported edge. It should be noted that dimensions of the bender transducers are usually 

much smaller than the wavelength. Maximum size of the flexural circular disk is typically

(2 / ) 0.2a    (see the comment under Table 6.6). Thus, the simple source approximation for 

determining the mutual impedances is also good enough for practical applications in this case. 

6.6.4.2 Interaction between the Infinitely Long Strips 

The problem is two-dimensional due to symmetry and interaction between strips per unit length 

can be found as for the segments shown in Figure 6.66. 

 

Figure 6.66: To the acoustic interaction between infinitely long strips. 

The procedure used for determining self-radiation impedance of the strip in Section 6.3.4.4 will 

result in the expression for the mutual radiation impedance, 

 (2)

12 0 1 2 1 2

0

( )
2

W d W

ac

d

z H k x x dx dx
 +

= −  , (6.365) 
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where d > W instead of formula (6.297) for the self-radiation impedance in the case that vibra-

tion over the strip is uniform ( ( ) ( ) 1i lf x f x= = ), 

 

Figure 6.67: Normalized active (a) and reactive (b) components of the mutual radiation impedance 

of the strips as functions of separation kd for different values of kW (kW = 1, 2, 4, 8). 
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Thus, the normalized mutual impedance will be 
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. (6.367) 

Expressions for 12 11( / )   and 12 11( / )   are plotted as functions of kd at values of kW =1, 2, 

4, 8 in Figure 6.67. 

6.6.4.3 Interaction between the Square Pistons 

The normalized mutual radiation impedances between the square pistons were calculated in 

Ref. 26. The results for square pistons practically coincide with those for the simple sources 
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shown in Figure 6.63 at least up to 3kW  . Especially important for transducers designing is 

the case that the pistons are closely spaced. Obviously, the effect of acoustic interaction in this 

case is the strongest and should reduce with separation between them. Consider the mutual 

radiation impedances of two adjacent identical square pistons shown in Figure 6.68. They can 

be calculated in a straightforward way after the self-radiation impedances of rectangular pistons 

at different aspect ratios are determined (see Sect. 6.5.5). Radiation impedance of the rectangu-

lar piston 1 2acZ +  can be expressed as 

 1 2 11 122 2ac ac acZ Z Z+ = + . (6.368) 

 

Figure 6.68: Adjacent square pistons forming rectangular piston with aspect ratio L/W = 2. 

Values of normalized nondimensional coefficients for 11 1ac acZ Z=  and 1 2acZ +  (as the self-radi-

ation impedances at aspect ratios 1 and 2) are known and presented in Table 6.7. Remembering 

that 

 1 11 11( )acZ S j = +  and 1 2 1 2 1 22 ( )acZ S j + + += +  (6.369) 

from Eq. (6.3368) will be obtained 

 12 1 2

11 11

1
 
 

+= − , (6.370) 

 12 1 2

11 11

1
 
 

+= − . (6.371) 

Values of these functions vs. kW kd=  are presented in Table 6.7. Values of analogous coeffi-

cients for the adjacent circular disks are also presented in the Table for comparison. 

Table 6.7: Values of the nondimensional coefficients of the mutual radiation impedances for adja-

cent radiating surfaces. 

kd 1 2 3 4 5 6 

 

12/11 0.84 0.47 0.11 -0.09 -0.07 -0.01 

12/11 0.54 -0.13 -0.26 -0.14 -0.03 0.02 

1 2

2L W=

W

d
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kd 1 2 3 4 5 6 

 

12/11 0.80 0.46 0.12 -0.02 -0.015 <0.005 

12/11 0.66 -0.08 -0.22 -0.15 -0.028 <0.05 

6.6.4.4 Interaction between the Cylinders Embedded in the Rigid Cylindrical Baffle 

The mutual radiation impedances between cylinders embedded in the rigid cylindrical baffle 

were considered in Ref. 10. It was shown that the active and reactive components of the mutual 

impedance between identical cylinders vibrating in phase can be calculated from expressions 
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12 123

0

16
cos( sin )acr A kd d
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=   (6.372) 

and 
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    
 

= + 
 
  , (6.373) 

where functions A, B, and C are determined by formulas (6.192), (6.194) and (6.195), respec-

tively. 

In application to the cylindrical transducers two ranges of cylinders wave sizes are of spe-

cial interest in relation to different transducer types: transducers made of PZT ceramic compo-

sitions that employ extensional vibrations, and transducer of the flexural type including slotted 

cylinders. Typical values of ka for the cylindrical transducers of extensional type operating 

around their resonance frequencies may be in the range 2.2 0.2ka   . Rational height of a 

single ring comprising transducer must be chosen from consideration of avoiding a harmful 

effect of the coupled vibrations. From this point of view, it is desirable to have the aspect ratio 

of the ring ( / 2 ) 0.5h a  , i.e., ( / ) (0.35 0.40)h    . For the transducers of flexural type typi-

cally (0.2 0.3)ka   , and ( / ) (0.1 0.15)h    . 

Results of calculations performed by formulas (6.372) and (6.373) for cylinders at 2.0ka =  

and ( / ) 0.36h  =  are plotted in Figure 6.69. They show fairly good agreement with those for 

the simple sources, though the model for cylinders suggests them vibrating in the rigid cylin-

drical baffle, whereas for simple sources – in free space. Obviously, for the cylinders that have 

smaller wave size the agreement should be even better. In order to check how close the models 

used are to real situation, experimental verification of results of calculations was made using 

d
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one of the methods of determining the mutual impedances that is described in Section 6.4.6. In 

Figure 6.69 and Figure 6.70 results of comparison between calculated and measured values of 

the normalized mutual resistances and reactances for two couples of the cylinders having dif-

ferent wave sizes are presented. 

 

Figure 6.69: Comparison of normalized mutual radiation impedances of two cylindrical transduc-

ers calculated according to the used models and measured in free space: the model in the rigid 

baffle (solid line), simple sources (dashed line), experimental data (circles and squares): ka = 2.2, 

h/λ = 0.36. 

 

Figure 6.70: Comparison of normalized mutual radiation impedances of two cylindrical transduc-

ers calculated according to the used modes and measured in free space: the model in the rigid 

cylindrical baffle (solid line), simple sources (dashed line), experimental data (circles and 

squares): ka = 2.6, h/λ = 0.42. 

Though all the data are close, a little better agreement exists between experimental data 

and those calculated for the cylinders in the rigid cylindrical baffle. The conclusion can be made 
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that in majority of practical needs the model of interaction of simple sources can be used for 

transducers designing. 

6.6.5 Methods for Measuring the Mutual Impedances 

6.6.5.1 Measuring the Mutual Impedance between Two Transducers in the Free Field by 

the Z method 

Consider two simultaneously operating transducers. Their equivalent circuits in general can be 

represented as shown in Figure 6.62. Assume that the transducers are electromechanically iden-

tical. All the electromechanical parameters of the transducers including internal mechanical 

impedance E

mZ  may be considered as known. Otherwise, they can be determined by common 

measurements performed on unloaded transducer (in air). The equivalent electromechanical 

circuits of the transducers may be reduced to the form shown in Figure 6.71 (a), where the 

mechanical branches are transformed into electrical side. In the Figure the following notations 

are introduced for the transducers numbered 1 and 2: 2E

mC C n= for both transducers; 

 1 11 12 mLR R R R = + + , 1 1 /M M X  = +  (6.374) 

for transducer 1; 

 2 11 21 2 2, /mLR R R R M M X  = + + = +  (6.375) 

for transducer 2. In the expressions for masses 

 1 11 12 2 11 21,X X X X X X= + = + . (6.376) 

 

Figure 6.71: The equivalent circuit of interacting transducers with the mechanical branch trans-

formed into electrical side: (a) with series motional impedance, and (b) after converting the mo-

tional impedance into admittance 

(a) (b)
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Further we denote the electrical analogs of the acoustic impedances in the same way as their 

acoustic counterparts are denoted but without subscript “ac”. Thus, for example, 

il il ilZ R jX= +  is the electrical analog of the acoustic impedance. The relation between acoustic 

impedances and their electrical analogs is 2/il acilZ Z n= . 

Note that the normalized introduced impedances, being determined on the electrical side 

of a transducer, are the same as the normalized introduced impedances on acoustic side, namely, 

12 11 12 11/ /ac acZ R Z R=  and for the purpose of estimating the mutual impedances it is not neces-

sary to know the absolute values of the impedances in acoustic units. 

The self-impedance, which is denoted as 11Z  for both transducers, may not be considered 

as known. It differs from the radiation impedance of a single transducer measured in the free 

space due to presence of an interacting transducer. Moreover, by definition the self-radiation 

impedance has to be determined under the condition that the interacting transducer is blocked, 

i.e., in the equivalent circuits of Figure 6.62 (b) 2 0U =  and 12 12 2 1/ 0Z z U U= = . 

The electrical analogs of acoustic quantities can be obtained by measuring the input im-

pedances of the transducers. After converting of the series motional impedance into admittance 

the electrical circuit of transducer input may be represented in the form shown in Figure 6.71 

(b), which is convenient for interpreting the results of measuring the transducer parameters by 

an impedance analyzer. In Figure 6.71 (b) mC is the motional “capacitance” that may become 

inductance at some frequencies. Parameters of circuits in Figure 6.71 can be expressed through 

results of measuring the components of admittance as follows 

 
2 2 2 2

,
( ) ( )

m m
i i

m m m m

G C
R X

C G C G


  = = −

+ +
 (6.377) 

where 

 2[1 ( / ) ]i i rX M f f = −  (6.378) 

When measuring in air, 2/i eqvM M M n = =  and r af f= . When measuring in water, 

/i iM M X  = +  and r wf f= . Directly measured quantities are eL mG G G= +  and 

S

p e mC C C= + . Typical plots from which the motional capacitance, mC , and conductivity, mG

, vs. frequency may be determined are depicted in Figure 6.72. At the resonance frequency 

0mC = , and S

p eC C= . Thus, the clamped capacitance S

eC  can be considered as known. If a 
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measurement transducer may be approximated as having one mechanical degree of freedom, 

this quantity also can be obtained as 2(1 )S

e Lf effC C k= − , where LfC  and effk are the capacitance 

measured at low frequency and effective coupling coefficient of the transducer. The motional 

conductivity, m p eLG G G= − , in general can be found as shown in the figure, although very 

often eLG is much smaller than mG  and can be neglected. 

 

Figure 6.72: Qualitative illustration of a typical plot for the input parameters of a transducer in the 

parallel circuit representation 

Given that ( )mC f  and ( )mG f  are measured in a frequency range around the resonance 

frequency, iR  and iX  can be calculated by formulas (6.377), and using the relations (6.378) 

and (6.374) through (6.376) the wanted self- and mutual radiation impedances may be found. 

Further we illustrate technique of determining these quantities at resonance frequency, in which 

case they can be obtained without complicated calculations. 

The reactive components of radiation impedance may be determined in two alternative 

ways. Formula (6.378) can be represented as 

 2 2 2 2

1 11 12 1(1 / ) ( / ) (1 / )a wX M f f X X M X f f   = − + + = + − . (6.379) 

From Eq. (6.379) follows that at frequency wf f=  

 2 2

11 12 2 ( / 1) 2 ( )w a w wX X f M f f M F f + = − = , (6.380) 

where it is denoted for brevity 

 2 2( ) ( / 1)w w a wF f f f f= − . (6.381) 

Taking into account equations (6.379) and (6.377) we obtain that at the frequency af f= , 
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 2 2

11 12 ( ) /{[( ( )] ( )}a m a a m a m aX X C f C f G f + = − + . (6.382) 

Remembering that ( ) 0m wC f = , the active component of radiation impedance will be obtained 

from Eq. (6.377) in the form 

 1 11 12 1/ ( )mL m wR R R R G f = + + =  (6.383) 

To determine all the components of impedances 11Z  and 12Z  two more equations in addition to 

the equations (6.380) or (6.382) and (6.383) must be obtained. For this purpose the following 

experiments can be made. 

Experiment I 

Measuring the input impedance of one of the transducers, while equal voltages are applied to 

both in phase, 2 1V V= . In this case 1 2U U=  and 12 12ac acZ z=  due to symmetry. At resonance 

frequency wIf  of the transducer measured in water we obtain according to formulas (6.380) 

and (6.383) that 

 11 12 1/mL mIR r R G+ + =  (6.384) 

and 11 12 2ac ac IX x M F+ = . (6.385) 

It is denoted in equations (6.384) and (6.385) 

 ( ), ( )mI m wI I wIG G f F F f= = . (6.386) 

(Subscripts made by roman numbers here and further correspond to the number of an experi-

ment.) 

Experiment II 

Measuring the input impedance of one of the transducers, while applied voltages are equal by 

magnitude and opposite in phase, 2 1V V= − . In this experiment 2 1U U= −  and 12 12ac acZ z= − . 

At the resonance frequency wIIf  we have 

 11 12 1/mL mIIR r R G− + =  (6.387) 

and 

 11 12 2ac ac IIX x M F− = . (6.388) 

Combining the results of measurements expressed by formulas (6.384) and (6.387) we arrive at 
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 11 ( ) / 2mL mI mII mI mIIR R G G G G+ = +  (6.389) 

and 

 12 ( ) / 2mI mII mI mIIr G G G G= − . (6.390) 

In the carefully designed transducers the resistance of mechanical loss, mLR , is much smaller 

than the radiation resistance and it can be neglected (at least such transducers must be chosen 

for investigating acoustic interactions). Otherwise, the resistance of loss can be determined sep-

arately by measuring the conductivity 1/m mLG R=  in air. After this note is made, the resistance 

of mechanical loss further will be neglected for the sake of brevity. Thus, it follows from equa-

tions (6.389) and (6.390) that 

 12 12/ ( ) / ( )mI mII mI mIIr R G G G G= − + . (6.391) 

From formulas (6.385) and (6.388) it follows that 

 11 ( )I IIX M F F= + , (6.392) 

 12 ( )I IIx M F F= − , (6.393) 

and 

 12 11/ ( ) / ( )I II I IIx X F F F F= − + . (6.394) 

Calculating the absolute values of the reactances by formulas (6.392) and (6.393) requires 

knowing the equivalent mass of the transducer. Therefore it can be advantageous to use formula 

(6.382) for this purpose, although externally it looks more complicated. In this case all the 

quantities needed for calculation are available through experimenting. Practically both experi-

ments can be accomplished by measuring the input impedance of transducers, when connected 

in phase and anti-phase, accordingly. 

The Z –method of evaluation of radiation impedances is based on their comparison with 

the internal impedance of a measurement transducer. The results obtained are less accurate, if 

the ratio of components of radiation impedance that must be measured to the corresponding 

parameters of comparison is small. The situation becomes especially critical for the acoustic 

reactances, which have to be compared with large quantity eqvM  at relatively small deviation 

from the resonance frequency. Some relief can be achieved by a proper selection of the meas-

urement transducers intended for investigating the acoustic interaction. Thus, measures should 
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be taken to minimize the equivalent mass of the transducers (for example, in the case that a ring 

transducer is concerned it is better to use thinner rings). More radically, the above-described 

experimental technique can be modified in order to increase the accuracy of measurement of 

the mutual impedances. In this case the input impedance of one of the transducers must be 

measured while another transducer is operating under a larger applied voltage. Suppose that 

2 1V V . Qualitatively it is clear that in this case it should be 2 1U U , and therefore 

12 12ac acZ z . In this way the increased value of 12Z  can be measured with greater accuracy. 

But in order to calculate 12z  from thus obtained results the exact value of ratio of velocities 

2 1/UK U U=  must be known. A peculiarity of in this case is that the introduced impedances in 

the mechanical branches of the equivalent circuits in Figure 6.62 become different, namely, 

2

21 12 /ac ac UZ Z K= . Therefore 2 1 2 1/ /U U V V , and the value of UK must be determined sepa-

rately. This can be done through the following experiment. 

Experiment III 

Measuring the mutual impedance between the two transducers under the condition that voltages 

applied to them are in phase but have different magnitudes and 2 1V V . The self-radiation 

impedance of the transducer can be considered as known being obtained from experiments I 

and II by formulas (6.389) and (6.392). Components of the introduced impedance 12 12 UZ z K=

may be determined as a result of performing the same procedures as in the Experiment I. 

Namely, at the resonance frequency wIIIf  

 11 12 1/ mIIIR R G+ = , (6.395) 

and 

 11 12 2 IIIX X M F+ = . (6.396) 

Considering expressions (6.389) and (6.392) for 11R  and 11X (remember that resistance mLR  is 

neglected), we arrive at 

 12 1/ ( ) / 2mIII mI mII mI mIIR G G G G G= − +  (6.397) 

and 

 12 (2 )III I IIX M F F F= − − . (6.398) 
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Now the mutual resistance and reactance can be found from relation 

 12 12 12 12( ) / Ur jx R jX K+ = + , (6.399) 

but still the ratio of velocities UK  remains to be determined. One of the possible setups for 

fulfillment experiment III and for determining UK  is represented in Figure 6.73, where the 

equivalent circuits of interacting transducers with their mechanical branches transformed into 

the electrical sides are included. Condition 1 2( ) inputR R Z+  must be fulfilled to exclude in-

fluence of the voltage divider on results of measuring the transducer impedance. 

 

Figure 6.73: Electrical circuit of an experimental setup for measuring the mutual impedances by 

Z method in a general case that different voltages are applied to the interacting transducers, 

2/E E

mZ Z n= . 

Currents flowing through the transducers are denoted in Figure 6.73 as follows: iI  is the 

total current through the transducer i (i = 1, 2), CiI  is the current through the blocked transducer 

and miI  is the motional current through the electrical analog of the mechanical branch. The 

motional current is proportional to the vibration velocity of mechanical system mi iI n U= , 

therefore 

 2 1 2 1/ /U m mK U U I I= =  (6.400) 
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and the ratio of velocities may be determined experimentally as the ratio of the motional cur-

rents 2mI  and 1mI . The total current through a transducer, 

 i Ci miI I I= +  (6.401) 

can be measured as shown in Figure 6.73. Namely, 

 /i Ri adI V R= , (6.402) 

where RiV  is the voltage across the known additional resistance adR  connected in series with 

the transducer (it must be ad inputR Z  in order not to change voltage applied to the trans-

ducer). The phase angle between the total current (or voltage RiV ) and applied voltage iV  must 

be measured simultaneously. We denote this angle as 

 arg ( / )Ri i iV V = . (6.403) 

As the transducers are assumed to be electromechanically identical and with their parameters 

predetermined, the blocked capacitances can be considered as equal, 
1 2e

s s

eC C= , and known. (If 

the capacitances were not exactly equal, they could be equalized by adding a capacitance in 

parallel to the transducer with smaller s

eC .) Thus, the current through the capacitance can be 

calculated as 

 s

Ci e iI j C V= . (6.404) 

After the currents iI  and CiI  are determined, the motional currents miI  may be calculated fol-

lowing the procedure, that is illustrated for clearness by the vector diagram shown in Figure 

6.74. (Note that in this experiment voltages applied to the transducers are in phase.) 

 

Figure 6.74: The vector diagram for evaluation of the motional currents 

Knowing 2mI  and 1mI , we arrive at the required ratio of the velocities of the transducers 

 2 1 2 1/ / j

U m m m mK I I I I e = = , (6.405) 
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where   is the phase angle between vectors 2mI  and 1mI . For increasing accuracy of calcula-

tion of the motional currents from results of measuring the total currents, the blocked capaci-

tances can be tuned at the measurement frequency by inserting inductors in parallel. In this case 

mi iI I= . If the transducers are not identical but their parameters are known, this does not change 

the matter in principle, it just complicates the calculations. 

After UK  is determined by formula (6.405), the components 12r  and 12x  of the mutual 

impedance may be calculated from Eq. (6.399) as follows 

 1
12 12 12

2

( cos sin ) m

m

I
r R X

I
 = + , (6.406) 

 1
12 12 12

2

( cos sin ) m

m

I
x X R

I
 = − . (6.407) 

In this case voltages 2V  and 1V  are in phase, and it is likely that the phase shift   is small, i.e.

cos 1, sin 0    and 

 12 12 12 12/ , /U ac ac Ur R K x X K  , (6.408) 

where 12R  and 12acX  are given by formulas (6.397) and (6.398). 

As noted previously, the results of measuring the introduced reactances are less accurate than 

that of the introduced resistances. If to produce the phase shift / 2 = −  between 2U  and 1,U

then 12 12 / Ux R K= ,(i.e., the mutual reactance becomes the introduced resistance, as follows 

from relation (6.407) and the accuracy of determining this quantity could be greatly increased. 

This can be achieved by setting 

 2 1V jV . (6.409) 

Some additional phase shift resulting in a less accurate approximation may occur between the 

velocities 2U  and 1U  due to asymmetric acoustic loading of the transducers by the introduced 

impedances. The phase shifter is included in the measurement circuit in Figure 6.74 to provide 

the needed phase shift between the voltages applied to the transducers. After the phase shift of 

/ 2  is insured between the motional currents 2mI  and 1mI , the procedure of measuring the 

introduced resistance 12R  and thus of determining of the mutual reactance 12 12 / Ux R K=  is the 

same, as it is demonstrated in Experiment III. 
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The experimental data presented in Figure 6.69 and Figure 6.70 were obtained with system 

of two coaxially oriented cylindrical transducers in free space by employing the Z method. 

6.6.5.2 Measuring the Mutual Impedance by the V Method 

Returning to the equivalent circuits Figure 6.62 (b), the following relations can be obtained 

between the output voltage of transducer 2 and velocity 1U  of vibration of transducer 1 depend-

ing on position “oc” or “sc” of the switch: 

 
2 21 1 11/ ( )s E

oc ac e moc acV z U n j C Z Z= + , (6.410) 

 
2 2 21 1 11/ ( )E

sc m ac m acV I R z U n Z Z= = + . (6.411) 

In these relations 2 / 2E E S

moc m eZ Z n j f C= +  is the mechanical impedance of the open circuited 

transducer, resistance R is assumed to be much smaller than 1/ S

eC  and 2mI  is the motional 

current through transducer 2. Note that 2 2mU n I=  and therefore Eq. (6.411) can be rewritten as 

 
21 11 2 1 1/ ( ) / /E

ac m ac m m sc mz Z Z I R I V I+ = = . (6.412) 

The procedure of determining the motional current 1mI  is described in the experiment III and 

therefore it can be considered as available for calculating the mutual impedance 21acz  from Eq. 

(6.412). The mutual impedance can be determined from Eq. (6.412) around the resonance fre-

quency band. This holds so far as all the parameters of the transducer are known including the 

self-radiation resistance 11acR , which can be obtained from the above-described Z method. At 

the resonance frequency of transducer in air, af , 0E

mZ   and Eq. (6.412) becomes 

 21 11 1( / ) ( / )
a aac ac f sc m fz Z V I= . (6.413) 

For frequencies below the resonance frequency, at which the mechanical system of a trans-

ducer may be considered as stiffness controlled, 11

E

ac mZ Z , 21

E

ac mz Z , 1/ 2E E

m mZ j f C , 

and from Eq. (6.410) we obtain 

 2 2

21 2 1( / )[(1 ) / 2 ]E

ac oc eff m effz V V k j f C k= − . (6.414) 

It is considered here that 2 2 2/ / (1 )E s

m e eff effn C C k k= − . After the ratio 

 1 , 2

1 2 1 2/ / ocj

oc ocV V V V e
= , (6.415) 
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where 
1 ,2oc  is the phase angle between the voltages, is measured both the active and reactive 

components of the mutual impedance can be determined from equation (6.414). The block-

diagram of an experimental setup for implementing V method is shown in Figure 6.75. 

 

Figure 6.75: The block-diagram of an experimental setup for implementing the V method. 

The V method is especially advantageous for estimating the relative change of mutual im-

pedance versus separation between transducers. Suppose that voltage applied to radiating trans-

ducer is kept constant ( 1 constV = ), and output voltages of transducer 2 are measured at sepa-

ration y and at separation d, which corresponds to the position of transducer 2 adjacent to the 

radiating transducer. Then by using expressions (6.413) and (6.414) we obtain 

 21 11 21 11 2 1 2 2/ / / / / /ac ac ac ac sc m sc my d y d
z Z z Z V I V I=  (6.416) 

at the resonance frequency and 

 21 21 2 2( ) / ( ) ( ) / ( )ac ac oc ocz y z d V y V d=  (6.417) 

at frequencies below the resonance. 

An important feature of V method is that it makes possible using the measurement trans-

ducers operating far below their resonance frequency for investigating the mutual impedances. 

The only requirement is that configuration of the radiating surfaces of the measurement trans-

ducers must be the same as configuration of the actual transducers, for which the results of the 

investigation are intended. 

The Z and V methods may be considered as complementary to each other. The Z method 

is advantageous for determining the absolute values of self- and mutual radiation impedances 

at the frequencies close to resonance of the transducers. The V method can be used for measur-

ing in a frequency range below resonance frequency of the transducers used for investigating 
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the mutual impedances. But it has some shortcomings, when it is used for measuring absolute 

values of the impedances around the resonance frequencies. Moreover, for implementing V 

method at these frequencies the self-radiation impedance of a transducer must be known in 

advance. 

6.6.5.3 Determining the Mutual Impedances between Transducers in an Array 

The typical examples of transducer and array configurations, in which case the only reasonable 

way for determining the mutual impedances between transducers is through experimenting are 

shown in Figure 6.76. The experimental methods for investigating acoustic interactions are 

considered in Ref. 27. Here the main results of this work are presented. 

 

Figure 6.76: Examples of array configurations, for which the mutual radiation impedances be-

tween transducers have to be determined: (a) array of the parallel cylindrical transducers of flex-

ural (slotted ring included) or extensional type; (b) the same array with baffles installed between 

the transducers. 

The technique described above for measuring the mutual radiation impedances between two 

transducers in the free space cannot be applied in a straightforward way to analogous measure-

ments in an array. When measuring in array one has to deal with a number of simultaneously 

vibrating transducers, although the interaction between only two of them must be measured. 

Due to the general property of the mutual impedances to decrease with increasing the sep-

aration between transducers, contribution of sufficiently remote transducers to results of meas-

uring the two transducers under investigation can be neglected, and often only a part of an array 

needs to be tested. For example, in array of transducers shown schematically in Figure 6.76 the 

objective is to determine the mutual impedances between transducers 21acz , 31acz  and so on 

until the mutual impedance reaches a level that may be regarded negligible, i.e., the ratio 

1 1/aci aciz z  becomes small enough. In this case the number of transducers that can be consid-

ered as representative for conducting the measurements may be restricted by a group of i  

1 2 323 1 2 323

(a) (b)
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members of the array from each side of the central transducer # 1.The most advantageous for 

achieving this goal is to fulfill an estimation of the mutual impedances by V method in a fre-

quency range below the resonance frequency of the measurement transducers. Certain limita-

tions of this method arise from the fact that in practice we are interested in knowing the values 

of mutual impedances in the frequency range around the resonance frequency of the actual 

transducers in the array. Therefore, the measurement transducers having radiating surface of 

the same shape as the actual transducers must have a higher resonance frequency.  

So far as arrays populated by transducers with flat radiating surfaces are concerned (such, 

for example, as Tonpilz or flexural plate transducers), the size of the surface can be independent 

of the resonance frequency of the transducer. In the case that the ring transducers populate an 

array, the diameter of the radiating surface is inversely proportional to the resonance frequency. 

Therefore, the results obtained below the resonance frequency of a measurement transducer can 

be applied to an actual transducer in the frequency range around its resonance only in the case 

that the resonance frequency of the measurement transducer is higher. Thus, the results obtained 

below the resonance of measurement transducers made of PZT ceramic may be applicable for 

the ring transducers made of a material with smaller sound speed. Since the frequency range of 

measurements is below the resonance frequency of the measurement transducers, their mechan-

ical systems may be considered as being stiffness controlled, i.e., 1/E E

m mZ j C , and all the 

radiation impedances can be neglected. The effects of interaction between transducer 1 and 

transducers 2 and 3 can be represented by the forces 12 12 22ac acF z U=  and 13 13 32ac acF z U= . (Now 

we will assume that the central transducer #1 operates in the receive mode and voltages are 

applied to transducers 2 and 3, as this is illustrated with the equivalent circuits in Figure 6.77.) 

An outline of application of V method is as follows. Assume that voltage 2V  is applied to 

transducers 2, inputs of transducers 3 are short circuited and the output voltage 1ocV  of trans-

ducer 1 is measured. From the equivalent circuits in Figure 6.77 we obtain 

 2 2 3 12 2,E E

m ac mU V n j C U z U j C = = . (6.418) 

Upon substituting these values of velocities 2U  and 3U  into expressions for forces 12acF  and 

13acF  we obtain for the total acoustic force acting on transducer 1 

 1 12 13 12 13 22 1 E E

ac ac ac ac ac m mF F F z z j C j C nV  = + = +  . (6.419) 
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The second term in the brackets can be neglected, because the mutual radiation impedance is 

much smaller then 1/ E

mj C . From this point the analysis becomes analogous to those for the 

two transducers in the free space, and finally we arrive at the following expressions for acous-

tomotive force 1acF , for the output voltage of transducer 1 under acting of this force and for the 

mutual impedance: 

 
1 12 22 E

ac ac mF z j C nV= , (6.420) 

 2 2

1 2 12 2( ) 2 / (1 )E

oc ac m eff effV z j C V k k= − , (6.421) 

 2 2

12 1 2 2[( ) / ](1 ) / 2 E

ac oc eff eff mz V V k j k C= − . (6.422) 

 

Figure 6.77: To application of the V method for determining mutual impedances in an array 

In order to determine the mutual impedance 13z , voltage 3V  must be applied to the transducers 

3, outputs of transducers 2 have to be short circuited and the output voltage of transducer 1 has 

to be measured. After using exactly the same procedure as in the previous case, for the mutual 

impedance 13acz  we will obtain expression analogous to expression (6.422), namely, 

 2 2

13 1 3 3[( ) / ](1 ) / 2 E

ac oc eff eff mz V V k j k C= − . (6.423) 

Based on formulas (6.422) and (6.423) a general conclusion can be drawn that if the equal 

voltages are applied to the consecutive transducers, while measuring the output voltage of trans-

ducer 1, 1( )oc iV , then 

 1 12 1 1 2/ ( ) / ( )ac i ac oc i ocz z V V= . (6.424) 

This relation is convenient for estimating a comparative contribution of the mutual impedances 

between transducers in array to the total radiation impedance of a single transducer, while 
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formulas of the type of formulas (6.420) and (6.421) can be used for evaluating the components 

of the mutual impedances. 

In order to determine the self- and mutual radiation impedances of transducers in an array 

in the frequency band around the resonance frequency, the Z method can be used. We will 

assume that all the transducers under consideration are located inside the array and therefore 

they have equal self-radiation impedances. The transducers located at the edges of the array 

generally may have different self-radiation impedances. This may cause an additional error in 

determining the mutual impedances. To avoid an “edge effect” and to keep the self- impedances 

of the measurement transducers approximately equal, at least one more transducer must be 

added from each side to a group of transducers chosen for the measurements, although these 

transducers are not intended to actively participate in the measuring procedure. Thus, only a 

restricted group of transducers may be used to model a real situation in array in terms of inter-

action between neighboring transducers. The assumption that the transducers are identical by 

their electromechanical properties remains in place. 

The quantities 11acZ , 12acz , and 13acz  may be determined by measuring the input impedance 

of transducer 1. The equivalent circuit of this transducer, in which effects of interaction with 

transducers 2 and 3 are accounted for by the introduced impedances 12 12 2 12 /ac acZ z U U=  and 

13 13 3 12 /ac acZ z U U= , is shown in Figure 6.78. Consider the following experiments for deter-

mining the wanted radiation impedances. 

 

Figure 6.78: To application of the Z method for measuring the mutual impedances in an array 
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Experiment Ia 

Voltages 1V  and 2V  such as 
12

V V  are applied in phase to transducers 1 and 2. Outputs of 

transducers 3 are short circuited through a small resistance R3. Under action of acoustomotive 

force 32 12 2acF z U=  the motional current 3mI through the electrical side of the transducer 3 will 

be 3 3mI U n= . As it follows from the equivalent circuit in Figure 6.78 at 
3 1/ S

eR C  

 
33 3/m RI V R= , (6.425) 

where 
3RV  is the voltage across resistance 3R . The radiation impedance of transducer 1 may be 

represented as 

 11 12 2 1 13 3 12 ( / ) 2 ( / )acIa ac ac Ia acZ Z z U U z U U= + + . (6.426) 

The ratios of velocities can be replaced by ratios of the motional currents, miI , on the electrical 

side of transducers. Thus, 2 1 2 1/ /m mU U I I=  and 3 1 3 1/ /m mU U I I= . We represent the ratio of 

motional currents as 

 1

1 1/ / ij

mi m mi mI I I I e = , (6.427) 

where 1i  is a phase shift between the currents. In the same way as in Experiment I we obtain 

the following equations analogous to Eq. (6.384) and (6.385) at the resonance frequency of 

transducer 1 in water, which in this experiment we denote as wIaf : 

 12 13( ) ( )

11 12 2 1 13 3 12Re{ / / } 1/Ia Iaj j

Ia m m m m mIaIa Ia
R R z I I e z I I e G 
 = + + = , (6.428) 

 12 21( ) ( )

11 12 2 1 13 3 12Im{ / / } 2Ia Iaj j

Ia m m m m IaIa Ia
X X z I I e z I I e MF   = + + = . (6.429) 

The total input resistance IaR , resonance frequency wIaf  and the motional currents 1mI , 2mI  

can be measured by using the experimental setup illustrated in Figure 6.74 and procedures de-

scribed in experiment III. Current 3mI  can be calculated from formula (6.425) after voltage 
3RV  

is measured. In order to get equations necessary for calculating of all of the radiation imped-

ances, several more experiments have to be fulfilled. 

Experiment II a 

Voltage 2V  of the same magnitude as in experiment I a is applied to transducers 2 in anti-phase, 

while transducers 3 remain short circuited. As 1 2/ 1V V  and hence 1 2/ 1U U , the intro-

duced impedances 
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 21 12 1 2 23 12 3 2/ , /ac ac ac acZ z U U Z z U U= =  (6.430) 

in the equivalent circuit of transducer 2 can be neglected in comparison with its self-radiation 

impedance. Thus, it can be concluded that 2 2( ) ( )IIa IaU U − . Since 3 12 2acU z U , the relation 

follows 3 3( ) ( )IIa IaU U − . As the result we arrive at 

 2 2 3 3( ) ( ) , ( ) ( )m IIa m Ia m IIa m IaI I I I −  − . (6.431) 

The currents 1( )m IaI  and 1( )m IIaI have different magnitudes but are in phase with voltage 1V  at 

the resonance frequency. Therefore, the conclusion can be made that 

 12 12 13 13( ) ( ) , ( ) ( )Ia IIa Ia IIa     . (6.432) 

Taking into account relations (6.431) and (6.432), the input resistance and reactance of trans-

ducer 1 at resonance frequency wIIaf  may be represented as 

 12 13( ) ( )

11 12 2 1 13 3 12Re{ / / } 1/Ia Iaj j

IIa m m m m mIIaIa IIa Ia IIa
R R z I e I z I e I G 
 = − + = , (6.433) 

 12 13( ) ( )

11 12 2 1 13 3 12 { / / } 2Ia Iaj j

IIa m m m m IIaIa IIa Ia IIa
X X Jm z I e I z I e I MF   = − + = . (6.434) 

After multiplying Eqs. (6.428) and (6.433) by 
1m Ia

I  and 
1m IIa

I , respectively, and summing 

and subtracting them we obtain 

 11 1 1 1 1( ) / ( )Ia m IIa m m mIa IIa Ia IIa
R R I R I I I = + + , (6.435) 

 

12 13( ) ( )

12 2 13 3

1 1 11 1 1

4Re{ }

( ).

Ia Iaj j

m mIa Ia

Ia m IIa m m mIa IIa Ia IIa

z I e z I e

R I R I R I I

 

 

+ =

= − − −
 (6.436) 

Similarly, from Eqs. (6.429) and (6.434) will be obtained 

 11 1 1 1 12 ( ) / ( )Ia m IIa m m mIa IIa Ia IIa
X M F I F I I I= + + , (6.437) 

 

12 13( ) ( )

12 2 13 3

1 1 11 1 1

4Im{ }

2 [ ] ( ).

Ia Iaj j

m mIa Ia

Ia m IIa m m mIa IIa Ia IIa

z I e z I e

M F I F I X I I

 



+ =

= − − −
 (6.438) 

Thus, the self-radiation impedance of the transducers can be calculated from Eqs. (6.435) and 

(6.437). Two more equations are needed in addition to Eqs. (6.436) and (6.438) for determining 

the four components of the mutual impedances To obtain these equations the following exper-

iments may be made: Experiment III a, in which case voltage 3 1V V  is applied to transducers 

3, and transducers 2 are short circuited; Experiment IV a, in which case the voltage of the same 

magnitude is applied to transducers 3 in anti-phase to voltage 1V . The two missing equations 
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analogous to Eqs. (6.436) and (6.438) will be obtained by repeating the procedure used in Ex-

periments I a and II a. It may be well expected that the angles 12  and 13  are small at the 

resonance frequency of transducer 1, at which measurements take place. In this case 

1sin 0i   , 1cos 1i   and equations of the type (6.436) and (6.438) will be greatly simplified. 
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LIST OF SYMBOLS 

Symbol Description 

A radius 

B bulk modulus 

c , cc , wc  sound speed, peed of sound in ceramic composition and in water 

E

mic  elastic stiffness of a piezoceramics at constant electric field 

C, S

eC  capacitance, capacitance of blocked transducer 

C, E

eqvC   compliance, equivalent compliance of a mechanical system at con-

stant electric field 

d, mid   separation, distance; piezoelectric constant 

D  diameter, flexural rigidity 3 2/12(1 )D Yh = −  

iD , E

iD   charge density, charge density at constant electric field 

E

mie   piezoelectric constant, E

mi mj jie d c= , j =1…6 

E , opE , pE  electric field, operating field, permissible field 

Ef   effectiveness 

f , rf , arf , f   frequency, resonance frequency, antiresonance frequency, deviation 

of frequency 

ipf  partial resonance frequencies of a coupled system 

F , eqvF  force, equivalent force 

G torsional rigidity 

h  height 

( , )H     directional factor 

I  current 

LI , CI , mI   current through inductance, current through capacitance, motional 

current 

J, pJ  moment of inertia, polar moment of inertia 

k; ck , effk ; difk  wave number /k c= ; electromechanical coupling coefficient, ef-

fective coupling coefficient; diffraction coefficient 

Ek , Tk  reserves of the electrical and mechanical strength coefficients  

K , E

eqvK , ilK  rigidity, equivalent rigidity of a mechanical system, mutual rigidity 

of coupled systems 

K  additional rigidity term that characterizes electrical interaction 
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Symbol Description 

between elements in nonuniformly deformed piezoelectric body 

l, t, w length, thickness, width 

L ; 
pL , sL  Lagrangian, inductance; parallel and series inductances 

wms   Mismatch coefficient, /w ac optms r r=  

ims  mode shape coefficient 

M ; eqvM , ilM  Moment, total mass; equivalent mass, mutual mass of coupled sys-

tems 

n  turns ratio, electromechanical transformation coefficient,  

N, iN  Number of segments in segmented mechanical system, electrome-

chanical transformation coefficients, 1,3i = . 

o subscript that denotes a reference point 

P , oP ; hP  sound pressure, sound pressure of simple source; hydrostatic pres-

sure 

Q , eQ , mQ  quality factor, /kin LossQ W W= ; electrical and mechanical quality 

factors 

r, r  distance, radius vector 

r, mLr ; acr , optr   resistance, resistance of mechanical loss; radiation resistance, opti-

mal value of the radiation resistance  

R, eLR  resistance, resistance of electrical loss 

E

mis   elastic compliance of piezoceramics at constant electric field 

S , ikS , iS  deformation, tensor of deformation ( , 1,2,3)i k = , tensor of defor-

mation ( 1,..,6)i =  

S , avS , effS   surface area, average surface area, effective surface area 

T , ikT , iT  stress, stress tensor ( , 1,2,3)i k = , stress tensor ( 1,..,6)i =   

opT , pT  operating stress, permissible stress 

u, U ; oU , iU   Velocity; velocity of reference point, velocity of reference point in 
thi  mode of vibration 

V
U  volume velocity 

v,V  voltage  

V  volume 

w; intw , ew , mchw , 

emw   

width, energy density; densities of the internal, electrical, mechani-

cal, and electromechanical energies 

W , W ,W  energy, energy flux (power), complex power 

elW , S

eW  total electrical energy, electrical energy stored in a blocked 
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Symbol Description 

piezoelement 

intW , mW , emW , acW  internal, mechanical, electromechanical, and acoustic energies  

kinW , E

potW  kinetic energy, potential energy at constant electrical field 

eLW , mLW  energies of electrical and mechanical loss 

mEW , 
mTW   maximum power electric field limited and mechanical stress limited 

W  additional energy term that characterizes electrical interaction be-

tween elements in nonuniformly deformed piezoelectric body  

x; acx  coordinate; reactance of acoustic radiation 

y; /y t=  coordinate; ratio of thickness of active layer to total thickness of 

mechanical system  

Y, 1/E E

i iiY s=  Young’s modulus, Young’s modulus of piezoceramics (i =1, 3)  

E

aY , pY   Young’s moduli of active and passive materials  

Y   2/ (1 )Y Y = −  

z; ilz   Coordinate; mutual impedance between modes of vibration  

Z, /il il i lZ z U U=   impedance, introduced impedance 

mZ , E

mZ , inZ   mechanical impedance, impedance at constant electric field, input 

impedance 

acZ  radiation impedance 

ac   nondimensional coefficients of the radiation resistance  

2 /E S

c m en C C =  coefficient related to effective coupling coefficient, 
2 / (1 )eff c ck  = +  

ac   nondimensional coefficient of the radiation reactance 

1 2/p pf f =   detuning factor between partial frequencies of a coupled system 

 , m , k , coefficient of coupling between partial systems, coefficients of in-

ertial and elastic coupling 

Y  / E

Y p aY Y =  

  /p a  =  

 ; em , ma , ea  efficiency; electromechanical, mechanoacoustic, electroacoustic ef-

ficiencies 

   separation between electrodes, 

e , m  angles of dielectric and mechanical losses, tan 1/e eQ = , 

tan 1/m mQ =   

 ; T

ik , S

ik  dielectric constant; tensors of dielectric constants of piezoceramics 
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Symbol Description 

at free and clamped conditions  

 ; ( r)  angle, mode shape 

  wavelength, Lame constant 

  Lame constant (share modulus)  

 , o  displacement, displacement of reference point 

 , a , 
p  density, density of the active and passive materials 

 , E

i  Poisson’s ratio; Poisson’s ratio of piezoceramics, 
1 12 11/E E Es s = − , 

3 13 33/E E Es s = −  

  surface in general 

  angle 

  diffraction function 

 , r , ar  angular frequency, resonance and antiresonance frequencies 

2 2

1/ pf f =  nondimensional frequency factor 

2 / rf f =   normalized bandwidth 

1. Vectors are displayed in bold letters.  

2. Low case letters denoting the time dependent quantities indicate instantaneous values; 

the capital letters are values in rms. 

3. An overbar on a capital letter denotes a complex quantity. 

 



  

APPENDIX A. Properties of Passive Materials 

Table A.1: Elastic properties of the passive materials
)
. 

Material Y (gpa)     310−  

(kg/m3) 

c (m/s) c 610−

(kg/m2s) 

Aluminum 71  0.33 2.7 5130 13.5 

Alumina 300  0.21 3.7 9000 33.3 

Beryllia, beo 345  0.26 3.0 10,700 32.1 

Beryllium cu 125  0.30 8.2 3900 32,0 

Brass 97  0.31 8.5 3400 29.0 

Corprene 0.23  0.43 1.1 460 0.51 

Glass 62  0.24 2.3 5200 12 

G-10  24  0.14 1.8 3600 6,6 

Invar 148  0.3 8.0 4300 34 

Lead 16.5  0.44 11,3 1200 13.6 

Macor 67  0.29 2.5 5180 13 

Pyrex 64  0.24 2.3 5300 12 

Stainless steel 193  0.28 7.9 4940 39 

Tin 50  0.36 7.3 2600 19 

Titanium 104  0.36 4.5 4810 21.6 

)
 Bulk modulus / 3(1 2 )B Y = − . Shear modulus / 2(1 )Y = +  

Table A.2: Properties of the fluids at room conditions 

Table A.3: Properties of the polyurethanes  

Property  , kg/m3 c, m/s B, GPa G, MPa 

PR1547 
4oC 

 1.05 
1650 2.9 6 

34oC 1500 2.3 4 

GS960PU, 20oC 1.08 1700 3.3 1.2 

 

Liquid Air Water Seawater 
Castor 

oil 

Motor oil 

SAE-30 

Hydraulic 

fluid ISO 32 

Silicon 

oil 

 B, GPa 
6142 10−  2.15 2.34 2.1 1.5 1.8 2.1 

310 
kg/m3 

31.2 10−  1.0 1.02 0.96 0.88 0.86 0.97 

c, m/s 340 1500 1500 1470 1300 1450 1500 



  

APPENDIX B. Properties of Piezoelectric Ceramics 

Table B.1: Piezoelectric constants. 

Property 
PZT-4 

Type I 

PZT-5A 

Type II 

PZT-8 

Type III 

PZT-5H 

Type VI 

11

Es , 10-12 m2/N 12.3 16.4 11.5 16.5 

33

Es  15.5 18.8 13.5 20.7 

13

Es  −5.31 −7.22 -4.8 -8.45 

12

Es  −4.05 −5.74 -3.7 -5.7 

44

Es  39.0 47.5 31.9 -4.78 

11

Ds  10.9 14.4 10.1 15.5 

33

Ds  7.9 9.46 8.5 9.0 

13

Ds  −2.1 −2.98 -2.5 -3.0 

12

Ds  −5.42 −7.71 -4.5 -7.3 

44

Ds  19.3 25.2 22.6 23.7 

66s  32.7 44.3 30.4 48.5 

11

Ec , 1010 N/m2 13.9 12.1 14.9 12.6 

33

Ec  11.5 11.1 13.2 11.7 

13

Ec  7.43 7.52 8.11 8.41 

12

Ec  7.78 7.54 8.11 7.95 

44

Ec  2.56 2.11 3.13 2.3 

11

Dc  14.5 12.6 15.2 11.7 

33

Dc  15.9 14.7 16.9 15.7 

13

Dc  6.09 6.52 7.03 7.22 

12

Dc  8.39 8.09 8.41 8.18 

44

Dc  5.18 3.97 4.46 4.22 

66c  3.06 2.26 3.40 2.26 

31d ,
1210 /C N−

 -123 -171 -97 -274 

33d  289 374 225 593 

15d  496 584 330 741 

31e , C/m2 −5.2 −5.4 -4.1 -6.5 

33e  15.1 15.8 14.0 −23.3 
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Property 
PZT-4 

Type I 

PZT-5A 

Type II 

PZT-8 

Type III 

PZT-5H 

Type VI 

15e  12.7 12.3 10.3 17 

11 0/S  1) 730 916 900 − 

33 0/S   
635 830 600 1470 

11 0/T   1475 1730 1290 3130 

33 0/T   1300 1700 1000 3400 

31k  0.334 0.344 0.30 0.39 

33k  0.7 0.705 0.64 0.75 

15k  0.71 0.685 0.55 0.52 

pk  0.58 0.60 0.51 0.65 

tk  0.513 0.486 0.48 0.50 

 , 103 kg/m3 7.5 7.75 7.6 7.5 

tan e   0.004 0.02 <0.002 0.02 

mQ   500 75 1000 65 

1) 0 =
12

0 8.85 10 /F m −=   

Values of all the parameters are presented at small signals and at room temperature. 

For dependencies of their values from the operating and environmental conditions 

see Chapter 11. 

 



  

APPENDIX C.  Special Functions 

In the Appendix some data regarding the properties of special functions that are required 

for treating the radiation and vibration problems related to the cylindrical and spherical trans-

ducers are summarized. More details regarding properties of the functions and their numerical 

values can be found [1, 2], which are the primary sources of the information and where these 

functions are tabulated. Some of the integral relations that include the special functions are 

presented from a source [3] where much more particular useful relations can be found. 

C.1 Cylindrical Bessel Functions 

Definition 

Cylindrical functions ( )nZ x  are the solutions to Bessel equation 

 
2 2

2 2

1
1 0n nd Z dZ n

x dxdx x

 
+ + − = 

 
. (C.1) 

Partial solutions to this equation are the Bessel functions (cylindrical functions of the first 

kind) ( )nJ x , Neumann functions (cylindrical functions of the second kind) ( )nN x , and Hankel 

functions (cylindrical functions of the third kind) (1) ( )nH x  and (2) ( )nH x , where 

(1) ( ) ( ) ( )n n nH x J x jN x= +  and (2) ( ) ( ) ( )n n nH x J x jN x= − . The functions (1) ( )nH x  or (2) ( )nH x  

are used alternatively according to the time dependence j te −
 or j te 

 (the latter is accepted in 

our treatment). In course of this treatment it will be assumed that n is the natural integer number 

and for the cylindrical coordinates x kr= . Thus, it will be used form of 

 (2) ( ) ( ) ( )n n nH kr J kr jN kr= − . (C.2) 

Properties 

 (2) ( ) ( ) ( )n n nH x J x jN x− − −= − , (C.3) 

where 

 ( ) ( 1) ( ), ( ) ( 1) ( )n n

n n n nJ x J x N x N x− −= − = − . (C.4) 
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Series representation 

 

2 2 4
1 1 1

( ) ...
0! ! 2 1!( 1)! 2 2!( 2)! 2

n n

n

x x x
J x

n n n

+ +
     = − + −     + +     

 (C.5) 

 
2 4 6

0 2 2 2 2 2 2
( ) 1 ...

2 2 4 2 4 6

x x x
J x = − + −+ −

  
 (C.6) 

 
3 5

1 2 2 2

2 3
( ) ...

2 2 4 2 4 6

x x x
J x = − + −

  
 (C.7) 

Approximations at small argument 1x   (low frequency approximations at 1x kr= ) 

 
2 3

0 1( ) 1 , ( )
4 2 16

x x x
J x J x − − , (C.8) 

 0 1

2 2 1
(ln 011),N x N

x 
 −  −  , (C.9) 

 
(2) (2)

1 1 2

2 2
( ) , ( )

2 ( )

x
H x j H x j

x x 
 +  − . (C.10) 

At large arguments 1x  (high frequency approximation, large distances from a cylinder at 

x kr= → ) 

 (2) 2 42
( )

n
j x

nH x e
x

 



 − − −  → , (C.11) 

 
2

( ) cos
2 4

n

n
J x x

x

 


 → − −  
, (C.12) 

 
2

( ) sin
2 4

n

n
N x x

x

 


 → − −  
. (C.13) 

Functional equations 

 1 1

2
( ) ( ) ( )n n n

n
Z x Z x Z x

x
− ++ =  (C.14) 

 1 1

2
n n n nN J N J

x− −− =  (C.15) 

Differential formulas 

 1 1 1 1

1
( )

2

n
n n n n n n

dZ n n
Z Z Z Z Z Z

dx x x
− + − += − + = − = −  (C.16) 
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0 1 1 0

1
,Z Z Z Z Z

x
 = − = −  (C.17) 

Integral formulas 

 
1 1 1 1

1 1( ) ( ), ( ) ( )n n n n

n n n nx Z x dx x Z x x Z x dx x Z x− + − + + +
− += − =   (C.18) 

 1 0 0 1( ) ( ), ( ) ( )Z x dx Z x xZ x dx xZ x= − =   (C.19) 

 
2

2 2

1 1( ) [ ( ) ( ) ( )]
2

n n n n

x
J x xdx J x J x J x− += −  (C.20) 

Integral representation 

 
2

cos

0

1
( )

2

jx jn

n n
J x e e d

j


  


=   (C.21) 

 
/2

cos

0

0 0 0

1 1 2
( ) cos( sin ) cos( sin )jxJ x e d x d x d

  
     

  
= = =    (C.22) 

Also tabulated are functions Struve that are solutions to one of variations of the Bessel equation 

[1, 2]: 

 
/2

0

0

2
( ) sin( cos )S x x d



 


=  , (C.23) 

 
/2

2

1

0

4
( ) sin( cos )sinS x x d



  


=  . (C.24) 

There series representations are 

 
3 5

0 2 2 2 2 2

2
( ) ...

1 3 1 3 5

x x
S x x


 

= − + −    
, (C.25) 

 
2 4 6

1 2 2 2 2 2 2

2
( ) ...

1 3 1 3 5 1 3 5 7

x x x
S x


 

= − + −       
, (C.26) 

 0 1( ) ( )xS x dx xS x= . (C.27) 

Modified Bessel functions (Bessel functions of imaginary values of argument), ( )nI x  and 

( )nK x  

The modified functions are the partial solutions to the equation (Compare with Eq. (C.1)) 
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2 2

2 2

1
1 0n nd Z dZ n

x dxdx x

 
+ − + = 

 
. (C.28) 

The modified functions are defined by equations: 

 ( ) ( )n

n nI x j J jx= −   (C.29) 

for the first kind, 

 (2)2( ) ( )
2

n
j

n n

j
K x e H jx

 −
= − −  (C.30) 

for the second kind, with 

 (2) (2)

0 0 1 1( ) ( ), ( ) ( )
2 2

j
K x H jx K x H jx

 
= − − = − − . (C.31) 

The properties of these functions can be obtained from formulations of the corresponding 

properties of functions ( )nJ x  and 2 ( )nH x  by replacing x jx→−  and introducing the factors 

from Eqs. (C.24) and (C.25). In particular 

 ( ) ( ), ( ) ( )n n n nI x I x K x K x− −= = , (C.32) 

 0 1( ) ( ).K x K x = −  (C.33) 

C.2 Spherical Bessel Functions 

The partial solutions to equation 

 
2

2 2

2 ( 1)
1 0

d R dR m m
R

z dzdz z

+ + + − =  
, (C.34) 

where z kr= , are the spherical Bessel functions (or Bessel functions for the spherical coordi-

nates). Spherical Bessel functions of order m of the first kind are defined as 

 1/2( ) / 2 ( )m mj z zJ z += ; (C.35) 

of the second kind (spherical Neumann functions) as 

 1/2( ) / 2 ( )m my z zN z += ; (C.36) 

and of the third kind (spherical Hankel functions) as ( )mh z . For outgoing wave 

 (2) (2)

1/2( ) ( ) ( ) / 2 ( )m m m mh z j z jy z zH z += − = . (C.37) 

In particular, 
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0 0

1 12 2

2 23 2 2 3

sin cos
( ) , ( ) ;

sin cos sin cos
( ) , ( ) ;

3 1 3 3 3 1
( ) sin cos , ( ) sin cos .

z z
j z y z

z z

z z z z
j z y z

z zz z

j z z z y z z z
z zz z z z


= = − 


= − = − − 

   = − − = − − −        

  (C.38) 

Functions mj  and my  are tabulated [1] at 0.3z   as 

 

1

(2) (2)

1 12 3

( ) 1 3 5 (2 1)
( ) , ( ) ,

1 3 5 (2 1) ( )

1 3 1 6
, ( ) 1 ;

3 3( ) ( )

m

m m m

z m
j z y z

m z

h z j h z j
z z

+

   −
  −    + 


     +  −        

  (C.39) 

and at z →  

 
1

(2) 2

1 1 1 1
( ) cos , ( ) sin ,

2 2

1
,

m m

m
j z

m

m m
j z z y z z

z z

h e
z



 

+ − −  

+ +    → − → −        

→ 

  (C.40) 

 2

1 1( ) ( ) ( ) ( )m m m my z j z y z j z z−− −− = . (C.41) 

The following properties are the same for the functions mj , my  and mh that will be collec-

tively denoted as mf . 

Recurrent relations 

 1

1 1( ) ( ) (2 1) ( )m m mf z f z m z f z−
− ++ = +  (C.42) 

 1 1( ) ( 1) ( ) (2 1) ( )m m m

d
mf z m f z m f z

dz
− +− + = +  (C.43) 

 (2) (2) (2)

1 0 2

1
( ) [ ( ) 2 ( )]

3
h z h z h z = −  (C.44) 

 1 1

1 1[ ( )] ( ), [ ( )] ( )m m m m

m m m m

d d
z f z z f z z f z z f z

dz dz

+ + − −
− −= = −  (C.45) 

Integral formulas 

 
2 2

1 0 0 1( ) ( ), ( ) ( )f z dz f z f z z dz z f z= − =   (C.46) 

 
2

2 2 2

1 1( ) [ ( ) ( ) ( )]
2

m m m m

z
f z z dz f z f z f z− += −  (C.47) 
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C.3 Legendre Polynomials 

The partial solutions to Legendre equation 

 
2(1 ) ( 1) 0

d dP
x m m P

dx dx

 − + + =  
 or 

2
2

2
( 1) 2 ( 1) 0

d P dP
x x m m P

dxdx
− + − + = . (C.48) 

at m integer and cosx =  are the Legendre polynomials of the order m 

 21
( ) ( 1)

2 !

m
m

m m m

d
P x x

m dx
= − . (C.49) 

In particular, 

 

0

1

2

2

2

3

( ) 1,

( ) cos ,

1 1
( ) (3 1) (3cos 2 1),

2 4

1 1
( ) (5 3 ) (5cos3 3cos ).

2 8

P x

P x x

P x x

P x x z





 

= 
= = 

= − = +



= − = + 


 (C.50) 

 
( 1)( ) ( 1) ( ), ( ) ( )m

m m m mP x P x P x P x− +− = − =  (C.51) 

Recurrent relation 

 1 1

2 1 1
( ) ( ) ( )m m m

m m
P x xP x P x

m m
− +

+ +
= −  (C.52) 

Differential formulas 

 1( ) ( ) ( )m m mmP x xP x P x− = −  (C.53) 

 1 1(2 1) ( ) [ ( ) ( )]m m m

d
m P x P x P x

dx
+ −+ = −  (C.54) 

Orthogonality 

 
1

1

0
( ) ( )

2 / (2 1)
n m

n m
P x P x dx

m n m−


=  + =

   (C.55) 

(Any function of x in the range from 1x =  to 1x = −  can be expanded in terms of series of 

these functions.) 
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Useful integrals with Legendre polynomials 

 

0.5( 1)

1 1

0
2

1/ (2 1)

( 1)
,...

2
( ) ( ) ,

! !
( ) even

( )( 1){[( / 2)![( 1) / 2]!}

 even,
0

 odd

m n

m n

m n

m m n

m n

P x P x dx m n
m n

m n
m n m n m n

m

n

+ +

+ +


 + =
 − 
= 
 − + + + −




   (C.56) 
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2 2 1

0 0

( 1)( 3) ( 2 1)
( ) 0, ( )

(2 2) 2 (2 1)
m m

m
P x dx P x dx

m m m
+

− −  − +
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+   −   (C.57) 

 
1

1

( ) 0b

mx P x dx
−

=  at b m  (C.58) 

 
1

2

1

[ ( )] ( 1)mP x dx m m
−

 = +  (C.59) 

 
1

2 2

1

2 ( 1)
(1 )[ ( )]

2 1
m

m m
x P x dx

m−

+− =
+  (C.60) 

 
1 3/2

1/2

1

2
(1 ) ( )

2 1
mx P x dx

m

−

−

− =
+  (C.61) 
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