Availability of Essential Equipment for Prehospital Trauma Care on Public Ambulances in Ukraine

Stanislav Gaievskyi, BS, EMT-B¹, Oleksandr Linchevskyy, MD, PhD², Colin A. Meghoo, MD, MSc³

- ¹ Master's Candidate, School of Public Health, Kyiv-Mohyla Academy, Kyiv, Ukraine
- ² Clinical Hospital #17, Kyiv, Ukraine; Deputy Minister of Health, Ukraine
- ³ Research Department, Patriot Defence, Kyiv, Ukraine

1. INTRODUCTION

In Ukraine, trauma from road traffic accidents is a significant source of prehospital morbidity and mortality, with a risk of attributable death that is three times higher than in Germany. Shortfalls in training, equipment, funding, and organizational framework can limit the quality and availability of care provided by responding ambulances. We sought to evaluate the availability of equipment onboard individual ambulances, without relying on unsubstantiated, self-reported data.

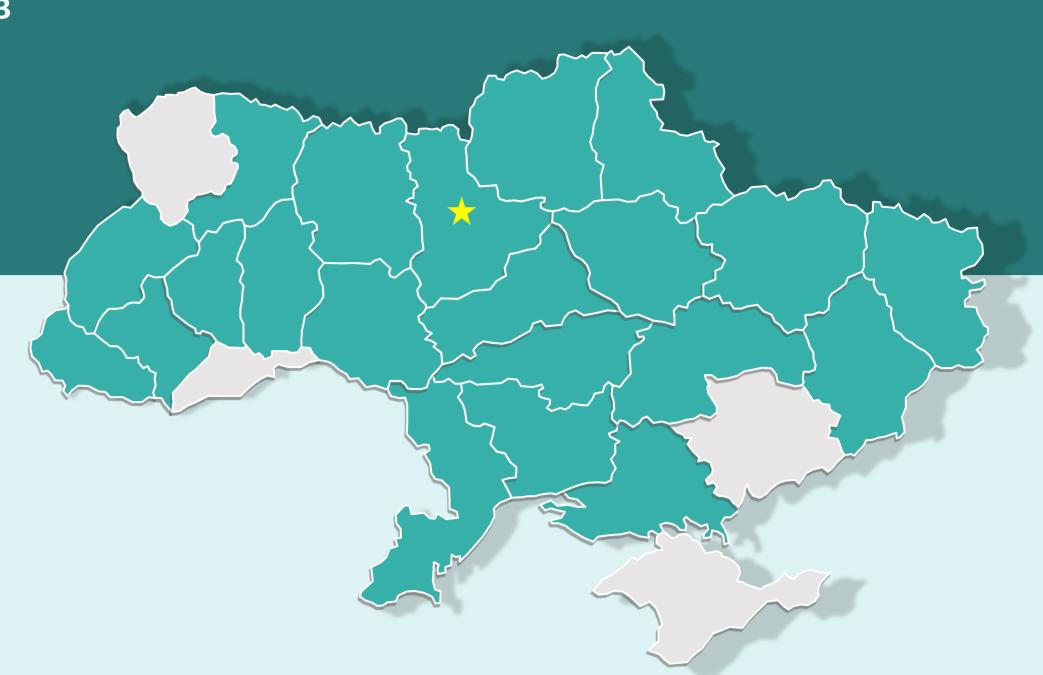
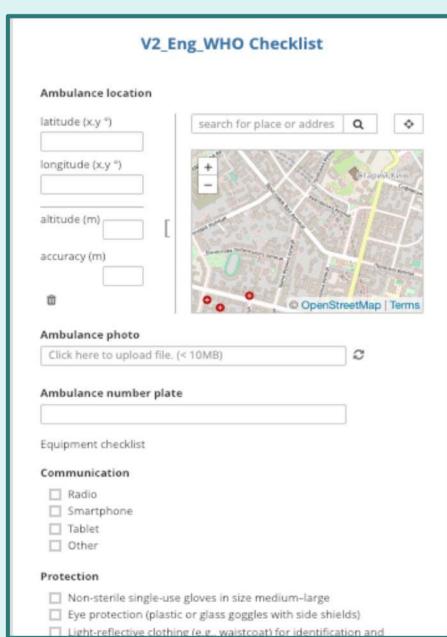


Figure 3 Distribution of assessed regions

Hypothesis - Advanced Life Support (ALS) ambulances across the country might have limitations in essential equipment necessary to provide optimal prehospital trauma care

2. METHODS


Selected WHO equipment checklist for ALS ambulances²

Created digital checklist (Figure 1)

Determined minimum sample size of 43 (90%CI, 10% margin of error)

Performed stratified randomization to select cities (Table 1)

Trained data collectors

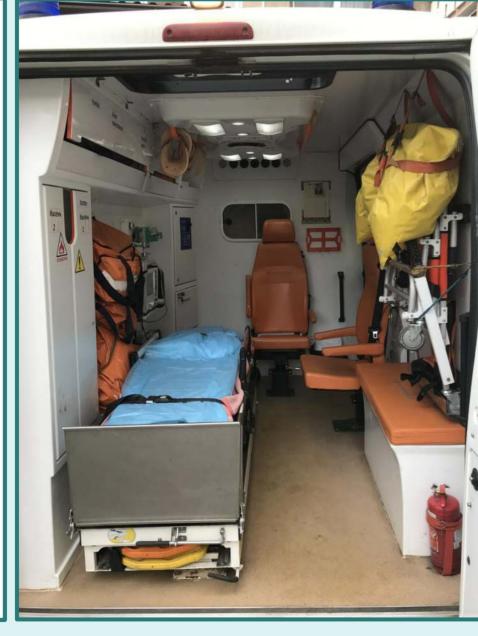


Figure 2 Typical Ukrainian ALS ambulance (inside view)

Population size	# of cities	Total population	% of population	# of sites
> 1,000,000	4	7,300,000	26%	8
100,000 - 1,000,000	42	11,500,000	42%	13
10,0000 - 100,000	315	8,700,000	32%	9

Table 1 Stratified randomization of cities, by population

3. RESULTS

- 3 month period
- 6 observers
- 30 ambulance substations in 24 cities
- 48 ambulances evaluated

	ltem	No.	Present	95% CI				
Diagnosis/Monitoring								
	stethoscope	47	97.9	93.9-100				
	blood pressure cuff	47	97.9	93.9-100				
	thermometer	46	95.8	90.2-100				
	pulse oximeter	39	81.3	70.4-92.3				
	electrocardiogram (EKG)	44	91.7	84.0-99.5				
Hemorrhage control								
	bandages/gauze	47	97.9	93.9-100				
	adhesive tape	46	95.8	90.2-100				
	arterial tourniquet	45	93.8	87.0-100				
Airway/Breathing								
	nasal cannulae	35	72.9	60.4-85.3				
	non-rebreather mask	35	72.9	60.4-85.3				
	Bag-valve-mask (BVM)	45	93.8	87.0-100				
	oxygen cylinder	33	68.8	55.8-81.8				
	suction	39	81.3	70.4-92.3				
	laryngoscope and blades	22	45.8	31.8-59.8				
	endotracheal tubes (ETT)	24	50	36.0-64.0				
	end-tidal CO ² detector	9	18.8	7.8-29.8				
	supraglottic airway (SGA)	34	70.8	58.0-83.6				
Vascular access								
	intravenous starter set	47	97.9	93.9-100				
	intraosseous device	18	37.5	23.9-51.1				
	crystalloid solutions	47	97.9	93.9-100				
Immobilization/Patient transfer								
	long spineboard	45	93.8	87.0-100				
	stretcher	47	97.9	93.9-100				
	c-collar	46	95.8	90.2-100				
	splints	48	100	-				
	Personal protective	equipme	nt (PPE)					
	eye protection/face shield	42	87.5	78.2-96.8				
	gloves	48	100	-				
	fire extinguisher	48	100	-				
	sharps container	45	93.8	87.0-100				
	traffic control equipment	3	6.3	0-13.1				
Miscellaneous								
	communication device	48	100	_				
	blanket	37	77.1	65.3-88.9				
	triage kit	31	64.6	51.2-78.0				
	basic extrication	11	22.9	11.1-34.7				
	specialized extrication	0	0	-				
	>90%	%						

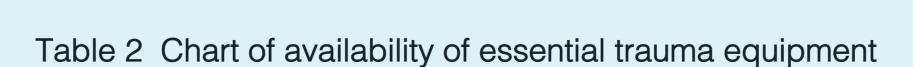


Figure 4 Typical Ukrainian ALS ambulance (outside view)

Figure 5 Ambulance observation in Poltava

4. DISCUSSION

SUSTAIN

Ambulances well stocked with:

- basic tools of assessing patient vital signs
- basic hemorrhage control devices
- basic vascular access and infusion
- equipment to stabilize a suspected spinal injury
- means of communication
- personal protective equipment (PPE)

NEEDS IMPROVEMENT

Ambulances had equipment deficiencies with:

- basic and advanced airway management
- mass casualty triage
- patient extrication (no unified emergency response)

5. CONCLUSION

ALS ambulances in Ukraine have many essential items to handle trauma, including hemorrhage control, vascular access, and diagnosis and monitoring, but have significant deficits for airway management.

The creation of a nationwide, standardized list of required medical equipment for these ALS ambulances may improve the capacity for providing lifesaving prehospital trauma care.

6. REFERENCES

- 1 Kornus A, Kornus O, Shyschuk V. Regional issues on road accidents and traffic injury in Ukraine. Human Geographies -Journal of Studies and Research in Human Geography. 2017;11; 197-212.
- ² Sasser S, Varghese M, Kellermann A, Lormand JD. Prehospital trauma care systems. Geneva, World Health Organization, 2005

