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1. Introduction 

The vibration problems of uniform and nonuniform Euler-Bernoulli beams have been 
solved analytically or approximately [1-5] for various end conditions. In order to calculate 
fundamental natural frequencies and related mode shapes, well known variational 
techniques such as Rayleigh_Ritz and Galerkin methods have been applied in the past. 
Besides these techniques, some discretized numerical methods were also applied to beam 
vibration analysis successfully. 
Recently, by the emergence of new and innovative semi analytical approximation methods, 
research on this subject has gained momentum. Among these studies, Liu and Gurram [6] 
used He’s Variational Iteration Method to analyze the free vibration of an Euler-Bernoulli 
beam under various supporting conditions. Similarly, Lai et al [7] used Adomian 
Decomposition Method (ADM) as an innovative eigenvalue solver for free vibration of 
Euler-Bernoulli beam again under various supporting conditions. By doing some 
mathematical elaborations on the method, the authors obtained ith natural frequencies and 
modes shapes one at a time. Hsu et al. [8] again used Modified Adomian Decomposition 
Method to solve free vibration of non-uniform Euler-Bernoulli beams with general 
elastically end conditions. Ozgumus and Kaya [9] used a new analytical approximation 
method namely Differential Transforms Method to analyze flapwise bending vibration 
analysis of double tapered rotating Euler-Bernoulli beam. Hsu et al. [10] also used Modified 
Adomian Decomposition Method, a new analytical approximation method, to solve 
eigenvalue problem for free vibration of uniform Timoshenko beams. Ho and Chen [11] 
studied the problem of free transverse vibration of an axially loaded non-uniform spinning 
twisted Timoshenko beam using Differential Transform Method. Another researcher, 
Register [12] found a general expression for the modal frequencies of a beam with 
symmetric spring boundary conditions. In addition, Wang [13] studied the dynamic analysis 
of generally supported beam. Yieh [14] determined the natural frequencies and natural 
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modes of the Euler_Bernoulli beam using the singular value decomposition method. Also, 
Kim [15] studied the vibration of uniform beams with generally restrained boundary 
conditions. Naguleswaran [16] derived an approximate solution to the transverse vibration 
of the uniform Euler-Bernoulli beam under linearly varying axial force. Chen and Ho [17] 
studied the problem of transverse vibration of rotating twisted Timoshenko beams under 
axial loading using differential transform method to obtain natural frequencies and mode 
shapes. 
In this study, transverse vibration analysis of uniform and nonuniform Euler-Bernoulli 
beams will be briefly explained and demonstrated with some examples by using some of 
these novel approaches. To this aim, the theory and analytical techniques about lateral 
vibration of Euler-Bernoulli beams will be explained first, and then the methods used in the 
analysis will be described. Finally, some case studies will be presented by using the 
proposed techniques and the advantages of those methods will be discussed. 

2. Transverse vibration of the beams    

2.1 Formulation of the problem 

Lateral vibration of beams is governed by well-known Bernoulli-Euler equation. To develop 
the governing equation, consider the free body diagram of a beam element in bending 
shown in Fig.1. In this figure, M(x,t) is the bending moment, Q(x,t) is the shear force, and 
f(x,t) is the external force per unit length acting on the beam. 
 

 
Fig. 1. Free-body diagram of a beam element in bending 

Equilibrium condition of moments leads to the following equation: 
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Since a uniform beam is not assumed in the formulation, I(x) will be variable along beam 
length. 
The equation of motion in the tranverse direction for the beam element is: 

 
2

2
( ) ( , )

w Q
A x f x t x Q Q

xt
ρ δ δ∂ ∂⎛ ⎞= + − +⎜ ⎟∂∂ ⎝ ⎠

 (3) 

In Eq.(3), ρ is mass density of the material of the beam. After simplifications, Eq.(3) can be 
rewritten as follows: 
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In view of Eq.(2), governing equation for forced transverse vibration  is obtained as below 
which is the well known Euler-Bernoulli equation. 
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For a uniform beam Eq.(5) reduces to 
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For the free vibration case, i.e. f(x,t)=0, the equation of motion becomes 
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If the beam is uniform, i.e. EI is constant, the equation of motion in Eq.(7) reduces to 
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where  

 
EI

c
Aρ

= . (9)  

Transverse vibration of beams is an initial-boundary value problem. Hence, both initial and 
boundary conditions are required to obtain a unique solution w(x,t). Since the equation 
involves a second order derivative with respect to time and a fourth order derivative with 
respect to a space coordinate, two initial conditions and four boundary conditions are 
needed. 

2.2 Modal analysis 

The solution to problem given by Eq.(5) can be produced by, first obtaining the natural 
frequencies and mode shapes and then expressing the general solution as a summation of 
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modal responses. In each mode, the system will vibrate in a fixed shape ratio which leads to 
providing a separable displacement function into two separate time and space functions. 
This approach is the same for both free and forced vibration problems. Hence, the 
displacement function w(x,t) can be defined by the following form. 

 ( , ) ( ) ( )w x t Y x T t=  (10) 

Consider the free vibration problem for a uniform beam, i.e. EI is constant. The governing 
equation for this specific case previously was given in Eq.(8). The free vibration solution will 
be obtained by inserting Eq.(10) into Eq.(8) and rearranging it as 

 
2 4 2
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where c is defined in Eq.(9) and ω2 is defined as constant. Eq.(11) can be rearranged as two 
ordinary differential equations as 
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General solution of Eq.(12) is a mode shape and given by 

 1 2 3 4( ) cosh sinh cos sinY x C x C x C x C xλ λ λ λ= + + +  (15) 

The constants C1, C2, C3 and C4 can be found from the end conditions of the beam. Then, the 
natural frequencies of the beam are obtained from Eq.(14) as 

 
2cω λ=  (16) 

Inserting Eq.(9) into Eq.(16) with rearranging leads to 

 ( )2
4
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ω λ

ρ
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2.3 Boundary conditions 

The common boundary conditions related to beam’s ends are as follows: 

2.3.1 Simply supported (pinned) end 

 0Y = Deflection = 0 
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 Bending Moment = 0 

2.3.2 Fixed (clamped) end 

 0Y = Deflection = 0    

 0
Y

x

∂
=

∂
 Slope = 0 

2.3.3 Free end 
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2.3.4 Sliding end 
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The exact frequencies for lateral vibration of the beams with different end conditions will 
not be computed due to the procedure explained here. Since, the motivation of this chapter 
is the demonstration of the use of analytical approximate techniques in the analysis of 
bending vibration of beams, available exact results related to the selected case studies will 
be directly taken from [5,18]. The reader can refer to these references for further details in 
analytical derivations of the exact results. 

2.4 The methods used in the analysis of transverse vibration of beams 

Analytical approximate solution techniques are used widely to solve nonlinear ordinary or 
partial differential equations, integro-differential equations, delay equations, etc. Main 
advantage of employing such techniques is that the problems are considered in a more 
realistic manner and the solution obtained is a continuous function which is not the case for 
the solutions obtained by discretized solution techniques. Hence these methods are 
computationally much more efficient in the solution of those equations. 
The methods that will be used throughout the study are, Adomian Decomposition Method 
(ADM), Variational Iteration Method (VIM) and Homotopy Perturbation Method (HPM). 
Below, each technique will be explained and then all will be applied to several problems 
related to the topic of the article. 
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2.4.1 Adomian Decomposition Method (ADM) 

In the ADM a differential equation of the following form is considered 

 ( )Lu Ru Nu g x+ + =  (18) 

where L is the linear operator which is highest order derivative,  R is the remainder of linear 
operator  including derivatives of less order than L, Nu represents the nonlinear terms and g 
is the source term. Eq.(18) can be rearranged as 

 ( )Lu g x Ru Nu= − −  (19) 

Applying the inverse operator L-1 to both sides of Eq.(19) employing given conditions we 
obtain 

 { } ( ) ( )1 1 1( )u L g x L Ru L Nu− − −= − −  (20) 

After integrating source term and combining it with the terms arising from given conditions 
of the problem, a function f(x) is defined in the equation as 

 ( ) ( )1 1( )u f x L Ru L Nu− −= − −  (21) 

The nonlinear operator ( )Nu F u= is represented by an infinite series of specially generated 
(Adomian) polynomials for the specific nonlinearity. Assuming Nu is analytic we write 

  
0

( ) k
k

F u A
∞

=
=∑  (22) 

The polynomials Ak’s are generated for all kinds of nonlinearity so that they depend only on 
uo to uk components and can be produced by the following algorithm. 

 0 0( )A F u=  (23) 

 1 1 0( )A u F u′=  (24) 

 2
2 2 0 1 0

1
( ) ( )

2!
A u F u u F u′ ′′= +  (25) 

 3
3 3 0 1 2 0 1 0

1
( ) ( ) ( )

3!
A u F u u u F u u F u′ ′′ ′′′= + +  (26) 

B  

The reader can refer to [19,20] for the algorithms used in formulating Adomian polynomials. 
The solution u(x) is defined by the following series   

 
0

k
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u u
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where the components of the series are determined recursively as follows: 
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 0 ( )u f x=  (28) 

 ( ) ( )1 1
1 ,      0k k ku L Ru L A k− −

+ = − − ≥  (29) 

2.4.2 Variational Iteration Method (VIM) 
According to VIM, the following differential equation may be considered: 

 ( )Lu Nu g x+ =  (30) 

where L is a linear operator, and N is a nonlinear operator, and g(x) is an inhomogeneous 
source term. Based on VIM, a correct functional can be constructed as follows: 

 { }1
0

( ) ( ) ( ) ( )  
x

n n n nu u Lu Nu g dλ ξ ξ ξ ξ ξ+ = + + −∫ #  (31) 

where λ is a general Lagrangian multiplier, which can be identified optimally via the 
variational theory, the subscript n denotes the nth-order approximation, u# is considered as a 
restricted variation i.e. 0uδ =# . By solving the differential equation for λ obtained from 
Eq.(31) in view of  0uδ =# with respect to its boundary conditions, Lagrangian multiplier λ(ξ) 
can be obtained. For further details of the method the reader can refer to [21]. 

2.4.3 Homotopy Perturbation Method (HPM) 
HPM provides an analytical approximate solution for problems at hand as other explained 
techniques. Brief theoretical steps for the equation of following type can be given as 

 ( ) ( ) ( )  ,  L u N u f r r+ = ∈Ω  (32) 

with boundary conditions ( , ) 0B u u n∂ ∂ = . In Eq.(8) L is a linear operator, N is nonlinear 
operator, B is a boundary operator, and f(r) is a known analytic function. HPM defines 
homotopy as  

 ( , ) [0,1]v r p R= Ω× →  (33) 

which satisfies following inequalities: 

 0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0H v p p L v L u p L v N v f r= − − + + − =  (34) 

or  

  0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0H v p L v L u pL u p N v f r= − + + − =   (35) 

where r∈Ω  and [0,1]p∈  is an imbedding parameter, u0 is an initial approximation which 
satisfies the boundary conditions. Obviously, from Eq.(34) and Eq.(35) , we have : 

 0( ,0) ( ) ( ) 0H v L v L u= − =  (36) 

  ( ,1) ( ) ( ) ( ) 0H v L v N v f r= + − =   (37) 

As p changing from zero to unity is that of  ( , )v r p  from 0u  to ( )u r . In topology, this 
deformation 0( ) ( )L v L u−  and ( ) ( ) ( )L v N v f r+ −  are called homotopic. The basic 
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assumption is that the solutions of Eq.(34) and Eq.(35)  can be expressed as a power series 
in p such that: 

  2 3
0 1 2 3 ...v v pv p v p v= + + + +   (38) 

The approximate solution of ( ) ( ) ( )  ,  L u N u f r r+ = ∈Ω  can be obtained as:  

 0 1 2 3
1

lim ...
p

u v v v v v
→

= = + + + +   (39) 

The convergence of the series in Eq.(39) has been proved in [22]. The method is described in 
detail in references [22-25]. 

2.5 Case studies 
2.5.1 Free vibration of a uniform beam 
The governing equation for this case was previously given in Eq.(12). ADM, VIM and HPM 
will be applied to this equation in order to compute the natural frequencies for the free 
vibration of a beam with constant flexural stiffness, i.e. constant EI, and its corresponding 
mode shapes. To this aim, five different beam configurations are defined with its end 
conditions. These are PP, the beam with both ends pinned, CC, the beam with both ends 
clamped, CP, the beam with one end clamped and one end pinned, CF, the beam with one 
end clamped and one end free, CS, the beam with one end clamped and one and sliding. 
The boundary conditions associated with these configurations was given previously in text. 
Below, the formulations by using ADM, VIM and HPM are given and then applied to the 
governing equation of the problem. 

2.5.1.1 Formulation of the algorithms 
2.5.1.1.1 ADM 

The linear operator and its inverse operator for Eq.(12) is 

 
4

4
( ) ( )

d
L

dx
⋅ = ⋅  (40) 

 1

0 0 0 0

( ) ( )    
x x x x

L dx dx dx dx− ⋅ = ⋅∫ ∫ ∫ ∫  (41) 

To keep the formulation a general one for all configurations to be considered, the boundary 
conditions are chosen as (0)Y A= , (0)Y B′ = , (0)Y C′′ =  and (0)Y D′′′ = . Suitable values 

should be replaced in the formulation with these constants. For example, 0A =  and 0C =  
should be inserted for the PP beam. Hence, the equation to be solved and the recursive 
algorithm can be given as 

 4LY Yλ=  (42) 

 
2 3

1 4( )
2! 3!

x x
Y A Bx C D L Yλ−= + + + +  (43) 

 1 4
1 ( ),      0n nY L Y nλ−

+ = ≥  (44) 
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Finally, the solution is defined by 

 0 1 2 3 ...Y Y Y Y Y= + + + +  (45) 

2.5.1.1.2 VIM 

Based on the formulation given previously, Lagrange multiplier λ would be obtained for the 
governing equation, i.e. Eq.(12), as 

 
( )3

( )
3!

xξ
λ ξ

−
=  (46) 

An iterative algorithm can be constructed inserting Lagrange multiplier and governing 
equation into the formulation given in Eq.(31) as 

 { }4
1

0

( ) ( ) ( )  
x

iv
n n n nY Y Y Y dλ ξ ξ λ ξ ξ+ = + −∫ #  (47) 

Initial approximation for the algorithm is chosen as the solution of 0LY = which is a cubic 
polynomial with four unknowns which will be determined by the end conditions of the 
beam.  

2.5.1.1.3 HPM 

Based on the formulation, Eq.(12) can be divided into two parts as 
 

  ivLY Y=   (48) 

 4NY Yλ= −  (49) 

The solution can be expressed as a power series in p such that 
 

 2 3
0 1 2 3 ...Y Y pY p Y p Y= + + + +  (50) 

Inserting Eq.(50) into Eq.(35) provides a solution algorithm as 
 

 0 0 0iv ivY y− =  (51) 

 4
1 0 0 0iv ivY y Yλ+ − =  (52) 

 4
1 0,      2n nY Y nλ −− = ≥  (53) 

Hence, an approximate solution would be obtained as 
 

 0 1 2 3 ...Y Y Y Y Y= + + + +  (54) 

Initial guess is very important for the convergence of solution in HPM. A cubic polynomial 
with four unknown coefficients can be chosen as an initial guess which was shown 
previously to be an effective one in problems related to Euler beams and columns [26-31]. 
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2.5.1.2 Computation of natural frequencies 

By the use of described algorithms, an iterative procedure is conducted and a polynomial 
including the unknown coefficients coming from the initial guess is produced as a 
solution to the governing equation. Besides four unknowns from initial guess, an 
additional unknown λ also exists in the solution. Applying each boundary condition to 
the solution produces a linear algebraic system of equations which can be defined in 
matrix form as 

 [ ]{ } { }( ) 0M λ α =  (55) 

where { } , , ,
T

A B C Dα = . For a nontrivial solution, determinant of coefficient matrix must 
be zero. Determinant of matrix [ ]( )M λ  yields a characteristic equation in terms of λ. Positive 
real roots of this equation are the natural free vibration frequencies for the beam with 
specified end conditions.  

2.5.1.3 Determination of vibration mode shapes 

Vibration mode shapes for the beams can also be obtained from the polynomial 
approximations by the methods considered in this study. Introducing, the natural 
frequencies into the solution, normalized polynomial eigenfunctions for the mode shapes 
are obtained from 

 
( )

( )
1/21 2

0

,
 ,  1,2,3,...

,

N j

j

N j

Y x
Y j

Y x dx

λ

λ

= =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∫

 (56) 

The same approach can be employed to predict mode shapes for the cases including variable 
flexural stiffness.  

2.5.1.4 Orthogonality of mode shapes 

Normalized mode shapes obtained from Eq.(56) should be orthogonal. These modes can be 
shown to satisfy the following condition. 

 
0,      

 
1,      i j

i j
YY dx

i j

≠⎧
=⎨ =⎩

∫  (57) 

2.5.1.5 Results of the analysis 

After applying the procedures explained in the text, the following results are obtained for 
the natural frequencies and mode shapes. Comparison with the exact solutions is also 
provided that one can observe an excellent agreement between the exact results and 
computed results. 
Ten iterations are conducted for each method and computed λL values are compared with 
the corresponding exact values for the first three modes of vibration in the following table.  
From the table it can be seen that computed values are highly accurate which show that the 
techniques used in the analysis are very effective. Natural frequencies can be easily obtained 
by inserting the values in Table 1 into Eq.(17). 

www.intechopen.com



Transverse Vibration Analysis of Euler-Bernoulli Beams Using Analytical Approximate Techniques   

 

11 

The free vibration mode shapes of uniform beam for the first three mode are also depicted in 
the following figures. Since the obtained mode shapes coincide with the exact ones, to 
prevent a possible confusion to the reader, the exact mode shapes and the computed ones 
are not shown separately in these figures. The mode shapes for the free vibration of a 
uniform beam for five different configurations are given between Figs.2-6. 
 

Beam Mode Exact ADM VIM HPM 

P-P 

1 3.14159265 (π) 3.14159265 3.14159265 3.14159265 

2 6.28318531 (2π) 6.28318531 6.28318531 6.28318531 

3 9.42477796 (3π) 9.42477796 9.4247796 9.4247796 

C-C 

1 4.730041 4.73004074 4.73004074 4.73004074 

2 7.853205 7.85320462 7.85320462 7.85320462 

3 10.995608 10.99560784 10.99560784 10.99560784 

C-P 

1 3.926602 3.92660231 3.92660231 3.92660231 

2 7.068583 7.06858275 7.06858275 7.06858275 

3 10.210176 10.21017612 10.21017612 10.21017612 

C-F 

1 1.875104 1.87510407 1.87510407 1.87510407 

2 4.694091 4.69409113 4.69409113 4.69409113 

3 7.854757 7.85475744 7.85475744 7.85475744 

C-S 

1 2.365020 2.36502037 2.36502037 2.36502037 

2 5.497806 5.49780392 5.49780392 5.49780392 

3 8.639380 8.63937983 8.63937983 8.63937983  

Table 1. Comparison of λL values for the uniform beam 
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Fig. 2. Free vibration modes of PP beam. 
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Fig. 3. Free vibration modes of CC beam. 
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Fig. 4. Free vibration modes of CP beam. 
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Fig. 5. Free vibration modes of CF beam. 
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Fig. 6. Free vibration modes of CF beam. 
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Orthogonality condition given in Eq.(57) for each mode will also be shown to be satisfied. To 
this aim, the resulting polynomials representing normalized eigenfunctions are integrated 
according to the orthogonality condition and following results are obtained. 
The PP Beam: 

-14 -12

-11

1.0000000000000018 3.133937506642793*10 1.1716394903869283*10

 1.0000000000011495 -1.2402960384615706*10

1.0000000002542724
i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CC Beam: 

-13 -11

-10

1.0000000000000218 -3.2594265231428034*10 3.0586251883350275*10

 0.9999999999825311 -4.152039340197406*10

0.9999999986384138
i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CP Beam: 

-13 -12

-11

1.0000000000000027 -1.1266760906960104*10 3.757083743946838*10

 0.9999999999991402 -5.469593759847241*10

1.000000001594055
i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CF Beam: 

-15 -14

-13

1.0000000000000000 1.134001985461197*10 5.844267022420876*10

 1.0000000000000178 4.1094000558822104*10

0.9999999999969831
i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

The CS Beam: 

-15 -13

-13

1.0000000000000009 -1.067231239470151*10 -2.57978811982526*10

 1.0000000000002232 -2.422143056441983*10

1.0000000000643874
i jYY dx

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

From these results it can be clearly observed that the orthogonality condition is perfectly 
satisfied for each configuration of the beam. 
The analysis for the lateral free vibration of the uniform beam is completed. Now, these 
techniques will be applied to a circular rod having variable cross-section along its length. 

2.5.2 Free vibration of a rod with variable cross-section 

A circular rod having a radius changing linearly is considered in this case.  Such a rod is 
shown below in Fig.7. The function representing the radius would be as 

 0( ) (1 )R x R bx= −  (58) 
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where Ro is the radius at the left end, L is the length of the rod and 1bL ≤ .  
 

 
Fig. 7. Circular rod with variable cross-section 

Employing Eq.(58), cross-sectional area and moment of inertia for a section at an arbitrary 
point x becomes: 

 2
0( ) (1 )A x A bx= −  (59) 

 4
0( ) (1 )I x I bx= −  (60) 

where 

 2
0 0A Rπ=  (61) 

 
4
0

0 4

R
I

π
=  (62) 

Free vibration equation of the rod was previously given in Eq.(7) as 

2 2 2

2 2 2
0

w w
EI A

x x t
ρ

⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 

After the application of separation of variables technique by defining the displacement 
function as ( , ) ( ) ( )w x t Y x T t= , the equation to obtain natural frequencies and mode shapes 
becomes 

 
2 2

2
2 2

( ) ( ) 0
d d Y

EI x A x Y
dx dx

ω ρ
⎛ ⎞

− =⎜ ⎟⎜ ⎟
⎝ ⎠

 (63) 

2.5.2.1 Formulation of the algorithms 
2.5.2.1.1 ADM 

Application of ADM to Eq.(63) leads to the following 

 2 4
1 2 0 28 ( ) 12 ( ) ( ) 0ivY b x Y b x Y x Yψ ψ λ ψ′′′ ′′− + − =  (64) 

where 

 
1

1
( )

1
x

bx
ψ =

−
 (65) 

x 

R

L 
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( )2 2

1
( )

1
x

bx
ψ =

−
 (66) 

 
2

4
0 2

0c

ωλ =  (67) 

 0
0

0

EI
c

Aρ
=  (68) 

Once λo is provided by ADM, natural vibration frequencies for the rod can be easily found 
from the equation below. 

 ( )2 0
0 4

0

EI
L

A L
ω λ

ρ
=  (69) 

ADM gives the following formulation with the previously defined fourth order linear 
operator. 

 ( )
2 3

1 2 4
1 2 0 28 ( ) 12 ( ) ( )

2! 3!

x x
Y A Bx C D L b x Y b x Y x Yψ ψ λ ψ− ′′′ ′′= + + + + − +  (70) 

2.5.2.1.2 VIM 

Lagrange multiplier is the same as used in the uniform beam case due to the fourth order 
derivative in Eq.(64). Hence an algorithm by using VIM can be constructed as 

 { }2 4
1 1 2 0 2

0

( ) 8 ( ) 12 ( ) ( )  
x

iv
n n n n n nY Y Y b x Y b x Y x Y dλ ξ ψ ψ λ ψ ξ+ ′′′ ′′= + − + −∫ # # #  (71) 

2.5.2.1.3 HPM 

Application of HPM to Eq.(64) produce following set of recursive equations as the solution 
algorithm. 

 0 0 0iv ivY y− =  (72) 

 2 4
1 0 1 0 2 0 0 2 08 ( ) 12 ( ) ( ) 0iv ivY y b x Y b x Y x Yψ ψ λ ψ′′′ ′′+ − + − =  (73) 

 2 4
1 1 2 1 0 2 18 ( ) 12 ( ) ( ) 0,      2n n n nY b x Y b x Y x Y nψ ψ λ ψ− − −′′′ ′′− + − = ≥  (74) 

2.5.2.2 Results of the analysis 

After applying the proposed formulations, the following results are obtained for the natural 
frequencies and mode shapes. Ten iterations are conducted for each method and computed 
λοL values are given for the first three modes of vibration in the following table. 
The free vibration mode shapes of the rod for the first three modes are also depicted in the 
following figures. The mode shapes for predefined five different configurations are given 

www.intechopen.com



Transverse Vibration Analysis of Euler-Bernoulli Beams Using Analytical Approximate Techniques   

 

17 

between Figs. 8-12. To demonstrate the effect of variable cross-section in the results, a 
comparison is made with normalized mode shapes for a uniform rod which are given 
between Figs.2-6.   
 

Beam Mode ADM VIM HPM 

P-P 

1 2.97061902 2.97061902 2.97061902 

2 5.95530352 5.95530352 5.95530352 

3 8.93099026 8.93099026 8.93099026 

C-C 

1 4.48292606 4.48292606 4.48292606 

2 7.44076320 7.44076320 7.44076320 

3 10.41682600 10.41682600 10.41682600 

C-P 

1 3.80402043 3.80402043 3.80402043 

2 6.74289447 6.74289447 6.74289447 

3 9.70480586 9.70480586 9.70480586 

C-F 

1 1.96344512 1.96344512 1.96344512 

2 4.58876313 4.58876313 4.58876313 

3 7.52531208 7.52531208 7.52531208 

C-S 

1 2.35500726 2.35500726 2.35500726 

2 5.26125511 5.26125511 5.26125511 

3 8.21783948 8.21783948 8.21783948  

Table 2. Comparison of λοL values for the variable cross-section rod 
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Fig. 8. Free vibration modes of PP rod (         variable cross section          uniform rod). 
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Fig. 9. Free vibration modes of CC rod (         variable cross section          uniform rod). 
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Fig. 10. Free vibration modes of CP rod (         variable cross section          uniform rod). 
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Fig. 11. Free vibration modes of CF rod (         variable cross section          uniform rod). 
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Fig. 12. Free vibration modes of CS rod (         variable cross section          uniform rod). 
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3. Conclusion 

In this article, some analytical approximation techniques were employed in the transverse 
vibration analysis of beams. In a variety of such techniques, the most used ones, namely 
ADM, VIM and HPM were chosen for use in the computations. First, a brief theoretical 
knowledge was given in the text and then all of the methods were applied to selected cases. 
Since the exact values for the free vibration of a uniform beam was available, the analyses 
were started for that case. Results showed an excellent agreement with the exact ones that 
all three methods were highly effective in the computation of natural frequencies and 
vibration mode shapes. Orthogonality of the mode shapes was also proven. Finally, ADM, 
VIM and HPM were applied to the free vibration analysis of a rod having variable cross 
section. To this aim, a rod with linearly changing radius was chosen and natural frequencies 
with their corresponding mode shapes were obtained easily.  
The study has shown that ADM, VIM and HPM can be used effectively in the analysis of 
vibration problems. It is possible to construct easy-to-use algorithms which are highly 
accurate and computationally efficient. 
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