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Abstract

Parkinson’s disease (PD) higher incidence has been observed in postmenopausal women
compared to premenopausal women, suggesting estrogen neuroprotective effect.
L-DOPA (LD) chronic treatment causes dyskinesia; evidences indicate that LD increases
the preexisting oxidative stress condition. This study determines melatonin ability, alone
or in combination with LD (LD/Mel) to protect dopaminergic loss induced by 6-OHDA in
a rat PD model in ovariectomized (OVX) and intact (with ovaries (W/OV)) rats on motor
behavior and cytological alterations, comparing with LD-only treated rats. LD/Mel-
treated rats showed dyskinesia decrease (score 5–7.5) and had the best performance in
the staircase test (five pellets) throughout all studies. The beam walking time was 20–35 s,
showing good coordination (as control group (20–38 s)), dopaminergic cells increase
of 22.8% (W/OV rats) and 27.2% (OVX rats) in the contralateral side as well as 100%
conservation in the contralateral dendritic spines. Our results suggest that LD/Mel
co-administration and estrogen presence result in an efficient treatment to reduce dyski-
nesia through the conservation of some dopaminergic cells, which imply a well-preserved
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neuropil of a less denervated striatum. We assume that these results are because of a
synergistic effect between LD, melatonin and estrogens.

Keywords: L-DOPA/melatonin dyskinesia, estrogen, Parkinson’s disease experimental
model, rat

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss

of dopamine-containing neurons in the substantia nigra compacta (SNc) and by Lewy body

presence. The subsequent striatal dopamine (DA) deficiency leads to the parkinsonian condi-

tion of bradykinesia, rigidity, tremor, and motor and postural instability [1, 2]. Some efficient

drugs, including L-DOPA (LD), dopamine agonists, and inhibitors of dopamine-metabolizing

enzymes, have been used for the clinical treatment of LD [3]. Unfortunately, chronic LD

therapy is compromised by numerous side effects, the most evident LD-induced dyskinesia

(LID) that is abnormal involuntary movements (AIMs), which severely compromise patients’

lifestyle [4]. LID usually increases when DA reaches the maximum concentration in the brain

per LD dose (peak-dose dyskinesias), and dystonia (“off” dystonia) can occur when the level of

LD is very low [5]. Risk factors for LID include duration and dose of LD treatment, and consist

of asymmetric choreiform movements, athetosis, and dystonia of facial muscles, jaw, tongue,

neck, limbs, and toes [6]. Similarly, rats with unilateral 6-hydroxydopamine (6-OHDA) lesion,

LD-treatment produces abnormal involuntary movements (AIMs), which are displayed as

asymmetric and purposeless movements affecting the limbs, orofacial muscles, and trunk [7].

AIMs evaluation maintains prognostic validity for the preclinical screening of novel

antidyskinetic PD treatments [8, 9]. Therefore, the identification of neurochemical features

involved in the regulation of motor function may enable the discovery of new potential targets

that perform together with LD, improving the effectiveness of these drugs and decreasing the

incidence and severity of AIMs and response fluctuations [10].

The etiology of sporadic PD, which is most PD cases, is still unclear. Numerous results have

been accumulated from pharmacological and pathological studies on PD and animal or in vitro

reports using dopaminergic toxins, which cause Parkinsonism in animals [11]. These reports

have revealed that oxidative stress [12], inflammation [13], and mitochondrial dysfunction

[2, 14] play essential roles in the progress and pathogenesis of sporadic PD. Nevertheless, the

mechanisms of dopaminergic neuron cell loss have not been entirely elucidated. However,

some data suggest oxidative stress as the main candidate to mediate in the primary unknown

cell death cause. Studies on PD brains have given evidence to support this hypothesis [15–17].

The free radical formation has been confirmed in lipids [18], proteins, and SNc nucleic acids

of PD patients [19]. Therefore, the reactive oxygen species (ROS) production induced by

oxidative stress, the basal ganglia and SNc lack of antioxidant defenses, is commonly consid-

ered [20] the final cause of neuronal death [21, 22]. On the other hand, previous studies have
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investigated the reasons for LD long-term problems. Some proposed mechanism that describes

LD to induce oxidative damage, perpetuating the cell death [23–25], and it seems that LD

produces 6-OHDA in the mouse striatum, generating more ROS formation [26, 27]. It has been

proven that dopaminergic nuclei are full with DA following LD acute, subacute, or chronic

administration [26], and the augmented DA can stimulate the 6-OHDA production in the

brain [27]. Hence, we assumed that parkinsonian neurotoxins that generate free radicals in

a DA-enriched milieu would promote oxidative stress production, and it is possible that

melatonin might be a free radical scavenger protecting against ROS formation preventing the

cell death.

Melatonin is an indoleamine first described in 1993 by Tan et al. [28] as an effective antioxi-

dant. This indoleamine possesses unique benefits. First, its solubility in both water and lipids

allows it to be efficiently allocated to the cell. Second, its capacity to cross the blood-brain

barrier allows it to reach the central nervous system [29]. There are reports which mention

that melatonin protects neurons from neurotoxin-induced damage in a wide range of neuro-

nal culture systems serving as PD experimental models (for review, see [30]). Previous

studies have shown that short-term treatment with melatonin does not exert a

neuroprotective effect in DA-depleted animals, probably because the levels of this neurohor-

mone are low in the brain [29]; in this sense, it is suggested that melatonin level has to be

high and continuously maintained for a long time in the brain to guarantee its neuro-

protective effect [30, 31]. It is important to note that in vivo experiments are still uncommon,

and most of them have been done in acute models of the disease. These studies show

melatonin protective effects in both the striatum dopaminergic terminals [31] and midbrain

neurons [32]. However, there are insufficient reports about its effects on the initial stages of

neurodegeneration.

On the other hand, it is known that the prevalence of several neurodegenerative diseases, such

as PD, correlates with gender [33]. Therefore, PD happens 1.5 times more frequently in men

than in women [34–37]. In women, the onset age of PD relates to the fertile life duration

[38, 39].

It seems that there are several mechanisms of estrogen protection on the nigrostriatal pathway

[39]. It has been reported that estrogen has neuroprotective effects in PD animal models

utilizing the neurotoxins MPTP [40, 41], 6-OHDA [42, 43], or methamphetamine [44, 45]. The

foundations for these sex/gender differences in SNc DA cell death are not known. Neverthe-

less, the gonadal steroid hormone estrogen seems to be a critical aspect responsible for these

differences [39]. In vivo confirmation of the neuroprotective effects of estrogens has been

reported since estrogen treatment in female ovariectomized (OVX) rodents protects against

neurotoxin-induced depletion of striatal dopamine [46, 47]. However, it is not well known

whether this neuroprotective effect prevents SNc dopaminergic cell death. Besides, it is not

known whether L-DOPA/melatonin (LD/Mel) cotreatment can influence the neuroprotection

degree. Therefore, the present study tries to investigate the capacity of melatonin or LD/Mel to

protect striatal dopaminergic denervation induced by 6-OHDA in a hemiparkinsonian rat

model, comparing the results with LD-only treated rats. The treatments were administered
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4 days after lesioning, daily for 6 months at doses suitable to improve motor performance, and

their effects were assessed using measures of skilled forelimb use, stepping ability, and AIMs.

At the cellular level, the treatment response has been evaluated using tyrosine hydroxylase

(TH) immunoreactivity and estimating the number of dendritic spines in the striatal medium-

sized spiny neurons, all in female rats, to examine estrogen’s presence or absence.

2. Experimental procedures

The experiments were conducted in 50 female Wistar rats weighing 180 � 20 g at the start of

the study. The animals were individually placed in plastic cages under controlled light condi-

tions (12:12-h light-dark regime) and fed with Purina Rat Chow® and water ad libitum. Body

weight was registered daily. The experimental protocol was conducted out in agreement with

the National Institutes of Health, Guide for Care and Use of Laboratory Animals certificated

by the Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación

(SAGARPA) (NOM-062-ZOO-1999, Mexico) and approved by UNAM institutional animal

care committee. All attempts were made to reduce the number of animals used and their

suffering.

2.1. Motor behavior

Before ovariectomy and 6-OHDA surgery, all animals were trained for 1 week in the beam

walking and in the staircase tasks to evaluate motor performance. Training and testing were

performed during the light part/period of the cycle, at the same hour every day. For the

staircase test, rats were food-deprived for 24 h. Afterward, they received a restricted diet of

~10-g/kg body weight adjusted to keep their weight constant. Food restriction considered the

natural gain in body weight during the training period, which prevented excessive weight

reduction. After the 6-OHDA surgery, each rat was tested once a week, a different day for each

test. Two observers blind to the rats’ condition perform all behavioral assessments.

2.1.1. Staircase test

Rats were trained in the staircase test, which measures the independent use of forelimbs in

skilled reaching and grasping tasks [48]. Briefly, each rat is placed into a clear plexiglass case

(length 30 cm, width 6.8 cm, and height 12 cm) in which the rat rests on a central elevated

platform with six stairs descending on each side. Each stair contained one food pellet. Food

pellets on the left stairs may be retrieved only using the left paw, whereas pellets on the right

stairs must be obtained using the right paw (Figure 1). Rats were trained for a week (2/15 min

sessions/day) and were excluded from this test if they did not retrieve at least six pellets/side

[49]. The last 5 days of training were used to calculate baseline performance. The skilled

reaching ability was quantified by recording the number of food pellets retrieved with each

paw. The qualitative analysis of this test comprises the appropriate movements to take the

pellets: (1) prepared to take food, (2) stretched the forelimb, (3) took the pellet (pronation

movement), (4) paw rotation around the wrist (supination), and (5) eat the food [49].
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2.1.2. Beam walking task

The additional test to measure motor coordination was evaluating the ability of the animals to

traverse a narrow beam (12 mm wide) to reach an enclosed safety platform [50]. The rats were

trained for 1 week to cross the wooden beam. The beam measured 2 m long and was elevated

to a height of 1 m over the floor with wood supports with 15� inclination. Each test session

consisted of four trials in which latency to cross the beam was recorded (establishing a

maximum range of 120 s; if the animal did not pass at that time, the activity was terminated

and assigned the value of 120 s for that evaluation). Five trials were averaged to give a mean

latency [51]. The testing was done every week after 6-OHDA lesion during the first month and

after that every 15 days.

2.2. Surgery

2.2.1. Ovariectomy

Bilateral ovariectomy (OVX) was performed through two lateral incisions of the abdominal

wall under Isoflurane anesthesia (n = 25).

2.2.2. Stereotactic surgery and treatments

The rats were anesthetized with Isoflurane and placed in a stereotaxic apparatus. The rats

(n = 20 OVX and 20 with ovaries (W/OV)) were infused with 4 μl saline solution carrying 8 μg

of 6-OHDA (Sigma Chemical, USA) and 0.2 mg of ascorbic acid into the left medial forebrain

bundle (MFB) (n = 40), and sham lesion was made with vehicle (n = 10; 5 OVX and 5 W/OV

(control group) [7]. The injections were given over a 5-min period with a Hamilton syringe

attached to a glass micropipette with a tip diameter of 20–50 μm. The stereotaxic coordinates

were as follows: AP = �3 mm anterior of the ear bar; L = 1.6 mm lateral of bregma; V = �8 mm

vertical of the Dura (according to [52]). After anesthesia recovery, the animals were returned to

their cages. Apomorphine (Sigma Chemical, USA; 0.25 mg/kg i.p.) provoked contralateral

rotational behavior was tested 2 days after lesioning. Only those animals displaying more than

200 full turns in a 30-min period were used [53]. Two days after the rotational behavior test, we

began the treatments as follows: 5 OVX and 5 W/OV lesioned rats were treated with 7.5 mg/kg

Figure 1. Staircase test used to assess skilled reaching deficits after 6-OHDA lesion.
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LD (Sinemet® (Carbidopa-L-DOPA 25/250)), 5 OVX and 5 W/OV lesioned rats were treated

with 10 mg/kg melatonin (Sigma Chemical, USA), and 5 OVX and 5 W/OV lesioned rats were

treated with 7.5 mg/kg LD/10 mg/kg Mel. The drugs were dissolved in 10 ml distilled water

and given orally with an insulin syringe for 6 months during the light period (at 10:00 AM

every day) [7]. The other 10 (5 OVX and 5 W/OV) lesioned rats without treatment, as well as

the control animals (5 OVX and 5W/OV), were kept for the same time. The motor performance

was evaluated weekly during the first month and after every 15 days; the rats were tested

during the light period at 14:00 h, a different day for each test.

2.3. AIMs rating

LD-induced AIMs were calculated at day 30 according to a rat dyskinesia scale [54–56]. Rats

were placed individually in transparent cages and observed every 20th min, from 20 min

before to 180 min after giving the treatments (10 monitoring periods of 1 min each). Four

AIM subtypes were classified according to their topographic distribution as locomotive, axial,

forelimb, or orolingual (for details, see Figure 2). Signs of otherwise normal behaviors, such as

rearing, sniffing, grooming, and gnawing, were not included in the evaluation [57]. AIM

severity was assessed using the method of Cenci et al. [55], and Lundblad et al. [9], which

designates a score from 0 to 4 to each of the four AIM subtypes mentioned before according to

the proportion of time/monitoring period through whichever AIM is observed. Borderline

scores, such as 0.5, 1.5, 2.5, and 3.5, were allowed to increase the sensitivity of the evaluation

[7, 57].

2.4. Video recording

Performance during motor tests and AIM analysis was video-recorded (Panasonic camcorder

DR-H80 model). Representative still frames were captured from digital video recordings with

the video-editing software Final Cut Pro. Pictures were cropped and adjusted for color and

brightness contrast in Adobe Photoshop but were not altered in any other way [57].

2.5. Cytological analysis

All animals were perfused under sodium pentobarbital anesthesia immediately after the

6-month treatments via the aorta, with saline solution followed by fixative including 0.2%

glutaraldehyde and 4% paraformaldehyde in 0.1 M phosphate buffer (PB). The brains were

removed and deposited in the fixative solution for 1 h. For the TH Immunocytochemistry,

coronal sections (50 μm) were collected on a vibrating microtome through the mesencephalon.

Tyrosine hydroxylase (Chemicon International, Inc., CA, USA; 1:1000) immunostaining

with the ABC detection method (Vector Lab MI, USA) was conducted for light microscope

analysis. The analysis was performed with a computer-assisted system (Image-Pro Plus, Media

Cybernetics, L.P. Del Mar, CA, USA) connected to a CCD camera to Optiphot 2 microscope

(Nikon, Japan). The number of TH-positive neurons was calculated in 1500 μm2 from

seven SNc sections of each animal [58]. The dendritic spines analysis was performed by the

Golgi method. Blocks from the striatum were cut into 90-μm-thick sections and processed
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for the rapid Golgi method. The analysis consisted in counting the number of dendritic

spines in a 10-μm-long section from 5 secondary dendrites to 20 striatal medium-sized spiny

neurons [58].

2.6. Statistical analysis

Two-way ANOVA was used to analyze the number of TH-immunoreactive cells, the number

of dendritic spines, and the behavioral data. Group differences were considered statistically

significant at P < 0.05. When appropriate, post hoc comparisons were made with Tukey test. All

analyses were conducted with GraphPad Prism 7 for Mac Software.

Figure 2. Video recording sequences from rats affected by orolingual (A), axial (B), forelimb (C), and locomotive (D)

AIMs. Orolingual AIMs (A) include opening and closing of the jaws and tongue protrusion toward the side contralateral

to the lesion (arrow). The series in (B) displays a neck and upper trunk torsion action toward the contralateral side to the

lesion. Body torsion is maximally critical (>90�), causing the rat to lose equilibrium. Forelimb AIMs (C) include purpose-

less up and down translocation of the Parkinsonian (right) forelimb (arrow). Locomotive AIMs (D) comprise circular

movement toward the contralateral side to the lesion. Only locomotive movements involving all four limbs are considered

under this AIM category.
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3. Results

After 6 months, neither clinical alterations nor significant weight changes were detected in the

experimental animals compared to controls.

3.1. Staircase test

It is well known that motor behavior is crossed; We lesioned the left MFB (ipsilateral) affecting

the right side (contralateral), so we only show the contralateral paw data. For the treatment’s

effect analysis, data from OVX and W/OV rats were plotted separately (Figure 3A and B,

respectively). Those graphs show that all control rats maintained the same number of reaching

success through all the study (5.2 � 0.20–6) comparing to the baseline. In contrast, the

6-OHDA-lesioned rats showed significant motor alterations during the whole study showing

a drastic decrease in the number of pellets reached (1.5 � 0.28–2.2 � 0.750). 6-OHDA + LD

treatment animals presented motor behavior recovery until 21–28 days after treatment, and

then, the rats failed in the task (1.8 � 0.12–2.4 � 0.47 pellets), behaving very similar to the

untreated lesioned animals (Figure 3A and B). Unlike the 6-OHDA + melatonin rat’s motor

performance, initially they had similar values to untreated 6-OHDA animals (2.2 � 0.47) and

subsequently had a gradual recovery of reaching values (5.8 � 0.10) as control animals

(5.2 � 0.2). The 6-OHDA + LD/Mel rats showed improvement in the performance from the

start, lasting this effect until the end of the study; the number of successes (4.2 � 0.25–5 � 0.40)

was similar to control animals (5.4 � 0.24–5.8 � 0.20) (Figure 3A and B).

To compare estrogen protection data from W/OV and OVX, rats were plotted by treatment

(Figure 4). We can observe that 6-OHDA + LD OVX rats at 21 days decrease the reaching

values (3 � 0.49) similar to 6-OHDA animals (2.22 � 0.27), unlike 6-OHDA + LD W/OV rats

presented motor impairment until 42 days (2.2 � 0.026 pellets), this group exhibited delayed

deterioration (Figure 4A). W/OV 6-OHDA + melatonin rats, reaching values (5.8 � 0.10), were

Figure 3. Contralateral forelimb staircase test results. The number of reaching successes recorded in W/OV (A) and OVX

(B), with the different treatments. * = P < 0.05 experimental groups vs. control groups; # = P < 0.05 treatments vs. untreated

6-OHDA; & = P < 0.05 6-OHDA + LD vs. 6-OHDA + melatonin; @ = P < 0.05 6-OHDA + LD and 6-OHDA + melatonin vs.

6-OHDA + LD/Mel.
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similar to the control animals (5.8 � 0.20) after 42 days of treatment, unlike OVX rats who

reached control group values (4.25 � 0.27) at 84 days of treatment (Figure 4B).

All animals receiving 6-OHDA + LD/Mel perform similarly to control group animals during

the 6 months of treatment and displayed no statistically significant differences between them

(Figure 4C).

Figure 4. Estrogen protection in the staircase test contralateral forelimb. The number of reaching successes recorded in

W/OVand OVX. 6-OHDA + LD (A), 6-OHDA+ melatonin (B) and 6-OHDA + LD/Mel (C). * = P < 0.05 experimental groups

vs. control groups; # = P < 0.05 treatments vs. untreated 6-OHDA; @ = P < 0.05 W/OV vs. OVX rats.
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3.2. Beam walking test

Figure 5A and B illustrates the mean numbers of total time to cross the beam, and the

treatments’ effect in W/OV and OVX rats. 6-OHDA animals significantly increased the time

(120 s) compared to control animals (30 s � 2.71–40 s � 1.3), remaining these values through-

out the study. The 6-OHDA + LD group showed statistically significant improvement for about

21–28 days (25 � 4.26 and 38.5 � 2.7), displaying scores like the control group (24.8 � 1.31 and

20.4 � 2.24 s). Afterward, these rats increased the time (62 � 6.1), behaving similarly to

untreated 6-OHDA group (100 � 6.7). 6-OHDA + melatonin rats, at the beginning of the

treatment, showed increased time to cross the beam (72.7 � 4.71) to approximately 28 days,

with values like 6-OHDA-untreated animals (112.8 � 7.2), and then, at 42 days, the animals

improved their motor activity (46.6 � 1.83 s), reaching values of control animals (25.6� 2.48 s).

6-OHDA + LD/Mel rats presented values (30.40 � 2.71 to 40.4 � 1.37 s) similar to control

animals during the entire study (Figure 5A and B).

Regarding the comparison between estrogen status, we observed that OVX 6-OHDA + LD

decreased the time to cross the beam. They have reached values (62� 6.1 s) similar to 6-OHDA

untreated group (100 � 6.78) to day 42, and unlike 6-OHDA + LD W/OV showed similar

(67 � 2.14 s) values to 6-OHDA untreated animals (104.5 � 9.17) from 126 days of treatment,

again, we observed that W/OV rats showed delayed motor impairment compared to

6-OHDA + LD OVX rats (Figure 6A). OVX 6-OHDA + melatonin rats increased the time to

cross the beam (107.8 � 2.2 s) as 6-OHDA untreated animals (105.2 � 9.82 s) until 21 days of

treatment; unlike 6-OHDA + melatonin W/OV rats increased the time (60.83 � 3.95 s); subse-

quently, after 28 days of treatment, 6-OHDA + melatonin W/OV animals had similar values

(46.66 � 1.86 s) to the control group (25.60� 2.48 s), while OVX rats reached values (50 � 5.6 s)

as control animals (30.2 � 6.55 s) until 70 days of treatment. W/OV 6-OHDA + melatonin rats

Figure 5. Beam walking test evaluation W/OV (A) and OVX (B) rats, with the different treatments. * = P < 0.05 experi-

mental groups vs. control groups; # = P < 0.05 treatments vs. untreated 6-OHDA; & = P < 0.05 6-OHDA + LD vs.

6-OHDA + melatonin; @ = P < 0.05 6-OHDA + LD and 6-OHDA + melatonin vs. 6-OHDA + LD/Mel.
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recovered faster compared to OVX rats (Figure 6B). It is important to note that all

6-OHDA + LD/Mel animals displayed similar (values 19.8 � 0.97 to 38.75 � 1.03) to the control

animals (30.4 � 2.71 to 40.4 � 3.37) over the 6 months of treatment and no statistically

significant differences between groups (Figure 6C).

3.3. Abnormal involuntary movements

3.3.1. Time course and overall incidence AIMs

To get an overview of the development of dyskinesia in the different groups, we carried out

the summation of all AIMs subtypes (axial + locomotive + limb + orolingual). As shown in

Figure 6. Estrogen protection on the beam walking test. The time to cross the beam recorded in W/OV and OVX rats.

6-OHDA + LD (A), 6-OHDA+ melatonin (B) and 6-OHDA + LD/Mel (C). * = P < 0.05 experimental groups vs. control

groups; # = P < 0.05 treatments vs. untreated 6-OHDA; @ = P < 0.05 W/OV vs. OVX.
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Figure 7 A and B, repeated-measures ANOVA revealed significant overall differences between

untreated 6-OHDA-lesioned (2.5 � 0.80 to 2.75 � 0.14) and melatonin-treated groups

(5.3 � 0.30 to 3.16 � 0.17) comparing to LD-treated groups. 6-OHDA + LD rats from the first

month of the evaluation showed high values (12.30 � 2.068) of MIAs (Figure 7A and B).

Remarkably, all 6-OHDA animals receiving LD/Mel coadministration developed MIAs scores

(4.80 � 0.25 to 5.83 � 1.20) similar to untreated 6-OHDA (2.5 � 0.80 to 2.75 � 0.14) and

6-OHDA + melatonin animals (5.3 � 0.30 to 3.16 � 0.17) (Figure 7A and B).

Concerning total LIDs and the comparison between estrogen status, we observed that OVX

6-OHDA+ LD began to develop LIDs after 3 months of treatment unlike W/OV 6-OHDA + LD

rats, which showed LIDs from the first month, and the OVX 6-OHDA + LD group showed

delay in LIDs development, the two groups subsequently, had similar scores (18 � 2.40 for

W/OV 6-OHDA + LD rats and 13.5 � 0.28 OVX 6-OHDA+ LD), and showed no statistically

significant differences between them (Figure 8A). W/OV and OVX 6-OHDA + melatonin rats

developed lowMIAs scores (5.3 � 0.30–3.16 � 0.16 and 4.5 � 0.1–3.25 � 0.25, respectively) like

the untreated 6-OHDA animals (2.5 � 0.80–2.70 � 0.14) and showed no statistically significant

differences (Figure 8B). It is important to note that all 6-OHDA + LD/Mel rats, since the first

evaluation, showed small LID scores (4.80 � 0.25–5.83 � 1.20) and no statistically significant

differences (Figure 8C).

3.4. TH immunocytochemistry

Our results show that W/OV and OVX control rats had similar values in the number of TH-

immunopositive cells, in both ipsilateral and contralateral sides (Figures 9A and B and 10),

Figure 7. Total AIMs (orolingual, axial, forelimb, and locomotive) within 6 months of treatment of W/OV (A) and OVX

(B) rats with the different treatments. * 6-OHDA + LD vs. untreated 6-OHDA and 6-OHDA + melatonin; # 6-OHDA + LD

vs. 6-OHDA + LD/Mel. P < 0.05.

Sex Hormones in Neurodegenerative Processes and Diseases182



and display no statistically significant differences between groups. In Figure 9A, it can be

observed a drastic dopaminergic neuronal loss in the ipsilateral SNc, W/OV and OVX

6-OHDA-lesioned rats had neuronal survival of 3.97% and 6.14%, respectively, like W/OV

and OVX 6-OHDA + LD (2.2% and 3.46%) and 6-OHDA + melatonin (3.45% and 5.9%). Note

that both W/OVand OVX rats who received 6-OHD + LD/Mel had a higher percentage of cells

7.67% and 10.46%, respectively; however, we found no statistically significant differences

between groups.

Regarding contralateral SNc, Figure 9B shows that W/OV and OVX 6-OHDA-lesioned groups

and all animals with 6-OHDA + LD showed a decline of approximately 20% neuronal loss,

compared to control groups, and showed no statistically significant differences between

Figure 8. W/OV and OVX rats’ comparison in total AIMs during 6 months of treatment. 6-OHDA + LD (A),

6-OHDA + melatonin (B), 6-OHDA + LD/Mel (C). *6-OHDA + LD vs. untreated 6-OHDA; @ OVX vs. W/OV rats, P < 0.05.
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groups. W/OV and OVX rats 6-OHDA + melatonin-treated had values (values to 102% and

111%, respectively) similar to the control group. Surprisingly, the W/OV and OVX 6-

OHDA + LD/Mel rats showed a higher percentage of TH-immunopositive cells (22.8% and

27.2%, respectively) compared to control group and no statistically significant differences.

3.5. Dendritic spines

When performing dendritic spines counting, we observed that control W/OV rats displayed a

mean of 7.94� 3.23 in the ipsilateral striatumand 7.97� 3.47 in the contralateral side; these values

were taken as 100%. OVX rats showed a decreased of 21.3% dendritic spines in the ipsilateral

striatum and 20.94% in the contralateral side compared to control W/OV (Figure 11A and B),

Figure 9. TH-immunoreactive cell percentages from the ipsilateral (A) and contralateral (B) SNc in the control and

experimental groups. The data are depicted as mean � SEM. * Experimental vs. control; # 6-OHDA + melatonin and

6-OHDA + LD/Mel vs. untreated 6-OHDA and 6-OHDA + LD; & 6-OHDA + melatonin vs. 6-OHDA + LD/Mel; P < 0.05.
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Figure 10. Representative tyrosine hydroxylase immunostained from coronal sections containing the SNc of control,

6-OHDA-untreated, 6-OHDA + LD, 6-OHDA + melatonin and 6-OHDA + LD/Mel-treated rats. Note the significant cell

loss in the ipsilateral SNc in the four experimental groups (arrows), being more evident in the untreated 6-OHDA and LD

treated ones; also, the contralateral SNc of melatonin and LD/Mel-treated rats lost fewer neurons than the other two

experimental groups, and LD/Mel-treated rats had more neurons than control rats (magnification 4�).
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In the ipsilateral striatum, W/OV and OVX 6-OHDA-lesioned rats and 6-OHDA + LD-treated

rats presented severe dendritic spines loss (50, 44, 49, and 51%, respectively), unlike 6-OHDA +

melatonin-treated (72 and 73%) and 6-OHDA + LD/Mel coadministration rats (77 and 73%),

which showed a greater number of dendritic spines and showed no significant differences

between groups (Figures 11A and 12). Regarding contralateral striatum, we observed that

OVX untreated 6-OHDA rats displayed higher dendritic spines loss (41%) compared to

W/OV 6-OHDA untreated animals (36%), showing statistically significant differences. W/OV

and OVX all 6-OHDA + LD groups showed significant dendritic spines loss (35% and 34%),

showing similar values with W/OV and OVX untreated 6-OHDA rats (36% and 41%), with no

statistically significant differences between groups. W/OV 6-OHDA + melatonin (95%) and

W/OV 6-OHDA + LD/Mel (99%) rats had similar values for the number of dendritic spines to

control group. OVX 6-OHDA + melatonin (92%) and OVX 6-OHDA + LD/Mel-treated rats

(97%) had a higher percentage of dendritic spines compared to control group (76%), showing

increased number of dendritic spines similar to control W/OV group (Figures 11B and 12).

Figure 11. Striatal medium-sized spiny neurons dendritic spine percentage ipsilateral (A) and contralateral (B). * Exper-

imental vs. control; # 6-OHDA + melatonin and 6-OHDA + LD/Mel vs. untreated 6-OHDA and 6-OHDA + LD; @

untreated 6-OHDA OVX vs. untreated 6-OHDA W/OV, P < 0.05.
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4. Discussion

Our data show that the LD/Mel coadministration and the estrogen presence appear to be a

very effective combination to reduce AIMs through the conservation of some functional SNc

dopaminergic cells, which in turn imply a well-preserved neuropil of a less denervated stria-

tum. We assume that these results are probably because of a synergistic effect between LD,

melatonin, and the estrogen presence.

4.1. Staircase test

It has been reported that PD patients have poor manual skills that worsen as the disease

progresses, and patients have difficulty performing tasks that require sequential movements,

Figure 12. Representative micrographs of Golgi-stained medium-sized spiny neurons of the ipsilateral striatum with an

illustrative box of dendritic spine densities from the control group (A), untreated 6-OHDA group (B), 6-OHDA + LD (C),

6-OHDA + melatonin (D), and 6OHDA + LD/Mel (E). Both untreated 6-OHDA and LD-treated induced a marked

decrease in the total number of spines mainly in the ipsilateral striatum. In contrast, melatonin and LD/Mel-treated

groups showed a well-preserved dendritic spine density (magnification, 40� and 100�).
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for example, when performing repetitive movements of forearm pronation and supination,

openness and closing hand and reaching for objects [59]. The rats’ movements in the staircase

test are very like humans, so that test allows evaluating DA deficiency and treatments effec-

tiveness [48, 59]. The rats’ movement in the staircase test by using the forelimb to keep the

pellet and eat it is a complex and anomalous activity for animals with 6-OHDA unilateral

lesion. According to our results, all untreated 6-OHDA animals showed severe motor damage

mainly affecting the contralateral side, expressed by the drastic reduction in the number of

pellets eaten, which is consistent with other authors [60, 61]; the performance of this activity

was abnormal, and although sometimes the rats obtained the food pellet successfully, supina-

tion and pronation movements were limited compared to control animals. Some rats also use

compensatory strategies such as increasing their digit pressure and frequently used tongue

and teeth to achieve the pellet [59]. In this respect, it is known that motor alterations in the

staircase test depend on the striatonigral dopaminergic system integrity [60, 62, 63]. Besides,

several authors have reported that animals with this motor impairments display severe SNc

TH-immunopositive neuronal loss and fewer DA fibers in the striatum [60, 64].

4.2. LD treatment

As our results show, all 6-OHDA + LD animals showed recovery since the first day to 21–

28 days of treatment. Subsequently, they displayed notorious motor alterations. Thus, our

results are consistent with previous studies where it has been observed that PD-experimental

animals LD-treatment therapeutic benefit in rodents are approximately 3 weeks [57, 65]. In this

respect, it has also been reported that LD-treated PD patients improve the motor response in

tests that include taking objects on a surface, display greater coordination, and recover the

movement initiation [66, 67]. However, when LD treatment is chronically administered (6–

13 months), patients do not improve and show alteration in elbow flexion, supination, prona-

tion, and bradykinesia [68]. It is suggested that, after a while, LD treatment is no longer

effective [66, 67, 69, 70]. In our results, we also observed 6-OHDA + LD animals when they

used the contralateral forelimb, the movement was limited, and the limb tended to remain

flexed, which are clear signs of hypokinesia and rigidity. It is important to note that with

chronic LD treatment, the animals showed mainly orolingual, axial, and limb-type dyskinesia

at the time they were evaluated in the staircase test. Therefore, the pellets were harder to take,

corresponding with Winkler et al. [71] results. Besides, it is considered that the motivation that

leads the animal to get the food pellets is the food restriction [48], generating anxiety and

promoting the realization of quick and inaccurate limb movements [72].

4.3. Melatonin treatment

All 6-OHDA + melatonin-treated animals behaved very similarly to untreated 6-OHDA ani-

mals at the beginning of the treatment; later at approximately 21 days, they showed gradual

improvement. In a study conducted by Singh et al. [73], they show that 35 days of melatonin

treatment in 6-OHDA-lesioned animals, they display improvement in posture and ability to

take the food pellets in the staircase test with the contralateral forelimb, coinciding with our

data, since we found improvement in the animals between days 28 and 42. These authors

propose that melatonin neuroprotective effect is due to its ability to stimulate antioxidant
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enzymes, which act on the 6-OHDA-free radicals; in addition, it is known that these enzymes

are diminished in the DA-depleted brain [74, 75]. Previous studies have shown that short-term

melatonin treatment does not exert a neuroprotective effect in DA-depleted animals [76, 77],

probably due to the fact that this neurohormone levels are low in the brain [76]. In this sense, it

is suggested that melatonin level has to be high and continuously maintained for a long time in

the brain to guarantee its neuroprotective effect [76, 78, 79].

4.4. LD/Mel treatment

Remarkably, as shown in our results, all animals treated with 6-OHDA + LD/Mel coadmini-

stration showed improvement in their motor performance in the staircase test from the begin-

ning of treatment. We also observed that these animals improved the digit contraction and

projection movements, pronation, and supination, in comparison with the other groups. The

neuroprotective effect we observed is probably due to the melatonin’s characteristic as an

antioxidant, avoiding LD autoxidation and the consequent ROS formation, thus restoring LD

levels and increasing striatal DA bioavailability [26, 27].

4.5. Beam walking test

This test evaluates stereotyped movements, coordination, and motor alterations characteristic

of PD in this animal model [80]. The device we used implied greater difficulty in its execution

due to the thickness of the beam (12 mm). Besides, when placed diagonally to 15� to the floor, it

required more effort to maintain a stable position. In humans, balance deterioration occurs

when the loss of dopaminergic neurons is >70% [81]. Bracha et al. [82] report that PD patients,

when tested showed asymmetry toward the hemisphere containing less dopaminergic activity,

decreased movement initiation (akinesia), and walking was slow and presented postural

changes. So that it is suggested that these changes may be similar in hemiparkinsonian rats,

which may contribute to motor deficit observed in the beam walking test [50].

4.6. LD treatment

The data obtained from the 6-OHDA + LD animals are consistent with data previously reported

in our laboratory, where 6-OHDA LD-treated rats show motor activity recovery in the first days

of treatment, but after 28 days dramatically increased the time to pass the beam [57]. PD patients’

studies treated with LD showed a significant increase in walking speed and balance [83]. In our

study, we observed that the animals frequently interrupted their ascent and slipped due to the

low digit clamping force produced by the lesion, which is not reversed by LD treatment [68]. The

SNc degeneration produced by 6-OHDA lesion considerably decreases LD therapeutic benefit

[71] probably because this drug produces oxidative stress and therefore increases the neuro-

degeneration of the remaining dopaminergic cells [84]. In addition, when animals attempted to

traverse the beam, they stopped because they had axial and limb-type AIMs.

4.7. Melatonin treatment

6-OHDA + melatonin-treated animals, after 42 days, showed gradual motor activity recovery,

suggesting that somehow melatonin contributed to the improvement motor coordination [57];
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so the animals were probably able to make optimal postural adjustments to maintain the

balance and move on the beams. Patki and Lau [85] performed a study on DA-depleted

animals, which were continuously melatonin-treated for 18 weeks, and when evaluating the

animals in the beam walking test, they observed improvement in motor coordination com-

pared to animals that did not receive treatment. In addition, chronic melatonin treatment

increased striatal DA levels, so the authors conclude that long-term melatonin treatment has a

neuroprotective potential to preserve nigrostriatal dopaminergic function. Probably because

during the treatment, high and constant melatonin levels were maintained in the brain [79].

4.8. LD/Mel treatment

Animals receiving chronic LD/Mel coadministration showed recovery of motor coordination;

the animals cross the beam alternating the limbs, which made the movement faster and better

so that they presented similar times to pass the beam to the control group animals throughout

the experiment. In this regard, recent studies show that melatonin, given in conjunction with

LD in MPTP mice, reverses akinesia by restoring the number of dendritic spines in medium-

sized spiny neurons and attenuating striatal DA loss. Proposing that melatonin could be an

ideal LD adjuvant in PD therapy [77]. In this sense, our data also showed that animals

receiving LD/Mel treatment had preservation of dendritic spines and more dopaminergic

neurons on the contralateral SNc, so it is feasible to think that maintaining the nigrostriatal

connections would allow the animals to make optimal adjustments in their movements to

maintain the balance and move better over the beam.

4.9. Abnormal involuntary movements

As shown in Figures 7 and 8, untreated DA-depleted animals had small AIM scores compared

to those receiving LD treatment, which is consistent with results of other authors [71, 86]. Also,

animals receiving melatonin treatment showed similar behavior, corroborating these data with

those previously reported by our group [57]. These groups of animals are primarily character-

ized by having contralateral and orolingual AIMs (considered as resting tremor [71]). Previous

studies suggest that rat AIMs, regarding severity and topographical distribution, are related to

striatal dopaminergic denervation [71], and this can be explained by the somatotopic organi-

zation of this structure. According to this, the dorsolateral striatum controls jaw and limb

movements. Abnormal function of this region is correlated with the presence of orolingual

AIMs [87, 88]. Some studies have shown that the response to LD changes with the progression

of the disease. Deogaonkar and Subramanian [89] demonstrated that LD minimal dose pro-

duces dyskinesias in PD patients in advanced stages compared to patients in early stages,

suggesting that the LD therapeutic window is lost in advanced stages of the disease. The DA

fluctuations are closely related to the development of LIDs [90]. Furthermore, LD treatment

triggers LIDs via signaling pathways in striatonigral neurons, probably by D1 and D2 recep-

tors’ stimulation [91]. On the other hand, there are data which sustained that dopaminergic

depletion can generate changes in the postsynaptic neurons, which involve modifications in

the neuronal morphology and striatal dendritic spines loss, which would result in a decrease in

synaptic connections [92–97].
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On the other hand, 6-OHDA + LD/Mel animals displayed low AIM scores compared to those

receiving exclusively LD, showing that somehow melatonin has some influence on LIDs. It is

important to stand out that there are no studies on the effect of LD/Mel coadministration on

LIDs in PD. However, several authors suggest that melatonin may have a beneficial effect on

LIDs because of its antioxidant properties [27, 98] and its ability to stimulate antioxidant

enzymes [99]. Rocchitta et al. [100] reported that LD/Mel coadministration inhibits LD autox-

idation, thereby increasing striatal DA bioavailability, and then, melatonin appears to be the

most suitable antioxidant drug to be used as LD adjuvant to avoid LD and DA nonenzymatic

autoxidation. According to these studies, it is feasible to think that with LD/Mel coadmini-

stration the DA concentration fluctuations are avoided, thus reducing LIDs.

4.10. TH immunocytochemistry

As expected, MFB 6-OHDA lesion drastically reduced the number of TH-immunopositive neu-

rons in the SNc, coinciding with previous works in PD patients [101] and 6-OHDA model [80,

102–105]. Thus, it is suggested that this model simulates PD advanced stages. The precise 6-

OHDA cytotoxicity molecular mechanism remains under discussion. Several hypotheses have

been proposed. One of which is related to free radical formation, in addition to decreasing

mitochondrial complex I activity with the consequent ATP decrease and cell death [106], which

has also been reported in PD postmortem studies [107]. Moreover, LD-treated animals showed a

dramatic loss of TH-immunopositive cells and both, the ipsilateral and contralateral SNc, similar

to untreated 6-OHDA-lesioned rats, features are also reported by Smith et al. [108] and by our

group [57]. In vivo and in vitro studies confirm that LD-treatment decreases TH-immunopositive

cells; these results suggest that LD induces cell death due primarily to the ROS generation [12, 25,

27], which may increase oxidative stress in the nigrostriatal pathway [109, 110]. In addition,

previous studies in our laboratory showed that hemiparkinsonian LD-treated animals displayed

increased levels of lipid peroxidation, which is the principal oxidative stress characteristic [57].

Melatonin treatment favored SNc dopaminergic neuron preservation compared to untreated

rats, consistent with previous studies [57, 85]. It is proposed that melatonin protection may be

by direct antioxidant action [57, 111, 112] or by indirect stimulating antioxidant enzymes [112,

113]. LD/Mel-treated animals had lower SNc TH-immunopositive cell death compared to the

other groups, although no significant differences; so, it is feasible to think that this small

percentage of cells could be involved in improving motor tests and decreased dyskinesia.

Surprisingly, on the contralateral SNc, the animals showed dopaminergic neurons increase,

probably trying to compensate ipsilateral SNc damage. In this regard, it has been reported that

DA is essential for neurogenesis, which was evidenced in DA-depleted animals [114, 115], and

this effect was reversed when given LD [116]. Apparently, the neurogenic effect is modulated

by activation of DA receptors [115].

4.11. Dendritic spines

Our results show that dopaminergic denervation produced by 6-OHDA results in loss of

striatal neuron dendritic spines. PD patients’ postmortem studies have shown 30% decrease,

and this loss can reach 50% in dendritic spine density, and the reduction in the size of dendritic
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trees [92, 117]. Similarly, MPTP nonhuman primates and 6-OHDA-lesioned rodents show

drastic loss of these structures [7, 57], suggesting nigrostriatal system importance in morpho-

logical regulation and plasticity of dendritic spines in the striatum [104]. We have observed

that LD chronic treatment does not restore striatal dendritic spine density, which is consistent

with previous PD postmortem studies that show that the loss of dendritic spines was present

even though all patients were treated with LD for several years [117]. Deutch et al. [92] propose

that LD may be ineffective in PD advanced stages, probably due to dendritic spine loss. In

rodents with different models of PD LD-treated, the number of dendritic spines [7, 77, 92] is

not restored. We also observed that melatonin treatment helped the conservation of dendritic

spines. In this regard, it is reported that melatonin prevents cytoskeletal damage by reducing

oxidative stress [118].

LD/Mel coadministration significantly restored the dendritic spine density of both ipsilateral

and contralateral striatum. Recent studies show that the presence of dopaminergic neurons

enhances dendritic spine formation in medium spiny neurons in culture. So it is possible that

dopaminergic neurons have neurotrophic effect [119]. In this context, it is feasible to think that

as LD/Mel coadministration increases the number of dopaminergic neurons in contralateral

SNc and exerts a neurotrophic effect, promoting the formation of new dendritic spines. Our

results are also consistent with those described by Naskar et al. [77], who show that MPTP-

exposed rodents and LD/Mel-treated for 2 days have restored the morphology and density of

dendritic spines of medium-sized spiny neurons, suggesting that melatonin primarily regu-

lates this effect due to its characteristics of reducing excessive calcium flow.

4.12. W/OVand OVX comparison

In our study, we show that W/OV rats, which were 6-OHDA-lesioned and received different

treatments, have greater neuroprotection compared to OVX females, confirming the estrogen

protection, besides the neurodegeneration delay difference, suggesting beneficial estrogen

effect in the development and progression of the disease. It has been observed that estrogen has

a neuroprotective effect on the nigrostriatal system. Recent studies suggest that PD women

tend to have a delay in the appearance of certain motor symptoms compared with men

[33, 120]. Furthermore, PD postmenopausal women treated with estrogen showed improve-

ment in their motor performance [121, 122], suggesting estrogen symptomatic role [123]. As

our results indicate, 6-OHDA-untreated W/OV and OVX rats showed no significant difference

from both ipsilateral and contralateral SNc dopaminergic cells. This could be because the

neurotoxin is very aggressive, which somehow does not allow the cell survival. It is also

proposed that estrogens protect dopaminergic neurons surviving for a short time, but subse-

quently the cells could die as a result of neurotoxin action [124]. Previous studies showed the

effect of replacement estrogen therapy in physiological doses in OVX rats after 6-OHDA

injection in the nigrostriatal pathway, reporting that estrogen treatment showed no effect on

survival of TH-immunopositive cells. Nonetheless, estrogen attenuated the striaral DA loss;

the authors suggest that estrogens can somehow promote an adaptive DA mechanism synthe-

sis, release, and metabolism in the surviving cells, so probably the females may be able to

resist the onset and progression of neurodegenerative lesions compared with males [125].
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Interestingly, our results also show that there is a difference between the estrogen condition

regarding dyskinesias and motor behavior, noting that W/OV 6-OHDA + LD have motor

impairment delayed but are more likely to develop dyskinesias compared to OVX 6-OHDA +

LD, which is consistent with previous studies, which shows that there are sex differences in LD

treatment, showing that women performed better in the UPDRS test (unified Parkinson’s

disease Rating Scale) and presented longer “on”-LD state compared to men. However, women

had a higher prevalence to develop dyskinesias. It is still uncertain why women are more

prone than men to develop dyskinesias, but it is suggested that estrogen may be the basis of

this susceptibility [123, 126, 127]. One possible explanation for such proneness is the fact that

humans and rats have similar expression characteristics of the catechol-o-methyl transferase

(COMT) [128], which is a catecholamine degrading enzyme, and that women have 20–30%

decrease in COMT activity compared to men [129]. In this regard, it has been demonstrated

that estrogen can decrease the regulation of COMT gene [130]. Therefore, if estrogens decline,

the COMT system could have a pharmacological potential to increase the LD striatal availabil-

ity and prolong LD-“on” state as well as dyskinesias [130].

On the other hand, W/OVmelatonin-treated rats recover faster in behavioral tests compared to

OVX rats, and in the last month of treatment, all animals had similar control values; cytolog-

ically W/OV rats exhibited contralateral SNc dopaminergic cell protection and dendritic spine

recovery of both ipsilateral and contralateral striatum. Studies of melatonin and estrogen

therapy in neurodegenerative models are few, so this work provides new knowledge about it.

In a study of W/OV rats that were subjected to a stroke model and receiving melatonin, it was

observed that estrogen and melatonin exhibit synergistic effect to decrease the levels of lipid

peroxidation, increasing the activity of free radical scavenger and the number of surviving

neurons in the cortex, and improve sensorimotor behaviors [131]. According to these studies,

we can expect that after 6-OHDA injection melatonin treatment and estrogen presence in W/

OV rats work together to activate different signaling pathways to reduce oxidative stress and

thus protect the dopaminergic neurons (at least the contralateral SNc) and the number of

striatal dendritic spines and thus improve motor capacity; this could be a possible explanation

of why W/OV rats tend to recover faster in motor performance compared to OVX rats.

Interestingly, animals receiving LD/Mel treatment showed behavioral recovery from the start

of the treatment, increase in the number of dopaminergic neurons in the contralateral SNc and

striatal ipsi and contralateral dendritic spine protection; these results were estrogen indepen-

dent. So, we suggest that LD/Mel cotreatment could improve the LD efficacy by increasing

striatal DA levels [77]. Also, it has been suggested that these drugs could act synergistically to

exert a modulatory role in nigrostriatal transmission pathway, which may be responsible for

many of the beneficial effects, such as biochemical alterations, regulation of dendritic spines

and cell survival [77, 131], and motor disorders such as dyskinesias.

Finally, it is important to mention that estrogens act as neuroprotectors in neurodegenerative

diseases such as PD and Alzheimer disease, improving women quality of life [126]. But it

should be noted that the use of estrogen also involves risks. Women who take hormone

replacement treatment are more likely to suffer cancer [132] if there is a family history of these

diseases, so careful and controlled administration of estrogens is required.
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5. Conclusion

According to our results, we can conclude that regardless of the estrogen situation, LD/Mel

coadministrationwas themost effective in reducingmotor alterations. So, it is feasible to think that

the combination of these drugs exerts amodulatory role in the nigrostriatal transmission involving

motor activity and dyskinesias by protecting dendritic spines and dopaminergic neurons. There-

fore, we consider that the LD/Mel coadministrationmay be a possible candidate for PD treatment.

Furthermore, our data show that W/OV rats have a better response to LD or melatonin

treatment, being less motor and cytological damage than in OVX rats, suggesting that estro-

gens have a beneficial effect on the development and progression of the disease. Those facts

could lead us to think about the importance of taking into consideration the estrogens-based

therapies for PD as a possible adjunct in women. So it is suggested to study the effect that

could have estrogen in males in subsequent studies.

The study of estrogens mechanisms of action in the basal ganglia and their role in movement

disorders will become stronger. It is recognized that estrogenmay have neuroprotective effects in

many neurodegenerative processes, including PD. The neurodegenerative diseases field is in

great need of therapies that can prevent or slow the disease progression. Thus, the introduction

ofMelatonin combinedwith LD treatment is a promising therapeutic strategy. So, we suggest the

use of such drug combination plus the estrogen replacement therapy as useful PD treatments.
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