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Abstract

Electroencephalogram or electroencephalography (EEG) has been widely used in medi-
cal fields and recently in cognitive science and brain-computer interface (BCI) research. 
To distinguish metal tasks such as reading, calculation, motor imagery, etc., it is generally 
to extract features of EEG signals by dimensionality reduction methods such as principle 
component analysis (PCA), linear determinant analysis (LDA), common spatial pattern 
(CSP), and so on for classifiers, for example, k-nearest neighbor method (kNN), kernel 
support vector machine (SVM), and artificial neural networks (ANN). In this chapter, a 
novel approach of feature extraction of EEG signals with receiver operating characteristic 
(ROC) analysis is introduced.

Keywords: brain-computer interface (BCI), electroencephalogram or 
electroencephalography (EEG), artificial neural networks (ANN), support vector 
machine (SVM), receiver operating characteristic (ROC), Fourier transformation (FT)

1. Introduction

The electrical activity of the brain can be measured by electrodes placed on the scalp and the 
observed signal is called electroencephalogram or electroencephalography (EEG). EEG is also 
called “brain wave” and it has been widely used in clinical diagnose of brain disease since the 
early time of last century [1].

Different mental tasks yield EEG signals in different patterns in the different observation val-
ues. For example, in the case of human brain, the resting state (relax state), the most prominent 
power spectra are 8–15 Hz EEG signals (so-called “alpha-wave”) observed in posterior sites, 
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meanwhile, 16–31 Hz signals (beta-wave) appears in the mental tasks such as active thinking, 
high alert, anxious, etc. Gamma-wave, EEG with higher than 32 Hz, displays during cross-modal 
sensory processing such as combining the stimuli of visual and auditory. On the other hand, 
the location of electrodes on scalp records different EEG signals spatially, and they are called 
EEG signals in different “channels”. The allocation of electrodes is usually with the international 
10–20 system. The name of 10–20 system comes from those adjacent electrodes that are allocated 
in distances of 10 or 20% of the total front-back or right-left of skull. More channels, more spatial 
features, may result in higher recognition rate of mental tasks. On the other hand, few channels 
give lower computational cost in the EEG classification systems.

In last decades, EEG has been utilized in the field of the brain-computer interface (BCI) for its 
ability of the mental task recognition  [2–6]. Mental tasks indicate the state of activity of the 
brain with some specific tasks. For example, imagining writing a letter, counting, calculating, 
or raising a hand, a leg, etc. There are many classifiers for EEG recognition that have been 
proposed such as linear discriminant analysis (LDA), support vector machine (SVM), artificial 
neural networks (ANN), fuzzy inference systems, Bayesian graphical network (BGN), and so 
on. However, for the reasons of the complex nature of EEG signals, for example, noise and 
outliers, nonstationarity, high dimensionality, individual difference, etc., the pattern recogni-
tion (classification) problem of EEG signals is still a high hurdle for BCI realization.

To normalize the raw EEG signals, Nakayama and Inagaki proposed to reduce the number 
of the time series data of power spectrum of frequency given by fast Fourier transformation 
(FFT) with average values and normalize the FFT by a nonlinear normalization function [4]. 
To extract discriminant features of EEG signals for mental task recognition, Li and Zhang pro-

posed a regularized tensor discriminative feature space, which includes multichannels, power 
spectrum of frequency, and those data in time series: channel × frequency × time [5]. Obayashi 
et al. applied Nakayama and Inagaki’s pre-processing method to their practical EEG recogni-
tion system with single channel information in [6]. In [7], Jrad and Congedo used spatially 
weighted SVM (swSVM) to build a spatial filter for each temple feature. In the previous works 
of authors [8], discriminant temporal frequency data were utilized to reduce the flattening of 
different EEG patterns adopting the pre-processing method of [4], temporal spatial frequency 
concept, and average moving processing of [7] were adopted to obtain higher rate of mental 
task recognition.

Recently, we proposed to find the discriminant feature of temporal frequency by receiver 
operating characteristic (ROC) analysis in [9]. The discriminant feature of temporal frequency 
indicates the power spectra of FFT in an interval of time series of EEG data, which are higher 
relative to a mental task comparing with other intervals (windows). ROC analysis has been 
widely utilized in medical & diagnostic science [10, 11], microarray classification [12], and 

recently in EEG classification [13]. It is a stochastic criterion to classify two kinds of probabil-
ity distributions and the details will be described in the next section.

In this chapter, discriminative feature extraction methods of EEG signals, which play an 
important role for classifiers, are discussed. Specially, an advanced temporal–spatial spectrum 
feature extraction method is introduced [9].
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2. Discriminant feature extraction using ROC analysis

2.1. ROC analysis

Receiver operating characteristic (ROC) analysis was first used in radar signal detection in 1940s. 
The classification results of data in two kinds of distributions can be divided into four catego-

ries: true positive (TP), false positive (FP), true negative (TN), and false negative (FN). A curve is 
plotted by the rate of TP against the rate of FP and it can be a measure of classification accuracy.

Now, let the TP of class A be in the shadow area α, and FP in area 1−β, where β is the TP of class 
B (See Figure 1). When the dividing line between A and B is slid along x axis, a ROC curve is 
plotted indexing the divisibility of the two probability density functions (See Figure 2). If two 
distributions completely overlapped, α = 1−β.

In Figure 2, the area below the ROC curve is called “area under the curve” (AUC). This value 
takes from 0.0 to 1.0, and it is an indicator of the divisibility of the two distributions. If the 
value of AUC becomes 0.5, two distributions are completely overlapped. Conversely, when the 
value of AUC reaches 1.0 (or 0.0), it means that the two distributions are completely separated.

In the practice procedure of ROC analysis, the area of α, that is, the rate of TP, and 1−β, the rate 

of TN, can be calculated by the number of training samples, which are labeled data belonging 
to different classes.

2.2. Discriminant feature extraction of EEG signals

In [8], power spectrums of an interval of frequencies given by EEG signals FFT, which has a dis-

tinguish value to neighbors were used as discriminant features as the input vectors of classifiers. 
The flow chart of this method is depicted in Figure 3. Algorithm I shows the method in detail.

Algorithm I.

Step 1. Dividing (windowing) the original EEG signals into several intervals;

Step 2. Executing discrete Fourier transformation (DFT) in different intervals and normal-
izing the transformation results;

Step 3. Calculating the average power spectrum of banded (limited) frequencies in each phases;

Step 4. Finding a special (feature) interval, in which average power spectrum is the most 
different one from its neighborhoods;

Step 5. The power spectrum of FFT in the windowed frequencies and their average values 
are used as the feature data for classifiers.

A sample of the first processing (Step 1) is shown in Figure 4. In Figure 4, an EEG signal, 

which is a time series data (the potential of an electrode) of one channel, is divided into five 
intervals. DFT is executed in each interval at Step 2, and as a sample, the result of the second 
intervals (at time 30–60) is shown in Figure 5.

Mental Task Recognition by EEG Signals: A Novel Approach with ROC Analysis
http://dx.doi.org/10.5772/intechopen.71743

67



Figure 2. AUC of ROC curve.

EEG 

Signals 

Windowing 

Averaging 

DFT 

Finding Feature Window 

Classifiers 

Recognized 

mental tasks 

Figure 3. Flow chart of EEG signal recognition in [8].

Figure 1. Overlapping of the probabilities of two classes of data.
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The normalization of DFT results is given by a nonlinear function [4].

  x (n)  =   
log  (x (n)  − max  (x (n) )  + 1) 

  _______________________   
log  (max  (x (n) )  − min  (x (n) )  + 1) 

    (1)

where x(n) is the original DFT power spectrum of frequency n.

Figure 4. A sample of Step 1 processing: dividing EEG signals into several intervals.

Figure 5. A sample of Step 2 processing: DFT and normalizing results of an interval of EEG time series data.
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This nonlinear normalization reduces the vibration of time series of DFT results, avoiding the 
overfitting when classifiers are designed.

A frequency interval, which has distinguished power spectra for a certain mental task is cho-

sen by Eq. (2).

   arg max  
p
    L (p)  =   ∑ 
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where p = 1, 2, …, P is the number of intervals, F
ph

 is the power spectrum on the frequency, 
h = h
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 h

low + 1
, …, h

up
 is the frequency, h

low
 and h

up
 are bands of feature frequencies of mental 

tasks and they were 4 and 45 Hz, respectively in our experiments.

For ROC analysis, it gives a measure of the difference between two probability distribu-

tions, it is validly used to find the discriminant features for EEG signal classification. In [13], 

Nguyen et al. utilized the AUC of ROC curve to select the elite wavelet coefficients, and in [9], 

we adopted an algorithm that using high AUC values to select metal task-related frequencies 
of EEG signals in different channels, respectively, and using the power spectrum of these 
frequencies as discriminant features for various classifiers such as SVM, ANN [including 
multi-layer perceptron (MLP), and deep neural networks (DNN)], k-nearest neighbor, deci-
sion tree (DT), and so on. The discriminant feature extraction method using ROC analysis is 
given by Algorithm II.

Algorithm II.

Let the input signals be x
kc, m, n (c = 1 or 2, k = 1, 2, …, K), where k indicates the kth EEG signal 

of a set of EEG data, and c indicates the class of mental task, m indicates the channel number, 

and n is the time of signal.

Step 1. Perform FFT to all the EEG signals x
kc, m, n and let the result be power spectrum E

m, p (p = 1, 

2, …, P) corresponding to frequency F
kc, m, p,

 where p indicates the order number of frequencies.

Step 2. Obtain P
k1, m, p and P

k2, m, p, which are two probability density functions of F
kc, m, pat p 

frequency, where class c = 1 and 2 of K signals of channel m.

Step 3. Calculate the ROC curve and its AUC A
m, pof P

k1, m, p and P
k2, m, p.

Step 4. Repeat Step 2 and Step 3 on all channels, a set AUCm, n of frequency p in channel m 
is obtained.

Step 5. Find P points of frequencies, in which A
m, p is high.

Step 6. Power spectrum E
m, p(p = 1, 2, …, P) of the unknown EEG signal are used as input 

feature vector of a classifier.

The main difference between Algorithm I and II is that the power spectra in a special interval 
of frequencies, which is mostly related to an event of brain activity, are chosen in the former, 
meanwhile the power spectra of special frequencies chosen by high AUC of ROC are chosen 
as discriminant features in the later algorithm. The flow chart of EEG signal classification 
using ROC analysis is depicted in Figure 6.
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Figures 7–9 showed a sample of the processing. In Figure 7, a raw EEG signal and its FFT 
result are shown. Note that the number of horizontal axis indicates the order of frequencies, 
and the value of vertical axis is the power spectrum. In Figure 8, the distribution of the power 

Figure 7. A raw EEG signal (left) and its FFT results (right).
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Figure 6. Flow chart of the EEG signal classification using ROC analysis.
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Figure 8. Calculation of the power spectra distribution (histogram) of each frequency of two classes of EEG signals. 
Frequency 200 (series number) is illustrated as a sample here.

spectrum of each frequency is calculated using the labeled samples. For example, there are 
K samples including N samples of class A and K−N samples of class B as shown in Figure 8. 
AUC of the power spectra on each frequency is shown in Figure 9. Additionally, frequencies 
with high AUC extracted by a threshold line are used as criteria of discriminant feature selec-

tion. For example, in the case of three input dimensions for a classifier, the input vector is the 
power spectra with high AUC of frequencies as shown in Table 1.
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3. Experiments

To compare the performance of different feature extract methods for EEG signal classification, 
experiments with two kinds of EEG data were performed [9]. One was a benchmark data set 
given by Brain-Computer Interfaces Laboratory, Colorado State University [14, 15], and another 

was from BCI competition II [16]. Classifiers used in the comparison experiments for different 
feature extraction methods were kernel SVM, MLP, kNN, deep neural network (DNN), and 
DT, in which source coded are in a software package R [17] as shown in Table 2.

The evaluation of the performance of different feature extraction methods uses the accuracy 
of classification, which is given by Eq. (3).

  Accuracy =   
TP + TN
 ____________  

TP + TN + FP + FN
    (3)

AUC 

Threshold of AUC 

Figure 9. AUC of the power spectra on each frequency of two classes of EEG signals.

Ordered AUC Number of freq. Power spectrum

(input of classifiers)

0.695 896 1545.186

0.691 158 10.093

0.688 726 9.535

Table 1. A sample of discriminant features extracted by ROC analysis.
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4. Benchmark data and experiment results

Open access free website of BCI laboratory of Colorado State University [14, 15] provides 
Benchmark EEG data with five kinds of mental tasks as shown in Table 3. The data were 
measured by six channels with EEG sensors (See Figure 10) and one channel data of an EOG 
sensor (to measure the movement of an eye). The sampling rate is 250 Hz, and EEG data are 
recorded in 10 seconds, that is, 2500 time series data obtained by one trial. EEG signals of each 
mental task are recorded in 10 trials of five subjects. For the ROC analysis classifies two classes 
data, “Baseline” (relaxing state) and “Multiplication” (Multiplication calculation mentally) 
data, were used in our experiment. Additionally, training samples and testing samples used 
EEG data of the same subject, which were chosen randomly with a ratio of 15:5.

The classification accuracies of Algorithm I [8], and Algorithm II [9] by different classifiers are 
shown in Table 4. In Table 4, it is also shown that different dimensionalities of the input vector 
influenced the classification accuracy. Feature extraction method using Algorithm II. (FFT and 
ROC analysis) had a prior performance especially in the case of 140-dimension input vector. 
The highest classification accuracy 97.5% was given by kernel SVM classifier, and DNN stood 
the second position with 95.37% using Algorithm II feature extraction method, respectively.

4.1. BCI competition II data and experiment results

BCI competition II data [16] were also used in the performance comparison of different feature 
extraction methods. There are two-class data named “Ia” and “Ib,” which are EEG data obtained 

Name Function

ROCR ROC analysis/AUC calculation

Kernlab Support vector machine (kernel SVM)

nnet Neural network (MLP)

class k-nearest neighbor (kNN)

h2o(+JavaVM) deep neural network (DNN)

rpart decision tree (DT)

Table 2. Software R [17] and its function used in the experiment.

Mental task Contents

Baseline Relaxing as much as possible

Multiplication Calculating multiplication mentally.

Letter-composing Considering the contents of a letter

Rotation Imagining rotation of a 3-D object

Counting Imagining writing a number in order

Table 3. Mental tasks in a benchmark database [14, 15].
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by a healthy subject and an amyotrophic lateral sclerosis (ALS) patient. In each data set, two 
kinds of mental tasks were required, respectively. One was to move a cursor up (class A) and 
another was to move the cursor down (class B). Details of these EEG data descriptions are shown 
in Table 5. Additionally, training samples and testing samples were chosen randomly with a 
ratio of 240:28 for Ia and 180:20 for Ib.

The accuracies of classification of Ia and Ib by different feature extraction methods and classifiers 
are shown in Tables 6 and 7, respectively. Algorithm II (FFT and ROC analysis) showed the 
highest classifications for all classifiers. The highest accuracy for data Ia was 91.23%, given by 

Figure 10. Positions of EEG sensors with six channels [8].

Classifier Feature extraction method

Algorithm I

(Temporal FFT)
Algorithm II

(FFT and ROC analysis)

140-D 1120-D 140-D 1120-D

Kernel SVM 59.58 70 97.5 75

MLP 49.58 38.33 55.0 52.92

k-Nearest neighbor 55.92 66.67 73.33 66.03

Deep neural network 61.67 71.67 95.37 94.58

Decision tree 34.5 35.5 50.0 50.0

Unit: %.
The bold values indicate the best recognition result between different feature extraction algorithms for one classifier in 
the case of benchmark data.

Table 4. Classification results of benchmark data [14, 15].

Data set Mental tasks Trials Channels Samples/Ch. Sampling freq.

Ia 2 135/133 6 896 256

Ib 2 100/100 7 1152 256

Table 5. Description of EEG data of BCI competition II [16].
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kernel SVM using 1120 dimensions of input vector, which were discriminant features extracted 
by Algorithm II, and the same methods yielded the highest classification rate 77.65% for data 
Ib. These accuracies are higher than the best classification rates 90.10 and 56.67%, which are 
the results of a state-of-the-art method of EEG signal recognition [13]. The future work of the 
improvement of Algorithm II is to find the optimal dimensionality of the discriminant feature 
space. It is hard to consider higher dimensionality results higher classification accuracy as shown 
in these experiments. It was better to choose 140-D in the case of benchmark data (Table 4), and 

oppositely, 1120-D was more suitable for BCI competition II data (Tables 6 and 7).

5. Conclusion

To recognize the mental tasks by EEG signals, two kinds of temporal-spatial frequency–based 
feature extraction methods were introduced in this chapter. In Algorithm I, event-related 

Classifier Feature extraction method

Algorithm I

(Temporal FFT)
Algorithm II

(FFT and ROC analysis)

140-D 1120-D 140-D 1120-D

Kernel SVM 61.10 58.98 87.04 91.23

MLP 49.09 49.95 68.06 70.86

k-Nearest neighbor 50.55 55.46 79.17 55.76

Deep neural network 57.72 62.08 83.48 86.10

Decision tree 41.79 43.15 67.5 73.22

Unit: %.
The bold values indicate the best recognition result between different feature extraction algorithms for one classifier 
in the case of data Ia.

Table 6. Classification results of BCI competition II data Ia [16].

Classifier Feature extraction method

Algorithm I

(Temporal FFT)
Algorithm II

(FFT and ROC analysis)

140-D 1120-D 140-D 1120-D

Kernel SVM 52.99 53.91 76.16 77.65

MLP 46.40 53.36 58.15 49.09

k-Nearest neighbor 45.90 48.25 60.04 57.81

Deep neural network 43.90 49.25 69.93 75.25

Decision tree 28.43 47.99 45.44 55.55

Unit: %.
The bold values indicate the best recognition result between different feature extraction algorithms for one classifier in 
the case of data Ib.

Table 7. Classification results of BCI competition II data Ib [16].
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intervals of the raw EEG time series data (temporal information) was extracted at first, and 
the averaged power spectra of frequencies given by FFT within the interval (frequency infor-

mation) were used as the discriminant features. In Algorithm II, event-related frequencies of 
EEG’s FFT were extracted by ROC analysis with high AUCs. The input space for classifiers 
was composed by all features extracted by two algorithms from multiple channels, so the 
spatial information was also included in these feature extraction methods.

Pattern recognition of EEG signals has been studied for decades, and it plays an important 
role in the field of human robot interaction (HRI). So, we expect that the feature extraction 
methods introduced in this chapter can be adopted in the real HRI systems in the near future.
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