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1. Introduction    

For more than twenty-five years, the bionics community (and particularly the VLSI 
engineering community) has been performing extensive research to understand, model and 
design in silicon the biological auditory system and specifically the inner ear or cochlea. The 
aim of this on-going effort is not only towards building the ultimate artificial speech 
processor or implant, but also to develop systems that can contribute towards a deeper 
understanding of the underlying engineering strategies that nature chose to espouse. For 
these reasons, certain parts of the VLSI engineering community believe that trying to mimic 
certain biological operations will, in principle, yield systems that are somewhat closer to 
nature’s power-efficient computational ability. 
However, engineers must identify what they should and what they should not directly 
replicate in an artificial system inspired from biology. As for example, it does not make sense 
to create commercial aircraft wings to flap like those of birds (even though unmanned 
flapping-wing aircrafts are currently being developed – check NASA’s flapping solar aircraft) 
it is equally meaningful to argue that not all operations of the cochlea can or should be 
replicated in silicon in an exact manner. Abstractive operational or architectural simplifications 
dictated by logic and the available technology have been crucial for the successful 
implementation of useful hearing-type machines. Moreover, the biological cochlea is a three-
dimensional electro-hydro-mechanical system, whereas most electronic systems are one-
dimensional systems. Based on these thoughts, it would be wise to try and clarify three terms 
that are commonly used in the (bio-) engineering literature. Namely, these are: 

• Neuromorphic: the system level architecture is designed in such a way in order to 
replicate ‘exact’ basic anatomical identified operations which embody several key 
features encountered in the biological system. The term ‘neuromorphic’ was introduced 
by Carver Mead in (Mead, 1989;Mead, 1990) . 

• Bio-inspired: the design and/or operation are based on (inspired from) the engineering 
principles underlying its biological counterpart.  

• Biomimetic: the behaviour/operation/response resembles the one directly observed 
from the biological system, applying completely, partially or not at all the engineering 
principles encountered in the biological system. 

It should be therefore evident that a neuromorphic design is also bio-inspired and 
biomimetic, whereas a biomimetic (or bio-inspired) design is not necessarily neuromorphic. 
We shall provide tangible examples on this fact as the chapter unfolds. 
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Since the late seventies, there we numerous attempts from several research laboratories to 
capture the main attributes of the biological cochlea in a way that are conveniently (i.e. 
computationally efficiently) replicated in silicon. This chapter attempts to present a rather 
detailed historical retrospective of nearly twenty-seven years of analogue VLSI cochlea 
development.  The chapter is organized in ascending chronological in order to unravel the 
chain of events in order to appreciate how the research direction changed through time. If 
the reader wishes to skip all the details, s/he can refer to Table 1 and Fig. 32 at the end 
which summarizes the performances of the most important efforts. 

2. The early years: 1982 - 1992 

1982: The first to sow the seeds for the coming generations of VLSI engineers was Richard F. 
Lyon who in 1982, while in Fairchild Artificial Intelligence Research Laboratory, proposed a 
VLSI-compatible computational model of filtering, detection and compression in the cochlea 
(Lyon, 1982), even though it seems that he had conceived the idea earlier – check one of his 
unpublished efforts circa 1978 (Lyon, 1978). His work made a clear link to the early Wegel 
and Lane (Wegel and Lane, 1924) and Fletcher (Fletcher, 1930) model of micromechanics 
(the one-dimensional passive transmission line model) and to the more recent model of non-
linear differential equations by Kim and his associates (Kim et al.,  1973). In this pioneering 
work, the proposed model (which was later given the name: ‘The Lyon’s Cochlear Model’ 
by Malcolm Slaney (Slaney, 1988)) cleanly separated the effects of mechanical filtering in the 
BM into time-invariant linear filtering based on a simple cascade/parallel filterbank 
network of second-order sections (or biquad filters). Lyon apart from BM filtering also 
discussed that detection and compression should be incorporated in the final model by 
means of half-wave rectification and a coupled nonlinear AGC network. Lyon’s cochlea 
model can be described briefly as follows:  
Wave propagation in distributed non-uniform media like the BM can – in principle – be 
modelled by a cascade of filters. Such a cascade will give rise to overall transfer functions 
with sharp roll-off slopes corresponding to higher-order structures. This kind of BM 
modelling relies upon the approximation that for a short BM section Δx, the parameters 
change only slightly and thus it behaves just as a short section would in a uniform medium. 
In other words, the non-uniform medium can be discretised with each portion assumed to be locally 
uniform. Each of these uniform portions can be modelled by a filtering stage which alters the 
magnitude and phase of excitation. The parameters of each successive filter (corresponding 
to a different Δx segment) will scale accordingly so that the collective response of the whole 
cascaded structure approximates the behaviour of the non-uniform medium.  
In this first attempt, each BM segment was approximated as a lowpass notch (LPN) transfer 
function with the resonance frequencies, that determine the notch locations, changing 
approximately exponentially (modelling how the properties of the BM change lengthwise) 
from 20kHz at the input end (base) to 50Hz at the output end (apex). The cascaded LPN 
filters conspired to create a collection of lowpass filters (LPF) with very steep high-
frequency roll-off slopes. A resonator transfer function, a simple bandpass filter (BPF) was 
added at the output of each LPN output (tap) to convert BM displacement to BM velocity. 
The overall effect was a BM cochlea ‘tuning curve’ which qualitatively had an asymmetric 
BP shape much like the one Rhode observed in the early 70s. 
This cascade/parallel filterbank architecture constitutes part of a single-input, multi-output 
system with a very useful property: the sum of the orders of the transfer functions from the 
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input to each output (tap) greatly exceeds the sum of the orders of the component sections, 
thus achieving an economy of computation by using the same low-order section in many 
high-order transfer functions. The filter-cascade also enforces uni-directionality of energy 
(not allowing the introduction of reflections which could lead to instability) and achieves a 
high-gain pseudo-resonance by coupling the individual low-gain stages forming the 
cascade. A block diagram of the cascade/parallel architecture is shown in Fig. 1, whereas 
Fig. 2 shows the frequency responses of its constituent transfer functions. 
 

 

Fig. 1. Block diagram of the cascade/parallel filterbank for modelling travelling wave 
propagation in the BM; adapted from Lyon (Lyon, 1982). 

 

 

Fig. 2. Indicative transfer functions of the LPN, resonator and their combined response 
resembling the one obtained from a particular output tap. 

1988: Even though Lyon’s 1982 paper provided a very useful insight on how BM wave 
propagation could be modelled using basic second-order building blocks, his proposed 
AGC scheme, while carefully thought, seemed quite underdeveloped regarding a real-time 
neuromorphic circuit implementation. In his 1982 effort, all the filters forming the BM where 
linear time-invariant transfer functions with the AGC providing a straight gain variation at the 
output of each tap. Moreover the gain control responded to the system’s measured output level and 
not the input level. This AGC scheme was quite different from what is really happening in 
reality since the peak gain of the cochlea filters changes dynamically with input level and 
not by providing  separate amplification after the filtering stage. It took almost six years for 
the big contribution to arise. In 1988 the very first CMOS cochlea was presented. The paper 
‘An Analog Electronic Cochlea’, co-authored with Carver Mead, won an IEEE best paper 
award and cemented the current views on how the basic functions of BM together with its 
vestibular apparatus can be modelled in silicon (Lyon and Mead, 1988a;Lyon and Mead, 
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1988b). Even though the cornerstone was placed in 1982, it was this work that presented 
Lyon’s modelling ideas in a more complete and unified way.  
In this particular design effort, each BM segment was modelled as a LP biquad (although the 
initial 1982 model used LPN biquads) with no resonator stages connected to each of the 
outputs. The LP biquad (generally easier to design in silicon than a transfer function 
containing zeros) was a natural choice for modelling BM filtering, because it is passive and 
linear for low frequencies and provides gain near the peak or centre frequency (CF) while 
attenuating high frequencies.  
Although, the frequency selective properties of the BM were modelled as a collection of 
linear, time-invariant transfer functions, sufficient evidence shows that the cochlea is highly 
nonlinear. The filtering architecture presented in this paper did not differ conceptually from 
the one presented in 1982. However, a scheme for a possible neuromorphic circuit 
implementation of the coupled AGC network was presented here for the first time. Lyon 
understood that for the purposes of speech analysis, the nonlinear behaviour of the cochlea 
could be adequately accounted for by lumping it in the compression mechanism of the 
AGC. Contrary to what he had shown in 1982, here he proposed that by adaptively varying the 
quality factors (Q) of the individual filter stages in response to the input intensity level, overall large 
gain variations could be achieved for the combined response. Since the whole cascade structure is 
essentially a very high-order system, the Q of the individual filters only need to vary by 
little in order to achieve large gain variations. In other words, the effect of the OHC-based 
AGC was modelled as a local fast-acting adaptation of the Q for each BM stage: as a signal 
of particular frequency and amplitude travels along the cascade, each filter section will 
adjust its Q value so that the collective pseudo-resonant transfer function tunes in 
accordance to the particular input excitation. In this way a large detected signal at one place 
could reduce the gain at nearby places and give rise to outstanding scale-invariant and 
matching properties along the cascade.  
Lyon suggested at the time, that the actual local feedback for each stage would involve a 
half-wave rectifier connected directly after the stage’s output tap (modelling the operation 
of the IHC, since IHC fire when they are bend in one direction and cease firing when they 
are bend in the other), a strength detector to extract the intensity of the input signal and 
some kind of a Q-decision circuit that will map that intensity level to an appropriate biasing 
value for setting the Q of the particular filter stage.  From all the above, it should be easy to 
see that Lyon’s model is neuromorphic since the BM structure and its associate transducers 
are directly mapped onto circuit blocks that emulate their behaviour and operation. 
The paper, apart from the thorough discussion on biological cochlea operation and 
mathematical modelling of wave propagation in non-uniform media, also discussed 
practical details on the circuit implementation of the biquad section. The LPF was designed 
in voltage-mode based on simple transconductance amplifiers (OTA) and capacitors (i.e. gm-
C) with all MOS devices operating in their weak inversion (WI) regime (see Fig. 3). Since in a 
WI MOS device a linear change in voltage corresponds to an exponential change in current, 
the exponential tapering of the cut-off frequencies was easily achieved by using a linear 
voltage gradient (through a resistive line) on the transistor gates. Finally, measured results 
from a 480-stage fabricated chip were provided showing LP constant-Q (i.e. the individual Q 
values were manually set off-chip) AC responses (see Fig. 4); no detailed discussion or 
results from an AGC or from an overall adaptively regulated system were provided. Even 
though Lyon proposed the architecture behind the aforementioned AGC scheme, he did not 
implement it, probably because of certain stability problems they were facing at the time. 
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Detailed results on power consumption, linearity, noise, dynamic range (DR) etc., were also 
not given. 
 

 

Fig. 3. The lowpass biquad circuit. The ωo and Q control inputs set the OTA bias currents for 
controlling the pole frequency and quality factor (and hence the peak gain) of the filter 
response. Amplifiers A1 and A2 have the same transconductance gm (left). The basic CMOS 
OTA circuit used for realizing amplifiers A1, A2 and A3 (right). The implemented relations 
are shown beneath each circuit. Parameters VT and n denote the thermal voltage and 
subthreshold slope parameter, respectively; adapted from Lyon (Lyon and Mead, 1988a). 
 

 

Fig. 4. Measured log-log frequency responses to two output taps (i.e. at particular BM 
locations) placed 120 stages apart. The stages Q were manually adjusted to 0.79; from Lyon 
(Lyon and Mead, 1988a). 

1989&1990: One year later in Japan, Tatsuya Hirahara published a conference paper on a 
computational nonlinear model with adaptive Q circuits (Hirahara and Komakine, 1989). 
Even though the word ‘circuits’ was used both in the title and numerous times in the text, 
no circuits or indications of how to build them were presented. The paper reported on 
system level ideas by showing the equations and basic transfer functions of the blocks 
comprising a 61-stage cascade. Hirahara’s main idea was based on Lyon’s cascade/parallel 
1982 model, but included a model on the actual decision block that specified which input 

www.intechopen.com



 Biomimetic Based Applications 

 

434 

amplitude corresponded to which Q for each filter stage of the cascade. In other words, it 
specified the law with which the filter stages adapted their gains at the presence of an input 
signal, essentially modelling the effect of OHC (see Fig. 5). To this author knowledge, this 
effort was one of the very first to elaborate on the Q-control law. 
 

 

Fig. 5. Block diagram of the adaptive Q function (middle), frequency response of a biquad 
LPF left) and input-output relationship of the Q decision block which calculates the LP Q 
values according to (input or output) signal strength. For a large control signal (ρmax), the Q 
value is minimum and the LP response becomes passive providing no gain at the peak 
frequency. On the other extreme (ρmin), the Q value is maximum and the LP response 
becomes selective providing maximum gain for frequencies near the peak frequency. The 
relationship between the two extremes is linear; adapted from Hirahara (Hirahara and 
Komakine, 1989). 

Around the same time John Lazzaro from Carver Mead’s group at Caltech, continued 
Lyon’s work and proposed silicon integrated circuits that modelled sensory transduction in 
the cochlea (Lazzaro and Mead, 1989a). His cochlea chip (based on filter-cascades and using 
the same gm-C filters as the ones Lyon had used earlier) was neuromorphic because once 
again it captured the structure as well as the function of the cochlea with all the proposed 
subcircuits having anatomical correlates. In this effort, the very first CMOS IHC circuit 
model was presented consisting of a hysteretic differentiator that performed both 
logarithmic compression (proposed by Mead in (Mead, 1989)) and half-wave rectification. 
The function of the hysteretic differentiator was to convert BM displacement to BM velocity 
while enhancing the zero-crossings of the input waveform, thereby emphasizing its phase 
information. The input of the IHC was attached at each BM section tap, whereas the output 
was connected to a spiral-ganglion-neuron (SGN) circuit (a slightly modified version of the 
neuron circuit also proposed by Mead in (Mead, 1989)) that converted the (uni-directional) 
half-wave rectified current waveform into fixed-width, fixed-height voltage pulses (see Fig. 
6). The average pulse rate and the temporal placement of each pulse reflected the average 
value and shape of the IHC half-wave rectified waveform, respectively. The pulsed output 
was then delayed by a time matched to the resonant frequency of its associated cochlea tap 
and consequently correlated (through a simple CMOS AND gate) with the initial pulsed 
waveform to create the final output. The resulting matched filter operation resembled in 
frequency a sharply tuned BP response with the maximum spike rate corresponding to the 
CF of the particular tap.  
Lazzaro inserted pure sinusoidal tones to his cochlea chip and measured the rate (in spikes 
per second) from the output of each silicon auditory nerve. His results were useful additions 
to Lyon’s initial BM frequency-response measurements because he managed to faithfully 
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reproduce a variety of physiological auditory nerve responses. His integrated circuit model 
captured many essential features of data representation in the auditory nerve, in real-time 
and over a 60dB of input DR. Indicative results are shown in Fig. 7. Nevertheless, as with 
Lyon’s effort, Lazzaro still did not implement the OHC circuits to obtain responses from an 
adaptively regulated system. 
 

 

Fig. 6. The IHC (left) and SGN circuit models (right). The input Vi from the BM filtering 
stage is a time-varying voltage waveform. The hysteretic differentiator, biased with a 
voltage Vy performs time-differentiation and logarithmic compression. The output from the 
hysteretic differentiator goes to a half-wave current rectifier circuit. The uni-directional 
output current from the IHC circuit goes to the SGN circuit which converts it into fixed-
width, fixed-height voltage pulses at the output Vo. The bias voltage Vp sets the pulse width 
with Vo pulsating between the supply and ground; adapted from Lazzaro (Lazzaro and 
Mead, 1989a).   
 

 

Fig. 7. (a) Measured chip plots showing the mean spike rate of a silicon auditory fibre as a 
function of pure tone frequency. (b) Physiological plots showing the number of neural 
discharges of an auditory fibre in the squirrel monkey in response to a 10sec pure tone. Tone 
amplitudes in dB are indicated on each plot; from Lazzaro (Lazzaro and Mead, 1989a). 

Lazzaro’s work did not stop there. He was also the first to apply his and Lyon’s circuit 
modelling ideas for sound source localization (based on the passive localization system of 
the barn owl) (Lazzaro and Mead, 1990;Lazzaro, 1991) and for pitch perception (Lazzaro 
and Mead, 1989b). With the aid of Fig. 8, the operation of Lazzaro’s localization system can 
be briefly described as follows: 
Lazzaro integrated two cochlea cascades on the same chip which represented the left and 
right ears of the barn owl. The chip received its inputs from two separate signal generators 

www.intechopen.com



 Biomimetic Based Applications 

 

436 

and the two 62-stage gm-C cascades performed frequency decomposition causing a 
maximum excitation at a tap corresponding to the frequency of the input waveforms. The 
previously presented IHC and SGN circuitry consequently rectified and converted the 
output signals at each tap into pulses. Each pulse from the SGN circuit propagated down a 
silicon axon circuit; the direction of propagation being from left-to-right from the SGN of the 
left cochlea and from right-to-left from the SGN of the right cochlea. Thus, when a sound 
appeared at both chip inputs, action potentials counter-propagated across the chip. Circuit-
wise, the axon was nothing more than a discrete delay line with the input being a fixed-
width, fixed-height pulse which travelled along its length, section by section, at a 
controllable velocity. At any point in time, only one section of the axon was firing. 
Correlator circuits laid in between each pair of antiparallel axons and at every discrete 
section that connected directly to both axons. The simultaneous appearance of pulses at both 
inputs of the correlator initiated a maximum output response. If only one input was present, 
the correlator generated no output. In this way, interaural time differences could map into a 
neural place code. The final section of the chip was a circuit that performed a winner-take-
all-function (a modified version of the circuit was used by Misha Mahowald and Tobi 
Delbrück in (Mahowald and Delbriick, 1989)), producing a new map of interaural time 
differences in which only one neuron had significant energy. The chip then multiplexed this 
final map on a single wire for display on an oscilloscope. 
 

 

Fig. 8. Floorplan of the silicon model for sound localization of the owl. The square blocks 
marked with a ‘Δ’ represent the discrete delay elements forming the silicon axons, whereas 
the square blocks marked ‘C’ in between every antiparallel axon are the correlators or 
coincidence detectors which take two inputs from the upper and lower axons; adapted from 
Lazzaro (Lazzaro and Mead, 1990). 
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Lazzaro’s contributions to the neuromorphic community were important because he managed to steer 
research towards a more application-specific direction. In the following years, quite a few 
researchers did significant work on the (re-)design and optimization of sound localization 
systems (using either neuromorphic or bio-inspired approaches) in an attempt to create 
artificial systems that could not only hear but also detect azimuthally or horizontally sound 
source locations. Applications were localization plays an important role include sound-
guided robots and automatic camera orientation in teleconference systems. 
1991: Two years later, an interesting paper was published by Lyon which addressed for the 
first time the key problems they were facing at Caltech with the first generations of cochlea 
chips (Lyon, 1991). Lyon understood that the inherent exponential behaviour of MOS transistors in 
WI led – in general – to nonlinear filter circuits in which the small-signal and large-signal behaviours 
could be quite different. He proposed that in order to overcome problems like poor DR, 
excessive noise (accumulating naturally in a long cascade) and instability, they would need 
to come up with the design of inherently compressive filter stages. Quoting Lyon: ‘Tests on 
early second-order filter stages, including a low-noise version based on the MOSIS low-
noise analogue BiCMOS process, revealed a problematic nonlinear effect related to the 
saturation of the tanh nonlinearity of the transconductance amplifiers. The filter stages 
ended up with more gain for large signals than for small signals (i.e. they were 
“expansive”), and the result was that a given periodic input could lead to a pair of distinct 
periodic attractors. In a cascade of such filter stages, when the input became large enough to 
kick any stage into its large-signal mode, the final result was a chaotic output waveform 
resembling fractal mountains’. That was quite an interesting observation, firstly because 
identifying this kind of misbehaviour was non-trivial at a time where simulation tools (let 
alone accurate WI MOS transistors models) were not as developed as they are now, and 
secondly because the first paper on filters which perform signal compression to increase 
their DR and lower their power consumption (the so called companding signal processors) 
was published around that same year (Seevinck, 1990;Tsividis et al., 1990). A systematic 
formulation for the design of companding filters followed almost two years later (Frey, 
1993).  
In this paper, Lyon explored two different biquadratic architectures (based on cascades of 
two- and three-OTA topologies, called DIFF2 and DIFF3 respectively in (Lyon, 1991)) and 
incorporated source degeneration and capacitive division to widen the linear range of the 
OTA comprising the filters. However, contrary to the implementation of Fig. 3, these 
designs had their Q and pole-frequency voltages interdependent leading to generally more 
difficult tuning schemes. Nevertheless, with these improvements, he managed to get a 40dB 
pseudo-resonance gain in the cochlea response, rather than the 12dB previously shown in 
Fig. 4 with a useable DR of about 40dB. 
1992: After Lazzaro, the lead in the Caltech group was passed on to Lloyd Watts who was 
responsible for creating the first advancement in cochlea chip design since Lyon’s original 
chip. Watts’s overall design was based on a model of a passive (i.e. without an AGC 
network) 2-D cochlea (the first of its kind) (Watts, 1992). That model differs considerably 
from Lyon’s 1-D filter-cascade, because it tries to replicate BM filtering together with the 
cochlea fluid. The fluid was modelled using a 2-D resistive network while the BM was 
modelled using gm-C circuits which could mimic the BM impedance. Although the resulting 
system had ten times larger area than its 1-D equivalent, it had the advantages of exhibiting 
more realistic responses, being bi-directional (essentially modelling fluid reflections), fault-
tolerant and having a continuum limit. A conceptual diagram of his proposed 2-D cochlea 
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model is shown in Fig. 9. Moreover, Watts was actually the first to propose a model for 
‘closing the loop’ with OHC circuits, but his investigation ended prematurely. Quoting 
Watts: ‘At the present time, the correct behaviour of the OHC circuit has not been verified at 
the system level, so we must leave the project as it is. Since there is still confusion in the 
auditory community about the form and sign of the mechanical feedback from the motile 
OHC…’. 

 

Fig. 9. The 2-D cochlea model. The cochlea fluid was modelled as a 2-D resistive network; 
adapted from Watts (Watts, 1992). 

Apart from his 2-D contribution, Watts also thoroughly explored Lyon’s 1-D cochlea. In 
(Watts et al.  1992), he not only discussed in detail the stability problems that Lyon had 
mentioned in his 1991 publication, but also elaborated on DR, matching and compactness; 
issues that were very superficially treated up to that point in time. Watts’ improvements 
revolved around: 
1. DR and stability: He found that by using one diode per side to degenerate the OTA, he 

could increase the input DR of the filter stage by 7.6dB. Moreover, by degenerating only 
the OTAs of the feed-forward path in Fig. 3, while keeping the feedback OTA narrow, 
he could eliminate the large-signal stability problem firstly addressed by Lyon one year 
earlier. 

2. Improved Layout: Apart from applying obvious layout techniques like: a) making 
devices generally larger, b) placing match-sensitive devices close to each other and c) 
using common-centroid geometries, Watts realized that for a massively cascaded 
system such as the cochlea, one should work with the available chip area and mainly 
focus on the matching of critical devices. One example of his well-thought approach 
was the layout of the three transistors responsible for biasing the three OTAs in Fig. 3. 
Instead of duplicating each of the biasing transistors, laying them out in a hexagonal 
arrangement around a central point and connecting the pairs together in parallel, he 
realized that for equal capacitances in the filter, it was important only for the 
transconductance gmQ to match the sum of the two feed-forward gmτ transconductances 
and not the individual transconductances (see transfer function in Fig. 3). Thus, he 
duplicated only the feedback biasing transistor and juxtaposed that pair with the feed-
forward biasing transistors in a ‘pseudo-quad’ formation as shown in Fig. 10. In 
addition, the initial Lyon cochlea relied on identical tilts on two resistive (polysilicon) 
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lines which set the voltages Vτ and VQ to achieve uniform Q at each stage. In Watts’ 
design, he used only one resistive line for both the τ and Q biasing transistors and 
controlled the actual Q value by changing externally the source voltage of the Q biasing 
transistor. In this way he was able to eliminate the mismatch for the case where two 
resistive lines were used and simplify considerably the actual testing procedure. 

 

 

Fig. 10. The ‘pseudo-quad’ structure, formed by duplicating the Q bias transistor and 
juxtaposing the resulting pair with the τ bias transistors (left). Q-source control by externally 
providing a voltage VQ to scale the feedback amplifier current IQ with respect to Iτ (right); 
adapted from Watts (Watts et al., 1992). 

3. Compactness: Apart from the careful layout, Watts also considered how to save space. 
In particular, he noticed that the first feed-forward OTA shared a common output node 
together with the feedback OTA. Thus, he eliminated two redundant transistors by 
sharing a single current mirror between the two OTAs. Lastly, he observed that while 
the output V3 was a LP version of the input V1, the output current of the feed-forward 
OTA was related to V3 by IOUT = sCV3. Thus, there was no need to devote extra circuitry 
for the differentiator circuit to convert BM displacement to BM velocity (i.e. from LPF to 
BPF response). 

As a final point, Watts was actually one of the first to comment on the overall power 
consumption of his chip (7.5mW/11µW for a 51-stage cascade with/without the circuits for 
making the results of the computation externally observable). Indicative measurements from 
his chip are shown in Fig. 12.  
 

 

Fig. 11. Frequency response at each voltage tap. (a) Early layout. (b) Improved layout; from 
Watts (Watts et al., 1992). 
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Up to that point, it seemed that most of the development of analogue VLSI cochlea design 
was undertaken by the people at Caltech. From 1992 onwards, research contributions from 
other university groups started to arise. For example, a journal paper was published in 1992 
by Weimin Liu and Andreas Andreou from Johns Hopkins University (Liu et al.  1992), 
where he presented an analogue CMOS implementation of a model of the auditory 
periphery; his neuromorphic effort was heavily influenced by Lyon’s and Lazzaro’s 
previous efforts and in certain aspects extended and improved their modelling work. Liu 
designed a complete system that included, apart from the BM and its transducers, the 
filtering effect of the middle ear. His BM model was Lyon’s cascade/parallel model but the 
actual arrangement of the transfer functions was slightly different: he used simple (passive) 
first-order LP filters to form a 30-stage cascade with a BP biquad connected at each tap; all 
filters were gm-C operating in WI. As with Lyon’s initial chip, tuning was achieved by using 
two polysilicon resistive lines. Liu also built a separate chip containing the circuits of IHC 
and synapses (based on the neurotransmitter substance reservoir model (Smith and 
Brachman, 1982)) and provided similar measured results to Lazzaro’s (i.e. BM-tap frequency 
response and auditory-nerve firing rates). Although Liu’s effort was important in its own 
right, it did not advance the field by presenting results from a system with AGC or from a 
detailed performance assessment (he only reported on the 15µW power consumption). 
An interesting circuit contribution came from Jyphong Lin the same year, who used switch-

capacitor (SC) techniques to design the biquad filters employed in his cochlea model. As far 

as we know, that was the first non gm-C-based cochlea design effort. Lin published two 

separate conference papers in 1992 (the first dedicated solely on the design of the SC cochlea 

filters (Lin et al., 1992b) and the second on the design of a SC filterbank (Lin et al., 1992a)) 

and a complete Journal article with measured results in 1994 (Lin et al., 1994). The designs of 

his SC biquads were area-efficient, because they were synthesized using the charge-

differencing technique in which the time constants are controlled by both the product of 

capacitor ratios and  the differences of the capacitor values, thus making the capacitor 

spread ratio small. His overall transfer function consisted of a cascade of two biquad filters; 

a LP together with a highpass (HP) response. The end result was an asymmetric BP shape 

similar to the one depicted in Fig. 2, with the added benefits (high precision and reliability) 

offered by the SC technique.  

In his second conference paper, he designed a 32-channel filterbank to model BM filtering 

with each channel employing a 6th-order asymmetric BP response. In filterbank architectures 

the input is applied to all channels simultaneously, whereas in a filter-cascade the input is 

applied serially and gets successively filtered before reaching each output tap (see Fig. 12). 

For this reason, Lin’s particular choice of modelling BM filtering together with his chosen 

asymmetric BP response may be classified as bio-inspired and bio-mimetic but not 

neuromorphic. What made his contribution interesting is that he used a biquad sharing 

technique (Chang and Tong, 1990) to achieve an efficiency of computation without the 

associate disadvantages of the filter-cascade architecture (like instability, sensitivity to 

mismatch, noise and offset accumulation etc.). In his dilating-biquad filterbank, each channel 

output was formed by the addition and scaling of three BP biquad responses from three 

separate channels, thus facilitating considerable area savings. In other words, instead of 

using 192 biquads, he used 34 biquads and 32 sum-gain amplifiers; 66 in total (see Fig. 13). 

The only problem with this scheme is that the three dilated biquads must have constant Q 

values in order for the resulting higher-order response to maintain its shape and since all 
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biquads are inter-connected, the whole filterbank must be of constant Q. This is a significant 

drawback for applications where a realistic, OHC-based, AGC needs to be incorporated. 

 

 

Fig. 12. Modelling BM filtering via neuromorphic (filter-cascade) and bio-inspired 
(filterbank) architectures. 
 

 

Fig. 13. Dilating-biquads filterbank; adapted from Lin (Lin et al., 1992a). 
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3. Increasing the performance: 1993 - 1998 

1993 & 1994: After Lazzaro’s work, the second sound localization systems were presented in 
1993 and 1994 by Neal Bhadkamkar from Stanford University (Bhadkamkar and Fowler, 
1993;Bhadkamkar, 1994). The 1993 effort was based on a design that was an architectural 
duplicate of the biological system (i.e. neuromorphic), whereas the 1994 effort was not, 
because it tried to duplicate some of the functions of the real system without relying on 
strict architectural analogies.  
The neuromorphic system consisted of two fabricated chips; one chip contained the circuitry 
to model the left and right side cochleae, IHC and auditory neurons, whereas the other chip 
contained circuitry to model the binaural cross-correlation activity of neurons in the 
superior olive of the brainstem. Even though the system-level ideas were identical to 
Lazzaro’s and Lyon’s, Bhadkamkar’s 1993 circuit design choices were slightly different. For 
example, Bhadkamkar’s 1993 design included separate voltages to control the propagation 
delays and cut-off frequencies of the stages, respectively. This fact, together with his choice 
of a more complex transfer function for each BM section, resulted in a multiresolution BM 
design where the frequency resolution could be increased without excessively increasing the 
propagation delay1 (Bhadkamkar, 1993). Similarly, the differentiator used for the IHC was 
different than Mead’s hysteretic differentiator because it was designed to pump current into 
the SGN circuit during the discharge time of the capacitor. At low frequencies this occurred 
approximately half of every input cycle that it saw. At high frequencies, current was 
pumped in for a much smaller portion of the cycle. Thus, at these high frequencies, increases 
in the amplitude of an input sinusoid caused a sudden but temporary increase in the current 
that pumped into the SGN circuit. His SGN circuit was identical to Lazzaro’s and Mead’s 
but included a refractory period control i.e. freedom to control the time needed to elapse 
before permitting the SGN input current to have any effect. Moreover, his correlator chip 
was similar to that presented by Lazzaro, but his axons (delay-lines elements) received 
pulses in parallel and not serially to eliminate the accumulation of errors. Finally, no 
winner-take-all circuit was used; each output was summed together with the other 
corresponding outputs along all frequency channels and integrated using a leaky integrator. 
On the other hand, his 1994 bio-inspired system was designed using two separate parallel 
banks of simple gm-C BP filters. As mentioned previously this is not an accurate cochlea 
model but improves localization accuracy by removing the accumulation errors inherent in 
the cascade structure. The design of the IHC was based on a half-wave rectification, LP 
filtering and pulse-width modulation, with the pulse-width being a monotonic function of 
the amplitude of the LP-filtered, half-wave rectified signal. Thus, in this case he chose a 
pulse-width-modulation scheme for the neural encoding as opposed to the pulse-frequency-
modulation used in his 1993 effort.  
That same year the first current-mode cochleae designs arose; one from Christopher Abel 
(Abel et al., 1994) and one from Christofer Toumazou and Tor Sverre Lande (Toumazou et 
al.  1994). The former effort presented a novel implementation of a silicon cochlea based on 

                                                 
1 One of the disadvantages of the cascade approach is that the propagation delay of the travelling wave 

from the input to a particular output tap is controlled by the same parameter that controls the cut-off 
frequency of the filters. This leads to the problem that the accumulated delay increases as a function of 
the number of filters per given frequency range, i.e. the larger the frequency resolution, the more the 
accumulated delay. 
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discrete-time, switch-current biquads. Since the equivalent continuous-time cut-off frequency of a 
discrete-time filter is proportional to the sampling rate, reducing the sampling rate by a factor of two 
lowers the cut-off frequency by one octave. Abel exploited this fact and realized that a set of 
filters designed to cover one octave may be used again at a reduced sampling rate to cover a 
lower octave. This technique allowed the entire range of audio spectrum to be covered by 
one repeated set of filters, thereby avoiding the need of a wide-range of integrator time 
constants and allowing for great area savings.  
Abel’s architecture is shown in Fig. 14. In addition, unlike SC, the switch-current technique 
does not require linear capacitors and produces filters that are thus compatible with 
standard CMOS digital processes. Abel’s contribution was really interesting because he not 
only used a totally different circuit technique (let alone signal representation) to design his 
system, but also he showed preliminary simulation results from a very simple Q-control 
circuit. To avoid any confusion, Abel’s Q-control circuit was not intended to close-the-loop 
between each stage of his cascade. By Q-control circuit he meant a circuit where adjustment 
of his biquads Q values could be possible, but this adjustment did not happen automatically 
according to signal strength.  
 

 

Fig. 14. The system level block-diagram of Abel’s proposed design. A single D flip-flop acts 
to divide the clock frequency by two after each stage. This allows one set of four filters to 
cover multiple octaves; adapted from Abel (Abel et al., 1994). 

Toumazou’s contribution was quite substantial at the time. To this author’s knowledge, his 
effort was the first true continuous-time current-mode implementation of a BM segment that 
employed the aforementioned companding technique (check Lyon’s quote in 1991) to 
achieve high-DR and low-power dissipation. The companding strategy was based on the 
pioneering contributions of Douglas Frey (Frey, 1993;Frey, 1996)on the systematic synthesis 
of the so called log-domain filters published only a year before. The rationale behind this is 
that the signal is firstly compressed to an intermediate nonlinear voltage according to the 
logarithmic I-to-V relationship of WI MOS devices. The compression generally leads to 
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voltage swings that are small thereby allowing low-power operation. Also, through the 
application of the particular nonlinear compressive law, a wide range of signals could be 
accommodated at the input without needing to spend additional power (like in 
conventional gm-C designs). After compression, the intermediate nonlinear voltage signal 
gets filtered and subsequently expanded at the output, using the exponential V-to-I 
relationship of WI MOS devices and thus maintaining overall input-output linearity. 
Because of the fact that the compression law is based on the natural logarithm, the resulting 
filters were called log-domain filters. Toumazou’s design demonstrated a simulated input 
DR of 80dB, while dissipating a mere 125nW/pole. Toumazou’s contribution was quite 
valuable at the time, because a) it revealed the potential of current-mode design within the 
particular cochlea application and b) it showed results from the 1st ever CMOS log-domain 
biquadratic filter. 
1995 & 1996: Around 1995, papers that focused more on performance started to arise. Paul 
Furth and Andreou from Johns Hopkins University published three papers spaced one year 
apart. His 1995 effort (Furth and Andreou, 1995a) detailed the design of a multiresolution 
analogue filterbank with the primary engineering constraint being power consumption. He 
presented a design strategy for hardware cochlea filterbank models addressing issues both 
at architectural- and circuit-design level. Architecture-wise, Furth used a slight variation of 
Liu’s filterbank (see 1992). In particular, Furth added two cascaded identical BP biquads at 
the output of each of the 16 taps to increase the per-tap selectivity much like what Liu did in 
his PhD dissertation (Liu, 1992). Furth was actually one of the first to address in more detail 
the DR problem with gm-C designs. Instead of designing a linearized OTA (with a tanh I-V 
transconductance characteristic), he resorted to a CMOS Class-AB stage (with a sinh I-V 
transconductance characteristic) due to the facts that: a) it uses minimal number of 
components, b) it has a wide tunability range by tuning its supply voltages or substrate 
terminals and c) it contains no biasing elements, thereby rendering it the less noisy from all 
CMOS transconductor configurations at a given bias current (see Fig. 15). Furth 
consequently derived and numerically computed the maximum DR of a LP integrator 
employing two Class-AB transconductors. He showed that for a pure tone input, the 
maximum distortion-free DR (i.e. in which the distortion components equal the noise floor) 
is 44.3dB, whereas the maximum distortion-limited DR (for an output THD of 2%) is 49.4dB. 
He then estimated the distortion-limited DR at the output of each tap to be 28.2dB. The 
power supply of his circuits was 1.5V and the total power dissipation of a 16-tap filterbank 
was 355nW; the lowest reported up to that point. 
 

 

Fig. 15. a) the CMOS Class-AB transconductor, b) its symbol and c) the topology of a LP 
integrator; adapted from Furth (Furth and Andreou, 1995a). 
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In his 1996 effort (Furth and Andreou, 1996a), Furth took a different approach. He compared 
two differential-pair OTA employing respectively the single and double diffusive source 
degeneration technique (Boahen and Andreou, 1992). Circuit-wise the diffusor is a floating 
active MOS resistor placed in between the sources of a differential-pair. The diffusivity or 
conductivity of this resistor depends on the aspect ratio and it could be electronically 
controlled by varying the gate voltage. He found that the DR was 56.8dB for the single 
diffusion OTA (a 13.2dB improvement over the basic differential-pair) but extra common-
mode circuitry was required. On the other hand, the double diffusor OTA exhibited 3dB less 
DR but without adding power or needing extra common-mode circuitry. Furth built the two 
OTA in a 2µm CMOS process using large device areas (1377µm/4.8 µm) and measured their 
relative DR performances, which came out being 10% lower than the aforementioned 
theoretical values. The diffusor source degenerated OTA with their corresponding I-V 
transconductance relations are depicted in Fig. 16. All parameters have their usual 
meanings, while m denotes here the aspect ratios of the diffusors. 
 

 

Fig. 16. Linearized OTA by means of single and double diffusive source degeneration; 
adapted from Furth (Furth and Andreou, 1996a). 

In 1996, Jenn-Chyou Bor adopted the previous practice of other authors on SC filters and 

presented a SC cochlea cascade of 32 sections based on the transmission-line model of 

Zwislocki (Zwislocki, 1950). In essence, Bor resorted to the 2-D nonlinear partial differential 

equation describing the transmission-line cochlea model and by applying the principles of 

discrete-time signal processing and variable transformation, he reduced it into several 1-D 

equations that could be realized using circuits designed through the multiplexing SC 

technique. In his paper (Bor and Wu, 1996), he demonstrated through measurements a 

neuromorphic BM-cascade cochlea with very low sensitivity to process variations (see Fig. 

17). The resulting filters operated from a ±3V supply and the single filter stage DR at 1KHz 

and 1% THD was measured 67dB (the highest reported up to that date). Bor also provided a 

table with the errors from the measured peak gains and peak frequencies (i.e. CF) from 

theoretical values. Yet, no IHC, neuron or OHC-based AGC circuits were designed. 
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Fig. 17. Measured a) amplitude and b) phase responses from 8 taps of a 32-section SC filter-
cascade; from Bor (Bor and Wu, 1996). 

Within Carver Mead’s group, Rahul Sarpeshkar, the successor of Watts, took the rather 
challenging direction of designing a high performance neuromorphic cochlea cascade.  As 
mentioned previously, the group’s prior gm-C biquad designs had their large-signal stability 
limit smaller than their small-signal stability limit. This misbehaviour forced them to set the 
gains, for each stage of the cascade, at conservatively small values (i.e. having very low Q) in 
order to ensure that each stage remained stable at large signal levels. Consequently, this 
resulted in small pseudo-resonant peak gains (around 12dB in (Lyon and Mead, 1988a)) and 
input DRs between 20 – 40dB at best. Initially, Sarpeshkar focused on the careful design of 
the OTAs comprising the biquads and in (Sarpeshkar et al., 1996) he designed a wide linear 
range OTA (named the WLR) through the use of four linearization techniques extending the 
linear range from 75mV to 1 – 1.75V. With Fig. 18 as a reference, these linearization 
techniques were: 
 

 

Fig. 18. The WLR OTA. The devices marked S and GM denote the source and gate 
degeneration transistors, whereas the devices W and M denote the well-input and mirror 
transistors. The B transistors perform bump linearization. In addition, the voltage Vbias sets 
the bias current of the amplifier, whereas Voffset allows fine adjustment of the amplifier’s 
output offset if necessary; adapted from Sarpeshkar (Sarpeshkar et al., 1996). 
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1. Instead of using the gates of the W devices as inputs he used their wells due to the 
well’s lower transconductance. To avoid latch-up he used large common-mode voltages 
in the range 1 – 5V. 

2. Devices S lower the transconductance of the W devices further through the common 
technique of source degeneration. 

3. Devices GM lower the transconductance of the W devices even further through gate 
degeneration. An increase in current in either of the two differential pair branches 
causes an increase in voltage of the GM devices that is fed-back to the gate of the W 
transistor and turns it off. 

4. Bump linearization. The bump circuit was proposed by Delbrück in (Delbruck, 1991) 
and the way it linearizes the tanh function of an OTA is qualitatively similar to Katsuji 
Kimura’s triple-tail technique (Kimura, 1995). The basic idea of the bump transistors is 
that they steal current from the two branches of the differential pair at low differential 
voltages, thereby reducing the transconductance. Moreover, by appropriately choosing 
their aspect ratios, odd-order harmonic distortion gets suppressed as compared to the 
tailor expansion of the standard tanh characteristic.  

Sarpeshkar then incorporated the WLR to create biquad filters forming a 45-stage BM 

cascade. His filter design (a block diagram of which is shown in ) was based on that of Fig. 3 

but with the following three modifications: 

1. Since the well was used as the input, there were no explicit capacitors in the filter 
topology; he used the well capacitance. In addition, since the well-to-bulk reverse bias 
voltage was of the order of 3V, this capacitance was fairly constant without introducing 
excessive distortion at the output. 

2. The feedback OTA (amplifier A3 in Fig. 3) now implemented a non-monotonic function 
with a fuse-like characteristic. Recall that Watts was the one who linearized OTAs A1 
and A2 while leaving A3 narrow to eliminate the large signal instability. Sarpeshkar, on 
the other hand, linearized OTAs A1 and A2 and made the characteristic of A3 to as such 
so that positive-feedback amplification shunts-off completely instead of simply 
saturating at large signal levels. Thus, at high-levels it effectively reduces the gain of the 
stage resembling the compressive mechanisms attributed to OHC operation. In essence, 
the fuse-like OTA performed static nonlinear compression. Note that OTAs with fuse-
like characteristics where presented earlier in (Kimura, 1994). 

3. Finally, he followed Watts’ ideas on compactness and realized that the feedback fuse-
like OTA shared the same differential inputs as the output feed-forward OTA and the 
same output as the first feed-forward OTA. Thus, he shared their differential pair and 
output mirror circuits, allowing the fuse-like OTA to be implemented by only four 
transistors. 

Sarpeshkar’s 1996 effort formed the basis of his forthcoming complete design presented two 

years later. His architectural and topological choices gave rise to biquad filters that exhibited 

input DR in excess of 60dB i.e. an order of magnitude larger from the group's previous gm-C 

efforts. However the topology shown in Fig. 19 had a very specific drawback; the noise per 

unit bandwidth increased with Q. This was because in that particular biquad topology, the Q 

was obtained through the addition of positive-feedback currents (marked Ifb in Fig. 19) 

which contributed additional shot noise. As it will be shown later on, his 1998 effort 

employed a different biquad topology (based on the DIFF2 structure which was discussed 

by Lyon in 1992 (Lyon, 1991)), although the WLR topology remained the same. 
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Fig. 19. A schematic block diagram of the fuse biquad. The dotted components indicate that 
they are not explicitly implemented in the actual circuit topology. The voltages Vτ and VQ set 
the pole frequency ωo and quality factor Q of the filter; adapted from Sarpeshkar 
(Sarpeshkar et al., 1996). 

In the same year, Andre Van Schaik from EPFL’s MANTRA Center for Neuromimetic 
Systems, together with Eric Vittoz addressed in detail the problem of matching in CMOS 
WI for the second time since Watts’s 1992 effort (A.Van Schaik et al., 1996). Van Schaik used 
Compatible Lateral Bipolar Transistors (CLBTs) in a 104-stage cochlea cascade, to create the 
exponentially scaled currents when biased with a resistive line with a linear voltage gradient 
between its two ends. CLBTs can easily be made in a CMOS substrate and contrary to 
simple WI MOS devices, their collector current is independent of the CMOS technology’s 
threshold voltage. The remaining mismatch is due to the geometry mismatch of the devices, 
but this parameter is much easier controlled than the variance of the threshold voltage. A 
CMOS CLBT can be obtained if the drain or source junctions of a MOS device gets forward-
biased in order to inject minority carriers to the local substrate. If the gate voltage is negative 
enough (for an n-channel MOS) then no current flows at the surface and the operation is 
purely bipolar (Vittoz, 1983). A diagram showing the carrier flow and bipolar operation of a 
MOS transistor is shown in Fig. 20. 
 

 

Fig. 20. Bipolar operation of a MOS device; adapted from Van Schaik (A.Van Schaik et al.,  
1996). 

Much like Watts, Van Schaik identified that the biquad’s biasing transistors (i.e. those that 
set the pole frequency and Q) had to be precisely matched. In prior designs, these transistors 
were simple MOS, thus a small variation in their threshold voltage would result in a large 
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variation in their output current due to the (inherent in WI) exponential V-to-I relationship. 
CLBTs offered a considerable improvement in the regularity of the frequency spacing of the 
cochlea filters which is of significant importance to long filter-cascade models, since one 
filter can distort the input signal for all the subsequent stages. Results showing the cascade’s 
improved frequency response and spacing regularity are shown in Fig. 21. Finally, in 1996 
Van Schaik published together with Ray Meddis an article describing preliminary designs of 
IHC and SGN circuits (van Schaik and Meddis, 1996) which were used later by the author in 
forthcoming publications.  
 

 

Fig. 21. Comparison between the 1992 design of Watts (left) with the improved design 
employing CLBTs (right); from Van Schaik (A.Van Schaik et al., 1996). 

1997: As mentioned previously, Furth published his third paper in 1997 (Furth and 
Andreou, 1996b). Following Sarpeshkar’s 1996 work on increasing the OTA linear range, 
that particular effort varied along the same lines and presented a new wide linear range 
OTA. Furth’s OTA topology was based on the initial BiCMOS design of Liu and Andreou 
(Andreou and Liu, 1992) which incorporated an OTA operating in strong inversion, a 
bipolar Gilbert multiplier cell and a WI MOS current buffer. Liu claimed that the choice of 
the two different modes of operation together with the individual optimization of each 
block could lead to an increased overall performance regarding power consumption, DR, 
tuning range and area. In this effort, Furth made some modifications to Liu’s and Andreou’s 
design by linearizing the OTA by means of a double diffusor and by replacing the Gilbert 
multiplier cell by a WI MOS equivalent. In this way the problems associated with beta 
reductions, beta mismatch and/or large leakage currents of the bipolar devices could be 
alleviated. His simulations yielded a linear range of ±260mV and an estimate (based on an 
empiric choice of noise floor value) for the DR of 66dB. His OTA design is shown in Fig. 22. 
One of the better contributions in analogue VLSI cochlea modelling came the same year 
from Eric Fragniére with Van Schaik and Vittoz (Fragniere et al., 1997). Together they 
proposed an analogue VLSI model of an active cochlea based on Lyon’s silicon BM filtering 
implementation. Circuit modelling-wise they exploited the same gm-C biquad design as the 
one proposed by Lyon and Watts in 1992 (i.e. the one with the two feed-forward OTAs 
degenerated with one-diode per side, while keeping the feedback OTA narrow), but they 
also provided a thorough analysis (with CMOS WI circuit implementations) on an adaptive 
AGC scheme for regulating the stages Q values that was never reported before. 
They implemented a feedback closed-loop AGC scheme, where the signal at an output tap is 
used to regulate the Q of a specific preceding stage according to a square-root level 
compression law (and not a linear one like Hirahara presented in 1989). From their study they 
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Fig. 22. Furth’s wide linear range OTA implementation. The voltage VGo sets the gain of the 
Gilbert Multiplier Cell, Vsat is the biasing of the level shifter transistor, whereas Vcas is the 
biasing of the low-voltage current mirror; adapted from Furth (Furth and Andreou, 1996b). 

realized that in order to locally control the pseudo-resonant gain at the output of a particular 
stage, only the Q of the stages participating to the build up of that pseudo-resonance had to 
be controlled. Their findings can be summarized in the following sentence: ‘The output from 
any stage in the cascade must control the Q of a stage located at a basal distance corresponding to a 
CF increase between one sixth and one third of an octave from that particular stage’s output’. This 
conclusion was supported by physiological evidence which revealed that afferent fibres of 
IHC are paired with the afferent fibres of OHC located at one seventh to one third of an 
octave higher CF (Kim, 1986). In other words, they not only specified the law with which the 
output-tap’s signal level was mapped to the stage Q values, but they also provided a design 
framework for distributing the gains along the cascade. Fragniére’s per stage local feed-back 
AGC scheme is shown in Fig. 23. The Vdin is the voltage output from the previous stage, 
whereas Vdout is the output voltage representing BM displacement of the current stage. 
Following Watts observation on compactness (see 1992), Ivout is a current signal representing 
BM velocity (i.e. it is the differentiation of Vdout) which consequently passes through a half-
wave rectifier representing the action of the IHC. The output from the rectifier goes to a 
mean spiking rate (MSR) lossy integrator that computes the mean value of the half-wave 
rectified IIHC; the output of the MSR (iIHC_DC) is a quasi-DC signal that represents signal 
strength. The final stage is the Q decision block (implemented by means of a simple WI 
translinear loop) that maps IIHC_DC to the correct Itτ and IQ values that set the ωo and Q of the 
filter. With Fig. 3 as a reference, the Q decision circuit implements the following control law:  

τ τ

⎛ ⎞⎛ ⎞
∝ ⇒ = ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

max

_

mQ Q Q

m IHC DC o

g I I
Q

g I i I
, 

where IQmax corresponds to the maximum Q value for zero input, Io is a DC level ensuring 
loop stability for zero input and with IQ varying geometrically with signal strength implying 
a logarithmic compression-type mapping. 
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Fig. 23. Analogue model of one stage of the active cochlea cascade; adapted from Fragniére 
(Fragniere et al., 1997). 

Finally, it should be mentioned that all the results shown in this work were simulated using 
mathematical software tools like MatLab and not from detailed circuit simulations or 
measurements. For this reason, Fragniére’s contributions are considered significant but from 
the overall system-level modelling perspective and less from a circuits or performance 
evaluation perspective. 
1998: Even though seventeen years had passed from Lyon’s initial 1981 paper, still no 
publications detailing measured results from an ‘active’ silicon cochlea existed. Fragniére’s 
efforts were indeed influential, but still his modelling ideas had to be demonstrated in an 
actual analogue hardware realization. The most complete single-piece of work on a neuromorphic 
silicon cochlea came in 1998 by Rahul Sarpeshkar from Carver Mead’s lab. In (Sarpeshkar et al.,  
1998), he described an 117-stage, 100Hz-10kHz, silicon cochlea that attained a DR of 61dB (at 
4% THD) at the CF of a typical stage while dissipating 0.5mW of static power, by using the 
following techniques: 
1. A modified version of the previously described WLR. Here he did not use source 

degeneration as in the design of Fig. 18, but used cascode circuitry to increase the DC 
gain and prevent low-frequency attenuation in the cochlea. 

2. An improved biquad filter topology that is low-noise by overcoming the problem of his 
previous 1996 topology where the output noise scaled with Q. 

3. DR gain control through a local, fast-acting feed-forward AGC. Architecture-wise 
Sarpeshkar’s AGC loop is the same as Fragniere’s but acts on the level of the stage’s 
input and not output.  

4. Automatic offset-compensation circuitry in each cochlea stage prevented offset 
accumulation along the cochlea cascade. 

5. The architecture of three, overlapping 39-stage cochlea cascades (see Fig. 24). In this 
architecture the input is fed in parallel to tiny cochlea cascades whose corner 
frequencies overlapped by 1 octave. This particular architecture may be viewed as a 
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hybrid of an architecture that has many parallel filters in a filterbank and one that has 
one filter-cascade with all filters in serial. Even though he partly deviated from a purely 
neuromorphic BM structure, he showed that by adopting this scheme he could reduce 
the group delay of his silicon cochlea and limit the accumulation of the 1/f noise. 

 

 

Fig. 24. Architecture of overlapping cascades. (a) In a standard filter-cascade the input is fed 
serially to all the stages, whereas in (b) the input is fed in parallel to tiny cochlea cascades 
that overlapped by one octave; adapted from Sarpeshkar (Sarpeshkar et al., 1998). 

Moreover, Sarpeshkar presented a thorough evaluation of his system by presenting an 
arsenal of performance-related results like: amplitude and phase frequency responses, 
adaptation with/without AGC, harmonic-distortion levels at various taps, noise and 
distortion spectrums, spatial characteristics, etc. Finally, he provided insightful discussions 
on the comparison between his analogue CMOS WI implementation with a custom digital 
ASIC and on filter-cascade versus bandpass filterbank architectures. Sarpeshkar was able to 
demonstrate in silicon a variety of physiologically obtained results: 
1. The frequency-to-place transformation as implemented by the amplification and 

propagation of travelling waves in the BM (much like the results of Fig. 4). 
2. A compressive nonlinearity at and beyond the CF of a cochlea tap due to the dynamic 

and compressive action of the AGC with asymmetric attack and release responses to 
transient inputs. 

3. Extension of the DR from 30dB to 60+dB due to adaptation and active amplification. 
4. Sharp roll-off slopes (corresponding to 10th- to 16th-order transfer functions), 

broadening of the frequency response and shift of the CF towards lower frequencies as 
input intensity is increased. 

5. Masking of adjacent frequencies and harmonics due to the distributed nature of his 
AGC and compressive nonlinearities. 

In conclusion, Sarpeshkar’s 1998 effort remains to this day one of the most complete 
neuromorphic cochlea designs. His contributions demystified the silicon cochlea operation, 
made a clear link to all the modelling ideas Lyon had presented in the past and advanced 
the neuromorphic field with performance figures that serve to this day as benchmarks to 
future design efforts. 
The other two 1998 contributions came from Timothy Edwards and Nagendra Kumar from 
the Johns Hopkins group. Edwards’ work presented the second log-domain biquadratic 
filter implementation for audio frequency applications since Toumazou’s 1994 effort 
(Edwards and Cauwenberghs, 1998). The BP transfer function was realized by using two 
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integrators (one lossy and one lossless) with additional translinear loops to implement the 
feed-back gains. The overall design was BiCMOS and operated in Class-A. He also provided 
measured results regarding ωo and Q frequency response tunability from a 4th-order BP 
response. Yet, no noise or linearity results were reported. On the other hand, Kumar’s work 
was one of the first attempts to apply a bio-inspired system to speech recognition 
experiments (Kumar et al., 1998). Kumar adopted Liu’s proposed filterbank architecture and 
he consequently implemented it using Furth’s linearized WI OTA presented in (Furth and 
Andreou, 1995b). In addition, due to its physiological plausibility, power signal processing 
capabilities and relative noise immunity, he used a zero-crossing-based signal 
representation for abstracting the auditory nerve fibre responses. Thus, his 15-channel 
filterbank chip essentially computed zero-crossing intervals and signal energies in 
frequency sub-bands. He consequently reported on speech recognition results using the TI-
DIGITS spoken digit database obtained from software simulation of the chip feature 
extraction algorithm. 

3. Recent years: 1999 - 2008 

1999: During 1999 there were two current-mode contributions; one from Todd Hinck and one 
from Timothy Edwards. Hinck’s work was based on a current-mode implementation of the 
travelling-wave amplifier (TWamp) cochlea model. This model was proposed in 1993 by 
Hubbard (Hubbard, 1993) who hypothesized the existence of two separate wave-
propagation modes in the cochlea. The TWamp model was realized using two actively-
coupled transmission lines, each of which represented a different mode of energy 
propagation in the cochlea. The first transmission line was the same as in the classical 
travelling-wave model, whereas the second was composed of sections of a series inductor 
with a parallel shunt capacitor and resistor. Hinck’s design strategy was quite similar to the 
one reported from Bor in 1996; He started from the transmission-line model of a BM 
segment Δx, he consequently converted it to a signal-flow-graph (SGF) and then replaced 
the SFG with current-mode equivalent blocks (i.e. gain and integrator blocks). In (Hinck et 
al.  1999), he showed simulation results from the frequency response of a 100-section cochlea 
with fixed Q and estimated the DR to be 54dB assuming a 100pA noise floor. 
Finally, Edwards outlined the design of a current-mode filterbank front-end with signal 
feature extraction for acoustic pattern recognition using his 1998 work on log-domain filters 
(Edwards and Cauwenberghs, 1999). His feature extraction algorithm was based on 
rectification followed by smoothing and peak detection and tracking for which he showed 
current-mode circuits. He provided measured results from a 15-channel (each channel 
comprising two cascaded log-domain BP biquads) chip built using the 1.2µm BiCMOS 
process with a measured DR of 35dB and a power dissipation of 200µW from a 5V supply. 
Moreover he was able to demonstrate that the action of the peak detector helped to increase 
the sharpening of the BP response (much like the difference in sharpening between the BM-
velocity and neural tuning curves observed in the biological cochlea), compensating for the 
swallow low-frequency roll-off slopes typical of Class-A log-domain BP filters (see Fig. 25). 
2000: In 2000, the first current-mode cochlea implant (CI) prosthesis system was presented 
by Walter Germanovix  and Toumazou from Imperial College London (Germanovix and 
Toumazou, 2000). The function of a CI is to bypass the natural transducers (i.e. the IHC) 
which are damaged or missing in a diseased cochlea and consequently excite the SGN (via 
electrical stimulation) leading eventually to hearing perception. The proposed CI design was 
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Fig. 25. Comparison between the measured transfer function of the BP filter of a single 
channel (dotted line), normalized to the current output of the peak detector and smoothing 
filter on the same channel (solid line); from Edwards (Edwards and Cauwenberghs, 1999). 

switchable into two modes of operation: the single-channel and multi-channel modes. Single-
channel CIs code frequency based on the rate of firing of electrical pulses, whereas multi-
channel CIs use the place theory for coding frequency (i.e. the fact that different frequencies 
map at different places along the BM). Also, single-channel CIs usually employ the CA 
(Compressed Analogue) stimulation strategy, whereas multi-channel CIs employ the CIS 
(Continuous Interleaved Sampling). In the latter, each of the channels BP filtered envelopes of 
the input signal are encoded into non-overlapping biphasic electrical current pulses in order to 
eliminate any overlap between channels so that only one electrode is stimulating at a time. 
Although multi-channel CIs are the prevailing devices around the world today, there are 
some arguments against the rational for their use. However, the cochleae of people with 
severe hearing impairment do not posses sufficient residual neuronal population to use 
tonotopic electrical stimulation through multiple electrodes. Therefore, there are arguments 
against the rational for using tonotopic stimulation strategies since multi-channel electrode 
systems aim to stimulate focal regions of dendrites along the BM, which might not exist in 
some/most cases (Namasivayan, 2004). For this reason, Germanovix attempted to create a 
versatile CI employing both aforementioned modes and stimulation strategies. The block 
diagram of his system is shown in Fig. 26. 
One important feature of Germanovix’ CI was the tone control circuit that follows the 
transconductance amplifier (OTA) in Fig. 26. The OTA (a simple tanh characteristic) was 
used to provide compression and sensitivity by converting the (wide) input DR (by varying 
its tail current) into an appropriate DR for the specific individual. Consequently, the tone 
control circuit allowed boost/cut of low/high frequencies to compensate deficiency in the 
diseased auditory system. The tone control circuit output was formed by subtracting the 
outputs of two parallel LP log-domain filters; one with low-frequency cut-off to emphasise 
the bass and one with high-frequency cut-off to emphasise the tremble. The operation of the 
tone control circuit is essentially similar to the bass/treble control of a Hi-Fi system. Even 
though Germanovix’ contributions were only preliminary at the time, implementation-wise 
all his circuits were designed in CMOS WI, they were operating in the current mode and his 
BP sections were Class-A log-domain filters with a measured THD of –40dB (i.e. 1%) at a 
modulation index of 35%. No noise floor and power consumption figures were reported.  
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Fig. 26. Diagram of Germanovix’ CI with switches between the CIS and CA modes of 
operation; adapted from Germanovix (Germanovix and Toumazou, 2000). 

2001: In 2001 there were two contributions from André Van Schaik. In the first one (Schaik, 
2001), he presented an electronic system that extracted the periodicity of a sound. The 
system was comprised from three analogue VLSI building blocks: a) an improved version of 
Watt’s 1-D implementation utilizing 104 cascaded sections (the same gm-C ones that Watt’s 
used in (Watts et al., 1992)) with CLBTs for generating the biasing currents (built on a 
4.77mm× 3.21mm die chip), b) four IHC circuits (built on a 1mm2 chip) and c) two spiking 
neuron chips (each chip built on a 2.5mm2 and containing 32 neurons). Before explaining 
how his system performed periodicity extraction, let us briefly describe Van Schaik’s IHC 
and neuron circuits, the initial versions of which were previously published by the author 
around 1996 (Van Schaik and Meddis, 1996).  
His IHC circuit is the most bio-plausible contribution to date because it did not solely rely 
on half-wave rectification (like in all previous efforts) but attempted to replicate several 
other IHC characteristics/functions like input-output function asymmetry, temporal 
adaptation to constant stimulation etc. To appreciate Van Schaik’s modelling choices, recall 
four interesting features of the biological auditory neuron fibre:  
1. The spike rate of most auditory neuron fibres increase with increasing stimulus level 

but only over a narrow level of signal intensities (from 60 to 80 SPL). Above that level, 
the output saturates showing little or no further rate increase (see Fig. 27(left)). 
Moreover, the relation between the IHC cilia deflection and the percentage of open ion 
channels (or equivalently the IHC current to IHC membrane potential) has a sigmoidal 
form with a certain offset, so that only 20% of the channels are open at equilibrium. 

2. The rate of firing is known to adapt to a new stimulus. The high rate at onset is quickly 
adapted to a lower rate within 3msec of the initial stimulus onset. In addition, when a 
persistent stimulus is present, the rate reduces even further but at a much slower pace 
(see Fig. 27(middle)). 

3. IHC perform some kind of LP filtering with a cut-off frequency of 1kHz so that AC 
components of frequencies above about 4kHz are heavily attenuated and thus no 
information is available to the brain regarding the temporal properties of the input 
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waveform. At frequencies well below 4kHz, the IHC voltage has a noticeable AC 
component and its temporal structure can be extracted by the brain. 

4. At low frequencies (< 3kHz) the spike rate in an individual auditory neuron can be 
shown to be a half-wave rectified waveform (see Fig. 27(right)). In the absence of any 
input signal, the auditory neuron shows spontaneous action potential at a frequency 
almost as frequent as half of the maximum firing rate. 

 

 

Fig. 27. (left) IHC rate-intensity function, (middle) IHC post stimulus time histogram 
showing adaptation to a persistent stimulus and (right) IHC period histogram shown with 
stimulating sinusoid; from Van Schaik (Van Schaik and Meddis, 1996). 

Van Schaik’s IHC model (shown in Fig. 28) consisted of three main processing stages that 
aim to model the four aforementioned features of an auditory neuron fibre: The first stage 
contained an asymmetric (sigmoid-like) compressive input-output function (realized by a 
simple OTA where one differential-pair transistor was 20% larger than the other – thus only 
20% of the biasing current will flow through the smaller device when the input differential 
voltage is zero) followed by a bias circuit which adds bias to the membrane potential to 
guarantee spontaneous activity at the absence of any input (points 1 and 4). The second 
stage consisted of two first-order LP filters with a cut-off frequency of 1kHz or lower (point 
3) and the final stage introduced adaptation to constant stimulation by subtracting a 
weighted LP filtered copy of the IHC output with the IHC output itself. By using a larger 
capacitor in the second filter (i.e. C2 = 3C1), its output will react more slowly to an onset of 
Isig than I1 would do (point 2). The final output current is given by  Iout = I1 – GI2 + Ispont, 
where G (< 1) is the gain of the current mirror that controls the ratio of the system’s peak 
response to the sustained response and Ispont is a constant current level used to adapt the 
‘spontaneous’ rate of firing (point 4). 
 

 

Fig. 28. Circuit diagram of the IHC stage; adapted from Van Schaik (Van Schaik, 2003). 
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Implementation-wise, one of the main problems/challenges in modelling comparatively 

slow brain elements with analogue VLSl circuits is the realization of large time constants 

such as the ones for the IHC LP filtering. Van Schaik realized that since the linearity of the 

LP filter stage is not an important issue, large time constants could be realized using the 

current mirror arrangement of the two LP filter blocks in Fig. 28 (i.e. small capacitors appear 

larger via the Miller effect). This current mirror creates a non-linear LP filter for which Iup 

sets the maximum rise speed and Idown sets the maximum fall speed of the voltage on the two 

capacitors. This construction allowed Van Schaik to obtain programmable time constants in 

the order of several milliseconds using capacitors in the pico-Farad range while using bias 

currents in the 100pA range. Moreover the time constants varied with input signal level for 

both the LP filter and adaptation stages. Fig. 29 shows a comparison of the output responses 

from his artificial IHC circuit relative to the biological ones. Clearly, Van Schaik’s 

neuromorphic IHC circuit is able to faithfully reproduce the responses of its biological 

counterpart.  
 

 

Fig. 29. Intracellular IHC voltage changes in (a) the biological IHC and (b) Van Schaik’s 
circuit implementation for different frequencies of stimulation. For both cases, note the 
change of scale for the lower five traces; adapted from Van Schaik (van Schaik, 2003). 

The final circuit was a silicon neuron (depicted in Fig. 30 above) which was designed after 
its biological counterpart. Recall that in the real neuron an increased sodium conductance 
creates the upswing of spike (i.e. activation through depolarization) and the delayed 
blocking of the sodium channels plus delayed increase of potassium conductances create the 
downswing (i.e. de-activation through re-polarization). Here, the membrane of the neuron 
was modelled by the membrane capacitance Cmem and the membrane leakage current is 
controlled by the current Ileak. In the absence of any input (i.e. Iex = 0) the membrane (Vmem) 
potential is drawn to its resting potential controlled by V–. Excitatory inputs add charge to  
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Fig. 30. (a) Circuit details of the VLSI neuron. (b) Example of the response of the membrane 
potential (Vmem) and the output signal (Vout) to a DC input current (Iex); from Van Schaik 
(Schaik, 2001). 

Cmem, whereas inhibitory inputs discharge Cmem. If the excitatory input (Iex) becomes larger 
than Ileak then Vmem will rise from its resting potential. Vmem is then compared with a 
controllable threshold voltage (Vthres), using an OTA driving a high-impedance load. If Vmem 
is larger than Vthres, then the output of the OTA (Vcomp) will be high and thus the output of 
the first inverter (Vinv1) will go low activating the PMOS TNA switch which injects ‘sodium’ 
current to Cmem effectively pulling Vmem up (i.e. the upswing of a spike ). At the same time, a 
second inverter has it output voltage (Vinv2) high allowing the capacitor CK to be charged at a 
speed which is controlled by IKup. As soon as the voltage on CK goes high, the NMOS TK 
switch conducts allowing for the ‘potassium’ current IK to discharge Cmem and bring Vmem 
down to its resting value. The values of the currents IKup and IKdown control the spike width 
and the neuron’s refractory period respectively. 
Van Schaik consequently used his improved BM cascade, IHC and neuron circuits to model 
periodicity extraction much like what Lazzaro had proposed and demonstrated in (Lazzaro 
and Mead, 1990). A major disadvantage of Lazzaro’s implementation was the fact that in 
order to perform the matched filtering operation at the output of each SGN, each delay 
associated with a BM tap had to be matched precisely to the inverse of the CF of that tap. 
That meant that for a BM cascade whose CF changed exponentially from 4kHz to 100Hz, 
delays from 0.25msec to 10ms had to be created. In the real cochlea these large variations in 
delay is unlikely to be provided by an axonal delay circuit because it would require a very 
large variation in axon length. Van Schaik observed that the phase of a pure tone of a given 
frequency on the BM increases from base to apex and the phase changes rapidly around the 
CF. Moreover, the filter cascade acts as a delay line and each filter adds a delay which 

corresponds to π/2 at the cut-off of that stage. Thus, if one monitors the output of filter i and 
filter i – 4, under the assumption that the cut-off frequency remains fairly constant between these four 

stages (i.e. for a high resolution BM cascade), then the delay would correspond to 2π at the cut-off 
frequency. In essence, Van Schaik used the inherent delay of the BM cascade to perform the 
matched filtering operation at the output of the SGN and not through an additional axon 
circuit like Lazzaro. Van Schaik demonstrated through measurements that detecting these 
coincidences can yield very selective filters, i.e., filters responding only to a very narrow 
range of periodicities, but at the same time still responding after a few periods of the input 
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signal. This turned out to be an advantage over traditional BP filters, where an increase in 
selectivity has to be traded off against a decrease in response time. 
Van Schaik’s second 2001 contribution (together with Fragniére) detailed the analogue 
current-mode VLSI implementation of a 2-D cochlea model using a grid of transistors to 
model cochlea fluid mass (Van Schaik and Fragniere, 2001). That particular model was 
based on the initial 1992 2-D model of Watts that was thoroughly investigated by Fragniére 
in (Fragniere, 1998) few years later. The two dimensions that were taken into account were 
the longitudinal direction along the BM from base to apex and the vertical direction which 
accounts for the liquid movement perpendicular to the BM. In order to achieve a compact 
VLSI implementation of the dense resistive network modelling the 2-D cochlea, Van Schaik 
used a single transistor implementation of the resistors. That transistor was operating in the 
pseudo-voltage domain and its resulting pseudo-conductance has been proven efficient in a 
variety of signal processing systems (Vittoz, 1997). To introduce temporal processing, the 
pseudo-conductance was used with a reactive component (a pseudo-transcapacitor where 
its differential input current is integrated into an output pseudo-voltage) yielding filters 
which are close relatives to log-domain filters.  
2002 – 2004: From 2002 onwards Sarpeshkar’s auditory research interest seemed to focus on 
fully-implantable CIs based on simple BP filterbanks. Together with his group at MIT, he 
published several conference and journal articles detailing the designs of the basic building 
blocks comprising a CI processor. He reported on the designs of a new BP filter (Salthouse 
and Sarpeshkar, 2003), envelope detector (Zhak et al., 2003), microphone preamplifier (Baker 
and Sarpeshkar, 2003) and A/D converter (Sit and Sarpeshkar, 2004) that were consequently 
used to realise a CI channel (Lu et al., 2003) and a CI processor (Baker et al., 2003). In 2005, 
all these designs were integrated to create one of the most complete analogue VLSI CIs to 
date. Sarpeshkar approach in this work was slightly different from what he had adopted in 
his earlier attempts. Here, he tried to create circuits that would eventually lead to a practical 
bio-inspired design having the potential towards possible commercialization. For this 
reason, his architectural and circuit design choices did not solely rely on increasing the 
performance but also on reliability and robustness. An example of this strategy can be seen 
in the design of his new BP filters. Sarpeshkar realized that while the linearization 
techniques used in his prior designs (from 1996 to 1998) successfully met the design 
requirements, the linear range could not be easily increased above the achieved value 
because the techniques do not scale. Recall that much of the achieved increase in linear 
range was due to the well as the input terminal. That makes the linear range a strong 
function of the subthreshold body-effect parameter n which varies between processes and 
runs. Hence, Sarpeshkar tried to explore alternative strategies. 
The BP filters used in this work were based on the design of Christopher Salthouse who 
used a capacitive-attenuation technique to extend the input linear range beyond 1Vpp 

(Salthouse and Sarpeshkar, 2003). His design was based on two cascaded first-order 
sections; one LP and one HP built using the basic OTA. The linear range was increased by 
attenuating the input and feedback attenuating the output because the linear range of the 
OTAs is limited by their input swing rather than their output swing.  Salthouse 
consequently extended his design to a differential topology and measured a cascade of two 
BP filters. He reported a 230nW power consumption with an input DR of 67.5dB (5% THD) 
at 100Hz – 200Hz range and a 6.36µW with a DR of 65dB (5% THD) at 5kHz – 10kHz range. 
In 2002, David Graham with Paul Hasler from Georgia Tech presented a new very compact 
second-order section for cochlea modelling with high overall performance (Graham and 
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Hasler, 2002). Their design was based on the DIFF2 structure discussed by Lyon in 1992 and 
on the autozeroing second-order section presented by the authors in (Hasler et al., ). The 
basic building block of their design is a capacitively-coupled current-conveyor (C4) 
presented in (Hasler et al., 1999). In this paper, they presented only measured frequency 
response results from a 32-section C4 BP filterbank, whereas a thorough analysis and 
characterization of the C4 structure was presented five years later (Graham et al., 2007). 
There, they demonstrated an impressive five-orders of magnitude frequency tunability with 
passband SNR generally ranging between 50 – 60dB. At 20kHz and with a Q of 4, the 
second-order C4 BP section dissipated a mere 0.11µW of static power from a 3.3V power 
supply and with a Q-programmability range of up to 9. The simple second-order section 
occupied 2100µm2 in a 0.5µm CMOS process, whereas a tenth-order structure occupied an 
area of 13200µm2. Because of the fact the C4 was so compact, a filterbank employing sixteen 
tenth-order BP filters occupied only 1.5mm×1.5mm including all biasing circuits. Finally, the 
authors were the first to use floating-gate transistors for the current-sources that set the time 
constants of the C4 BP filters. Since the floating-gate transistor currents can be programmed 
very precisely (< ±0.2% error), the responses of the BP filters were also set very precisely 
using a single calibration step. 
In 2003, Ǿivid Nœss, a student of Tor Sverre Lande from the University of Oslo, presented a 
low-voltage, low-power second-order filter consisting of six pseudo floating-gate transistors 
operating in the WI (Naess et al., 2003). Nœss recalled that in 1998 Sarpeshkar used offset 
adaptation circuitry in between each stage to limit the skew in offset/DC voltages through 
his BM cascade. By employing the pseudo floating-gate technique, such offset adaptation 
circuitry would not be necessary due to the capacitive coupling of the floating-gate nodes. 
The term ‘pseudo’ arises from the fact that the floating nodes are not truly floating but 
weakly connected. Nonetheless, the quiescent currents are still very low giving pseudo 
floating-gates the same advantage. Additional benefits of this technique include the 
possibility of operating them with very low-power, shifting the devices’ threshold voltages 
as seen from their capacitive coupled input terminals and an easy 
initialization/programmability of their floating-gate voltages. Finally, Nœss provided 
preliminary frequency response simulation results from a cascade of six biquads and 
reported a 5nW power dissipation with a –60dB suppression of the second harmonic at 
1kHz from a single second-order LP stage. 
The two last contributions came from Ivan Grech from the University of Surrey who 
published two journals with detailed measurements on a new low-power log-domain 
CMOS filterbank for extracting localization spectral cues from two audio signals (Grech et 
al., 2003; Grech et al., 2004). As far as we are aware, Grech’s implementation is the first log-
domain realization of a front-end for 2-D sound source localization. Moreover, it is the first 
ever effort which employed high-performance log-domain biquads operating in Class-AB. 
All additional circuits were current-mode translinear loops used for performing 
mathematical operations like squaring, division and maximum value detection. The inputs 
to the system, which were left and right ear audio signals were converted to current signals 
and then splitted into complementary differential signals using the harmonic mean splitting 
law. These signals were then logarithmically compressed after having their level adjusted by 
a current-mode, open-loop AGC block which acted globally altering the Q values of the 
subsequent BP filters. Each path was then processed by a parallel bank of 24 fourth-order BP 
log-domain filters whose CF changed from 50Hz to 20kHz in an exponentially decreasing 
fashion. Envelop processing was realized at the outputs of each BP filter by squaring and LP 
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filtering. Envelopes for CFs below 1kHz were further processed off-chip to extract interaural 
phase delay (IPD)2 cues, whereas higher frequency envelopes were used to extract interaural 
envelope delays (IED)3 cues. Finally, interaural intensity difference (IID)4 cues were 
extracted by dividing the envelopes of the left- and right-channels, whereas monaural5 cues 
were extracted by dividing the envelopes of adjacent filters of the same channel. Grech’s 
design has one of the highest performances reported to date with a measured BP stage input 
DR of 62dB at 1.8% THD (in excess of 80dB for the 4–5% THD figures used by other 
authors), second-order intermodulation distortion products below –40dB and an overall 
power dissipation of 890µW for the whole system. Moreover, he used on-chip, temperature 
independent biasing and a Q-value digital calibration memory for manually resetting a 
uniform peak response to all the BP stages. It should be noted that the maximum Q reported 
was 10.25 resulting in a measured passband gain of around 40dB. 
2005 & 2006: Five years after Germanovix’ CI effort, Julio Georgiou, his successor in 
Toumazou’s group at Imperial College London, was actually the first to validate a 16-
channel fully-implantable log-domain CI prosthesis system (Georgiou and Toumazou, 
2005a). Georgiou’s system occupied an area of 3.4mm×6mm and consisted of a) a mixed-
signal chip that combined the speech processor (utilizing a 16-channel Class-A BP log-
domain filterbank) and CIS stimulator, b) a rechargeable battery and c) a second chip for 
power management and charging circuits. The whole system was encapsulated in a 
hermetically sealed platinum case for biocompatibility reasons. Georgiou reported on a total 
of 126µW power consumption (including an off-chip microphone but excluding the CIS 
stimulation) and an input DR (at the BP pole frequencies) between 51 – 58dB for a 4% THD. 
His filters were Class-A log-domain filters with a state-elimination circuitry (to eliminate 
additional existing DC operating points (Fox and Nagarajan, 1999)) and a nominal power 
dissipation of only 40nW. It should be noted here that Georgiou performed rectification, 
compression and smoothing elegantly and with minimal power requirements by using a 
circuit that was identical to the nonlinear LP filtering stage used by Van Schaik in his IHC 
circuit model. Finally, Georgiou employed a digital AGC, in the form of saturation 
nonlinearity that acted globally on the input prior to being fed to the filterbank. In addition, 
it was also possible to externally program its attack and release time constants so that it 
responded more quickly to increasing amplitudes than to decreasing ones. On the other 
hand, Sarpeshkar’s final CI was also reported in 2005 (Sarpeshkar et al.  2005). Their design 
achieved a total power consumption of 211µW (including microphone and stimulation 
circuits), a DR of 77dB and occupied an area of 9.58mm×9.23mm. The basic circuit building 
blocks comprising their design were: 
1. A build-in microphone front-end (using the commercial JFET-buffered FG3329) electret 

microphone to transduce sound into an electrical signal. The microphone front-end was 
designed to have an 80dB input DR and its total power consumption was at 100µW 
(almost half the power dissipation of the whole CI). 

                                                 
2 IPD represents the time delay between the left and right channels for actual input signals of 

frequencies below 1kHz.  
3 IED is the same as IPD only for higher frequencies. 
4 IID represent the difference in signal intensity between the left and right channels. 
5 Monaural cues are directly related to intensity differences between adjacent frequency bands of the 

same channel. 
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2. An AGC circuit that was implemented by regulating the transconductance of a single 
transconductance-resistance variable gain amplifier (VGA). The signal from the 
microphone front-end was passed through an envelope detector (a cascade of a rectifier 
and LP filter) and consequently fed to a translinear circuit used to create the 
compressed output current for controlling the gain of the VGA. Moreover, the envelope 
detector had an asymmetry in its attack and release time constants. Their AGC had an 
effective 60dB of DR and a power consumption of 30µW.  

3. A 16-channel filterbank employing Salthouse’s fourth-order BP filters. 
4. A logarithmic A/D with 7-bit precision at 1kHz sampling rate with 3µW/channel. 
5. High PSRR and temperature independent current and voltage biasing with a total 

power dissipation of 3µW. 
6.  Digital I/O interface and CIS stimulator dissipating 32µW. 
The last 2005 contribution came from Christopher Galbraith who reported on a planar 

channelizer filter (i.e. a microwave multiplexer with a large number of output ports) based 

on a model of the mammalian cochlea operating at 20–90MHz. Applications of such a bio-

inspired system could include wideband electronic warfare systems and radio astronomy 

and spectroscopy. The channelizer filter topology was derived from the transmission-line 

model of the cochlea and he reported measured results from a 20-channel prototype chip 

(Galbrdith et al., 2005;Galbraith et al., 2007). The second RF cochlea followed one year later 

from Sarpeshkar (Mandal et al., 2006). 

Finally, one of the most recent neuromorphic efforts came from Bo Wen and Kwabena 
Boahen from Stanford University, where they presented a 2-D nonlinear cochlea model 
utilizing a novel active mechanism that realizes the frequency-selective OHC-based AGC 
(Wen and Boahen, 2006). Their AGC is based on a model of OHC electromotility through 
active bi-directional coupling that was initially proposed by Geisler and Sang in 1995 
(Geisler and Sang, 1995) and later extended by the authors in (Wen and Boahen, 2003). Their 
hypothetical model includes both feed-forward and feed-backward interactions supported by the 
physiological evidence:  
1. The force resulting from OHC contraction and elongation is exerted onto adjacent 

downstream BM segment due to the OHC basal tilt. 
2. The OHC force is delivered onto adjacent upstream BM segment due to the apical tilt of 

the phalangeal process extending from the Deiter’s cells’ main trunk. 
Thus, the OHC motile forces, through the microanatomy of the cochlea partition, feed 

forward and backward, in harmony with each other, resulting in bi-directional coupling 

between adjacent stages in the longitudinal direction. More specifically, due to the opposing 

action of the OHC forces on the BM and reticular lamina, the ith – 1 BM segment reinforces 

that of segment i, while the motion of segment ith + 1 opposes that of segment i.  

Their cochlea processor was built along the same lines with Watts’ and Van Schaik’s 2-D 

implementations. Wen’s fluid network was implemented by an array of diffusors (i.e. 

simple NMOS transistors in WI), while each BM segment was realized using pseudo-

differential Class-AB log-domain filters. The active bi-directional coupling was achieved by 

exchanging currents between neighbouring second-order sections, thus realizing an AGC 

mechanism without needing to detect the signal amplitude and implement AGC loops. Wen 

reported results from a fabricated chip with 360 BM segments and two 4680-element fluid 

grids (360×13) occupying 10.9mm2 area in a 0.25µm CMOS technology. However, Wen’s 

frequency responses seemed to be heavily affected by noise and mismatch resulting in quite 
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low DR performances (17 – 42dB), which generally are not indicative of pseudo-differential 

Class-AB log-domain implementations.  

2007: In this year, most contriburions came from Van Schaik’s group at the University of 
Sydney. The first one was a conference publication where his student Tara Julia Hamilton 
presented a BM resonator segment together with a feed-backward AGC control loop for 2-D 
cochlea implementations (Hamilton et al., 2007). The resonator stage was a Class-A log-
domain filter whereas the feedback AGC loop was comprised of a peak detector, a decision 
circuit, a ramp generator and Sarpeshkar’s WLR. The output signal level from the BM 
resonator was measured using the peak detector (again a variation of the nonlinear LP filter 
Van Schaik and Georgiou used in (Schaik, 2001) and (Georgiou and Toumazou, 2005b), 
respectively) and then fed into the decision circuit. The decision circuit was consisted of two 
current comparators with some additional digital logic for setting the ceiling and thresholds 
of the signal amplitudes (i.e. essentially specifying the Q-control law). In addition, the 
decision circuit employed hysteresis to avoid errors due to oscillations. The Q value of the 
resonator stage was set by the WLR’s output current whose value was controlled by the 
voltage from the ramp generator. A higher voltage generated a larger current and thus a 
larger Q value. When the ramp generator’s output voltage was equal to the supply voltage, 
the WLR’s output current was set to give the maximum Q value. Finally they reported 
preliminary simulated results on a) the manual Q adaptation of the BP log-domain 
frequency response, b) transient responses from the outputs of each AGC processing stages 
and c) the actual nonlinear input-output compressive function of their AGC. 
The final contributions came from Vincent Chan, Shih-Chii Liu and Van Schaik who 
presented a matched silicon cochlea pair with address event representation (AER) designed 
for sound localization applications (Vincent et al., 2007). In recent years, the AER interface 
has become the standard interface protocol for a plethora of neuromorphic (mostly vision) 
chips because it allows the use of discrete level (spikes), continuous-time events to convey 
information in a manner similar to the pulse code neural communication and processing 
schemes found in biological systems. The AER allows multiple devices to share a common 
data bus by using a hand-shaking protocol that arbitrates between transmitters to determine 
which transmitter can access the bus. The next transmission is not permitted unless an 
acknowledgment is returned from the receiver. This event-driven representation is ideal for 
communicating sparse events from many sources using a narrow channel, utilizing 
effectively the available power and bandwidth.  
One of the prior cochlea designs that utilized such a scheme is (Abdalla and Horiuchi, 2005). 
Their system was comprised of four main building blocks: a) two matched, 32-section, 
constant-Q and passive (Q = 0.75) silicon cochleae (identical to the one presented in [ ]), b) a 
new simplified version of Van Schaik’s IHC circuit (due to the other’s increased complexity 
and size), c) integrate-and-fire neurons for the AER and d) the AER interface circuitry to 
generate and communicate auditory nerve spikes. Thus, the output at each BM tap gets half-
wave rectified and LP filtered (effect of IHC), and consequently integrated on the membrane 
capacitance of the integrate-and-fire neuron which fired a spike. The neuron’s operation is 
similar to the one presented in (Schaik, 2001) with two additional voltage lines: the request 
(req) and acknowledgement (ack) which set and reset it, respectively: When a spike is 
generated, the req line goes low. A high pulse in the ack line resets the neuron, after which it 
enters a refractory period for a controllable duration. When a neuron makes a request (by 
pulling its req signal low), an on-chip arbiter arbitrates between all neurons making a 
request and sending off each neuron’s address in sequence through two external hand-
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shaking signals. Once the neuron’s address has been communicated off-chip, the arbiter 
sends a signal to the ack line which in turns resets the neurons. 
The authors provided an analysis on the mismatch, offset and gain errors of their system 
with additional measured results on a sound localization experiment performed in a 
reverberant realistic environment. They placed a dummy head at the centre of a room facing 
a loudspeaker with two microphones inserted in its ears. The recorded sounds were played 
to the left and right cochleae through a soundcard. The dummy head was rotated from –90o 
to +90o in 5o steps and interaural time delay (ITD) cues were extracted by performing cross-
correlation on the spike trains between all corresponding channels. Fig. 31 shows that the 
calculated delay had a sinusoidal shape with the maximum delays occurring close to the 
two 90o angle extremes as expected. 
 

 

Fig. 31. (a) Experimental setup. The source was fixed but the dummy is free to rotate from – 
90o to +90o in 5o steps. Microphones were inserted into its ear to record the sound at each 
position. (b) ITD computed by cross-correlation of the spike trains from all channels of the 
two matched silicon cochleae; adapted from Chan (Vincent et al., 2007). 

2009: Our final contribution is from Andreas Katsiamis, who designed a very-high dynamic 
range and low-power cochlea channel with focus on biorealism and performance (Katsiamis 
A.G. et al.  2009). The design implements a recently proposed transfer function, namely the 
One-Zero Gammatone Filter (or OZGF), which provides a robust foundation for modeling a 
variety of auditory data such as realistic passband asymmetry, linear low-frequency tail and 
level-dependent gain (Katsiamis A.G. et al., 2007). Moreover, the OZGF is attractive because 
it can be implemented efficiently in any technological medium – analogue or digital – using 
standard building blocks. The channel was synthesized using novel, low-power, Class-AB, 
log-domain, biquadratic filters employing MOS transistors operating in their weak inversion 
regime. In addition, his work details the design of a new low-power automatic gain control 
circuit that adapts the gain of the channel according to the input signal strength, thereby 
extending significantly its input dynamic range. The performance of a 4th-order OZGF 
channel (equivalent to an 8th-order cascaded filter structure) was evaluated through both 
detailed simulations and measurements from a fabricated chip using the commercially 
available 0.35µm AMS CMOS process. The whole system was tuned at 3kHz, dissipated a 
mere 4.46µW of static power, accommodated 124dB (at <5% THD) of input dynamic range 
at the center frequency and  was set to provide up to 70dB of amplification for small signals. 
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4. Summary and conclusion 

This chapter has hopefully served two main purposes: a) to form  a detailed review of all the 
important developments on the modelling, design and experimental verification of CMOS 
VLSI cochlea processors, and b) to equip the reader with the general knowledge needed so 
that s/he can appreciate the design/modelling efforts presented in the following chapters.  
This chapter discussed in considerable detail most of the advancements on the modelling 
and design of CMOS VLSI cochlea systems from 1982 until recently. From Lyon’s initial 
1982 and 1988 papers, there were numerous attempts from various research groups to 
extend and optimize the design of cochlea processors for applications including cue 
extraction for source localization, cochlea implants and general speech recognition front-
ends. In this chapter we reviewed the application of voltage mode (gm-C), discrete-time 
(switch-capacitor and switch-current), current-mode (switch-current, log-domain and 
current-conveyor-based) and even microwave-RF circuit design techniques in pursue of 
cochlea processors of an increased overall performance. We also saw several variations in 
the architecture of the BM filtering (1- and 2-D BM cascade, simple BP filterbanks, parallel 
banks of cascaded filters, dilating-biquads filterbanks and variable clock-frequency 
filterbanks) and bio-plausible designs of IHC and neuron circuits together with several 
versions of the OHC-based AGC (static compression, feedback, feed-forward or both). In 
conclusion, the design of artificial cochlea systems able to exhibit a high overall performance 
with a high degree of biological fidelity was and very much still is a perpetual objective.  
 

 

Fig. 32. Timeline of most important CMOS Cochlea Advancements. 
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Authors Description – 
Application 

IHC/OHC/SGN Architecture Stages/ 
Channels 

Method Power DR Size 

R.F. Lyon  1st CMOS Cochlea No Filter-Cascade 480 gm-C N/A N/A N/A 
J. Lazzaro 1st Sound Localization System Yes Filter-Cascade 62x2 gm-C N/A 60dB N/A 
L. Watts 1st Improved 1-D Cochlea No Filter-Cascade  43-51 gm-C 11μW N/A 5mm2 
W. Liu Speech Recognition Yes/Yes/No Filter-Cascade 30 gm-C 15μW 50dB 4.84mm2 
J. Lin Cochlea Filters  No FilterBank 32 Switch-Cap N/A N/A N/A 

N. Bhadkamkar Sound Localization Yes Filter-Cascade 60x2 gm-C N/A N/A N/A 
L. Watts 1st 2-D Cochlea No Resistive Grid 61x5 gm-C N/A N/A 31.28mm2 1993 

N. Bhadkamkar Sound Localization Yes FilterBank 25x2 gm-C N/A N/A 31.28mm2 1994 
J. Lin Auditory Wavelet Transform No FilterBank 32 Switch-Cap N/A N/A 31.28mm2 

C. Toumazou Cochlea Filters No N/A 1 Log-domain 0.25μW 80dB N/A 
C. Abel CMOS Cochlea No Filter-Cascade 16 Switch-Current N/A N/A N/A 

Y.C. Chen Circuits for Cochlea Implants Yes/No/Yes Filter-Cascade 30 gm-C N/A N/A N/A 
P. Furth Architectural Investigation  No Filter-Bank 16 gm-C 355nW 28dB N/A 
P. Furth OTA Designs  No N/A N/A gm-C N/A 48-51dB N/A 
J.C. Bor SC Cochlea Processor No Filter-Cascade 32 Switch-Cap N/A 67dB 12.25mm2 

R. Sarpeshkar 1st Active Cochlea No/Yes/No Filter-Cascade 45 gm-C N/A 60dB 4.84mm2 
A. Van Schaik 2nd Improved 1-D Cochlea  No Filter-Cascade 104 gm-C N/A N/A 15.3mm2 

P. Furth OTA Designs No N/A N/A gm-C N/A 66dB N/A 
E. Fragniére Active Cochlea Model Yes/Yes/No Filter-Cascade N/A gm-C N/A N/A N/A 

R. Sarpeshkar 1st Active Cochlea Chip Yes/Yes/No Filter-Cascade 117 gm-C 0.5mW 61dB 7.7mm2 
R. T. Edwards Cochlea BP Filterbank No N/A 15 Log-domain N/A N/A N/A 

N. Kumar Speech Recognition No Filter-Cascade 15 Mixed-Signal N/A N/A 4mm2 
T. Hinck Current-mode Cochlea No TWamp 100 Current-mode N/A 54dB N/A 

R. T. Edwards Auditory Log-domain Circuits No Filter-Bank 15 Log-domain 200μW 35dB 4mm2 
W. Germanovix 1st Analogue CI No Single-Channel 1 Log-domain N/A N/A N/A 
A. Van Schaik Periodicity Extraction Yes/Yes/Yes Filter-Cascade 104 gm-C >25mW N/A 15.3mm2 2001 
A. Van Schaik A 2-D CMOS Cochlea No Resistive Grid 100 P-V domain N/A N/A N/A 

D. Graham 10th-order BP Filters  No Filter-Bank 16 Current-Conveyor 
0.11μW/

stage 
N/A 2.25mm2 

C. Salthouse 4th-order BP Filter for CI N/A N/A 1 gm-C 6.36μW 65dB N/A 
Ǿ. Nœss  LP biquad for CMOS Cochlea N/A N/A 1 Floating-Gate 4.8nW N/A N/A 

M. W. Baker Analogue FilterBank for CI No Filter-Bank 16 gm-C 470μW 51dB 88.4mm2 
I. Grech 2-D Sound Localization Yes/Yes/No Filter-Bank 24x2 Log-domain 890μW >>62dB 143mm2 

J. Georgiou 1st Fully-Implantable CI Yes/Yes/No Filter-Bank 16 (2x8) Log-domain 126μW 51-58dB 21mm2 
R. Sarpeshkar A High-Performance CI Yes/Yes/No Filter-Bank 16 gm-C 211μW 77dB 88.4mm2 

B. Wen 2-D Active Cochlea Yes/Yes/No Resistive Grid 360 Log-domain 52mW 17-42dB 10.9mm2 
V. Chan 2-D Cochlea with AER  Yes/No/Yes Filter-Cascade 32x2 gm-C N/A N/A 5.4mm2 

A. Katsiamis OZGF Channel with AGC Yes/Yes/No Filter-Cascade 4x1 Log-domain 4.46μW 124dB 2.25mm2  
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One may be caught by surprise to realize the fact that the engineering principles the real 
cochlea is using are not conceptually far from what we had developed over the years to 
solve various engineering problems: Master/Slave architectures with automatic control for 
tuning and stabilization, compression for the accommodation of large inputs, gain 
adaptation to maintain signal integrity, rectification and filtering for strength detection, 
parallel processing (i.e. redundancy) to increase speed and robustness, to name just a few, 
are concepts that were developed by engineers who might had not ‘made the link’ with 
biological correlates. Yet, nature had all these ideas for millions of years and had already 
optimized them to realise systems which are able to perform with astonishing reliability in 
the haziest of environments. The cochlea is just one of those systems and to this author’s 
opinion this is exactly the scientific contribution of neuromorphic engineering. 
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