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Abstract

The elastic response of circular cylindrical holes in elastic plates is analyzed using
the linear superposition method (LSM) to assess the impact of plate thickness on the
stress state for the thin- and thick-plate solutions. Analytical solutions for stress
accumulations near holes in elastic plates are relevant for a wide range of practical
applications. For example, detailed analyses of the stress concentrations near
boreholes piercing rock formations are needed during drilling operations to avoid
premature fracturing due to tensile and shear failure. Stress concentrations near tiny
holes in very thick plates approach the solution of a plane strain boundary condition;
for large holes in very thin plates, the solution of a plane stress boundary condition
will apply. For most practical cases, the response will be intermediate between the
plane stress and plane strain end members, depending on the relative dimensions
of the thickness of the elastic volume penetrated and the hole diameter. A
nondimensional scaling parameter is introduced to quantify for which hole radius
to plate thickness ratio occurs the transition between the two types of solutions
(plane strain versus plane stress). Moreover, in this study, we consider the case of the
presence of the internal pressure load in the analysis of the stress concentrations near
boreholes. This consideration is important to carefully assess the magnitude of the
elastic stress concentrations and their orientation near the hole in the rock formation
when the pressure load of the mud is added to the borehole during drilling operations.
For holes subjected to an internal pressure only, there is no difference between the
plane stress (thin-plate solution) and plane strain solutions (thick-plate solutions). For
cases with far-field stress, the plane strain solution is more sensitive to the Poisson’s
ratio than the plane stress solution. Multi-hole problems are also evaluated with LSM
and the results are benchmarked against known solutions of different methods.

Keywords: displacement fields, linear superposition method (LSM), multi-hole
solutions, plane strain, plane stress
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1. Introduction

This study seeks to clarify the accuracy and possible limitations of the classical
analytical solutions of Kirsch [1]—for the stress tensor field in linear-elastic plates
pierced by one or more circular holes under certain far-field stress and internal
pressure loads—when used in practical applications. These solutions are widely
applied in wellbore-stability models and tunneling applications, and regularly involve
the superposition of elastic displacements due to various boundary forces (far-field
and internal pressure-loading) acting on the holes. Such situations have been system-
ically evaluated for linear-elastic isotropic and anisotropic rocks under a plane stress
assumption [2–4].

However, recurrent concerns prevail related to the accuracy of results when using
the solutions of [1] without modifications in wellbore-stability models. For example,
the density of drilling mud pumped into the space between the wellbore and the drill
string during drilling operations needs to be selected such that fracturing due to
tensile and shear failure will not occur [5–7]. Obviously, the magnitude of the elastic
stress concentrations and their orientation near the hole in the rock formation will
rapidly vary when the pressure load of the mud is added to the borehole. When there
is no internal pressure on the wellbore, the stress concentration factor for uni-axial
far-field stress is always 3 (and for a biaxial compression reaches 4 [8]). However,
when a net pressure is exerted on the wellbore’s interior, the induced elastic deforma-
tion of the host rock increases or decreases the stress concentrations induced by the
far-field stress, and therefore both contributions must be carefully evaluated, prefer-
ably in real-time, during drilling operations [9]. The need for real-time analysis is also
the reason why superposed analytical solutions are still in vogue and cannot easily be
replaced by solution methods that require gridding and have consequent longer com-
putation times.

An additional concern is whether the standard plane stress solution of Kirsch [1] is
accurate enough, whether a plane strain approach should be used, or any other
approach. The plane stress solution is an end member solution for so-called thin
plates; the other end member would be a thick-plate approach (plane strain assump-
tion); each is often portrayed as 2D solution but in fact considers the state of 3D strain
and stress, respectively, at all times. Although prior studies have evaluated the differ-
ence between plane strain and plane stress solutions, typically only the maximum
stress concentrations are compared without analyzing the stress states further away
from the boreholes. Also, the effect of the internal pressure loading superposed in the
far-field stress anisotropy is normally only evaluated for arbitrarily chosen cases,
which is why additional systematic evaluations in our study are merited.

Other concerns arise when multiple wells are drilled in close proximity from the
same surface location and the stress interference due to the mutual interaction
between the wells needs to be accounted for in the wellbore stability models. Our
analysis considers both single-hole solutions and solutions for the superposition of
multi-holes, all with or without individually varying pressure loads in addition to the
far-field stress loading. The method of solution used is the linear superposition
method (LSM) first named in ref. [3], which adds the elastic displacement vectors due
to various contributions (usually boundary forces) to the elastic distortion and then
solves the stress tensor field using an appropriate constitutive equation for linear
elasticity.

The present analysis revisits the basic solutions for plane stress and plane strain,
points out some earlier errors in displacement equations appearing in standard
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textbooks, and then proceeds to compute and compare the two end-member solutions
(plane stress and plane strain). We also quantify the delta between thin and thick-
plate solutions for multi-hole problems using the LSM method (analytical superposi-
tion of displacements) for which plane stress solutions were first given in ref. [3].
Plane strain solutions are developed in the present study to quantify the delta between
the solutions due to the assumed boundary condition. Additionally, the LSM multi-
hole results are validated against—(1) photo-elastic contour patterns for a 5-hole
problem of Koslowska [10], and (2) a numerical example of Yi et al. [11]. The present
study is limited to hole analysis based on a linear elasticity assumption for isotropic
elastic plates; borehole analysis of anisotropic media was given in prior work [4, 9],
applying equations developed for plane stress cases in [12].

2. Prior work

The petroleum, mining, and geotechnical tunneling industry have embraced the
Kirsch equations for stability analysis of cylindrical boreholes in isotropic media. The
governing equations for the Kirsch solution are based on Airy’s stress function. A fact
easily overlooked and little emphasized is that the equations introduced by Kirsch [1]
assume a boundary condition of plane deviatoric stress, which would strictly limit the
use of the Kirsch equations to cases that comply with the original boundary condition
of plane stress. In spite of this limitation, the Kirsch equations are routinely applied in
wellbore stability computations that may potentially yield inaccurate results if initially
assumed boundary conditions in the analytical solutions are not met in the field
application. For example, one may suggest that it may be more appropriate for deep
boreholes in thick formations to use a thick-plate analysis (plane strain boundary
condition), rather than the thin-plate analysis that fully justifies the use of the original
Kirsch equations.

In nature and in real manufactured materials, the plane stress solution would only
be valid for very large holes in very thin plates, such as for rivets in thin airfoils used
in aircraft. However, for very thick elastic media perforated by tiny holes, such as in
the case of boreholes penetrating rock formations of several kilometers thickness, the
plane strain boundary condition seems more appropriate. We, therefore, evaluated
what may be the actual inaccuracy creeping into the analysis of the stress concentra-
tion magnitude due to variations in the boundary conditions. Unwarranted wellbore
stability problems may occur if the stress state in the well appears to deviate from
plane stress proxy solutions. The delta between the stress solutions for the thin and
thick-plate approaches is fully quantified in the present study for a variety of cases.

2.1 Evaluation by Clark

The notion that considerable differences may arise between stress magnitudes in
elastic plates due to different transverse boundary conditions (such as plane stress
versus plane strain) if subjected to otherwise the same far-field stress has been long
recognized. That the stress differential may become significant was quantified in a
study by Clark [13] for a uniform plate of finite, uniform thickness (and no holes)
loaded with time-dependent far-field sinusoidal stresses at a lateral edge of the plate.
Three cases were highlighted in ref. [13], scaling the problem with a typical wave-

length, l, of the sinusoidal load and the plate thickness, 2h. For 2h
l ! 0, we have plane
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stress (when the wavelength of stress applied is very large as compared to thickness).

For 2h
l ! ∞, we have plane strain (when the wavelength of stress applied is very

small as compared to thickness). When the wavelength is comparable to the thickness
2h
l ¼ 1, the maximum stress at the edges of the plate may be up to 20% larger than for

“elementary plane stress” (also termed “generalized plane stress” or “very thin plate

theory”), which occurs when (2hl ! 0). The stress concentration values obtained for
2h
l ¼ 1 exceed the plane strain solution (2hl ! ∞) by 31%. Clark [13] also emphasized

that the generalized 2D plane stress solution for isotropic elastic plates is independent
of the Poisson’s ratio and neglects totally the transverse and normal stresses. Given the
results of Clark [13], it is by no means obvious whether we may neglect the variations
in both the stress concentrations and the stress transverse to an elastic plate with
finite thickness and a boundary condition that is somewhere close to halfway between
plane strain and plane stress. Below we discuss this quandary of the impact of bound-
ary conditions on stress concentrations and transverse stresses for isotropic elastic
plates with circular holes. Although the stress magnitude differentials according to
ref. [13] may not be applicable to static loading cases (see later), borehole stability
may be adversely impacted by seismic events, given the considerable differences in
stress magnitude solutions when sinusoidal stress loads of different wavelengths are
applied.

2.2 Evaluation by Green

Green [14] considered a linear elastic plate scaled by thickness 2h perforated by a
hole of typical radius a. He introduced a practical dimensionless scaling parameter a

h

with hole radius in the nominator and plate half-thickness in the denominator. For a
thick plate a

h ! 0
� �

, a plane strain boundary condition can be assumed (in this case the

strain in the z-direction εzz ¼ 0). For a thin-plate solution a
h ! ∞

� �

, a plane stress

boundary condition can be assumed (in this case the stress in the z-direction σzz ¼ 0).
The impact of boundary conditions—on the stress concentrations and transverse
stresses in elastic plates with circular holes—that are midway between those leading to
either perfect plane stress or perfect plane strain cases were reviewed by Green [14].
He posited that the case a

h ¼ 1 would lie midway between the two extremes of plane

strain a
h ! 0
� �

and plane stress a
h ! ∞

� �

boundary conditions. Based on 3D calcula-

tions for the case a
h ¼ 1 (“midway” boundary condition), the stress concentration

halfway the total depth of the plate at z ¼ 0 in the rim of a single hole in a location
transverse to the applied far-field stress, σxx�∞

, increased to 3:10 σxx�∞
. If σxx�∞

>0,
we have a tension under the engineering sign convention, and hence 3:10 σxx�∞

is an
increased tension. At the plate’s surface z ¼ h (for the case a

h ¼ 1), the maximum stress

concentration was less: 2:81 σxx�∞
.

For both plane strain and generalized plane stress, the maximum stress concentra-
tion averaged over the thickness of the plate should be equal to 3σxx�∞

[14]. This
solution is exact for plane strain (thick plates) where—from a theoretical point of
view—there may exist no variation in the maximum stress concentration near the hole
for any depth z. However, for the finite-thickness plate (case with a

h ¼ 1), only the

averaged value will be 3σxx�∞
, as is evident from [14] treatise. Again, at z ¼ 0 at the

rim of a single hole, we have 3:10 σxx�∞
(+3% different from 3σxx�∞

), while at the
surface of the plate at z ¼ h, the maximum stress concentration was lowered to
2:81σxx�∞

(�6% different from 3 σxx�∞
). The stress attenuation at the hole rim in the
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longitudinal direction parallel to σxx�∞
appeared to vary from �1:10 σxx�∞

at z ¼ 0 (a
compression +10% above �σxx�∞

), while at the surface of the plate at z ¼ h the stress
concentration was �0:81 σxx�∞

(19% below �σxx�∞
). Likewise, in ref. [15], Yang et al.

found stress concentrations between two interacting holes in a finite-thickness elastic
plate are maximum only at z ¼ 0, but decrease toward the surface of the plate z ! hð Þ.
Also, as the plates thicken, the maximum stress concentration shifts gradually to the
surface of the plates.

According to [16] “generalized plane stress”-theorem, variations in stress concen-
tration values throughout the thickness of a plate coinciding with the x, yð Þ-plane can
be neglected and only the average values of the remaining stress are estimated.
However, as Green [14] showed for solutions at the rim of a circular hole, there will
be variations in stress concentrations over depth 0≤ z≤ h when the plate has a finite
thickness, characterized by a

h. However, for a
h ¼ 1, the average maximum stress

concentration would only deviate about 3% from the average values. Green [14]
concluded that the generalized plane stress theory gives “fairly good” estimations
for the average values of stress concentrations at the hole in a stressed plate with
boundary conditions “midway” between plane stress and plane strain (adopting a

h ¼ 1

for this case).

2.3 Other evaluations

In our opinion, there can be little doubt that plane strain is the obvious boundary
condition when boreholes are drilled in thick formations. So, the question is, what
(if any) corrections are necessary when applying the Kirsch equations for plane
stress to compute the stress concentrations near real-world boreholes. This question
is addressed below considering two cases (A and B), as previously evaluated in
ref. [4].

The plane stress boundary condition σzz ¼ σxz ¼ σyz ¼ 0
� �

assumed in the Kirsch

solution in ref. [1] implies that the mean stress σ in the thin elastic plate a
h ! ∞

� �

is

everywhere given by: σ ¼ σxxþσyy

3 (Case A). For plane strain, the mean stress σ ∗ within

the thick plate’s x, yð Þ�plane of the thick plate a
h ! 0
� �

is given by σ
∗ ¼ 1þνð Þ σ

∗

xxþσ
∗

yyð Þ
3

(Case B), introducing the Poisson’s ratio ν. The longitudinal stress is given by σ
∗

zz ¼

ν σ
∗

xx þ σ
∗

yy

� �

; the longitudinal strain along the borehole is absent ε ∗zz ¼ 0. For the

special case of ν ¼ 0, the longitudinal stress will vanish, but rocks have Poisson’s ratio
closer to 0.25.

We may assume that the mean stresses for adjacent plane strain and plane stress
sections of a borehole will be nearly identical stress concentration requirements such
that we may equate the mean stress expressions for Case A and for Case B, from which

it follows that
σxxþσyy

σ ∗
xxþσ ∗

yy
¼ 1þ ν. This relationship says that the magnitude of the principal

stresses σxx þ σyy acting in a plane stress section of the borehole will be larger than the
plane strain case σ ∗

xx þ σ
∗

yy by a factor 1þ ν (about 125% in practice, using ν ¼ 0:25).

For plane stress, the longitudinal strain component is given by εzz ¼ � ν

E σxx þ σyy

� �

,
where E is Young’s modulus of the material, which for practical situations with thin-
bedded rock strata are negligibly small strains that can be easily accommodated by the
discontinuities in strain occurring due to variations in the elastic constants when the
drill bit moves from one rock layer into the next.
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3. Methodology

The series of analytical expressions used to produce the solutions in Section 4 are
outlined in Section 3. We start out with the generic elastic displacement equations for
a single hole in an infinite plate subjected to far-field stress (Section 3.1), which can be
solved for plane strain (Section 3.2) or plane stress (Section 3.3) boundary conditions.
Although these expressions are basic, some confusing errors occur in both primary
(journal papers) and secondary (textbooks) literature, which need to be pointed out
(see respective sections below). What is new in our approach is that we do not solely
focus on the stress concentrations at the hole but solve the stress magnitudes and
principal stress orientations throughout the plates for a finite domain near the hole
(Section 4) based on the equations given in Section 3.

The difference or delta between the stress magnitudes due to a plane strain or
plane stress assumption is quantified in an explicit expression (Section 3.4). Because
boreholes are commonly pressured from the inside by a net mud pressure, we also
evaluate the displacements due to the internal pressure on the wellbore (Section 3.5).
The equations of Sections 3.1–3.5 are all given in polar coordinates, but the far-field
stresses in nature are typically uniform in Cartesian directions, which is why we
switch to Cartesian coordinates in Sections 3.6. The use of Cartesian coordinates is
essential for our analysis of both single-hole problems (Section 4.1) and multi-hole
solutions (Section 4.2). Ultimately, when all the vector displacements have been
computed and converted to strains, constitutive equations are needed (Section 3.7) to
convert certain strain tensor fields, for any given set of elastic moduli to the
corresponding stress field. The systematic series of equations in Sections 3.1 to 3.7 was
used to produce the results in Section 4.

3.1 Hole displacement equations

In the theory of linear elasticity, stress quantities are linear functions of the dis-
placement gradients expressed as strain quantities. Let us analyze the elastic displace-
ments around a circular cylindrical hole of radius a, in an infinite plate subjected to
far-field stress, σxx�∞

, acting along the x-axis. Analytical solutions for the displace-
ment equations in polar coordinates r, θð Þ are (see ref. [17]):

ur ¼
σxx�∞

8 G
a

r

a
κ � 1þ 2 cos 2θð Þ þ 2a

r
1þ κ þ 1� a2

r2

� �

cos 2θ

� 	
 �

(1)

uθ ¼
σxx�∞

8 G
a � 2r

a
þ 2a

r
1� κ � a2

r2

� �� 	

sin 2θ (2)

Above expressions capture the displacements for either plane strain or plane
stress, depending upon the value inserted for κ, to be readily able to convert solutions
for plane stress to plane strain, and vice-versa. In the above example, the solution
for plane strain is given by substituting κ ¼ 3� 4 ν; for plane stress, one should use
κ ¼ 3� νð Þ= 1þ vð Þ. Physically, the plane stress boundary condition applies to thin
plates, while the plane strain condition applies to thick plates. The delta between
the displacements and associated stress concentrations outcomes of the two
approaches has not been made explicit, either for single or multiple holes, in any
prior study.
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3.2 Plane strain solution for the hole with uniaxial far-field stress

Using Eqs. (1) and (2) and substituting κ ¼ 3� 4 ν for plane strain, the displace-
ment solutions are:

ur ¼
σxx�∞

4 Gr
r2 1� 2 νþ cos 2θð Þ þ a2 1þ 4 1� νð Þ � a2

r2

� �

cos 2θ

� 	
 �

(3)

uθ ¼ � σxx�∞

4 Gr
r2 þ a2 2 1� 2 νð Þ þ a2

r2

� �� 	

sin 2θ (4)

The above expressions for plane strain may be formulated using Young’s
modulus, E, instead of the shear modulus, G, substituting G ¼ E=2 1þ νð Þ into Eqs. (3)
and (4):

ur ¼ σxx�∞

1þ v

2Er

� �

r2 1� 2vþ cos 2θð Þ þ a2 1þ 4 1� vð Þ � a2

r2

� �

cos 2θ

� 	
 �

(5)

uθ ¼ �σxx�∞

1þ v

2Er

� �

r2 þ a2 2 1� 2vð Þ þ a2

r2

� �� 	

sin 2θ (6)

It is worth noting that a textbook by Goodman [18] has wrongly truncated terms in
his Eq. (7.2a) and a sign error occurs in his Eq. (7.2b). Moreover, Kirsch’s Equations
[1] are quoted in his Eq. (7.1a–c) with a wrong statement that these would be valid for
plane strain; the quoted equations are for plane stress boundary conditions. Several
other sources [19–20] have promulgated the use of wrong equations similar to
Goodman’s (without mentioning the source). The original Kirsch equations are widely
used, but also widely misused or marred by misprinted equations in the literature. For
example, Eq. (3.15) in [21] has a typo, and dropped a plus sign between two terms, for
the radial stress around a single borehole.

3.3 Plane stress solution for the hole with uniaxial far-field stress

With the expressions of Sections 2.1 and 2.3 in place, we now solve Eqs. (1) and (2)
for plane stress by substituting κ ¼ 3� νð Þ= 1þ vð Þ; the corresponding displacement
solutions are:

ur ¼
σxx�∞

4 Gr

1� v

1þ v
r2 þ a2 þ 4a2

1þ v
þ r2 � a4

r2

� �

cos 2θ


 �

(7)

uθ ¼ � σxx�∞

4 Gr

1� v

1þ v
2a2 þ r2 þ a4

r2

� 	

sin 2θ (8)

The above expressions for plane stress may be formulated using Young’s modulus,
E, instead of the shear modulus, G, substituting G ¼ E=2 1þ νð Þ into Eqs. (7) and (8):

ur ¼ σxx�∞

1þ v

2Er

� �

1� v

1þ v
r2 þ a2 þ 4a2

1þ v
þ r2 � a4

r2

� �

cos 2θ


 �

(9)

uθ ¼ �σxx�∞

1þ v

2Er

� �

1� v

1þ v
2a2 þ r2 þ a4

r2

� 	

sin 2θ (10)
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Eqs. (9) and (10) are identical to those given in [22] (p. 740–742) and were used in
a prior study focused on multi-hole problems under plane stress [3].

Separately, we checked for the computational integrity of the plane strain dis-
placement solutions of Section 3.2 by applying a standard conversion substitution, as
explained in Appendix A.

3.4 Delta between plane strain and plane stress solutions with uniaxial
far-field stress

The residual displacements when subtracting Eqs. (9) from (5), and (10) from (6),
respectively, are:

ur ¼ σxx�∞

1þ v

2Er

� �

r2 1� 2vþ cos 2θð Þ þ a2 1þ 4 1� vð Þ � a2

r2

� �

cos 2θ

� 	� 	

8

<

:

� 1� v

1þ v
r2 þ a2 þ 4a2

1þ v
þ r2 � a4

r2

� �

cos 2θ

� 	

9

=

;

,

¼ �σxx�∞

v2

Er

� �

r2 þ 2a2 cos 2θ
� 

: (11)

uθ ¼�σxx�∞

1þ v

2Er

� �

r2 þ a2 2 1� 2vð Þ þ a2

r2

� �� 	

sin2θ� 1� v

1þ v
2a2 þ r2 þ a4

r2

� �

sin 2θ


 �

¼ σxx�∞

v2

Er

� �

2a2 sin 2θ
� �

: (12)

3.5 Plane strain and plane stress solutions for the hole with internal pressure

From [23] general solution for a hollow cylinder (with infinite axial length)
pressured inside and outside with different pressures, can be obtained a simple dis-
placement solution for a hole in an infinite plate by letting the outer radius of the
cylinder go to infinity such that only the term remains for the radial displacement due
to the pressure inside the cylinder:

ur ¼ �P
a2

r

1þ v

E
¼ �P

a2

r

1

G
(13)

uθ ¼ 0 (14)

Above displacement field is due to a hole internally pressurized under plane strain
boundary conditions and assumes P is given as a negative value when causing
compression (as in mechanical engineering sign conventions); if we prefer to use P
as a positive input, the minus sign in Eq. (13) must be dropped. Following ref. [3],
we will consider positive P inputs (so minus sign will be dropped from Eq. (13) in the
rest of this paper).

Plane strain solutions formulated with G can be converted to plane stress
solutions by replacing ν with ν

1þν
(e.g., [17], page 115). Eq. (13) when formulated with
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G is identical to the plane strain solution, as applied in ref. [3], which means the
plane stress solution is independent of ν. Therefore, the delta or residual
displacement, in this case, will be zero. The displacement solution for an internally
pressured hole in an infinite plate appears insensitive to the thickness of the plate,
which can be understood via physical reasoning as follows. Adopting the definitions in
[14] treatise on 3D stress systems in isotropic plates, for a

h ! ∞ we have a thin-plate

problem (plane stress) and for a
h ! 0 we have a thick-plate problem (plane strain).

In all 3D solutions for plane stress and plane strain cases, the solutions are identical
in planes midway the plates at h ¼ 0. However, when the plates possess a finite
thickness, differences in solutions for plates with holes subjected to a far-field stress
under plane strain and plane stress arise when studying solutions, where h ! 0.
The internally pressured hole solution is insensitive to plate thickness, because for
both plane strain and plane stress cases, the pressure on the hole is assumed uniform
along h, so essentially does not allow stresses to occur normal to the plate by strictly
maintaining the pressure equal to P even at the rim of the hole near the surface
(see Section 4).

3.6 Conversion to Cartesian coordinates

The conversion of the displacement solutions from polar to Cartesian coordinates
is practical for single-hole and multi-hole analysis (which requires superposition) of
practical borehole problems because the far-field (tectonic) stresses are assumed more
or less constant in the three individual Cartesian directions. It is emphasized here that
the solutions in Cartesian and polar coordinates only differ in coordinate transforma-
tion to facilitate the visualization of either polar or Cartesian vector displacements,
each with their corresponding solutions for the stress and strain tensor components.
However, the principal stresses remain invariant to the coordinate system used.
The conversion from polar to Cartesian coordinates follows the same steps as in
Eqs. (12–17) of ref. [3].

3.6.1 Cartesian coordinates of plane strain solutions (uniaxial far-field stress)

The displacement Eqs. (5) and (6) in polar vector coordinates ur, uθð Þ are
converted to Cartesian displacements vector coordinates ux, uy

� �

using the appropri-
ate coordinate transformation equations (see Appendix B for details):

ux ¼ ur cos θ � uθ sin θ, uy ¼ ur sin θ þ uθ cos θ

We get:

ux ¼ σxx�∞

1þ v

2E

� �

x2þ y2
� �

1� 2vð Þþx2� y2þ a2þ4a2 1� vð Þ x2� y2

x2þ y2

� �

2

4

8

<

:

� a4
x2� y2

x2þ y2ð Þ2

 !

3

5

x

x2þ y2

� �

þ 2xyþ 1� 2vð Þ 4a2xy

x2þ y2

� �

þ 2a4xy

x2þ y2ð Þ2

" #

y

x2þ y2

� �

9

=

;

(15)
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uy ¼ σxx�∞

1þ v

2E

� �

x2þ y2
� �

1� 2vð Þþx2� y2þa2þ4a2 1� vð Þ x2� y2

x2þ y2

� �

2

4

8

<

:

� a4
x2� y2

x2þ y2ð Þ2

 !

3

5

y

x2þ y2

� �

� 2xyþ 1� 2vð Þ 4a2xy

x2þ y2

� �

þ 2a4xy

x2þ y2ð Þ2

" #

x

x2þ y2

� �

9

=

;

(16)

3.6.2 Cartesian coordinates of plane stress solutions (uniaxial far-field stress)

The displacement Eqs. (9) and (10) were converted to Cartesian coordinate in
ref. [3] as:

ux ¼ σxx�∞

1þ v

2E

� �

1� v

1þ v
x2 þ y2
� �

þ a2 þ 4a2

1þ v
þ x2 þ y2 � a4

x2 þ y2

� �

x2 � y2

x2 þ y2

� �� 	

8

<

:

� x

x2 þ y2

� �

þ 1� v

1þ v
2a2 þ x2 þ y2 þ a4

x2 þ y2

� �

2xy

x2 þ y2

� �� 	

y

x2 þ y2

� �

9

=

;

(17)

uy ¼ σxx�∞

1þ v

2E

� �

1� v

1þ v
x2 þ y2
� �

þ a2 þ 4a2

1þ v
þ x2 þ y2 � a4

x2 þ y2

� �

x2 � y2

x2 þ y2

� �� 	

8

<

:

� y

x2 þ y2

� �

� 1� v

1þ v
2a2 þ x2 þ y2 þ a4

x2 þ y2

� �

2xy

x2 þ y2

� �� 	

x

x2 þ y2

� �

9

=

;

(18)

Eqs. (15)–(18) are valid for a borehole centered at the origin. For holes with their
centers shifted to an arbitrary location xs, ys

� �

, we replace x by x� xsð Þ and y by

y� ys
� �

. For multiple wellbore problems, as in ref. [3], we add the following terms to
Eqs. (15) and (16) for the plane strain case:

ux ¼
� n� 1ð Þ

n

σxx�∞
1� v2ð Þ
E

x (19)

uy ¼
n� 1ð Þ
n

σxx�∞
v 1� v2ð Þ

E 1� vð Þ y (20)

and the following terms to Eqs. (17) and (18) for the plane stress case:

ux ¼
� n� 1ð Þ

n

σxx�∞

E
x (21)

uy ¼
n� 1ð Þ
n

σxx�∞
v

E
y (22)
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where n denotes the number of boreholes. The total displacement vectors (ux,total and
uy,total) due to all holes combined can be computed by the following summations:

ux,total ¼
X

n

i¼1

ux,i (23)

uy,total ¼
X

n

i¼1

uy,i (24)

3.6.3 Cartesian coordinates of delta between plane strain and plane stress solutions
(uniaxial far-field stress)

Using the same transformation as in Section 3.6.1, Eqs. (11) and (12) are converted
to Cartesian coordinate (see Appendix B for details):

ux ¼ �σxx�∞

v2

E x2 þ y2ð Þ

� �

x2 þ y2 þ 2a2
x2 � y2

x2 þ y2

� �

xþ 4a2
xy

x2 þ y2

� �

y

� 	

(25)

uy ¼ �σxx�∞

v2

E x2 þ y2ð Þ

� �

x2 þ y2 þ 2a2
x2 � y2

x2 þ y2

� �

y� 4a2
xy

x2 þ y2

� �

x

� 	

(26)

One can also obtain Eqs. (25) and (26) by subtracting Eqs. (17) and (18) from Eqs.
(15) and (16) (see Appendix B).

3.6.4 Cartesian coordinates of plane stress/plane strain solutions for a single hole with
internal pressure

The polar coordinate solutions of Section 3.5 have been transformed to Cartesian
coordinates, using the appropriate coordinate transition equations of Section 3.6.1:

ux ¼ P
a2

x2 þ y2

� �

1þ v

E

� �

x (27)

uy ¼ P
a2

x2 þ y2

� �

1þ v

E

� �

y (28)

3.7 Constitutive equations

From the displacement field equations, once converted to Cartesian coordinates,
one may compute the displacement gradients to obtain the strain tensor components
in every location of the elastic medium:

εxx ¼
∂ux
∂x

(29)

εyy ¼
∂uy
∂y

(30)

εxy ¼
1

2

∂ux
∂y

þ ∂uy
∂x

� 	

(31)
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In the present study, we follow the mechanical engineering convention where
extension and tension are positive. Once the strain components have been identified
for our specific problem, the stresses in each point of the elastic medium can be
resolved using the constitutive equations. The following equations are valid for either
plane strain or plane stress, depending on the value assigned to κ with a linear
elasticity assumption [17]:

εxx ¼
1

8G
κ þ 1ð Þσxx þ κ � 3ð Þσyy

� �

(32)

εyy ¼
1

8G
κ � 3ð Þσxx þ κ þ 1ð Þσyy

� �

(33)

εxy ¼
σxy

2G
(34)

The constitutive equation for plane strain is given by substituting κ ¼ 3� 4 ν; for
plane stress, one should use κ ¼ 3� νð Þ= 1þ vð Þ. Separately, when G is used in the
equations, the solutions for plane stress may be converted to plane strain by replacing
ν with ν= 1� νð Þ, which means replacing 3� νð Þ= 1þ νð Þ by 3� 4νð Þ. Likewise, solu-
tions for plane strain may be converted to plane stress by replacing ν with ν= 1þ νð Þ,
which means replacing 3� 4νð Þ by 3� νð Þ= 1þ νð Þ. The strain in the z-direction, εzz,
vanishes for plane strain but does not necessarily vanish for plane stress
(σzz ¼ σxz ¼ σyz ¼ 0) where it is given by:

εzz ¼ � v

E
σxx þ σyy

� �

¼ � v

1� v
εxx þ εyy

� �

(35)

The principal strain magnitude can now be obtained as follows:

ε1, ε2 ¼
εxx þ εyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εxx � εyy

2

� �2
þ εxy

2

r

(36)

4. Results

AMATLAB code was written to evaluate—for specific hole arrangements—the delta
between the plane strain and the plane stress solutions based on the algorithms devel-
oped in Section 3. We consider holes of equal and different radii, with and without far-
field stress, with and without internal pressures, and the pressure of individual holes
may be varied. All solutions given are for static conditions, in the sense that time-
dependent changes are not considered in the present study. Two types of borehole
problems are addressed: single hole (Section 4.1) and multi-hole (Section 4.2).

4.1 Single-hole problems

The principal stress distributions σ1 and σ2 are computed using

σ1 ¼
1

2
σxx þ σyy

� �

þ σ
2
xy þ

1

4
σxx � σyy

� �2
� 	1

2

(37)

σ2 ¼
1

2
σxx þ σyy

� �

� σ
2
xy þ

1

4
σxx � σyy

� �2
� 	1

2

(38)
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The first case considers a single hole subject to either.
Case 1–1: a far-field stress only,
Case 1–2: an internal pressure only,
Case 1–3: the superposed Cases 1–1 and 1–2.
Model inputs are given in Table 1. A comprehensive comparison of the vector

displacement fields, strain tensor components, principal strains, stress tensor compo-
nents, and principal stresses for all the above cases is given in Appendix C.

4.1.1 Case 1–1: single hole subject to a far-field stress

Figure 1 quantifies the delta of the principal stress distributions σ1 and σ2 for the
plane strain and plane stress boundary conditions in the case of applying far-field

Inputs

Hole positions (x, y) (0,0)

Hole radii, a[m] 0.2

Poisson’s ratio, ν[�] 0.3

Far-field stress, σ [MPa] 10

Internal pressure, P[MPa] 10

Number of boreholes, n 1

Young’s modulus, E [GPa] 50

Table 1.
Model inputs used for the single-hole problem.

Figure 1.
Principle stress distributions σ1 (top row) and σ2 (bottom row) for single hole subject to far-field stress. The first
column is for plane strain boundary conditions, the second column is for plane stress boundary conditions, and the
third column quantifies the difference (delta) between the first and second cases.
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stress only. The first column in Figure 1 is for plane strain boundary conditions, the
second column is for plane stress boundary conditions, and the third column
represents the residual of the principal stress magnitude.

4.1.2 Case 1-2: single hole subject to internal pressure

For the hole using only internal pressure, the principal stress solutions for plane
strain and plane stress are identical (Figure 2) due to the same displacement fields
(see the reasoning in Section 3.5).

4.1.3 Case 1-3: superposed cases 1-1 and 1-2

The superposed Cases 1–1 and 1–2 seem trivial, but the deltas in Figure 3 differ
from those in Figure 1. The explanation is that the displacements due to the internal
pressure on the hole add lateral uniform volumetric displacements that shift the
locations where the deltas occur. When the internal pressure on the hole increases, the
overall delta remains limited.

Figure 2.
Principle stress distributions σ1 (top row) and σ2 (bottom row) for single hole subject to internal pressure.
The first column is for the plane strain boundary condition; the second column is for the plane stress boundary
condition.
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4.2 Multi-hole problems

For multi-hole modeling, the elastic displacements due to the individual contribu-
tions are superposed, then converted to the overall stress state via the constitutive
equations. The procedure has been previously applied and was coined the Linear
Superposition Method (LSM) in prior work. For perfect analytical accuracy of LSM
multi-hole solutions, the superposition patterns would require perfect symmetry pat-
terns for hole arrangements and endless repetitions as in the method of images. This
symmetrical superposition principle also lies at the heart of earlier analytical multi-
hole stress interference solutions [24–27].

A previous multi-hole solution departing from symmetric superposition by instead
using randomly placed holes was assumed a valid approach [28]. The 11-hole problem
in ref. [28], solved by them with a system of linear algebraic equations using a
complex boundary integral method based on truncated Fourier series, was closely
matched with an LSM solution [29]. We are well aware that LSM solutions for arbi-
trarily placed holes would be only asymptotically correct, due to hole patterns lacking
symmetry. However, based on close matches of LSM-based solutions with photo-
elastic patterns in our prior studies [4], as well as a comparison against Abaqus
solutions in [30] our conclusion was that LSM gives very reliable results even for
randomly placed hole arrangements.

To further support the practical reliability of LSM solutions for randomly
placed holes, several new comparisons of stress field solutions with LSM for multi-
hole problems with those obtained with other methods are given below. These
comparisons are for a photo-elastic prototype strain and stress visualization
(Case 2–1) and a prototype solution based on a finite element solution method
(Case 2–2).

Figure 3.
The residual of the principle stress distributions σ1 (top row) and σ2 (bottom row) for a single hole subject to far-
field stress (10 MPa) and different internal pressure loads (first column: P = 1 MPa, second column: P = 5 MPa,
and third column: P = 10 MPa).
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4.2.1 Case 2–1: photo-elastic prototype

For multi-hole analysis, we first consider a traditional example of photo-elastic
visualization of displacement and strain components. The 5-hole photo-elastic
prototype (Figure 4) has a total thickness of 5 mm (3 mm aluminum and 2 mm
photo-elastic coating). The aluminum strips are 100 mm wide and 450 mm long.
The long dimension may be assumed well suited for an infinite plate solution.
However, the lateral width of 100 mm leaves only 30 mm between the boundaries of
the outer holes (all have radii of 10 mm) and the left and right boundaries of the
elastic plate.

A point that has been little elaborated is whether photo-elastic experiments typi-
cally represent thin- or thick-plate solutions, that is, represent plane stress or plane
strain solutions. Theoretically, solutions for a plane stress boundary condition would
apply to holes in very thin strips (for which σzz will be negligibly small). However,
when a plate is “thicker” instead of σzz ! 0, we will have the ϵzz ! 0, and the
boundary condition approaches a plane strain case. For exactly what “finite thickness”
of an elastic strip with holes, the plane stress solutions would need to be replaced by a
plane strain solution has never been made explicit.

The accurate LSM solutions for either an infinite plate [with thin plate a
h ! ∞

� �

or a thick plate a
h ! 0
� �

solutions] will not be able to perfectly match the photo-elastic

prototype with finite width, finite length, and for 0<
a
h <∞. Nonetheless, we can

still use LSM to investigate which solution (plane strain or plane stress) gives the
best approximation for a particular case. We tested for both, following [14]
reasoning (summarized in Section 2.2 of the present study), for a

h ! ∞ we have a

thin-plate problem (plane stress); for a
h ! 0 we have a thick-plate problem (plane

strain).

4.2.2 Case 2–1: results

Model inputs are given in Table 2. Match attempts of Figure 4 b-d contour
patterns with plane strain and plane stress LSM codes are given in Figures 5–7,

Figure 4.
The 5-hole photo-elastic prototype. (a) Plate dimensions, (b) isochromatic pattern for strain state, (c) u x, yð Þ
displacement magnitude contours, (d) v x, yð Þ displacement magnitude contours (after [10]).
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respectively. Any mismatches near the right and left margins of the sample may be
due to differences in lateral boundary conditions: the photo-elastic strip has a finite
width, while our solutions are for an infinite plate. The lateral boundary may be
simulated by a mirror-image approach, but was not pursued in the present study.
Separately, comprehensive comparisons of the vector displacement fields, strain ten-
sor components, principal strains, stress tensor components, and principal stresses are
given in Appendix D.

For the elastic prototype of Figure 4, the model scaling used was a
h = 2, which

means the elastic displacement field (Figures 6 and 7) and resulting strain state
(Figure 5) in the plane of view represent the plane stress solution. The LSM method is
used in this example for both plane stress and plane strain solution to validate this
theoretical result. Clearly, the LSM plane stress solutions (Figures 5c–7c) are closer
(but not “exactly”) to the contour patterns in Figures 5a-7a, respectively, than the
LSM plane strain solutions (Figures 5b–7b).

4.2.3 Case 2-2: Numerical benchmark; solution paths

The accuracy of the LSM-based solutions was benchmarked in prior studies [3, 29],
against results from independent solution methods (e.g., [28]), with excellent matches.
Here we benchmark LSM in a multi-hole solution against the independent numerical
solution for the tangential stress concentrations in the rim of a 5-hole problem by Yi
et al. [11]. The 5-hole configuration studied is part of an infinite plate subject to a uni-
axial far-field compression, with dimensions as shown in Figure 8. The numerical
solution method (based on the finite element method) was validated by Yi et al. [11]
against a prior analytical-numerical solution (based on a Laurent series method [31]).

The 5-hole problem of Figure 8 has its holes positioned slightly different than those
in Figure 4. We used the exact same 5-hole setup as in Figure 8 to solve the tangential
stresses with our LSM code. To quantify the radial and tangential stresses in a particu-
lar polar coordinate system r, θð Þ, one may follow two different computational paths.

Path 1: Use x ¼ r cos θ and y ¼ r sin θ as inputs for the Cartesian displacement
equations. For specific locations r, θð Þ, such as at the rim of the central hole in

Inputs

hole positions (x, y) Center hole (0,0)

Top right (0.3,0.2)

Top left (�0.3,0.2)

Bottom left (�0.3,-0.2)

Bottom right (0.3,-0.2)

Hole radii, a[m] 0.1

Poisson’s ratio, ν[�] 0.4

Far-field stress, σ [MPa] 10

Number of boreholes, n 5

Young’s modulus, E [GPa] 50

Table 2.
Model inputs used for 5-hole problem.
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Figure 5.
(a) Photo-elastic fringes near five equal holes due to far-field tension in the vertical direction of image view [10].
(b) LSM plane strain solution for ε2. (c) LSM plane stress solution for ε2. (d) the residual between the plane stress
and plane strain solutions for ε2.

Figure 6.
(a) u x, yð Þ displacement magnitude contours [10]. (b) LSM plane strain solution for uy (c) LSM plane stress
solution foruy.
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Figure 8, one can next compute the three polar strain tensor components using the
following coordinate transformation for the strain tensor elements (e.g., Kelly Notes
Solid Mechanics Part 2, Eq. 4.2.17):

εr ¼ εxx cos
2
θ þ εyy sin

2
θ þ εxy sin 2θ (39)

εθ ¼ εxx sin
2
θ þ εyy cos

2
θ � εxy sin 2θ (40)

εrθ ¼ εyy � εxx

� �

sin θ cos θ þ εxy cos 2θ (41)

Please note that for the un-pressurized hole subjected to (only) far-field stress, the
radial strain, εr at the hole, the boundary will vanish (only at the hole boundary and
not beyond).

Figure 7.
(a) v x, yð Þ displacement magnitude contours [10]. (b) LSM plane strain solution for ux. (c) LSM plane stress
solution for ux.

Figure 8.
An infinite plate containing five equal circular holes under axial compressive stress (b ¼ 3

ffiffiffiffiffiffi

2a
p

=2 and σ ¼ 1Þ:No
internal pressure load.
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Path 2: Revert to the original displacement equations in polar coordinates (Sections
2.1 to 2.5) and compute the displacement gradients in polar coordinates:

εr ¼
∂ur
∂r

(42)

εθ ¼
1

r

∂uθ
∂θ

þ ur
r

(43)

εrθ ¼
1

2

1

r

∂ur
∂θ

þ ∂uθ
∂r

� uθ
r

� �

(44)

After having obtained the polar displacement gradients, one may compute the
stresses for a plane stress (thin plate) problem from the following constitutive
equations:

σr ¼
E

1� ν2
εr þ εθνð Þ (45)

σθ ¼
E

1� ν2
εθ þ εrνð Þ (46)

σrθ ¼
E

2 1þ νð Þ εrθ (47)

For plane strain (thick plate) problem, the corresponding constitutive equations
are ([32], Eq. (5-38)):

σr ¼
2G

1� 2ν
1� νð Þ þ εθν½ � ¼ E

1þ νð Þ 1� 2νð Þ 1� νð Þ þ εθν½ � (48)

σθ ¼
2G

1� 2ν
εθ 1� νð Þ þ εrν½ � ¼ E

1þ νð Þ 1� 2νð Þ εθ 1� νð Þ þ εrν½ � (49)

σrθ ¼ Gεrθ ¼
E

2 1þ νð Þ εrθ (50)

For completeness, polar strain tensor components can be computed from the stress
tensor components as follows ([32], Eq. (5-37)):

εr ¼
1

2G
σr 1� νð Þ � σθν½ � (51)

εθ ¼
1

2G
σθ 1� νð Þ � σrν½ � (52)

εrθ ¼
σrθ

G
(53)

The polar strain tensor components can be converted to the Cartesian
components at any one time using the polar coordinate transformations [e.g. [12],
Eq. (48)]:

εxx ¼ εr cos
2
θ þ εθ sin

2
θ (54)
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εyy ¼ εr sin
2
θ þ εθ cos

2
θ (55)

εxy ¼
εr � εθ

2
sin 2θ (56)

4.2.4 Case 2–2: results

The results of our benchmark test for Case 2–2, as per the methodology outlined
above, are given here. First, a baseline solution for the tangential stress around a single
hole (Case 1–1) is given in Figure 9. An important finding is that the plane stress
solution for tangential stress concentrations around the hole is less sensitive to the
Poisson’s ratio compared with the plane strain solution as shown in Figure 9a, b, and
Table 3 (for positive values of ν). This subtle difference has not been emphasized
before. Overall, the delta between the plane strain and plane stress solutions becomes
larger for larger Poisson’s ratios, resulting in the stress concentration factor being 3 for
the plane stress boundary condition, increasing to nearly 4 for the plane strain
boundary condition.

The impacts of the Poison ratio and different boundary conditions were analyzed
in more detail, based on the displacement fields quantified in Appendix C, which led
to the following conclusions:

• Displacements in the x-direction are insensitive to the value of ν in case of
plane stress.

• Displacements in the x-direction are slightly sensitive to the value of ν in case
of plane strain.

• Displacements in the y-direction are sensitive to the value of ν in both plane
strain and plane stress.

When the Poisson’s ratio is 0, the stress concentrations, according to our LSM
models, are the same for plane stress and plane strain boundary conditions
(Figure 9a). This matching in the concentrations at ν ¼ 0 between the plane
stress and plane strain solutions can also be seen in Eq. (46), for plane stress, and
Eq. (49), for plane strain. For the higher Poisson’s ratio ν ¼ 0:3, the plane strain

Figure 9.
Tangential stress concentration variations around the rim of a single hole (case 1–1). (a) Poisson’s ratio ν ¼ 0:0,
and (b) ν ¼ 0:3.
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solution starts to show a higher stress concentration than the plane stress solution
(Figure 9b).

Next, we show the 5-hole (Case 2–2) stress concentrations around the central hole
(Figure 10a, b). For the small Poisson’s ratio of ν ¼ 0, stress concentrations of LSM
solutions under plane strain and plane stress boundary conditions are identical
(Figure 10a). However, for ν ¼ 0:3, the plane strain solution shows higher stress
concentrations at locations θ ¼ 0, π (Figure 10b) with a maximum value of 3.7728
corresponding to the maximum value for the plane stress solution 3.3481 (see
Table 4). Overall, the minimum stress concentrations at θ ¼ π=2 approach �2 (due to
stress interference effects between the central hole and its surrounding 4 holes). The
maximum stress concentration at θ ¼ 0, π is decreased from 3 (for a single hole with
ν ¼ 0, Figure 9a) to 2.9695 (for 5-holes with ν ¼ 0, Figure 10a).

Poisson’s ratio

ν [�]

Plane strain Plane stress

max
0≤ θ≤ π

σθð Þ min
0≤ θ≤π

σθð Þ max
0≤ θ≤π

σθð Þ min
0≤ θ≤π

σθð Þ

�0.5 3.3749 �1.1249 3.9999 �1.3333

�0.4 3.2666 �1.0888 3.5714 �1.1904

�0.3 3.1687 �1.0562 3.2967 �1.0989

�0.2 3.0857 �1.0285 3.1250 �1.0416

�0.1 3.0249 �1.0083 3.0303 �1.0101

0.0 3.0000 �1.0000 3.0000 �1.0000

0.1 3.0374 �1.0124 3.0303 �1.0101

0.2 3.1999 �1.0666 3.1250 �1.0416

0.3 3.6749 �1.2249 3.2967 �1.0989

0.4 5.4000 �1.8000 3.5714 �1.1904

0.5 INF -INF 3.9999 �1.3333

Table 3.
Maximum and minimum tangential stress (σθÞ around the rim of the central hole in a single hole problem
(case 1–1) corresponding to different values of Poisson’s ratio ν. The max of σθ occurs at θ ¼ 0 and π. The
minimum of σθ is at θ ¼ π

2
.

Figure 10.
Tangential stress concentration variations around the rim of the central hole in a 5-hole problem (case 2–2). (a)
Poisson’s ratio ν ¼ 0:0, and (b) ν ¼ 0:3.
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Figure 11a and b include the prior solutions for the same 5-hole problem configu-
ration using a numerical solution method in ref. [11] and Laurent series method in ref.
[31]. Unfortunately, the Poisson’s ratio is not specified by either [11] or [31]; neither
was the boundary condition made explicit. However, Figure 11a shows that the plane
strain solution is closer to [11, 31] results than the plane stress for ν ¼ 0:3, and for
ν ¼ 0:4, the plane stress solution is closer than the plane strain. As for the photo-
elastic comparison of Case 2–1, the prototype used in Case 2–2 has finite lateral width,
due to which the LSM for a similar domain but based on an infinite plate solution will
be progressively mismatching.

Poisson’s ratio

ν [�]

Plane strain Plane stress

max
0≤ θ≤π

σθð Þ min
0≤ θ≤π

σθð Þ max
0≤ θ≤ π

σθð Þ min
0≤ θ≤π

σθð Þ

�0.5 3.2441 �1.0121 3.7877 �1.2170

�0.4 3.1534 �1.0876 3.4125 �1.1344

�0.3 3.0738 �1.0782 3.1783 �1.0913

�0.2 3.0102 �1.0765 3.0396 �1.0762

�0.1 2.9706 �1.0859 2.9735 �1.0842

0.0 2.9695 �1.1135 2.9695 �1.1135

0.1 3.0356 �1.1725 3.0255 �1.6531

0.2 3.2361 �1.2948 3.1469 �1.2435

0.3 3.7728 �1.5748 3.3481 �1.3559

0.4 5.6541 �2.4860 3.6577 �1.5167

0.5 INF -INF 3.1310 �1.7523

Table 4.
Maximum and minimum tangential stress (σθÞ around the rim of the central hole in a 5-hole problem (case 2–2)
corresponding to different values of Poisson’s ratio ν. The max of σθ occurs at θ ¼ 0 and π. The minimum of σθ is
at θ ¼ π

2
.

Figure 11.
Comparison of the stress concentrations around the rim of the central hole in a 5-hole problem (case 2–2) using (1)
LSM solutions (red line for plane strain and blue line for plane stress boundary conditions) and (2) the prior
solutions for the same 5-hole problem configuration using a numerical solution method [11] (solid black line) and
Laurent series method [31] (black circles). (a) Poisson’s ratio ν ¼ 0:3, and (b) ν ¼ 0:4.
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5. Discussion

Usually, convenient simplifications are adopted when we develop mathematical
descriptions of a physical process, such as the elastic displacements due to boundary
forces and internal discontinuities such as circular cylindrical perforations. Examples
are the description of two extreme types of boundary conditions—plane stress (thin-
plate approach) and plane strain (thick-plate approach).

In spite of these model simplifications, the results of the computations based on the
thin- and thick-plate approaches are routinely used in many practical applications.
However, the disparities between the model results and actual displacements in the
natural prototype can rarely be evaluated in detail, but some theoretical extrapolations
are still possible (see ref. [10] for some experimental methods).

The present study documents a careful evaluation of the delta’s arising in resulting
stress concentrations due to a prototype that would behave like a thick medium (plane
strain boundary conditions) but is treated with a plane stress boundary condition
solution (thin-plate medium). This treatment is basically due to applying Kirsch [1]
solutions to quantify the stress concentration on the rim of the hole in a thick plate
(where, σzz is locally zero likewise everywhere in the thin-plate case). Such loose
application of boundary constraints routinely occurs in wellbore stability problems, as
detailed in this paper.

This paper specifically discussed the relevance of our findings for borehole stability
studies. Traditionally, wellbore stability computations are based on analytical solu-
tions [1] for stresses near a hole in an elastic plate. The Kirsch [1] solution is valid for a
plane stress boundary condition; this is a so-called thin-plate solution a

h ! ∞

� �

, for

which everywhere σzz ¼ 0. The opposite end of the spectrum is a plane strain bound-
ary condition (i:e:, εzz ¼ 0) or a thick plate a

h ! 0
� �

approach, where σzz is locally zero

but in places may be either larger or smaller than zero, as has been quantified in
Appendix C of our study. In our present study, we quantified, σzz, spatially every-
where normal to both a thick plate and thin plate with thickness 2h, perforated by
either single or multiple hole(s) of typical hole radius a (see Appendix C). Solutions
were also given for cases with internal pressure loading.

According to the new results presented in our study, after evaluating the stress
concentrations and transverse σzz for the perfect plane strain case a

h ! 0
� �

not only at

the rim of the holes but everywhere in a finite domain around the hole(s), we can
confirm that even for the most extreme case of plane strain (as opposed to plane
stress, ah ! ∞) where σz vanishes in all locations, the difference between the respective

solutions remains minimal.

6. Conclusion

Our study articulates that, in fact, any real elastic medium with a finite thickness, for
cases involving circular cylindrical holes (single or multiple), will behave in a way
intermediate between the plane stress and plane strain end members. We have resorted
to [14] scalar a

h as a very useful metric to estimate where the real prototype with finite

thickness occurs between the end-member solutions. For a
h ≪ 1 and a

h ! 0, we have tiny

holes in a very thick plate. Many prototypes of stress concentrations near boreholes in
the geological subsurface will be adequately described by the plane strain boundary
condition. For a

h ≫ 1 and a
h ! ∞, we have large holes in a very thin plate, for which
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prototypes exist in riveted wing panels for airplanes. Of course, there exists an unlimited
range of prototypes that fall somewhere in between the extremes, and a

h provides a

metric to estimate how far the solution remains separated from the two end members.
Several specific cases have been analyzed in our study and we have quantified the

delta of the displacements, strain, and stresses, as well as the Poisson’s ratio for the
two end-members (see Appendices to this study). Based on these specific cases, the
following conclusions can be drawn (with emphasis on the delta’s arising when
applying either plane stress or plane strain approximate solutions):

• For multi-hole problems, we considered the 5-hole photo-elastic prototype shown
in Figure 4. For this elastic prototype, the ratio between the holes’ radii and the
plate thickness is a

h = 2, which is theoretically closer to plane stress (thin plate)

than to a plane strain (thick plate) boundary condition. The analytical LSM plane
stress and plane strain solutions in Figures 5–7(b, c) along with the small deltas
quantified in Figure 5d validate this theoretical deduction.

• We also analyzed the impact of the Poisson’s ratio on the tangential stress
concentrations around the central hole in a 5-hole problem surrounded by four
symmetrically distributed circular holes (see Figure 8). We conclude that the
plane strain solution is more sensitive to the Poisson’s ratio than the plane stress
solution. This different sensitivity increases the delta between plane strain and
plane stress solutions for the tangential stress concentrations around the central
hole when ν increases (Figures 9 and 10).

• The difference between the plane strain and plane stress solutions indicates that
the prior solutions for the same 5-hole problem using a numerical solution
method in ref. [11] and Laurent series method in ref. [31] were most likely for the
plane strain boundary condition with ν ¼ 0:3, or possibly for plane stress with
ν ¼ 0:4 (see Figure 11).

• For holes subjected to an internal pressure only, there is no delta between the
plane stress and plane strain solutions of the principal stress distributions σ1 and
σ2; the displacement fields will remain identical for both cases (see Figure 2).

• For a combination of far-field stress and the internal hole pressure, the
displacements due to the internal pressure on the hole add lateral uniform
volumetric displacements, effectively shifting the locations where the deltas
occur (see Figure 3).

In a more general sense, the following was observed:

• Stress concentrations near tiny holes in a very thick plate approach the solution of
plane stress boundary condition.

• Stress concentrations near large holes in a very thin plate approach the solution of
plane strain boundary condition.

• For most practical cases, the response will be intermediate between the plane
stress and plane strain end members, depending on the relative dimensions of the
plate thickness and hole diameter.
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• For holes subjected to an internal pressure only, there is no difference between the
plane stress (thin-plate solution) and plane strain solutions (thick-plate solutions)

• For cases with far-field stress, the plane strain solution is more sensitive to the
Poisson’s ratio than the plane stress solution.
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A. Validate the computational integrity of the plane strain
displacement solutions of Section 2.2 using the plane stress solutions
of Section 2.3

The plane strain solution, Eqs. (5) and (6), can be obtained directly from the plane
stress solution, Eqs. (9) and (10), by replacing E with E= 1� v2ð Þ, and v with v= 1� vð Þ
as follows:

Starting from the stress solution given by Eq. (9)

ur ¼ σxx�∞

1þ v

2Er

� �

1� v

1þ v
r2 þ a2 þ 4a2

1þ v
þ r2 � a4

r2

� �

cos 2θ


 �

(A1)

and applying the above replacements we get

ur ¼ σxx�∞

1þ v

1� v

� �

2
E

1� v2

� �

r

0

B

B

@

1

C

C

A

1� v

1� v

� �

1þ v

1� v

� � r2 þ a2 þ 4a2

1þ v

1� v

� �þ r2 � a4

r2

0

B

@

1

C

A
cos 2θ

8

>

<

>

:

9

>

=

>

;

¼ σxx�∞

1þ v

2Er

� �

1� 2vð Þr2 þ a2 þ 4a2 1� vð Þ þ r2 � a4

r2

� �

cos 2θ


 �

¼ σxx�∞

1þ v

2Er

� �

r2 1� 2vþ cos 2θð Þ þ a2 1þ 4 1� vð Þ � a2

r2

� �

cos 2θ

� 	
 �

(A2)

Eq. (A2) represents the plan strain solution as given by Eq. (5). Similarly, one can
obtain Eq. (6) from (10) using the same modification.

B. Converting the polar coordinate of the displacement field to the
cartesian coordinate

B.1 Plane strain solution

Recall the plane strain solution for the hole with uniaxial far-field stress given by
Eqs. (5) and (6)
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ur ¼ σxx�∞

1þ v

2Er

� �

r2 1� 2vþ cos 2θð Þ þ a2 1þ 4 1� vð Þ � a2

r2

� �

cos 2θ

� 	
 �

(B1)

uθ ¼ �σxx�∞

1þ v

2Er

� �

r2 þ a2 2 1� 2vð Þ þ a2

r2

� �� 	

sin 2θ (B2)

Applying equations Eqs. (5) and (6) into

ux ¼ ur cos θ � uθ sin θ, uy ¼ ur sin θ þ uθ cos θ

we get,

ux ¼ σxx�∞

1þ v

2Er

� �

r2 1� 2vþ cos 2θð Þ
� 

� 	

þ a2 1þ 4 1� vð Þ � a2

r2

� �

cos 2θ

� 	

cos θ

� �σxx�∞

1þ v

2Er

� �

r2 þ a2 2 1� 2vð Þ þ a2

r2

� �� 	

sin 2θ

� 	

sin θ (B3)

uy ¼ σxx�∞

1þ v

2Er

� �

r2 1� 2vþ cos 2θð Þ
� 

� 	

þa2 1þ 4 1� vð Þ � a2

r2

� �

cos 2θ

� 	

sin θ

þ �σxx�∞

1þ v

2Er

� �

r2 þ a2 2 1� 2vð Þ þ a2

r2

� �� 	

sin 2θ

� 	

cos θ

(B4)

Simplify Eqs. (B3) and (B4) and make use of the straightforward coordinate
transformation formula:

x ¼ r cos θ, y ¼ r sin θ, r2 ¼ x2 þ y2

to get the following

i. Before replacing r2 ¼ x2 þ y2

ux ¼ σxx�∞

1þ v

2Er

� �

r2 1� 2vþ x2 � y2

r2

� �

þ a2 1þ 4 1� vð Þ � a2
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� �

x2 � y2
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� 	� 	

x

r

8

<

:

þ r2 þ a2 2 1� 2vð Þ þ a2
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� �� 	

2xy

r2

� 	

y

r

9

=

;

¼ σxx�∞

1þ v

2E

� �

r2 1� 2vð Þ þ x2 � y2 þ a2 þ 4a2 1� vð Þ x2 � y2

r2

� �

2

4

8

<

:

� a4
x2 � y2

r4

� �

3

5

x

r2
þ 2xyþ 1� 2vð Þ 4a2xy

r2

� �

þ 2a4xy

r4

� 	

y

r2

9

=

;

(B5)
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uy ¼ σxx�∞
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� �

r2 1� 2vþ x2 � y2

r2

� ��

8

<

:

þa2 1þ 4 1� vð Þ � a2

r2

� �

x2 � y2

r2

� 		

y

r

� r2 þ a2 2 1� 2vð Þ þ a2

r2

� �� 	

2xy

r2

� 	

x

r

9

=

;

¼ σxx�∞

1þ v

2E

� �

r2 1� 2vð Þ þ x2 � y2 þ a2 þ 4a2 1� vð Þ x2 � y2
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(B6)

ii. After replacing r2 ¼ x2 þ y2

ux ¼ σxx�∞

1þ v
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uy ¼ σxx�∞

1þ v
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x
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(B8)

B.2 Delta between plane strain and plane stress solutions

Applying equations Eqs. (11) and (12) into

ux ¼ ur cos θ � uθ sin θ, uy ¼ ur sin θ þ uθ cos θ

we get

ux ¼ �σxx�∞

v2

Er

� �

r2 þ 2a2 cos 2θð Þ
� �

cos θ � σxx�∞

v2

Er

� �

2a2 sin 2θð Þ
� �

sin θ

¼ �σxx�∞

v2

Er

� �

r2 þ 2a2 cos 2θð Þ cos θ þ 2a2 sin 2θð Þ sin θ½ �

¼ �σxx�∞

v2

E x2 þ y2ð Þ

� �

x2 þ y2 þ 2a2
x2 � y2

x2 þ y2

� �

xþ 4a2
xy

x2 þ y2

� �

y

� 	

(B9)
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and

uy ¼ �σxx�∞

v2
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� �
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sin θ þ σxx�∞
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(B10)

We, also, can obtain Eqs. (B9) and (B10) by subtracting the Cartesian equations of
the plane strain and the plane stress as follows:

ux ¼ σxx�∞
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Following the same steps, we can obtain Eq. (B10).
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C. Single hole analysis

Comprehensive results are given here for the vector displacement fields, strain
tensor components, principal strains, stress tensor components, and principal stresses.
The first column images are for plane strain; the second column images are for plane
stress; and the third column quantifies the delta between plane strain and plane stress
solutions. We will consider the three cases presented in Section 4.1 for the elastic plate
model with a central single hole.

Case 1–1: a far-field stress only,
Case 1–2: an internal pressure only,
Case 1–3: the superposed Cases 1–1 and 1–2.

C.1 Single-hole subject to far-field stress (Case 1–1)

1. Displacement fields

Figure C1.
Complete results of the elastic displacement solutions around single hole in an elastic plate subjected to far-field
stress. First column is for the plan strain solution given by Eqs. (15) and (16). Second column is the plane stress
solution given by Eqs. (17) and (18). Third column quantifies the delta (difference) between plane strain and
plane stress solutions using Eqs. (25) and (26).
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2. Strain tensor components.

Figure C2.
Strain tensor components around the single hole in an elastic plate subjected to far-field stress. First column is for
the plan strain solution. Second column is the plane stress solution. Third column quantifies the delta (difference)
between plane strain and plane stress solutions. These solutions are obtained by analytical differentiation of the
displacement components in Figure C1 in both x and y directions. See Eqs. (29)–(31) Note that εzz ¼ 0 for the
plane strain solution and therefore there is no delta in z�direction.
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3. Principal strains.

4. Stress tensor components.

Figure C3.
Principles strains around the single hole in an elastic plate subjected to far-field stress. These solutions are obtained
by applying Eq. (36) for the principal strain magnitude solution using the strain tensors in Figure C2.

Figure C4.
Stress tensor components around the single hole in an elastic plate subjected to far-field stress. First column is for the
plan strain solution. Second column is the plane stress solution. Third column quantifies the delta (difference)
between plane strain and plane stress solutions. These solutions are obtained from the relations between the strain
tensor components and the stress tensor components shown in Eqs. (32)–(34). Note that σzz ¼ 0 for plane stress
solution and therefore there is no delta in the z�direction.
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5. Principal stresses.

6. Displacement field with respect to different values of Poisson’s ratio.

In Figures C5 and C6, we show the impact of the Poisson’s ratio on the
plane strain and plane stress displacement considering the model Case 1–1 of the
elastic plate with a single hole. The model inputs are fixed as given in Table 1
except for the Poisson’s ratio that takes three different values ν ¼ 0, 0:2, and 0.4.
We can see from Figure C6 the following results (as presented before in Case 2–2
results):

i. Displacements in the x-direction are insensitive to the value of ν in case of
plane stress.

ii. Displacements in the x-direction are little bit sensitive to the value of ν in case
of plane strain.

iii. Displacements in the y-direction are sensitive to the value of ν in both plane
strain and plane stress.

Therefore, this impact will extend to the resulting plane strain and plane stress
solutions for the strain and stress tensor components computed based on the dis-
placement results. This impact can be also generalized to the model of the elastic
plate with 5-holes presented in Case 2–2. Tables 3 and 4 illustrate, numerically, the
impact of Poisson’s ratio on the maximum and minimum values of the tangential
stress (σθ) around the rim of the central hole in model Case 1–1 and model Case 2–2,
respectively.

Figure C5.
Principal stresses around the single hole in an elastic plate subjected to far-field stress. These solutions are obtained
by applying Eqs. (37) and (38) using the tensor stress components in Figures C4.
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Figure C6.
The plane strain and plane stress displacement solutions against different values of Poisson’s ratio: ν ¼ 0 first
column, ν ¼ 0:2 second column, and ν ¼ 0:4 third column. The first two rows are for the displacement in
x�direction and the last two rows are for the displacement in y�direction.
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C.2 Single-hole subject to the internal hole pressure (Case 1–2)

1. Displacement fields.

Figure C7.
Complete results of the elastic displacement solutions around the single hole in an elastic plate subjected to internal
pressure. First column is for the plan strain solution. Second column is the plane stress solution. In the case when the
elastic plate is subjected to internal pressure only, the plane strain and plane stress are identical and given by
Eqs. (27) and (28). Therefore, there is no delta in this case. As in Case1–1 input parameters are listed in Table 1.
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2. Strain tensor components.

Figure C8.
Strain tensor components around the single hole in an elastic plate subjected to internal pressure. First column is for
the plan strain solution. Second column is the plane stress solution. These solutions are obtained by analytical
differentiation of the displacement components in Figure C7 in both x and y directions.
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3. Principal strains.

Figure C9.
Principles strains around the single hole in an elastic plate subjected to internal pressure. These solutions are
obtained by applying Eqs. (36) for the principal strain magnitude solution using the strain tensors in Figure C8.
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4. Stress tensor components.

Figure C10.
Stress tensor components around the single hole in an elastic plate subjected to internal pressure. First column is for
the plan strain solution. Second column is the plane stress solution. These solutions are obtained from the relations
between the strain tensor components and the stress tensor components shown in Eqs. (32)–(34).
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5. Principal stresses.

C.3 The superposed Cases 1–1 and 1–2 (Case 1–3)

In this section, we consider Case 1–3 of the superposed of Cases 1–1 and 1–2. The
plane strain displacement solutions in both directions are the sum of Eqs. (15), (16)
and (27), (28). Similarly, the plane stress displacement solutions in both directions are
the sum of Eqs. (17) and (18) and (27), (28). The strain tensor components, principal
strains, stress tensor components, and principal stresses will be computed accordingly.
As in the results of the previous two cases, the first column images are for plane strain;
the second column images are for plane stress; and the third column quantifies the
delta between plane strain and plane stress solutions.

Figure C11.
Principal stresses around the single hole in an elastic plate subjected to internal pressure. These solutions are
obtained by applying Eqs. (37) and (38) using the tensor stress components in Figure C10.
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1. Displacement fields.

Figure C12.
The elastic displacement solutions around the single hole in an elastic plate subjected to both far-field stress and
internal pressure. First column is for the plan strain solution, which is the sum of the results in the first column of
Figures C1 and C7. Second column is the plane stress solution, which is the sum of the results in the second column
of Figures C1 and C7. Third column quantifies the delta between plane stress and plane strain solutions. Since
there is no displacement difference corresponding to the internal pressure effect, the deltas presented in the third
column of this figure are identical to those in the third column of Figures C1.
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2. Strain tensor components.

Figure C13.
Strain tensor components around the single hole in an elastic plate subjected to both far-field stress and internal
pressure. These solutions are obtained by analytical differentiation of the displacement components in Figure C12
in both x and y directions. εzz ¼ 0 for the plane strain solution and therefore there is no delta in z�direction.
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3. Principal strains.

Figure C14.
Principles strains around the single hole in an elastic plate subjected to both far-field stress and internal pressure.
These solutions are obtained by applying Eq. (36) for the principal strain magnitude solution using the strain
tensors in Figure C13.
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4. Stress tensor components.

Figure C15.
Stress tensor components around the single hole in an elastic plate subjected to both far-field stress and internal
pressure. These solutions are obtained from the relations between the strain tensor components and the stress tensor
components shown in Eqs. (32)–(34). Note that σzz ¼ 0 for plane stress solution and therefore there is no delta in
the z�direction.
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5. Principal stress.

D. Multi-hole analysis: 5-hole problem (Case 2–1)

Comprehensive results are given here for the vector displacement fields, strain
tensor components, principal strains, stress tensor components, and principal stresses
for the elastic plate model represented in Case 2–1 with 5-holes subjected to far-field
stress. The model input parameters are as given in Table 2. The first column images
are for plane strain; the second column images are for plane stress; and the third
column quantifies the delta between plane strain and plane stress solutions.

Figure C16.
Principal stresses around the single hole in an elastic plate subjected to both far-field stress and internal pressure.
These solutions are obtained by applying Eqs. (37) and (38) using the tensor stress components in Figure C15.
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1. Displacement fields.

Figure D1.
Complete results of the elastic displacement solutions around 5-holes with equal radii (r = 0.1) in an elastic plate
subjected to far-field stress. First column is for the plan strain solution given by Eqs. (15) and (16) for each single hole
and then useEqs. (23) and (24) to compute the total displacement vectors (ux,total and uy,total) due to all holes combined.
Second column is the plane stress solution given by Eqs. (17) and (18) and, similarly, using Eqs. (23) and (24) to
compute the total displacement vectors due to all holes combined. Third column quantifies the delta (difference) between
plane strain and plane stress solutions using Eqs. (25) and (26). Input parameters for this model are listed inTable 2.
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2. Strain tensor components.

Figure D2.
Strain tensor components around 5-holes with equal radii (r = 0.1) in an elastic plate subjected to far-field stress.
First column is for the plan strain solution. Second column is the plane stress solution. Third column quantifies the
delta (difference) between plane strain and plane stress solutions. These solutions are obtained by analytical
differentiation of the displacement components in Figure D1 in both x and y directions. Since εzz ¼ 0 for the plane
strain solution there is no delta in z�direction.
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3. Principal strains.

Figure D3.
Principles strains around 5-holes with equal radii (r = 0.1) in an elastic plate subjected to far-field stress. These solutions
are obtained by applying Eq. (36) for the principal strain magnitude solution using the strain tensors in Figure D2.
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Figure D4.
Stress tensor components around 5-holes with equal radii (r = 0.1) in an elastic plate subjected to far-field stress.
These solutions are obtained from the relations between the strain tensor components and the stress tensor components
shown in Eqs. (32)–(34). Since σzz ¼ 0 for plane stress solution there is no delta in the z�direction.
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4. Stress tensor components.
5. Principal stresses.
See (Figure D5).
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Figure D5.
Principal stresses around 5-holes with equal radii (r = 0.1) in an elastic plate subjected to far-field stress. These
solutions are obtained by applying Eqs. (37) and (38) using the tensor stress components in Figure D4.
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