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1. Introduction 

The present chapter draws a general overview on the concept of transmissibility and on its 
potentialities, virtues, limitations and possible applications. The notion of transmissibility 
has, for a long time, been limited to the single degree-of-freedom (SDOF) system; it is only 
in the last ten years that the concept has evolved in a consistent manner to a generalized 
definition applicable to a multiple degree-of-freedom (MDOF) system. Such a generalization 
can be and has been not only developed in terms of a relation between two sets of harmonic 
responses for a given loading, but also between applied harmonic forces and corresponding 
reactions. Extensions to comply with random motions and random forces have also been 
achieved. From the establishment of the various formulations it was possible to deduce and 
understand several important properties, which allow for diverse applications that have 
been envisaged, such as evaluation of unmeasured frequency response functions (FRFs), 
estimation of reaction forces and detection of damage in a structure. All these aspects are 
reviewed and described in a logical sequence along this chapter. 
The notion of transmissibility is presented in every classic textbook on vibrations, associated 

to the single degree-of-freedom system, when its basis is moving harmonically; it is defined 

as the ratio between the modulus of the response amplitude and the modulus of the 

imposed amplitude of motion. Its study enhances some interesting aspects, namely the fact 

that beyond a certain imposed frequency there is an attenuation in the response amplitude, 

compared to the input one, i.e., one enters into an isolated region of the spectrum. This 

enables the design of modifications on the dynamic properties so that the system becomes 

“more isolated” than before, as its transmissibility has decreased.  

Usually, the transmissibility of forces, defined as the ratio between the modulus of the 
transmitted force magnitude to the ground and the modulus of the imposed force 
magnitude, is also deduced and the conclusion is that the mathematical formula of the 
transmissibility of forces is exactly the same as for the transmissibility of displacements. As 
it will be explained, this is not the case for multiple degree of freedom systems.   
The question that arises is how to extend the idea of transmissibility to a system with N 
degrees-of-freedom, i.e., how to relate a set of unknown responses to another set of known 
responses, for a given set of applied forces, or how to evaluate a set of reaction forces from a 
set of applied ones. Some initial attempts were given by Vakakis et al. (Paipetis & Vakakis, 
1985; Vakakis, 1985; Vakakis & Paipetis, 1985; 1986), although that generalization was still 
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limited to a very particular type of N degree-of-freedom system, one where a set constituted 
by a mass, stiffness and damper is repeated several times in the vertical direction. The works 
of (Liu & Ewins, 1998), (Liu, 2000) and (Varoto & McConnell, 1998) also extend the initial 
concept to N degrees-of-freedom systems, but again in a limited way, the former using a 
definition that makes the calculations dependent on the path taken between the considered 
co-ordinates involved, the latter by making the set of co-ordinates where the displacements 
are known coincident to the set of applied forces. 
An application where the transmissibility seems of great interest is when in field service one 
cannot measure the response at some co-ordinates of the structure. If the transmissibility 
could be evaluated in the laboratory or theoretically (numerically) beforehand, then by 
measuring in service some responses one would be able to estimate the responses at the 
inaccessible co-ordinates.   
To the best knowledge of the authors, the first time that a general answer to the problem has 
been given was in 1998, by (Ribeiro, 1998). Surprisingly enough, as the solution is very 
simple indeed. In what follows, a chronological description of the evolution of the studies 
on this subject is presented. 

2. Transmissibility of motion  

In this section and next sub-sections the main definitions, properties and applications will be 
presented. 

2.1 Fundamental formulation  

The fundamental deduction (Ribeiro, 1998), based on harmonically applied forces (easy to 

generalize to periodic ones), begins with the relationships between responses and forces in 

terms of receptance: if one has a vector FA  of magnitudes of the applied forces at co-

ordinates A, a vector UX  of unknown response amplitudes at co-ordinates U and a vector 

XK  of known response amplitudes at co-ordinates K, as shown in Fig. 1. 

 

 

Fig. 1. System with co-ordinates A, U, K 

One may establish the following relationships: 

 U UA AX H F  (1) 
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 K KA AX H F  (2) 

where HUA  and HKA  are the receptance frequency response matrices relating co-ordinates 

U and A, and K and A, respectively. Eliminating FA  between (1) and (2), it follows that 

 U UA KA K
X H H X  (3) 

or 

 U KX T X
(A)
UK  (4) 

where 
HKA  is the pseudo-inverse of HKA . Thus, the transmissibility matrix is defined as: 

 UA KA
T H H

(A)
UK  (5) 

Note that the set of co-ordinates where the forces are (or may be) applied (A) need not 
coincide with the set of known responses (K). The only restriction is that – for the pseudo-
inverse to exist – the number of K co-ordinates must be greater or equal than the number of 
A co-ordinates. 
An important property of the transmissibility matrix is that it does not depend on the 
magnitude of the forces, one simply has to know or to choose the co-ordinates where the 
forces are going to be applied (or not, as one can even choose more co-ordinates A if one is 
not sure whether or not there will be some forces there and, later on, one states that those 
forces are zero) and measure the necessary frequency-response-functions. 

2.2 Alternative formulation 

An alternative approach, developed by (Ribeiro et al., 2005) evaluates the transmissibility 

matrix from the dynamic stiffness matrices, where the spatial properties (mass, stiffness, 

etc.) are explicitly included. 

The dynamic behaviour of an MDOF system can be described in the frequency domain by 

the following equation (assuming harmonic loading): 

 Z X F  (6) 

where Z  represents the dynamic stiffness matrix, X  is the vector of the amplitudes of the 

dynamic responses and F  represents the vector of the amplitudes of the dynamic loads 

applied to the system.  

From the set of dynamic responses, as defined before, it is possible to distinguish between 

two subsets of co-ordinates K and U; from the set of dynamic loads it is also possible to 

distinguish between two subsets, A and B, where A is the subset where dynamic loads may 

be applied and B is the set formed of the remaining co-ordinates, where dynamic loads are 

never applied. One can write X  and F as: 

 ,K A

U B

   
    
   

X F
X F

X F
 (7) 

With these subsets, Eq. (6) can be partitioned accordingly: 
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  AK AU K A

BK BU U B

     
    

     

Z Z X F

Z Z X F
 (8) 

Taking into account that co-ordinates B represent the ones where the dynamic loads are 

never applied, and considering that the number of these co-ordinates is greater or equal to 

the number of co-ordinates U, from Eq. (8) it is possible to obtain the unknown response 

vector: 

 

,   # #B

U BU BK K

B U 


  +

F 0

X Z Z X

 (9) 

where  BU
+

Z  is the pseudo-inverse of BUZ . Therefore, this means that the transmissibility 

matrix can also be defined as 

 (A)
UK   BU BK

+
T Z Z  (10) 

Eq. (10) is an alternative definition of transmissibility, based on the dynamic stiffness 

matrices of the structure. Therefore, 

 (A)
UK

  UA KA BU BK
+

T H H Z Z  (11) 

Taking into account that the dynamic stiffness matrix for an undamped system is described 

in terms of the stiffness and mass matrices, 2 Z K M , one can now relate the 

transmissibility functions to the spatial properties of the system. To make this possible, one 

must bear in mind that it is mandatory that both conditions regarding the number of co-

ordinates be valid, i. e.,  

 # #       # #andB U K A   (12) 

2.3 Numerical example 

An MDOF mass-spring system, presented in Fig. 2, will be used to illustrate the principal 
differences observed between the transmissibilities and FRFs curves. This is a six mass-
spring system (designated as original system), possessing the characteristics described in 
Table 1.  

  2 4 6
TT

K X X XX  and   1 3 5
TT

U X X XX  (13) 

The number of loads can be grouped in the sub-set 
AF  (even if some of them are, in certain 

cases, null) and in subset 
BF . 

 
 4 5 6

TT
A F F FF and  1 2 3

TT
B F F FF  (14) 

The subsets of known and unknown responses are assumed as: 
According to Eq. (11), and considering the above-defined subsets, the transmissibility matrix 
is given by: 
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  Original System 
 

kg 
 
 
 
 
 
 

N/m 

 

m1 
m2 
m3 
m4 
m5 
m6 
 

k1 
k2 
k3 
k4 
k5 
k6 
k7 
k8 
k9 
k10 
k11 
 

 

7 
7 
4 
3 
6 
8 
 

105 
105 

4.0x105 

5.0x105 

7.0x105 

2.0x105 

8.0x105 

3.0x105 

6.0x105 

3.0x105 

5.0x105 

Table 1. Characteristics of the original system 

 

 
Fig. 2. Mass-spring MDOF system 
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12 14 16 14 15 16 24 25 26

34 35 36 44 45 4632 34 36

54 55 56 64 65 6652 54 56

11 13 15

21 23 25

31 33 3

                              

T T T H H H H H H

T T T H H H H H H

H H H H H HT T T

Z Z Z

Z Z Z

Z Z Z

                         

 

(A) (A) (A)

(A) (A) (A)

(A) (A) (A)

12 14 16

22 24 26

5 32 34 36

Z Z Z

Z Z Z

Z Z Z

   
   
   
      

+

 (15)  

The characteristics of the system of Fig. 2 are presented in Table 1.  
It may be noted from Fig. 3 that the maxima of the transmissibility curves occur all at the same 
frequencies. It can also be observed that the maxima and minima of the transmissibility curves 
do not coincide with the maxima and minima of the FRF curves. No simple relationships (if 
any) can be established between the picks and anti-picks of the transmissibilities and FRFs. 
Transmissibilities have a local nature and therefore they do not reflect the existence of the 
global properties of the system (natural frequencies and damping ratios). 
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Fig. 3. Some transmissibilities and FRFs curves of the original system 

2.4 Transmissibility properties 

The formulation presented in section 2.1 allows us to extract some important properties for 

the transmissibility matrix T
(A)
UK . From Eq. (3) and (5) it is possible to conclude that the 

transmissibility matrix is independent from the force vector AF  (Note that AF  is eliminated 

between eqs. (1) and (2)). This means that any change verified in one of the force values, 

acting along with co-ordinates of set A, will not affect T
(A)
UK . This change can be due, for 

instance, to the alteration of mass values associated to co-ordinates A or stiffness values of 

springs interconnecting those co-ordinates.  

Additionally, to highlight that characteristic of matrix T
(A)
UK , it can be verified from Eq. (10) 

that there is no part of matrix Z involving co-ordinates of set A (neither AKZ  nor AUZ ). This 

statement reinforces the previous conclusion extracted from Eq. (5) and will lead to the 
formulation of two properties, as follows: 
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Property 1. The transmissibility matrix does not change if some modification is made on the mass 
values of the system where the loads can be applied – subset A. 
Property 2. The transmissibility matrix does not change if some modification is made on the stiffness 
values of springs interconnecting co-ordinates of subset A – (where the loads can be applied). 
In fact, any changes in the mass values associated to co-ordinates A and/or  any changes in 
the stiffness values of springs interconnecting co-ordinates A, will affect the inertia forces 

and elastic forces, respectively, acting along those co-ordinates and thus belonging to AF . 

The same MDOF system presented in Fig. 2 will be used to illustrate the transmissibility 
properties. In Table 2 four different modifications are made in the original system. 
Situations I and II correspond to modifications on the original masses; situations III and IV 
correspond to modifications on stiffness. Situations I and III only involve co-ordinates A, 
whereas situations II and IV involve co-ordinates pertaining to both sets A and B. 

Choosing, for instance, the transmissibility function ( )
52

AT , one obtains the results presented 

in Figs. 4 and 5, where one can see that ( )
52

AT  and ( )
14

AT  remain the same only when changes 

are made at co-ordinates A, where the forces are applied.  

2.5 Evaluation of the transmissibility from measurement responses 

In 1999, (Ribeiro et al., 1999) and (Maia et al., 1999) showed how the transmissibility matrix 

could be evaluated directly from the measurement of the responses, rather than measuring 

the frequency response functions. In Eq. (4), the problem is to evaluate the U K values of 

T
(A)
UK  knowing XU  and KX . This can be achieved by applying various sets of forces, at a 

time, on co-ordinates A. Let (1)
AF  be the first set of applied forces (amplitudes). Then, 

 X T X
(1) (A) (1)
U UK K

 (16) 

 

  Original System Situation I Situation II Situation III Situation IV 
 

kg 
 
 
 
 
 
 
N/m 

 

m1 
m2 
m3 
m4 
m5 
m6 
 
k1 
k2 
k3 
k4 
k5 
k6 
k7 
k8 
k9 
k10 
k11 
 

 

7 
7 
4 
3 
6 
8 
 

105 
105 

4.0x105 

5.0x105 

7.0x105 

2.0x105 

8.0x105 

3.0x105 

6.0x105 

3.0x105 

5.0x105 

 

-- 
-- 
-- 
13 
12 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

 

 

14 
-- 
-- 
-- 
-- 
13 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

 

 

14 
-- 
-- 
-- 
-- 
13 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

9.0x105 

9.0x106 

 

 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

10.0x105 

-- 
-- 
-- 
-- 
-- 
-- 
-- 

 

-- unchanged value 

Table 2. Characteristics of the modifications made in the original system 
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Fig. 4. Transmissibility ( )
52

AT , for the original system and the modified systems I e II 
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Fig. 5. Transmissibility ( )
14

AT , for the original system and the modified systems III e IV 

However, when forces change, the transmissibility matrix does not, although the responses 
themselves do. Therefore, if another test is performed, with a set of forces linearly 

independent of the first one – though applied at the same co-ordinates – (2)
AF , a new set of U 

equations can be obtained, which are linearly independent of the first ones. If K tests are 
undertaken on the structure, with linearly independent forces always applied at the A set of 

co-ordinates, one can obtain a system of U K  equations to solve for the same number of 
(A)
UKT  unknowns: 

        X X X T X X X
(1) (2) (K) (A) (1) (2) (K)
U U U UK K K K  (17) 

From which 

 
1

        T X X X X X X
(A) (1) (2) (K) (1) (2) (K)
UK U U U K K K  (18)  
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Note: an easy way to obtain the K sets of linearly independent forces is to apply a single 
force at each of the A locations at a time. 

2.6 The distributed forces case 

In (Ribeiro, Maia, & Silva, 2000b) the authors discussed the transmissibility between the two 

sets of co-ordinates U and K when a distributed force is applied to the structure. Such a force 

should be discretized to form the A set of applied forces. The issue was then to study what 

happened if one only took a subset of those co-ordinates A, which implies the reduction or 

condensation of the applied forces to such a subset and to ask the question: “how to study 

the transmissibility of responses from a set of condensed forces?”. Let the set A be composed 

by the set C to where one wishes to condense the forces and the set D of the remaining co-

ordinates, so that: 

 
 

  
 

F
F

F

C
A

D

 (19) 

If one wishes to condense FA  to FC , one needs to assume some relationship between FD  

and FC , i.e, one cannot contemplate the case where all the applied forces are completely 

independent from each other. However, this is not a big restriction, as it seems reasonable to 

expect that the applied forces exhibit a more or less fixed spatial pattern along the structure. 

Therefore, let us assume a linear relationship between the sets of forces FD  and FC , 

through the matrix PDC : 

 F P FD DC C  (20) 

If matrices UAH  and KAH  from eqs. (1) and (2) are partitioned into 

  UA UC UD H H H  (21) 

  KA KC KD H H H  (22) 

and one has Eq. (19) into account, then eqs. (1) and (2) become 

 U UC UD X H F H FC D  (23) 

 K KC KD X H F H FC D  (24) 

Substituting Eq. (20) in eqs. (23) and (24) and eliminating CF , it follows that 

   U UC UD KC KD K
  X H H P H H P XDC DC  (25) 

Therefore, one has now, instead of Eq. (4), another one relating UX  and KX , through a new 

transmissibility matrix referred to the new subset of co-ordinates C: 

 U KX T X
(C)
UK  (26) 
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where 

   UC UD KC KD
  T H H P H H P

(C)
UK DC DC  (27) 

Note: for the pseudo-inverse to exist, the number of K co-ordinates must be higher than the 

number of C co-ordinates. This is obviously verified, as # #K A  and # #A C . It should 

also be stressed that although referred to a reduced set of co-ordinates C where the forces 

are applied, the transmissibility matrix still relates the responses U and K and so it keeps the 

same size. 

In (Ribeiro, Maia, & Silva, 2000a), (Ribeiro, Maia, & Silva, 2000b) and (Maia et al., 2001) the 

authors summarize some of the previous works and suggest some other possible 

applications for the transmissibility concept, namely in the area of damage detection. In this 

area, there has been some activity trying to use the transmissibility as defined, as well as 

some other variations of it, with limited results in [(Sampaio et al., 1999; 2000; 2001)], but 

with some promising evolution in [(Maia et al., 2007)]. 

An example is presented in order to illustrate the above discussion: a cantilevered beam is 

subjected to the loading shown in Fig. 6. 

 

 
 

Fig. 6. Example of a loaded beam 

It is assumed that forces are applied at co-ordinates 1 to 6 but the forces at co-ordinates 2 to 
5 can be related to those applied at 1 and 6 through the expression: 

 

2

3 1

4 6

5

4 1

3 21
        

2 35

1 4

f

f f

f f

f

   
                       

F P FD DC C  (28) 

One can further assume that the responses at co-ordinates 1 and 2 can be measured and 
those at co-ordinates 4 and 5 can be computed through the transmissibility, i.e., 

U KX T X
(C)
UK , with 

4

5
U

 
  
 

X
X

X
, 

1

2
K

 
  
 

X
X

X
  and  
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  

41 46 42 43 44 45 11 16

51 56 52 53 54 55 21 26

    

4 1

3 21

2 35

1 4

UC UD KC KD

H H H H H H H H

H H H H H H H H

   

   
                                 

T H H P H H P

T

(C)
UK DC DC

(C)
UK

 

 12 13 14 15

22 23 24 25

4 1

3 21

2 35

1 4

H H H H

H H H H


 
              

 (29) 

2.7 The random forces case 
Often one has to deal with random forces, for instance when a structure is submitted to 
environmental loads. The cases that have been addressed so far were limited to harmonic or 
periodic forces. The generalization to random forces has been derived in [(Ribeiro et al., 
2002; Fontul et al., 2004)], now in terms of power spectral densities, rather than in terms of 

response amplitudes. Let KKS  denote the auto-spectral density of the responses KX  and 

KUS  the cross-spectral density between responses KX  and UX . Then, it can be shown (see 

[(Fontul, 2005)] for specific details) that both are related through the same transmissibility 
matrix as before (using Eq. (5), for instance): 

 
T T
KU KKS T S

(A)
UK  (30) 

2.8 Some possible applications 
2.8.1 Transmissibility of motion in structural coupling 

This topic has been addressed in (Devriendt, 2004; Ribeiro et al., 2004; Devriendt & Fontul, 
2005). Let us consider a main structure, to which an additional structure is coupled though 
some coupling co-ordinates, i.e., the additional structure applies a set of forces (and moments) 
to the main structure. As the transmissibility between two sets of responses on the main 
structure does not depend on the magnitude of those forces, the transmissibility matrix of the 
main structure is equal to the transmissibility matrix of the total structure (main + additional). 
In other words, under certain conditions, the transmissibility matrix of the main structure 
remains unchanged, even if an additional structure is coupled to the main one. To make this 
property valid it is necessary to consider a sufficient number of coupled co-ordinates. 
Although it might be argued that a reduced number of coupling co-ordinates would hamper 
the results since it would not include information about some modes, it has been shown in 
(Devriendt, 2004; Ribeiro et al., 2004; Devriendt & Fontul, 2005) that, as long as there is enough 
information regarding the modes included in the frequency range of interest the minimum 
number of coupling co-ordinates can be reduced without deterioration of the results. 

2.8.2 Evaluation of unmeasured frequency response functions 

Recent papers [(Maia et al., 2008; Urgueira et al., 2008)] have explored some invariance 

properties of the transmissibility, namely when modifications are made in terms of masses 
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and/or stiffnesses at the co-ordinates where the forces are applied, to be able to estimate the 

new FRFs in locations that become no longer accessible. For instance, if one calculates the 

transmissibility matrix at some stage between two sets of responses for a given set of 

applied forces and later on there are some modifications at the force co-ordinates due to 

some added masses, the FRFs will change but the transmissibility remains the same. This 

allows the estimation of the new FRFs. So, initially one has (1) (1) (1) (1)
U UA KA K

X H H X  and 

later on one has (2) (2) (2) (2)
U UA KA K

X H H X . As the transmissibility remains unchanged, one 

has 

 (1) (1) (2) (2)
UA KA UA KA

  T H H H H
(A)
UK

 (31) 

and one can calculate, for instance, (2)
UAH , given by: 

 (2) (2)
UA KAH T H

(A)
UK

 (32) 

2.9 Direct transmissibility 

From the definition given before one has, 

 
U UA KA K K

 X H H X T X
(A)
UK

 (33) 

which, as explained, is a generalisation from the one degree of freedom system. However, in 

some cases it might be useful to divide two responses directly. In strict sense that is a 

transmissibility only if a single force is applied. Otherwise, one has to name it differently, 

like pseudo-transmissibility (e.g.  (Sampaio et al., 1999)), scalar transmissibility (Devriendt et 

al., 2010) or direct transmissibility, which is the one we shall adopt.  

Direct transmissibilities will depend on the force magnitudes (as well as location, of course). 

For example, dividing Eq. (33) by one of the amplitudes KX , say sX , one has: 

     or    U s K s Us KsX X T T
(A) (A)
UK UKX X    (34) 

It is easier to understand the implications of both definitions through an example: let UX , 

KX , and AF   be given respectively by 

 1 3 5

2 4 6
U K A

X X F

X X F

     
       
     

X X F  (35) 

The relation between UX  and KX  would be: 

 1 13 14 3 1 13 3 14 4

2 23 34 4 2 23 3 24 4

        
X T T X X T X T X

X T T X X T X T X

      
            

 (36) 

Dividing Eq. (36) by, say, 3X , it follows that 

 or
1 3 13 14 4 3 13 13 14 43

2 3 23 24 4 3 23 23 24 43

        
X X T T X X T T

X X T T X X T T

 
 

   
   

 (37) 
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One can also write: 

 1 15 5 16 6 15 5 16 61
13

3 35 5 36 6 3 35 5 36 6

        
X H F H F H F H FX

X H F H F X H F H F


  
     

 (38) 

From Eq. (38) it is clear that the direct transmissibility 13
 
depends on the magnitudes of 5F  

and 6F , unless the relation 5 6F F  remains constant. Only in the case where there is just a 

single force one has a coincidence between both types of transmissibility. 
Both kinds of definitions can be useful. For instance, concerning now the direct 

transmissibilities, one can see that from Eq. (37) one can calculate 13  and 23  from 43 , and 

one can eliminate  43  between both equations and establish a relationship between 13  and 

23 , therefore allowing the evaluation of one of them from the other. Moreover and similarly 

to what was mentioned in section 2.5, the direct transmissibilities allow the calculation of 
the other ones. 
To illustrate the main differences between the curves of general and the direct 
transmissibilities, the MDOF system presented in Fig. 2 has been used. In Fig. 7 some direct 
transmissibility curves are presented.  
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Fig. 7. Some direct transmissibility curves from the system of Fig. 2 

By comparing the results of the transmissibilities of Fig. 3 with the curves obtained with the 
direct transmissibilities, Fig. 7, one can see that both look like FRFs, though it may be noted 
that in the case of the transmissibilities all the maxima occur at the same frequencies; the 
same is not true with the direct transmissibilities, where each curve presents distinct 
maxima. 

2.10 Other applications 

Other works have presented the possibility of using the transmissibility concept for model 

updating (Steenackers et al., 2007) and to identify the dynamic properties of a structure 

(Devriendt & Guillaume, 2007; Devriendt, De Sitter, et al., 2009; Devriendt et al., 2010). 
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Other recent studies have applied the transmissibility to the problem of transfer path 

analysis in vibro-acoustics (Tcherniak & Schuhmacher, 2009) and for damage detection 

(Canales et al., 2009; Devriendt, Vanbrabant, et al., 2009; Urgueira et al., 2011). 

3. Transmissibility of forces 

3.1 In terms of frequency response functions 

Another important topic may be the prediction of the dynamic forces transmitted to the 

ground when a machine is working. For a single degree of freedom, the solution is well 

known and the transmissibility is defined as the ratio between the transmitted load (the 

ground reaction) and the applied one, for harmonic excitation. For an MDOF system, one 

has to relate the known applied loads ( KF ) to the unknown reactions ( UF ), Fig. 8. 

The displacements at the co-ordinates of one set (the set of the reactions) are constrained, so 
they must also be known (possibly zero). 
The inverse problem may also be of interest, i.e., to estimate the loads applied to a structure 
(wind, traffic, earthquakes, etc.) from the measured reaction loads. Once the load 
transmissibility matrix is established between the appropriate sets, the measurement of the 
reactions is expected to allow for the estimation of the external loads. 
 

 1K
F

2K
F

3K
F

     , ,M K C

1K
F

2K
F

3K
F

     , ,M K C

1U
F

2U
F

3U
F

 

Fig. 8. Structure with applied loads and reactions in dynamic equilibrium 

This topic has been addressed in (Maia et al., 2006); the force transmissibility may also be 

defined either in terms of FRFs or in terms of dynamic stiffnesses. Let KX  and UX  be the 

responses corresponding to KF  and UF , respectively, and CX  the responses at the 

remaining co-ordinates; then, 

 
K KK KU

K
U UK UU

U
C CK CU

   
                

X
F

X
F

X

 
 
 

 (39) 

Assuming the responses at the reactions co-ordinates as zero, i.e.,  U X 0 , it follows that: 

 
1

U UK KUU
 F F   (40) 
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Therefore, the force transmissibility is defined as: 

 1
UK UKUU

 T    (41) 

If the displacements at the co-ordinates of the reactions are not zero, or in the more general 
case when the two sets of loads are not the applied loads and the reactions, but any disjoint 
sets that encompass all the loads applied to the structure, it is easy to show (Maia et al., 
2006) that: 

 1
U UK K UUU

 F F X   (42) 

3.2 In terms of dynamic stiffness 
Instead of Eq. (39) one has now: 

 

K
K KK KU KC

U
U UK UU UC

C

 
         
     

 

X
F

X
F

X

  
     (43) 

Assuming fictitious loads CF  at the remaining co-ordinates and rearranging, one obtains: 

 

K KK KC KU K

C CK CC CU C

U UK UC UU U

     
        
         

F X

F X

F X

  
  
  

 (44) 

Defining  T
E K CX X X  and  T

E K CF F F  and assuming, as before, that at the 

reaction co-ordinates there is no motion ( U X 0 ), one can write: 

 
E EE E

U UE E




F X

F X




 (45) 

Eliminating EX  between eqs.(45), it follows that 

 
1

U UE EEE
F F   (46) 

and the force transmissibility becomes now: 

 1
UE UE EE

T    (47) 

Note that because  T
C E K F 0 ,  F F 0 , and thus only the columns of UET  corresponding 

to KF  are relevant to the transmissibility between the two sets of loads, the sub-matrix UKT . 

One should also note that, in contrast with the SDOF system, the transmissibility of forces is 

different from the transmissibility of displacements. 

Simply to illustrate the application of the concept, a numerical example is presented. The 

model is shown in Fig. 9, similar to the one of Fig. 3, where the displacements at co-

ordinates 1 and 2 are now zero, i.e., 1 2 0 X X . External forces are applied at co-ordinates 

5 and 6 and the reactions happen at co-ordinates 1 and 2. 
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Fig. 9. Structure model in study 

The force transmissibility between the two sets of loads – forces at 5 and 6 being known (set 
K) and forces at 1 and 2 being unknown (set U) – was computed using both described 
methods. 
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 
  
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 
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X

X

 
  
 

X , 1
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X

X

 
  
 

X , 

5

6

3

4

E

X

X

X

X

 
 
   
 
  

X  (48) 

Equation (41) becomes: 

 
11 12

21 22

1
11 12 15 16

21 22 25 26

H H

UK
H H

T TH H H H

H H H H T T

     
       

      
T  (49) 

where the subscript H means that the transmissibility has been computed using FRFs. 
Equation (47) becomes: 

 
11 12 13 14

21 22 23 24

1
55 56 53 54

15 16 13 14 65 66 63 64

25 26 23 24 35 36 33 34

45 46 43 44

Z Z Z Z

UE
Z Z Z Z

Z Z Z Z

T T T TZ Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z T T T T

Z Z Z Z


 
                 
 

T  (50) 

from which 
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11 12

21 22

Z Z

UK
Z Z

T T

T T

 
  
  

T  (51) 

where the subscript Z means that the transmissibility has been computed using dynamic 
stiffness matrices. The results obtained by using equations (49) and (51) superimpose 
perfectly, as expected. Two of the four transmissibilities are presented in Fig. 10 to illustrate 
this fact. 
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Fig. 10. Comparison between corresponding force transmissibility terms computed from 

FRFs (
11 22

and H HT T ) and dynamic stiffness matrices (
11 22

and Z ZT T ). 

It may be noted from Fig. 10 that the maxima of the force transmissibility curves also occur 
all at the same frequencies.  

4. Conclusions 

The transmissibility concept for multiple degree-of-freedom systems has been developed 
and applied for the last ten years and the interest in this matter is continuously growing. In 
this paper a general overview has been given, concerning the main achievements so far and 
it has been shown that the various ways in which transmissibility can be defined and 
applied opens various possibilities for research in different domains, like system 
identification, structural modification, coupling analysis, damage detection, model 
updating, vibro-acoustic applications, isolation and vibration attenuation. 
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