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Abstract

In this chapter,  a special type of recurrent neural networks termed “Zhang neural
network” (ZNN) is presented and studied for online solution of time-varying linear
(matrix-vector  and  matrix)  inequalities.  Specifically,  focusing  on  solving  the  time-
varying  linear  matrix-vector  inequality  (LMVI),  we  develop  and  investigate  two
different ZNN models based on two different Zhang functions (ZFs). Then, being an
extension,  by  defining  another  two  different  ZFs,  another  two  ZNN  models  are
developed and investigated to solve the time-varying linear matrix inequality (LMI).
For such ZNN models, theoretical results and analyses are presented as well to show
their computational performances. Simulation results with two illustrative examples
further substantiate the efficacy of the presented ZNN models for time-varying LMVI
and LMI solving.

Keywords: Zhang neural network (ZNN), Zhang function (ZF), time-varying linear
inequalities, design formulas, theoretical results

1. Introduction

In recent years, linear inequalities have played a more and more important role in numerous
fields of science and engineering applications [1–9], such as obstacle avoidance of redundant
robots [1, 2], robustness analysis of neural networks [3] and stability analysis of fuzzy control
systems  [5].  They,  including  linear  matrix-vector  inequality  (LMVI)  and  linear  matrix
inequality (LMI), have now been considered as a powerful formulation and design technique
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for solving a variety of  problems [7–11].  Due to their  important roles,  lots  of  numerical
algorithms and neural networks have been presented and studied for online solution of linear
inequalities [7–17]. For example, an iterative method was presented by Yang et al. for linear
inequalities solving [12]. In [13], three continuous-time neural networks were developed by
Cichocki and Bargiela to solve the system of linear inequalities. Besides, a gradient-based
neural network and a simplified neural network were investigated respectively in [10] and [11]
for solving a class of LMI problems (e.g., Lyapunov matrix inequalities and algebraic Riccati
matrix inequalities).

It is worth pointing out that most of the reported approaches are designed intrinsically to solve
the time-invariant (or say, static) linear inequalities. In view of the fact that many systems in
science and engineering applications are time-varying, the resultant linear inequalities may
be time-varying ones (i.e., the coefficients are time-varying). Generally speaking, to solve a
time-varying problem, based on the assumption of the short-time invariance, such a time-
varying problem can be treated as a time-invariant problem within a small time period [8].
The corresponding approaches (e.g., numerical algorithms and neural networks) are thus
designed for solving the problem at each single time instant. Note that, as for this common
way used to solve the time-varying problem, the time-derivative information (or say, the
change trend) of the time-varying coefficients is not involved. Due to the lack of the consid-
eration  of  such  an  important  information,  the  aforementioned  approaches  may  be  less
effective, when they are exploited directly to solve time-varying problems [7–9, 17–19].

Aiming at solving time-varying problems (e.g., time-varying matrix inversion and time-
varying quadratic program), a special type of recurrent neural networks termed Zhang neural
network (ZNN) has been formally proposed by Zhang et al. since March 2001 [7–9, 17–21].
According to Zhang et al.’s design method, the design of a ZNN is based on an indefinite Zhang
function (ZF), with the word “indefinite” meaning that such a ZF can be positive, zero, negative
or even lower-unbounded. By exploiting methodologically the time-derivative information of
time-varying coefficients involved in the time-varying problems, the resultant ZNN models
can thus solve the time-varying problems effectively and efficiently (in terms of avoiding the
lagging errors generated by the conventional approaches) [18, 19]. For better understanding
and to lay a basis for further investigation, the concepts of ZNN and ZF [18] are presented as
follows.

Concept 1. Being a special type of recurrent neural networks, Zhang neural network (ZNN)
has been developed and studied since 2001. It originates from the research of Hopfield-type
neural networks and is a systematic approach for time-varying problems solving. Such a ZNN
is different from the conventional gradient neural network(s) in terms of the problem to be
solved, indefinite error function, exponent-type design formula, dynamic equation, and the
utilization of time-derivative information.

Concept 2. Zhang function (ZF) is the design basis of ZNN. It differs from the common error/
energy functions in the study of conventional approaches. Specifically, compared with the
conventional norm-based scalar-valued positive or at least lower-bounded energy function,
ZF can be bounded, unbounded or even lower-unbounded (in a word, indefinite). Besides,
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corresponding to a vector- or matrix-valued problem to be solved, ZF can be vector- or matrix-
valued to monitor the solving process fully.

In this chapter, focusing on time-varying linear (matrix-vector and matrix) inequalities solving,
we present four different ZNN models based on four different ZFs. Specifically, by defining
the first two different ZFs, the corresponding two ZNN models are developed and investigated
for solving the time-varying LMVI. Then, being an extension, by defining another two different
ZFs, another two ZNN models are developed and investigated to solve the time-varying LMI.
For such ZNN models, theoretical results and analyses are also presented to show their
computational performances. Simulation results with two illustrative examples further
substantiate the efficacy of the presented ZNN models for time-varying LMVI and LMI solving.

2. Preliminaries

As mentioned in Concept 2, the ZF is the design basis for deriving ZNN models to solve time-
varying LMVI and LMI. Thus, for presentation convenience, in this chapter, the ZF is denot-
ed by �(�) with �̇(�) being the time derivative of �(�). Based on the ZF, the design procedure
of a ZNN model for time-varying LMVI/LMI solving is presented as follows [18, 19].

1. Firstly, an indefinite ZF is defined as the error-monitoring function to monitor the solving
process of time-varying LMVI/LMI.

2. Secondly, to force the ZF (i.e., �(�)) converge to zero, we choose its time derivative (i.e.,�̇(�)) via the ZNN design formula (including its variant).

3. Finally, by expanding the ZNN design formula, the dynamic equation of a ZNN model is
thus established for time-varying LMVI/LMI solving.

In order to derive different ZNN models to solve time-varying LMVI and LMI, the following
two design formulas (being an important part in the above ZNN design procedure) are
exploited in this chapter [7–9, 17–21]:

 ( ) = ( ( )),-&E t E tgF (1)

0 ( ) = SGN( ) ( ( )),E t E E tg-& eF (2)

where � > 0 ∈ �, being the reciprocal of a capacitance parameter, is used to scale the conver-
gence rate of the solution, and ℱ ( ⋅ ) denotes the activation-function array. Note that, in general,
design parameter � should be set as large as the hardware system would permit, or selected
appropriately for simulation purposes [22]. In addition, function �( ⋅ ), being a processing
element of ℱ ( ⋅ ), can be any monotonically increasing odd activation function, e.g., the linear,
power-sigmoid and hyperbolic-sine activation functions [19, 23]. Furthermore, �0 = �(� = 0)
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denotes the initial error, and the unipolar signum function sgn( ⋅ ), being an element ofSGN( ⋅ ), is defined as
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Note that, as for the presented design formulas (1) and (2), the former is the original ZNN
design formula proposed by Zhang et al. to solve the time-varying Sylvester equation [20],
while the latter is the variant of such a ZNN design formula constructed elaborately for time-
varying linear inequalities solving [9]. Thus, for presentation convenience and better under-
standing, (1) is called the original design formula, while (2) is called the variant design formula
for time-varying LMVI and LMI solving in this chapter.

Remark 1. For the variant design formula (2), when the initial error �0 > 0, it reduces to�̇(�) = − � ℱ (�(�)), which is exactly the original design formula (1) for various time-varying
problems solving [17–21]. In this case (i.e., �̇(�) = − � ℱ (�(�))), different convergence per-
formances of �(�) can be achieved by choosing different activation function arrays [17–21, 23].
For example, (2) reduces to �̇(�) = − ��(�) with a linear activation function array used and
with �0 > 0. Evidently, its analytical solution is �(�) = exp( − ��)�0, which means that �(�) is
globally and exponentially convergent to zero with rate γ. By following the previous successful
researches [17–21, 23], superior convergence property of �(�) can be achieved by exploiting
nonlinear activation functions, e.g., the power-sigmoid and hyperbolic-sine activation func-
tions [23]. In addition, the convergence property can be further improved by increasing the γ
value. Therefore, in the case of �0 > 0, the global and exponential convergence property is

guaranteed for �(�). Note that, in the case of �0 ≤ 0, (2) reduces to �̇(�) = 0, meaning that�(�) = �0 as time t evolves. In this situation, there is no need to investigate the convergence

performance of �(�) with the different activation function arrays and different γ values used.

According to the presented design formulas (1) and (2), by defining different ZFs (i.e., �(�)
with different formulations), different ZNN models are thus developed and investigated for
time-varying LMVI and LMI solving.
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3. Time-varying linear matrix-vector inequality

In this section, we introduce two different ZFs and develop the resultant ZNN models for time-
varying linear matrix-vector inequality (LMVI) solving. Then, theoretical results and analyses
are provided to show the computational performances of such two ZNN models.

Specifically, the following problem of time-varying LMVI [7, 9] is considered in this chapter:

( ) ( ) ( ),£A t x t b t (3)

in which �(�) ∈ �� × � and �(�) ∈ �� are smoothly time-varying matrix and vector, respectively.

In addition, �(�) ∈ �� is the unknown time-varying vector to be obtained. The objective is to
find a feasible solution �(�) such that (3) holds true for any time instant � ≥ 0. Note that, for
further discussion, �(�) is assumed to be nonsingular at any time instant � ∈ [0, + ∞] in this
chapter.

3.1. ZFs and ZNN models

In this subsection, by defining two different ZFs, two different ZNN models are developed
and investigated for time-varying LMVI solving.

3.1.1. The first ZF and ZNN model

To monitor and control the process of solving the time-varying LMVI (3), the first ZF is defined
as follows [7]:

2( ) = ( ) ( ) ( ) ( ) ,+ L - Î nE t A t x t t b t R (4)

where Λ2(�) = Λ(�) ⊙ Λ(�) with the time-varying vector Λ(�) beingΛ(�) = [�1(�), �2(�),⋯,��(�)]T ∈ ��. In view of the fact that Λ2(�) ≥ 0, when �(�) = 0, then we

have

2( ) ( ) ( ) = ( ) 0.- -L £A t x t b t t

That is to say, time-varying LMVI (3) solving can be equivalent to solving the time-varying

equation �(�)�(�) + Λ2(�) − �(�) = 0. For further discussion, the following diagonal matrix�(�) is defined:
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which yields

2
2 2 d ( )( ) = ( ) ( )  and  ( ) = = 2 ( ) ( ).

d
L

L L L L& &tt D t t t D t t
t

with Λ̇(�) being the time derivative of Λ(�).
On the basis of ZF (4), by exploiting the original design formula (1), the dynamic equation of
a ZNN model is established as follows:

2( ) ( ) 2 ( ) ( ) = ( ) ( ) ( ) ( ( ) ( ) ( ) ( )),+ L - + - + L -&&&&A t x t D t t A t x t b t A t x t t b tgF (5)

where �̇(�), �̇(�) and �̇(�) are the time derivatives of �(�), �(�) and �(�), respectively. As for (5),
it is reformulated as

[ ] [ ]( ) ( ) ( )
( )  2 ( ) = ( )  0 ( ) ( ( )  ( ) ( )).

( ) ( ) ( )
é ù é ù é ùé ù- + - -ê ú ê ú ê úë ûL L Lë û ë û ë û

& &&
&
x t x t x t

A t D t A t b t A t D t b t
t t t

gF (6)

By defining the augmented vector �(�) = [�T(�), ΛT(�)]T ∈ �2�, (6) is further rewritten as
follows:

( ) ( ) = ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -&&C t y t P t y t b t Q t y t b tgF (7)

with �̇(�) being the time derivative of �(�), and the augmented matrices are being defined as
below:
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In order to make (7) more computable, we can reformulate (7) to the following explicit form:

† † †( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -&&y t C t P t y t C t b t C t Q t y t b tg F (8)

Artificial Neural Networks - Models and Applications8



where �†(�) = �T(�)(�(�)�T(�))−1 ∈ �2� × � denotes the right pseudoinverse of �(�) and the

MATLAB routine “pinv” is used to obtain �†(�) at each time instant in the simulations.
Therefore, based on ZF (4), ZNN model (8) is obtained for time-varying LMVI solving. Besides,
for better understanding and potential hardware implementation, ZNN model (8) is expressed
in the ith (with � = 1,2,⋯,2�) neuron form as

=1 =1 =1
= ( ( ))d ,+ - -å å åò &

n m m

i ik kj j k kj j k
k j j

y c p y b f q y b tg

where �� denotes the ith neuron of (8), � = 2� and �( ⋅ ) is a processing element of ℱ ( ⋅ ). In
addition, time-varying weights ���, ��� and ��� denote the ��th element of �†(�), the ��th
element of �(�) and ��th element of �(�), respectively. Moreover, time-varying thresholds �̇�
and �� denote, respectively, the kth elements of �̇(�) and �(�). Thus, the neural-network

structure of (8) is shown in Figure 1.

Figure 1. Structure of the neurons in ZNN model (8) for time-varying LMVI (3) solving.
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3.1.2. The second ZF and ZNN model

Being different from the first ZF (4), the second ZF is defined as follows [9]:

( ) = ( ) ( ) ( ) .- Î nE t A t x t b t R (9)

On the basis of such a ZF, by exploiting the variant design formula (2), another ZNN model is
developed as follows:

0( ) ( ) ( ) ( ) ( ) SGN( ) ( ( ) ( ) ( )),= - + - -& e&&A t x t A t x t b t E A t x t b tg F (10)

where the initial error �0 = �(� = 0) = �(0)�(0) − �(0). Therefore, based on ZF (9), ZNN model

(10) is obtained for time-varying LMVI solving. Besides, for better understanding and potential
hardware implementation, the block diagram of ZNN model (10) is shown in Figure 2, where� ∈ �� × � denotes the identity matrix.

Figure 2. Block diagram of ZNN model (10) for time-varying LMVI (3) solving.

3.2. Theoretical results and analyses

In this subsection, theoretical results and analyses of the presented ZNN models (8) and (10)
for solving the time-varying LMVI (3) are provided via the following theorems.

Theorem 1. Given a smoothly time-varying nonsingular coefficient matrix �(�) ∈ �� × � and a

smoothly time-varying coefficient vector �(�) ∈ �� in (3), if a monotonically increasing odd
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activation function array ℱ ( ⋅ ) is used, then ZNN model (8) generates an exact time-varying
solution of the time-varying LMVI (3).

Proof: To lay a basis for discussion, we define �*(�) as a theoretical time-varying solution of
(3), i.e., �(�)�*(�) ≤ �(�). Then, a time-varying vector Λ*(�) would exist, which results in the
time-varying matrix-vector equation as follows:

* *2( ) ( ) ( ) = ( ).+ LA t x t t b t (11)

By differentiating (11) with respect to time t, we have

* * *2( ) ( ) ( ) ( ) ( ) = ( ),+ + L && &&A t x t A t x t t b t (12)

with �̇*(�) and Λ̇ * 2(�) being respectively the time derivatives of �*(�) and Λ * 2(�). Based on (7),
(11) and (12), we further have

* * 2 *2

* 2 *2

( )( ( ) ( )) ( )( ( ) ( )) ( ) ( )
= ( ( )( ( ) ( )) ( ) ( )),

- + - + L - L

- - + L - L

& & && &A t x t x t A t x t x t t t
A t x t x t t tgF

which is rewritten as

( ) = ( ( )),-&% %E t E tgF (13)

where �(�) = �(�)(�(�) − �*(�)) + Λ2(�) − Λ * 2(�) ∈ �� with �̇(�) being the time derivative of�(�).
As for (13), its compact form of a set of � decoupled differential equations is written as follows:

( ) = ( ( )),-&% %i ie t f e tg (14)

where � = 1,2,⋯,�. To analyze (14), we define a Lyapunov function candidate ��(�) = ��2(�)/2 ≥ 0
with its time derivative being

d ( )( ) = = ( ) ( ) = ( ) ( ( )).
d

-&& % % % %i
i i i i i

v tv t e t e t e t f e t
t

g

Since �( ⋅ ) is a monotonically increasing odd activation function, i.e., �( − ��(�)) = − �(��(�)),
then we have
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which guarantees the negative definiteness of �̇�(�). That is to say, �̇�(�) < 0 for ��(�) ≠ 0, while�̇�(�) = 0 for ��(�) = 0 only. By Lyapunov theory, ��(�) converges to zero for any � ∈ 1,2,⋯,� ,

thereby showing that �(�) is convergent to zero as well.

Besides, based on (11), we have �(�)�*(�) + Λ * 2(�) = �(�). Then, �(�) is rewritten as�(�) = �(�)�(�) + Λ2(�) − �(�), which is equivalent to �(�)�(�) − �(�) = − Λ2(�) + �(�). Note that,
as analyzed previously, �(�) 0 with time � + ∞. Thus, as time evolves,

2 2( ) ( ) ( ) = ( ) ( ) ( ).- -L + ® -L%A t x t b t t E t t

Since −Λ2(�) ≤ 0 (i.e., each element is less than or equal to zero), then we have�(�)�(�) − �(�) ≤ 0. This implies that �(�) (being the first n elements of �(�) of (8)) would
converge to a time-varying vector which satisfies the time-varying LMVI (3); i.e., �(�) �*(�)
to make (3) hold true. In summary, the presented ZNN model (8) generates an exact time-
varying solution of the time-varying LMVI (3). The proof is thus completed. □
Theorem 2. Given a smoothly time-varying nonsingular coefficient matrix �(�) ∈ �� × � and a

smoothly time-varying coefficient vector �(�) ∈ �� in (3), if a monotonically increasing odd
activation function array ℱ ( ⋅ ) is used, then ZNN model (10) generates an exact time-varying
solution of the time-varying LMVI (3).

Proof: Consider ZNN model (10), which is derived from the variant design formula (2). Thus,
there are three cases as follows.

1. If the randomly generated initial state �(0) ∈ �� is outside the initial solution set �(0) of
(3), i.e., �0 > 0 in (10), based on Remark 1 and the previous work [9], the global and

exponential convergence of the error function �(�) is achieved (or say,�(�) = �(�)�(�) − �(�) 0 globally and exponentially). This also means that the neural
state �(�) of ZNN model (10) is convergent to the theoretical time-varying solution of the
matrix-vector equation �(�)�(�) − �(�) = 0. Note that �(�)�(�) − �(�) = 0 (i.e.,�(�)�(�) = �(�)) is a special case of �(�)�(�) ≤ �(�). Therefore, ZNN model (10) is effective
on solving the time-varying LMVI (3), in terms of �(�) being convergent to the time-varying
solution set �(�) of (3).

2. If �(0) is inside �(0) of (3), i.e., �0 ≤ 0 in (10), based on Remark 1, the error function �(�)
would remain �0 with � + ∞. That is, �(�) = �0 ≤ 0, no matter how time t evolves. In

this situation, ZNN model (10) is still effective on solving the time-varying LMVI (3), in
terms of its neural state �(�) always being inside �(�) of (3).
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3. If some elements of �(0) are inside �(0) of (3) while the others are outside �(0), i.e., some
elements of �0 are greater than zero while the rest elements of �0 are less than or equal to

zero, then, (i) for the elements of �(�) that have positive initial values (i.e., their initial
values are greater than zero), they can be convergent to zero globally and exponentially;
and (ii) for the rest elements of �(�), they can be always equal to their initial values that
are less than or equal to zero. In view of the fact that, as time evolves, each element of�(�) = �(�)�(�) − �(�) is less than or equal to zero, ZNN model (10) is thus effective on
solving the time-varying LMVI (3).

By summarizing the above analyses, the time-varying LMVI (3) is solved effectively via ZNN
model (10), in the sense that such a model can generate an exact time-varying solution of (3).
The proof is thus completed. □
Remark 2. On the basis of two different ZFs (i.e., (4) and (9)), two different ZNN models (i.e.,
(8) and (10)) are obtained for online solution of the time-varying LMVI (3). Note that the former
aims at solving (3) aided with equality conversion (i.e., from inequality to equation) and the
original design formula (1), while the latter focuses on solving (3) directly with the aid of the
variant design formula (2). The resultant ZNN model (8) is depicted in an explicit dynamics
(i.e., �̇(�) = ⋯), and ZNN model (10) is depicted in an implicit dynamics (i.e., �(�)�̇(�) = ⋯). As
analyzed above and as demonstrated by the simulation results shown in Section 5, such two
ZNN models are both effective on solving the time-varying LMVI (3). In summary, two
different approaches for time-varying LMVI solving have been discovered and presented in
this chapter; i.e., one is based on the variant of the original ZNN design formula, and the other
is based on the conversion from inequality to equation. This can be viewed as an important
breakthrough on (time-varying or static) inequalities solving [7–9].

4. Time-varying linear matrix inequality

In this section, being an extension, by defining another two different ZFs, another two ZNN
models are developed and investigated for time-varying linear matrix inequality (LMI)
solving.

Specifically, the following problem of time-varying LMI is considered [9]:

( ) ( ) ( ),£A t X t B t (15)

where �(�) ∈ ��×� and �(�) ∈ ��× � are smoothly time-varying matrices, and �(�) ∈ ��× �
is the unknown matrix to be obtained. Note that (15) is a representative time-varying LMI
problem which is studied here. The design approaches presented in this chapter (more
specifically, summarized in Remark 2) can be directly extended to solve other types of time-
varying LMIs [8, 10, 11].

Zhang Neural Networks for Online Solution of Time-Varying Linear Inequalities
http://dx.doi.org/10.5772/62732

13



4.1. The first ZF and ZNN model

In order to solve the time-varying LMI (15), the first ZF is defined as follows:

2( ) = ( ) ( ) ( ) ( ) ,´+ L - Î m nE t A t X t t B t R (16)

where Λ2(�) = Λ(�) ⊙ Λ(�) with the time-varying vector Λ(�) being
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In addition, for matrices Λ(�) and Λ2(�), we have

2vec( ( )) = ( )vec( ( )),L Lt D t t

where operator vec( ⋅ ) ∈ ��� generates a column vector obtained by stacking all column
vectors of a matrix together [8, 18, 19]. In addition, the diagonal matrix �(�) is defined as
follows:

1

2

( ) 0 0
0 ( ) 0

( ) = ,

0 0 ( )

´

é ù
ê ú
ê úÎê ú
ê ú
ê úë û

% L
% L

M M O M
%L

mn mn

n

t
t

D t R

t

l
l

l

with the ith (with � = 1,⋯,�) block matrix being

1

2

( ) 0 0
0 ( ) 0

( ) = .

0 0 ( )

´

é ù
ê ú
ê úÎ
ê ú
ê ú
ë û

L
L%

M M O M
L

i

i m m
i

mi

t
t

t R

t

l
l

l

l

By defining �(�) = vec(�(�)) ∈ ���, �(�) = vec(Λ(�)) ∈ ��� and �(�) = vec(�(�)) ∈ ���, ZF

(16) is reformulated as �(�) = �(�)�(�) − �(�) + �(�)�(�) ∈ ���, where�(�) = �⊗ �(�) ∈ ��� ×�� with � ∈ �� × � being the identity matrix and ⊗ denoting the
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Kronecker product [18, 19]. Thus, on the basis of (16), by exploiting the original design for-
mula (1), we have

( ) ( ) = ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -& &C t y t P t y t w t Q t y t w tgF (17)

where the augmented vector �(�) = [�T(�), �T(�)]T ∈ �2��, and �̇(�) ∈ �2�� and �̇(�) ∈ ��� are
the time derivatives of �(�) and �(�), respectively. In addition, the augmented matrices are
defined as

T TT T
2 2

T

TT
2

T

( ) ( )
( ) = , ( ) =

2 ( ) 0

( )
 and ( ) = ,

( )

´ ´

´

é ù é ù-
Î Îê ú ê ú

ë û ë û

é ù
Îê ú

ë û

mn mn mn mn

mn mn

M t N t
C t R P t R

D t

M t
Q t R

D t

where �(�) = �̇(�) = � ⊗ �̇(�) ∈ ��� ×�� with �̇(�) being the time derivative of �(�).
Similarly, to make (17) more computable, we can reformulate (17) as the following explicit
form:

† † †( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -& &y t C t P t y t C t w t C t Q t y t w tg F (18)

where �†(�) = �T(�)(�(�)�T(�))−1 ∈ �2�� ×��. Therefore, based on ZF (16), ZNN model (18)
is obtained for time-varying LMI solving. Note that the neural-network structure of (18) is
similar to the one shown in Figure 1, and is thus omitted here. Besides, as for ZNN model (18),
we have the following theoretical result, with the related proof being generalized from the
proof of Theorem 1 and being left to interested readers to complete as a topic of exercise.

Corollary 1. Given a smoothly time-varying nonsingular coefficient matrix �(�) ∈ ��×� and

a smoothly time-varying coefficient matrix �(�) ∈ ��× � in (15), if a monotonically increasing
odd activation function array ℱ ( ⋅ ) is used, then ZNN model (18) generates an exact time-
varying solution of the time-varying LMI (15).

4.2. The second ZF and ZNN model

In this subsection, being different from the first ZF (16), the second ZF is defined as follows:

( ) = ( ) ( ) ( ) .´- Î m nE t A t X t B t R (19)
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On the basis of such a ZF, by exploiting the variant design formula (2), the following ZNN
model for time-varying LMI solving is developed:

0( ) ( ) = ( ) ( ) ( ) SGN( ) ( ( ) ( ) ( )),A t X t A t X t B t E A t X t B tg- + - -&& & eF (20)

where the initial error �0 = �(� = 0) = �(0)�(0) − �(0). Note that, due to similarity to the block
diagram of (10), the block diagram of ZNN model (20) is omitted. Besides, as for ZNN model
(20), we have the following theoretical result, of which the proof is generalized from the proof
of Theorem 2 (and is also left to interested readers to complete as a topic of exercise).

Corollary 2. Given a smoothly time-varying nonsingular coefficient matrix �(�) ∈ ��×� and

a smoothly time-varying coefficient matrix �(�) ∈ ��× � in (15), if a monotonically increasing
odd activation function array ℱ ( ⋅ ) is used, then ZNN model (20) generates an exact time-
varying solution of the time-varying LMI (15).

5. Simulative verifications

In this section, one illustrative example is first simulated for demonstrating the efficacy of the
presented ZNN models (8) and (10) for solving the time-varying LMVI (3). Then, another
illustrative example is provided for substantiating the efficacy of the presented ZNN models
(18) and (20) for solving the time-varying LMI (15).

Example 1 In the first example, the following smoothly time-varying coefficient matrix �(�) and
coefficient vector �(�) of (3) are designed to test ZNN models (8) and (10):

3 3

3

3 sin(3 ) cos(3 ) / 2 cos(3 )
( ) = cos(3 ) / 2 3 sin(3 ) cos(3 ) / 2

cos(3 ) cos(3 ) / 2 3 sin(3 )

sin(3 ) 1
  and  ( ) = cos(3 ) 2 .

sin(3 ) cos(3 ) 3

´

+é ù
ê ú+ Îê ú
ê ú+ë û

+é ù
ê ú+ Îê ú
ê ú+ +ë û

t t t
A t t t t R

t t t

t
b t t R

t t

The corresponding simulation results are shown in Figures 3 through 9.

Specifically, Figures 3 and 4 illustrate the state trajectories synthesized by ZNN model (8)
using � = 1 and the power-sigmoid activation function. As shown in Figures 3 and 4, start-
ing from five randomly generated initial states, the �(�) trajectories (being the first 3 ele-
ments of �(�) in (8)) and the Λ(�) trajectories (being the rest elements of �(�)) are time-
varying. In addition, Figure 5 presents the characteristics of residual error
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∥ �(�)�(�) − �(�) ∥2 = ∥ �(�)�(�) + Λ2(�) − �(�) ∥2 (with symbol ∥ ⋅ ∥2 denoting the two norm

of a vector), from which we can observe that the residual errors of ZNN model (8) (corre-
sponding to Figures 3 and 4) are all convergent to zero. This means that the �(�) and Λ(�)
solutions shown in Figures 3 and 4 are the time-varying solutions of�(�)�(�) + Λ2(�) − �(�) = 0. In view of −Λ2(�) ≤ 0, such a solution of �(�) is an exact solution
of the time-varying LMVI (3), i.e., �(�)�(�) ≤ �(�). For better understanding, the profiles of
the testing error function �(�) = �(�)�(�) − �(�) (i.e., ZF (9)) are illustrated in Figure 6. As
shown in the figure, all the elements of �(�) are less than or equal to zero, thereby meaning
that the �(�) solution satisfies �(�)�(�) ≤ �(�) (being an exact time-varying solution of (3)).
These simulation results substantiate the efficacy of ZNN model (8) for time-varying LMVI
solving. Besides, Figure 7 shows the simulation results synthesized by ZNN model (8) using
different γ values (i.e., � = 1 and � = 10) and different activation functions (i.e., linear, hyper-
bolic-sine and power-sigmoid activation functions). As seen from Figure 7, the residual er-
rors all converge to zero, which means that ZNN model (8) solves the time-varying LMVI (3)
successfully. Note that, from Figure 7, we have a conclusion that superior computational
performance of ZNN model (8) can be achieved by increasing the γ value and choosing a
suitable activation function.

Figure 3. State trajectories of �(�) ∈ �3 synthesized by ZNN model (8) with � = 1 and the power-sigmoid activation
function used for time-varying LMVI (3) solving.
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Figure 4. State trajectories of Λ(�) ∈ �3 synthesized by ZNN model (8) with � = 1 and the power-sigmoid activation
function used for time-varying LMVI (3) solving.

Figure 5. Residual errors ∥ �(�)�(�) − �(�) ∥2 of ZNN model (8) for time-varying LMVI (3) solving.
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Figure 6. Profiles of �(�) = �(�)�(�) − �(�) ∈ �3 synthesized by ZNN model (8) with � = 1 and the power-sig-
moid activation function used for time-varying LMVI (3) solving.

Figure 7. Residual errors ∥ �(�)�(�) − �(�) ∥2 of ZNN model (8) with γ fixed and different activation functions

used for time-varying LMVI (3) solving.
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Figure 8. State trajectories of �(�) ∈ �3 synthesized by ZNN model (10) with � = 1 and the power-sigmoid activa-
tion function used for time-varying LMVI (3) solving.

It is worth pointing out here that, in general, it may be difficult to know whether the initial
state �(0) used for simulation/application is outside the initial solution set �(0) of the time-
varying LMVI (3) or not. Thus, as for ZNN model (10), we focus on investigating its compu-
tational performance when some elements of �(0) are outside �(0) while the others are inside�(0). In this case, some elements of the initial error �0 = �(0)�(0) − �(0) are greater than zero,

while the rest are less than or equal to zero. The corresponding simulation results synthesized
by ZNN model (10) using � = 1 and the power-sigmoid activation function are illustrated in
Figures 8 and 9. As shown in Figure 8, starting from five randomly generated initial states, the�(�) trajectories of ZNN model (10) are time-varying. Besides, from Figure 9 which shows the
profiles of the testing error function �(�) = �(�)�(�) ≤ �(�), we can observe that the elements of�(�) with positive initial values are convergent to zero, while the rest elements remain at their
initial values. This result implies that the �(�) solutions shown in Figure 6 are the time-varying
solutions of (3), i.e., �(�)�(�) ≤ �(�), thereby showing the efficacy of ZNN model (10) for time-
varying LMVI solving. That is, ZNN model (10) generates an exact time-varying solution of
the time-varying LMVI (3). Note that the computational performance of ZNN model (10) can
be improved by increasing the value of γ and choosing a suitable activation function (which
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is similar to that of ZNN model (8)). Being a topic of exercise, the corresponding simulative
verifications of ZNN model (10) are left for interested readers.

Figure 9. Profiles of �(�) = �(�)�(�) − �(�) ∈ �3 synthesized by ZNN model (10) with � = 1 and the power-sig-
moid activation function used for time-varying LMVI (3) solving.

In summary, the above simulation results (i.e., Figures 3 through 9) have substantiated that
the presented ZNN models (8) and (10) are both effective on time-varying LMVI solving.

Example 2 In the second example, the following smoothly time-varying coefficient matrices �(�)
and �(�) of (15) are designed to test ZNN models (18) and (20):

2 2

2 2

sin(10 ) cos(10 )
( ) =   and  

cos(10 ) sin(10 )

cos(10 ) 1 sin(10 ) 1.5
( ) = .

sin(10 ) 1.5 cos(10 ) 1

´

´

é ù
Îê ú-ë û

+ +é ù
Îê ú- + - +ë û

t t
A t R

t t
t t

B t R
t t

The corresponding simulation results are illustrated in Figures 10 through 13.
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Figure 10. Neural states synthesized by ZNN model (18) with � = 1 and the hyperbolic-sine activation function used
for time-varying LMI (15) solving.

Figure 11. Profiles of residual errors ∥ �(�)�(�) − �(�) ∥2 and �(�) = �(�)�(�) − �(�) synthesized by ZNN

model (18) with � = 1 and the hyperbolic-sine activation function used for time-varying LMI (15) solving.

Figure 12. Residual errors ∥ �(�)�(�) − �(�) ∥2 of ZNN model (18) with γ fixed and different activation functions

used for time-varying LMI (15) solving.
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Figure 13. Simulation results synthesized by ZNN model (20) with � = 1 and the hyperbolic-sine activation function
used for time-varying LMI (15) solving.

On one hand, as synthesized by ZNN model (18) using � = 1 and the hyperbolic-sine activation
function, Figure 10 shows the trajectories of �(�) (being the first 4 elements of �(�) in (18)) andΛ(�) (being the rest elements of �(�)), which are time-varying. In addition, Figure 11(a) shows

the characteristics of residual error ∥ �(�)�(�) − �(�) ∥2 = ∥ �(�)�(�) + Λ2(�) − �(�) ∥F (with

symbol ∥ ⋅ ∥F denoting the Frobenius norm of a matrix), from which we can observe that the

residual errors of ZNN model (18) all converge to zero. This means that the solutions of �(�)
and Λ(�) shown in Figure 10 are the time-varying solutions of �(�)�(�) + Λ2(�) − �(�) = 0. That

is, �(�) satisfies �(�)�(�) = �(�) − Λ2(�) ≤ �(�), showing that such a solution is an exact time-
varying solution of the time-varying LMI (15). For better understanding, Figure 11(b) shows
the profiles of the testing error function �(�) = �(�)�(�) − �(�), from which we can observe that
all the elements of �(�) are less than or equal to zero. These simulation results substantiate the
efficacy of ZNN model (18) for time-varying LMI solving. Besides, Figure 12 shows the
simulation results synthesized by ZNN model (18) using different γ values and different
activation functions. As seen from Figure 12, the residual errors all converge to zero, which
means that the time-varying LMI (15) is solved successfully via ZNN model (18). Note that, as
for ZNN model (18), its computational performance can be improved by increasing the γ value
and choosing a suitable activation function (as shown in Figure 12).

On the other hand, as synthesized by ZNN model (20) using � = 1 and the hyperbolic-sine
activation function, Figure 13 shows the related simulation results, where some elements of
the initial state �(0) are outside the initial solution set �(0) of the time-varying LMI (15) while
the others are inside �(0). From Figure 13(a), we can observe that the �(�) trajectory of ZNN
model (20) is time-varying. In addition, as shown in Figure 13(b), the errors �11(�) and �21(�)
(being the elements of the testing error function �(�) = �(�)�(�) − �(�)) converge to zero, and
the errors �12(�) and �22(�) are always equal to �12(0) < 0 and �22(0) < 0. This means that the
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�(�) solution shown in Figure 13(a) is the time-varying solution of (15), i.e., �(�)�(�) ≤ �(�),
thereby showing the efficacy of ZNN model (20). That is, ZNN model (20) generates an exact
time-varying solution of the time-varying LMI (15). Besides, the investigations on the compu-
tational performance of (10) using different γ values and different activation functions are left
to interested readers to complete as a topic of exercise.

In summary, the above simulation results (i.e., Figures 10 through 13) have substantiated that
the presented ZNN models (18) and (20) are both effective on time-varying LMI solving.

6. Summary

In this chapter, by exploiting two design formulas (1) and (2), based on different ZFs (i.e., (4),
(9), (16) and (19)), four different ZNN models (i.e., (8), (10), (18) and (20)) have been developed
and investigated to solve the time-varying LMVI (3) and time-varying LMI (15). For such ZNN
models, theoretical results and analyses have also been presented to show their computational
performances. Simulation results with two illustrative examples have further substantiated
the efficacy of the presented ZNN models for time-varying LMVI and LMI solving.
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