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Abstract

An integrated approach, based on the fusion of Model-Based Approach (MBA) and
Model-Free Approaches (MFA) and powered by Bayesian classification, is proposed
to ensure high probability of correct estimation of leakage detection and localization
with low false alarm probability to prevent disastrous consequences to the economy
and environment. To ensure mathematical tractability, the nonlinear model is better
approximated using linear parameter-varying (LPV) model at various operating
points indicated by scheduling variables. Flows at various pipeline sections are mea-
sured and transmitted wirelessly to a monitoring station. If there is a difference in the
flows across a section, it indicates a leakage, and a drone is then sent to determine the
exact location of the leakage. The pipeline trajectory is accurately estimated by a
human operator. Using the input and the trajectory output, termed signal, an Auton-
omous Kalman filter (AKF) is designed to ensure accurate tracking of the desired
trajectory. The emulator-generated data are used to identify the system, complement
historical data to MFA, and develop the classifier fusion. The leakage is sequentially
diagnosed by judiciously selecting the most appropriate approach (MFA or MBA) to
ensure a fast and accurate diagnosis. The proposed scheme was evaluated on a phys-
ical system.

Keywords: leakage diagnosis, emulators, emulator generated data, Kalman filter,
sequential diagnosis, Bayes’ classifier fusion, trajectory tracking, nonlinear two-tank
model, linear parameter-varying model, signal model, disturbance model,
measurement noise, model-based approach, model-free approach

1. Introduction

The pipelines are widely used for transporting fluids such as water or petroleum
products such as fossil fuels, gases, chemicals, and other essential hydrocarbon fluids.
The pipeline network covers thousands of kilometers. The effect of leak manifests as a
sudden decrease in the pressure in the flow rate of fluid being transferred. Leakage in
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pipes and storage tanks occurs due to factors such as faulty joints, excessive stress,
aging, and holes caused by corrosions [1–10]. The leakage detection methods consist
of manual inspection by trained linesmen, satellite imaging, and in recent years by
autonomously guided drones flying over the pipeline route. The drone performs
pipeline condition assessment and mechanical damage and cracking on above ground
structures. It can be designed to detect fatigue cracking, corrosion, or other defects
that cannot be observed from ground.

Classifier fusion: A Model-Based Approach (MBA) and different Model-Free
schemes, lumped under the heading of Model-Free Approach (MFA) are used here.
The MBA includes a Kalman filter (KF), an extended Kalman filter (EKF), an
observer, and a system identification stage. For a process with an unknown model, the
model-free approaches are used. In practical situations, a fusion of model-based and
model-free approach; combination of the analytical and knowledge-based methods
may be the most appropriate solution.

Physical system: A wider class of physical dynamic systems is nonlinear containing
nonlinearities such as saturations, rate limiters, dead-zones, backlash, and turbulence.
The analysis, design, estimation, identification, and control of nonlinear system are
not mathematical intractable. As there is a wealth of tools for the analysis and design
of linear systems, in the recent years, the Linear Parameter-Varying (LPV) systems
have received a lot of attention [11, 12]. The piecewise-linear model approach helps
develop computationally simple, efficient, and robust schemes for identification,
design of Kalman filter, fault detection, and isolation. The LPV paradigm has become
a standard formalism in systems and control, for analysis, synthesis of controllers, and
even system identification.

The output of the system is a sum of signal, disturbance, and measurement
noise. A signal is the desired waveform while the disturbance and the measurement
noise are termed as “noise.” Wind gusts, pressure variations, and fluctuations in the
flow affect the system output and are all treated as system disturbances whose
effects are to be mitigated at least [2–8]. It is assumed that the stochastic
disturbance and measurement noise are zero mean Gaussian processes, and that
the signal, disturbance, and measurement noise are mutually uncorrelated with
each other.

The principle states output will track desired trajectory if and only if the structure
of a controller contains a) an internal model of the desired trajectory driven by the
tracking error between the output and desired trajectory, and b) the closed loop
system formed of the plant and the internal model is asymptotically stable.

The internal model principle governs the structure of the Kalman filter, which
state that the residual is a zero mean white noise process if and only if the Kalman filter
is a copy of the system model and driven by the residual, which the error between the
output and its KF estimate. The optimality and robustness of the KF estimates are two
important features of our proposed integrated approach which are both discussed in
detail in [13].

1.1 Kalman filter and its properties

The KF forms the backbone of the proposed detection and localization scheme in
view of its key properties [12–18].

Internal model structure: The principle states output will track desired trajectory if
and only if the structure of a controller contains a) an internal model of the desired
trajectory driven by the tracking error between the output and desired trajectory, and
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b) the closed loop system formed of the plant and the internal model is asymptotically
stable.

The internal model principle governs the structure of the Kalman filter, which
states that the residual is a zero mean white noise process if and only if the Kalman
filter is a copy of the system model and driven by the residual, which the error
between the output and its KF estimate. The optimality and robustness of the KF
estimates are two important features of our proposed integrated approach, which are
both discussed in detail in [13].

1.2 Identification using the residual of the KF

The fundamental requirement of identification is that the leftover from identifica-
tion, namely the residual, is a zero-mean white noise process that contains no infor-
mation. To meet this requirement, the following model-matching property of the
Kalman filter

• The identified model is accurate if and only if the KF residual is a zero mean white
noise process

Hence, the residual of model of the KF associated with the system is identified. The
order of the identified model is determined from the minimal order that ensures that
the identification error is a zero mean white noise process. Further there is no need for
an a priori knowledge of the variance of the disturbance and measurement noise
avoiding thereby solution of Riccati equation.

In model-based, model-free, and classifier fusion approach, it is crucial to provide
representative and sufficient data covering the normal, perturbed, and fault-bearing
operating scenarios resulting from the variations of the subsystems. As the parame-
ters’ subsystems are generally inaccessible, the data are generated indirectly by
performing several off-line experiments to mimic likely operating scenarios. In
model-based scheme, the emulator-generated data are used in identification of the
system and the associated Kalman filter to ensure that identified models are robust to
model perturbation and are significantly more accurate compared with that obtained
using the classical approach of using merely the input and the output without includ-
ing the perturbed models [13, 14].

The model-free approaches include Limit Checking, Visual, and Plausibility (LVP)
analysis, Artificial Neural Network (ANN), Fuzzy Logic (FL), and Adaptive
Neuro-Fuzzy Inference System. (ANFIS) [13–15]. The model-based approach using
Kalman filtering is widely used for fault diagnosis [4, 6, 10, 12–18]. The model-free
approach can readily learn the distinguishing features that help classify the system as
either normal or abnormal and then isolate the faulty subsystem. However, these
model-free approaches suffer from some disadvantages. For ANN, there is a lack of
transparency, a need for a long-, and rich-enough training data covering most, if not
all, operational scenarios, and a possibly lengthy training time. Although more
transparent than ANNs, FL techniques face the problem of expressing the knowledge
in the form of “if-and then” rules from the vast amount of data and from the
experts’ knowledge and experience. For more accuracy, the number of these rules can
increase to an unacceptably large number. To overcome this problem, a combination
of ANN and FL, termed ANFIS, has been proposed in recent years. However, the
problem of detecting incipient faults, their fault size, and predicting the occurrence
of a fault using these model-free approaches remains an unsolved and important
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challenge. On the other hand, the model-based method could detect and isolate
incipient faults as the model captures the complete behavior of the static and the
dynamic behaviors of the system. The model predicts the behavior of the system as
well as unforeseen operating scenarios, including total failure, with good accuracy.
However, the behavior of a physical system at all operating points, especially the
nonlinear ones, cannot be captured accurately in the form of a mathematical
model [13].

In model-based, model-free, and classifier fusion approach, it is crucial to provide
representative and sufficient data covering the normal, perturbed, and fault-bearing
operating scenarios resulting from the variations of the subsystems. As the parame-
ters’ subsystems are generally inaccessible, the data are generated indirectly by
performing several off-line experiments to mimic likely operating scenarios. In
model-based scheme, the emulator-generated data are used in identification of the
system and the associated Kalman filter to ensure that identified models are robust to
model-perturbation and are significantly more accurate compared with that obtained
using the classical approach of using merely the input and the output without includ-
ing the perturbed models.

The model-free approaches include limit checking, visual, and plausibility analysis
(LVP), artificial neural network (ANN), fuzzy logic (FL), and adaptive neuro-fuzzy
inference system (ANFIS) [14, 15].

Practical systems are notoriously known to be complex and nonlinear in nature and
hence do not lend themselves to mathematically tractable identification, analysis, and
design techniques that span the entire operating region. This difficulty is further
exacerbated for highly nonlinear systems. This therefore renders the use of the MBA
schemes to capture both the static and dynamic behaviors of the system, difficult to use
directly on the original system. On the other hand, the MFA schemes, by virtue of their
independence of, and hence non-reliance on, a system model, can be readily used to
learn the distinguishing features that help classify the system as either normal or
abnormal and then isolate the faulty subsystem. However, these model-free
approaches suffer from some disadvantages. For ANN, there is a lack of transparency,
a need for a long- and rich-enough training data covering most, if not all, operational
scenarios, and a possibly lengthy training time. Althoughmore transparent than ANNs,

Fuzzy Logic (FL) techniques face the problem of expressing the knowledge in the
form of “if-and then” rules from the vast amount of data and from the experts’
knowledge and experience. For more accuracy, the number of these rules can increase
to an unacceptably large number. To overcome this problem, a combination of ANN
and FL, termed ANFIS, has been proposed in recent years.

However, the problem of detecting incipient faults, their fault size, and predicting
the occurrence of a fault using these model-free approaches remains an unsolved and
important challenge. On the other hand, the model-based method could detect and
isolate incipient faults as the model captures the complete behavior of the static and the
dynamic behaviors of the system. The model predicts the behavior of the system as well
as unforeseen operating scenarios, including total failure, with good accuracy [10–13].
However, the behavior of a physical system at all operating points, especially the
nonlinear ones, cannot be captured accurately in the form of a mathematical model.

The decision of the hypotheses from different classifiers is fused with a view to
improving the probability of correct decision with low false alarm probability com-
pared with that obtained by using any one of the classifiers [14]. In the proposed
combined approach, the critical information about the presence or absence of a fault is
gained in the shortest possible time via the faster model-free schemes such as the LVP.
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A more accurate and detailed status of the subsystems is unfolded sequentially by the
slower model-based scheme. The combined classifier scheme then fuses the decisions
from both approaches, using a Bayes' weighted fusion method [19].

Autonomous Kalman filter: The pipeline is generally laid underground to transmit
fluid flow from the source to destination over a very long distance. A trained human
operator tracks the trajectory of the pipeline. It is difficult and time-consuming job to
track the pipeline trajectory. A Kalman filter is designed using the input and output of
the human operator. It is autonomous and replaces human operator and drives the
drone accurately, efficiently, and quickly. When a leak is detected in a pipeline section,
the drone is sent to the section to detect and locate the exact location from pipeline
condition assessment, mechanical damage, and cracking. It can be designed to detect
fatigue cracking, corrosion, or other defects that cannot be observed from ground [2].

1.3 Major contributions

The proposed scheme extends the conventional fault diagnosis approach to a wider
class of MIMO Box-Jenkins model [13]. As this model is more general than conven-
tional ones, such as AR, MA, and ARMA, it then has wider applications that may
include models of systems such as transient flow in pressurized pipes and boiler-steam
water flow. The emulator-generated data cover both normal and abnormal operating
scenarios including various types of faults.

The emulator-generated data are employed in: (a) the identification of the system,
the Kalman filter design, and fault isolation method in the model-based scheme, (b) in
training the model-free schemes, and (c) in classifier fusion to ensure that the decisions
made by both approaches are based on the same set of sufficient and representative
data ensuring that all the diagnosis schemes are provided with a level playing field. In
our proposed symbiotic approach, the performance of classifier fusion is significantly
superior to that of using only a model-based or a model-free scheme, especially when
the system such as a process control system is nonlinear. When the system is operating
in the linear region, the performance of the model-based scheme is better while the
model-free scheme such as ANN and ANFIS. However, the latter scheme outperforms
the former one in the nonlinear operating region. The classifier fusion scheme ensures
high probability of correct decision with low false alarm probability. The model-based
scheme can detect incipient faults so that a proactive action such as a condition-based
maintenance can be taken. Thanks to the availability of a reliable and accurate model,
the emulators help predict likely operating fault scenarios.

When a leak is detected in pipeline section, the drone is driven autonomously to
that section mimicking the human operator as it were ensuring timely leakage diag-
nosis, process safety, and environmental protection.

The paper is organized as follows: Section I gives an overview of the proposed
scheme covering model-free and model-based schemes. In section 2, the two-tank
nonlinear process control system is developed. The system is shown to be governed by
a Box-Jenkins model and the identication of associated Kalman filter is developed.
Section 3 presents the Kalman filter and its key properties. Section 4 gives details of
the sequential fault diagnosis and discusses both the model-free schemes and the
classifier fusion. Section 5 gives further details of the model-free schemes. Section 6
discusses only some important details of the model-based schemes as these have been
amply discussed in some of referenced previous works. This section also evaluates the
successful performance of the proposed scheme on a benchmark laboratory-scale
process control system. Finally, section 7 gives the conclusion.
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2. System model

The nonlinear model of the two-tank process control system exhibiting turbulence
is approximated by piecewise linear dynamic model at each operating point using LPV
approach [20]. Figure 1 shows a two-tank process control system formed of two
tanks, namely process, consumer tank denoted tank 1 and tank 2, respectively, a
controller, and a pump. The controller is designed to maintain fluid level h2(t) at
specified reference level r(t) and is driven by the tracking error, er(t)=r(t) -h2(t). The
control input u(t) drives a pump to supply the fluid to the tank 1 and q1is the inflow.
The fluid level of the tank 1 is h1(t). A long pipeline connects the two tanks and is r(t)
subjected to a leak ql at some section of the pipe. The outflow q12 of the tank 1 and q12l
is the inflow to the tank 2.

The tanks are cylindrical, and the height of the process tank h1 is higher than that
of the consumer tank h2, that is h1 ≥ h2. The two tanks are connected by a long
pipeline. The pressures exerted by the tank 1 and 2 at their end of the pipe are
respectively ρgh1 and ρgh2, where ρ is the density of the fluid and g is the acceleration
due to gravity. Since the flow is proportional to the pressure difference, fluid flows
from tank 1 to tank 2. In the absence of a leak in the pipeline, the outflowq12 is:

q12 ¼ ρg h1 tð Þ � h2 tð Þð Þ (1)

In the presence of a leak, we get:

q12ℓ ¼ ρg h1 tð Þ � h2 tð Þð Þ � q
ℓ

(2)

Invoking the principle of conservation of mass, the rate of change in the volume of
the tank is the difference between the inflow and outflow. Rate of change in the
volume V1 of the tank 1 is the difference between the inflow and outflow:

dV1

dt
¼ A1

dh1
dt

¼ q1 � q12 � q
ℓ

(3)

Hence, we get:

A1
dh1
dt

¼ q1 � q12 � q
ℓ

(4)

Where A1 is the cross-sectional area of tank 1.

R12 h1 � h2ð Þ ¼ q12 (5)

Figure 1.
Two tank process control system.
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Where R12 is the resistance to flow between tank 1 and tank 2;
Using (4) and (5) yields:

A1
dh1
dt

¼ q1 � R12 h1 � h2ð Þ � q
ℓ

(6)

Similarly, the rate of change in the volume V2 of the tank 2 becomes:

dV2

dt
¼ A2

dh2
dt

¼ q12 � q
ℓ
� q2 (7)

A2
dh2
dt

¼ q12 � q
ℓ
� q2 (8)

WhereA2 is the cross-sectional area of tank 2, and q2 is the outflow; As the flow is
proportional to the pressure difference, we get:

R2h2 ¼ q2 (9)

Where R2 is the resistance to outflow.

Remarks: In the laminar flow all the resistances, namely R12 ¼ d h1�h2ð Þ
dq12

in (5) and

R2 ¼ dh2
dq2

in (9) are constant as the flow is laminar. For turbulent flow, these resistances

are not constant and are a nonlinear function of the height:

R12 ¼ d h1�h2ð Þ
dq12

¼ ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1 � h2
p

; R2 ¼ dh2
dq2

¼ ξ
ffiffiffiffiffi

h2
p

;ξ is a constant

Eliminating q12 and q2 from the above Eqs. (7) and (8) yields:

A2
dh2
dt

¼ R12 h1 � h2ð Þ � R2h2 � q
ℓ

(10)

The continuous-time state space model is derived from (6) and (10), yields:

dh1
dt
dh2
dt

2

6

6

4

3

7

7

5

¼
�R12

A1

R12

A1

R12

A2
�R2 þ R12

A2

2

6

6

4

3

7

7

5

h1

h2

� �

þ
1

A1

0

2

4

3

5q1 �

1

A1

1

A2

2

6

6

4

3

7

7

5

q
ℓ

(11)

All the equations thus far including (11) are continuous. A linear discrete-time
model is obtained by sampling the inputs and the outputs and the signals at uniformly
spaced times as it is mathematically tractable, provided the time step is small-based,
and there is a wealth of readily available and powerful analysis and design tools to use
for such linearized models [21]. For example, the state-feedback controller based on
the internal model principle, key properties of Kalman-filter-based system identifica-
tion using residual model of KF, which for a linear system gives necessary and suffi-
cient, whereas a nonlinear controller such as adaptive one provides only sufficient
condition. Conventional approach based on observer, nonlinear filters, other
nonlinear device cannot handle stochastic disturbance and measurement noise or
gives only sufficient condition.

Closed-loop configuration: The MIMO system operates in a closed-loop configura-
tion so the desired outputs to be regulated, denoted by yr kð Þ, such as the height, track
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the reference yr kð Þ as shown in Figure 2. The controller Gc zð Þ is driven by the error
between the reference and the output to be regulated r zð Þ � yr zð Þ

u zð Þ ¼ Gc zð Þ r zð Þ � yr zð Þ
� �

(12)

The signal model Gs zð Þ is a cascade, parallel, and feedback combination of sub-
systems such as the actuators, sensors, and plant.

2.1 Box-Jenkins model

Background: The Box-Jenkins method was proposed by George Box and Gwilym
Jenkins in their seminal 1970 textbook Time Series Analysis: Forecasting and Control.
The approach starts with the assumption that the process that generated the time
series can be approximated using an ARMA model if it is stationary or an ARIMA
model if it is nonstationary and comprises the following:

• Model identification and model selection

• Parameter estimation that best fit the selected ARIMA model. The most common
methods use maximum likelihood estimation or nonlinear least-squares
estimation.

• Statistical model checking by testing whether the estimated model conforms to the
specifications of a stationary process

2.2 Box-Jenkins model of the proposed system

The augmented state-space representation of the system model, termed Box-
Jenkins model A,B,Cð Þ formed of the signal model As,Bs,Csð Þ and disturbance
model Aw,Bw,Cwð Þ representing a p-input, q-output system [13] is given by:

x kþ 1ð Þ ¼ Ax kð Þ þ Br kð Þ þ Ewuw kð Þ
s kð Þ ¼ Csx kð Þ
y kð Þ ¼ Cx kð Þ þ v kð Þ

(13)

A ¼
As 0

0 Aw

� �

;B ¼
Bs

0

� �

;Ew ¼
0

Bw

� �

;C ¼ Cs Cw½ �;A∈
nxn is an augmented

state-transition matrix formed of As ∈
nsxns and Aw ∈

nwxnw ; B∈
nxp ; C∈

qxn;

Figure 2.
Box-Jenkins model of the system relating inputs and the outputs.
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Ew ∈
nxp is a disturbance entry matrix; As,Bs,Csð Þ and Aw,Bw,Cwð Þ are both

controllable and observable. However, the signal s zð Þ and the disturbance w zð Þ
may have spectral overlap. The Box-Jenkins model describes the system formed of the
signal model, the disturbance model, their inputs, and the corrupted output.

Figure 2 shows the Box-Jenkins model representing the closed-loop system
relating the reference r zð Þ, the system output y zð Þ, the output to be regulated yr zð Þ,
the controller Gc zð Þ, the signal model Gs zð Þ, input u zð Þ to the signal model and
disturbance model Gw zð Þ, disturbance w zð Þ and the measurement noise v zð Þ.

3. Kalman filter: key properties

The KF, its residual model, and key properties are restated here for the sake of
completeness and convenience of the readers [12–18]. The KF associated with the
fault-free unperturbed Box-Jenkins model A0,B0,C0ð Þ given in (13) be:

x̂ kþ 1ð Þ ¼ A0 � K0C0ð Þx̂ kð Þ þ B0 r kð Þ þ K0y kð Þ

ŷ kð Þ ¼ C0x̂ kð Þ

ekf kð Þ ¼ y kð Þ � ŷ kð Þ
(14)

Where x̂ kð Þ∈Rn and ŷ kð Þ are respectively the best estimate of the state x kð Þ , and
of the output y kð Þ of the system model (13) ,ekf kð Þ is the residual; the optimal Kalman

gain K0 ∈
6n ensures the asymptotic stability of the KF, i.e. (A0 � K0C0);

A0,B0,C0ð Þ is the identified system model embodied in the KF. The residual model of
the KF relates the residual ekf zð Þ to the system, the desired target input r zð Þ, and
output y zð Þ.

3.1 Key properties of the KF

The following Lemmas are developed here by invoking the key properties of the KF
for Fault Detection and Isolation (FDI) [14]

Lemma 1:
(a) Model-matching property
The KF residual ekf kð Þ is a zero-mean white noise process if and only if the

identified model of the system A,B,Cð Þ and the true model A0,B0,C0ð Þ embodied in
the KF are identical. This yields to:

ekf kð Þ ¼ e0 kð Þ (15)

Where e0 kð Þis a zero-mean white noise process
(b) Model-mismatch property
If the identified model of the system A,B,Cð Þ and the true model embodied in the

KF A0,B0,C0ð Þ are not identical, then the KF residual ekf will not be a zero mean

white noise process. The residual will then contain an additive term ekf kð Þ termed

fault indicator term, i.e.:

ekf kð Þ ¼ e0 kð Þ þ efi kð Þ (16)
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The structure of the residual model of the KF, and not that of the linear regression
model of the system, is such that its equation error becomes is a colored noise process.
The residual model is a function not only of the parameters of the system model, but
also of the Kalman gain. The identification objective of ensuring that the KF residual is
a zero-mean white noise process will ensure not only that the system model is accu-
rately identified but also that the Kalman gain is optimal, thereby avoiding the need to
specify the covariances of the disturbance and the measurement noise and to use the
Riccati equation to solve for the optimal Kalman gain. The system model A,B,Cð Þ and
its associated KF A� KC,B,Cð Þ, are both identified without the need for the a priori
knowledge of the covariances of the disturbance and the measurement noise, by
minimizing the residual of the KF [12–18]:

The identified transfer functions D zð Þ
F zð Þ , and

Ni zð Þ
Fi zð Þ are used to obtain the signal model,

estimates of the signal s, disturbance w zð Þ and their associated models As,Bs,Csð Þ are
Aw,Bw,Cwð Þ are then derived.

Lemma 2: Signal model
The state space model of the signal model Gs zð Þ or its state space representation

As,Bs,Csð Þ relating and the signal s zð Þ, and desired target input r kð Þ are:

xs kþ 1ð Þ ¼ Asx kð Þ þ Bs r kð Þ

s kð Þ ¼ Csx kð Þ

y kð Þ ¼ Cx kð Þ � v kð Þ

ŝ zð Þ ¼ Ĝs zð Þu zð Þ (17)

Where r kð Þ is the desired target.
Lemma 3: Disturbance model
The disturbance model Gw zð Þ or its state-space representation Aw,Bw,Cwð Þ is

derived; the KF whitens the output error ϑ zð Þ ¼ y zð Þ � s zð Þ:

xw kþ 1ð Þ ¼ Awx kð Þ þ Bw uw kð Þ

d kð Þ ¼ Csxw kð Þ
(18)

3.2 Proposed KF-based scheme

• Lemma 1: The fault indicator term indicates the presence or absence of fault in the
system model, signal model, disturbance model, or both.

• Lemma 2: The presence or absence of fault in the signal model is indicated.

• Lemma 3: The presence or absence of fault in the signal model is indicated.

3.3 Identification: emulator generated data

In view of the key properties of the KF, it is the residual model of the KF, and not
the system model, that is identified in our work, thus lending our work a novelty that
sets it apart from other conventional approaches. The identification objective of
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ensuring that the residual is a zero-mean white noise process will ensure not only that
the system model is accurately identified but also that the Kalman gain is optimal,
thereby avoiding the need to specify the covariance of the disturbance and the mea-
surement noise and to use the Riccati equation to solve for the Kalman gain.

The systemmodel, the signal model as well as the disturbance models are subject to
perturbations. To account for these perturbations, emulators are connected in cascade
to the output, the input, or both during the identification phase to mimic likely
perturbations. It is shown in [13, 14] that the proposed identification scheme based on
emulator parameter-perturbed experiments to generate likely model perturbations is
superior to the conventional approach based on using either a conservative or an
optimistic or no bound at all, instead of the true bound of the perturbed plant models.

In model-based, model-free, and classifier fusion approach, it is crucial to provide
representative and sufficient data covering the normal, perturbed, and fault-bearing
operating scenarios resulting from the variations of the subsystems. As the parameters
subsystems are generally inaccessible, the data are generated indirectly by performing
several off-line emulator-perturbed experiments to mimic likely operating scenarios.

In the model-based approach, the emulator-generated data are used in identifica-
tion of the system and its associated Kalman filter to ensure that the identified models
are robust to model-perturbation and are significantly more accurate compared with
those obtained based on the classical approach of using merely the input and the
output without including the perturbed models [13, 14]. System and the signal model
and their associated KFs for the system and the signal models, estimation of the signal,
disturbance are identified from the emulator-perturbed data.

The key properties of the KF are used to obtain the signal, the disturbance, and
their models [14–18]. The fault-free Box-Jenkins system model (13) and the associated
KF are identified the using the emulator-generated data by minimizing the residual
ekf zð Þ to ensure the identified models are accurate, consistent, and reliable. Further,

the emulator-generated data are used to provide data needed for the identification of
the system, for the MFA, and the classifier fusion.

The identified transfer functions D zð Þ
F zð Þ , and

Ni zð Þ
Fi zð Þ are used to obtain the signal model,

estimates of the signal s , disturbance w zð Þ, and their associated models As,Bs,Csð Þ are
Aw,Bw,Cwð Þ are derived.

3.4 State-feedback and feedforward controller

A block diagram of the feedforward-feedback controller implemented using the
Kalman filter and internal model Aim,Bin,Cimð Þ is shown in Figure 3 [20]. The
system and signal models; Kalman filters associated with the system and signal
models; feedback-feedforward controller; the signal s, the disturbance d , and the

measurement noise v ; residual e , estimates of the signal ŝ and the output error ϑ̂ of
the Kalman filter. The controller is driven by the tracking error etr kð Þ ¼ r kð Þ � ŝ kð Þ.

The signal s zð Þinstead of the noisy output y zð Þis employed for implementing the
state feedback controller of the signal, desired trajectory, and output error

Feedforward controller: Even in the presence of model perturbations, the
feedforward controller can mitigate the effect of the output error on the performance
of the combined controller. The feedforward controller quickly rejects the output
error without waiting for the deviation in the output to occur, hence its anticipatory
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action. The feedforward controller of the reference, denoted by the steady-state
gain Hr, is the inverse signal model evaluated at the poles of the reference model.
Thus:

Hr ¼ G�1
s zð Þ

uffr ¼ Hrr zð Þ
(19)

3.5 Proposed Kalman filter-based scheme

The KF estimates the signal component from the output formed of an additive sum
of the signal, stochastic disturbance, and measurement noise as shown.

The status of the system is asserted from the whiteness of the Kalman filter
residual. A fault is detected if the residual is not a zero-mean white noise process. The
faulty subsystem is isolated by estimating the perturbed emulator parameter.

When the residual is not a zero-mean white noise process signifies that either
the model of the system has become faulty, i.e., a fault had occurred in the
system, or the disturbance model has been perturbed, due to the purely random
nature of the various disturbances affecting the system during its operation or
possibly both.

3.6 Autonomous Kalman filter

Let the human operator input, uop and the output yop during pipeline trajectory

estimation. The autonomous Kalman filter that replaces the human operator is
given by:

x̂op kþ 1ð Þ ¼ Aop � KopCop

� �

x̂ kð Þ þ Bop uop kð Þ þ Kopyop kð Þ
ŷop kð Þ ¼ Copx̂ kð Þ
eop kð Þ ¼ yop kð Þ � ŷop kð Þ

(20)

The autonomous KF drives the drone such the residual eop kð Þ is zero during entire
trajectory. This will ensure that the trajectories of the human operator and KF are
identical.

Figure 3.
Block diagram of the feedforward-feedback controller.
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4. Sequential fault diagnosis

The model-free approach, namely Limit Checking and Plausibility Analysis
(LCPA) and limit check, can quickly detect large faults using the limit checking,
estimation of the step input responses of overshoot, rise time, and settling time.
Artificial Neural Network (ANN) can capture the model of the system over both
linear and nonlinear operating regimes. However, its ability to detect incipient fault
critically depends upon the training data, which covers the given operating point upon
the operating point, the input, and the disturbances affecting the system, the noise,
and the nonlinearity effects. The same Fault Detection and Isolation (FDI) scheme
may outperform other FDI schemes in some operating scenario while being
outperformed by them in other scenarios. Hence, the integration of different FDI
schemes will overcome this problem, in that what is missed. Relationship between
these different FDI schemes will enable their collective performance to surpass that of
any one of them used alone [14].

5. Model-free approaches (MFAs)

The Model-Free Approach (MFAs) are employed in monitoring the health of the
system, including performance monitoring and fault detection, as it provides a mac-
roscopic picture of the status of the system [14, 15]

5.1 Fault detection powered by the Bayesian classification for the MFA schemes

A fault in the system is asserted using Limit Checking and Plausibility (LVP)
analysis from computing the step response measures of settling time, time delay, and
overshoot, and using some measures based on spectral analysis, such as the frequency
response and the coherence spectrum [15].

The coherence between the fault-free and actual outputs is:

c y0 ωð Þ, y ωð Þ
� �

¼ y0 ωð Þy ωð Þ
�

�

�

�

2

y0 ωð Þj j2 y ωð Þj j2
(21)

Where ω is the frequency in rad/sec, and c y0 ωð Þy ωð Þð Þ are the coherence spectrum
and the output of the ANN will be the fault type, i.e., either a fault in a subsystem or in
a sensor. If there is no fault, then, in the ideal noise-free case, c y0 ωð Þy ωð Þð Þ ¼ 1. Let

Ĝ
0
ωð Þ and Ĝ ωð Þ be the estimates of the frequency response of the system under

normal fault-free and faulty operating regimes, respectively.
The Bayes decision strategy: The test statistic is chosen to be the median value of the

coherence spectrum [14, 19]:

ts ¼ median c Ĝ
0
ωð Þ, Ĝ ωð Þ

� 	n o

(22)

The Bayes decision strategy used here is given by:

ts
≤ th forallω∈Ω no fault

> th forallω∈Ω fault




(23)
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Where th is a threshold value, Ω is the relevant spectral region, e.g., the system
bandwidth?

6. Evaluation on a physical system

The proposed sequential fault diagnosis, based on the model-based and model-free
schemes, was successfully evaluated on a laboratory-scale physical process control
system [7–9, 14, 15]. The controller is implemented on a two-tank process control
system [22], is shown below in Figure 4.

6.1 Physical two-tank fluid system

The four subsystems of the two-tank system, namely the flow rate sensor γs1, the

height sensor γs2, the actuator G1 ¼ G0
1 γa where G0

1 is fault-free, and γℓ the leakage
fault indicator from the from tank 1, can be affected by either a single fault or multiple
ones. As shown in Figure 3, when either of these fault types occurs, they are detected
and isolated with the integrated approach, which intelligently processes the acquired
data from the various sensors, by using the most appropriate scheme (MFA or MBA)
and the Bayesian classification stage to carry out the accurate and reliable fault detec-
tion and isolation. The fault-free values are γsi ¼ 1 : i ¼ 0, 1, 2, γa ¼ 1 and γℓ ¼ 1. The
net amount of outflow is 1� γℓ.On the testbed used, the Lab View is used for
detection and isolation of faults.

Figure 5 shows the step responses of the subsystems subject to no faults, leakage
faults, actuator faults, and height sensor faults. The fault magnitudes are 0.25, 0.5, and
0.75 of the fault-free cases [14, 15]. The height, flow rate, and control input profiles
under various types of faults are all shown in Figure 5.

Subfigures A, B, and C show respectively when there is a leakage fault, an actuator
fault, and a height sensor fault. Subfigures D, E, and F show respectively the effect on
the flow rate of the leakage fault, actuator fault, and sensor fault, and subfigures G, H,
and I show, in the same order, the effect of these same 3 faults on the control input.

The MFA approach used here includes four essential blocks, namely a limit checks,
visual and plausibility block (LVP), an adaptive neuro-fuzzy inference system block
(ANFIS), a fuzzy logic block (FL), and an artificial neural network block (ANN).
Figure 5 shows the effect of disturbance, measurement noise, nonlinearity, including
dead-band effect, and saturation on the actuator and on the flow rate. The unwanted
effect of dead-band causes delay in the system and saturation in the actuator and flow

Figure 4.
Process control system, with different sensors, driven by lab-view-based controller.
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rate. The flow rate saturates at 4.5 ml/sec. Because of the presence of the feedback in
the process system, the PI controller may reduce the effect of the nonlinearity and
noise if the controller is tuned accurately. However, the PI may also dissimulate the
fault by rejecting it, through its loop action, as though it were a mere disturbance. This
will therefore call for a careful use of the integral action in the PI controller

6.2 Limit checking, visual, and plausibility analysis

The LPV, though limited in the size of the faults it can detect, is nevertheless the
fastest of the four MFA blocks, It uses heuristics, operator experience, and the domain
knowledge. It can only detect gross faults (or macro faults) but is computationally fast
and monitors limit checks, flow rate, and input to the actuator for accurately deter-
mining fault status, provided the sensors are properly functioning as explained next.
Some faults, such as overflow of the tanks, may not be detected or may be incorrectly
reported. By way of an example, assume that the flow sensor is working properly, and
the height of the tank is 250 cm, and the flow rate in the range 0 to 4 ml/sec, both of
which are actual accurate values, then if the height sensor is faulty, it may then
indicate an incorrect height of more than 250 cm, indicating that there is an overflow
when there is none. Similarly, a faulty height sensor could report an incorrect value of
250 cm, thus indicating that the tank has reached its maximum capacity and that the
sensor flow needs to be regulated to avoid an overflow, when the tank has not yet
reached its full capacity. This demonstrates the weakness of the qualitative measure-
ment of the LPV block, which, the proposed intelligent integrated approach compen-
sates for by resorting to more accurate means of assessing the true status of the
system, either through more powerful MFA blocks or through the powerful KF-based
MBA block.

6.3 Artificial neural network (ANN)

ANN is a universal approximator. The height, flow rate, and control input data
under leakage, actuator, and sensor faults are presented to the ANN. Figure 4 shows

Figure 5.
Effect of leakage, actuator, and sensor faults on height, flow rate, and control: Nonlinear case.
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the training data formed of the height, flow rate, and control input under leakage,
actuator, and sensor faults, as well as the classification of the fault types.

Remarks: Except for a very few misclassifications probably due to an insufficient
amount of data processed by the ANN, the estimated classes were accurate. The FDI
performance of the ANN depends crucially upon the set of input-output data
employed during the training phase. The training data should be sufficient in quantity
and representative enough to cover all fault-free and faulty operating regimes. In
practice, it is very difficult to cover all fault scenarios, especially the extreme cases
involving disasters, for which data are either scarce or unavailable. The ANN
approach suffers from the lack of transparency as the decision-making process is
deeply embedded in the inner workings of the ANN, thus making the rationale behind
the decisions taken rather unclear to the user. Nevertheless, the ANN is computation-
ally fast and provides timely FDI [14, 15].

6.4 Fuzzy logic approach (ANFIS)

In the case of ANN and the model-based FDI scheme, the dynamic response
(covering both transient and steady-state regions) of the system is presented. How-
ever, in the fuzzy logic-based approach, only the steady-state response under various
operating regimes captures the benefits of both in a single framework. As such, it is
regarded as a universal approximator, where the required set of fuzzy IF–THEN rules
is developed automatically from the data presented to it [14, 15].

6.5 Model-based approach

The physical two-tank fluid system is nonlinear with dead-band nonlinearity. The
system was identified using the emulator-based accurate and reliable scheme pro-
posed in [13–17] wherein several offline experiments on the physical system are
performed by varying the emulator parameters to reliably capture their influence on
the input-output behavior. The process control system is a closed-loop single-input
and multiple-output (SIMO) system relating the input r kð Þ to the outputs, namely the
control input u kð Þ, the flow rate f kð Þ, and the height h kð Þ. The system and the
associated Kalman filter are identified using the prediction error method [18]. Since
multiple outputs are measured, multiple Kalman filters are employed to detect and
isolate the height sensor, the flow sensor, the actuator, and the leakage faults. The
multiple Kalman filters included here are associated with (a) overall closed-loop
system relating the input r kð Þ, to all the outputs u kð Þ, f kð Þ and h kð Þ, (b) u kð Þ and f kð Þ,
and (c) f kð Þ and h kð Þ.

6.6 Bayesian hypothesis testing

Fault detection is posed as a binary composite hypothesis-testing problem [7–
13, 19]. The criterion to choose between the two hypotheses, namely the presence or
absence of a fault, is based on minimizing the Bayes risk, which quantifies the costs
associated with correct and incorrect decisions. The Nx1 Kalman filter residual data
e kð Þ are employed for this purpose. The decision between the two hypotheses is based
on comparing the likelihood ratio, which is the ratio of the conditional probabilities
under the two hypotheses, to a user-defined threshold value:
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ts eð Þ
≤ ηth no fault

> ηth fault




(24)

Where ts eð Þ a test statistic is computed using the residual e kð Þ. The test statistics
ts eð Þ depends upon the class of reference input and ηth is some threshold value chosen
to meet the stringent and conflicting requirements of a high probability of correct
fault detection and isolation with low false alarm probability.

Figure 6 shows the residuals and their test statistics, and Figure 7 shows the
autocorrelations of the residuals when the system is subject to leakage, actuator, and
sensor faults of various degrees such a small, medium, and large fault sizes. Subfigures
A, B, and C; D, E, and F; and G, H, and I of Figure 7 shows the residuals and their
statistics when there is a leakage, actuator, and sensor faults, respectively. The test
statistic is a constant bias of the residual, which is non-zero mean random process, and
serves as an additive fault indicator term. The three sets of three subfigures each
shown in Figure 7 namely (A, B, and C), (D, E, and F) and (G, H, and I) show the
corresponding autocorrelations for different fault types.

Remarks: The test statistics indicates the fault size associated with small, medium,
and large faults.

Figure 6.
The residuals and test statistics.

Figure 7.
Autocorrelations of the residuals.
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The Bayes decision strategy was employed to assert the fault type, i.e., to decide
whether it is either leakage or actuator or sensor fault, respectively, using the fault
isolation scheme proposed in [13–17]. The variance of the residual, which is the
maximum value of the autocorrelation function evaluated at the origin (zero delay),
indicates the fault size.

7. Illustrative example

Equivalent mathematical simulation scheme with the KF and residual (purely
noise) analysis should be presented, as well as numerical data (for KF tuning, includ-
ing Q and R matrices). The covariances Q and R were Q=0.1 and R=1.

The estimation of the signal, the output corrupted by disturbance and measure-
ment noise, the spectra of the signal and the disturbance is illustrated in the following
simulated example [20]. The state-space model is:

As ¼

0 �0:7 0 0

1 1:5 0 0

0 0 0 �0:8

0 0 1:7 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; Aw ¼

0:3960 �0:8025 0 0

1 0 0 0

0 0 1:1326 �0:49

0 0 1 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

Bs ¼

0:5 1

1 0

1 �0:3

0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; Bw ¼

1 0

0 0

0 1

0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

C ¼
0 1 0 0 1:4160 0 0 0

0 0 0 1 0 0 2:9290 0

" #

(25)

Where the order n ¼ 8; y kð Þ is 2x1 output, w kð Þ and v kð Þ are 2x1 disturbance input,
and measurement noise of unity covariance zero-mean white noise processes.

Subfigures A and B at the top of Figure 8 compare the output and the signal.
Subfigures C and D show the overlapping spectra of the signal and the disturbance.

Table 1 compares the true and estimated poles of the signal and disturbances
models. The estimated poles are obtained from the model reduction techniques
employed in the second stage of the two-stage identification scheme

From Table 1, it can be deduced that identified signal and disturbance model are
accurate.

Remarks: These subfigures confirm the accuracy of the estimates of the signal and
the output error established in Lemmas 1, 2, and 3 in Section 3.

8. Kalman filter: key properties

Subfigures A and B, of Figure 9, compare the true step response of the signal
and its Kalman filter estimate; subfigures C and D show the output error and its
estimate.
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Moreover, these subfigures clearly confirm that the equation error is a colored
noise, which is whitened by the KF, thus confirming key properties of Lemmas 1, 2,
and 3. Stated in the Section 3.

Subfigures A and B, of Figure 10 shows the autocorrelation of the equation error,
whereas subfigures C and D show the autocorrelations of the residual of the Kalman
filter.

Remarks: These subfigures confirm the accuracy of the estimates of the signal and
the output error established in Lemmas 1, 2, and 3. Confirming that the equation error

Figure 8.
Signal and its estimate; output error and its estimate.

True poles Identified poles

signal Ĝs zð Þ 0:7500� j0:3708

0:8500� j0:2784

0:7510� j0:3715

0:8483� j0:2769

disturbance Ĝw zð Þ 0:1980� j0:8737

0:5663� j0:4114

0:2031� j0:8752

Identified

Table 1.
Poles of the signal and disturbance models.

Figure 9.
Signal and output error and their estimates.

19

Detection and Localization of a Failure in a Pipeline Using a Kalman Filter: An…
DOI: http://dx.doi.org/10.5772/intechopen.106261



is a colored noise that is whitened by the KF, making the KF residual a zero-mean
white noise process.

The Kalman filter-based identification of the signal and disturbance models are
accurately identified the estimated poles are close to the true ones, especially those of
the signal. The identification objective of ensuring the Kalman filter residual is a zero-
mean white noise process will ensure not only that the system model is accurately
identified but also that the Kalman gain is optimal, thereby avoiding the need to
specify the covariance of the disturbance and the measurement noise and to use the
Riccati equation to solve for the Kalman gain.

9. Conclusion

The novel sequential fault diagnosis approach, proposed here, is based on a judi-
cious fusion of model-free and model-based schemes. This scheme is shown here to be
superior to using (a) only the model-based scheme, (b) only the model-free scheme,
or (c) the conventional combination of both schemes, in ensuring the critical require-
ment of a timely diagnosis and prognosis of faults with a high probability of correct
decisions with a low false alarm probability. Based on extensive simulations and an
evaluation on a physical system, the proposed classifier fusion scheme was shown to
be reliable and efficient compared with the above-stated three conventional alterna-
tive schemes. It must be emphasized here that the novel concept of emulators and the
weighted classifier scheme used here are at the core of the success of our new sequen-
tial fault diagnosis approach.

Through an integration of LPV, ANN, and FL, the model-free approach was shown
to detect the presence of a possible fault quickly and reliably from the profiles of the
sensor outputs. The ANN is driven by the emulator-generated data, whereas the FL is
fed with steady-state values of the data. The model-free approach is also capable of
providing a quick visual detection of the onset of any fault from the changes in the
fault signatures such as settling time, steady-state sensor output values, and the
coherence spectrum of the residuals. The fault indications obtained by the model-free
approach are subsequently confirmed by the model-based approach, which, aided
with a Kalman filter, provides a further necessary stage for capturing any faults,
especially incipient ones, which may have escaped capture by the ANN-FL

Figure 10.
Autocorrelations of KF residual and the equation error.
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combination due either to insufficient training data or to an incomplete set of fuzzy
rules. Based on extensive simulations and an evaluation on a physical system, the
proposed classifier fusion scheme was shown to be reliable and efficient compared
with using only a model-based or a model-free approach alone. Thanks to the
emulator-based identification, the Kalman filter was shown to be accurate, reliable,
and robust to modeling uncertainties including nonlinearities and neglected fast
dynamics, while retaining its sensitivity to incipient faults. Further, it can perform
both diagnosis and prognosis of a fault. The model-based scheme outperforms the
model-free scheme in both detection and fault isolation when the system is operating
in a linear region. The ANN, if presented with sufficiently representative data, is
reliable in the highly nonlinear operating region. An extension of the proposed scheme
to a class of nonlinear multivariable model-based scheme is currently undergoing
further analysis.
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